Phylogenetic tree on Lernacosis in arwana fish (Dikri Novel Shatrie)

PHYLOGENETIC TREE ON LERNAEOSIS IN ARWANA FISH (Scleropages jardinii)

Dikry Novel Shatrie^{*)#}, Kurniasih^{**)}, Nurcahyo, W.^{**)}, and Triyanto^{**)}

^{*)} Centre for Fish Quarantine, Ministry of Marine Affair and Fisheries, Jakarta ^{*)} Faculty of Veterinary Medicine Gadjah Mada University, Jogjakarta

(Received 4 January 2011; Accepted 1 May 2011)

ABSTRACT

Arwana Irian fish is one of the endangered species. Some studies on arwana Irian fish found that Lernaeosis attacked arwana Irian fish. Lernaeosis is one of the diseases that cause the high mortality in juvenile fish. The objectives of this research was to find out the species of *Lernaea* (Copepoda) often attacked arwana Irian fish. *Lernaea* sp. was collected from Papua and Jakarta (Java). They were fixed in the ethanol absolute solution for DNA sequencing in 28S DNA region with primer 28SF (5'-ACA ACT GTG ATG CCC TTA G-3'); 28SR (5' TGG TCC GTG TTT CAA GAC G-3'). It was found five different species of *Lernaea* and one of them was thought as a new species, based on the morphology. However, based on the phylogenetic analysis, they showed three different groups. *Lernaea cyprinacea* G., *L. papuensis*, *L. devastatrix*, and *L. lophiara* were in one group; *L. cyprinacaea* and *L. oryzophila* were in one groups; and the new *Lernaea* sp. was in the different group.

KEYWORDS: Scleropages jardinii, Lernaeosis, Phylogenetic tree

INTRODUCTION

Lernaeid copepods cause serious deleterious effects on their freshwater fish hosts (Kabata, 1985). One factor which may contribute to the increased infestation level during the drying phase was the reduction in water volume. The economic loss caused by lernaeid ectoparasites has increased due to numerous epizootics occurring among the most important farmed fish in various parts of the world (Tasawar et al., 2007). A lernaeid population found only on jaws of Tilapia (Oreochromis spp.) Lernaea victoria (Fryer, 1961) has been identified as Lernaea cyprinacea. Other lernaeids of African fish were endemic, Lernaea barnimiana may be found on both cyprinid and cichlid hosts (Paperna, 1996). The embedded anchors were surrounded by fibrous granulation tissue, and there was considerable leucocytic response below the dermis. Myofibril degeneration and hemorrhage were noted in most sections of fish (Berry et al., 1991). Lernaea minuta was found in Javanese carp (Puntius gonionotus), which inhibated in Selangor, West Malaysia (Kularatne et al., 1994). Lernaea cyprinacea was reported from several fish such as goldfish (Carassius auratus L.), Helostoma temmincki, Cyprinus carpio, Carassius auratus L. (Shariff et al., 1986). Infestations of *Lernaea cyprinacea* was found on four native fish species (Galaxias occidentalis Ogilby; Edelia vittata Castelnau; Tandanus bostocki Whitley) and three introduced fish species (Carassius auratus L.; Gambusia holbrooki (Girard); Phalloceros

[#] Corresponding author. Centre for Fish Quarantine, Ministry of Marine Affair and Fisheries, Jl. Medan Merdeka Timur No. 16, Jakarta 10110, Indonesia. Tel.: +62 21 3519070 *E-mail address: dikry_shatrie@yahoo.com*

caudimaculatus (Hensel) (Marina et al., 2008). The phylogenetic relationships among the Ergasilidae, included Lernaea cyprinacea from China, were examined using neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian inference methods based on partial sequences of 18S and 28S ribosomal deoxyribonucleic acid, respectively (Song et al., 2008). However, the molecular sequence analysis and phylogenetic relationships among the parasitic Lernaea sp. still unclear. Here we would like to provide additional resolution for the interpretation of Lernaea sp., in addition to use identification based on morphology. The objective of this paper is to identify Lernaea sp. based on molecular analysis and to find phylogenetic relationships among 6 spesies of Lernaea.

