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Integrity in the fresh produce supply chain: solutions and approaches 1 

to an emerging issue.  2 

Manning, Louise. and Monaghan, James 3 

 4 

Food fraud is the misrepresentation of food in terms of labelling or documentation. 5 

The fresh produce supply chain is global with fresh produce grown many 6 

thousands of miles from the point of purchase and consumption.  Long supply and 7 

complex fresh produce supply chains provide opportunity for fraudulent activity 8 

to occur especially further processing or re-packing of products to mask opaque 9 

practice and non-compliant behaviour. Price premiums for products designated as 10 

‘high-value’, for example, organic produce, produce of particular provenance, or 11 

geographical production area provides motivation for less scrupulous actors to 12 

present for sale, produce that is mislabelled or misrepresented. People integrity as 13 

well as data, product and process integrity are gaining wider attention in the 14 

horticultural sector. Types of fraud critiqued in this review paper include 15 

mislabelling, substitution or misrepresentation of origin (country or regional 16 

location), method of production (organic or conventional) or incorrect varietal 17 

declaration. These challenges and the existing and emerging technologies that are 18 

both used within a quality assurance programme and alternatively used by 19 

regulators when investigating potential instances of fraudulent behaviour are 20 

considered. New methodological solutions and approaches are emerging and such 21 

techniques will develop rapidly to meet the growing challenge of fraud and to 22 

ensure consumer trust in the industry is maintained especially as types of food 23 

fraud evolve and become more sophisticated.  24 
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1. Introduction 28 

 Food fraud is the misrepresentation of food in terms of labelling or documentation 29 

i.e. the food is not what it is purported to be.  Fraudulent mis-description on food product 30 

labels is a widespread problem, particularly with high added-value products commanding 31 

a premium price (Woolfe and Primrose, 2004:222). Food fraud is ‘deliberately placing 32 

food on the market, for financial gain, with the intention of deceiving the consumer’ 33 

(Elliott Review, 2013). Food fraud can lead to food safety issues, but in the food industry 34 

food fraud is increasingly seen as a different challenge to food safety problems. This 35 

means that in order to reduce the likelihood of occurrence and also to reduce the impact 36 

should an incident occur countering the risk of food fraud requires both similar and 37 

alternative methods to those that are currently used to address food safety risk.  38 

The types of fraud critiqued in this review paper include mislabelling, substitution 39 

or misrepresentation of origin (country or regional location), method of production 40 

(organic or conventional) or incorrect varietal declaration. The aim of this work is to 41 

consider the challenges and the existing and emerging technologies that are both used 42 

within a quality assurance programme and alternatively used by regulators when 43 

investigating potential instances of fraud.  Fresh produce sold in the European Union 44 

(EU) is of particular interest here because of the need for market compliance with EU ten 45 

specific marketing standards for ten types of fresh producec where criteria such as class 46 

(quality attribute), variety and country of origin  must be truthfully ascribed (Gov.uk, 47 

2019). Thus, there is a clear financial motivation for perpetrators of fraud to substitute 48 

alternative products with different varietal attributes or geographic origin where existing 49 

quality control methods would find it difficult to identify that such substitution has taken 50 

place. In the years 2016-18 there were fifty-nine notification for fruit and vegetables for 51 

“adulteration/fraud” within the Rapid Alert System for Food and Feed (RASFF) Database 52 
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linked to problems such as illegal importing, absence of health certificate(s), Common 53 

Entry Documents (CED) and certified analysis reports and improper health certificates 54 

that were signed before the analysis was performed (Source: RASFF, nd). Examples of 55 

non-compliant products included dried figs from Turkey; frozen okra, curry leaves and 56 

red chilli from India; raisins from Iran and Turkey; dried beans and watermelon seeds 57 

from Nigeria; fenugreek from Ethiopia, dragon fruit from Vietnam, and peppers from 58 

Egypt. 59 

Global supply chains are becoming more sophisticated and complex, and together 60 

with the potential for weak governance, this means that the low probability of discovery 61 

or the low severity of punishment or sanctions provides an incentive for perpetrators to 62 

commit food fraud (Sarpong, 2014; Pustjens et al. 2016). However, food fraud may also 63 

be motivated as a mechanism to appear to meet stated customer (retailer or food service) 64 

requirements e.g. substituting ingredients to meet supply chain constraints and barriers 65 

