
Open Research Online
The Open University’s repository of research publications
and other research outputs

Opening up Magpie via semantic services
Conference or Workshop Item
How to cite:

Dzbor, Martin; Motta, Enrico and Domingue, John (2004). Opening up Magpie via semantic services. In:
Proceedings of the 3rd International Semantic Web Conference (ISWC 2004), Hiroshima, Japan.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/policies.html

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 635–649, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Opening Up Magpie via Semantic Services

Martin Dzbor, Enrico Motta, and John Domingue

Knowledge Media Institute, The Open University, Milton Keynes, UK
{M.Dzbor, E.Motta, J.B.Domingue}@open.ac.uk

Abstract. Magpie is a suite of tools supporting a ‘zero-cost’ approach to se-
mantic web browsing: it avoids the need for manual annotation by automati-
cally associating an ontology-based semantic layer to web resources. An
important aspect of Magpie, which differentiates it from superficially similar
hypermedia systems, is that the association between items on a web page and
semantic concepts is not merely a mechanism for dynamic linking, but it is the
enabling condition for locating services and making them available to a user.
These services can be manually activated by a user (pull services), or opportu-
nistically triggered when the appropriate web entities are encountered during a
browsing session (push services). In this paper we analyze Magpie from the
perspective of building semantic web applications and we note that earlier im-
plementations did not fulfill the criterion of “open as to services”, which is a
key aspect of the emerging semantic web. For this reason, in the past twelve
months we have carried out a radical redesign of Magpie, resulting in a novel
architecture, which is open both with respect to ontologies and semantic web
services. This new architecture goes beyond the idea of merely providing sup-
port for semantic web browsing and can be seen as a software framework for
designing and implementing semantic web applications.

1 Introduction

Magpie [5-7] is a suite of tools supporting a ‘zero-cost’ approach to semantic web
browsing. It avoids the need for manual annotation by automatically associating an
ontology-based semantic layer to web resources. There are many ways to characterize
Magpie. One view, emphasized in earlier papers, is to consider Magpie as a tool sup-
porting the interpretation of web pages. Specifically, one can see the automatic rec-
ognition of entities in web pages and the linking of these entities to semantic concepts
as a way to bring an interpretative context to bear, which can help users in making
sense of the information presented in a web page. For instance, we are using Magpie
in a learning context to help students of a course in climate science in understanding
the vast mass of information about climate change that can be found on the web. In
such a context, using Magpie can be seen as adopting the viewpoint of an expert in
the field, and use this as an aid for navigating the web.

Another way to look at Magpie is as a semantic web browser. If we take this view,
then Magpie can be seen as providing an efficient way to integrate semantic and
‘standard’ (i.e., non-semantic) web browsing, through the automatic association of
semantics to web pages and the provision of user-interface support. This allows the

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Batang /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Batang /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

636 M. Dzbor, E. Motta, and J. Domingue

user to navigate the web using both semantic and hypertext links, and helps him/her to
invoke the services appropriate for a given class of ontological entities.

A third viewpoint we can use to characterize Magpie is as a framework for devel-
oping semantic web applications. According to this view, the Magpie suite of tools
can be seen as a ‘shell’ for building semantic web applications, which provides ge-
neric mechanisms for bringing together ontologies, web resources and (semantic) web
services. For instance, the climate science example mentioned above can be viewed as
a semantic web application, characterized by a number of ontology-based services,
which are made available to students opportunistically, when the ‘right web page’ is
encountered. The key feature of Magpie here is that it allows developers to focus on
the semantic functionalities, i.e., specifying and populating the ontology and defining
the services, with no need to identify, let alone annotate web resources.

Although the idea of Magpie as a framework for building semantic web applica-
tions has informed our research since the very beginning, the implementations de-
scribed in earlier papers fall somewhat short of realizing this vision. In particular, the
original Magpie architecture was open with regard to ontologies, but not with respect
to services, which had to be statically coupled with the ontology. In other words, they
had to be designed by a Magpie developer, much like in a ‘closed system’ scenario.
This approach goes against the vision of the web as an open architecture and more
importantly goes against the vision of the semantic web as an open web of interoper-
able applications [1], which can be opportunistically located and composed, either
manually (web services) or automatically (semantic web services).

For these reasons, in the past twelve months we have carried out a radical redesign
of Magpie, resulting in a novel architecture, which is open both with respect to on-
tologies and with respect to functionalities, the latter delivered through semantic web
services. This new architecture goes beyond the idea of providing support for seman-
tic web browsing and can be seen as software framework for designing and imple-
menting semantic web applications. Among other things, the new Magpie opens up
new communication modalities allowing bi-directional exchange of information
among services and users. This is crucial for going beyond the traditional ‘click&go’
modality of existing hypermedia systems, such as COHSE, and realizing the ‘seman-
tic web of applications’ vision described above.

