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Abstract 
This paper aims to show that through the properties of the Laplace transformation into ‘s’ space, 
the coupled differential equations of the double pendulum, as shown in figure 1 [1] can be 
solved with relative ease and show interesting properties and applications of the system for 
variable values of gravity. These include lunar seismometry and consideration of similar 
experiments on other astronomical bodies. 

 
 
Definitions 
The  formal definition of the Laplace transformation [2] (Equation 1) involves an integration similar 
to that of the Fourier transform whereby a function can be transformed into ‘s’ space, with the 
advantage that differential equations are reduced to simple algebra. The transform into ‘s’ space is 

ℒ{𝑓(𝑡)} =  ∫ 𝑒−𝑠𝑡𝑓(𝑡) 𝑑𝑡 =  𝐹̂(𝑠),
∞

0
 (1) 

whilst the reverse transformation back into ‘t’ space is managed through transform pairs [3]. 
The differential equations that describe the double pendulum in figure 1 are shown in equations 2 
and 3: 

𝑚2𝐿2
2 𝑑2θ2

𝑑𝑡2 +  𝑚2𝐿1𝐿2
𝑑2θ1

𝑑𝑡2 + 𝑚2𝐿2𝑔θ2 = 0 (2) 

(𝑚1 + 𝑚2)𝐿1
2 𝑑2θ1

𝑑𝑡2 + 𝑚2𝐿1𝐿2
𝑑2θ2

𝑑𝑡2 +  (𝑚1 + 𝑚2)𝐿1𝑔θ1 = 0. (3) 

Throughout this paper, the use of the linearity of the Laplace transform and its general behaviour 
with respect to differentials (shown in equation 4) will be used in order to condense notation: 
 

ℒ{𝑓′(𝑡)} =  ∫ 𝑒−𝑠𝑡 𝑑𝑓(𝑡)

𝑑𝑡
 𝑑𝑡

∞

0
= [𝑒−𝑠𝑡𝑓(𝑡)]0

∞ +  𝑠 ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0
=  −𝑓(0) +  𝑠ℒ{𝑓(𝑡)} = 𝑠𝐹̂(𝑠) − 𝑓(0), (4) 

 
Diagrams 

Figure 1 [1]: The double pendulum with labelled parameters.  
In this paper, the following values and initial conditions will be used: 
Values (Arbitrary units) Initial conditions (Degrees) 
m1 = 3 θ1(0) = 1 

m2 = 1 θ̇1(0) = 0 
L1 = L2 = 16 θ2(0) = 0 

g = variable θ̇2(0) =  −1 
Application 
Equations 2 and 3 will not be derived; they will just be taken as general form [4]. Once the values 
and initial conditions detailed above are substituted in, equations 2 and 3 can be transformed 

through the use of equation 4. Subsequent to this, θ̂1(𝑠) and θ̂2(𝑠) can be factorised out, and with 
the use of partial fraction decomposition, simplified into a form where inverse transform pair can be 
observed [3] 
 
Results 
Having extraneously obtained the form for equations 2 and 3 exposing the transform pairs, a table of 
standard Laplacian pairs can be consulted to return to the time domain. The new form is now shown 
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in equations 5 and 6 which fully describe the motion of the double pendulum in the limit of the small 
angle approximation: 
 

θ1(𝑡) =
1

2
𝐶𝑜𝑠 (√

𝑔

24
𝑡) +

1

2
𝐶𝑜𝑠 (√

𝑔

8
𝑡) +  

1

√2𝑔
𝑆𝑖𝑛 (√

𝑔

8
𝑡) −

3

√6𝑔
𝑆𝑖𝑛 (√

𝑔

24
𝑡)  (5) 

θ2(𝑡) = 𝐶𝑜𝑠 (√
𝑔

24
𝑡) + 𝐶𝑜𝑠 (√

𝑔

8
𝑡) +  

2

√2𝑔
𝑆𝑖𝑛 (√

𝑔

8
𝑡) −

6

√6𝑔
𝑆𝑖𝑛 (√

𝑔

24
𝑡) . (6) 

 
Interestingly, their similar form shows that the behaviour of the two pendulums stems from the 
same set of constituent waves, and differs only in their coefficients. For the standard value of 
g=9.81ms-2, θ1(𝑡) and θ2(𝑡) are represented pictorially in graphs 1 and 2: 

 
These data show the expected chaotic motion where the second pendulum is a small number of 
seconds out of phase from the first, and reaches amplitudes of approximately twice that of the first 
pendulum. The coupling has the effect of accentuating the motion of the second pendulum, making 
any subsequent trace on a seismograph much larger. When the gravity is set to the lunar value of 
1.62ms-2, we see from graphs 3 and 4 that the angular displacement reaches amplitudes almost 
twice that seen on earth: 

  
This supports the idea that the increased ‘sensitivity’ of the pendulum on the moon could be viably 
used to detect moonquakes and infer details about lunar structure. This would replace the currently 
used geophones which are lacking in their maximum resolution and are dependent on circuitry for 
continued operation. As a result of this decrease in the complexity and other limiting factors in 
currently employed lunar instruments, commensurately more detailed and reliable information 
could be gathered. As an extension to this, the effect of increasing amplitude is inversely 
proportional to gravity such that this method could provide yet more detailed information about the 
interior of low gravity bodies such as comets and meteors, which combined with shock generating 
devices used to induce wave propagation throughout the subject body.  
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Graph 1: ϴ1(t) (g=9.81ms-2) 
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Graph 2: ϴ2(t) (g=9.81ms-2) 
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Graph 3: ϴ1(t) (g=1.62ms-2) 
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Graph 4: ϴ2(t) (g=1.62ms-2) 


