View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Direktori Jurnal Universitas Widyagama Malang

JOURNAL OF SCIENCE AND APPLIED ENGINEERING (JSAE), October 2018, Vol 1(2), 68-74
E-ISSN: 2621-3753
P-1SSN: 2621-3745

Designing VHDL to Simulate the Error Correction of
Hamming Code

A. Mahmudi *, S. Achmad 2
1.2 Department of Informatics Engineering, Institut Teknologi Nasional Malang, Malang, Indonesia
Email: amahmudi@hotmail.com

ABSTRACT

The role of error detection and error correction for the data bit by the receiver is very important because the
sender does not need to repeat the transmissions [1]. Thus, the speed and reliability in transmitting data information
can be maintained. This study aims to implement simulation the Forward Error Correction (FEC) method in verifying
and correcting data errors received by using simulation. To support FEC method, study utilizes visual basic software so
that it can be used as one of the quasi-experimental modules in the data communication laboratory. The Forward Error
Correction (FEC) method is a method that can correct data errors in the receiver. This method uses simulated
Hamming codes on the computer so that the detection and correction process can be clearly demonstrated on the
monitor screen. This simulation can be used as a quasi-experimental module in a data communication laboratory. The
simulation results show that the Hamming code (17, 12) codec has been running as expected.

Keywords : Simulation, Forward Error Correction (FEC), quasi-experimental module..
Paper type Research paper

INTRODUCTION (HEADING 1)

The success in delivering information from the sender to the receiver is the key important outcome in determining
the reliability of a communication system [2]. Reliability of a data communication system is not only measured by the
data transfer rates in the bits per second, namely bit rate, but also the success of the data sent. The success of the data
communication is determined by the clear, understandable, and correct information to the recipient [3], [4]. In
delivering data information by voice and data, the transmitter can be transmitted by wires such as coaxial and fibre
optic, by the terrestrials, and by satellites. For example, fig 1 illustrates the simple communication block diagram.

Transmiszion Media

£ sadlite N
Primary Staion (Scurce) EEEEEE]_@_EEEE%E:DH&IW{DEMEﬁDH‘:
Peripheral y L:_? E
Host Terrestrial
computar DTE [**| DCE [** +* DCE [+*| DTE
L 1T [T
Local Terminal

Remote Terminal

DTE : Data Tenmnal Equipment
DCE : Data Communication Equipment

Fig 1. The simple block diagram of communication network

In processing the communication data, there is a possibility of error received by the recipient. Therefore, the sender must
resend data until it is corrected and fitted. It causes the overall time in delivering data delayed. There are two causes of

68

https://core.ac.uk/display/267076866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:amahmudi@hotmail.com

Designing VHDL to Simulate the Error Correction of Hamming Code

errors in receiving data. Firstly, the error is caused by synchronising data or the clock by the sender or the recipient.
Secondly, there is interferes of the canals which are closed to the transmission media.

Data sent by the source to the recipient as the destination will be synchronised and modulated. Then, it will be sent to
transmission media. The recipient should detect, check, and correct the data errors to deliver data quickly. Also, it is not
requisite to re-transfer the error data received by the recipient. One of the methods to detect and correct the error data is
known as the Forward Error Correction (FEC) method [3]. The researchers utilise this method because this method has
high accuracy. To date, this method is employed the most as the correction tool in communication data.