In this paper we describe this new architecture for Magpie and we illustrate its
functionalities using the example of the Open University’s course on climate science,
which we mentioned earlier. The paper is structured as follows. In section 2 we illus-
trate the Magpie functionalities from an end user’s perspective. Section 3 describes
the new architecture in detail. In section 4 we elaborate the concept of “open publish-
ing”, further stressing its importance in the context of the semantic web. Finally, we
conclude the paper by reviewing related work in section 5, and by reiterating its key
contributions in section 6.

2 Magpie as a Resource Aggregator in Education

At The Open University, students enrolling in a level-one climatology course receive
printed and multimedia educational material. In addition, they are expected to use
web resources that are often complex scientific analyses and technical reports of cli-
mate scientists, as well as technical news stories related to the subject. Magpie facili-

Opening Up Magpie via Semantic Services 637

Fig. 1. A climate science related web page with Magpie plug-in highlighting concepts relevant
from the perspective of climatology course for a particular student. Menu shown in the center is
associated with the concept of ‘precipitation’.

tates a course-specific perspective on such texts. It enables students to relate the con-
tent of third-party documents to the relevant course concepts, materials, activities, and
knowledge they are expected to gain from studying the course.

Fig. 1 shows a student’s web browser with a web page describing stratospheric cir-
culation. This is a relevant but complex text, so the student interacts with it using the
Magpie plug-in. The web page1 is first annotated with several course-specific onto-
logical concepts by selecting some of the ontology-specific toolbar buttons. In this
course the student can annotate concepts in four scientific areas: Climatology, Mete-
orology, Physics, and Chemistry. Annotated and highlighted concepts become ‘hot-
spots’ to allow the user to request a menu with relevant functionalities for a relevant
item. In Fig. 1, the contextual right-click on the ‘precipitation’ reveals a menu of se-
mantic services. The choices depend on the ontological classification of a particular
concept in the selected ontology.

Our new, services-oriented framework supports composition of such semantic
menus from the services available for a particular ontology. These services can be in
principle implemented by different knowledge providers. For instance, service ‘Rele-
vant parts in S199’ is an internal index to the course material. On the contrary, the
‘Background reading’ service is provided by a different university that uses its own,
proprietary encyclopedia to provide contextually related reading on a particular con-
cept/topic. Yet another type of service is ‘Explain concept’. This is an aggregating

1 The original text is a property of NASA Goddard Institute for Space Studies, and the page

can be accessed at http://www.giss.nasa.gov/research/intro/koch_01/.

638 M. Dzbor, E. Motta, and J. Domingue

service using sophisticated ontology-based reasoning to combine chunks of textual
and visual knowledge explaining a particular concept. The combination is based on
having access to simpler services retrieving semantically annotated knowledge chunks
from several sources and appreciating their semantic ‘closeness’. Obviously, the de-
gree of sophistication of the services is independent of the Magpie architecture, which
considers all services as black boxes.

Thus, the ‘Explain concept’ service in Fig. 1 generates a textual explanation from
the course glossary, and attempts to attach a related image or scheme if this exists in
its repository of annotated materials (e.g. Fig. 2B). The answer as shown in Fig. 2A
does not explicitly exist in the course books, and indeed it is an interpretative view-
point of the selected ontology. It facilitates an expert’s view – as if a tutor was associ-
ating different materials together. Because the answer to a semantic query may be a
web resource in its own right, it can be further browsed or annotated semantically.
Here Magpie merges the independent mechanisms for recognizing semantic relevance
and browsing the resulting web resources.

Entirely different strategy is employed by the ‘Analysis of effects by IPCC’ service.
Unlike the services mentioned earlier, this focuses more on computing the answer
rather than linking to any relevant document. A sample response to invoking this se-
mantic service for concept ‘precipitation’ may look as shown in Fig. 2C.

The support Magpie provides for trigger services, is based on the ‘sub-
scribe&acquire’ rather than ‘click&go’ user-system interaction modality. Our dedi-
cated interfaces, called collectors, visualize the results of such services. For example,
the collector in Fig. 3 aggregates those concepts appearing in the web page that can be

Fig. 2. Results of the ‘Explain concept’ semantic query invoked for the ‘precipitation’ concept
by the semantic menu action depicted in Fig. 1. Window A shows a brief explanation drawing
on course glossary and a link to the associated image originating at a third-party site. The actual
image related to the concept based on its semantic proximity is in window B. Window C shows
a sample analysis relevant to the same concept by Intergovernmental Panel on Climate Change.

A

B

C

Opening Up Magpie via Semantic Services 639

modeled or visualized using the state-of-the-art climate model each student runs on
his/her computer. As shown in the figure, the list of collected items differs from the
highlighted concepts because the model is constrained to run a sub-set of possible
analyses. This alternative way of delivering information to the students might imple-
ment a tutor’s pedagogical goal of providing additional information to those students
who are interested in a deeper understanding of the topic. Magpie collectors also offer
a range of other functionalities, such as semantic bookmarking or browsing history
management. These are discussed in detail e.g. in [5].

