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ABSTRACT

We forecast constraints on cosmological parameters withgsy CMB anisotropy informa-
tion and weak lensing reconstruction with a future pelsthck CMB experiment, th&€osmic
Origins Explorer (COrE), using oscillation data on the neutrino mass splittingsras infor-
mation. Our MCMC simulations in flat models with a non-evalyequation-of-state of dark
energyw give typical 68% upper bounds on the total neutrino massig®eV and M98eV
for the inverted and normal hierarchies respectively, masg the total summed mass is close
to the minimum allowed by the oscillation data for the respechierarchies (L0eV and
0.06eV). Including geometric information from future baryacoustic oscillation measure-
ments with the complete BOSS, Type la supernovae distandelivimom WFIRST, and a
realistic prior on the Hubble constant, these upper linfilsnk to 0.118eV and M80eV
for the inverted and normal hierarchies, respectively. ifiold of these distance priors also
yields percent-level constraints en We find tension between our MCMC results and the
results of a Fisher matrix analysis, most likely due to argirgeometric degeneracy between
the total neutrino mass, the Hubble constant, arid the unlensed CMB power spectra. If
the minimal-mass, normal hierarchy were realised in natine inverted hierarchy should
be disfavoured by the full data combination at typicallyajes than the @ level. For the
minimal-mass inverted hierarchy, we compute the Bayegsofdmetween the two hierarchies
for various combinations of our forecast datasets, and fiatthe future cosmological probes
considered here should be able to provide ‘strong’ evidéodds ratio 12:1) for the inverted
hierarchy. Finally, we consider potential biases of theenttosmological parameters from
assuming the wrong hierarchy and find that all biases on trenpeters are below theirol
marginalised errors.

Key words: cosmology: theory - cosmological parameters - neutrinoavitational lensing:
weak - methods: statistical

1 INTRODUCTION of the three eigenstates, and not to the overall mass scaleise/
the central values from the global fits in Appendix B of the iarX

In the most recent extension to the Standard Model of parti- update té Maltoni et all (2004):

cle physics, it has been established that at least two of the
three neutrino mass eigenstates possess non-zero masSuThe — mj —n¢ = 7,9j(1):g x 10~5eV?

perKamiokande experiment provided the first evidence f@g th )
with the detection of flavour oscillations in atmospheriatnie |m§—m§| = 2,2fé-é x 10-3%eV2,

nos (Fukuda et al. 1998, 2001; Ashie etlal. 2004), and the phe- ’

nomenon has since been observed in solar neutrinos by the Sudwith 3o confidence levels indicated. Since the sigmgf— s is
bury Neutrino Observatory (Ahmad et al. 2001, 2002), int@ac  unconstrained, there are two logical possibilities dependn the

anti-neutrinos at KamLAND_(Eguchi etial. 2003), and in aecal choice of sign. The difference is negligible for large tat@sses

tor neutrinos by K2K and MINOS (Ahn et al. 2006; Adamson et al. (the ‘degenerate’ scenario, wharg ~ mp ~ mg). At lower total

2008). masses, we have a hierarchical situation, with two distietar-
The oscillation experiments not only reveal that neutrimage chies demarcated by the oscillation data: ‘normal & m, < mg)

mass, but that the three mass eigenstatesdiiffieeent masses. Os- and ‘inverted’ (nz < M < Myp). Measuring the absolute mass scale

cillations are only sensitive to differences in the squamabses and determining the true hierarchy of neutrinos are keyessn
neutrino physics. Note that equati@h (1) implies a loweitlon the
total mass for each hierarchy:095eV for inverted, and.056eV

* ach74@ast.cam.ac.uk for normal.
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Cosmology provides a different perspective on this problem
essentially by being sensitive to the gravitational effafcheutri-
nos on the matter and radiation fields across cosmic timepiihe
mary CMB temperature (T) and polarisation (P) anisotrops

masses. This raises the exciting possibility of using cdsgio
ical observations to constrain not only the absolute maatesc
but also the hierarchy (in the case of non-degenerate njasses
A number of important questions then arise. Will future or-cu

go some way to constraining absolute neutrino masses, but ar rent CMB T+P+WL experiments be able to determine the hier-

fairly insensitive to realistic (sub-eV) mass scales coragdo the
late-time influence of neutrino masses on the clustering af- m
ter (Elgaroy & Lahav. 2005; Ichikawa etlal. 2005). Tighter itisn
may therefore be obtained by including large scale strachor

archy by themselves, or will the inclusion of external dsess,
with their inevitable systematic uncertainties be neag8s#hat
limits the ability of cosmology to determine the hierarclayd
how can these limits be circumvented? Several studies have a

formation, such as the shape of the matter power spectrum andready attempted to answer some of these questions (Oyaria et a
cosmic shearl (Namikawa et/al. 2010), as well as distance mea-2012;|Jimenez et al. 2010; De Bernardis et al. 2009; $losaf;20
sures such as baryon acoustic oscillations (BAO) and Type lalHannestad 2003). Four of these papers chose to paraméteze t

supernovae (see Abazajian etlal. 2011 for a recent reviewth W
the seven-yeatWMAP data aloney m, < 1.3eV (95% C.L.) as-

hierarchy continuously, either by the fraction of the totass in
mg or usingA = (Mg — mg)/Zmy, with my = my. However, as the

suming a flat universe and fixed dark energy equation of state constraints in equatiori](1) indicate, the uncertainty an rtiass-

w = —1 (Komatsu et &l. 2011); this improves Jom, < 0.58eV
when including BAO from SDSS DR7 (Percival et ial. 2010) and
a Hp prior of 4% width from|Riess et al! (2009). For the same
model, the most recent constraints from adding galaxy etust
ing to WMAP arey my < 0.36eV (de Putter et al. 2012), using

squared differences is small, and provides good evideraiettie
hierarchy iseither normalor inverted. In other words, the choice of
hierarchy is not a continuous parameter, but a discretevaitiean
oscillation prior, them,—A space breaks up into two disjoint, one-
dimensional spaces and the simplest way to proceed is tgsanal

a photometric sample of luminous galaxies from SDSS DR8, and any cosmological dataset in both norraatl inverted models with
s my <0.51eV (Sanchez et al. 2012), using a spectroscopic galaxy the masses parametrized Pyn,.

sample from SDSS DR9 (as part of the ongoing Baryon Osailati
Spectroscopic Survey; BOSS).

Small-scale CMB measurements open up the possibility of
exploiting the effect of weak gravitational lensing (WL) tife
CMB as well as the primary anisotropies (see Lewis & Challino
2006 for a review of CMB lensing). CMB photons are deflected
by large scale structure along the line of sight as they propa
gate to us from last-scattering, and these deflections caedos-
structed from their non-Gaussian imprint in the CMB at sraal
gular scales (Zaldarriaga & Seljak 1999;Hu 2001; Hu & Okaimot
2002; Okamoto & Hu 2003). CMB lens reconstruction thus pro-
vides both geometric and late-time clustering informatfonfree’
and so additional sensitivity to neutrino masses. Sincestiuece
plane is essentially fixed — the last scattering surfaces-tigthod
is free of uncertainties over source redshifts, as well asnga
the advantage of probing structure formation without trebfms
of bias and redshift-space distortions. Lens reconstradtias re-
cently been used to measure the power spectrum of the defiecti
field with temperature data from the Atacama Cosmology Tele-

The problem of determining the mass hierarchy is then one of
Bayesian model selection, rather than parameter forecastihe
machinery in this case is provided by the Bayes’ factor, Whic
guantifies the degree to which different models are favohyeithe
data with respect to one another, when all their associateahpe-
ters are marginalised over. In this work, we investigateathibty of
future CMB experiments to determine simultaneously thelibs
neutrino mass scale and the (non-parametric) hierarchyfifdte
calculate forecasts for CMB-only T+P+WL witbOrE using both
Markov-chain Monte Carlo (MCMC) and Fisher techniques, and
then include geometric information from future BAO consits
from the full SDSS-I1Il BOSS (Schlegel et al. 2009), and a T¢pe
supernovae survey wWithFIRST (Green et al. 2011). We also in-
clude a future prior on the Hubble constant. We do not conside
information from clustering in this work, such as the magiewer
spectrum from redshift surveys, number counts, or cosmearsh
Our results are thus immune to the inherent systematic taicer
ties in these techniques.

The paper is organised as follows. In Secfibn 2 we discuss the

scope (ACT| Das et al. 2011) and the South Pole telescope; (SPT cosmological influence of both the total neutrino mass aedrth

van Engelen et al. 2012).

