
   

 

   

   

 

   

   

   
 

   

 

 

  

   

 

   

   

 

   

       
 

Internet of Things Devices: Digital Forensic Process and Data 
Reduction  

 

 
 

Abstract: The rapid increase in the pervasiveness of digital devices, combined 

with their heterogeneous nature, has culminated in increasing volumes of diverse 

data, aka big data, that can become subject to criminal or civil investigations. This 

growth in big digital forensic data (DFD) has forced digital forensic practitioners 

(DFPs) to consider seizing a wider range of devices and acquiring larger volumes 

of data that can be pertinent to the case being investigated. This, in turn, has 

created an immense backlog of cases for law enforcement agencies worldwide. 

The method of data reduction by targeted imaging, combined with a robust 

process model, however, can assist with speeding up the processes of data 

acquisition and data analysis in IoT device forensic investigations. To this end, 

we propose an IoT Forensic Investigation Process Model, IoT-FIPM, that can 

facilitate not only the reduction of the evidentiary IoT data but also a timely 

acquisition and analysis of this data. 
 

Keywords: IoT Forensics; digital forensics; data acquisition; big data, process 

model; digital investigations; computer forensics; formal process  

 



   

 

   

   

 

   

      

      
 

    

 

 

   

   

 

   

   

 

   

       
 

 
1. Introduction 
The Internet of Things (IoT), in the context of this paper, represents a system of 

interconnected uniquely identifiable computing devices and digital objects within the 

current Internet infrastructure with the ability to transfer data over a network. Some of these 

devices are ordinary items with built-in Internet connectivity, whereas some are sensing 

devices developed specifically with IoT in mind. The key technologies covered by the IoT 

include: (1) smart vehicles such as unmanned aerial vehicles (UAVs) and autonomous cars, 

(2) the smart grid and smart buildings, (3) wearables such as smartwatches and medical 

devices, (4) home appliances such as smart fridges, and intelligent home assistant devices 

and systems such as Amazon Echo and Google Home, (5) autonomous cyber-physical, 

embedded digital items, machine to machine communications, RFID sensors, and context-

aware computing, and also (6) the Internet of Military / Battlefield Things (IoMT IoBT) 

devices. 

The IoT-connected devices and systems produce, collect, access and use large 

volumes of personal and sensitive data. This data can be rapidly transferred from one 

device to multiple other connected devices and systems, producing a wider security attack 

surface than that created by cloud computing. The device or the system that stores such 

data can then be attacked by cybercriminals for a variety of malicious reasons such as 

financial gain (Quick and Choo, 2018; Huang, 2016) and terrorism. For instance, 

cybercriminals will be able to turn IoT nodes into zombies (using malicious software), 

carry out distributed denial of service (DDoS) attacks (engineered through botnets), and 

create and distribute malware aimed at specific appliances (such as those affecting VoIP 

devices and smart vehicles) (Montasari, 2019; Caviglione et al., 2017; Lillis et al., 2016; 

Jang-Jaccard, J. and Nepal, S. 2014; Ruan et al., 2013). Therefore, attacks as such requires 

carrying out assiduous and thorough examination of the compromised IoT device or 

system, highlighting the need for robust Digital Forensic Investigations (DFI) 

methodologies.  

The remainder of the paper is structured as follows: Section 2 provides a 

background to IoT Forensics and the need for a robust process model. Section 3 presents 

our proposed model, and in Section 4 a summary of our research findings is presented. 

Finally, Section 5 concludes the paper and outlines the future research directions.  

  

2. Background 
With the new types of devices constantly emerging, the IoT has almost reached 

its uttermost evolution. With an estimated number of 30 billion devices that will be 

networked by 2020, it is estimated that there will be 5 connected IoT devices for every 

person worldwide and that the IoT market value will reach $3.04 (Gartner, 2015). IoT-

connected devices offer many benefits both individually and collectively. For instance, 

connected sensors can help farmers to monitor their crops and cattle so as to improve 



   

 

   

   

 

   

      

      

    

 

 

   

   

 

   

   

 

   