(Kowalska et al. 2018). The constraints and barriers identified in the literature that drive 66 

this mendacious behaviour include, first, regulatory or political pressures, and then supply 67 

chain pressures. These supply chain pressures include: economic, competitive or coercive 68 

dynamics; information asymmetry with associated power concentration with specific 69 

actors; data swamping, opacity i.e. a lack of visibility; or organisations being time poor 70 

and looking for quick solutions to deliver value in the supply chain (Manning, 2016; 71 

Manning et al. 2017). Indeed, reasons for mislabelling of fresh produce whether 72 

intentional or unintentional might be due simply to human error, a lack of verification 73 

during product labelling changes in production system or even an error in original artwork 74 

design (Kowalska et al. 2018). Changes in the fresh produce supply chain that increase 75 

vulnerability and risk include:  globalisation, especially where horticultural production 76 

takes place in countries with lower regulatory standards and governance; more 77 
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prescriptive food safety management standards; the impacts of climate change on supply 78 

and demand dynamics; and transitions in food culture and consumer behaviour (Kleter 79 

and Marvin, 2009; Jacxsens et al. 2010; Marvin et al. 2016) Further factors that influence 80 

fresh produce chains have been synthesized (Table 1). 81 

Take in Table 1 82 

It is arguable that, to date, fresh produce food safety has had a higher profile than 83 

fraudulent activity. There has been more focus on the direct risk to consumer health of 84 

inadequate production practices being linked to foodborne illness outbreaks (FIOs).  85 

These FIOs can be large, with fresh produce accounting for 10% of FIOs in the European 86 

Union from 2007 to 2011, 26% of individual illness cases, 35% of hospitalisations, and 87 

46% of deaths (EFSA, 2013). In response, production standards have been developed that 88 

follow the principles of hazard analysis and critical control point (HACCP) systems and 89 

apply a systems-based approach to managing food safety (Gil et al. 2015; Monaghan et 90 

al. 2017). Growers are required by many customers to adhere to a quality assurance 91 

scheme (QAS), either an industrywide QAS such as Red Tractor Assurance (RTA, 2017) 92 

or a customer-specific QAS such as McDonald’s good agricultural practices (GAP) 93 

guidelines (McDonald’s Corp., 2012).  However, these systems rely heavily on a 94 

formalised system to show that actions are being completed and as a result there is a 95 

difference between developing and developed countries in the efficacy of food safety   96 

control systems employed (Faour-Klingbeil and Todd, 2018) 97 

Food integrity has been defined as ensuring that food which is offered for sale is 98 

not only safe and of the nature, substance and quality expected by the purchaser, but also 99 

considers other aspects of food production, such as the way it has been sourced, procured 100 

and distributed and being honest about those elements to consumers (Elliott, 2014). Thus, 101 

developing supply chain systems and standards that assure food integrity will enhance 102 
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food safety, authenticity, quality, and increase consumer trust in product claims (Kleboth 103 

et al. 2016; Goddard et al. 2018).  Integrity in the horticulture supply chain is driven by 104 

consumers who demand that the produce they purchase is firstly, what it purports to be 105 

(product integrity); secondly is produced in line with defined standards (process 106 

integrity); thirdly that these standards address ethical corporate behaviour (people 107 

integrity); and finally the data associated with the produce (data integrity) is valid and 108 

reflects the intrinsic and extrinsic characteristics of the product (Manning, 2016; 109 

Manning, 2018). Thus developing product integrity and traceability protocols can 110 

underpin product integrity, trust and an open and transparent supply network (Soon et al. 111 

2019).  112 

The differentiation of fresh produce as previously described at the production and 113 

retail level provides opportunity for certain types of food fraud such as economically 114 

motivated substitution or mislabelling to occur. Economically motivated substitution 115 

could also happen when produce from one country of origin is substituted for another 116 

product from a different source especially if the produce is visually similar and there is a 117 

large price differential between the produce from the claimed source and the source being 118 

substituted. Further, the additional value derived in differentiating between 119 

conventionally grown products and organic production means that there is an 120 

economically motivated opportunity to substitute conventional for organic produce and 121 

label this as organic. Examples of reported cases of mislabelling and misrepresentation 122 

have been collated to show the types of fraud that can occur (Table 2). 123 

Take in Table 2 124 

Product identity from source through to processing/packing and distribution has 125 

been aligned with notions of traceability (Bertolini et al. 2006); a so-called ‘chain of 126 

custody’ (Thakur and Hurburgh, 2009). Indeed identity preservation is becoming an 127 
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increasingly important credence or process attribute that adds economic value to a product 128 

