Diversity of Reef Fish Fungsional Groups in Terms of Coral Reef Resiliences (Edrus, I.N., & M. Abrar)

DIVERSITY OF REEF FISH FUNGSIONAL GROUPS IN TERMS OF CORAL REEF RESILIENCES

Isa Nagib Edrus^{*1} and Muhammad Abrar²

¹Research Institute for Marine Fisheries, Jl. Muara Baru Ujung, Komp Pelabuhan Perikanan Nizam Zachman, Penjaringan, Jakarta Utara, Jakarta – 14440. Indonesian

²Research Center for Oceanography – Indonesian Science Institute, JI. Pasir Putih Ancol Timur, Jakarta Utara, 14430. Indonesian Received; Oct 03-2016 Received in revised from Jan 9-2017; Accepted Jan 10-2017

ABSTARCT

Infrastructure development in the particular sites of Seribu Islands as well as those in main land of Jakarta City increased with coastal population this phenomenon is likely to increase the effects to the adjacent coral waters of Seribu Islands. Chemical pollutants, sedimentation, and domestic wastes are the common impact and threatening, the survival of coral reef ecosystem. Coral reef resiliences naturaly remained on their processes under many influences of supporting factors. One of the major factor is the role of reef fish functional groups on controling algae growth to recolonize coral juveniles. The aim of this study to obtain data of a herbivory and other fish functional groups of reef fishes in the Pari Islands that are resilience indicators, or that may indicate the effectiveness of management actions. A conventional scientific approach on fish diversity and abundance data gathering was conducted by the underwater visual cencus. Diversity values of the reef fish functional groups, such as the abundance of individual fish including species, were collected and tabulated by classes and weighted as a baseline to understand the resilience of coral reed based on Obura and Grimsditch (2009) techniques. The results succesfully identified several fish functional groups such as harbivores (21 species), carnivores (13 species) and fish indicator (5 species) occurred in the area. Regarding the aspects of fish density and its diversity, especially herbivorous fish functional group, were presumably in the state of rarely available to support the coral reef resiliences. Resilience indices ranged from 1 (low level) to 3 (moderate level) and averages of the quality levels ranged from 227 to 674. These levels were inadequate to support coral reef recolonization.

Keywords: Resiliences; reef fishes; Pari Islands

INTRODUCTION

Coral reefs were known as fish habitats where some ecological niches exist to support various fish functions in coral reef ecosystem. Some functions will collapse in damaged coral reefs due to lost of ecological niches (Jones *et al.*, 2004). Such as in unfavourable circumstances of the coral reefs, there are some losses of reef fish species and others remain to survive occupying the areas due to adapting capability. Unhealthy habitat conditions commonly derived from changes in coral covers and poor body waters as a result of sedimentation and run off from main land (Jones & Syms 1998).

Land based run off as an external factor could contribute a significant influence to community structures, functional composition of reef fishes and coral life (Mallela *et al.*, 2007; Manthachitra & Cheevaporn, 2007). According to Amesbury (1981), there was a significantly relationship between abundance or diversity of reef fishes and water transparency that are depending on accumulative deposit of sedimentation transport by fluvial processes. Some studies were also indicated that there is significant relationship between reef fish abundance, spesies diversity and live coral coverages, which reef fishes considerable changed community structures and loss diversity particularly due to hardcoral cover dwendling. (Halford *et al.*, 2004; Jones *et al.*, 2004; Graham *et al.*, 2006; Wilson *et al.*, 2006).

Decreasing in environmental quality has lead to negative impacts to Seribu Island coral reefs throughout the last three decades 2005 to 2007 surveyed generaly indicated that 4.2 % of coral covers were declined (Terangi, 2007). The negative impacts of development in Jakarta Bay likely and its adjacent waters likely produced substantial chemical pollutant, sediment, and domestic wastes (Suprapto *et al.*,

correspondence author: e-mail: nonaedrus@gmail.com 2011). In addition, marine resort and property development in Tengah Island of Seribu Islands and massive coastal reclamation in the areas that directly influenced body water quality and generates poor impacts on status of local coral reef communities. All of the activities were predicted as local stressors for Pari reef areas, therefore it is needed to measure changes of fish community structures in this specific area.

Changes in bottom substrate may affect to the reef ecosystem services. Hence, it is important to monitor the coral reefs capacities that are be able to support intensely to reef fish communities in the Pari Islands. The changes may influence to community structures and then these changes will sequentially influence to nature of reef biota growth. Changes of coral cover take place due to settlement modification of reef fishes that have special functions n food web as well as increasing in harbivorous reef fish families as a grazer group controling macroalgae growth for new recruitment of hard corals, or due to unfrendly fishing as well (Green & Belwood, 2009). Grazing fishes have abilities to adjust substrates on coral reef by using positively or negatively ways. Fish habitat and fish communities may disturb each other and in turn lead to coral reef resilience depending on herbivorous reef fishes. In food web, carnivore fishes may control the herbivore fishes, and the other hand, fishing activities may reduce fish population, especialy carnivore group such as groupers, snappers, sweaplips (Obura & Grimsditch, 2009).

Resilience is the ability of a system to absorb or recover from disturbance and change, while maintaining its functions and services. For example a coral reef's ability is to recover from a bleaching event (Grimsditch & Salm, 2006). According to Obura & Grimsditch (2009), the resilience is not only take place under damaged coral reefs condition, but also naturaly takes place in vigorous-coral reefs. Reef fish communities have capability to maintain or modify coral structures for its be sustainability. One of critical resilience factors is fish species and functional diversity. For this reason, It is essential to recognize functional groups of fishes supporting resilience processes of coral reefs. Resilience assessments could help to provide an early warning of decreases of its important resilience drivers.