Lens reconstruction from the CMB temperature suffers from
statistical noise due to chance correlations in the unteidB
that mimic the effect of lensing. This is such that tempemte-
constructions will never supply cosmic-variance-limiteeasure-
ments of the deflection power spectrum for multipoles 100.
Polarization measurements are very helpful here (Hu & Okemo
2002), since they intrinsically have more small-scale paavel the
B-mode of polarization is not confused by primary anisotespi
In principle, polarization can provide cosmic-varianamited re-
constructions to multipoleb= 500, i.e. on all scales where lin-
ear theory applies. For this reason, lens reconstructam frolar-
ization has become an important part of the science caseufor s
cessors to thelanck satellite, such as the proposed European-led
Cosmic Origins Explorer (COrE; [The COrE Collaboration et al.
2011), and the US-lecCMBPol (e.g.|Bock et all 2008, 2009)
and polarization upgrades to ACT_(Niemack etlal. 2010) and
SPT (McMahon et al. 2009).

Structure formation is mostly sensitive to the summed neu-
trino mass, but does have some weak sensitivity to individua

dividual neutrino masses, and the relevant degeneracibsting
other cosmological parameters. In Secfidn 3 we discuss taur s
tistical forecasting and model selection methodology. éat®n[4

we introduce the future datasets which will be available rEsre

for future CMB experiments, and we present and discuss our re
sults in Sectiof]5. Appendices detail our scheme for priotgcte-
generacies in the construction of the Fisher matrix andudisthe
sampling errors in estimates of parameter covariance caatfiom
MCMC samples.

2 COSMOLOGICAL SIGNATURES OF NEUTRINO
MASSES

2.1 Massive neutrinos

Massive neutrinos have a small, but measurable effect dnthet
primary anisotropies of the CMB and the growth of structdoe (
reviews see Elgaroy & Lahav 2005; Lesgourgues & Pestor|2006;
Hannestad 2010). We first consider the primary anisotrofiese
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Figure 1. Upper: Unlensed CMB temperature power spectra for a model
with massless neutrinos (dashed red) and degenerate mas=irinos
with $m, = 0.37eV (solid black). Both models are flat, have the same
physical densities in cold dark matter and baryons, buefit Hub-

ble constantsHy = 67.93kms 1Mpc~?! for the massive case artdy =
71.43kms 1 Mpc1 for the massless case) to preserve the angular scale of
the acoustic peaks.ower: Fractional difference between the massive and
massless model. Note that tkewxis is logarithmic fol < 50 and linear for

| > 50.

the r.m.s. momentum of a neutrino of magsat temperaturd, ()
satisfies

(p5)*? keTy(2) 5.5x1074

v m,  (my/eV) 2)

neutrinos with mass less tharb@V are still relativistic at recom-
bination. Their effect on the pre-recombination dynamitshe
background and perturbations is thus very similar to thesteas
case and so they impact the anisotropies only indirectlgutin
the angular diameter distance to last-scattedr@z.). The ratio
of da(z.) to the sound horizon at last-scatteringz,) sets the
angular scale of the CMB acoustic peaks. For light masses, th
change in sound horizon is small but, if all other physicaisie
ties are held fixedda(z.) falls with increasing mass due to the in-
creased expansion rate at late times. The last-scattdrargfore
appears closer and the anisotropies are shifted to largpran
scales. In the flat models considered here, this effect isrdegte
with a change in either the dark energy density (or, equniblethe
Hubble constant) or the dark energy equation of state pdesnve
(Efstathiou & Bond 1999). An example of this degeneracy ansh
in Fig.[ for flat models witlw = —1 and either massless neutrinos
or degenerate massive neutrinos wjtm, = 0.37eV. These mod-
els cannot be distinguished on the basis of their (unlersaettra.
However, since the Hubble constants differ by 4%, curreiorpon
Ho (e.g..Riess et al. 2011) would effectively break the degaryer
between these models.

The degeneracy is explored in detail in Howlett etlal. (2012)
It is not exact due to a number of physical effects, most Hgtab
the late-time integrated-Sachs-Wolfe (ISW) effect; seg[Ei This
arises from the late-time decay of the (Weyl) gravitatiopaien-
tial @+ ¢ once dark energy dominates the dynamics of the expan-
sion. On large scales (and for adiabatic initial condit)ahe evo-
lution of the gravitational potentia follows from constancy of the
comoving-gauge curvature perturbation

2( Prot )(fpﬂp)

R=—Q— -
¢ 3 \ Prot + Prot H

~ 3.22

(1+2),

®)

3

where piot and pot are the total density and pressure (including
contributions from dark energy)#’ is the conformal Hubble pa-
rameter and dots denote derivatives with respect to corafidime.
The metric potentialy = ¢ at late times when anisotropic stresses
can be neglected. The potential is constant for congtagtptot,

but evolution in the latter after last-scattering sourd¢esISW. In
Fig.[2 we plotpiot/prot as a function of the scale factarfor the
two models considered in Figl 1. The dominant effect in batbes

is from the radiation—matter transition and the onset ok dar-
ergy domination. The former causest ( to decay around last-
scattering, sourcing the early-ISW effect which makes aifiig
cant contribution to the temperature power spectrum ardbed
first acoustic peak. As dark energy dominat@s:/ptot — —1 from
nearly zero during the matter-dominated era causing furtee
cay of the potentials and sourcing the late-time ISW effiftds-
sive neutrinos change the picture in the following ways. €om
pared to massless neutrings, increases as they become non-
relativistic andp, decreases; the onset of this transition is described
by (Lewis & Challinor 2002)

N 0 5 my 2
pV ~ pV 1+ 7n.2 kBTV (Z) )
L Pl 5 m )
v~ 73 [1 2 (kBTv(z)) ’ @

wherep{ is the energy density per species of massless neutrino. In
the non-relativistic limitl(Lewis & Challinor 2002),

oy ~ 1$$8 {5(3) (kB:'lv(z)) _,_o(ks:];vv(z))} )
- [ o]

The ratiopiot/ Ptot initially falls more quickly in models with mas-
sive neutrinos and this leads to enhanced decay of the Westhpo
tial around last-scattering and a larger early ISW effest @ig[1).
If the angular scale of the acoustic peaks and the physicaltiks
in cold dark matter and baryons are fixed (the latter presgrthie
pre-recombination physics), the fraction of energy denisitdark
energy is less in models with massive neutrinos and at latesti
Prot/ Prot falls less slowly towards-1. This reduces the late ISW
effect.

The direct effect of neutrino masses on the pre-recomloinati
physics is very small fom, < 0.5eV. The enhanced energy den-
sity reduces the sound horizon and damping scale, with the fo
mer being compensated by changeslifz.) if we fix the angu-
lar scale of the acoustic peaks. The neutrino perturbatiogs-
selves influence the CMB via the back-reaction from thessy
energy on the metric perturbations. The correctionsCite— vy )
wherevy, = 1— O(m\,/kBT\,)2 is the typical neutrino thermal ve-
locity. The size of the effects in the neutrino stress-epéggsor is
O(my /ksT,)2pY and the relative importance for the metric pertur-
bations and the CMB i©®(my /ks T, )?p0/prot. For our model with
s my =0.37eV, we expect effects at thel®6 level consistent with
the small residual differences at highn the CMB power spectrum
shown in Fig[d..

We end our discussion of the primary anisotropies by noting
that the effects of 1-10eV masses on the CMB are rather éiffer
since the neutrinos are already non-relativistic at the firecom-
bination (Dodelson et &l. 1996). At these masses, whichlexady
ruled out by current upper limits on the total mass, the meagract
as a hot dark matter component.
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Figure 2. Upper: Evolution of piot/prot With scale factoi for the massive
(solid) and massless (dashed) models in[Hig.alver : Difference between
Prot/Prot in these models. Also plotted are the relativistic appration
from equation[(#) and the non-relativistic approximatiooni equation[{b).
The differences it/ prot at late times are due to the reduced energy den-
sity in dark energy in the massive model to preserve the anguhle of the
CMB acoustic peaks.

lensed primary anisotropies (for a review, see Lewis & Ghail
2006). In linear theory, the power spectrum of the lensiniiede
tion angle,Cldd, is a line-of-sight integral over the matter power
spectrum, and so the effect of massive neutrinos is sinul&neir
effect on the growth of large-scale structure. The supessf
small-scale power is still the primary effect, as shown i tipper
plot of Fig.[3, where we plot the fractional change in the iegs
power spectrum in the presence of massive neutrinos couhpare
the massless case. The total mass.@®®beV, the minimum mass
of the inverted hierarchy. The differences are at the fevequar
level, significantly larger than the intrinsic effect in thalensed
CMB anisotropies which is at the @ % level (forl > 100) for
such masses. Moreover, the information is complementaigesi
the effect in the lensing power spectrum scales roughly ti¢h
total mass while the intrinsic effect in the unlensed CMBlesa
with the square of the masses. Neutrinos also have a snedt eff
the cross-correlation of the lensing deflection with the CidB-
perature anisotropy (due to the late-time ISW effect) aedGVB
E-mode polarisation_(Lewis etlal. 2011), and we include bath i
our analysis for completeness.