(Dabbene et al. 2014). Regulation EC/178/2002 defines traceability as the ability to trace 129 

and follow a food, feed, food-producing animal or substance intended to be, or expected 130 

to be incorporated into a food or feed, through all stages of production, processing and 131 

distribution. In high information input and complex supply chains such as fresh produce, 132 

the market requirements for identity preservation and traceability often need to exceed 133 

the legislative requirements for ‘one step back-one step forward’ processes (Manning, 134 

2017). Thus, an effective traceability system should establish and enable the identification 135 

of product lots and their relation to batches of raw materials, processing and delivery 136 

records (BS EN ISO 22000:2005). 137 

Industry mechanisms to ensure that identity preserved products are what they are 138 

purport to be include the use of business to business (B2B) or business to consumer (B2C) 139 

supply chain standards. B2C standards through associated cues on packaging such as 140 

organic certification logos, geographic indication [British flag or country of origin 141 

designation], method of production [Red Tractor] and the associated traceability and mass 142 

balance checks i.e. extrinsic product characteristics, need to be verified in order to ensure 143 

consumer trust (Manning and Soon, 2014). Whilst some of these transactional tools are 144 

private mechanisms, legislative standards in the European Union (EU) also underpin the 145 

use of the term ‘organic’ or provenance designated geographic origin (EU Protected Food 146 

Name Scheme via the requirements of Regulation EU No 1151/2012).  147 

This review paper considers specifically food fraud in the fresh produce supply 148 

chain and the existing and emerging product and process verification activities that take 149 

place. The British Retail Consortium (BRC, 2018) Global Food Standard describes 150 

verification as the application of methods, procedures, tests and other evaluations, in 151 

addition to monitoring, to determine whether a control or measure is or has been operating 152 
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as intended. Process verification is the assessment of objective evidence that relates to 153 

process integrity such as the assessment of documentation, product and process 154 

certification and traceability data rather than product testing. However, process 155 

verification, such as third party certification (TPC) relies upon the ability to assess valid, 156 

authentic, objective and representative evidence (Manning and Soon, 2014). Product 157 

verification involves the analysis and testing technologies used both within a quality 158 

assurance programme and by regulators when investigating potential instances of 159 

fraudulent behaviour.    160 

2. Process verification: the role of auditing 161 

An audit is the systematic, independent and documented process undertaken to obtain 162 

and then evaluate valid, representative, objective evidence (records, statements of fact or 163 

other information) to determine whether the evidence demonstrates that audit criteria 164 

(policies, procedures and requirements) and standards have been fulfilled (BS EN ISO 165 

9001: 2015). Therefore, auditing is an effective form of verification when it identifies 166 

both conformity and any deviations from standards, legislation or regulation whilst 167 

trading this outcome against using the minimum amount of resources to achieve the audit 168 

objectives (Kleboth et al, 2016). In a transactional way, the industry often sees audits as 169 

being of value when they are quick yet accurate, sometimes referred to as a snapshot, 170 

independent, objective, unbiased, transparent, reliable, scalable and as a result promote 171 

consensus building (Albersmeier et al. 2009; Salama et al. 2009; Powell et al. 2013). 172 

However, TPC audits, a key element of process verification activities in the supply chain, 173 

are a market interaction and there is a risk that this economic framing could impact on 174 

independence and validity (Martinez et al. 2013; Verbruggen and Havinga, 2015). The 175 