Recently, there are three available methods for assessing pre-disturbance coral reef resilience, i.e. Obura & Grimsditch (2009), Maynard *et al.* (2010), and Bachtiar *et al.* (2011). This study is a part of Obura & Grimsditch (2009) method that only put emphazes to a roles of fish functional groups, especially herbivorous fishes. Diversity, density, composition and sizes of the fishes are substantial quality indicators from which they could be used directely on readily avaibale collected data and those in part of assessment on coral reef resilience in order to make management priority in a reef area already damaged (Obura & Grimsditch, 2009; Thibaut *et al.*, 2008; Hughes *et al.*, 2007).

This study aimed to gather selected-resilience indicators, especially variables data on herbivores and other functional groups of fish that exert top-down control on phase shift dynamics on coral reefs.

MATERIALS AND METHODS

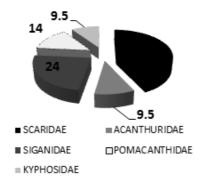
Field observation was carried out in very short observation on March 2015 at the waters of Pari Islands, Seribu Island District. The study is addressed to provide information on some parts of quantitative assessment of coral resiliences by using indicators of functional reef fish groups that play a role insupporting coral resilience.

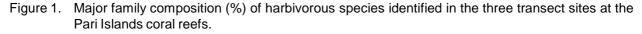
Well known that in coral reef areas there are always specifically interaction or respond of benthic organism each other. In the specific interaction, quantitative sampling can be conducted for functional fish groups such as herbivores, carnivores and omnivores. This study is mostly focused on biological indicators, e.g. (1) numbers of fish, overal and by functional groups. (2) abundance/density of the fishes by functional groups and species. (3) composition of fish populations, families and by functional/trophic groups.

A method used for data gathering was standard underwater visual census (UVC) of fish by focusing on herbivore functional groups and including other functional groups of fish (English *et al.*, 1994; Obura& Grimsditch. 2009).

The method focused on census fish at sufficient resolution to allow analysis of individual and by functional group. The level of detail is needed for different functional groups varies from species to family level. Study sites took place inpermanent belt transects (Appendix Figure 1). The cencus area is 70 x 5 m in frame. Fish numbers by species were visually noticed by using waterproof papers. Species identification was determined by referred to pictorial guide of Indonesian reef fishes (Kuiter & Tonozuka, 2001; Allen & Erdmann, 2012).

Data Analysis


The data were listed by kinds of respective fish functional groups that might be indicators for supporting resilience process. The functional groups are the role of fishes in food web, and herbivorous fishes were selected as an example listed in Appendix Table 1. Feeding habits of the herbivorous fishes were separated into four categories (Appendix Table 2) (Berkepile & Hay. 2008; Obura & Grimsditch., 2009).


Preference attending of fish functional groups, such as individual numbers and fish species, were tabulated in scales (rankings) and weighted as basis for resilience indicators that followed tabulation by Obura & Grimsditch (2009). The scale and weight depend on variables of the individual number of reef fish functional groups (adapted from Berkepile & Hay, 2008; Obura & Grimsditch, 2009), such as herbivore (excavator, scarapers dan grazer), predator (piscivores), indicator (coral obligate), and others (invertivore/grazers). The ranking in terms of a character of resilience indicesisa degree based on Obura & Grimsditch (2009) including level from very low (1) to very high (5). The indices are derived from interval individual numbers of a fish functional group. The weightwere calculated from cross over between

a ranking (1 to 5) and an individual number of fish fungsional groups. According to Obura & Grimsditch (2009), the more increase in a weight value, the higher a functional group infuenced on resilience effects.

RESULTS AND DISCUSSION Results

Finding of underwater visual cencus at three of transect sites of 21 fish species of major functional groups (herbivores) likely played a role on coral reef resiliences, especially, the fish species that are belong to families of Scaridae, Acanthuridae, Siganidae, Pomacanthidae and Kyphosidae. Figure 1 illustrates percentages of the respectively attending families as mention above. The figure shows that Scaridae was the most assertive family as well as Scarus gobban representatively attended in the largest number. All of the fish species found during visual cencus can be seen on the Appendix Table 1. Functional groups such as excavators, scarapers, grazers, browsers, which the species have already described by Obura & Grimsditch (2009), were variably found at the 1st and 3rd station of study siteswhere there were 17 species, respectevely; however at 2nd station was only found 2 species of scraper and grazer groups.

The other functional groups that were also considered playing roles in coral resiliences consisted of 13 families (Figure 3), especially those were dominated in all stations by Pomacentridae (*grazers*) and Labridae (*invertivores*), the well known families have a usual great number and strong affinity to coral reefs (Appendix Table 4). Major pradator groups were represented by attending families such as rock cods (Serranidae), snappers (Lutjanidae), emperors (Lethrinidae), trevally (Carangidae), goatfishes (Mullidae), spinecheeks (Nemipteridae), sweetlips (Haemulidae), and squirrelfishes (Holocentridae). Some dominant predators families generally found at the 1st station1 and 3rd station of cencus areas included spinecheeks (5 species), snappers (4 species), and rock cods (4 species), however the 2nd station have lower deversityfor predator. In generaly, predator group attended under 5 % for which the persentage composition ilustrates on Figure 2.

An indicator functional group, the coral obligate of Chaetodontidae, was found in lower level. The coral obligates consisted of 5 species for respective transect sites of the 1stand 3rd stations, while those in the 2nd station were found to 1 species only. Their composition was only around 5% of total attending of the other functional species (Figure 2).