       
 

production, efficiency and track the health of their herds. Similarly, intelligent health-

connected devices can save or significantly improve patients’ lives through wearable 

devices (Montasari, 2019; Kobie, 2015). However, despite its many benefits, IoT devices 

pose significant security challenges and a wide attack surface, resulting from the 

heterogeneous nature of these devices that often have varied OSs, networks and related 

protocols. Examples of cyberattacks that can be carried out against IoT devices are 

numerous, such as: intercepting and hacking into cardiac devices such as pacemakers and 

patient monitoring systems, launching DDoS attacks using compromised IoT devices, 

hacking or intercepting In-Vehicle Infotainment (IVI) systems, and hacking various CCTV 

and IP cameras (Montasari, 2019). 

By exploiting the IoT technology, cybercriminals, for instance, will be able to turn 

IoT nodes into zombies (using malicious software), carry out distributed denial of service 

(DDoS) attacks (engineered through botnets), and create and distribute malware aimed at 

specific appliances (such as those affecting VoIP devices and smart vehicles) (Montasari, 

2019; Caviglione et al., 2017; Lillis et al., 2016; Jang-Jaccard, J. and Nepal, S. 2014; Ruan 

et al., 2013). Cybercriminals can also turn IoT devices into bots, forcing them to follow 

commands to carry out attacks, such as mining cryptocurrency, as part of a botnet. Lizard 

Stresser, a DDoS malware, created by a hacker group called the “Lizard Squad” has been 

used to take down third party websites and infect them with malware, viruses and trojans 

for a fee (KrebsonSecurity, 2015). Drones have been used to smuggle drugs and weapons 

to prisons (BBC, 2017). 

 

Figure 1. Hype Cycle for Emerging Technologies (Gartner, 2015) 

 

Adjacent IoT devices can even start attacking themselves through worms that can 

rapidly disseminate over large areas. Using the popular Philips Hue smart lamps as a 

platform, researchers have already demonstrated the feasibility of worms propagating 

themselves from one lamp to its neighbouring lamps, using only their built-in ZigBee 

wireless connectivity and their physical proximity (Ronen et al., 2017). This proof-of-

concept attack illustrates the ease with which a malicious actor can infect an entire IoT 

network by compromising only a single device on the network. We anticipate that future 

cyberattacks will be even more sophisticated. For instance, through new side channel 

attacks, cybercriminals might be able to bypass standard cryptographic techniques used to 



   

 

   

   

 

   

   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

safeguard IoT devices. This can potentially enable them to extract, for instance, the global 

AES-CCM key that an IoT device might use (such as Philips Hue Smart lighting) to encrypt 

and authenticate new firmware. This, once again, illustrates the difficulty that organisations 

have implementing their IoT security. 

Whilst the benefits, applications, privacy and security of these devices have been 

widely discussed, (Do et al., 2016; Oriwoh et al., 2013), there are technical forensic aspects 

which also necessitate addressing (Quick and Choo, 2018). The heterogeneous nature of 

IoT devices, combined with the fact that data is merged from a variety of resources, poses 

significant technical forensic challenges to law enforcement agencies (LEAs) and the 

researchers alike. The majority of these devices and systems have built-in flash to run a 

simple form of OS (reduced version) or real-time application executables. Since these 

devices do not make use of conventional hard drives that can be removed or are not running 

full computer OSs, extracting data stored on the devices is almost impossible. Thus, 

advanced data recovery might be required for data acquisition purposes. Even if data could 

be extracted from such devices, it would be possibly encrypted or stored in a non-standard 

data format for which a viewer has not been created yet. In these situations, advanced data 

parsing and carving are needed to extract meaningful content from the data extracted from 

the device. 

Furthermore, the increasing volumes of BDFD has also created significant 

challenges for LEAs and DFPs worldwide. This increase in BDFD is caused by the three 

defining properties of big data, including: volume, variety and velocity, aka 3Vs, that is 

produced by digital devices and systems. This growth in BDFD has forced DFPs to 

consider seizing a wider range of devices and acquiring larger volumes of data that can be 

pertinent to the case being investigated. This, in turn, has resulted in a backlog of caseloads 

worldwide that have grown from weeks to months and even years in some cases 

(Montasari, 2016, a). As a result, LEAs are overwhelmed by the sheer volume of the 

BDFD. One of the methods to mitigate this increasing volume of data concerns data 

reduction by targeted imaging (Quick and Choo, 2016; Quick and Choo, 2014; Parsonage, 

2009), combined with a robust process model. Adopting such an approach can assist LEAs 

with speeding up the acquisition and analysis of data in forensic investigations of IoT 

devices.   