Elliott Review (2013) noted that the quality and completeness of TPC audits was variable 176 

and that there is a danger that an audit regime can be used for raising revenue, placing 177 
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unnecessary costs on food businesses. TPC audits alone will not deliver effective 178 

verification of integrity in the food supply chain and they need to be undertaken in co-179 

ordination with other activities such as product testing. 180 

One challenge to the efficacy of TPC and even first party or second party audits as a 181 

form of verification is the degree of data integrity. Data integrity, quite simply, is the 182 

quality of data i.e. the degree of accuracy, consistency or validity of data held by an 183 

organisation or multiple organisations in the food supply chain. This data is either hard 184 

form (paper based) or digital form contained on computers, networks and clouds. Whilst 185 

the increased ability to store information might improve timeliness for process and 186 

product verification, conversely the volume of data being held can lead to data swamping 187 

for supply chain organisations, regulators and certification bodies undertaking third party 188 

verification (Manning et al. 2017; Manning and Wareing, 2018).  Data swamping arises 189 

as a result of the sheer volume of data being collected and stored, the inefficient control 190 

or storage of data either as a result of strategic weakness or because of the cost of 191 

implementing digital solutions, or simply a misunderstanding of the timeline for data to 192 

be collected and then shared with others. There is no current literature on the challenge 193 

of data swamping or indeed the effective management of data in the food literature 194 

suggesting this is an area for future empirical research. In this context, data management 195 

can be considered as the actions taken, and governance implemented, to ensure data 196 

integrity when an organisation acquires, validates, stores and shares data.  197 

One technological solution put forward to address data integrity and data management 198 

is the use of distributed ledger technology, with one option being Blockchain. The 199 

proposed advantages of this type of technology are reduced cost and increased speed of 200 

transactions in the supply chain, more effective incident identification and 201 

responsiveness, and the ability to overcome information asymmetry especially for 202 
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consumers and as a result improving inter-actor trust and transparency (Manning and 203 

Wareing, 2018). The disadvantages are the need for strong governance of systems to 204 

prevent cyber-security breaches. The nature and type of cyber threats is increasing and 205 

shifting rapidly in line with the use of digital data technology and the risk of infiltration 206 

of digital networks (Khursheed et al. 2016).  207 

Hollands et al. (2018) consider the benefits and challenges associated with 208 

Blockchain and argue that traceability systems are already a core strategic process within 209 

many food company management systems that control products and manage supply chain 210 

data especially through enterprise resource planning (ERP) platforms. However they 211 

counter ERP systems are expensive to implement and Blockchain technology may 212 

provide the opportunity to link “blocks of information” associated with distinct 213 

transactions that can form a tracking and tracing system. The IBM platform “Food Trust” 214 

has been used to trace mangoes to source in seconds superseding the one step forward 215 

one step back systems mentioned earlier in this paper. However Bateman and Cottrill 216 

(2017) suggest that there are challenges to the use of Blockchains, distributed ledgers, 217 

especially if the data is of poor quality that is entered into the system especially where 218 

the data them becomes immutable. They further argue that not all members of the supply 219 

chain have digital access especially smallholders in developing countries so this can mean 220 

that some data is still recorded manually before later being entered into a system. There 221 

is still a risk too of fraudulent behaviour where incorrect data is intentionally entered into 222 

the system.Thus, data integrity and associated management and security protocols need 223 

to be more actively developed and verified in fresh produce supply chains to reduce the 224 

potential for both intentional and unintentional mislabelling incidents. 225 

3. Product verification: testing technologies 226 
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An alternative approach to audits for establishing product attributes is to test the 227 

produce for its innate integrity.  When determining an appropriate testing technology the 228 

first consideration is whether the technology is using a targeted or a non-targeted method. 229 

Targeted methods are seeking to identify the presence or alternatively absence of specific 230 

markers that can demonstrate i.e. authenticate the identity of a given food or identify the 231 

presence of a given chemical or contaminant. Non-targeted methods are used as a wider 232 

screening mechanism for food. Ballin and Laursen (2018) in a review of analytical 233 

approaches for food authentication have proposed definitions and nomenclature for 234 

targeted and non-targeted approaches.  Targeted analysis focusses on one or more pre-235 

defined analytical target(s) e.g. a specific pesticide residue.  Non-targeted analysis, 236 

simultaneously detects numerous unspecified targets or data points (often>100) and is 237 

often qualitative e.g. ‘fingerprinting’ or metabolomics (Ballin and Laursen, 2018). 238 

Difficulties in developing authenticity methodology include finding appropriate markers 239 

that characterise an element of the food that is consistent and can be measured accurately 240 

and having authentic samples that can assist methodology development in the first place 241 