2.2 Individual masses

As we have seen, sub-eV massive neutrinos mostly affect the

The matter power spectrum is also affected by the presence ofprimary CMB anisotropies through their effect on the angula

massive neutrinos_(Bond et al. 1980). Once non-relatoyistiey
increase the expansion rate over the massless case, bwnthe t
dency of this to impede growth in the clustering of the othetter
components is mitigated on scales where the neutrinos can cl
ter. At any time, neutrinos can cluster on scales larger thair
proper Jeans (or free-streaming) length, approximatgly) /H(z).

For massless neutrinos, this is simply the particle horaot the
comoving Jeans length grows in time in a non-acceleratirig un
verse. However, for non-relativistic neutrinos, the feteaming
length (Lesgourgues & Pastor 2006):

1+z (1 ev) h~LMpc,
QA +Qm(1+23 \ My

where Qn, is the current density parameter for matter including
non-relativistic massive neutrinos. For a non-relatividgtansi-
tion in matter dominationAgs(z) ~ al/2, so the comoving free-
streaming lengtlilecreases in time. Therefore, the comoving free-
streaming wavenumbekds = 2mma/Ars(z)] has a minimum given
by the comoving scale of the horizon at the non-relativisaosi-
tion. On scales larger than this, neutrinos have alwaysered and
their mass has no effect on the matter power spectrum. Bélew t
comoving horizon at the non-relativistic transition, mengs only
cluster only after they exit the (shrinking) comoving freteeaming
length thus slowing down the growth of structure in the inéging
time. On all scales smaller than the current free-strearsaade,
massive neutrinos are not clustered at the present timagy#i
scale-free fractional suppression of the matter power pepec-
trum by roughly—8f,, wheref, = Q, /Qn (Hu et al! 1998).

For sub-eV neutrino massedgg today is at roughly the same
scale that non-linear corrections to the matter power specbe-
gin to become importani_(Hannestad 2018}body simulations
indicate a larger suppression of aroun@.6f, at scalek ~ 0.5—
1hMpc—1, accurate to about 1% (Brandbyge & Hannestad 2009:
Viel et all 12010). Note that this is considerably smallemtliae
BAO scale k~ 0.15hMpc—1).

)‘FS(Z) ~T1.7 (6)

diameter distancda(z.). The masses are therefore degenerate with
other late-time parameters (such as the dark energy maolelh if
the other late-time parameters are fixed by external distdata,
there is very little sensitivity to individual masses simhgz,) is
determined primarily by the summed mgssy, ~ 93140, h%eV.

The signature of magdifferences amongst neutrinos is thus
felt mainly through their effect on the growth of structubgffer-
ent masses have different free-streaming wavenumberseaaid
has their own unique signature on the structure formatistohj
of the universe. As extremes, if all the mass were in one sigés
the non-relativistic transition would be earlier than ietmasses
were degenerate and the damping in the matter power spectrum
would not extend to such large scales. On scales smaller than
but close to, the horizon size at the non-relativistic titeors for
the degenerate case, the matter power spectrum shouldotigere
be smaller for the degenerate case compared to if all mass wer
in one eigenstate. However, this behaviour reverses oesta-
low the smaller (i.e. the non-degenerate case) of the freassing
scales at the observed redshift, and the degenerate cakbhave
less suppression of power. This is because on such scalasuhe
trinos would never have clustered since early times and #e d
generate case would have a later non-relativistic tramsiéind a
slightly lower neutrino energy density through the extehttan-
sition epoch (see Figs 3 and 4lin Lesgourgues|et al.| 20045€The
signatures also show up in the CMB WL power spectrum, which
roughly reflects the matter power spectrum aroand?2. This is
illustrated in the lower plot of Fid.]3, where we plot the fiiaoal
difference in the deflection power spectrum compared to Hse c
of degenerate masses in the two hierarchies at fixed totad mas
> my = 0.095eV. The situation is rather more subtle than the ex-
treme cases discussed above, since there are effectivelfree-
streaming scales and non-relativistic transitions in thenal hier-
archy at this total mass. Although cosmic variance (3%=a1000)
dominates the differences in deflection power between thénter-
archies at each multipole, the broad-band nature of thekigeans

One of the key observables considered in this paper is the re-that we can combine many multipoles to beat down cosmicnegia

construction of the CMB weak-lensing deflection field frone th

(to roughly 01% for all multipoles up td = 1000).
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Figure 3. Upper: Fractional difference of the lensing power spectrum from
a scenario with massless neutrinos, for a total massG&3®V. The sup-
pression of power on small scales is clearly séenver: Fractional differ-
ence of the lensing power spectrum from a scenario with degénneutri-
nos, for a fixed total mass of 0.095 eV in the inverted hienafttiue) and
normal hierarchy (green).

It should therefore be possible, at least in principle, teede

Table 1.Fiducial parameters used throughout this work. Note tretin-
sity parameters for massive neutrinos are close to thewvaiutee minimal-
mass normal and inverted hierarchies: they correspond téd toasses
Sy my, =0.062eV (normal) ang m, = 0.105eV (inverted).

Parameter Value
Qph? 0.023
Qch? 0.112

h 0.703

T 0.085
As 2.42x107°

ns 0.966
Q,h? (normal) 0.000666
Q,h? (inverted) 0.00113

w -1
1000(z,) (normal) 1.03957
1008(z,) (inverted) 1.04081

Table 2. Central frequencieg, beam full-widths at half-maximurfynm,
and temperature and polarization sensitivitids, and Ap, for the CMB
channels ofOrE (The COrE Collaboration et al. 2011).

4 Brwhm At bp
(GHz) (arcmin)  tKarcmin)  (uKarcmin)
105 10.0 2.7 4.6
135 7.8 2.6 4.5
165 6.4 2.6 4.6
195 54 2.6 4.5
225 4.7 2.6 4.5

3 STATISTICAL METHODS
3.1 Markov-chain Monte Carlo

The principal tool we use to forecast parameter constramts
Markov-chain Monte Carlo (MCMC). We first generate fiducial
unlensed CMB spectr&;’ T, C'E and CEE, the lensing deflec-
tion power spectrunG?, and the cross-correlatior@! ¢ andCEY,
using the publicly-available Boltzmann code CAMB (Lewisaét
2000) with fiducial parametergy. We then analyse the mean log-
likelihood as a function of parametefis given by

ol
ey e

where C is the covariance matrix of the data vectdr=

—2(InP(8]6g)) = Tr[C(6p)C1(6)] +In

@)

mine the mass hierarchy from a combination of CMB T+P and [ale,aiEm,aidm}, which consists of the unlensed temperature Bnd

CMB WL observations. Including the oscillation measureteers
prior information significantly ameliorates this task, as anly
have to determine a single model from a choice of two, ratieen t
deduce the mass splittings purely from cosmology. Howeasewe
shall see, parameter degeneracies present a considebsitéele
to realising this goal.

Finally, we note that it has recently been
claimed (Wagner et al. 2012) that non-linearities roughbytile
the matter power spectrum differences between the higeasrfibr a
fixed total mass appropriate to the mininal-mass invertedainchy
(> my = 0.095eV) on mildly non-linear scalek ¢ 1hMpc™1).

mode polarization, and the reconstructed lensing deflectial-
tipoles. Note thaC includes instrument noise and the statistical
noise of the lensing reconstruction. The mean log-likaihdas
been normalised to zero at the maximum-likelihood pointereh

6 = 6y. Such a likelihood was considered in €.g9. Lewis & King
(2006) in the context of extracting cluster masses from Clis4
ing.

Our fiducial parameters are given in Tadlé 1, and are
the maximum likelihood estimates from the WMAP 7-year
release |(Komatsu etlal. 2011) except for the density parame-
ters for massive neutrinos which we take to be close to the

However, such small scales are deep in the region where CMB values for the minimal-mass normal and inverted hieraschie

lensing reconstructions will always be dominated by diaté
noise; see Sectidn 3.2.

We use noise levels appropriate to the propoSMorE mis-
sion (The COrE Collaboration et|al. 2011); see Table 2. Wewtc
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Figure 4. Power spectrum of the statistical noise on lensing recoostr
tions forCOrE using only temperature information (red) or temperatuiee an
polarization (blue). The linear-theory lensing deflectpmwer spectrum is
also shown (black), along with the effect of including theximear matter
power spectrum (black dashed).

crudely for removal of astrophysical foregrounds by usinty ¢he
frequency channels in the range 105-225GHz and retainiraga f
tion fsy = 0.7 of the sky. We implement the latter approximately

ever, these estimates are inherently statistical in natimee wish

to compare the results of the MCMC analysis to those of a Fishe
analysis we need to know the typical statistical fluctuatibrour
covariance matrix estimates. This translates into somtesda

the eigenvalues and eigenvectors, a matter that we exploke-i
pendixB.

