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Abstract: Soil erosion and land use type have long 
been viewed as being particularly important drivers of 
soil degradation. The objectives of this study, 
therefore, were to select a new soil quality index (SQI) 
which varies significantly with land use/soil erosion, 
and to evaluate the new SQI using expert opinion. In 
total, 18 soil physical, chemical, and biochemical 
properties (indicators) were measured on 56 soil 
samples collected from four land use/soil erosion 
categories (rangeland/surface erosion, rangeland/ 
subsurface erosion, cultivated land/surface erosion 
and dry-farming land/surface erosion). Principal 
component and classification analysis (PCCA) 
identified five PCs that explained 77.7% of the 
variation in soil properties with the biochemical PC 
varying significantly with land use/soil erosion. 
General discriminant analysis (GDA) selected urease 
and clay as the most sensitive properties 
distinguishing the land use/soil erosion categories. 
The GDA canonical scores for the new SQI were 
significantly correlated with expert opinion soil 
surface summed scores (for soil movement, surface 
litter, pedestalling, rills and flow pattern) derived 

using the U.S. Department of the Interior Bureau of 
Land Management (BLM) method. A forward 
stepwise general regression model revealed that the 
new SQI values were explained by soil movement, 
surface litter, and the summed values of the soil 
surface factors. Overall, this study confirmed that soil 
quality in the study area in Iran is controlled by land 
use and corresponding soil erosion. 
 
Keywords: Soil quality index; Land use; Erosion 
status; Soil enzyme activities; Multivariate statistical 
techniques 

Introduction  

Soils deliver multiple services to humankind 
but are under threat from a range of competing 
uses and intensification of management practices 
(Drobnik et al. 2018; Godfray et al. 2010; Muñoz-
Rojas 2018; Stolte et al. 2016). Here, it is vitally 
important to acknowledge that soil is essentially a 
non-renewable resource at timescales relevant to 
agricultural production and economic development 
since its regeneration, post degradation, can be 
extremely slow (Lal 2015). Expansive soil 
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degradation has, nevertheless, been reported by 
numerous studies (Akhtar-Schuster et al. 2017; 
Keesstra et al. 2016; Stavi and Lal 2015). In 
particular, accelerated soil erosion is a serious 
global problem (Van Oost et al. 2007). Soil erosion 
leads to on-site soil degradation as result of the loss 
of soil organic matter and nutrients. Soil 
degradation can also manifest in other ways 
including, for example, compaction, sealing, 
salinization, acidification, alkalinization, chemical 
or heavy metal contamination, biodiversity decline 
and increased incidence of floods or landslides 
(Ayoubi et al. 2014; Bindraban et al. 2012; Emadi 
et al. 2009; European Commission 2006; Jónsson 
et al. 2016; Nabiollahi et al. 2018a; Nabiollahi et al. 
2017; Nosrati 2013; Pham et al. 2018; Yu et al. 
2018a). Such widespread issues are important in 
the context of the United Nations’ 17 Sustainable 
Development Goals (SDGs, Keesstra et al. 2016), 
since sustainable soil management has direct 
relevance to at least half of them (Jónsson et al. 
2016). 

In broad terms, soil quality can be defined as 
“the capacity of a soil to function, within ecosystem 
and land use boundaries, to sustain productivity, 
maintain environmental quality, and promote 
plant and animal health” (Dilly et al. 2018; Doran 
and Parkin 1994; Karlen et al. 1997).  Soil quality is 
thereby a critical aspect of ecosystem functioning 
and agricultural sustainability and reflects the 
abiotic and biotic interaction of processes that 
sustain plant and animal productivity. In contrast, 
soil health refers to the capacity of soil to sustain 
critical functions (Bünemann et al. 2018; de Paul 
Obade 2019).   

The capacity of soil to function can be reflected 
by measured soil physical, chemical and biological 
properties, also known as soil quality indicators. 
Soil quality therefore integrates physical, chemical 
and biological components and processes and the 
interactions among them (Andrews et al. 2004; 
Dexter 2004; Karlen et al. 2001; Thoumazeau et al. 
2019).  As a result, comprehensive characterisation 
of soil quality should be based on such multiple 
attributes and functions (O'Sullivan et al. 2015). 
Here, identification of indices has been called for as 
a means of assessing soil quality and progress 
towards improved sustainability (Easdale 2016). 
Such indices combine and integrate critical 
indicators and thereby simplify complex 

information by quantifying and communicating 
salient features of soil quality to multiple 
stakeholders for providing improved transparency 
on the basis for decision-making for soil 
management (Arshad and Martin 2002; Burger 
and Kelting 1999; Doran and Parkin 1994; 
Jesinghaus 1999; Jónsson et al. 2016). Soil quality 
indices (SQIs) should be selected according to the 
soil functions of interest and the defined 
management goals including both on-farm and 
broader environmental outcomes (Drobnik et al. 
2018; Karlen et al. 2006; Rapport et al. 1998).  

A wide range of soil properties have been used 
as soil quality indicators. An effective property or 
indicator should be able to differentiate between 
potential land units (e.g. land use types, soil 
erosion) and should be sensitive to both natural 
processes or conditions and anthropogenic 
management. Soil enzyme activities provide a 
means of assessing the degree of soil degradation 
because they act as early and sensitive indicators of 
soil ecological stress (Chaer et al. 2009; Nosrati 
2013) due to  microbial activities being closely 
related to enzyme activities in many soil functions 
(Zornoza et al. 2007). It is therefore not surprising 
that changes in soil enzyme activities have been 
suggested as indicators of changes to, or 
disturbances of, the soil ecosystem (de Andrade 
Barbosa et al. 2019; Naseby and Lynch 2002). Soil 
enzymes are inherently more sensitive to 
environmental conditions than other soil 
properties and therefore reflect the interaction 
between natural biochemical processes and 
anthropogenic management practices within a 
catchment.  