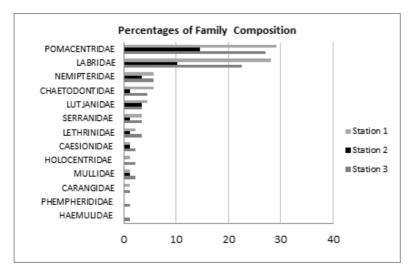


Figure 2. Family group composition of reef fishes indetified in three transect sites at the Pari Islands coral reefs.

Data analysis for grouping the reef fishes functions shows that there were four factors controled on coral resiliences and ranged from the high level to low level of intensities (Obura & Grimsditch, 2009), especially the factors derived from existences of herbivores. predators, indicators and other functional groups (Table 1). In both of the 1st and 3nd stations, the herbivory influences of an excavator entity included in low level, even those felt to be non effect in 2nd station. The Scrapers entity is moderately effected in the 1st station, lowly effected in the 2nd station and higly effected in the 3rd station. The grazersor browsers entities are lowly effected in the 1st station and the 3rd station, however those very low level effected in the 2nd station. In generally, herbivores are influenced in low level to resilince works in the 1st and 3nd stations. while those include in lowest level in the 2nd station.

Focus on the composition of species identified in the study sites, the species found were small size herbivores, such as *Scarus*spp., *Siganus*spp. and *Acanthurus* spp. which included in a scraper group. The scraper entity haslower effect to resilience works than that for excavators (Obura & Grimsditch, 2009).

The influence of predators (fiscivores) was high level in the 1st and 3rd stations, while it was moderate level in the 2rd station. The influence of indicator fishes of Chaetodontidae family includes in fair level for the 1st station, very low level for the 2nd station, and low level for the 3rd station. The influence of invertivores, especially a damselfish group (Pomacentridae) that also was considered as grazers, included in very high level for all stations, because the damselfishes were highly found in both of species numbers and individual numbers.

Discussion

Reef fish functional groups, such as parrotfishes (Scaridae) and rabbit fishes (Siganidae) found in study area were identified as excavators, scrapers, grazers and browsers, especially those are the most part of herbivores. Green & Bellwood (2009) stated that herbivores considerably played a role in coral reef resilience remedies, because those have a capability to control and reduce algae growing and then replaced it for coral larvae so that new coral recruitment established on substrates given. The herbivorous fishes essentially play a role in competitive interaction between corals and macro algae. Furthermore, the fishes, especially excavators, a reactively actor in coral bio-erosion and able to create a shifting of growing phases between corals and macro algae, that their processes arenot well understand.

For these reasons, management has to put emphases on the herbivorous fish group, because shifting of herbivorous regimes in coral reefs maysignificantly effect on changes of coral substrates (Berkepile & Hay, 2008; Green & Bellwood, 2009).

Unfortunately, herbivore diversity and their abundance found in the study sites was very low level with majority small body sizes. Most of the species found were herbivorous scrapers, while common species in big sizes and extreme excavators such as *Bolbometopon muricatum* did not appear in the study sites. Small excavators dominantly found in the transect areas were *Chlorurus bleekeri* and *Chlorurus sordidus*. Most of scrapers identified in the areas and ranged from juvenile to adult levels were *Scarus gobban*. Like the parrot fishes and rabbit fishes, also added in group of grazers and browser, they were low levels in species and individual numbers. The assertive rabbit fish was only *Siganus virgatus*. Hence, herbivorous group performances at coral reefs of Pari Islands, even at Pari Lagoon, were relatively insufficient to support coral resilience succession. Their effects might be classified in low and moderate levels. This condition might be non satisfaction of course for ecosystem, based on Thibout *et al.* (2008), the density and diversity of herbivorous functional group were be important to deal with offering guaranty for sustainable growing of coral reef ecosystems. For this reason, the fish groups performing ecological functions must be steady state in order to control the shifting of reef biota regimes.

A large number of individual and biomass of herbivorous fishes was positively correlated with cover of 'cropped substrata' (i.e., turf, microalgae, or crustose corallines); however, herbivorous fish populations were never large enough to 'crop down' more than about 50 to 65% of substratum (Williams et al., 2001). Under the low level of abundance and/or biomass of herbivorous fishes, such as this study, the level are insufficien to control algae growing and coral recruitment. In the study in Great Barrier Reefs, given the abundance of herbivorous fishes was about 0.49 - 0.70 individual/m² and biomass was about 0.45 ± 0.08 kg/m², effects of grazing on algae and coral percent cover were never large enough to crop down algae coverages and to rise up coral coverages, whereas algae persent cover was still high in mean 56 ± 21% and coral percent cover was remain in a rank from mean $6.0\% \pm 0.8\%$ to mean $7.7\% \pm 1.0\%$. Furthermore, coral recruitment was mean 39 ± 11 colonies/25 m² plot. Otherwise, when given abundance was ranged from 4.19 to 5.99 individual/m² and biomass was ranged from 3.15 to 4.5 kg/m², the effects on algae percent cover, coral percent cover, and coral recruitmen were to be positively running in control the subtratum. Algae coverages were croped down to be 1,7% and 4,7%, coral coverages were increased in ranking from $19.2\% \pm 2.3\%$ to $20.2\% \pm$ 2.2%, whereas coral recruiments were rised to be

mean 108 \pm 26 and 118 \pm 21 colonies /25 m² plot (Hughes *et al.*, 2007).