After data has been acquired, investigators will then need to perform a timely 

processing and analysis of this data which is often varied and non-standard (Quick and 

Choo, 2018). The procedure for examination of various types of different digital devices is 

not new to DF analysis. Garfinkel (2006) proposed forensic feature extraction (FFE) and 

cross device analysis (CDA), which involve exfiltrating information from bulk data, either 

within a single disk image or across multiple sources. The FFE operates by scanning a disk 

or data source for pseudo-unique data identifiers and can be mounted on a single drive to 

identify information in a disk to accelerate initial analysis.  

By employing a process of cross device and cross case analysis, DFPs will be able 

to mitigate some of the existing issues related to BDFD and the timely processing and 

analysis of the data. Therefore, as stated by Quick and Choo (2018), the extended “CDA 

and FFE with inclusion of specific device identifiers” would allow DFPs to identify 

previously unknown linkages and perform timely analysis of data.  

Considering the above discussion, there is currently little study on investigation 

methodologies and approaches in IoT device forensic that can enable DFPs to identify, 

preserve, extract, analyse and present evidentiary data found in IoT devices or systems. 

Thus, to fill a portion of this gap, we propose a generic IoT device forensic investigation 

process model, namely the IoT-DFIPM, for conducting forensic investigations of IoT 

devices in a forensically-sound manner. 



   

 

   

   

 

   

      

       

    

 

 

   

   

 

   

   

 

   

       
 

 

3. The Proposed IoT-DFIPM 
As stated above, due to a larger diversity of varied data, with related issues such as data 

source, volume, and type, DF investigatory process models are needed to incorporate the 

additional scope and focus of heterogeneous device investigations, including methods to 

conduct analysis of devices and data in a timely fashion. Digital Forensics (DF) is defined 

(US-CERT, 2012) as the process that integrates aspects of Law and Computer Science to 

extract and analyse data from computer systems, networks, wireless communications, and 

storage devices in a manner that is admissible as evidence in a court of law (US-CERT, 

2012). Various studies have outlined disparate DFIPMs relevant to a specific context or 

type of digital crime. These models are not generic in that they can be applied to different 

settings such as law enforcement, commerce or incident response. Nor, are they applicable 

to different types of digital devices.  

Considering the above, we propose the IoT-DFIPM, which we contend is generic 

enough to be applicable different domains of DF or disparate digital devices and data 

subsets. The proposed IoT-DFIPM is based on a set of common phases including: 

Detection, Intelligence Gathering, Planning and Preparation, Identification, Acquisition 

and Preservation, Examination and Analysis, Event Reconstruction, Presentation, and 

Closure and Dissemination. When using IoT-DFIPM, DFPs will also need to adopt a set 

of Overriding Principles or Concurrent Processes, the adherence to which is of paramount 

importance. These principles include: keeping documentation, maintaining chain of 

custody, managing information flow, and testing the tools and techniques, etc. Some of 

these principles must be considered throughout the entire DFIP, whereas some can only be 

adopted throughout parts of DFIP. Overriding Principles are not discussed in this paper. 

Instead, the readers are encouraged to refer to the following studies for more details 

(Montasari, 2019; Montasari, 2018; Montasari, 2017, a & b; Montasari, 2016, a, b & c; 

Montasari et al., 2015. The following sub-sections describe each phase of our proposed 

IoT-DFIPM.  



   

 

   

   

 

   

   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
           Figure 2. Proposed IoT DFPM 

3.1 Detection 
Detection is the first step in a DFIP where a cybercrime is detected. Once detected, it needs 

to be confirmed or refuted. If confirmed, DFPs will then need, in the first instance, to 

identify potential forensic data sources relevant to the case under investigation. 