This example presents Magpie as an application development framework for build-
ing semantic web applications. In this case, a course-specific ontology supports stu-
dents in making sense of information about climate science, independently of where
this information resides on the web. The application is built by selecting or construct-
ing the appropriate ontology and by defining the appropriate services. This example
highlights the desirability of an architecture open with respect to services, so that
more functionalities can be made available to students, using standard mechanisms
for interoperability on the web. This openness facilitates more focused approach to
using scarce resources, and enables better personalization. In the next section we look
at the backend infrastructure required to support openness with respect to services.

3 An Open Semantic Services Architecture

We now describe the architecture, which allows Magpie users to define, publish and
use their own semantic services (shown in Fig. 4). It uses an infrastructure we have
developed – IRS-II [13], which supports the publishing and invocation of semantic
services. IRS-II is based on the UPML framework [8], and therefore differentiates be-
tween tasks, problem solving methods (generic reasoners) and domain models. By dis-
tinguishing between tasks and problem solving methods we separate the activity of

Fig. 3. A simple trigger service aggregating all those concepts from a page, which could be fur-
ther investigated by the users. This ‘further investigation’ usually comprises a hands-on model-
ing exercise with their customized climate model (courtesy of the climateprediction.net project)
– see pointer . In addition to providing dedicated guidance, the trigger service also serves as a
semantic bookmarking tool remembering where particular concepts appeared (see pointer).

640 M. Dzbor, E. Motta, and J. Domingue

specifying and implementing semantic services (problem solving methods) from mak-
ing them available in a form that can be invoked in terms familiar to a user (tasks).

The Magpie architecture comprises a Service Provider and a Service Recipient.
These are briefly described in the next two sections.

Fig. 4. Schematic architecture of “open services” Magpie framework

3.1 Service Recipient Components

On the service recipient side the framework features: the Magpie Browser Extension
(of Internet Explorer), the Magpie Client-Side Service Dispatcher, and Trigger Ser-
vice Interfaces. The Magpie Browser Extension has already been described in detail
in earlier papers [5, 7], and therefore does not need to be discussed again. In a nutshell
it provides the basic Magpie functionality, by automatically matching items in a web
page to items in the selected ontology and by allowing users to bring up a menu of
services contextualized for ontological concepts.

The Magpie Client-Side Service Dispatcher acts as a dedicated service proxy for
the user. It manages the communication between the Browser Extension and the ser-
vice dispatcher embedded in the Magpie server. The Dispatcher delivers both user re-
quests and the responses from providers, using customized XML messages, e.g. to be
used by collectors. These are a form of Magpie Trigger Service Interfaces, which are
able to visualize the data pushed by the specific trigger services a user subscribes to.

Trigger services are an important innovation in the Magpie infrastructure. Unlike
contextual, menu-based services, trigger services are activated based on patterns and
relations among concepts recognized in the page and automatically asserted in a se-
mantic log. The subscription system allows the user to filter only ‘useful’ items to be
collected. Since a lot of spam is due to ‘pushing’ unsolicited content to the users, the
principle of trigger services is different. They are not designed for ‘blanket coverage’

Opening Up Magpie via Semantic Services 641

of all users browsing a particular page. They are selected and activated by the user
and only push information to him/her when a specific pattern emerges on the page.

The Client-Side Service Dispatcher handles the interactions between the user, the
Magpie-enabled browser and the Magpie service providers. In principle, it is an alter-
native to the GET/POST requests available for standard hypermedia. Although Mag-
pie supports such requests, a growing number of services are available in formats not
suitable for integration with a standard web browser, and for this reason the Magpie
architecture supports a more generic approach to service mediation.

In particular, the Magpie dispatcher acts on behalf of the user and can be identified
as such. Hence, it is possible to communicate service requests/responses asynchro-
nously. This is an important extension of standard hypermedia protocol, which as-
sumes synchronous interactions. This capability is also critical for supporting trigger
services or generally, semantically-filtered ‘pushed content’. Such a two-way commu-
nication is not possible in standard HTTP-based hypermedia systems.

The support for asynchronous interaction between the client and the server makes
the Magpie architecture extremely flexible. For instance, trigger messages may be re-
directed to a more appropriate user interface than a standard web browser (e.g. a
graphic visualization widget). The possibility of bi-directional information exchange
is also useful to support negotiation. For instance, different degrees of response
granularity may be available, or ontologies may be stored in different formats. Our
dispatchers may make it possible for the user to customize the ontology used for in-
terpreting the web pages; e.g. by selecting “a relevant sub-set” of an extensive domain
model.