FEC can detect and correct the inaccuracy data send by the source [1], [3], [5]. Then, error data can be re-sent by
fixing the data, thus data sent will be the same as the previous data sent by the source. The FEC method detects and
corrects data errors in the recipient without asking the sender to send again data. In this method, the arrangement of the
bits of data sent (string data) is added into the Hamming code. The formula of the number of bits of data sent is:

2> m+n +1 1)

Where:

n = the bits number of the Hamming codes
m = the bits number of character data

By using the aforementioned formula, the bits number of Hamming codes can be determined. This Hamming code is
inserted between the bits of character data that will be sent by the sender. Character data (string data) that has been
inserted in the Hamming code will create a data called data stream. The location of the insertion of each bit of the
Hamming code must be agreed between the sender and the recipient. Therefore, the recipient knows the exact location of
each bit of the Hamming code on the data stream received. After the data stream is created, then an exclusive OR
between the positions of binary and bit ‘1°). The first bit ‘1’of the data stream consists of one character. After
determining the first bit ‘1°, binary is located at the position of the second bit ‘1’ [6], [7]. It is then continued until
reaching the end of result which is the exclusive OR of the bits of the Hamming code. The bits of the Hamming code
derived is inserted into the data stream. Then, it is sent to the receiver.

METHOD
The design of data error correction by simulation using the FEC method. In this case, the researchers utilize visual
basic software to support the design. There are the following stages to process this simulation design.

1. Entering binary data as the input string data. In this case, the data should be made at least 4 bits and a maximum
of 20 bits. The assumption is that no character data used is smaller than 4 bits and more than 20 bits. By inputting
data whether it is smaller than 4 bits or greater than 20 bits, the data can be rejected.

2. Calculating the length of the string data entered.

3. Inserting the value of n that express the bit length for the Hamming code. In this step, the process should meet the

rule of 2n > m + n + 1. There are two ways to determine the value of n in the simulation. First, entering the value

of any n. The calculation process will be displayed. Then, the result will appear whether the value of n meets the
requirements of 2n > m + n + 1 or not. This process will be recounted if the value does not meet the requirement.

The user should enter another n value, then, recount again until meeting the requirement. Second, the direct

calculation analyses n value that meet the requirement.

After the value of n is obtained, the length of the data stream can be determined and displayed by m + n.

Determine the position of every bit in the Hamming code.

Calculate the Hamming code with the calculation method as described above, this calculation process is

displayed on the monitor screen. The results of the Hamming code obtained are displayed, as well as the bits

arrangement in the data stream that has inserted the Hamming code displayed.

7. Determine whether there is a bit error in the data stream during the transmission. If there is no bit error then the
data stream is received by the recipient, this data stream is displayed on the monitor screen.

8. Check the error on the data stream received. Add the data stream with Exclusive OR. The result is ‘0’, if there is
no error. It means that the bit of ‘0’ implies no errors bit occur in the data stream received.

9. If the bit error in the data stream received occurs, then the process should return to step 7. The researcher should
determine the location of the wrong bit of position. The data stream bit arrangement is displayed on the monitor
screen, then do steps 10 and 11.

o0 s

10. Check the error on the data stream received by the recipient by making an addition with Exclusive OR. If an error
occurs, the calculation results will produce bits that are not equal to zero. It means that a bit error occurs in the

69

A. Mahmudi , S. Achmad

data stream received. The final value received is expressed as a decimal, which means that the decimal value
indicates the location of the wrong bit position in the data stream.

11. Correct these bit errors by copying the bit value to the bit position indicated by the decimal value. The final result
after correction is displayed on the monitor screen in the form of a bit arrangement in the data stream.

The error of the data that can be corrected by the FEC method is the error of one bit of data in the received data stream.
However, this error does not belong to the Hamming code bits.

DiSCuUSsSION
The process undertaken by the recipient is reading the bits of the Hamming code on the data stream received according to
the location of the bit of Hamming code. It should be agreed on by the sender. The Hamming code received in Exclusive
OR is placed in the position of the first bit '1' (binary from the position of the bit position '1") to the received data stream.
The result on Exclusive OR replaced to the position of the second bit '1". It is continued until reaching the final result that
indicates whether the bits obtained wrong or not. If the end result produces a zero decimal, it is concluded that there is no
data error. Meanwhile, data error confirmed means the end result does not produce a zero decimal and the decimal states
the location of the wrong bit position in the data stream. To correct the bit error, the researchers complement the wrong
bit. For example, the bit data string sent is 12 bits, i.e. 1001-1001-1001. In detecting the error, the researchers utilise
some steps as follow.
1. Determining the number of bits of the Hamming codes by using the formulation (1):