Some genus of Pomacentridae and Labridae usually found in coral reef areas (Appendix Table 3). Those are dominant composition of reef fish communities, however those did not entirely be included in herbivorous functional group (grazers). The families of Pomacentridae and Labridae disconformed in assessing coral resilienceisdue to small sizes and wide variety of feeding habits (Obura & Grimsditch, 2009). In Fishbase (Froese & Pauly, 2014), genus of damselfish (Pomacentridae) including in a grazers category and having a feeding territory are Abudefduf, Amblyglyphidodon, Cheiloprion, Chrysiptera, Dischistodus, Neoglyphidodon, Plectroglyphidodon, and Pomacentrus. Abundance of the genus as mention above in the study sites of Pari Islands is catagorized in more high level than those for herbivores of other families. Folowwing to Casey (2012), damselfishes were grazers that usually have a dominant population among other herbivorous fishes for which damselfishes have significant roles to considerably inûuence the recruitment and postsettlement dynamics of corals.

A damselfish being well known with extremely territorial behaviours is attended to aggressively defence its feeding ground from predators or other grazing species that were bigger in body sizes than that for the damselfish itself. The damselûshes also take care their some key behaviours within their authorities such as grazing turf algae, pecking coral polyps to further propagate algae, weeding unpalatable algae species, and constant aggression against intruders to protect resources (Klumpp & Polunin, 1989; Letourneur et al., 1997). The territorial damsefishes cultivate well-definited algal assemblages within their feeding authority and protect them. Hence, the damselfishes may be likely to intensely effect on benthic reef biota (Hata & Kato, 2004; Ceccarelli, 2007). In addition, although the territorial damselûshes inhabit in a wide variety of coral reef, these fishes are usually abundant on shallow reef crests and growing fringing reef and those may have harmful or favourable affects for establishing juvenile corals (Choat, 1991).

s
inds coral reefs
al c
ora
s S
pu
sla
ari I
ñ
the
.⊆
ses
Bnc
silie
ē
roup to coral re
8
otc
no
g
ish
is of functional reef fish group to coral resiliences in the Pari Islar
e
nal
i i i
ŭ
off
ts (
Effects of fur
. Effect
e 1
able
μ̈́

					Res	Resilience Indices	ices			
noitst	Factors	Variables	Quality (ind/350 m2)	Very Low	(T) MOT	Fair (F)	High	Vary High (VH)	Weight	Influences
;				-	5	°,	4	5	Values	
	Herbivores	Excavators	17	10 -20					17	٨٢
~		Scarapers	47			40 - 50			141	ш
		Grazers/Browsers	26		20 - 30				52	
	Predators	Piscivores	135					>100	675	ΗΛ
	Indicators	Coral Obligate	40			40 - 50			120	ш
	Others	Invertivores/grazers	608					> 100	3040	ΗΛ
	Means								674	Ľ.
	Herbivores	Excavators	0				- - -		0	
2		Scarapers	25		20 - 30				50	
		Grazers/Browsers	5	1 - 10					5	٨L
	Predators	Piscivores	49			30 - 50			147	LL.
	Indikator	Coral Obligate	15	10 - 20					15	٨L
	Others	Invertivores/grazers	230					> 100	1150	ΗΛ
	Means								227	
	Herbivores	Excavators	13	10 -20		1			13	٨L
ო		Scarapers	78				70 - 80		312	Т
		Grazers/Browsers	24		20 - 30				48	
	Predators	Piscivores	107					> 100	535	ΗΛ
	Indicators	Coral Obligate	23		20 - 30				46	_
	Others	Invertivores/grazers	470					> 100	2350	ΗΛ
	Means								551	Ŧ

Ind.Fish.Res.J. Vol. 22 No. 2 December 2016:109-122

By analysing juvenile coral communities as a function of the temporal turnover of damselûsh territories, Casey et al. (2015) found that damselûshcoral-algae linkages were highly dynamic in reef crest environments. Previous studies showed that the behaviour of territorial grazers on sheltered back reefs had multifaceted impacts on coral recruitment and survival (Letourneur et al., 1997; White & O'Donnell, 2010). However, according to Casey et al. (2015), the ûndings elucidated the role of territorial damselûshes on the reef crest, which had received much less attention. Thus overall, territorial pomacentrids had a negative impact on juvenile coral abundances; yet, the damselûsh turnover resulted indication of an unexpectedly dynamic system. While juvenile coral abundances could rapidly decline under the cultivation behaviours of a territorial damselûsh, we found that juvenile coral abundance might likewise rapidly recover with the loss of a damselûsh territory. Hence, despite the overall negative inûuence of territorial damselûshes on coral communities, there is potential for coral recovery on reefs occupied by territorial pomacentrids due to these high rates of territorial turnover and subsequent rapid increases in juvenile coral abundances. Corals are sedentary species that are highly sensitive to temporal-spatial shifts in biotic and abiotic regimes (Sandin & McNamara.2012). Consequently, the overall negative impact and the dynamic nature of damselûsh territories on the reef crest have important implications for benthic assemblages on the reef crest.

Another functional group found in the study sites was the carnivory, a top predator in food web, inhabited in reef crasts (1st Station and 3rd station) and consisted of economical prospective families such as rock cods (Serranidae), snappers (Lutjanidae), emperors (Lethrinidae), trevally (Carangidae), goatfishes (Mullidae), spinecheeks (Nemipteridae), sweetlips (Haemulidae), and squirrelfishes (Holocentridae). However, density and diversity of the families included in very low level due to lack of species, while individual numbers varied and rangged from 1 % to 5 %. Mostly the predator were small in sizes, its means under 25 cm. It indicated that there was intensively fishing for the predator (Sadovy et al., 2007), for which cumulatively effects migh increase in coral resiliences, especialy due to collectively high controls on other functional groups (Obura & Grimsditch, 2009).