3.2 Service Provider Components

A number of components on the service provider side manage value-added function-
alities such as semantic logging, the association of semantic services with ontological
classes, and reasoning for trigger services. Two criteria important for designing this
“back-office support” for semantic enrichment of web browsing in Magpie are:

• Open as to the definition of new semantic services, which may use an existing
ontology and a require access to the semantic log, and

• Allowing users to customize how the output of a service is rendered.

The rationale for these criteria is similar to that of the envisaged Semantic Web [1].
Rather than authors hard-wiring the relationships into the content of web resources,
the users are allowed to (re-)use data and services, and adapt them to different con-
texts. Our Magpie service manager caters for authors publishing new services, and for
users selecting or subscribing to a particular set of services. Since Magpie relies on
ontologies for associating services with web content, the authors have to publish se-
mantic descriptions of their services. In other words, given the ontology-centric nature
of Magpie, a key requirement here is to integrate Magpie with an architecture for se-
mantic web services, rather with standard (i.e., non-semantic) web services.

As already mentioned, we have fulfilled this requirement by integrating Magpie
with the IRS-II architecture [13], and the Magpie service manager uses the IRS-II
framework to handle the subscriptions of individual users to individual services. The
service manager also communicates with the IRS broker, whose job is to locate the
appropriate web service when a request is made to achieve a task.

642 M. Dzbor, E. Motta, and J. Domingue

Conceptually, the integration between Magpie and the IRS is achieved by defining
a top-level Magpie task, which takes as input an ontological identifier of a concept,
various related arguments and a choice of a visual renderer specifying the desirable
output format (typically HTML). Specific semantic services inherit from this generic
task, and extend it with specific input or output roles (e.g., the semantic service ‘Ex-
plain concept’ described in section 2 takes a concept from a specific category as input
and a textual definition or a pair of textual/graphical definitions as its output).

In IRS-II a task can be handled by one or more problem-solving methods (PSMs).
PSMs are the knowledge-level descriptions of code for reasoning with particular input
roles as specified by the task definition. PSMs tackle a particular task, and introduce a
system of pre-conditions (e.g. an argument supplied mustn’t be a ‘Physics’ or ‘Chem-
istry’ concept), and post-conditions (e.g. show graphics if available). While PSMs are
crucial for reasoning, the end-user only interacts at the task level – thus specifying
what needs to be achieved rather than how to achieve it. The IRS-II framework sup-
ports different modes of service publishing and invocation, as well as other emerging
standards such as WSDL [13]. Regardless of the publication, IRS-II generates a
unique “access URI” where the web service can be invoked. These URIs are then
used in Magpie to achieve a particular task when a user right-clicks a particular ‘hot-
spot’ item in a web page.

4 Defining Magpie Semantic Services

The process of manual definition of semantic services for different ontologies by the
knowledge engineer is not feasible on a larger scale. We argued in section 3.2 that the
publication procedure has to be open. Before describing the technical details of defin-
ing semantic services using the web services framework, we re-consider the educa-
tional example from section 2 to highlight key benefits for the end-user.

4.1 Benefits of Open Services Architecture

Magpie shows the on-demand services menu whenever the mouse hovers over a rec-
ognized entity. This menu is context-dependent, but so-far, we have used a one-size-
fits-all semantic context defined by the membership of a particular entity to a particu-
lar ontological class. The class membership is defined in the ontology, and is essen-
tially the same for all users subscribing to a particular ontology. This acknowledges a
certain degree of commonality of purpose among the subscribers, but it is a rather su-
perficial commonality. For example, if a tutor decides to divide the students into
‘standard’ and ‘advanced’ learners, Magpie should reflect this pedagogic strategy by
offering suitable services to the sub-groups of students based on the tutor’s choice.

Another issue concerns the development of such educational resources. Institutions
accelerate their course production and update procedures, but with printed materials
this may still take some time. In Magpie framework, new semantic services for stu-
dents could be developed and updated continuously. Because of the nature of the
framework, new services are accessible to the end users (students) with ‘near-zero’
delay since their development.

Opening Up Magpie via Semantic Services 643

4.2 Defining Magpie Tasks

The generic Magpie framework comes with core ontologies that define a) a basic do-
main ontology of items such as ‘Thing’ and ‘HTML’, b) a task ontology defining the
top-level Magpie task, and c) a basic PSM ontology of default Magpie services (e.g.
rendering HTML and XML-based output). The magpie-generic-request-task is a top-
level, generic description taking three inputs: user’s identity (UID), ontological con-
cept identifier (OID), and rendering. Its output has to be a result that complies with
the rendering provided as an input argument, and it can be in form of RDF, HTML or
a generic list. Specific Magpie tasks inherit from this generic request task.

Fig. 5. Schematic task description for Magpie service ‘Explain concept’ in IRS-II

A task description for the service ‘Explain concept’ containing optional graphics
(from section 2) is shown in Fig. 5. Marker ‘ ’ highlights parts that re-define the ge-
neric task; e.g. restricting the concept OID to be an instance of Climatology or Mete-
orology classes. These classes come from a specific, climate course reference
ontology. Hence, the ‘Explain concept’ task is defined in an ontology that inherits
from both a generic ontology of Magpie tasks and from the course ontology.