Where:

m= 12 (the numbers of bit)

n = the number bits of the Hamming code

If n = 2 , then 22 >12+2+1 , SO 4>15 wrong
If n = 3 , then 22 >12+3+1 , SO 8>16 wrong
If n = 4 , then 2* >12+4+1 , SO 16>17 wrong
If n = 5 , then 2° >12+5+1 , SO 32>18 correct

The bit specified is 5 (h=5). So, the number of bit of stream data which is the data sent is the number of data added by
the number of the Hamming code [3]. For example, the number of bit of stream data is 12 and the number of bit of the
Hamming code is 17. Then, 12 bit added by 5 is 17 bit (12 bit + 5 bit = 17 bit).

2. Determining the position of the bit of the Hamming code (H1, Hz, Hs, Ha, Hs) in the stream data, such as:

The bits position 17 16 15 14 - 13 121110- 9 8 7 6 - 5 4 3 2 1
1001- 1 001- 1 0 0 1 -Hs Hs Hz Hx Hi
3. Adding the position of the bits with Exclusive OR which equals to bit '1'".

The bits position Binary

6 1

9
ExXOR
10
ExXOR

o o o o o
= S N =)
ol Pk Rk o
= =)

0
1
0
1

13
ExOR
14
ExOR
17
ExXOR

Rk O O O o
o o o K K,
RO R P O
o kP, o o
Rk o o o k-

Therefore, the bits of the Hamming code are Hs- 0, Ha= 0, Hs= 1, H,= 1, and H,= 1. Also, the stream data sent

70

Designing VHDL to Simulate the Error Correction of Hamming Code

by the sender are 1001-1001-1001-00111.
The bits position 17 16 15 14-13 12 11 10 - 9 8 7 6 - 5 4 3 2 1
1 0 O 1 -1 o0 1-12001+-1 0 1 11

4. At the recipient, the data stream will be added to the Exclusive OR through the position of bits '1'

The bits position Binary
Hamming code 1
6
EXOR
9
ExOR
10
ExOR
13
EXOR
14
ExOR
17

EXOR

Ok R O KR O K O Kk O Kk ok
O O Ok Rk Ok Kk P o o o
o o o kr R Rk, o o o o o ek

O O Ok R O KR Pk O O O Fk k.
Ok KR O R KL O o o Fr Kk ok

Decimal 0

The final result is decimal 0. It means that there are no errors in the data received by the recipient. For example, there
is a data error that occurs during transmission, namely the change of the 6™ bit in the data stream. Then, the bit '1' shift to
be the bit '0' by following the process below.

The bits position 17 16 15 14 - 13 12 11 10-9876-5 4 3 2 1
1 0 O 1 -1 00 1-1000-1 0 1 1 1
The bits position Binary
Hamming code 1 01 1 1
9 0 10 0 1
EXOR 1 11 1 0
10 0 10 1 0O
EXOR 1 01 0 O
13 0 11 0 1
ExOR 110 0 1
14 0 11 1 0
ExOR 10 1 1 1
17 1 0 0 0 1
Decimal 6
ExOR 0 01 10

The final result is decimal 6. It means that the error data received by the recipient is in the bit position of 6. Therefore, in
the stream data, the correction was conducted by complementing the bit of 6 from the bit ‘0’ to be the bit of 1°. So, the
bit of data received is the same as the data sent.

71

A. Mahmudi , S. Achmad

The result of VDHL design is illustrated in the following fig 2. The programming uses VDHL programming language.
Also, the script display from VHDL Hamming encoder depicts in fig 2. In fig 3. The script of VHDL Hamming decoder
is shown.