An indicator group of the Chaetodontidae family was discovered in the study sites under lower levels than that in other healt coral reefs (Edrus & Syam, 1998). The dominant species of Chaetodontidae was only *Chaetodon octofasciatus* indicating high level of sedimentation in the study sites. Other species of Chaetodontidae that migh have individual low levels (< 4 individuals) included Chaetodon collare, Chaetodon lineolatus, Chaetodon speculum, Chelmon rostratus, Heniochus pleurotaenia and Heniochus varius. All of Chaetodontidae species identified in the study sites were included in facultative coralivores and generalist coralivores, thus the Chaetodonts were not included in specialist diet (Pratchett, 2005). Their effects on resiliences ranged from very low to low lavels (Obura & Grimsditch, 2009). The Chaetodonts have a tiny mouth more being preferences to consume coral polyps than that to algae (Reese, 1981), so that their attendance both of species numbers and individual numbers may be insufficience of effecting on coral resilience.

CONCLUSION AND RECOMMENDATION

Reef fish functional groups such as hebivores, carnivores, and indicators that inhabited in Pari Islands, especialy both of density and deversity aspects, migh be classified inadequately state to support for sustainable coral resiliences. In additation, body sizes of the functional groups were included in the lower categories to support resiliences processes, especially there were a lot of the number of tiny grazers and browsers; however, there were a small amount of the excavators. On other hand, piscivores (predators) as competitor of resilience supporting species were found in a quite number.

It's needed to repetitive monitoring on diversity of the fish functional groups and its relationship to newrecruitmen of coral colonies.

ACKNOLEDGEMENTS

This study is based on the data collected from the Coral Health Monitoring of LIPI Programmes in Pari Islands. We thank to the Director of LIPI – 3rdCOREMAP for the funding support.

REFERENCES

- Amesbury, S. S. (1981). Effects of turbidity on shallow-water reef fish assemblages in Truk, Eastern Caroline Islands. *Proceedings of the Fourth International Coral Reef Symposium* (p. 155-159), Manilla.
- Bachtiar, I., Damar, A., Suharsono., & Zamani, N.P. (2011). Assessing Ecological Resilience of Eastern Indonesian Coral Reefs. *Journal of Indonesia Coral Reefs*, 1(2), 91-98.

Ind.Fish.Res.J. Vol. 22 No. 2 December 2016: 109-122

- Berkepile, D.E., & Hay, M.E. (2008). Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. *PNAS* 105, 16.201–16.206.
- Casey, J. (2012). From Australia to Belize: Students study reef fish behavior. http://news.sewanee.edu/ academics/2012/07/13/from-australia-to-belizestudents-study-reef-fish-behavior.
- Casey, J.M., Choat, J. H., & Connolly, S. R.(2015). Coupled dynamics of territorial damselfishes and juvenile corals on the reef crest. *Coral Reefs*, 34, 1–11.
- Ceccarelli, D.M. (2007). Modiûcation of benthic communities by territorial damselûsh: A multi-species comparison. *Coral Reefs*, 26, 853–866.
- Choat, J.H. (1991). The Biology of Herbivorous Fshes on Coral Reefs. In Sale, P (Ed.) *The Ecology of Flshes on Coral Reefs* (p. 120). San Diego: Academic Press, Inc.
- Edrus, I.N., & Syam. A.R. (1998). Sebaran Ikan Hias Suku Chaetodontidae di Perairan Karang Pulau Ambon dan Peranannya dalam Penentuan Kondisi Terumbu Karang. *Jurnal Penelitian Perikanan Indonesia*, 4 (3), 1 – 12.
- English, S., Wilkinson, C., & Baker, V. (1994). *Survey Manual for Tropical Marine Resources* (p. 74).Townsville. Australia : Australian Institute of Marine Science.
- Froese, R., & Pauly D. (2014). *FishBase*. World Wide Web electronic publication. www.fishbase.org, version (04/2014).
- Graham, N.A.J., Wilson, S.K., Jennings, S., Polunin, N.P.C., Bijoux, J.P., & Robinson, J. (2006). Dynamic fragility of oceanic coral reef ecosystems. In *Proc. Natl. Acad. Sci. USA* 103, 8425–8429.
- Green, A.L., & Bellwood, D.R. (2009). Monitoring functional groups of herbivorous reef fishes as indicators of coral reef resilience. In A practical guide for coral reef managers in the Asia Pacific region (p. 70). Gland, Switzerland : IUCN working group on Climate Change and Coral Reefs.

- Grimsditch, G.D., & Salm, R.V. (2006). Coral Reef Resilience and Resistance to Bleaching. (p. 56) Gland, Switzerland: The World Conservation Union - IUCN.
- Halford, A., Cheal, A.J., Ryan, D.A.J., & Williams, D.M. (2004). Resilience to large-scale disturbance in coral and Fish assemblages on the Great Barrier Reef. *Ecology*, 85, 1892–1905.
- Hata, H., & Kato, M. (2004). Monoculture and mixedspecies algal farms on a coral reef are maintained through intensive and extensive management by damselûshes. J. Exp. Mar. Biol. Ecol. 313, 285– 296.
- Hughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D., Guldberg O. H., McCook, L., Moltschniwskyj, N., & Pratchett, M. S. (2007). Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change. *Curent Biology*, 17, 360-365.
- Jones, GP., & Syms, C. (1998). Disturbance, habitat structure and the ecology of fishes on coral reefs. *Aust. J. Ecol.* 23, 287–297.
- Jones, G.P., McCormick, M.I., Srinivasan, M., & Eagle, J.V. (2004). Coral decline threatens fish biodiversity in marine reserves. Proc Natl. Acad Sci USA 101, 8251–8253.
- Klumpp. D.W., & Polunin, N.V.C. (1989). Partitioning among grazers offood resources within damselûsh territories on a coral reef. *J. Exp. Mar. Biol. Ecol.* 125, 145–169.
- Kuiter, R.H., & Tonozuka,T. (2001). Pictorial Guide to: Indonesian Reef Fishes. Seaford VIC 3198 (p. 895). Australia: Zoonetics Publc.
- Letourneur, Y., Galzin, R., & Vivien, M.H. (1997). Temporal variations in the diet of the damselfish *Stegastes nigricans* (Facepe 'de) on a Re ´union fringing reef. *J. Exp. Mar. Biol. Ecol.* 217, 1–18.
- Mallela, J., Roberts, C., Harrod, C., & Goldspink, C. R. (2007). Distributional patterns and community structure of Caribbean coral reef fishes within a river-impacted bay. *Journal of Fish Biology*, 70, 523-537.