3.2 Fisher analysis

In Sectior b, we make some comparisons between parameter con
straints obtained with MCMC and those from a Fisher analysis
The Fisher information matrix is the Hessian of (minus) theam
log-likelihood at the fiducial parameters. To the extentt tiee
likelihood is Gaussian in the parameters, constraints/eérirom
MCMC exploration of the mean log-likelihood should agre¢hwi
the Fisher analysis. Differentiating equatidd (7) withpest to

the parameters gives the Fisher matrix (see, for exampleBonl
2003)

1

oc __,0C
. _ = -1 -1
Rj = 2Tr{c 98 79,}
| XX’ YY'
max ac
= L [Cov(XX',YY)] 1 (8)
) | .
I=2XX"YY' 09' 09]

where CoyXX’,YY’) is the covariance of the power spectra esti-
mators, including noise, arXiX’ andYY’ stand for the spectf&T,

by reducing the number of degrees of freedom per observable a EE, TE, dd, Td, andEd, with dd the weak lensing power spec-

each multipole from P+ 1 to (2| + 1) fky when evaluating equa-
tion (). We retain multipoles up thhax = 2500. To compute the
statistical noise on the lensing deflection reconstructienuse the
optimal quadratic estimator of Okamoto & Hu (2003); the mois
power spectrum is shown in Figl 4 for reconstructions fil©@rE
using only temperature or temperature &andB-mode polariza-
tion. ForCOrE, the E-B estimator dominates the reconstruction.

Note that we use thanlensed temperature an-mode polar-
ization in the likelihood. These are not directly obsereablit we
use them as a simple work-around of the double-countingegssu
that may arise when jointly analysing the lensed CMB and tens
construction.

We impose the priow > —1 on the dark energy equation of
state. This represents prior preference for a model in whantk
energy is described by a field satisfying the weak energy ieond
tion. Models withw < —1 do exist, but possess greater complex-
ity (Fang et all 2008), and are potentially unstable at thentum
level (Carroll et al. 2003). Since the data do not prefeither side
of —1, we select the simpler mod&l,> —1.

We sample from the likelihood using the publicly-available
CosMOMC package|(Lewis & Bridle 2002), modified to include
the effects of neutrino mass splitting. We use a modifiedioBrs
of the FUTURCMB lensing add-on for@sMoMC (Perotto et al.
2006) including the small correlation between tenode polar-
ization and the lensing deflection (Lewis el al. 2011) caltad in
CAMB asClEd. CosmoMC works natively with the angular scale
of the sound horizon at recombinatiofi(z,) as opposed th, so
we include the fiducial value of this parameter in Tdlle 1 fame
pleteness.

When forecasting standard deviations of parameters, wé mus
estimate the covariance matrix from the MCMC chains. Fos¢ho
parameters whose marginalised posteriors are approxXinGaeis-
sian, this is the quantity that should be compared to thdtsesti
a Fisher analysis (parameters with hard priors do not f&dl fhis
category and so do not require standard deviation estijnates-

trum etc. Assuming Gaussian fields and noise, the specific fdr
Cov(XX',YY") is
[Cov(XX,YY")]; =

+C| C|

1 ~XY = XY’
(& ©)

S C
(21 +1) foky !

wherefsy is the fractional sky coverage. The tildes denote the total
power spectra including instrument noise %X’ = TT and EE
and reconstruction noise fotX’ = dd. The inverse of the Fisher
matrix gives the covariance matrix between the parametatsta
diagonal elements give thezrdmarginalised errors on parameters.
When constructing the Fisher matrix, it is important to use a
curate power spectrum derivatives, since numerical noigbase
can artificially break degeneracies leading to over-ogtimipa-
rameter constraints. We found this particularly troubfesdor the
lensing deflection field derivatives. Our brute-force solutwas
to run CAMB at a high accuracy settingdcuracy_boost=5) to
remove this noise, as it was found not to be due to a bad choice
of derivative step sigk In addition, we found it necessary to en-
force some parameter degeneracies directly in the comistnuaf
the Fisher matrix. We detail these issues in Appeqdix A.

~ XY’ ~X’Y)
)

3.3 Bayesian model selection

Distinguishing between the two hierarchies is a problem ofleh
selection. We can quantify our relative degree of beliefiffecent
models by use of the Bayes’ factor, defined as the ratio of 8iaye
evidences. Consider two mode\s and M’ (for example, normal
and inverted hierarchies), with parameter vectend@’, not nec-
essarily of the same dimension. bebe the data vector. The ratio
of posterior probabilities is

1 We used a pre-January 2012 version of CAMB for this work. Sehien-
provements in numerical accuracy were made for the Jan@dr3 Zrsion;
see Howlett et all (2012).
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pP(M'x) _ p(xIM")p(M")
p(MIx)  p(X{M)p(M) °

(10)

wherep(M) is our prior degree of belief in the model and sim-
ilarly for M’. The evidencep(x|M) is found by marginalising the
product of the likelihoog(x|6,M) and the parameter prig(6|M)
over parameters. Assuming a@riori preference for either model,
p(M) = p(M’), and so the ratio of posterior probabilities becomes
the Bayes’ factor

g /d6'p(x/&',M")p(6'|M)
~ /dep(x|6,M)p(6]M)

(11)

EvaluatingB involves a difficult multi-parameter integration but
we may make some analytical progress by approximating kie li
lihood as Gaussian, the ‘Laplace approximation’ (for exEmp
MacKay! 2008). For the case §fm, andw, the prior cuts off the
posterior at close to the maximum likelihood point, so thegna-
tion over these parameters must be performed numericastiigy
from our MCMC chain samples, we perform a least-squares fit of
a multi-variate Gaussian to the likelihood. For model stibec we
parametrize the neutrino masses in terms of the lightest,mather
than the total mass, so that the prior volumes for the twahibies
are equal. We calculate the evidence assuming a uniform iprio
the lightest mass (and the other parameters) by first irtiagrana-
lytically the Gaussian fit over all parameters exogpind the mass.
The resulting two-dimensional Gaussian is integrated thesprior
range numerically. The Bayes’ factor then reduces to a mtooiu
the maximum likelihood ratio and an ‘Occam factor’ in analog
to the fully Gaussian case. However, here the Occam factorede
from both the Gaussian covariance and the degree to whidikéhe
lihood is cut off by the prior.

We perform model comparison in the case of the minimal-
mass inverted hierarchy taking the ‘data’ to be the fiductalr
spectra (plus noise) calculated in the inverted hieralthen anal-
ysed assuming the normal hierarchy, the likelihood hasal lnax-
imum within the prior volume. We locate this point, and theeli-
hood there, leaving us to fit only the covariance of the mudtiate
Gaussian. The Bayes’ factor we calculate is the ratio of thie e
dences derived from the respective mean log-likelihoodtsiofigh
this will generally differ from the mean Bayes’ factor, wendée
it by (B) noting that its value should be typical in an ensemble of
data from the minimal-mass inverted hierarchy.

The smaller the volume of the likelihood confidence elligsoi
the more finely-tuned the model must be to fit the data. Such mod
els are penalised in the Bayes’ factor in favour of modelsctvhi
do not need such fine-tuning (MacKay 2003). The other term in
the Bayes’ factor, involving the ratio of the maximum likesods,
represents the data’s sensitivity to the mass splitting.omol-
ogy were insensitive to mass splittings, the ratio of maxmike-
lihoods would always be unity if the true total mass were darg
enough to be realised in either hierarchy. In this case, tteam
factor will generally favour the normal hierarchy as theelikood
is non-zero over a greater range of the prior volume.

Jeffreys 1(1961) proposed model selection criteria dependi
on the value taken by the Bayes’ factor. IfBn> 5, evidence for
model M’ is ‘decisive’ over modeM, if 2.5 < InB < 5 the evi-
dence is ‘strong’, and if ¥ InB < 2.5 it is ‘substantial’. For a dis-
cussion of the suitability of these criteria, and the usefas ofB
as a statistic, see Efstathiou (2008) and Jenkins & Pea@odk §.

7

4 EXTERNAL DATASETS

In this section we discuss the various priors from non-CMB
data that we include in our analysis. For a comprehensive sur
vey of the utility of external data in constraining neutrimasses,
see Abazajian et al. (2011). We consider only a subset ofoaH p
sible probes, since the main focus of this paper is inforomati
from primary CMB anisotropies with a weak lensing reconstru
tion. CMB experiments offer a relatively clean source ofrookog-
ical information at multipole$ < 2000 since the relevant physics
is simple and well-understood and extra-Galactic foregdsuare
sub-dominant to the primary CMB fluctuations.