(Primrose et al. 2010). Chemical methods to determine authenticity include primary 242 

metabolites such as sugar, amino acid and/or organic acid profiles of certain fruits (Bat et 243 

al. 2018). However, they argue secondary metabolites are influenced by geographic origin 244 

and production methods. Proving fraud has taken place requires detailed detection 245 

techniques (Woolfe and Primrose. 2004) and studies deploying DNA markers to identify 246 

mislabelling of plant-derived products are limited (Scarano et al. 2015). Fresh produce 247 

can be characterised using ‘classical techniques’ such as the use of isotope ratio mass 248 

spectrometry. Increasingly, new technologies are superseding and complementing these 249 

techniques. The majority of these constitute the so-called ‘omic’ technologies where high 250 

throughput analyses are combined with chemometrics and bioinformatics 251 
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The key authentication issue in fresh produce, as previously described, is that of 252 

origin i.e. is the correct variety named; is the geographic origin of the crop correctly 253 

identified; have unapproved/illegal pesticides been applied; is the crop ‘wild harvested’; 254 

is the crop ‘organic’; (Esslinger et al. 2014).  Different approaches are considered here 255 

that address these issues and provide data where authenticity, identity or provenance and 256 

regulatory compliance can be determined. 257 

3.1 Variety testing  258 

 DNA analysis techniques have developed to identify species or variety include 259 

detection of single nucleotide polymorphisms (SNPs), simple sequence length 260 

polymorphisms (SSLPs), restriction fragment length polymorphisms (RFLPs), and the 261 

use of real-time polymerase chain reaction (PCR) and heteroduplex analysis (Woolfe and 262 

Primrose, 2004; Primrose et al. 2010). Identification techniques based on PCR 263 

amplification followed by simple sequence repeats (SSR) analysis and principal 264 

coordinate analysis (PCA) can identify genetic differences in varieties of tomatoes 265 

especially in processed products where morphological markers may be lost (Scarano et 266 

al. 2015). SSR techniques have also been used for variety identification, genetic 267 

fingerprinting, genetic diversity analysis and parentage verification in Prunus species, but 268 

specifically sweet cherry (Liu et al. 2018). However, the level of DNA may not reflect 269 

accurately the amount of material originally substituted or added especially if processing 270 

has degraded the DNA or there are multiple copies of a given gene sequence in a cell 271 

(Primrose et al. 2010). 272 

 273 

3.2 Geographic origin  274 

 Consumers are willing to pay a premium for local food (Feldmann and Hamm, 275 
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2015), but the geographic origin of produce can be difficult to quantify.  Isotope 276 

abundances can vary with the geographic location, and if samples of the soil or water are 277 

available from geographical regions, it may be possible to identify material grown in that 278 

area.  For example, it was possible to discriminate between peppers of different 279 

geographical origin by correlating the δ18O of water in the peppers with a database of 280 

isotope ratios for water (Flores et al. 2013). Another approach is to use elemental 281 

fingerprinting (Danezis et al. 2016) where the profile of groups of macro elements, trace 282 

elements, rare earth elements and ultra-trace elements can be used as an indicator of 283 

geographical origin as the profiles are linked to the geology of the production area 284 

(Danezis et al., 2016). Perini et al. (2018) conclude from their studies on soft fruit that 285 

the δ13C and δ15N value of pulp and the δ18O of juice can be used to differentiate 286 

geographical origin and verify declared provenance. In addition, microbial populations 287 

may differ between geographical locations and El Sheika et al. (2009) analysed the yeast 288 

community structures on the surface of Physalis and successfully discriminated between 289 

geographical production areas.   290 

3.3 Misrepresented use of pesticides 291 

Fresh produce monitoring programmes by retailers and enforcement agencies 292 

target residue testing towards levels of specific compounds either the active ingredient or 293 

the associated breakdown products.  Multi-residue analysis methods commonly use gas 294 

or liquid chromatography coupled with mass spectrometry (GC/LC-MS) (Stachniuk, 295 