Identification of potential forensic data sources plays a significant role in a DFIP. However, 

identification of evidence in DFIs in emerging environments such as cloud computing and 

the IoT has always posed significant challenges due to the heterogeneous nature of digital 

devices and disparate data within these environments. The speed with which technology is 

being developed has led to the development of new devices that were not previously 

regarded to be part of a digital crime scene. These new devices often contain evidentiary 

data that requires identification, acquisition and analysis. For instance, certain home 

appliances, such as fridges, are now connected devices with browsing capability, data 



   

 

   

   

 

   

      

     
 

    

 

 

   

   

 

   

   

 

   

       
 

storage, and an ability to log the details of interactions that a user has made with the device. 

Such logs can, in turn, contribute important information to the investigation. However, at 

the same time, DF tools and techniques do not keep pace with such a rapid development. 

As a result, DFPs often face numerous challenges when attempting to process evidential 

data found in these devices.    

A potential solution to identification of data in IoT can be the integration of IoT 

device data into Building Information Modelling (BIM), which is a digital representation 

of physical and functional characteristics of a facility. By merging the information about 

the IoT capabilities of a building or structure, it might be conceivable to determine where 

data originated, where it is hosted or what format it is stored or encoded. This approach 

could narrow down the scale of the DFI and facilitate the selection of features or data which 

identifies an individual user from a much smaller data set (Hegarty et al., 2014). 

Furthermore, the criteria against which digital evidence is judged will need to be modified 

in order to accommodate the changing nature of digital evidence in the aforementioned 

emerging environments (Hegarty et al., 2014; Taylor et al., 2010). IoT devices might not 

be identified until the Examination and Analysis Phase, such as entries in web browser 

history pointing to cloud stored data from a personal device. In circumstances as such, it 

can be challenging to isolate and seize the device or data if there is a delay in the 

identification of the device that might host evidentiary data. As a result, DFPs will need to 

extract, process and examine a large volume of data in a timely manner to establish whether 

other devices are present or not (Quick and Choo, 2018). 

 

3.2 Intelligence Gathering 
The purpose of this phase is to explain the aims of the investigation to investigators so that 

they can start drawing an effective plan for the investigation. Moreover, during this phase, 

investigators will need to collect intelligence about the case under investigation. The output 

of this Phase will be fed into the Planning Phase. 

 

3.3 Planning and Preparation 
The Planning and Preparation Process involves LEAs and responders planning and 

developing proper procedures, defining methodologies, selecting the appropriate tools and 

techniques as well as human resources that should be involved in the investigation. It 

should also include obtaining the legal authority allowing the LEAs and DFPs to conduct 

the DFI.  

 

3.4 Identification 
The purpose of this Phase is to identify sources of data and potential evidence and 

intelligence. Once the potential sources of evidential data have been discovered, 

investigators will need to secure the digital or wireless crimes scene to ensure that data is 

preserved in a forensically sound manner prior to its extraction or acquisition. 

 

3.5 Acquisition and Preservation 
The next phase after the Identification is the extraction of evidential artefacts in a 

forensically-sound manner from smart devices and sensors, hardware and software which 

facilitate a communication between smart devices and the external world (such as 

computers, mobile, IPS, IDS and firewalls), and also hardware and software which are 

outside of the network being investigated (such as cloud, social networks, ISPs and mobile 

network providers, virtual online identities and the Internet).  



   

 

   

   

 

   

   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

However, similar to the Identification phase, extracting evidential artefacts from 

IoT devices in a forensically-sound manner and then analysing them tend to be a complex 

process, if not impossible, from a DF perspective. This is due to a variety of reasons, 

including: the different proprietary hardware and software, data formats, protocols and 

physical interfaces, spread of data across multiple devices and platforms, change, 

modification, loss and overwriting of data, and jurisdiction and SLA (when data is stored 

in a cloud). Thus, determining where data resides and how to acquire data can pose many 

challenges to DFPs. Furthermore, some schemes spread information to neighbouring nodes 

within the same topology or to external cloud services. In these circumstances, DFPs must 

be able to identify the value to the investigation in extracting data from other nodes, base 

stations, or cloud services (Attwood et al., 2011). This approach could be feasible and 

might address some of the challenges related to acquiring evidential data from IoT devices 

with limited storage (Hegarty et al., 2014).  