- Manthachitra, V., & Cheevaporn, V. (2007). Reef fish and coral assemblages at Maptaput, Rayong Province. Songklanakarin *J. Sci. Technol.* 29(4), 907-918.
- Maynard, J.A., Marshall, P.A., Johnson, J.E., & Harman, S. (2010). Building resilience into practical conservation: identifying local management responses to global climate change in the southern Great Barrier Reef. *Coral Reefs*, 29, 381–391.
- Obura, D., & Grimsditch, G. (2009). Resilience Assessment of Coral Reefs Rapid assessment protocol for coral reefs, focusing on coral bleaching and thermal stress. *In IUCN Working Paper Series* 5 (p. 71). Gland, Switzerland: IUCN Resilience Science Group.
- Pratchett, M.S. (2005). Dietary overlap among coralfeeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef. *Marine Biology*, 148, (2), 373-382.
- Reese, E. (1981). Predation on corals by fishes of the family Chaetodontidae: implication for conservation and management of coral reef ecosystem. *Bulletin of Marine Science*, 31 (3), 594-604.
- Sadovy, Y., A.E. Punt, A.E., Cheung, W., Vasconcellos, M., Suharti, S., & Mapstone, B.D. (2007). Stock assessment approach for the Napoleon fish, *Cheilinus undulatus*, in Indonesia. A tool for quota-setting for data-poor fisheries under CITES Appendix II non-detriment finding requirements. *In Fisheries Circular* No. 1023 (71 pp). Rome: FAO.

- Sandin, S.A., & McNamara, D.E. (2012). Spatial dynamics of benthic competition on coral reefs. *Ecologia*, 168, 1079–1090.
- Suprapto, Kembaren, D., & Lestari, P. (2011). Kondisi Lingkungan Perairan Teluk Jakarta. In : Sumberdaya Ikan di Perairan Teluk Jakarta dan alternatif Pengelolaannya (p147).Suman, A., Wudiato & Sumiono, B. (Eds). Bogor: IPB Press.
- Terangi, (2007). Buku Terumbu Karang Jakarta. Pengamatan Terumbu Karang Kepulauan Seribu Tahun 2003 – 2007 (p. 106). Jakarta: Yayasan Terangi.
- Thibaut, L.M., Connolly, S.R., & Sweatman, P.A. (2008). Diversity and stability of herbivorous fishes on coral reefs. *Ecology*, 93, 891 901.
- Wilson, SK., Graham, N.A.J., Pratchett, M., Jones, G.P., & Polunin, N.V.C. (2006). Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient. *Global Change Biol*, 12, 2220–2234.
- White, J.S.S., & O'Donnell, J.L. (2010). Indirect effects of a key ecosystem engineer alter survival and growth of foundation coral species. *Ecology* 91, 3538–3548.
- Williams, I. D., Nicholas V. C. Polunin, N.V.C., Vicki J. Hendrick, V.J. (2001). Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. *Mar. Ecol. Prog. Ser.* 222, 187–196.

Appendix 1. Study area of Pari Islands (Station 1 up to 3 are transect sites)

Appendix 2. Reef fishes function in food web levels

LEVEL OF FOOD WEB	FUNCTIONAL DESCRIPTION
Herbivores	Exert the primary control on coral-algal dynamics and are implicated in determining phase shifts from coral to algal dominance especially in response to other pressures such as eutrophication, mass coral mortality, etc. E.g. parrotfish (Scaridae), surgeonfish (Acanthuridae).
Piscivores/carnivores	Top level predators, they exert top-down control on lower trophic levels of fish, are very vulnerable to overfishing, and good indicators of the level of anthropogenic disturbance (fishing) on a reef. E.g. sharks, groupers (Serranidae), jacks (Carangidae).
Scavengers /generalists	Second-level predators with highly mixed diets including small fish, invertebrates and dead animals, their presence/absend is a good indicator of anthoropogenic disturbance (fishing). E.g. snappers (Lutjanidae), emperors (Lethrinidae), sweetlips (Haemulidae).
Obligate and facultative coral feeders	The relative abundance of these groups are a secondary indicator of coral community health. E.g. butteflyfish (Chaetodontidae) and some filefish (Monacanthidae).
Sessile invertebrate feeders	Feed on coral competitors such as soft corals and sponges, their relative abundance may be a secondary indicator of abundance/stability of these groups and of a phase shift. E.g. angelfish (Pomacanthidae).
Planktivores	Resident on reef surfaces, but feed in the water column. Their presence/absence may be related to habitat for shelter and water column conditions. E.g. some triggerfish (Balistidae), fusiliers (Caesionidae).
Detritivores	Feed on organic matter in sediment and on reef surfaces, their relative abundance may be an indicator of eutrophication and conditions unsuitable for corals. E.g. goatfish (Mullidae).