We only include external geometric probddg( luminosity
distances from supernovae and BAO) here. Other direct probe
the clustering of matter on small scales, such as galaxyertus
ing, galaxy weak lensing, the Lg-forest and cluster abundances
are potentially very useful probes of neutrino masses tsecat
the scale-dependent growth associated with neutrinosfireaming
(see Section]2). However, associated problems such asiftedsh
space distortions, scale-dependent galaxy bias, soudsaifeun-
certainties, and the fact that the free-streaming scalel@se to the
non-linearity scale at low redshift make it interesting é@ svhat
can be achieved with only the CMB and relatively clean geomet
probes.

4.1 Hubble constant

As we discuss later in Sectibh 5, our Fisher matrix indictitasthe
geometric degeneracy betwelgrw and neutrino mass is not com-
pletely broken by lensing. The neutrino mass contributethi®
degeneracy in a small way, so we might hope to improve our fore
casts with a simple prior oHg. Current precision from the Hubble
Space Telescope is around the 3% level (Riess/et all 201tlfprbu
the purpose of forecasting we impose a 2% prior, not unteatia

the time-scale of a mission likeOrE (Freedman & Madore 2010).

4.2 WFIRST Type la supernovae

Distance modulus information from Type 1a supernovae sffer
ometric information about the universe which can be a ugglie

of late-time phenomena such as dark energy (Riess et all; 1998
Perlmutter et al. 1999), as well as a tool for breaking gedmee-
generacies inherent in the CMB (Efstathiou et al. 1999; Wigrver
1998).

In this work, we forecast distance modulus measurements
from the Wide-Field InfraRed Survey Telescop®/HIRST;
Greenetal.| 2011), the highest ranked recommendation for
large space-based missions in the 2010 US Decadal Sur-
vey (Decadal Survey of Astronomy and Astrophysics 2010). Ex
pected survey characteristics were taken from WEIRST In-
terim Repoﬁ. We assume their ‘conservative’ figure of merit as-
sumption, but double the survey time to 12 months. We fotecas
200 supernovae in each of eight redshift bins between0.4
and z = 1.2, each bin havinghz = 0.1. We augment this sam-
ple with 500 nearbyZ < 0.1) supernovae, as forecast by the Fig-
ure of Merit Science Working Group PaieWe assume a scatter

2 http://wfirst.gsfc.nasa.gov/science/WFIRST_Interim_Report.pdf
3 http://wfirst.gsfc.nasa.gov/science/fomswg/fomswg_technical.pdf
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Table 3. Forecast BOSS errors aia(z) andH (z) in three redshifts bins.

z (@ H@
035 1.0% 1.8%
0.60 1.1% 1.7%
250 15% 1.5%

om(2) = 0.11+ 0.033z of the apparent magnitudes for each super-
nova, after light-curve fitting, about the (unknown) abselmag-
nitudeM. The mean absolute magnitude in each redshift bin then
has variance?(z) = 0§ (z)/Ni + 04,4(z), whereN, is the num-
ber of supernovae in each bin aa@,s(z) =0.02(1+2)/1.8 repre-
sents a floor in the scatter due to systematic effects. Oaimtent
is consistent with th®VFIRST ‘conservative’ forecasts. We neglect
potential biases through use of different light curve fittend as-
sume all such uncertainty is contained in our systematar.err

We construct the mean log-likelihood after marginalisingro
the absolute magnitudM (see Appendix F of Lewis & Bridle
2002). Assuming no correlation between redshift bins, wesha
up to a constant,

- o M 1\ RS
2nP(OI8) =3 T2 (2 (.zot%t(a)) (Zo&(a)) 12

whereAy; = U(z;0) — u(z; 6p) with u(z;60) the distance mod-
ulus at parameter8, and 6 is the fiducial model. The sums are
over redshift bins. The second term in equat[of (12) arises the
marginalisation and ensures that the log-likelihood dag€hange
underAy; — Api + M.

4.3 BOSS baryon acoustic oscillations

Table 4. Parameter errors &) in the two hierarchies, comparing MCMC
and Fisher matrix results. We assume noise levels apptepd&€OrE and
use only CMB T+P+WL. We quote 68% upper limits §m,, andw.

Inverted Normal

MCMC Fisher MCMC Fisher
Qph? 371x10°° 384x10° 3.62x10° 382x10°
Qch? 434%x10% 560x10% 430x10%4 550x10%

h 0.014 0041 Q015 0042

T 232%x10°% 233x10°% 234x10°% 243x10°3
log10'%As 7.00x10% 826x10°% 6.83x10°% 817x10°3
Ns 163x103% 186x10° 162x10°% 1.86x10°3

3 my(eV) <0.136 <0171 < 0.098 <0151

w < —-0.93 < -0.87 < —-0.93 < -0.87

5 RESULTS

5.1 Neutrino mass forecasts

We begin by considering CMB data alone. The results of our
MCMC runs are displayed in Tabld 4, along with Fisher matrix
results for comparison. The forecast 68% upper limit on thtalt
neutrino mass with CMB T+P+WL witliCOrE-like noise levels

is 0.136eV for the inverted hierarchy, and@8eV for the normal
hierarchy from the MCMC analysis. Recall that in the fiduold-
els,y my =0.105eV in the inverted hierarchy arydm, =0.062eV

in the normal hierarchy. For Gaussian marginalised pastdistri-
butions, truncated by the prior on the minimum total masssé¢h
upper limits correspond todl errors of 0036 and 0039eV for
the inverted and normal hierarchies, respectively. Theselts
are consistent with the MCMC forecasts in t8&rE White Pa-
per (The COrE Collaboration etlal. 2011). They derived 95% up
per limits on the lightest neutrino mass of the two hieragshof
0.045eV and M34eV for the inverted and normal hierarchies re-

The sound horizon at the baryon drag epoch, when baryons spectively. Our corresponding values ar84eV (inverted) and

were effectively released from photons, imprints a charist

tic scale in the matter distribution. Observing projecsiaf this
standard ruler in the galaxy distribution allows one to map o
H(z) andda(z) at a range of redshifts (Blake & Glazebrook 2003;
Seo & Eisenstein _2003; Hu & Haiman 2003). Current measure-
ments of BAO are limited to the spherically-averaged catieh
function (or power spectrum) which is sensitive to an effect
distance[dZ(2) /H(2)]*/3; see, for example. Beutler et al. (2011);
Blake et al.|(2011); Anderson et al. (2012) for the most renera-
surements.

A major advance in BAO detection will come from the com-
pletion of BOSS [(Schlegel etial. 2009), part of SDSS-III. sThi
should allow separate measurements of the angular diamhister
tance and Hubble parameter in several redshift bins. Inel3bl
we show the forecast constraints dr(z) andH(z), taken from
the SDSS-1II Project DescriptiﬂnWhat is actually measured is
da(2)/rs andH(2)rs, wherers is the sound horizon at the baryon
drag epoch, and it is this quantity we compute in our MCMC anal
ysis. The two are mildly correlated, and we assume a coiwalao-
efficient of 0.4, consistent with the value found.in Seo & Bisein
(2007).

4 http://www.sdss3.org/collaboration/description. pdf

0.039eV (normal), the slight differences probably being duthe
slightly different fiducial parameters used. The &rrors on the
other parameters are also consistent, with small diffeguice to
the different parameter sets used. The marginalised 68 &% 9
confidence regions for the massive neutrino energy densdiyte
other parameters are plotted in Higs 5 Bhd 6, along with Fisiae
trix results.

Comparing our MCMC results with those from the Fisher ma-
trix, we note significant discrepancies. The Fisher matvisresti-
mates the forecastalerrors ony m, andw by a factor of two and
on h by a factor of three, but agrees well with the MCMC results
for the other parameters. A likely cause of this discrepaadhe
strong angular-diameter degeneracy betwgem andy my in the
unlensed CMB power spectra. This degeneracy is not conylete
broken by the inclusion of the lensing reconstruction ang ma
troduce some non-Gaussianity into the likelihood, thudatiog
the Fisher approximation.

An additional source of the discrepancy concerns our chosen
parameter set. As discussed in Apperidlx A, using thg ity ,w)
parametrization requires fixing the ratio of certain powgecira
derivatives to eliminate numerical noise at intermediate high
multipoles. The results of the Fisher analysis are seesitivthis
ratio, which involvesda(z.) derivatives. If instead we replade
with 6(z,) as a parameter in the Fisher analysis, in which case we
enforcedC; /dw = 0 at intermediate and high multipoles for the un-
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Figure 5. Marginalised confidence regions (68 and 95 per cent) between
the massive neutrino energy density and the rest of the ghearset for
the inverted hierarchy. Shaded regions are MCMC resultscantours are
from the Fisher matrix.

lensed CMB spectra, on transforming backteve do not recover
accurately the original Fisher matrix. Sensitivity to satioices is
clearly unsatisfactory, and is the likely explanation foe differ-
ences in forecast errors in these parameters.