The fundamental steps for developing a SQI 
comprise the pre-selection of potential indicators, 
indicator scoring and indicator integration into the 
final SQI. Two categories of SQI exist; those 
describing the current condition of soil on the basis 
of detailed field measurements (Arshad and Martin 
2002) and those that monitor change in response 
to management systems (Oberholzer et al. 2012). 
Selection of variables (indicators) for inclusion in a 
SQI may be simplified by statistical methods. 
Several multivariate statistical techniques and 
modelling approaches have been widely applied to 
evaluate soil quality for different soils under 
different management regimes (Biswas et al. 2017; 
Brejda et al. 2000; de Paul Obade and Lal 2016; 
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Nabiollahi et al. 2018a,b; Nosrati 2013; Raiesi 2017; 
Sánchez-Navarro et al. 2015; Yu et al. 2018b; Zuber 
et al. 2017). While the number and diversity of soil 
quality studies has increased, there remains a need 
to explore the scope for developing new SQIs. 

Soil quality degradation in Iran is widespread 
(Ayoubi et al. 2014; Emadi et al. 2009; Nosrati 
2013; Raiesi 2017; Rezapour 2014). Current socio-
economic pressures in Iran pose a serious threat to 
soil quality and thereby both food security and 
environmental protection. In this context, the 
objectives of this study, therefore, were: (1) to 
determine soil quality principal components (PCs) 
which vary significantly with land use/soil erosion 
categories; (2) to select a SQI from these PCs that 
can be used for soil quality monitoring, and; (3) to 
examine whether a relationship exists between the 
resulting SQI and expert opinion based on the soil 
surface factors (SSF) scoring form of the U.S. 
Department of the Interior Bureau of Land 
Management (BLM).  

1     Materials and Methods 

1.1 Study area 

The study was conducted in the Zidasht 
catchment (36  º 05ʹ35ʺ to 36º11ʹ46ʺN and 50º37ʹ46ʺ 
to 50º44ʹ56ʺE), which is part of the Taleghan 
Drainage Basin, in the Southern Alborz Mountains, 
90 km Northwest of Tehran, Iran (Figure 1). The 
drainage area of the Zidasht study catchment is 
62.3 km2, including 11.26 km2 (18.1% of total area) 
of crop fields (irrigated and dry-farming lands), 
0.19 ha (0.3% of total area) of residential use, and 
5085 km2 (81.6% of total area) of natural 
rangelands (grass, forbs and shrubs e.g. Astragalus 
gossypinus, Agropyron intermedium, Bromus 
tomentellus). The Zidasht catchment has a 
mountainous topography, with a minimum and 
maximum elevation of 1690 m and 3038 m above 
sea level, respectively. The average slope gradient is 
20%. The soil map of Iran provided by the Iran 
Forests, Range and Watershed Management 
Organization (IFRWMO) shows that the soils 
within the catchment are mainly Typic Xerorthents, 
Lithic Xerorthents, Typic Haploxerepts, and Typic 
Calcixerepts. Based on the data provided by the 
Iran Meteorological Organization, long-term (1975-

2015) mean annual precipitation in the study area 
is about 456 mm. Mean annual and mean monthly 
minimum/maximum temperatures are reported as 
9.7°C, 2.4°C and 17°C, respectively.  

1.2 Soil sampling  

Based on land use and soil erosion types, the 
study catchment was divided into four land units 
(categories) for sampling; rangeland/surface 
erosion, rangeland/subsurface erosion, cultivated 
(irrigated) land /surface erosion and dry-farming 
(rain-fed) land/surface erosion. A total of 56 
representative soil samples were collected from 
different locations within the catchment in uniform 
topographic units characteristic of the four groups, 
thereby yielding 15, 15, 15 and 11 samples from 
rangeland/surface erosion, rangeland/subsurface 
erosion, cultivated land/ surface erosion and dry-
farming land/surface erosion, respectively (Figure 
1). All samples were collected manually with a 
trowel from the upper 5 cm of the soil layer since 
visual evidence suggested this was representative 
of the active depth of surface soil erosion. In order 
to ensure that the surface erosion samples were 
representative of the potential heterogeneity of the 
individual land use in question, composite samples, 
comprising five sub-samples, were collected over 
an area of approximately 100 m2. This composite 
sampling technique, by collecting replicate 
independent equal mass sub-samples (~100 g), was 
used to address the micro-spatial variability of the 
soil properties. To collect sub-samples from 
transects of the characteristic surface erosion, a 
zigzag strategy was used. In this manner, 
individual sub-samples were typically collected 
using a zigzag (a ‘W’ shaped pattern) sampling 
pattern at the individual locations that were 
distributed across the portion of the study area 
represented by this land use category (Figure 1). 
The subsurface erosion samples were collected by 
scraping soil from the full vertical extent of actively 
eroding bank faces. At each bank sampling site, five 
equal mass sub-samples were collected within 20 
m reaches and composited. 

Following collection, the soil samples were 
gently air-dried and dry sieved (<2 mm). For 
enzyme activity analysis, however, a portion of 
each soil sample was temporarily conserved in a 
sealed plastic bag and stored in a cool box on ice 
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for transportation to the laboratory. This kept the 
sub-samples for enzyme activity analysis field 
moist and cool until analysis. 