Sources: Obura & Grimsditch (2009)

Appendix 3.	Feeding	behaviour	of harbivorous	fish reefs

GROUPS	FEEDING BEHAVIOURS
Scrapers/small excavators	Scrapers and small excavators: The majority of parrotfishes (Hipposcarus and Scarus species) are scrapers. They take non-excavating bites and remove algae, sediment and other material by closely cropping or scraping the reef surface, leaving shallow scrape marks on the reef substratum. Scrapers and small excavators (individuals < 35cm standard length) play similar roles in coral reef resilience by limiting the establishment and growth of macroalgae while intensely grazing epilithic algal turf, and providing areas of clean substratum for coral recruitment.
Large excavators/ bioeroders	Large excavators/bioeroders play a similar role in coral reef resilience to scrapers and small excavators. However, they are also major agents of bioerosion on reefs, removing dead coral and exposing hard, reef matrix for coral recruitment. They include all large individuals of excavating species (individuals > 35cm standard length). Five species have also been observed grazing on live corals on Indo Pacific reefs, although coral only accounts for a substantial proportion of the diet of one species (B. muricatum). Since these species have a greater affect on the underlying substratum than scrapers and small excavators, they play a different role in coral reef resilience by opening up new sites for colonization by coralline algae and corals.
Grazers/detritivores	Grazers/detritivores play an important role in coral reef resilience by intensely grazing epilithic algal turfs, which can limit the establishment and growth of macroalgae. Unlike parrotfishes, grazers do not scrape or excavate the reef substratum as they feed. Grazers include most rabbitfishes, small angelfishes (all Centropyge species), and many species of surgeonfishes (all Zebrasoma and Acanthurus species except those that feed on exclusively on plankton or are grazers/detritivores). Grazers/detritivores include Acanthurus species that feed on a combination of epilithic algal turf, sediment and some animal material. Although only a small proportion of their diet is algae, grazers/detritivores are combined with grazers because many are schooling species that can be abundant and consume significant amounts of algal turf.
Browsers	Browsers consistently feed on macroalgae. They select individual algal components and remove only algae and associated epiphytic material. Browsers play an important role in reducing coral overgrowth and shading by macroalgae, and can play a critical role in reversing coral-algal phase shifts. They include some unicornfishes, rudderfishes, batfishes, a rabbitfish and parrotfishes of the genus Calotomus and Leptoscarus.

Source: Berkepile & Hay (2008); Obura & Grimsditch,(2009)

Appendix 4.	Species of herbivorou	s groups identified in the	transect sites at Pari Islands

Fan	nilies/Species	Herbivory Groups	St.03	St.02	St.01
SC	ARIDAE (43%)				
1	Cetoscarus bicolor	Excavators			1
2	Chlorurus bleekeri	Excavators	5		6
3	Chlorurus capistratoides	Excavators	2		
4	Chlorurus sordidus	Excavators	6		3 7
5	Scarus dimidiatus	Scrapers	7		4
6	Scarus frenatus	Scrapers	2		3
7	Scarus ghoban	Scrapers	62	25	36
8	Scarus niger	Scrapers	7		3
9	Scarus spinus	Scrapers			1
AC/	ANTHURIDAE (9,5%)				
10	Acanthurus leneatus	Grazer/Detritivores	2		2
11	Ctenochaetus binotatus	Detritivores	2		
SIG	ANIDAE (24%)				
12	Siganus canaliculatus	Grazers/Browsers			2
13	Siganus javus	Grazers/Browsers	2		
14	Siganus guttatus	Grazers/Browsers			2
15	Siganus punctatus	Grazers/Browsers	2		4
16	Siganus virgatus	Grazers/Browsers	6		6
POI	MACANTHIDAE (14%)				
17	Centropyge eibly	Grazers/Inventivores	2		2
18	Chaetodontoplus mesoleucus	Grazers	5	5	6
19	Pomacanthus sexstriatus	Grazers/Detritivores	1		2
KYF	PHOSIDAE (9,5%)				
20	Kyphosus vaigiensis	Browsers	1		
21	Platax teira	Browsers	1		

Appendix 5. Reef fish S	pecies based on functional	groups identified in the	transect sites at Pari Islands