A similar discrepancy between MCMC and Fisher forecasts
was found in_Perotto et al. (2006) in the context of forecastor
Planck-like noise, although their disparity is much smaller than
ours reported here. In that work, the discrepancies redudesh
lensing reconstruction was included. It was argued thatesiens-
ing breaks the main degeneracies in the unlensed CMB, iimgjutd
brings the posterior closer to a multivariate Gaussian anaves
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Figure 6. As Fig.[3 but for the normal hierarchy.

nated b)Cldd. The most relevant degeneracy for neutrino masses is
with the cold dark matter density, as can be seen in[Rigs Blanwe 6
may understand this as an effect of the lensing potentiatesno
such degeneracy is observed with just the unlensed CMBe&asp
tion of the derivatives o9 with respect tgy m, andQch? reveals
broadly similar features. Increasing neutrino mass daimpehns-
ing potential on small scales, with large scales unaffeasdlis-
cussed in Sectidd 2. Increasing the cold dark matter debsitgts
the lensing potential on small scales, leaving large scalasively
unaffected. To see this, note that increasindn® pushes back the
epoch of matter—radiation equality to earlier times. Fodesthat
are sub-Hubble during radiation domination, the gra\etzi po-
tential undergoes oscillations with decaying amplitude sattling

the agreement between Fisher and MCMC analyses. The same iglown to a constant value again well into matter dominatiothW

almost certainly true in our forecasts, but is possible thatsig-
nificantly lower noise levels we have used make the Fisheltees
more vulnerable to numerical effects even with lens recantibn
included. Note that we checked that running our Fisher aigly
with the Planck-like noise levels used In Perotto et al. (2006) repro-
duces their neutrino mass forecasts. It is interestingthigaFisher
forecasts on neutrino mass in Kaplinghat et al. (2003) froattzer
more sensitive, higher-resolution CMB satellite are corapk to
our MCMC results. In particular, they find arlerror of Q044 eV
assuming two massless and one massive neutrinos.

With CMB T+P+W.L, the constraints on neutrino masses are
limited by degeneracies with other parameters. To illustthis,
we note that the conditional errors on the total neutrinosmesing
6(z.) (rather tharh) in a Fisher analysis are@42 and 192eV
for the normal and inverted hierarchies, respectivelyhis param-
eter set, the conditional information on neutrino massetoisi-

matter—radiation equality earlier, the potential decass Iduring
the shorter sub-Hubble radiation-dominated phase ancbtieaial

on scales smaller than horizon scale at matter—radiatioaliggis
increased. On large scales there is no such effect. The eliaiige
power spectrum of the gravitational potential appears toidate
other changes, such as the mapping ftamk due to the reduced
distance to typical lenses on increasifigh?, in determining the
effect onC,dd. Since the effect of increases in neutrino mass and
cold dark matter density have opposite sign in the lensingepo
spectrum, the parameters are positively correlated.

Finally we note that there is little difference in our MCMC
results between the hierarchies. This is in contrast to igteeF ma-
trix results, which give a 35% larger limit on the total maskative
to the fiducial value in the normal hierarchy compared to the i
verted. However, since we believe the Fisher results aiabte,
it is clear that this difference is not significant.
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Table 5. Upper limits (68%) on the total neutrino magsn, and dark en-
ergy equation-of-state parameteifor inverted (top) and normal (bottom)
hierarchies, combining different external datasets (getefor details).

No priors Ho WFIRST BOSS Combined

S my(eV) 0.136 0.131 0.131 0.119 0.118
w -0.93 -0.97 -0.98 -0.98 -0.99

S my(eV) 0.098 0.095 0.095 0.082 0.080
w -0.93 -0.97 -0.98 -0.98 -0.99
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Figure 7. Marginalised confidence regions (68 and 95 per cent) between
Quh?, Qch?, andw, with (green) and without (blue) a 2% prior ¢ty, for
inverted (top) and normal (bottom) hierarchies.

5.2 Inclusion of external datasets

We now consider to what extent external data can improvedhe c
straints on massive neutrinos by breaking degeneraciés iGVB
T+P+WL analysis.

We start with the effect of including a prior of width 2% on
the Hubble constant. The error on the total neutrino mas$an
is reported in Tabl€]5. The Hubble prior changes this litifees
lensing has broken most of the degeneracy between neutase m
andh that is present in the unlensed CMB leaving a marginalised
error onh from CMP T+P+WL alone comparable to the width of
the Hg prior (see Tablgl4). The most important degeneracy for neu-

trino mass is with the cold dark matter, as seen in Elgs 5[&nd 6.

The inclusion of aHg prior has little effect on this degeneracy; see
Fig.[d. However, the constraint amis reduced by over a factor of
2. This is due to the breaking of the degeneracy betviesmd w,
a consequence of the geometric degeneracy in the unlens& CM
which is not completely removed by the lensing reconstoncti
When we include forecast observations of Type 1A super-
novae fromWFIRST, we see similar improvements fm, and
w as when including thelg prior; see Tablgl5. After marginalising
over absolute magnitude, the supernovae data are esbedisal
tance ratios and so, out #3= 1, are mostly sensitive in flat models
to Qm andw. The density parameter is well constrained by super-
novae which, when combining with the CMB, sharpens up con-
straints onh despite the supernovae distance ratios providing no
direct measure of this parameter. Moreoweiis well constrained
since distances at low redshift are sensitive to the evaiwf dark
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Figure 8. As Fig.[d but with theHo prior
supernovae data froMvFIRST.

replaced by forecast Type 1A

energy. The MCMC results show that the total neutrino mass ha
little degeneracy with the geometric parameteesdw, so the er-
rors ony my do not change by much with the inclusion\WIRST
data. The degeneracy with:h? is again preserved, as shown in
Fig.[8.

A greater improvement is seen when forecast BAO data from
the complete BOSS is included as a prior. The 68% upper limits
on the summed mass shrink tdl@9eV and M82eV for the in-
verted and normal hierarchies, respectively, and the uppéron
w becomes—0.98 for both hierarchies (Tablg 5). The outperfor-
mance of BAO data compared to Type la supernovae is probably a
combination of effects. Firstly, the supernovae providiy oglative
distance information (i.e. ratios) at low redshifts, whinlcombi-
nation with a well-constrained distance measurement toméé
nation from the CMB does not provide as strong a constrairihen
evolution of the expansion rate as an absolute distanceureas
ment from BAO. This effect is partly compensated by the fhat t
our BAO measurements are at higher redshifts, closer toatte |
scattering surface, and so do not provide as long a lever sitimea
supernoave. Secondly, the BAO measurements probe botimthe a
gular diameter distance and the Hubble rate, thus offernirigtar-
nal consistency check that supernoave do not possesslyFmal
forecasted supernovae measurements contain a limitingrsgtic
floor to the error budget which is not shared by the BAO. Theatff
of BOSS information is shown in Fifi] 9. We see from this plattth
the degeneracy witf:h? still remains, although with its strength
reduced.

Finally, the combination of all priors gives excellent grec
sion on bothy m, andw, the 68% upper limits being.D18eV and
—0.99 for the inverted hierarchy, andd80eV and—0.99 for the
normal hierarchy; see Tallé 5 and also Eig. 10 for confideaee r
gions. The correspondingslerrors assuming truncated Gausssian
posterior distributions are@18 and 021 eV. The 95% upper limit
in the normal hierarchy is.003eV (which agrees well with Guas-
sian extrapolation from the 68% limit). The implication big is
that, even if cosmology had no sensitivity to mass splittibgt
only to the total mass, the inverted hierarchy would tygycake
disfavoured at almost theo2level if neutrinos were indeed in the
minimal-mass normal hierarchy.
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Figure 9. As Fig.[1 but with theHo prior replaced by forecast BAO data
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pernovae, and BAO).

5.3 Behaviour with fiducial mass

We have repeated our MCMC analysis for different fiducial seas

In Table[® we report thed errors on the total neutrino mass for
various fiducial values. For the fiducial masses less than3eV,

the 1o error is computed from the 68% upper limits, assuming the
marginalised posterior distribution ghm, can be approximated
by a Gaussian truncated by the lower limit on the total masksen

Table 6. 10 error (see text for details) on the total neutrino mass asie:fu
tion of fiducial mass, from MCMC runs including only CMB T+P4W

Fiducial Mass (eV) Hierarchy a(3my) (eV)

0.062 Normal 0.039
0.105 Inverted 0.036
0.140 Inverted 0.024
0.373 Degenerate 0.037
0.559 Degenerate 0.037

11

respective hierarchy. For total masses greater thtze\Q the pres-
ence of mass splitting becomes unimportant, so we foresagtia

ing three degenerate neutrinos, which speeds up the cadngdaln

these cases, we simply quote the standard deviation of thglsa.