 The U.S. Department of the Interior Bureau of 
Land Management (BLM) soil surface factors (SSF) 
reconnaissance procedure (Sadeghi 2005), based 
on six visible soil surface features, was selected as 
to provide soil functions for the qualitative 
assessment of the SQI. Here, values for the six soil 
surface indices (soil movement, surface litter, 
surface rock, pedestalling, rills and flow pattern) 
were estimated. In essence, each feature is assigned 
a numerical value representing the degree of soil 
degradation as a result of erosion processes. The 
first five factors are scored from zero to fourteen, 
whereas the last one is scored up to fifteen.  Scores 
assigned to each individual factor were summed 
(sum of SSF) to represent soil erosion intensity 
from ‘very little’ to ‘very active’ erosion. 

1.3 Soil sample laboratory analyses 

A representative range of soil physical, 
chemical and biological properties were analysed. 
These included particle size distribution (clay, silt 
and sand), soil organic carbon (SOC), total 
nitrogen (TN), electrical conductivity (EC), pH, 

available water capacity (AWC), water holding 
capacity (WHC), bulk density (BD), enzyme 
activities (urease, alkaline phosphatase, β-
glucosidase and dehydrogenase), calcium (Ca), 
potassium (K), magnesium (Mg), sodium (Na) and 
phosphorous (P) were measured on the soil 
samples (<2 mm fraction) as potential indicators 
for inclusion in the final SQI. Following dispersion 
with sodium hexametaphosphate, particle size 
distribution (clay, silt and sand) was measured 
using the hydrometer method (Kroetsch and Wang 
2008). SOC content was measured by the Walkley-
Black method (Skjemstad and Baldock 2008) and 
TN was determined by the Kjeldahl method 
(Rutherford et al. 2008). Acid dissolution of 
carbonate and subsequent titration of CO2 with 
NaOH was used as a basis for calcium carbonate 
determination (Nelson 1982). A pH and EC meter 
(Mettler Toledo) was used to measure electrical 
conductivity (EC) and pH in a 1:1 soil:water 
suspension. Soil available water capacity (AWC) 
was measured based on difference between the 
volumetric water content at field capacity (FC) and 
permanent wilting point (PWP).  The water 
contents at a potential of 10 kPa and 1500 kPa 
represent the FC and PWP, respectively. The soil 
water content at FC and PWP was determined 

 
Figure 1 Study area location map and soil sampling sites.  
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using a pressure plate extractor (Cassel and Nielsen 
1986; Townend and Reeve 2001). Soil water 
holding capacity (WHC) was determined as water 
contents at field capacity. Soil bulk density (BD) 
was assayed using Forster (1995). One gram of the 
sieved oven-dried soil samples was analyzed for 
calcium (Ca), potassium (K), magnesium (Mg), 
sodium (Na) and phosphorous (P) following aqua 
regia (HCl–HNO3; 3:1; for 2 h) digestion in a Velp 
Thermo-reactor using atomic absorption 
spectroscopy (AAS; Varian SpectrAA-20 Plus) and 
a standard solution (Merck KGaA, Frankfurter, 
Germany). The accuracy of the AAS analysis 
was >94.5%, while the corresponding precision 
was >95% for all elements. 

The four enzyme activities (urease, alkaline 
phosphatase, β-glucosidase and dehydrogenase) 
were measured by absorption on a 
spectrophotometer (DR6000™ UV VIS 
Spectrophotometer). Using urea as a substrate, 
urease activity (UA) was assessed on the basis of 
the ammonium released after the incubation of soil 
samples with a borate buffer for 2 h at 37°C (Alef 
and Nannipieri 1995). Alkaline phosphatase (APA) 
and β-glucosidase (βGA) activities were 
respectively determined using p-
nitrophenylphosphate and p-nitrophenyl-β-D-
glucopyranoside as substrates and the release and 
detection of p-nitrophenol (Tabatabai 1994). 
Dehydrogenase activity (DHA) was assessed by 
incubating the soil with 2,3,5-triphenyltetrazolium 
chloride for 24 h at 37°C and measuring the 
triphenyl formazan  (Tabatabai 1994). All enzyme 
activities were reported on an oven dry-weight 
basis, determined by drying the soils for 24 h at 
105°C.  

1.4 Statistical tests 

Previous studies to identify new SQIs use 
either total datasets (TDS) or minimum datasets 
(MDS). The latter can be selected by expert opinion 
(Andrews et al. 2004; Lima et al. 2013) or 
statistical analyses (Andrews et al. 2004; Rojas et 
al. 2016). The use of MDS recognises that no single 
property can provide a comprehensive 
measurement of soil quality (Garrigues et al. 2012; 
Masto et al. 2008; Wienhold et al. 2004; Yu et al. 
2018b). Many studies use normalisation of 
indicator scores on the basis of linear or non-linear 

scoring functions (D’Hose et al. 2014; Sharma et al. 
2005) and integrate the normalised indicators into 
SQIs using additive or multiplicative techniques 
(D’Hose et al. 2014; De Laurentiis et al. 2019; Lima 
et al. 2013; Masto et al. 2008; Sharma et al. 2005). 
The statistical tests for confirming MDS include, 
amongst others, PCA and varimax rotation 
followed by simple linear regression (Juhos et al. 
2016), cluster analysis (Dilly et al. 2018) and 
correlation, PCA and discriminant function 
analysis (DFA) (Juhos et al. 2019). For SQI 
evaluation, some previous work has used either 
ANOVA or MANOVA to test associations between 
SQIs and soil management groups (de Andrade 
Barbosa et al. 2019; de Paul Obade and Lal 2016; 
Kiani et al. 2017; Molaeinasab et al. 2018; 
Nakajima et al. 2015). 