= |
Tools

[~ = fwd

tn= | |~
3 labrary IEEE;:

2 USE IEEE.std logic_1164.all;

= USE IEEE.std logic_arith.all:

B USE IEEE.std_logic_unsigned.all:

s

s ENTITY hamming_enc IS

7 generic (DATA : EAnteger

E-1 PARITAS z Antegexr

= PORT (encoder_in: IN STD LOGIC _VECTOR (DATA—1 DOWNTO O):

1o encodexr out: OUT STD LOGIC VECTOR(DATA+PARITAS—1 DOWNTO 0O)) s

13 END namming_enc:

iz

as ARCHITECTURE bhv OF hamming__enc IS

14

is ——POSISI BIT 17 i6 ias i4 a3 a2 i 10 9 a8 7 s s - 3 2 a

1e ——HAMMING D12 D11 D10 DS D& D7 D6 DS D4 D3 D2 D1 HS H4 HS H2 H1

a7z

is constant POSISI LENGTH = Antegex s== Sz

i9
20 ——ENCODER
23 signal eposisi_1, eposisi_2, eposisi_S: STD _LOGIC VECTOR(POSISI_LENGTH-1 DOWNTC O)
22 =2i1gnal eposisi_4, eposisi_S5, eposisi_6: SID _LOGIC _VECIOR (POSISI_LENGTH-1 DOWNTO O)
23 signal eposisi_7. eposSisi_8, eposSisi_9: STD_LOGIC VECTOR (POSISI_LENGTH-1 DOWNTIOC 9) >
24 signal eposisai_10, eposisi_11l, eposisi_12: STD_LOGIC VECTOR (POSISI_LENGTH-1 DOWNTO O) :
2s
26 signal enc_in: STD _LOGIC VECTOR (DATA—1 DOWNTO O) :
27 signal ncode: STD_LOGIC VECTOR (PARITAS—1 DOWNTO O) >
2= =i1gnal enc_out: SID LOGIC VECTOR (DATA+PARITAS-—1 DOWNTO O) &
29
30 BEGIN

31

32

33 — ENCODER —————

=4 ——POSISI BIT 17 16 1S 14 13 12 11 10 9 & 7 & ¥ & = @ =

35S ——HAMMING DA2 DAl D10 DO D8 D7 D6E6 DS D494 D3 D2 DA HS H49 HS3 H2 HL

se enc_in <= encodex in:

37 epos=isi 1 <= "O00110" when enc_in(0)="1' else (others=>"0"):

sa eposiss 2 <= when enc Iin(l)="21" else (ochexrs=>"0") >

so eposisi 3 <= when enc_in(2Z)="1" else (other=s=>"0"):

40 eposisi 4 <= when enc_in(3)=°"21" else (ochers=>°"0") ;

a1 eposisi_ 5 <= when enc_in(4)='1' elise (others=>'"0"): =2
a2 eposisi_ 6 <— when enc_in(S)='1' else (others=>'0°):