MATERIALS AND METHODS

A total of 20 of parasitic copepods belonging to Lernaeidae were collected from arwana fish in Papua, Indonesia. Copepods were examined under stereo microscope to identify species. Specimens were fixed in ethanol absolute for molecular study. Primer was used, 28SR(5'-TGG TCC GTG TTT CAA GAC G-3') and 28SF (5'-ACA ACT GTG ATG CCC TTA G-3'); 28SR (5' TGG TCC GTG TTT CAA GAC G-3').

Following conditions of cycles were 94° C for 5 minutes, followed by 30 cycles of 94° C for 30 second, 54° C for 30 second and 72° C

for 1 minute with a final extension at 72°C for 5 minutes (Song *et al.*, 2008). Six specimens of *Lernaea* were then purified and sequenced in the 28S region.

Results of DNA sequencing were sorted using Clustal W, continued with limited editing manually (Thompson *et al.*, 1994). The distances between pairs were corrected with Kimura two-parameter model using MEGA 4 (Kumar *et al.*, 2004). All sequences were aligned with Clustal W. Maximum parsimony (MP) and Neighbor joining (NJ) methods using 1,000 bootstrap re-sampling were used to get the phylogenetic tree.

RESULTS AND DISCUSSIONS

The sequense results showed that there were several gene variation between *Lernaea lophiara* (L1), *L. papuensis* (L10), and *L. devastatrix* (L11) in one group; *Lernaea cyprinacaea* (L2) dan *L. oryzophilla* (L3) were in one group; and *Lernaea* sp. (L4) was in one group (Figure 1). The sequences result of *Lernaea* in Indonesia has not been reported yet.

From a total of 16 sequences at 28S rDNA region where 430 is variable from 754 of parsimony, including gaps. And 289 is the Converse of 754 including the gap (Table 1).

Phylogenetic tree using maximum parsimony (MP) analysis found three groups among

L1:	AGCACTGA –CCGCCAGCTTTTGAAAGGGTTGCGCGGAATGTAGTGTTTG	50
L2:	AGCACTGAAC- GCCAGCTTTTGAAAGGGTTGCGCGGAATGTAGTGTTTG	
L3:	AGCACTGAAC- GCCAGCTTTTGAAAGGGTTGCGCGGAATGTAGTGTTTG	
L4:	AGCACTGAACCGCCAGCTTTTGAAAGGGTTGCGCGGAATGTAGTGTTTG	
L10:	AGCACTGA - CCGCCAGCTTTTGAAAGGGTTGCGCGGAATGTAGTGTTTG	
L11:	AGCCTGGA - CCGCCAGCTTTTGAAAGGGTTGCGCGGAATGTAGTGTTTG	
L1:	GGAGAGCCTTCTCATGATGCGCGGTGCAAAATCTGTCTAAGTCCACCTTG	100
L2:	GGAGAGCCTTCTCATGATGCGCGGTGCAAAATCTGTCTAAGTCCACCTTG	
L3:	GGAGAGCCTTCTCATGATGCGCGGTGCAAAATCTGTCTAAGTCCACCTTG	
L4:	GGAGAGCCTTCTCATGATGCGCGGTGCAAAATCTGTCTAAGTCCACCTTG	
L10:	GGAGAGCCTTCTCATGATGCGCGGTGCAAAATCTGTCTAAGTCCACCTTG	
L11:	GGAGAGCCTTCTCATGATGCGCGGTGCAAAATCTGTCTAAGTCCACCTTG	
L1:	ACTGGGGCCACTACCCATAGAGGGTGATAGGCCCGTAAGACAGTCTGCGT	150
L2:	ACTGGGGCCACTACCCATAGAGGGTGATAGGCCCGTAAGACAGTCTGCGT	
L3:	ACTGGGGCCACTACCCATAGAGGGTGATAGGCCCGTAAGACAGTCTGCGT	
L4:	ACTGGGGCCACTACCCATAGAGGGTGATAGGCCCGTAAGACAGTCTGCGT	
L 10:	ACTGGGGCCACTACCCATAGAGGGTGATAGGCCCGTAAGACAGTCTGCGT	
L 11:	ACTGGGGCCACTACCCATAGAGGGTGATAGGCCCGTAAGACAGTCTGCGT	
Figur	e 1. Sequencing result of <i>Lernaea</i> species from arwana Irian fish	