The statistical procedure for identifying the 
new SQI is summarised in Figure 2. The 
Kolmogorov-Smirnov statistic was used to test the 
goodness-of-fit (GOF) of the laboratory data to a 
normal distribution. The Leven test was performed 
to assess the homogeneity of variance. One-way 
analysis of variance (ANOVA; F-test) was used for 
the different soil properties individually to examine 
for significant influences of the land use and soil 
erosion categories. Correlation analysis was also 
performed between the soil properties to determine 
if identification of underlying principal 
components (PC) patterns would be possible. 

 To identify a SQI from the list of indicators, 
first principal component & classification analysis 
(PCCA) was used to group the soil properties into 
statistical principal components (PCs) based on 
their correlation structure. PCCA was performed 
on standardized variables to eliminate the effect of 
different measurement units on the determination 
of factor loading. PCCA can be used as a 
classification technique in addition to reducing the 
dimensions of the original variable space so that 
the relations among variables and cases can be 
highlighted. PCCA therefore offers users with 
advantages over the more widely used factor 
analysis (FA) or PCA, by providing a basis for 
classification as well as variable reduction for the 
MDS. To do this, the variables and the cases are 
plotted in the space generated by the factor axes. 
This technique works in very much the same way 
as principal component analysis (PCA) but with 
one crucial difference; the individuals must be 
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assigned to groups before the analysis. The test 
then calculates the variable weightings that will 
maximize the differences between groups rather 
than individuals as is the case with PCA. The PCCA 
produces weightings that will allow you to identify 
those variables that are the most different between 
groups (land use and soil erosion categories in this 
study) and discard those that are the same. 

PCs with eigenvalues >1 were retained and 
subjected to a varimax rotation to minimize the 
number of soil properties (indicators) that have 
high loadings on each PC. Under a particular PC, 
each property is given a weight or factor loading 
that represents the contribution of that property to 
the composition of the PC. Only the highly-
weighted properties were retained from each PC. 
Highly weighted property loadings were defined as 

having absolute values within 10% of the highest 
property loading. In addition, communalities of 
every single soil property for each PC model were 
calculated to estimate the portion of variance in 
each of the soil properties explained by the rotated 
PCs. Less importance should be ascribed to soil 
properties with low communalities when 
interpreting variable associations represented by 
each PC.  

In the next step, PCs scores for each sample 
point were calculated and analyzed using a ANOVA 
Tukey HSD post-hoc tests (p<0.05) using the four 
land use/soil erosion categories as the independent 
variables, to determine which PCs varied 
significantly with those land use/soil erosion 
categories. General discriminant analysis (GDA) 
was then used to select the statistical PCs that were 
most discriminating between the four land use/soil 
erosion categories. Following selection of the most 
discriminating PCs, soil properties that comprised 
these PCs were also subjected to GDA to select soil 
quality indicators for inclusion in the final SQI.  

Correlation analysis was performed between 
the canonical score values of the selected 
discriminant functions resulting from GDA and the 
summed score values of the six soil surface factors 
derived from the BLM method to evaluate the new 
SQI. Additionally, the most significant soil 
properties included in the new SQI data set 
resulting from GDA were used as independent 
variables to fit a linear stepwise multiple regression 
with soil surface indices (comprising the six BLM 
method soil surface factors as well as the summed 
values of the SSF) as dependent variables to assess 
how well the new SQI represented the soil 
sampling sites in the study area. STATISTICA V. 
8.0 (StatSoft 2008) was used for all statistical tests.  

2    Results and Discussion 

2.1 Identification of the new SQI 

Assessment of changes in soil quality status is 
essential for evaluating the impacts of different 
land management practices, but this requires 
selection of key indicators for inclusion in a SQI 
(Arshad and Martin 2002). The basic statistics for 
the soil properties (indicators) within each 
different land use/soil erosion category are 

 
Figure 2 Flow diagram summarising the key steps in 
this study for soil quality index (SQI) creation. 
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summarized in Table 1. The results of one-way 
ANOVA with the soil properties as dependent 
variables and the land use/soil erosion categories 
as independent variables are also presented in 
Table 1. The ANOVA results confirmed that SOC, 
soil TN and the soil enzyme activities showed 
significant contrasts between the land use/soil 
erosion categories at the 95% level of statistical 
confidence (Table 1). These results also 
demonstrated that the β-Glucosidase and urease 
soil enzyme activities showed higher significant 
contrasts between the land use/soil erosion 
categories (Table 1) and thereby appear to be 
promising as diagnostic biological properties 
(indicators) for soil quality assessment in the study 
area.  

If there were no correlation between soil 
attributes, identification of underlying factor 
patterns would not be possible (Brejda et al. 2000). 
However, in the case of the samples retrieved from 
the study area, the 2-tailed correlation matrix for 
the soil properties showed several correlations 
among the variables with significant relationships 
(p < 0.05) being identified among 56 of 171 
possible soil property pairs (Table 2). In general 
soil texture attributes correlated with soil organic 

attributes (including SOC, TN and enzyme 
activities). In addition, SOC and TN were positively 
correlated with soil enzyme activities. In contrast, 
percentage sand was negatively correlated with silt, 
clay, AWC, WHC, SOC, TN, and UA. The strongest 
negative correlations were between percentage 
sand and percentage silt (r=-0.92) or percentage 
clay (r=-0.90). The strongest positive correlations 
were between percentage AWC and WHC (r=-0.92), 
SOC and TN (r=-0.94), K and Mg (r=-0.98). The 
results revealed strong positive correlations 
between enzyme activity pairs (r>0.78). BD and Ca 
were not correlated with other soil properties 
(Table 2). The large amount of correlation present 
among the soil properties indicated that they can 
be grouped into homogenous sets of variables 
based on their correlation patterns and thereby 
used as indicators of soil quality in conjunction 
with the land use and soil erosion categories 
identified in the study area. 