a3 eposisi 7T o< 01100 when enc in(&)=—"21° else fochexras=>*0") >

Fig 3. The design of VHDL Hamming decoder

a library IEEE:>
2 USE IEEE.sctcd logic _1164.all:;
= USE IEEE.std_logic_arith.alli:
a USE IEEFF.scd_ logic_ unsigned.all:
s
s ENTITY hamming_dec IS
7 genexric (DATA : dntegex = 12>
= PARITAS : aintegex := 5) >
= PORT (decodex_in: IN STD LOGIC VECTOR (DATA+PARITAS—1 DOWNTC O) >
10 decodex out: OUT STD ILOGIC VECITOR(DATA+PARITAS—-1I DOWNTO O0O)) 7
A END hamming_dec:
iz
ais ARCHITECTURE bhv OF hamming_dec IS
1a
is ——POSISI BIT 217 1e 1s 14 a3 12 231 10 9 s 7 5 s a = 2 a
16 ——HAMMING D12 D311 D10 DS DE D7 D6 DS D4 D3 D2 D1 HS H4ET H3S H2 H21
iz
as conscant POSISI_LENGTH : integex 1= Sz
=R
20 ——DECODER
23 signal dposisi_O: STD LOGIC VECTOR(POSISI_ LENGTH-1 DOWNTO O) >
22 =ignal dAposis=i 1, dposis=si 2, dposis=i 3: STD_ITOGIC_ VECTOR(POSISI__LENGTH— a DOWNTO O)
23 signal Aposisi_ 4, dposisi_S, dposisi_6: STD LOGIC VECTOR (POSISI LENGTH-1 DOWNTIC O)
249 =ignal dposis=i 7, dpos=is=i =8, dpos=is=si ©9: STD_LOGIC VECTOR (POSISI _LENGTH-—1 DOWNTCO 0O)
2s =ignal AQposisi_ 10, dposisi_ 131, dposisi_12: STD _LOGIC VECTOR(POSISI ILENGTH-1 DOWNTC
26 signal dposisi_ 13, dposisi 14 STD LOGIC VECTOR (POSISI_LENGTH—-1 DOWNTO O) =
27 =ignal dAposisi_ 1S5, dposisi_ 16: STD LOGIC VECTCOR(POSISI LENGTH-1 DOWNTC O) >
2s
29 signal dec_in H STD IT.OGIC VECITOR(DATA+PARITAS—-1 DOWNTO O) >
30 signal h_in, err_pos : STD _LOGIC VECTOR (PARITAS-—1 DOWNTO 0O) >
3 =ignal dec__ouc H STD ILOGIC VECTOR(DATA+PARITAS-—-1 DOWNTO O) >
32
3 BEGIN
=4
35 —— SRR — ==
26 -—~POSISI BIT 217 1e as 14 23 212 2131 1210 S = 7 =3 s = 2 3
7 ——HAMMING D312 D11 D10 D9 D8 D7 D6 DS D49 D3 D2 D3 HS Ha H3 H2 H1
=33 dec_in <= decodexr_in (DATA+PARITAS-1 DOWNTC O) >
=9 ——dposisi O <= "00001" whnen dec in(0)="1" else (Oother==>"0"):
a0 ——dposisi_1 <= "00010"” when dec _3in(l)='1*’ else (others=>"0"%):
<3 ——dposisi_2 <= "00012" when dec_Ain(2)='1' else (others=>"0"):
a2 ——dposisi 3 <= *O00100" when dec_ _in(3)=—"21° else (othexrs=>"0") >

The code Hamming design is simulated by Sim Altera 6.5e Model as shown in fig 4. The simulation result is shown in

fig 5. The result shows that VHDL design for the Hamming code is associated with the expectation.

72

Designing VHDL to Simulate the Error Correction of Hamming Code

M MaduiSkn ALTERS STARTER E0ITION 05,
HIERAT VA LOMPIS MUt Ade RANSERpE danis TayaE Wintow Heip

|‘1-w s @)% g el N } Bl M| @ e [RF [100 po-® (Bl EIUBU (B8] © O (F & g Gy | L4¥y
[In gl adime] & . |E o[amim]

e

|44 1m L
Yirotance ign unit |Design|
=i ey i A
W oy ey, AL
W dacedna umnng d. Ardit
|- egen WO . Praces Focn
|-l reast ran MMM C L PUares Ll
-4 ma aen Praces dic n vkl
o Ire_175 P-ocec dec_out Prrodtadniisnsg
|- tre__185 Moccs harming AAMANAANA ’ . 5 . R
& lre 106 = = i
W slanead +

I std loale 115¢
W ot Jogic_crth
W <_logic_) Asignet

e

00BN 000000 3000)10 0
Ve L W1l QWA (101
U 011 0NN AN ANIAOONANA AN 110 AINAICNTIIEAT11 AINOCCONMNA10M

000C000000000000 000000 03¢ 00C0D1
INrresy_ bV es dl £ ¥ 0
fremaryg_b/eccodngces_1n « 330_| 5 000 k b
P y_Uewdigd i i VT i) TV

Ciraer 1

<l |
[Mooy | & sm | 13 P

)

Lhere 12 ac "L'I'X'I'W'I'C'I "' AN an aritAmEtic Operanc, the Iesult wi.l b2 'X'(e3).