Figure 1. (Continued)

L1: GTTGTGCTGGCTTTTTCCCTAGAGTCGAGTTGCTTGGGAGTGCAGCTCAAA	200
L 2 : GTTGTGCTGGCTTTTTCCCTAGAGTCGAGTTGCTTGGGAGTGCAGCTCAAA	
L 3 : GTTGTGCTGGCTTTTTCCCTAGAGTCGAGTTGCTTGGGAGTGCAGCTCAAA	
L4: GTTGTGCTGGCTTTTTCCCTAGAGTCGAGTTGCTTGGGAGTGCAGCTCAAA	
L10: GTTGTGCTGGCTTTTTCCCTAGAGTCGAGTTGCTTGGGAGTGCAGCTCAAA	
L11: GTTGTGCTGGCTTTTTCCCTAGAGTCGAGTTGCTTGGGAGTGCAGCTCAAA	
L1: GTGCGTGGTAAACTCCACGTAAGGCTAAATATCACCCCGAGACCGATAGC	250
L2: GTGCGTGGTAAACTCCACGTAAGGCTAAATATCACCCCGAGACCGATAGC	
L 3 : GTGCGTGGTAAACTCCACGTAAGGCTAAATATCACCCCGAGACCGATAGC	
L4: GTGCGTGGTAAACTCCACGTAAGGCTAAATATCACCCCGAGACCGATAGC	
L10: GTGCGTGGTAAACTCCACGTAAGGCTAAATATCACCCCGAGACCGATAGC	
L11: GTGCGTGGTAAACTCCACGTAAGGCTAAATATCACCCCGAGACCGATAGC	
L1: GAACAAGTACCGTGAGGGAAAGTTGAAAAGAACTTTGAAGAGAGAG	300
L 2 : GAACAAGTACCGTGAGGGAAAGTTGAAAAGAACTTTGAAGAGAGAG	
L4: GAACAAGTACCGTGAGGGAAAGTTGAAAAGAACTTTGAAGAGAGAG	
L10: GAACAAGTACCGTGAGGGAAAGTTGAAAAGAACTTTGAAGAGAGAG	
L11: GAACAAGTACCGTGAGGGAAAGTTGAAAAGAACTTTGAAGAGAGAG	
L1: ATAGTACGTGAAACTGTGTAGCGGTAAACAGAGGGGCTCTCGAAGTCCAG	350
L2: ATAGTACGTGAAACTGTGTAGCGGTAAACAGAGGGGCTCTCGAAGTCCAG	
L 3 : ATAGTACGTGAAACTGTGTAGCGGTAAACAGAGGGGCTCTCGAAGTCCAG	
L4: ATAGTACGTGAAACTGTGTAGCGGTAAACAGAGGGGCTCTCGAAGTCCAG	
L10: ATAGTACGTGAAACTGTGTAGCGGTAAACAGAGGGGCTCTCGAAGTCCAG	
L11: ATAGTACGTGAAACTGTGTAGCGGTAAACAGAGGGGCTCTCGAAGTCCAG	
L1: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG	400
L 2 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG	
L 3 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG	
L 4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG	
L 4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG	
L 4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG	
L 4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG	450
L 4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L 1 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC	450
L 4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L 1 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L 2 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC	450
L 4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGGCTGGTGCGAAGATCTG L 1 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L 2 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L 3 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC	450
L 4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGGCTGGTGCGAAGATCTG L 1 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L 2 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L 3 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L 4 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC	450
 L 4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGTGGCTGGATGGCGAAGATCTG L 1 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L 2 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L 3 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L 4 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L 1 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L 1 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC 	450
L 4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGGCTGGTGCGAAGATCTG L 1 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L 2 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L 3 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L 4 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC	450
 L4: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L1: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGGCTGGATGGCGAAGATCTG L2: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L3: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L10: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC 	
L4: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L1: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L2: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L3: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L10: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC	450 500
L4: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L1: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L2: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L3: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L10: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L12: TTCTCTGGCCTAGCAATGGCGCGCGACGAGCCACTGAGAGCGAATCAAGTG L2: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG	
L4: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L1: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L2: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L3: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L10: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L12: TTCTCTGGCCTAGCAATGGCGACGAGCCACTGAGAGCGAATCAAGTG L2: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG	
L4: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L1: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L2: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L3: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L10: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L12: TTCTCTGGCCTAGCAATGGCGCACGAGCCACTGAGAGCGAATCAAGTG L2: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG	
L4: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L1: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L2: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L3: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L10: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L12: TTCTCTGGCCTAGCAATGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L2: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L4: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L4: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG	
L4: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L1: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L2: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L3: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L10: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L12: TTCTCTGGCCTAGCAATGGCGCACGAGCCACTGAGAGCGAATCAAGTG L2: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG	
