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ABSTRACT
We forecast constraints on cosmological parameters with primary CMB anisotropy informa-
tion and weak lensing reconstruction with a future post-Planck CMB experiment, theCosmic
Origins Explorer (COrE), using oscillation data on the neutrino mass splittings asprior infor-
mation. Our MCMC simulations in flat models with a non-evolving equation-of-state of dark
energyw give typical 68% upper bounds on the total neutrino mass of 0.136eV and 0.098eV
for the inverted and normal hierarchies respectively, assuming the total summed mass is close
to the minimum allowed by the oscillation data for the respective hierarchies (0.10eV and
0.06eV). Including geometric information from future baryonacoustic oscillation measure-
ments with the complete BOSS, Type 1a supernovae distance moduli from WFIRST, and a
realistic prior on the Hubble constant, these upper limits shrink to 0.118eV and 0.080eV
for the inverted and normal hierarchies, respectively. Addition of these distance priors also
yields percent-level constraints onw. We find tension between our MCMC results and the
results of a Fisher matrix analysis, most likely due to a strong geometric degeneracy between
the total neutrino mass, the Hubble constant, andw in the unlensed CMB power spectra. If
the minimal-mass, normal hierarchy were realised in nature, the inverted hierarchy should
be disfavoured by the full data combination at typically greater than the 2σ level. For the
minimal-mass inverted hierarchy, we compute the Bayes’ factor between the two hierarchies
for various combinations of our forecast datasets, and find that the future cosmological probes
considered here should be able to provide ‘strong’ evidence(odds ratio 12:1) for the inverted
hierarchy. Finally, we consider potential biases of the other cosmological parameters from
assuming the wrong hierarchy and find that all biases on the parameters are below their 1σ
marginalised errors.

Key words: cosmology: theory - cosmological parameters - neutrinos - gravitational lensing:
weak - methods: statistical

1 INTRODUCTION

In the most recent extension to the Standard Model of parti-
cle physics, it has been established that at least two of the
three neutrino mass eigenstates possess non-zero mass. TheSu-
perKamiokande experiment provided the first evidence for this
with the detection of flavour oscillations in atmospheric neutri-
nos (Fukuda et al. 1998, 2001; Ashie et al. 2004), and the phe-
nomenon has since been observed in solar neutrinos by the Sud-
bury Neutrino Observatory (Ahmad et al. 2001, 2002), in reactor
anti-neutrinos at KamLAND (Eguchi et al. 2003), and in accelera-
tor neutrinos by K2K and MINOS (Ahn et al. 2006; Adamson et al.
2008).

The oscillation experiments not only reveal that neutrinoshave
mass, but that the three mass eigenstates havedifferent masses. Os-
cillations are only sensitive to differences in the squaredmasses

⋆ ach74@ast.cam.ac.uk

of the three eigenstates, and not to the overall mass scale. We use
the central values from the global fits in Appendix B of the arXiv
update to Maltoni et al. (2004):

m2
2−m2

1 = 7.9+1.0
−0.8×10−5eV2

|m2
3−m2

1|= 2.2+1.1
−0.8×10−3eV2,

(1)

with 3σ confidence levels indicated. Since the sign ofm2
3−m2

1 is
unconstrained, there are two logical possibilities depending on the
choice of sign. The difference is negligible for large totalmasses
(the ‘degenerate’ scenario, wherem1 ∼ m2 ∼ m3). At lower total
masses, we have a hierarchical situation, with two distincthierar-
chies demarcated by the oscillation data: ‘normal’ (m1 <m2 ≪m3)
and ‘inverted’ (m3 ≪ m1 < m2). Measuring the absolute mass scale
and determining the true hierarchy of neutrinos are key issues in
neutrino physics. Note that equation (1) implies a lower limit on the
total mass for each hierarchy: 0.095eV for inverted, and 0.056eV
for normal.
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2 Alex C. Hall, Anthony Challinor

Cosmology provides a different perspective on this problem,
essentially by being sensitive to the gravitational effectof neutri-
nos on the matter and radiation fields across cosmic time. Thepri-
mary CMB temperature (T) and polarisation (P) anisotropiescan
go some way to constraining absolute neutrino masses, but are
fairly insensitive to realistic (sub-eV) mass scales compared to the
late-time influence of neutrino masses on the clustering of mat-
ter (Elgaroy & Lahav 2005; Ichikawa et al. 2005). Tighter limits
may therefore be obtained by including large scale structure in-
formation, such as the shape of the matter power spectrum and
cosmic shear (Namikawa et al. 2010), as well as distance mea-
sures such as baryon acoustic oscillations (BAO) and Type 1a
supernovae (see Abazajian et al. 2011 for a recent review). With
the seven-yearWMAP data alone,∑mν < 1.3eV (95% C.L.) as-
suming a flat universe and fixed dark energy equation of state
w = −1 (Komatsu et al. 2011); this improves to∑mν < 0.58eV
when including BAO from SDSS DR7 (Percival et al. 2010) and
a H0 prior of 4% width from Riess et al. (2009). For the same
model, the most recent constraints from adding galaxy cluster-
ing to WMAP are∑mν < 0.36eV (de Putter et al. 2012), using
a photometric sample of luminous galaxies from SDSS DR8, and
∑mν < 0.51eV (Sanchez et al. 2012), using a spectroscopic galaxy
sample from SDSS DR9 (as part of the ongoing Baryon Oscillation
Spectroscopic Survey; BOSS).