Time: O g8 Ivereticn: ! Irstence; /hemming_cb/deceding

||webie fusicst w —wiidiw oumedi putne owave s e busduz. on boldy spwawl €3 Kes jaai/ 2unvloLoso/beuning 2018 /vave. du
[fuxite forwat wave =wirdcw .mein_pene.wave.irterdor.cs.bedy.pw.wf C:/Kexrjaan/?enelitien/hamming_2010/vave.de
|[#xite foxmrat wave wirdew .modn_ponc.wave.diztexrdor.co.body.pw.wf C:/Kexrjaan/denclitian/hamming 2018/vave.de

[ow: L4001 Cda: 2 st A g

KL (M E]

Fig 4. The display of ModelSim Altera 6.5¢e

. Wave

File Edit View Add Format Tools Window

u]Wave
[D-s® &

I

DS EETTE

/hamming_th/clk 0
[hamming_tb/reset_n 1
fhyammir h/ent_in 00O0GOR 100000, . 000000000010 000000000100 000000001000 0000000 10
000000 100000010 00000000001000111 000000000 10001000 00000000100001001 0000000 10!
DOODOGANGLOON
LOO00AROENGGG]
000000100000
0000001000000101 ‘
00000 S | S /S CR— A7 I — (] C— U FO— F— | S -
000000100000
D10

DODOO0IA00000I0

00006000000 4000

/hamming_tb/decoding/h_in
it s blecdbigies ot

<| [l [ol] 5] |

s> ._.I

[447ps to 1332ps [Now: 1,400 ps Delta: 2

Fig 5. The result of the Hamming code simulation

73

A. Mahmudi , S. Achmad

CONCLUSION

This research finds that the VHDL language programming was successfully applied to design the Hamming code (17, 12)
encoder decoder. Then, the result from ModelSim Altera 6.5e showed that the Hamming code (17, 12) is running
properly and meet the expectation. In addition, it can correct the data up to one error.

ACKNOWLEDGMENT

REFERENCES

[1] A. Fauziand R. Rahim, “Bit Error Detection and Correction with Hamming Code Algorithm,” International Journal of Scientific Research in
Science, Engineering and Technology (IJSRSET), vol. 3, no. 1, pp. 76-81, 2017.

[2] W. Tomasi, Electronic communications systems: fundamentals through advanced. Prentice Hall PTR, 1987.

[3]1 A.Masoomiand R. Hamzehiyan, “A New Approach for Detecting and Correcting Errors in the Satellite Communications Based on Ha mming
Error Correcting Code,” International Journal of Computer Theory and Engineering, vol. 5, no. 2, pp. 227-231, 2013.

[4] W. Stallings, “Data and computer communications.” 2017.
[5] A. S. Ahmad Alfi Albar Lubis, Poltak Sihombing, “Perancangan Error Detection System And Error Correction System Menggunakan
Metode Hamming Code Pada Pengiriman Data Text,” Jurnal Online Program Studi S1 llmu Komputer Fakultas llmu Komputer dan Teknologi
Informasi, vol. 1, 2012.

[6] R.L.Tokheim, Digital electronics. Glencoe, 1994.

[7]1 J. P.Hayes, Introduction to digital logic design. Addison-Wesley Longman Publishing Co., Inc., 1993.

74

	Abstract
	Introduction (Heading 1)
	Method
	Discussion
	Conclusion
	Acknowledgment
	References