The definition of the magpie-explain-thing-task contains two extra slots (see markers
‘ ’): has-pretty-name labels the task in the displayed semantic menu, and has-goal-
expression plays two roles. Firstly, it specifies what the task does for a human reader.
Secondly, the expression enables knowledge-level reasoning about the task for the
purposes of automatic service location or composition.

4.3 Defining Magpie PSMs

Having described what a particular task can do for a particular ontology, the semantic
web application developer describes the actual methods tackling it. Fig. 6 shows a
PSM description, which looks similar to that of a task. The main difference is that the
developer defines different PSMs to implement a particular task for different types of
input. For instance, let’s assume that we have already defined a generic (empty) PSM
for the ‘Explain concept’ service, and now want to narrow it for the class ‘Climatol-
ogy’. Constraining a PSM for a particular class means introducing an additional appli-
cability condition (the input has to be a Climatology concept) that must be satisfied

magpie-explain thing-task (magpie-generic-request-task)
 input roles: has_oid // task is invoked for a given item
 has_user // task is invoked by a given user
 has_rendering // result rendered as …

 output role: has_result // the result of the service

 constraints: type-of (has_oid) = (or Climatology Meteorology Physics Chemistry)
 cardinality (has_oid) = 1
 value (has-pretty-name) = “Explain concept”

 has-goal-expression: value = (kappa (?task ?sol)
 (= ?sol (magpie-render-function (role-value ?task has-rendering)
 (request-explain-thing-function (role-value ?task has-oid)))))

644 M. Dzbor, E. Motta, and J. Domingue

before invoking this method. This condition semantically annotates the code that im-
plements it and makes it applicable only to this class. In practice this may mean that
different providers can handle different categories of data using mutually incompati-
ble approaches or techniques. Our PSMs take this fully into account.

Fig. 6. PSM description for Magpie service tackling the task ‘Explain concept’ (see Fig. 5) for
the ‘Climatology’ class (category)

Applicability conditions enable the broker to select from several PSMs tackling the
same task. There may be several distinct descriptions (e.g. with or without graphical
explanation), but the user needs to refer to a single task (‘Explain concept’). The ser-
vice manager can invoke a specific PSM and its implementation depending on the
type of the submitted argument or user preference. This also explains why semantic
menus for different categories may use the same label to identify a service (task) that
delivers different functionality in a different context (through different PSMs).

4.4 Publishing and Invoking Magpie Services

The final step is to write a snippet of code in Java (for example), and to make it avail-
able by publishing it via IRS-II. Publishing is explained in [13]; here it suffices to say
that it essentially means creating wrappers turning a piece of proprietary code into a
web service and associating that service with an appropriate PSM. The associations
are stored in a registry, which is referred to whenever a user makes a request to
achieve a particular task with a particular set of arguments. The IRS-II takes care of
invoking the appropriate service provider code, passing the necessary arguments, and
processing the results.

All the activities described so-far were done by service or semantic web applica-
tion developers – outside of the Magpie end user scope of attention. The implications
of such a standard means of publishing services for the end user are in the simplifica-
tion of the entire interaction. Once the user decides which classes in the selected on-
tology he/she is interested in, the Magpie plug-in uses the Dispatcher to request the
semantic services applicable to each chosen class. The generator of semantic menus is
itself a service that takes a (top-level) class name as an input, and sends back a list of
URIs to invoke applicable tasks. The generator takes all tasks published for a particu-
lar ontology, where at least one argument matches a given class; i.e. the input type is
either the given class or is a subclass of the given class. Each service is rendered as a
pair 〈pretty-name, URI〉; for example (the ‘XXXN’ replaces the actual values):

Explain concept
http://irsserver:3000/achieve-task?ontology=climateprediction-kb& task=request-
explain-thing-task&has_oid=XXX1& has_user=XXX2 & has_rendering=XXX3

magpie-explain-climatology-provider (magpie-explain-thing-provider)
 tackles-task: magpie-explain-thing-task
 has-applicability-condition: (kappa (?p)
 (climatology-category (role-value ?p has-oid)))

Opening Up Magpie via Semantic Services 645

The actual execution of a particular service from a semantic services menu in a
Magpie-enabled web browser invokes the task behind the ‘pretty label’ (through
URI). The benefit to the user is the task-based reference to semantic services. Instead
of knowing (and labeling) the individual methods, the user refers to a particular func-
tionality using a single label, regardless of the context. This reduces the maintenance
overhead. New variations of a service for different contexts can be added without
changing the structure of the displayed menus; the implementation or location of an
individual service can be changed transparently.