Families/Species	Groups	St.03	St.02	St.0
CARANGIDAE (2%)		_		
1 Caranx bajaj	Fiscivores/Scavengers	5		
2 Sphyraena flavicauda	Fiscivores/Scavengers			26
IAEMULIDAE (1%)				
3 Plectorhyncus chaetontoides	Fiscivores/Scavengers	1		
ETHRINIDAE (3%)	Finalitation (Secure and and	4		
4 Lethrinus harak	Fiscivores/Scavengers Fiscivores/Scavengers	1	1	1
5 Lethrinus erythropterus 6 Lethrinus ornatus	Fiscivores/Scavengers	1	1	1
6 Lethrinus ornatus .UTJANIDAE (4%)	Fiscivoles/Scaverigers	I		1
7 Lutjanus biguttatatus	Fiscivores/Scavengers	24	6	9
8 Lutjanus carponatus	Fiscivores/Scavengers	24	1	1
9 Lutjanus decussatus	Fiscivores/Scavengers	7	1	4
10 Lutjanus fulviflamma	Fiscivores/Scavengers	2		6
IULLIDAE (2%)	. loon of our ongoing	-		•
11 Parupeneus macronema	Fiscivores/Scavengers	1		
12 Upeneus tragula	Fiscivores/Scavengers	2	2	2
ERRANIDAE (4%)		_	_	_
13 Cephalopholis boenack	Fiscivores/Scavengers	2	1	2
14 Cephalopholis cyanostigma	Fiscivores/Scavengers	-	-	2
15 Chepalopholis sexmaculata	Fiscivores/Scavengers	1		-
16 Ephinephelus fasciatus	Fiscivores/Scavengers	1		1
OLOCENTRIDAE (2%)	C C			
17 Myripristis kunteee	Fiscivores/Scavengers	2		
18 Sargocentron rubrum	Fiscivores/Scavengers	4		12
IEMIPTERIDAE (5%)	-			
19 Pentapodus trivittatus.	Fiscivores/Scavengers	6	1	5
20 Scolopsis bilineata	Fiscivores/Scavengers	6		4
21 Scolopsis ciliata	Fiscivores/Scavengers	4	8	2
22 Scolopsis lineata	Fiscivores/Scavengers	8		6
23 Scolopsis margaritifer	Fiscivores/Scavengers	3	2	6
AESIONIDAE (2%)				
24 Caesio cuning	Planktivora	21	26	45
25 Caesio caerulaureus	Planktivora	4		
PHEMPHERIDIDAE (1%)	Diantrinana	0		
26 Pempheris oualensis POMACENTRIDAE (31%)	Planktivora	8		
27 Abudefduf bengalensis	Invertivores/grazers	23		18
28 Abudefduf sexfasciatus	Invertivores/grazers	38	25	75
29 Abudefduf sexiascialus 29 Abudefduf vaigiensis	Invertivores/grazers	30	23 52	18
30 Acanthochromis polyacanthus	Invertivores/grazers	4	52	24
31 Amblyglyphidodon aureus	Invertivores/grazers	2		24
32 Amblyglyphidodon aureus	Invertivores/grazers	74	32	83
33 Amblyglyphidodon euracao	Invertivores/grazers	74 78	52	41
Amblyglyphidodon ternatensis	Invertivores/grazers	10	26	
35 Cheiloprion labiatus	Invertivores/grazers		20	12
36 Chromis antipectoralis	Invertivores	96		74
37 Chromis ternatensis	Invertivores	132		87
38 Chrysiptera glauca	Invertivores/grazers	4		3
39 Dischistodus perspicillatus	Invertivores/grazers	•	6	2
40 Dischistodus prosopotaenia	Invertivores/grazers	6	Ť	24
41 Lepidozygus tapeinosoma	Invertivores	126		
42 Neopomacentrus azysron	Invertivores	86	25	124
43 Neopomacentrus cyanomus	Invertivores	75		
14 Neopomacentrus filamentosus	Invertivores	102	15	112
45 Neoglyphidodon melas	Invertivores/grazers	5	16	9
46 Neoglyphidodon nigrosis	Invertivores/grazers	4		28
47 Plectroglyphidodon lacrymatus	Invertivores/grazers	13		4
48 Pomacentrus amboinensis	Invertivores/grazers	46		24
49 Pomacentrus alexanderae	Invertivores/grazers	78		66
50 Pomacentrus burroughi	Invertivores/grazers			38
51 Pomacentrus grammorhynchus	Invertivores/grazers	16	8	25
52 Pomacentrus littoralis	Invertivores/grazers			12
53 Pomacentrus moluccensis	Invertivores/grazers	47	14	58
54 Pomacentrus philippinus	Invertivores/grazers	15		
55 Pomacentrus spilotoceps	Invertivores/grazers		5	12
56 Premnas biaculeatus	Invertivores/grazers	3	3	4
57 Stegastes nigricans	Invertivores/grazers	14	43	28

Appendix 5. continued

58	RIDAE (25%) Bodianus mesothorax	Invertivores	1		3
59	Cheilinus fasciatus	Invertivores	3	16	12
60	Cheilinus trilobatus	Invertivores	8	10	8
61	Cheilinus undulatus	Invertivores	1		1
62	Choerodon anchorago	Invertivores	4	8	24
63	Cirrhilabrus cyanopleura	Invertivores	62	Ū	75
64	Coris veriegeta	Invertivores	4		5
65	Diproctacanthus xanthurus	Invertivores	4		4
66	Epibulus insidiator	Invertivores	6	2	6
67	Gomphosus varius	Invertivores	3	2	2
68	Halichoeres argus	Invertivores	4	18	12
69	Halichoeres chloropterus	Invertivores	т	10	5
70	Halichoeres hortulanus	Invertivores	4		8
71	Halichoeres lamari	Invertivores	3		2
72	Halichoeres purpurescens	Invertivores	7	1	6
73	Halichoeres scapularis	Invertivores	·	2	2
74	Halichoeres vrolokii	Invertivores			4
75	Hemigymnus melapterus	Invertivores	7	6	12
76	Labrichthys unilineatus	Invertivores	2		2
77	Labroides dimidiatus	Invertivores	5	2	8
78	Pseudocheilinus hexataenia	Invertivores			3
79	Stethojulis bandanensis	Invertivores	3		8
80	Thalassoma amblycephalum	Invertivores	22		44
81	Thalassoma hardwickii	Invertivores			6
82	Thalassoma lunare	Invertivores	38	2	24
HA	ETODONTIDAE (7%)				
83	Chaetodon collare	Facultative/Indicator	1		
84	Chaetodon lineolatus	General/Indicator			1
85	Chaetodon octofasciatus	Generalist/Indicator	16	15	34
86	Chaetodon speculum	Facultative/Indicator			1
87	Chelmon rostratus	Facultative/Indicator	4		
88	Heniochus pleurotaenia	Generalist/Indicator	2		3
89	Heniochus varius	Generalist/Indicator			1