The lifespan of data representing potential digital evidence in IoT is often short 

before it is overwritten or compressed. Data stored in an IoT device is often transferred to 

the cloud for aggregation and processing or is used by another IoT device. These transfer 

and aggregation of data pose challenges in relation to the chain of custody principle as 

required by ACPO guidelines. In order to address this challenge and take advantage of the 

resilient nature of data in IoT in DFIs, new techniques are needed to track and filter the 

transit of data across an IoT environment. Such techniques will enable both the 

identification and the acquisition of data presumed to have been altered or erased due to 

the limitations of IoT devices (Hegarty et al., 2014).  

Preserving both the physical and digital crime scenes is a controversial matter in 

conventional DFIs. This issue is more contentious in IoT DFIs owing to the nature of 

devices being examined. Data at the crime scene can be overwritten or compressed if the 

IoT device, for some reasons, is not able to store its data in the cloud or if it collects more 

data than it can store. This poses a challenge for DFPs in that they will need to determine 

whether to preserve the evidence on the IoT device by allowing data transfer from the scene 

and then encounter the issues of an inter-jurisdiction evidence acquisition process. 

Otherwise, they might separate the connection between the IoT devices and the cloud and 

attempt to extract the evidence from devices that might have a proprietary nature (Hegarty 

et al., 2014). In cases where data is stored in cloud, investigators will need to submit a 

subpoena or legal authority request to a cloud storage provider for the cloud stored data. 

 

3.6 Examination and Analysis 
Once data has been acquired, it needs to be analysed for potential digital evidence. During 

this Phase, if additional sources of data are identified such as a different device, 

investigators will need to revert to the Acquisition phase to collect new data while the 

Analysis Phase is progressing. However, analysing diverse and varied data in IoT is also 

challenging due to the rapid pace in which new devices are constantly released and do not 

adhere to DF readiness principles (Quick and Choo, 2018). As a result, stored data can be 

in a wide variety of proprietary formats which the existing forensic tools are unfamiliar 

with. Due to the varied nature of IoT devices, DFPs will often need to examine a wide 

range of different data from various potential sources. With a range of computers and 

devices seized, there is a need to analyse a range of disparate data from a variety of sources. 

Malevolent activities can also prevent an investigation, with the possibilities to influence 

the outcomes of an investigation.  

Most IoT devices do not use the Network Time Protocol (NTP), a networking 

protocol for clock synchronization between computer systems over packet-switched, 

variable-latency data networks. As a result, attackers can potentially alter the time and 



   

 

   

   

 

   

      

       
 

    

 

 

   

   

 

   

   

 

   

       
 

settings or even conduct a man in the middle attack on wirelessly transferred data to modify 

information or insert false activity data, such as that of the Jawbone UP (Hilts et al., 2016). 

The relation between IoT and cloud computing enables the aggregation and processing of 

data from the IoT. The large amount of data produced by IoT and hosted by large-scale 

distributed cloud environments can become the subject of a Cloud Forensic Investigation. 

There are various technical challenges. The IoT data is either hosted on proprietary devices 

that are challenging to interface with or in cloud computing platforms in which the scale, 

distribution and remote nature of the data impede imaging as a feasible extraction process. 

To mitigate such challenges, distributed analysis techniques are needed to examine the data 

stored in cloud computing platforms.  

DF analysis of IoT devices used in a business or home environment can be 

challenging in relation to establishing whom data belongs to since digital artefacts might 

be shared or transmitted across multiple devices. In addition, due to the fact that IoT 

devices utilise proprietary formats for data and communication protocols, understanding 

the links between artifacts in both time and space can be very complex. Another challenge 

concerns the chain of custody. In civil or criminal trial, collecting evidence in a forensically 

sound manner and preserving chain of custody are of paramount importance. However, 

ownership and preservation of evidence in an IoT setting could be difficult and can have a 

negative effect on a court’s understanding that the evidence acquired is reliable.  