The results of PCCA showed that the first five 
principal components (PCs) with eigenvalues >1 
(Figure 3a) accounted for >77% of the variability 
among the soil properties for the four land use/ soil 
erosion categories (Table 3). Considering the 
communality estimates for individual soil 

Table 1 Means and standard deviations (S.D.) of the soil properties and results of the one-way ANOVA comparing 
the soil properties within the different land use/soil erosion categories. (S= surface erosion; SS= subsurface erosion) 

Soil properties 
Rangeland/S Rangeland/SS Cultivated 

land/S 
Dry-farming 
land/S 

ANOVA 
statistics 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Multiple 
R2 

F 

Sand (g kg-1) 545.3 196.0 503.6 212.1 535.3 190.9 568.0 199.3 0.11 0.2
Silt (g kg-1) 244.6 113.2 246.1 125.4 221.4 113.7 209.0 103.0 0.14 0.4
Clay (g kg-1) 210.1 104.7 250.2 101.4 243.3 105.9 223.0 103.3 0.15 0.4
Available Water Capacity (%) 9.4 1.6 9.1 2.9 9.2 1.7 8.6 2.0 0.14 0.4
Water holding capacity (%) 21.8 4.6 19.5 6.3 19.9 4.5 18.8 5.3 0.22 0.9
Bulk density (Mg m-3) 1.2 0.1 1.2 0.2 1.3 0.3 1.2 0.1 0.20 0.8
EC (dS m-1) 0.5 0.1 0.3 0.1 0.3 0.1 0.6 0.9 0.20 0.7
pH 7.3 0.1 7.2 0.1 7.2 0.2 7.1 0.3 0.21 0.8
Soil Organic C (g kg-1) 17.9 9.4 10.0 5.2 9.5 4.2 9.6 5.5 0.50 5.9* 

Total N (g kg-1) 3.2 2.2 1.8 0.9 1.7 0.7 1.7 1.0 0.46 4.6*
Ca (g kg-1) 92.9 43.2 73.6 42.1 68.9 39.2 69.8 42.2 0.24 1.1
K (g kg-1) 31.7 12.7 29.8 5.7 33.0 14.3 28.3 5.1 0.18 0.6
Mg (g kg-1) 31.9 12.6 29.2 5.3 32.4 13.3 28.8 5.7 0.16 0.5
Na (g kg-1) 1.1 1.2 1.1 1.1 1.7 2.5 0.9 1.3 0.18 0.6
P (g kg-1) 0.4 0.1 0.5 0.1 0.4 0.1 0.5 0.1 0.16 0.4
Urease 
(μg NH4+–N g-1 h-1 dry soil) 98.5 41.9 27.7 16.5 14.5 7.4 56.8 31.4 0.77 25.0*

Alkaline phosphatase 
 (μg PNP g-1 h-1 dry soil) 686.9 369.1 243.9 131.7 135.3 62.1 363.5 151.9 0.71 17.7*

β-Glucosidase 
(μg PNP g-1 h-1 dry soil) 

1005.8 480.3 253.3 232.9 104.6 43.7 410.7 219.5 0.78 26.6*

Dehydrogenase 
(μg TPF g-1 h-1 dry soil) 18.5 9.3 5.3 3.6 2.7 0.8 7.8 3.7 0.76 23.8*
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attributes, these five PCs explained >75% of 
variance for 15 soil attributes with the exception 
being for AWC, BD, Na and P. Thus, those four 
properties were the least important attributes due 
to their lowest communality estimates (Table 3). 
The PC corresponding to the largest eigenvalue (6.1) 
accounted for approximately 32% of the total 
variance. The second PC corresponding to the 
second eigenvalue (3.2) accounted for 
approximately 16% of the total variance. The third 
PC corresponding to the third eigenvalue (2.4) 
accounted for approximately 13% of the total 
variance. The forth PC corresponding to the forth 
eigenvalue (1.9) accounted for 10% of the total 
variance. The fifth PC corresponding to the fifth 
eigenvalue (1.1) accounted for approximately 5% of 
the total variance (Table 3).  

The highly-weighted soil properties under PC1 
with absolute values within 10% of the highest soil 
property (0.97 for βGA) loading (the loading of 
selected soil properties should be greater than 0.87) 
were UA, APA and DA. The first PC was termed the 
soil biochemical component. Under PC2, the 
highly-weighted soil properties with absolute 
values within 10% of the highest soil property (0.95 
for sand) loading (the loading of selected soil 
properties should be greater than 0.85) were 
represented by clay. The second PC was therefore 
termed the soil texture component. The highly-
weighted soil properties under PC3 with absolute 

values within 10% of the highest soil property (0.98 
for K) loading (the loading of selected soil 
properties should be greater than 0.88) were 
represented by Mg. The third PC was thereby 
termed the soil geochemical component. Under 
PC4, the highly-weighted soil properties with 
absolute values within 10% of the highest soil 
property (0.92 for Ca) loading (the loading of 
selected soil properties should be greater than 0.83) 
were represented by pH and accordingly, the fourth 
PC was termed the soil acidity component. Under 
PC5, no highly-weighted soil properties with 
absolute values within 10% of the highest soil 
property (0.93 for EC) loading (the loading of 
selected soil properties should be greater than 0.84) 
were identified (Table 3). Accordingly, the fifth PC 
was termed the soil salinity component. 