4.5 Specifics of Trigger Services

Magpie trigger services can be defined following the same procedure as for the on-
demand services (described in previous sections). However, there is one major differ-
ence; a generic ‘trigger task’ has no particular concept (OID) as its input. It does not
make sense for a trigger service to invoke it for a single specific item (e.g., ‘airmass’).
An access to regularly updated semantic log, which resides on one of the central
Magpie servers, is required instead. Since services (including trigger ones) can be de-
fined by anyone, and may be distributed, there is a problem in accessing the central
semantic log. This cannot be replicated because of security issues, and for this reason,
each trigger service needs to monitor it for a particular (approved) pattern.

As a result, both the task and PSM definitions of trigger services use a simple ex-
tension to the standard service specification mechanism. First, the author declares that
a particular trigger name is associated with a particular pattern. The pattern is then
typically defined in terms of applicable antecedents for an ‘IF…THEN…’ rule. For
example, a trigger may generate experiment guidelines to investigate concepts found
in a web page (for which some guideline exists). The pattern would look like this:

(and (climatology-category ?X) (has-link-to ?X ?Y) (experiment-guide ?Y))
The author then associates a task invocation with the pattern. The actual implemen-

tation of the trigger task calls a central, shared service monitoring the semantic log
with this specific pattern as one of the arguments. In other words, once a user registers
with a particular trigger task, the respective pattern is forwarded to the semantic log
monitor, where it is applied whenever the log is updated. Otherwise, the trigger task
behaves as a standard service; it takes the asserted data as an input and distributes an
alert to all those users who subscribed to the trigger. An example of how this trigger
functionality has been used to facilitate team collaboration is discussed in [6].

5 Related Work

A tool that functionally resembles Magpie is the KIM plug-in for Internet Explorer
[14]. Knowledge and Information Management (KIM) is a platform for automatic
semantic annotation, web page indexing and retrieval. As Magpie, it uses named enti-
ties as a foundation for document semantics, and assigns ontological definitions to the
entities in the text. The platform uses a massive populated ontology of common ‘up-
per-level’ concepts (e.g. locations, dates, organizations or money) and their instances.

646 M. Dzbor, E. Motta, and J. Domingue

Unlike Magpie, KIM is based on the GATE platform [4] but it extends its flat NER
rules with ontological hierarchies. The entities are recognized by the KIM proxy, and
in parallel they are associated with respective instances in the ontology. GATE sup-
ports the recognition of acronyms, incomplete names and co-references thus enabling
KIM to work with both already-known and new named entities.

Magpie differs from KIM in a number of respects. While KIM is coupled with a
specific, large knowledge base, Magpie is open with respect to ontologies, allowing
users to select a particular semantic viewpoint and use this to enrich the browsing ex-
perience. Another important difference is that while KIM is very much steeped in the
classic ‘click&go’ hypermedia paradigm, Magpie is open with respect to services, as
discussed in this paper. Hence, as already pointed out Magpie goes beyond KIM in
the direction of providing a framework for building semantic web applications, rather
than simply supporting semantic annotation and semantic web browsing.

Magpie also differs from ‘free-text’ document annotation tools [9, 10] by
intertwining entity recognition, annotation and ontological reasoning. Annotation
using ontological lexicons outperforms ‘free-text’ annotations in terms of >90-95%
recall rate and similar precision for in-domain resources. Yet, free-hand annotations
are useful for ad-hoc, personal, customized interpretation of the web resources.
Magpie does not currently support manual semantic annotation, which is a limitation.
To address this issue we will shortly begin work on integrating Magpie with MnM, a
semantic annotation framework developed at the Knowledge Media Institute [16].

From user interface adaptability perspective Magpie is relevant to projects such as
Letizia [11] with its reconnaissance agents. This type of agent “looks ahead of the
user on the links on the current web page”. Such pre-filtering may use semantic
knowledge to improve the relevance and usefulness of browsing. Magpie implements
functionality similar to that of Letizia (“logged entities reconnaissance”) through se-
mantic logging and trigger services, and thus provides a more general and flexible
framework for implementing push services, than the one provided by Letizia.

Another system superficially similar to Magpie is COHSE, which implements an
open hypermedia approach [2]. The similarity between the two systems is due to the
fact that (at a basic level of analysis) both work with web resources and use similar
user interaction paradigms (‘click&go’). However, beyond the superficial similarity
there are very major differences between these two systems. The main goal of
COHSE is to provide dynamic linking between documents – i.e., the basic unit of in-
formation for COHSE is a document. Dynamic linking is achieved by using the on-
tology as a mediator between terms appearing in two different documents. COHSE
uses a hypertext paradigm to cross-link documents through static and dynamic an-
chors. In contrast with COHSE, Magpie is not about linking documents.