The forecasts are for CMB T+P+WL alone.

We observe only a mild variation of the error with fiducial
mass, which we interpret as a balance between two competing
effects. As the mass increases, the distinctive effect ofrim®
free-streaming on the lensing power spectrum is pushed atiem
scales where the reconstruction noise is higher. Howevegpec-
ulate that the error from the unlensed CMB alone on the toteam
shoulddecrease until the neutrinos are sufficiently massive to be
noi-relativistic as recombination, at which point it shibélatten
outd.

5.4 Hierarchy biasing

Given our uncertainty in the hierarchy, how should we esttma
masses from future data? The Bayesian approach to thisgpnobl
is that of Bayesian model averaging (Hoeting et al. 1999)hich
the posterior probabilities for the parameters in each inade
weighted according to the posterior probability of each elothis
correctly propagates model uncertainty into parametergrin the
limit that the evidence for one model is overwhelming, Béges
model averaging reduces to parameter estimation from thdem
In the case that the posterior probabilities for the paramsedre
similar in each model, averaging is equivalent to usingegithodel
alone.

It is therefore interesting to see how the posterior prdhiss
of the parameters differ between the two hierarchies. Toehd,
we forecast posteriors adopting the normal hierarchy farcial
data taken in the inverted hierarchy (wiftm, = 0.105eV. Note
that this fiducial total mass can realised in both hieraschior
CMB T+P+WL, we find no significant bias in any of the cosmo-
logical parameters as a result of this procedure. The lalges is
in 6(z.), its maximum likelihood value being shifted from its ‘true’
value by 0760. When all priors from external data are included, the
greatest bias is iw which is shifted by (68c.

Our findings about bias are in contrast to the results of
De Bernardis et all (2009), who found shifts in parameterspas
rable to their T errors, with a significant shift in the value Bfim, .
Direct comparisons are difficult since they use a galaxy weag-
ing survey instead of a CMB lensing reconstruction. Howetrer
main source of discrepancy is likely due to the parametdnaf
the hierarchy in De Bernardis et al. (2009), which was founte
strongly degenerate withim, .

5.5 Distinguishing the hierarchies

Distinguishing the hierarchies is properly a question oflgice-
lection. We discuss this for the two cases of fiducial modedd t
are the mimimal-mass normal hierarchy and the minimal-rirass
verted hierarchy.

If the masses are in the normal hierarchy, sensitivity toamas
splittings is not required to rule out the inverted hieraritithe true

5 For such large masses, the effect on the CMB spectra is rplighbr in

the total mass. However, for light masses, their effect afest > 500 for
fixed 8(z,) is roughly quadratic in the mass (see Secfibn 2) which would
give a constant error in the square of the mass.
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Table 7. Values of In(B) for the inverted to normal hierarchies when the
fiducial model is the inverted hierarchy (wifhm, = 0.105eV). The values
are for T+P+WL plus the indicated external data.

No priors  Hp WFIRST BOSS Combined

-1.08 2.66 2.53 2.53 251

total mass is low enough and the observations have suffisemt
sitivity to the total mass. With no sensitivity to mass spiis, the
likelihoods for the two hierarchies would necessarily beatmt
the same total mass (and all other parameters) but the |aouerch
on total mass in the inverted hierarchy would exclude théoreg
of high likelihood giving significant odds in favour of theoftect)
normal hierarchy. Of course, sensitivity to mass splisingpuld
reduce the likelihood in the inverted hierarchy comparettiénor-
mal, further favouring the latter.

We do not consider the minimal-mass normal hierarchy in de-
tail here since our Gaussian-fitting to the likelihood i®likto be
very noisy when the prior range excludes the peak of theidikel
hood. However, we note that lower limits on the Bayes’ factm
be inferred from the results of Sectibh 5 by assuming no sensi
ity to mass splittings. The forecast constraint on total snasing
all external data then gives an odds ratio of 15:1 in favouthef
normal hierarchy in the most favourable case of the minimoim t
tal mass (M56eV). In our forecasting, the peak of the likelihood
when analysing with the correct hierarchy is necessaritii@true
parameter values. Under one-sigma fluctuations of the peak-d
wards and upwards, due to cosmic variance and measuremant er
the odds ratios vary between 70:1 and 4:1.

For the case of the inverted hierarchy, we compute typical
Bayes’ factors with the approximations discussed in Se@d.
Our results for IfB) are shown in Tablgl7, where the Bayes' fac-
tor B is the ratio of evidence for the inverted to normal hieragshi
With no external data, the Bayes factor is negative, indigahat
the normal hierarchy would be preferred by the data evengtmou
the actual model is inverted. As noted in Secfion 3.3, thisear
because the Occam factor favours the normal hierarchy wien t
likelihoods have only weak sensitivity to mass splittingel ahe
fiducial total mass can be realised in both hierarchies. We her-
ified that the other factor i, the ratio of maximum likelihood
values, is sub-dominant compared to the Occam factor.

The addition of geometric priors to the CMB data pushes
the Bayes’ factors into the positive ‘strong’ evidence negiwith
odds ratios around 12:1 in favour of the (correct) invertestdr-
chy. Again, the Occam factor dominates the likelihood rétibich
equalse®23) but now favours the inverted hierarchy, due to small
differences in the shapes and peak positions of the liketiedor
the two hierarchies. We note that our results for the Bayas® f
tors with external geometric data are comparable to thqsertexd
by lJimenez et al.| (2010) for a full-sky, cosmic-varianaceiied
galaxy weak lensing measurement with median redshiftBoath
our treatment of the mass hierarchies is rather differetiigws.

Note that to calculate our Bayes’ factors, we have to caleula
the value of the maximum likelihood when an inverted model is
analysed as if it were normal. Since we simply use the maximum
likelihood included in the MCMC chains, there is some erntra-
duced. Since the true value cannot exceed unity, and weat{ypic
find minimum x2 values around @, the logarithm of the Bayes’
factors could bdower by up to 02. One consequence of this is

that there is little significance in the anomalously low Bsiyfactor
found in the ‘all priors’ case.

6 CONCLUSIONS

We have forecast constraints on cosmological parametegiing
light neutrino masses with future CMB temperature, poktion
and weak-lensing-reconstruction information from a pRlsiack
space-based experiment suchCBrE. Constraints on mass split-
tings from oscillation data were used as a prior to delimit possi-
ble mass hierarchies, normal and inverted. We performed @EM
based forecasts for fiducial models with masses close to the m
imal masses in the normal and inverted hierarchies (speltjfic
we tooky m, = 0.062eV for normal ang m, = 0.105eV for in-
verted). Our results show that tl¥rE mission alone could place
68% upper bounds on the total neutrino mass 098 and 01.36eV
for the normal and inverted hierarchies. For Gaussian maliged
posterior distributions truncated by the prior on the miaimmass
in each hierarchy, these would corresponddcetrors of 0039 and
0.036eV.

We found good agreement between our MCMC results and a
Fisher matrix forecast for all parameters except the newimass,
equation-of-state of dark energy and the Hubble parametér
for which the Fisher matrix overestimates the errors by astle
factor of two. These parameters are highly degenerate inithe
lensed CMB spectra for very light masses with only the corbin
tion that enters the angular scale of the sound horizon anrec
bination, 6(z.), well constrained. Any independent information in
the unlensed CMB spectra on intermediate and small scales co
strains combinations of squared-masses as the minimaenase
approached, these being the leading corrections to theimewe-
locity, energy density and pressure in the ultra-reldiivimit.
This dependence on mass further violates the Gaussiasityrgs
tion made in Fisher forecasts when the total mass is used as a p
rameter with ultra-light neutrinos. THem,-wh degeneracy is not
fully broken by the lensing reconstruction. As a result, Bigher
results proved rather unstable to changes in parametrisatid
details of the method of calculation of power spectra dériea.
We therefore advise caution when using Fisher matricesezést
constraints with ultra-light neutrino masses such as tlcossid-
ered in this work.