L4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L1 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGAAGATCTG L2 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L3 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L10 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L12 : TTCTCTGGCCTAGCAATGGCCGCGACGAGCCACTGAGAGCGAATCAAGTG L2 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L10 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L11 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L11 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L11 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L11 : TTCTCTGGCCTAGCAATGGGCGCGACGACGAAGCCACTGAAAGCGAATCAAGTG L11 : TTCTCTGGCCTAGCAATGGGCGCGACGACGAGCCACTGAAGAGCGAATCAAGTG	500
L4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L1 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L2 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L3 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L10 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L12 : TTCTCTGGCCTAGCAATGGCCGCGACGAGCCACTGAGAGCGAATCAAGTG L2 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L10 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L10 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L10 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAGAGCGAATCAAGTG L11 : CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGAGCCCCG	
L4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L10 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L11 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTTGGCTGGTGCGAAGATCTG L1 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L2 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L3 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L10 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L12 : TTCTCTGGCCTAGCAATGGCCGCGACGAGCCACTGAGAGCGAATCAAGTG L2 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L10 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L11 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L12 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L14 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAAAGCGAATCAAGTG L15 : CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGAGCCCCG L2 : CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGAGCCCCG	500
 L4: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGGCTGGTGCGAAGATCTG L10: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGGCTGGTGCGAAGATCTG L11: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGGCTGGTGCGAAGATCTG L1: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L2: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L3: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L1: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L1: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L1: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L2: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L1: CCTGGGCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L1: CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGAGCCCCG L2: CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGAGCCCCG L3: CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGAGCCCCG L3: CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGAGCCCCG 	500
L4 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGGCTGGTGCGAAGATCTG L10 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGGCTGGTGCGAAGATCTG L11 : GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGGCTGGTGCGAAGATCTG L1 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L2 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L3 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L4 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L10 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L11 : CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATTGCAC L12 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L2 : TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3 : TTCTCTGGCCTAGCAATGGGCGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4 : TTCTCTGGCCTAGCAATGGGCGCGCGCGCGCACCACTGAGAGCGAATCAAGTG L1 : TTCTCTGGCCTAGCAATGGGCGCGCGCGCACGAGCCACTGAGAGCGAATCAAGTG L10 : TTCTCTGGCCTAGCAATGGGCGCGCGCGCGCGCACCACTGAGAGCGAATCAAGTG L11 : TTCTCTGGCCTAGCAATGGGCGCGCGCGCGCACGAGCCACTGAGAGCGAATCAAGTG L11 : TTCTCTGGCCTAGCAATGGGCGCGCGCGCGCGCCCCTGAGAAGCGAATCAAGTG L12 : CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGGAGCCCCG L2 : CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGGAGCCCCG L3 : CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGGAGCCCCG L4 : CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGGGTTGGGAGCCCCCG L4 : CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGGGTTGGGAGCCCCC	500
 L4: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGGCTGGTGCGAAGATCTG L10: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGGCTGGTGCGAAGATCTG L11: GCTGGAGATTCAGGTTGCCAGATGGCTAGTTGGCTGGTGCGAAGATCTG L1: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L2: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L3: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L4: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L1: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L1: CATAGGACTTTGTGCCTGGTCAAATGTTGTTGGCTGGATGGCGATGCAC L1: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L2: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L3: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L4: TTCTCTGGCCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L1: CCTGGGCTAGCAATGGGCGCGACGAGCCACTGAGAGCGAATCAAGTG L1: CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGAGCCCCG L2: CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGAGCCCCG L3: CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGAGCCCCG L3: CGTGGGTGAAGTTTGCTTCAACAGTCTTATGGCTGGTGTTGTGAGCCCCG 	500