 

3.7 Event Reconstruction  
During this phase, investigators will need to use the knowledge that they have gained 

during the process of collation and analysis to construct ideas with regards to the questions 

of who, how, what, when, why, and where. The obtained knowledge must be used to build 

inferences concerning the investigation or intelligence probe to answer questions or outline 

findings related to evidence and intelligence (Quick and Choo, 2018). 

 

3.8 Presentation   
Presenting the finding of IoT Forensic Investigation also poses numerous challenges to 

LEAs. One such a challenge relates to the significance, structure and source of evidence to 

a layperson (such as judge, jury, and other involves parties) in a way which the layperson 

can understand. This becomes even more challenging if the data structure has been reverse 

engineered by investigators to facilitate an understanding of the data (Quick and Choo, 

2018; Hegarty et al., 2014). This become also more challenging in circumstances where 

data has endured aggregation and processing through analytic functions that can modify 

the structure and meaning of data (Hegarty et al., 2014). 

 

3.9 Closure and Dissemination   
The details and findings of the entire investigatory process must be formed into a report 

both in written and verbal formats which is then presented to the relevant parties involved 

in the legal process or probe. During this phase, if additional tasks are identified, the 

investigatory process will need to continue in the cycle until it is complete. If further tasks 

are identified, the process continues in the cycle until complete. Feedback must be provided 

to the relevant parties and sought to ensure that the objectives of the investigation have 

been achieved. 

 

4. Discussion 
As IoT devices become more prevalent, there will be an increasing requirement for DFIs 

of these devices and the data they produce. Since IoT devices store disparate data in various 



   

 

   

   

 

   

   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

formats, there is an increasing necessity for DFPs to be able to identify, acquire, analyse, 

and present the data from these devices in both a forensically-sound manner and also a 

timely fashion. Furthermore, with the increasing volumes of big forensic and varied data, 

there is also a need for DFPs to be able to perform analysis of this growing volumes of 

structured and unstructured data. Therefore, new methods will need to be developed to 

conduct analysis of large volumes of varied data and identify potential evidence and 

intelligence in a timely fashion. By utilising specialised forensic tools, it would be possible 

to scan data sets and subsets in an automated fashion and then collate the output to examine 

big forensic data in a timely fashion for connections amongst varied devices and cases.  

 

5. Conclusion and Future Research Direction 
The development of the proposed model providing guidance on how to carry out 

investigations in the IoT is a major contribution of this study. New methods of data 

reduction will need to be developed in order to reduce the large volumes of BDFD while 

at the same time preserving evidentiary data in native source file formats. For example, 

new techniques can be developed to facilitate the storage of data subsets in standard DF 

logical containers that can be processed and analysed by various DF tools. The new 

techniques should also be able to facilitate the mounting of data subsets as logical drives 

for processing and analysis again in various DF tools. The implementation of such methods 

can, subsequently, pave the way for collation and merging of varied data acquired from a 

wide variety of IoT devices for the purposes of processing and analysing BDFD in a timely 

manner.  

LEAs and the research community will need to adopt a more targeted approach to 

the IoT forensic investigations of digital evidence and a more efficient use of forensic 

laboratories. DF specialists need to undergo constant training and resource constraints 

should be mitigated by providing additional budgets to LEAs. The LEAs will also need to 

have their own bespoke, well-resourced DF units with teams of full-time DFPs, each of 

which should have up-to-date training and licences to use several different analytical tools. 

However due to the heterogeneous nature of the IoT devices, the ways in which data is 

distributed, aggregated, and processed presents challenges to digital forensics 

investigations. New techniques are required to overcome these challenges and leverage the 

architectures and processes employed in IoT in order to gain access to this rich source of 

potential evidence. 

Future research opportunities consist of analysis of IoT devices to identify data 

that can help with entity extraction. Machine learning, commonly used in big data 

analytics, can also be investigated for potential use with BDFD. DFPs must be able to focus 

on relevant data that might not necessarily be on a device but instead on an alternative 

device such as Amazon Alexa, sent to a smartphone or uploaded to cloud storage. 

Therefore, it is of paramount importance to collect data from a variety of sources and 

perform rapid analysis on a range of data structures, that help with evidence and 

intelligence identification in a timely manner (Quick and Choo, 2018). 
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