We have also considered the addition of forecast geomaetric i
formation from BAO from the complete SDSS-III BOSS, and Type
la supernovae distance moduli froMFIRST, as well as a future
2% constraint on the Hubble constant. These are relatioéban’
probes, free from the problems of biasing and non-lineaniter-
ent in using galaxy clustering information directly, andrrinstru-
mental effects such as from variations in the point-spreadtfon
in cosmic shear. The distance information offered by thesbgs
brings down the 68% upper limit on the total neutrino mass1a®
and 008eV for the inverted and normal hierarchies (correspandin
to Gaussian & errors of 0018 and (021 eV). We also find percent-
level precision on the dark energy equation of state parmet
We have found that the BAO data is the most effective geometri
probe when combined with CMB T+P+WL. This is likely due to
a combination of effects. Compared to supernovae, the BA® me
surements provide absolute distance measurements andreeas
of the Hubble rate. BAO are at higher redshift, which prositiEss
of a lever arm with the angular-diameter distance to laattstng
from the CMB than supernoave, but with the low redshift ent no
extending so far into dark-energy domination (which coafuseu-
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trino mass determinations from CMB-calibrated relatistatices).
Moreover, our supernovae forecasts include a limitingesystic
floor to the errors which is not the case for BAO.

The precision achieved on the total neutrino mass when all ou
datasets are combined would be sufficient to disfavour trertad
hierarchy at typically greater than the 2evel if neutrinos were in
the minimal-mass normal hierarchy. For the alternative cighe
inverted hierarchy, we approximated the Bayes' factor \&ittex-
tension of the ‘Laplace’ method to deal with the prior bouieR
With CMB T+P+W.L alone, and a fiducial model with total mass
0.105eV close to the minimum value ofd®5eV, the Occam fac-
tor (which gives weight to models whose parameters do nai nee
to be so tightly constrained to fit the data) leads to weakufeng
of the (wrong) normal hierarchy over the inverted with 3:ded
This situation is overturned by including the geometricadats, in
which case we typically find odds ratios of 12:1 (‘strong’deiice)
correctly in favour of the inverted hierarchy. The best pexg for
distinguishing the hierarchies is for these minimal-mamsfigu-
rations — mass splittings and their orderings become iraelefor
cosmological observables at higher masses.

We also ran MCMC analyses to calculate potential biases on

parameters by analysing data assuming the wrong hieraveay.
found no biases greater thag When analysing an inverted model
while assuming it to be a normal model. This is in contrashéore-
sults ol De Bernardis et al. (2009), although direct conguans are
difficult since they forecast for different datasets ancapsetrize
the hierarchies differently. We note that a straightfodveolution
to dealing with such potential biases is to perform Bayesiadel
averaging. This would correctly propagate model uncegdirto
parameter errors.

Our results show that CMB lensing, combined with priors on
mass splittings from oscillation data and external gedmdata, is
a promising route to determining whether neutrino massehiar-
archical and, if they are, the ordering of the mass eigesst&tMB
lensing provides a relatively clean measure of the effeatenf-
trino masses on the clustering of matter below the freestieg
scale. However, even in the most optimistic scenario weidens
the evidence for either hierarchy will never be very stramliese
cosmological probes. We would expect our evidence ration-to
crease with the addition of other measures of broad-banepiow
the matter power spectrum, although at the risk of bringirghost
of other systematic effects. One particularly interestiaga com-
bination to consider further is combining CMB lensing and-co
mic shear tomography. This is free of the issues of galaxs, liat
non-linear effects will be important for cosmic shear andivates
further studies of the effects of individual masses on thelimear
power spectrun (Wagner et/al. 2012).
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is purely through the angular diameter distance at smdikscahe
necessity of taking one-sided derivativesfofw > —1) can cause
a small phase shift with respect to theerivative, which can break
degeneracies: a simple one-sided derivative at a poinakhcgives
the second-order-accurate derivative about the mid-paisimilar
problem was noted in Eisenstein et al. (1999) when difféaént
with respect to curvature. This makes determining the ptapo
ality constant between theandw derivatives of the power spectra
at highl from the ratio at some intermediate multipole problem-
atic. Even with a one-sided derivative accurate to secoderdus-
ing appropriate finite-difference coefficients) this pevhl did not
disappear. Instead, we chose to enforce the degeneracyniny co
puting the derivatives ofis(z.) with respect tow andh, and us-
ing their ratio as the proportionality constant betweééh/dw and
0C; /dh (see Equation B3 of Eisenstein etlal. 1999). This was done
for | =100, with the precise multipole chosen for a smooth transi-
tion. In addition, this enforcement was made acrossTihe EE,
andTE spectra by using the same proportionality constant in each
case, since the physics governing the degeneracy is in eaetthe
same. Our Fisher results are fairly insensitive to the eeiment
of theh—w degeneracy, and the choice of multipdleL.00) above
which it is enforced.

No such degeneracy was enforcedZam,—h or Zm,—w, since
an inspection of th&m, derivative of the CMB spectra at fixed
da(z.) revealed a non-zero signal at small scales which did not dis-
appear when more accurate derivatives (4th-order truocatiror
with large step sizes to beat down numerical noise) weredmpl
mented. This signal is the direct contribution of massivetrieos
to the pre-recombination physics discussed in Segfionig . véry
small, but large enough partially to break the geometriedegacy
with h andw.

Double-sided derivatives were used for each parametepexce
w where the phantomw(< —1) regime is not considered and for
which we used a second-order-accurate, one-sided dedvati
step size of 5% was used in computing the derivatives, wraph r
resents a compromise between numerical noise and Taylesser
convergence (Press ellal. 2007). We checked the stabilayrate-
sults to different step sizes, and found variation of at mi@86 in
our marginalised errors with the high accuracy settingsl tiseun
CAMB.

APPENDIX B: COVARIANCE MATRIX ESTIMATION

To compare the statistical quantities inferred from MCM@iak to
those of a Fisher analysis, it is useful to have some ideaeafhtg-
nitude of the statistical fluctuations in the former. For aiolwith a
large number of uncorrelated samples, we would expect these
tuations to be small, but it is important to test whether teter is
small enough to resolve any sharp degeneracies preset likeh
lihood. In this section, we investigate the effect of statéd fluc-

tuations on the eigenstructure of the empirical covariamedrix

calculated from the chains.

We explore this issue by generating random realisations of a
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covariance matrix, with the mean matrix given by the outdua o 200

Fisher analysis. We use the parameters in Tdble 1, but noitvadd
ally include the primordial helium abundan¥ge as a parameter 180
with fiducial value 024. 160
We assume that each covariance matrix has been estimatec
from a realisation ofN independent parameter samples from a 2 140
Gaussian posteriof@"}'=1-N. The unbiased estimator for the co- Q120
variance matrix is then -
© 100
[}
=ty 2O AT ey Ew
Z 60
whereG. is the empirical mean of th&". An application of Wick’s 0
Theorem then gives the covariance of these estimators
20
((Gij =Gij)(Ca —Cu)) = ﬁ(cikcjl +GCiCik), (B2) 0
-0.04 -003 -0.02 -0.01 0 001 002 003 004 005
where Gjj is the ‘true’ covariance matrix of the posterior from Eractional Variation

which the samples are drawn (we taBg from the output of our
Fisher analysis). We now assume that the estm@ﬂ;as Gaussian Figure B1. Histogram of fractional variations in the lowest eigenesiu
distributed, which is true for largd by the central-limit theorem. of the empirical covariance matrices in an ensemble of 10@@rices.

Using our fiducial covariance matr(X,], we draw random reali- Each empirical covariance matrix has statistics appraptiit being esti-
Sa’“ons O.K:I] from a Gauss|an d|Str|but|on Wlth meéh] and co- mated from 15000 independent Samples from a Gaussian mmine-
variance given by equatiof (B2), and study the scatter ieigen- dimensional parameter space with covariance given fronslaefFianalysis.

structure about the mean. The results are displayed il EigBB
and[B3 for 1000 realisations, witk = 15000. A typical Markov
chain might be around 30000 samples long, but since thesmare 150
related, we have implicitly thinned the chain by a factoredt

Our results show that, in this application, the highest amd |
est eigenvalues of the covariance matrix may be determirtid w
percent-level accuracy with 15000 samples. In Eig. B3 wevsho

the distribution of the neutrino mass component of the mostlg % 100
constrained eigenvector. In our fiducial model, this eigetor is ®
responsible for most of the neutrino mass variance. We seé¢hé §
degeneracy direction most relevant for neutrino mass istcained é
at the percent level. 3 5

We conclude from this exercise that MCMC covariance ma-
trix estimation is sufficiently robust to the effects of fangample
size for our purposes. It remains to be seen how more degenera
fiducial models may be under-sampled by Monte Carlo teclasiqu
This might be relevant to models with a redshift-dependari én-
ergy equation-of-state, where we might expect strong dageres
in the posterior.

0
-0.04

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
Fractional Variation

Figure B2. As Fig.[B1 but for the highest eigenvalue.
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Figure B3. As Fig.[B1 but for the neutrino mass component of the most
poorly constrained eigenvector. This component is the dantisource of
the marginalised neutrino mass error in this case.
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