2018).  Residue testing has two uses: it can establish whether label recommendations have 296 

been followed i.e. Good Agricultural Practice (GAP); and whether residues are present 297 

of non-approved or illegal pesticides.  However, the approach has limitations as residues 298 

decline over time and early application of non-approved compounds may mean residues 299 

are undetected at reportable levels. 300 
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3.4 Misrepresented use of synthetic fertiliser 301 

 It is possible to detect the accumulation of synthetic N fertiliser in plant tissues by 302 

looking at stable isotope ratios in the produce in a targeted approach.  Crops grown 303 

organically have δ15N values of +0.3 to +14.6%, while crops grown with synthetic N 304 

fertiliser range from negative to positive values, i.e. −4.0 to +8.7% (Inácio et al. 2015).  305 

However, a number of studies have highlighted the weaknesses in this approach where 306 

the organic and conventional values can overlap e.g. Schmidt et al. (2005) reported that 307 

lettuce, onions, cabbage and Chinese cabbage from field production had δ15N-values in 308 

the range of +5 to+6 for conventional production and +5.5 to+7.5 ‰ for organic 309 

production.  In addition, the application of a small amount of manure or the use of water 310 

with a large concentration of nitrate can result in an increase of the δ15N values, close to 311 

those obtained in organic production (Laursen et al. 2014). On its own, δ15N data can only 312 

provide supporting evidence in suspected fraud cases, but not for discriminating between 313 

both production systems (Bueno et al. 2018).  314 

3.5 Substitution of conventionally grown produce as organic. 315 

 Studies have suggested using multiple isotopes of nitrate derived N and O 316 

(Laursen et al. 2013; Mihailova et al. 2014).  Approaches based on the measurement of 317 

multiple biomarkers and/or complex chemical or physical profiles/fingerprints supported 318 

by multivariate statistical analysis show more potential (Capuano et al. 2013).  Bueno et 319 

al. (2018) demonstrated that a combined chemo-metric analysis of high-resolution 320 

accurate mass spectrometry (HRAMS) and δ15N data was able to discriminate 321 

successfully between organic and conventionally grown tomatoes.  Multivariate analysis, 322 

combining isotope data with mineral content (Yuan et al. 2018), and mineral content and 323 

key metabolites (Flores et al. 2013) have been able to classify organic and conventional 324 

brassica, peppers and lettuce.  325 
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Studies have found that organic methods of vegetable production have increased 326 

concentration of total glucosinolates and benzylglucosinolate which can be used to 327 

differentiate methods of cultivation (Rossetto et al. 2013); and major and trace element 328 

profiling has been used to determine whether onions and peas were conventionally or 329 

organically grown (Gundersen et al. 2000). Bioactive components such as phenolic and 330 

hydrophilic antioxidant capacity were identified as markers for being able to determine 331 

organic and conventional tomato juices (Vallverdú-Queralt et al. 2012).  332 

Trace element and nitrogen isotope data is of value in differentiating conventional 333 

and organic tomatoes but less effective with lettuce indicating a concern over analytical 334 

testing being used in isolation as a single determinant of provenance (Kelly and Bateman, 335 

2010). Picchi et al. (2012) urged caution that phytochemical content as a marker for 336 

considering a crop’s response to growing methods, in this case cauliflower, was affected 337 

by genotype i.e. some genotypes showed improved phytochemical content under organic 338 

production and others particularly with regard to glucosinolates and ascorbic acid did not. 339 

Conventional and organic production influence the external microbial populations 340 

and internal metabolite production.  There is a significant focus on the use of 341 

metabolomics (metabolite fingerprinting) to discriminate between production systems 342 

using both targeted and non-targeted approaches (Cubero-Leon, 2014; Medina et al. 343 

2019).  Bigot et al. 2015 analysed the yeast and bacterial community profiles on the 344 

surface of nectarines and peaches using PCR-DGGE to differ between organic and 345 

conventionally produced crops.  Llano et al. (2018) demonstrated that an untargeted 346 

metabolomics approach was able to identify metabolites (biomarkers) that could 347 

discriminate between organic and conventional goldenberry fruit. 348 

4. Conclusion 349 
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One of the challenges of additional supply chain risk assessment processes and 350 

verification steps is that this can add quality cost to the supply chain but it is a preventative 351 

cost that will offset the costs of a recall. Risk assessment processes for food fraud include 352 

the use of threat analysis critical control point (TACCP) and vulnerability analysis critical 353 

control point (VACCP). However, only known and assessable threats can be prioritised 354 