The plot of factor coordinates of the soil 
properties for the first two PCs showed that the 
selected soil properties were represented by the 
current coordinate system (the range of correlation 
coefficients; -1 to +1) (Figure 3b). Because the 
PCCA was based on correlations, the closer a soil 
property in this plot is to the unit circle; the better 
is its representation by the current coordinate 
system. These results illustrated that PCCA can be 
used as a tool for identifying important dimensions 
in a set of soil properties and to identify those land 
use and soil erosion categories with similar or 
dissimilar characteristics.  

Table 2 Correlation coefficients among the measured soil properties (Soil-p)

Soil-p Sand Silt Clay AWC WHC BD EC pH SOC TN Ca K Mg Na P UA APA βGA
Silt -0.92* 1.00 
Clay -0.90* 0.66* 1.00 
AWC -0.64* 0.55* 0.62* 1.00 
WHC -0.66* 0.57* 0.64* 0.90* 1.00 
BD 0.02 -0.07 0.05 0.04 -0.05 1.00 
EC 0.06 -0.04 -0.08 -0.06 -0.03 -0.02 1.00
pH 0.03 -0.08 0.02 -0.13 -0.10 -0.01 -0.06 1.00
SOC -0.30* 0.34* 0.20 0.34* 0.59* -0.09 0.02 -0.18 1.00
TN -0.29* 0.34* 0.18 0.36* 0.59* -0.11 -0.05 -0.27* 0.94* 1.00
Ca -0.03 -0.07 0.14 0.00 -0.05 -0.03 0.08 0.70* -0.14 -0.25 1.00
K 0.00 0.07 -0.09 -0.11 -0.07 -0.10 0.06 -0.09 -0.14 -0.17 -0.08 1.00    
Mg 0.01 0.09 -0.12 -0.12 -0.09 -0.12 0.05 -0.08 -0.11 -0.16 -0.10 0.98*1.00    
Na 0.32* -0.24 -0.35* -0.33* -0.33* -0.04 0.30*-0.08 -0.23 -0.26 -0.04 0.64* 0.57* 1.00    
P 0.30* -0.24 -0.31* -0.31* -0.35* 0.06 -0.08 -0.13 -0.31*-0.17 -0.19 0.06 -0.04 0.39* 1.00   
UA -0.31* 0.35* 0.21 0.32* 0.46* -0.14 -0.01 -0.14 0.60*0.63* 0.05 0.10 0.13 -0.21 -0.08 1.00 
APA -0.10 0.16 0.01 0.22 0.32* -0.24 0.03 -0.10 0.60*0.60*0.18 0.01 0.04 -0.19 -0.13 0.79* 1.00
βGA -0.10 0.18 0.00 0.16 0.31* -0.14 0.00 -0.08 0.65* 0.67* 0.13 0.04 0.07 -0.20 -0.14 0.85* 0.89*1.00
DA -0.16 0.22 0.07 0.20 0.35* -0.13 0.01 -0.05 0.68*0.65* 0.18 0.06 0.08 -0.17 -0.18 0.87* 0.88*0.96*

Note: AWC, available water capacity; WHC, water holding capacity; BD, bulk density; EC, electrical conductivity; 
SOC, soil organic C; TN, total N; UA, urease activity; APA, alkaline phosphatase activity; βGA, β-glucosidase; DA, 
dehydrogenase activity.  * Correlation is significant at the 0.05 level (2-tailed). 
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PCs scores were calculated using the resulting 
component score coefficient matrix and tested for 
significant differences between the land use/ soil 
erosion categories using one-way ANOVA (Table 3). 
PC scores for only the soil biochemical component 
and soil texture component varied significantly 
with the land use/ soil erosion categories (Table 3). 
Average soil biochemical component scores were 
negative for cultivated land/surface erosion but 
positive for rangeland/surface erosion, rangeland/ 
subsurface erosion, and dry-farming land/surface 
erosion (Table 3). Average soil texture component 
scores were negative for cultivated land/surface 
erosion and rangeland/surface erosion but the 
magnitude of the scores for rangeland/surface 

erosion was not as large as that for cultivated 
land/surface erosion (Table 3). This pattern is 
consistent with the effects of land use and erosion 
on soil enzyme activities and soil particle size as 
sensitive attributes. 

GDA was performed with the four land use/ 
soil erosion categories as the grouping variable and 
the five PCs as independent variables to remove 
redundant components. The standardized 
canonical discriminant function coefficients 
present the weightings given to each of the PCs to 
maximize the differences between the groups. The 
results of GDA of the five PCs for soil properties 
(indicators) (Y1) showed that the discriminant 
coefficients (Eq.1) explained >97% of the variance 
(p < 0.0001):  

Y1 = –0.95PC2 – 0.93PC1 + 0.44PC4 

– 0.41PC3 – 0.05PC5                            (1) 

Based upon the value of the discriminant 
coefficient in Eq.1, soil texture (PC2) and soil 
biochemical (PC1) had approximately equal 
coefficients and were dominant. The discriminant 
coefficients for the soil texture and soil biochemical 
components were about twofold larger than the 
corresponding coefficients for soil geochemical 
(PC3) and soil acidity (PC4) and were about 
twentyfold larger than the coefficient for soil 
salinity (PC5) (Eq.1). Thus, the soil texture and soil 
biochemical components were most powerful in 
discriminating between the four land use/ erosion 
categories and were taken as the most useful 
indicators for assessing the SQI. These results also 
indicated that soil acidity, soil geochemistry and 
soil salinity were not useful indicators for 
monitoring changes in soil quality under the 
different land use and erosion categories in the 
study area. 

Measured soil properties comprising the soil 
biochemical (PC1) and soil texture (PC2) (urease, 
alkaline phosphatase, β-glucosidase, 
dehydrogenase, sand and clay) components were 
subjected to GDA to determine the soil quality 
equation. The standardized canonical discriminant 
function coefficients of the soil properties 
comprising PC1 and PC2 indicated that urease 
followed by % clay, β-glucosidase, % sand, alkaline 
phosphatase and dehydrogenase were the most 
powerful soil attributes in discriminating among 
the four land use/ erosion categories (Eq.2).  