As emphasized in the introduction, there are three ways we can look at Magpie: as
a way to support semantic web browsing, as a tool to support interpretation of web re-
sources through ‘ontological lenses’ and as a framework for building semantic web
applications. In particular, if we take the latter perspective, Magpie goes beyond the
notion of hypermedia systems, by providing a platform for integrating semantic ser-
vices into the browsing experience, both in pull and push modalities. In a nutshell,
Magpie uses a different paradigm. It views web as a knowledge-based servicing of
various user needs. Using Magpie’s “web as computation” paradigm, we not only
provide information about one concept, but can easily offer knowledge dependent on
N-ary relationships among concepts. This is impossible in any hypermedia system –

Opening Up Magpie via Semantic Services 647

one can’t use one click to follow multiple anchors simultaneously, and reach a single
target document or a piece of knowledge.

Moreover, Magpie supports the publishing of new services without altering the
servers or the plug-in. Service publishing leaves the users in control by allowing them
to subscribe to selected services. It also makes the development of a semantically rich
application more modular; thus cheaper and easier for domain experts rather than
knowledge engineers. This is more powerful than the mechanisms used by open hy-
permedia systems, which are largely based on the “editorial choice of links”. Magpie
explores the actual knowledge space as contrasted with navigating through hypertext
as one of its explicit manifestations. Mere link following (in open or closed hyperme-
dia) is not sufficient to facilitate document interpretation. We complement the famil-
iar ‘click&go’ model by two new models: (i) ‘publish&subscribe’ (for services) and
(ii) ‘subscribe&acquire’ (for data and knowledge).

To conclude we want to note a growing recognition by the research community of
the need to make the semantic web accessible to “ordinary” users. Two approaches
follow similar, lightweight and near-zero overhead principles as Magpie; albeit for
different purposes. The authors of Haystack [15] and Mangrove [12] argue that the
major issue with Semantic Web is the gap between the power of authoring languages
such as RDF(S) or OWL and sheer simplicity of HTML. In response to this concern,
Magpie separates the presentation of semantic knowledge, service authoring, and pub-
lishing from the underlying knowledge-level reasoning mechanisms.

6 Concluding Remarks

In this paper we described the Magpie framework focusing on how semantic services
can be deployed and used in an open fashion. Magpie is an open architecture in re-
spect to the technological infrastructure; it is not bound to a single ‘services standard’.
The separation of the user interface from a ‘thin communication client’, the Client-
Side Service Dispatcher, offers several benefits, and enables us to implement dynami-
cally defined/updated on-demand and trigger services. By combining semantic web,
browsing technologies and semantic web services we created an open framework that
maximizes flexibility. A Magpie user is free to select both the overall viewpoint, cap-
tured within an ontology, and the associated services. Semantic web application de-
velopers are free to customize and extend the available services including a number of
core Magpie services such as the NER and lexicon generation.

As we showed in our example, Magpie enables lay members of the public to ex-
plore rich scientific resources (such as climatology and climate prediction, for exam-
ple). Thus, the semantic browsing capabilities of Magpie may serve as an enabling
technology for the increased public understanding of science. In the past papers, we
presented Magpie as a tool for browsing the Semantic Web. However, as Tim Bern-
ers-Lee argues: “Semantic Web is about integration of resources rather than brows-
ing.”2. Leaving aside the philosophical issue of what constitutes “the semantic web
browser”, the extended Magpie framework can be seen as a display integrating
knowledge resources distributed throughout the Semantic Web. Web services offer

2 Quote from Tim Berners-Lee’s keynote speech delivered at the 2nd International Semantic

Web Conference, Sanibel Island, Florida, US, October 2003.

648 M. Dzbor, E. Motta, and J. Domingue

small, easier to maintain modules of a larger semantic web application, could be au-
thored independently, and stored as a distributed system.

Whether the Semantic Web is about browsing, computation or integration, the
main contribution of our research is in allowing users to browse the standard Web
whilst utilizing the concepts and relationships captured within a selected ontology.
The semantic services (whether on-demand or triggered) that are offered through the
Magpie framework enhance web interoperability and user interaction with knowl-
edge. Magpie plug-in acts more as an end-user interface for accessing and interacting
with the distributed semantic web services rather than a mere “web browser”.

For the future, a number of issues remain open. As mentioned earlier, we want to
integrate Magpie with a framework for semantic annotation [16], to allow seamless
integration of browsing, service invocation and annotation. This would enable the us-
ers to extend and/or customize the existing ontological commitments. We are also
working on more powerful named entity recognition mechanisms, both ontology-
based and general-purpose (such as GATE [4]). Finally, we are working on a set of
support tools that would enable web developers to publish their applications for the
Magpie users quickly and simply. This is critical in order to reduce the development
time for any subsequent applications of our framework.