(using a semi-quantitative assessment of likelihood and severity) to then develop a control 355 

measure(s) (countermeasure) and then a subjective scoring system to identify CCPs. Then 356 

effective fraud risk management, monitoring and verification systems can be developed. 357 

However the binary aspect of known/unknown threats means that decision-makers may 358 

then identify a subsequent incident that could lead to a major food recall as simply being 359 

“unforeseeable” (Manning, in press). 360 

Since the Elliott Review, the notion of food integrity has been developing not just in 361 

terms of the product itself, but also the processes employed, the behaviour of individuals 362 

and the validity of data that is being used (Manning, 2016). This growing interest in 363 

integrity has led to the emergence of new techniques to confirm origin, variety and 364 

method of production e.g. organic or conventional. Indeed, metabolomics is enabling 365 

metabolite fingerprinting which is showing the potential to discriminate between a range 366 

of production factors. Further studies will require large numbers of samples to be taken, 367 

analysed and the results included in reference databases.  These will need to encompass 368 

a wide range of sources of variation for the target biomarkers i.e. different agronomic 369 

conditions, vegetable varieties and geographical locations (Bueno et al. 2018). Non-370 

targeted metabolomics utilized in metabolite fingerprinting can generate very large 371 

datasets, requiring bioinformatics analysis and increasingly machine learning (Medina et 372 

al. 2019).  These developments are of value in determining the potential for mislabelling 373 

and mis-description, and effective verification protocols combining product and process 374 
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verification need to be developed and effectively implemented in order to maintain 375 

consumer trust in the fresh produce industry. 376 

 377 
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Table 1. Factors that influence fresh produce supply chains (Adapted from 682 

Ahumada and Villabos, 2009; Shukla and Jharkharia, 2013). 683 
 684 

Strategic Tactical Operational 

Financial planning 

 

Demand forecasting 

accuracy and modelling 

 

Capacity (warehouse and 

production facilities) 

 

Supply network design 

Technology 

 

Demand-price elasticity 

Harvest planning 

 

Crop choice 

 

 

Crop scheduling 

 

 

Logistics and 

transportation 

 

Inventory 

management  

 

Labour selection 

 

 

 

Production scheduling activities 

 

Harvesting 

 

 

Storage 

 

 

Transportation (vehicle routing) 

 

 

Weather conditions 

 

 

Plant maturation rates 

 

Product shelf-life/rate of 

deterioration 

 685 
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Table 2. Examples of fresh produce mislabelling and misrepresentation 687 

Case Details 

Case 1 Vidalia spring onions (Georgia United States) have a premium price 

compared to product from other US states. 1986 saw state legislation to 

delignate a specific production area. Additional quality control systems 

were put in place. Incidences of rebagging occurred. Between 2001 and 

2003 there were six fines ranging from $5,000 to $29,000 for misuse of 

Vidalia label. A further case fine was $100,000. (Carter et al. 2006) 

Case 2 The “San Marzano” tomato is one of the most important processing tomato 

varieties in the world. The tomato has a designated origin but is often 

substituted with other plum tomatoes from both Italy and outside Italy 

leading to deception of consumers (Scarano et al. 2015).  

Case 3 The labelling of Greek produce as Cypriot when there was oversupply of 

Greek product due to the Russian embargo in 2014 (Joyce, 2014) 

Case 4 A Canadian company AMCO Produce was fined $210,000 in 2018 by the 

Canadian Food Insepction Agency (CFIA) because between 2012 and 

2014, the company was said to have intentionally mislabelled produce, 

including tomatoes and cucumbers, as being from Canada when the 

country of origin was in fact Mexico. The products were sold to Sobeys 

Inc. and other retailers. The CFIA undertook a random inspection and 

found products labelled as Ontario produce when in February the 

temperatures were too low in the region for greenhouse production (Karst, 

2018).  

Case 5 Australian Supermarkets Coles and Woolworths were fined in 2011 when 

two stores were identified as selling mislabelled fruit – one for not 

declaring the country of origin and the other store for selling lemons 

origination from the USA as “Product of Australia” (Eckersley, 2011). 
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