Figure 1. (Continued)

L1: CGTTTTCTGGCTTCGATTTCGGTGGTCTTATGTATGGAGATAGGACAGAC	600
L 2 : CGTTTTCTGGCTTCGATTTCGGTGGTCTTATGTATGGAGATAGGACAGAC	
L 3 : CGTTTTCTGGCTTCGATTTCGGTGGTCTTATGTATGGAGATAGGACAGAC	
L 4 : CGTTTTCTGGCTTCAATTTCGGGGGGTCCTTAAAAAATGAGATAGGGACAC	
L10: CGTTTTCTGGCTTCGATTTCGGTGGTCTTATGTATGGAGATAGGACAGAC	
L11: CGTTTTCTGGCTTCGATTTCGGTGGTCTTATGTATGGAGATAGGACAGAC	
L1: TCGTTTATAGCGAGTGCCGCTTTTGTGGCACTGTCTTTGTCCGACATCTG	650
L 2 : TCGTTTATAGCGAGTGCCGCTTTTGTGGCACTGTCTTTGTCCGACATCTG	
L 3 : TCGTTTATAGCGAGTGCCGCTTTTGTGGCACTGTCTTTGTCCGACATCTG	
L 4 : CACTCCAAAATAGCGGAGTGCCGGCCTTTGTTGGCCCTGTTCTTTTGTGC	
L10: TCGTTTATAGCGAGTGCCGCTTTTGTGGCACTGTCTTTGTCCGACATCTG	
L11: TCGTTTATAGCGAGTGCCGCTTTTGTGGCACTGTCTTTGTCCGACATCTG	
L1: TCGCGAGTAGGTCGGTGGCCTCTCTGACCCGTCTTG 754	
L 2 : TCGCGAGTAGGTCGGTGGCCTCTCTGACCCGTCTTG	
L 3 : TCGCGAGTACGTCGGTGGCCTCTCTGACCCGTCTTG	
L 4 : GTTGGCCCCTGGTTCTTTGTGGCGGGACATACGGG	
L10: TCGCGAGTAGGTCGGTGGCCTCTCTGACCCGTCTTG	
L11: TCGCGAGTAGGTCGGTGGCCTCTCTGACCCGTCTTG	

Table 1. The distance between bases of sequence 6 species in the 28S region of Lernaea

I	1	2	3	4	5	6	7	8]
[1]		[0.0]	[0.0]	[0.0]	[0.0]	[0.0]	[0.0]	[0.0]
[2]	1.0		[0.0]	[0.0]	[0.0]	[0.0]	[0.0]	[0.1]
[3]	1.0	1.0		[0.0]	[0.0]	[0.0]	[0.0]	[0.1]
[4]	1.0	1.0	1.0		[0.0]	[0.0]	[0.0]	[0.1]
[5]	0.1	0.1	0.4	0.1		[0.0]	[0.0]	[0.0]
[6]	1.0	1.0	1.0	1.0	0.4		[0.0]	[0.1]
[7]	1.0	1.0	1.0	1.0	0.1	1.0		[0.1]
[8]	0.3	0.3	0.4	0.3	0.4	0.3	0.3	

Note:

[5] #Lernaea_sp.; [6] #Lernaea_oryzophila; [7] #Lernaea_papuensis; [8] #Dactilogyrus

Lernaea (Figure 2). First group were Lernaea cyprinacea G., L. papuensis, L. devastatrix, and L. lophiara. Second group were Lernaea cyprinacea and L. oryzophilla, Lernaea sp. was in the third group. However, phylogenetic tree using neighbor joining (NJ) analysis found two groups among Lernaea (Figure 3). First groups were including Lernaea cyprinacea G., L. cyprinacea, L. papuensis, L. devastatrix, L. lophiara, and L. oryzophila; and second group was including Lernaea sp.