Once this publishing facility is in place, a comprehensive usability study needs to
be performed to back our assumptions and design principles. Nonetheless, our initial
experiments with tools supporting the application developers seem to support our ex-
perience-driven requirement for reducing the complexity of interacting with semantic
web services. Magpie is clearly geared towards high recall/precision annotation within
a specific domain. Early evidence suggests there is a benefit for naïve users and nov-
ices in interacting with the domain knowledge in such a constrained way. However, to
measure the value-added of Magpie more objective usability study is planned.

Acknowledgments. The Magpie effort is supported by the climateprediction.net and
the Advanced Knowledge Technologies (AKT) projects. Climateprediction.net is
sponsored by the UK Natural Environment Research Council and UK Department of
Trade e-Science Initiative, and involves Oxford University, CLRC Rutherford Apple-
ton Labs and The Open University. AKT is an Interdisciplinary Research Collabora-
tion (IRC) sponsored by the UK Engineering and Physical Sciences Research Council
by grant no. GR/N15764/01. The AKT IRC comprises the Universities of Aberdeen,
Edinburgh, Sheffield, Southampton and The Open University.

References

[1] Berners-Lee, T., Hendler, J., and Lassila, O., The Semantic Web. Scientific American,
2001. 279(5): p.34-43.

[2] Carr, L., Bechhofer, S., Goble, C., et al. Conceptual Linking: Ontology-based Open Hy-
permedia. In Proc. of the 10th Intl. WWW Conf. 2001. Hong-Kong.

[3] Ciravegna, F., Chapman, S., Dingli, A., et al. Learning to Harvest Information for the
Semantic Web. In 1st European Semantic Web Symposium. 2004. Greece.

Opening Up Magpie via Semantic Services 649

[4] Cunningham, H., Maynard, D., Bontcheva, K., et al. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and Applications. In Proc. of the 40th
Anniversary Meeting of the Association for Computational Linguistics (ACL). 2002.
Pennsylvania, US.

[5] Domingue, J., Dzbor, M., and Motta, E. Magpie: Supporting Browsing and Navigation on
the Semantic Web. In Proc. of the Intelligent User Interfaces Conf. (IUI). 2004. Portugal.

[6] Domingue, J., Dzbor, M., and Motta, E. Collaborative Semantic Web Browsing with
Magpie. In 1st European Semantic Web Symposium. 2004. Greece.

[7] Dzbor, M., Domingue, J., and Motta, E. Magpie: Towards a Semantic Web Browser. In
Proc. of the 2nd Intl. Semantic Web Conf. 2003. Florida, USA.

[8] Fensel, D. and Motta, E., Structured Development of Problem Solving Methods. IEEE
Transactions on Knowledge and Data Engineering, 2001. 13(6): p.913-932

[9] Handschuh, S., Staab, S., and Maedche, A. CREAM - Creating relational metadata with a
component-based, ontology driven annotation framework. In Intl. Semantic Web Working
Symposium (SWWS). 2001. California, USA.

[10] Kahan, J., Koivunen, M.-R., Prud'Hommeaux, E., et al. Annotea: An Open RDF Infra-
structure for Shared Web Annotations. In Proc. of the 10th Intl. WWW Conf. 2001. Hong-
Kong.

[11] Lieberman, H., Fry, C., and Weitzman, L., Exploring the web with reconnaissance
Agents. Comm. of the ACM, 2001. 44(8): p.69-75.

[12] McDowell, L., Etzioni, O., Gribble, S.D., et al. Mangrove: Enticing Ordinary People
onto the Semantic Web via Instant Gratification. In Proc. of the 2nd Intl. Semantic Web
Conf. 2003. Florida, USA.

[13] Motta, E., Domingue, J., Cabral, L., et al. IRS-II: A Framework and Infrastructure for
Semantic Web Services. In Proc. of the 2nd Intl. Semantic Web Conf. 2003. Florida, USA.

[14] Popov, B., Kiryakov, A., Kirilov, A., et al. KIM - Semantic Annotation Platform. In Proc.
of the 2nd Intl. Semantic Web Conf. 2003. Florida, USA.

[15] Quan, D., Huynh, D., and Karger, D.R. Haystack: A Platform for Authoring End User
Semantic Web Applications. In Proc. of the 2nd Intl. Semantic Web Conf. 2003. Florida,
USA.

[16] Vargas-Vera, M., Motta, E., Domingue, J., et al. MnM: Ontology Driven Semi-automatic
and Automatic Support for Semantic Markup. In Proc. of the 13th European Knowledge
Acquisition Workshop (EKAW). 2002. Spain.

	1 Introduction
	2 Magpie as a Resource Aggregator in Education
	3 An Open Semantic Services Architecture
	3.1 Service Recipient Components
	3.2 Service Provider Components

	4 Defining Magpie Semantic Services
	4.1 Benefits of Open Services Architecture
	4.2 Defining Magpie Tasks
	4.3 Defining Magpie PSMs
	4.4 Publishing and Invoking Magpie Services
	4.5 Specifics of Trigger Services

	5 Related Work
	6 Concluding Remarks