Figure 3 (a) Scree plot output from the principal 
component & classification analysis (PCCA), (b) 
Projection of the soil properties on the PC-plane using 
PCCA. 
 

(a)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)
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SQI = 0.91(urease) – 0.42(clay) + 0.30(β-
glucosidase) + 0.21(sand) + 0.03(alkaline 
phosphatase) – 0.02 (dehydrogenase)          (2) 

For Eq.2, the most dominant and sensitive 
measured soil properties were urease and % clay 
(Eq.2). The urease was not significantly correlated 
to clay (r=0.21; Table 2). Therefore, both urease 
and clay appear to offer the greatest potential for 
monitoring and assessing changes in soil quality 
with changes in land use and erosion in the study 
area. 

2.2 SQI evaluation 

 To assess soil quality, the canonical scores of 
discriminant functions were calculated with the 
four land use/erosion categories as the grouping 
variable and the six retained soil properties 

comprising PC1 and PC2 as independent variables.  
The Chi-square test results for the successive 
functions showed that only discriminant function 1 
(DF1) (Eigen-value=2.4, canonical R=0.83, Wilk’s 
Lambda=0.25, Chi-square=69, p<0.0001) 
accounted for 75% of the total variance represented 
by differences between the groups. Thus, the 
canonical scores of this function (DF1) were used to 
evaluate soil quality by investigating the correlation 
between DF1 and the expert opinion soil surface 
indices (soil movement, surface litter, pedestalling, 
rills and flow pattern) derived using the BLM 
method. 

DF1 was shown to have a strong significantly 
positive correlation (r>0.84; p<0.01) with urease, 
alkaline phosphatase, β-glucosidase and 
dehydrogenase but no significant correlation with % 
clay and sand (r<0.16; p>0.05).  

Table 3 Principle components (PCs) loadings from the PCCA and ANOVA results for the PCs. 

Variables PC1 PC2 PC3 PC4 PC5 Communality estimates
Sand  -0.06 -0.95 0.02 0.02 0.08 0.91 
Silt 0.14 0.84 -0.12 0.07 -0.09 0.75 
Clay -0.05 0.89 0.08 -0.11 -0.07 0.82 
AWC 0.16 0.80 0.15 0.09 0.05 0.70 
WHC 0.34 0.80 0.13 0.13 0.10 0.80 
BD -0.23 0.01 0.17 0.08 0.01 0.09 
EC -0.01 -0.06 -0.11 -0.01 0.93 0.88 
pH -0.09 -0.03 0.06 -0.86 -0.06 0.76 
SOC 0.74 0.31 0.21 0.26 0.17 0.79 
TN 0.75 0.28 0.24 0.37 0.06 0.84 
Ca 0.10 0.01 0.04 -0.92 0.10 0.87 
K 0.03 0.01 -0.98 0.04 -0.02 0.95 
Mg 0.06 0.01 -0.96 0.03 -0.02 0.92 
Na -0.17 -0.34 -0.71 0.12 0.27 0.74 
P -0.14 -0.43 -0.12 0.28 -0.31 0.40 
UA 0.87 0.25 -0.09 0.02 -0.08 0.83 
APA 0.92 0.04 0.00 -0.08 0.02 0.86 
βGA 0.97 0.03 -0.01 -0.05 -0.02 0.94 
DA 0.96 0.09 -0.04 -0.09 0.01 0.94 
Eigenvalue 6.1 3.2 2.4 1.9 1.1
% Total variance 32.3 16.8 12.9 10.0 5.8  
Cumulative % variance 32.3 49.1 62.0 72.0 77.8  
ANOVA results 
F 6.57 7.36 1.12 1.05 0.15  
p 0.0008 0.0003 0.35 0.38 0.93  
Mean scores of the four land use/soil erosion categories
Rangeland/surface erosion 0.16 b -0.05 ab -0.17 a -0.19 a -0.10 a  
Rangeland/subsurface erosion 0.49 b 0.52 b 0.37 a -0.17 a -0.01 a  
Cultivated land/surface erosion -0.83 a* -0.81 a -0.24 a 0.38 a -0.02 a  
Dry-farming land/surface erosion 0.25 b 0.46 b 0.05 a -0.03 a 0.18 a  

Note: AWC, available water capacity; WHC, water holding capacity; BD, bulk density; EC, electrical conductivity; 
SOC, soil organic C; TN, total N; UA, urease activity; APA, alkaline phosphatase activity; βGA, β-glucosidase; DA, 
dehydrogenase activity.  * Different small letters indicate that the scores are significantly different at the 0.05 level 
based on the Tukey unequal N HSD Post Hoc test.
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Correlation analysis of DF1 with the six soil 
surface indices derived from the  BLM method 
showed that DF1 was negatively correlated to soil 
movement (r=-0.49; p<0.05), surface litter  
(r=-0.43; p<0.05), surface rock (r=-0.39; p<0.05), 
surface rills (r=-0.44; p<0.05), flow pattern  
(r=-0.51; p<0.05) and the sum of SSF score values 
(r=-0.62; p<0.01), while the pedestalling (r=-0.24; 
p>0.05) was not significantly correlated to DF1.  