All species *Lernaea* were sequence on 28SrDNA region based on study by Song *et al.*

(2008) who found relationships among species in genus Ergasilidae (copepods) with *Lernaea cyprinacea* as an outgroup. The average percentage of codon G + C was 51.6%. *Learnea cyprinacea* G., *Lernaea lophiara*, and *Lernaea papuensis* had the same percentage of codon G + C (51.7%). The percentage of G + C codon for *Lernaea cyprinacea* is 51.6%. *Lernaea devastatrix*, *Lernaea* sp., and *Lernaea oryzophila* are 51.8%, 51.3%, and 51.5%, respectively. There is no avalailable data sequence on *Lernaea* sp., except *Lernaea cyprinacea* in GenBank, to compare the result.

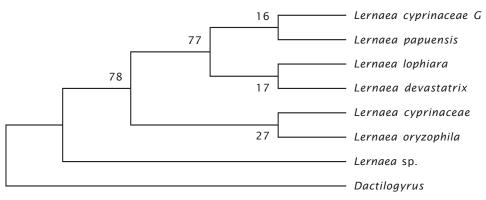


Figure 2. Phylogenetic tree from *Lernaea* sp. analyzed with maximum parsimony from sequence 6 species of *Lernaea* and *L. cyprinacea* GenBank with *outgroups Dactilogyrus* in 28S region

Based on maximum parsimony (Figure 2) there are 3 clade among species of *Lernaea*. Clade I consists of Lernaea cyprinacea G., L. papuensis, L. Devastatrix, and L. lophiara. Clade II consist of Lernaea cyprinacea, and L. oryzophilla. Lernaea sp. is the only member of Clade III. Phylogenic relationship between clade I and clade II is closer than clade III. The closeness similarity among the species of Lernea is probably due to proximity of the historical relationship between Indonesia archipelago and Asian and Australian continents. Lernaea cyprinacea G., and L. papuensis; L. devastatrix, and L. lophiara; and L. cyprinacea and *L. oryzophilla* can be considered as sister taxon (sister). It means that they all share a common anchestor. Lernaea sp. can be regarded as the begining of other species of *Lernaea* because it appears on the earliest in the phylogenetic tree. *Lernaea cyprinacea* G. and *L. papuensis* are the last descendant of *Lernaea* sp.

However, there are only two clade among species *Lernaea* based on neighbor joining tree (NJ) method (Figure 3). Clade I consists of *L. cyprinacea GenBank*, *L. cyprinacea*, *L. oryzophila*, *L. lophiara*, *L. devastarix*, and *L. papuensis*. Clade II is *Lernaea* sp. From the obtained result we concluded that the species *Lernaea* is monophyletic. Ho (1998) stated that Lernaeidae, Ozmanidae, and Ascidicolida are monophyletic group, which are derived from a common ancestor.

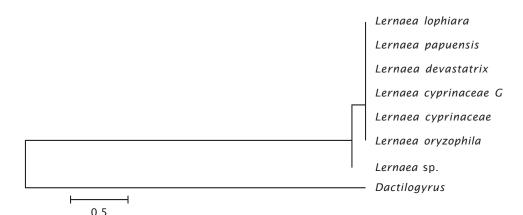


Figure 3. Phylogenetic tree from *Lernaea* sp. analyzed with neighbor joining from sequence 6 species of *Lernaea* and *L. cyprinacea* GenBank with *outgroups Dactilogyrus* in 28S region

The evolution of *Lernaea* mainly associated with the development and modification of the holdfast organ. The final form of the holdfast organ is determined by the consistency of fish tissues by which a parasitic animal attaches itself to its host. So many variations found in holdfast's shape. Strong influence of environment on morphology of *Lernaea* expressed by Poddubnaja (1974) *in* Kabata (1985) who found *L. cyprinacea*, *L. ctenopharyngdonis*, *L. quadrinucifera* adult females origates from the same individual eggs. So far, there is no studies on genetic molecular of *Lernaea* sp. This study perhaps is the iniatial study of molecular *Lernaea*.