The results of multiple regression models for 
the soil surface indices (comprising the six BLM 
method soil surface factors as well as the summed 
values of the SSF) as dependent variables and, the 
most dominant and sensitive soil properties 
included in the new SQI data set as independent 
variables, showed that: soil movement (R2=0.52,  
F=5.9, p = 0.005), surface rills (R2=0.56, F=6.0, 
p=0.005), and the sum of SSF (R2=0.67, F=8.9, 
p=0.001), included urease activity and clay 
variables in regression models. While the 
pedestalling (R2=0.42, F=3.0, p=0.04) only 
included clay within the SQI dataset. 

 The above results of correlations and multiple 
regression models demonstrated that the SQI is 
sensitive to soil surface factor changes resulting 
from soil erosion in different land use categories in 
the study area. Therefore, enzyme activities and 
soil texture can be used as optimum components of 
the new SQI for assessing the degree of soil 
degradation resulting from erosive processes.  

Since soil physical, chemical and biological 
properties or processes vary spatio-temporally, the 
corresponding indicators included in SQIs 
inevitably varies among environmental settings 
and agricultural systems (Bai et al. 2018; Doran 
2002; Spiegel et al. 2015). SQIs therefore need to 
be designed and interpreted as setting-specific 
(Biswas et al. 2017; Juhos et al. 2019; Raiesi and 
Kabiri 2016). But even in a given setting or 
agricultural system, it is important to characterise 
the heterogeneity of the relationships between 
physical, chemical and biological parameters (Dilly 
et al. 2018). Abiotic properties such as bulk density 
or soil texture are typically less variable than 
biological properties (Dilly et al. 2003). Recent 
advances in data collection, including remote 
sensing and analytical techniques such as 
molecular methods permit enormous opportunities 
to develop and improve SQIs and to assess their 
relevance over greater spatial areas (Muñoz-Rojas 

2018). It is also important to test SQIs using as 
many categories of soil degradation as possible to 
assess the degree of sensitivity. Testing SQIs versus 
a limited set of a priori degrees of soil degradation 
runs the risk of failing to confirm index sensitivity. 
For comparative purposes, it is also useful to 
examine SQI scores for reference sites, although 
the identification of true reference sites with no 
degradation is becoming challenging in many 
settings. As the development and uptake of new 
SQIs continues to expand, however, data 
standardization across scales will be important, 
and here, current initiatives aiming towards global 
harmonisation of soil data such as the Global Soil 
Partnership (Montanarella 2015) will be important. 
Since different erosion processes have the potential 
to remove soil and associated constituents 
including organic matter, micro-organisms and 
enzymes associated with soil horizons, it is 
important to sample different erosion depth 
categories in developing and testing SQIs.  

In accordance with the study reported herein, 
much work on SQIs continues to adopt a 
reductionist approach focused on the application of 
statistical tests to identify a MDS. Nevertheless, it 
remains important to consider the integrative basis 
of the constituent indicators in any SQI, since soil 
quality ultimately reflects complex interactions 
between physico-chemical processes and biological 
assemblages (Thoumazeau et al. 2019; Vogel et al. 
2018). On this basis, a combination of physico-
chemical and biological indicators is preferable and 
the new SQI reported in this study satisfies that 
generic requirement. Any index must inevitably 
take some degree of reductionist approach to 
ensure that data requirements are pragmatic and 
affordable; otherwise, it is rendered useless in 
terms of stakeholder uptake.   

Farmers frequently have the best knowledge of 
which soil properties are most relevant to their 
specific circumstances and, on this basis, it is 
beneficial to accommodate the experience and 
knowledge of farmers in testing and refining SQIs 
with a participatory approach (Bai et al. 2018; 
Lima et al. 2013; Palm et al. 2014). Farmers 
typically rely on a combination of observations and 
chemical analyses to assess the state of their soils 
(Wood and Litterick 2017) and the testing of SQIs 
using easily assembled soil observational scores 
can support their credibility. For SQIs to be most 
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useful in supporting multi-objective decision-
making, however, they need to incorporate 
properties or components recognised by multiple 
stakeholders as a means of fostering dialogue and 
consensus-based decisions which are deemed 
credible (Drobnik et al. 2018; Jónsson et al. 2016; 
Sébastien and Bauler 2013; Turnhout et al. 2007; 
Yu et al. 2018b). Uptake of SQIs is often hindered 
by their inherent complexity and the costs of data 
collection and interpretation (Herrick 2000). 
Future research is therefore needed to test the new 
SQI reported here with both farmers and 
additional stakeholders. Ultimately, the uptake of 
SQIs is strongly influenced by any initial 
investment costs, effort required for sample 
collection and ease of data interpretation (Doran 
and Zeiss 2000; Krüger et al. 2018; Muñoz-Rojas 
2018). Some of the variables included in the work 
reported herein might preclude wide uptake of the 
new SQI, but farmer testing is required to assess 
this.  

3    Conclusions 

Soil quality, as a generic concept, has attained 
increasing importance to help address growing 
concerns about soil sustainability and the need to 
monitor the impacts of environmental and 
management change. In response, many previous 
studies have undertaken work to identify SQIs to 

facilitate both scientific and land management 
assessments for policy evaluation.  Development of 
SQIs acknowledges the multi-dimensionality of the 
soil system.  It remains critical for SQIs to be 
sensitive to land management change and either 
predictive or anticipatory of the impacts of policy 
change and for the sensitivity to be confirmed 
using bespoke studies in specific geoclimatic 
settings. Development, validation and sustained 
application of SQIs will be vitally important in 
relation to achieving the UN SDGs, since they 
provide one means of monitoring progress.  
Further research beyond the study reported in this 
paper is needed to investigate the sensitivity of the 
new SQI identified herein for the assessment of soil 
quality in other regions of Iran. The data 
processing methodology applied in this study is 
more generic and could be tested by other studies 
aiming to identify robust SQIs. 
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