CONCLUSION

Phylogenetic tree from maximum parsimony (MP) and neighbor joining (NJ) based on sequence in 28S rDNA do not show differences among species Lernaea. There are 3 variation groups of Lernaea from arwana Irian fish in Indonesia based on maximum parsimony. Lernaea papuensis, L. devastatrix, and L. lophiara are in one group; L. cyprinacea and L. oryzophilla are in one group; and Lernaea sp is in different group. However, based on neighbour joining there are 2 groups variation of Lernaea from Arwana Irian, ie. Lernaea papuensis, L. devastatrix, L. lophiara, L. *cyprinacea*, and *L. oryzophilla* are in one group; and Lernaea sp. is in different group. This indicates that phylogenetic reconstructions should be in other region, such as in the ITS region. This result is also suggested that Lernaea was monophyletic.

REFERENCES

- Berry, C.R., Babey, G.J., & Shrader, T. 1991. Effect of Lernaea cyprinacea (Crustacea: Copepoda) on stocked rainbow trout (Onchorhynchus mykiss). J. of Wildlife Dis., 27(2): 206-213.
- Boxshall, G.A. 1981. A new spesies of *Lernaea* (Copepoda: Cyclopoida) from Papua-New Guinea. *Bulletin British Museum History*, 40: 117-120.
- Boxshall, G.A., Montu, M.A., & Schwarzbold, A. 1997. A new species of *Lernaea* L (Copepoda: Cyclopoida) from Brazil, with

notes on its ontogeny. *Systematic Parasi-tology*, 37: 195-205.

- Ho, J.S. 1998. Cladistics of The Lernaeidae (Cyclopoida), A Major Family of Freshwater Fish Parasites. J. of Marine System, 15: 177-183.
- Kabata, Z. 1985. *Parasites and diseases of fish cultured in the tropics*. Taylor and Francis. Philadelphia, 318 pp.
- Kumar, S., Tamura, K., & Nei, M. 2004. MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment. *Brief Bioinform*, 5: 150-163.
- Kularatne, M., Subangsinghe, R.P., & Shariff, M. 1994. Investigations on the lack of aqcuired immunity by the Javanese carp, *Punctius gonionotus* (Bleeker), against the crustacean parasite, *Lernaea minuta* (Kuang). *J. Fish & Shellfish Imun.*, 4: 107-114.
- Marina, H., Beatty, S.J., Morgan, D.L., Doupe, R.G., & Lymbery, A.J. 2008. An introduced parasite, *Lernaea cyprinacea* L., found on native freshwater fishes in the South West of Western Australia. J. of the Royal Soc.of Westen Australia, 91: 149-153.
- Paperna, I. 1996. Parasites, infections and diseases of fishes in Africa : an update. Israel.EIFAA Technical Paper - CIFA/T31.
- Shariff, M., Kabata, Z., & Sommerville, C. 1986. Host susceptibility to *Lernaea cyprinacea* L. and its treatment in a large aquarium system. *J. of Fish Dis.*, 9: 393-401.
- Song, Y., Wang, G.T., Yao, W.J., Gao, G., & Nie, P. 2008. Phylogeny of freshwater parasitic copepods in the Ergasilidae (Copepoda : Poecilostomatoida) based on 18S and 28S rDNA sequences. J. Parasitol, 102: 299-306.
- Tasawar, Z., Hanif, M., Lashari, M.H., & Hayat, C.S. 2007. The prevalence of lernaeid ectoparasites in Mori (*Cirrhinus migala*) fish. *J. Pakistan Vet.*, 27(4): 176-178.
- Thompson, J. D., Higgins, D.G., & Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.*, 22: 4,673-4,680.