Small-scale CMB measurements open up the possibility of
exploiting the effect of weak gravitational lensing (WL) ofthe
CMB as well as the primary anisotropies (see Lewis & Challinor
2006 for a review of CMB lensing). CMB photons are deflected
by large scale structure along the line of sight as they propa-
gate to us from last-scattering, and these deflections can berecon-
structed from their non-Gaussian imprint in the CMB at smallan-
gular scales (Zaldarriaga & Seljak 1999; Hu 2001; Hu & Okamoto
2002; Okamoto & Hu 2003). CMB lens reconstruction thus pro-
vides both geometric and late-time clustering information‘for free’
and so additional sensitivity to neutrino masses. Since thesource
plane is essentially fixed – the last scattering surface – this method
is free of uncertainties over source redshifts, as well as having
the advantage of probing structure formation without the problems
of bias and redshift-space distortions. Lens reconstruction has re-
cently been used to measure the power spectrum of the deflection
field with temperature data from the Atacama Cosmology Tele-
scope (ACT; Das et al. 2011) and the South Pole telescope (SPT;
van Engelen et al. 2012).

Lens reconstruction from the CMB temperature suffers from
statistical noise due to chance correlations in the unlensed CMB
that mimic the effect of lensing. This is such that temperature re-
constructions will never supply cosmic-variance-limitedmeasure-
ments of the deflection power spectrum for multipolesl > 100.
Polarization measurements are very helpful here (Hu & Okamoto
2002), since they intrinsically have more small-scale power and the
B-mode of polarization is not confused by primary anisotropies.
In principle, polarization can provide cosmic-variance limited re-
constructions to multipolesl ≈ 500, i.e. on all scales where lin-
ear theory applies. For this reason, lens reconstruction from polar-
ization has become an important part of the science case for suc-
cessors to thePlanck satellite, such as the proposed European-led
Cosmic Origins Explorer (COrE; The COrE Collaboration et al.
2011), and the US-ledCMBPol (e.g. Bock et al. 2008, 2009)
and polarization upgrades to ACT (Niemack et al. 2010) and
SPT (McMahon et al. 2009).

Structure formation is mostly sensitive to the summed neu-
trino mass, but does have some weak sensitivity to individual

masses. This raises the exciting possibility of using cosmolog-
ical observations to constrain not only the absolute mass scale
but also the hierarchy (in the case of non-degenerate masses).
A number of important questions then arise. Will future or cur-
rent CMB T+P+WL experiments be able to determine the hier-
archy by themselves, or will the inclusion of external data-sets,
with their inevitable systematic uncertainties be necessary? What
limits the ability of cosmology to determine the hierarchy,and
how can these limits be circumvented? Several studies have al-
ready attempted to answer some of these questions (Oyama et al.
2012; Jimenez et al. 2010; De Bernardis et al. 2009; Slosar 2006;
Hannestad 2003). Four of these papers chose to parametrize the
hierarchy continuously, either by the fraction of the totalmass in
m3 or using∆ = (m1−m3)/Σmν , with m1 = m2. However, as the
constraints in equation (1) indicate, the uncertainty on the mass-
squared differences is small, and provides good evidence that the
hierarchy iseither normalor inverted. In other words, the choice of
hierarchy is not a continuous parameter, but a discrete one:with an
oscillation prior, theΣmν –∆ space breaks up into two disjoint, one-
dimensional spaces and the simplest way to proceed is to analyse
any cosmological dataset in both normaland inverted models with
the masses parametrized by∑mν .

The problem of determining the mass hierarchy is then one of
Bayesian model selection, rather than parameter forecasting. The
machinery in this case is provided by the Bayes’ factor, which
quantifies the degree to which different models are favouredby the
data with respect to one another, when all their associated parame-
ters are marginalised over. In this work, we investigate theability of
future CMB experiments to determine simultaneously the absolute
neutrino mass scale and the (non-parametric) hierarchy. Wefirst
calculate forecasts for CMB-only T+P+WL withCOrE using both
Markov-chain Monte Carlo (MCMC) and Fisher techniques, and
then include geometric information from future BAO constraints
from the full SDSS-III BOSS (Schlegel et al. 2009), and a Type1a
supernovae survey withWFIRST (Green et al. 2011). We also in-
clude a future prior on the Hubble constant. We do not consider
information from clustering in this work, such as the matterpower
spectrum from redshift surveys, number counts, or cosmic shear.
Our results are thus immune to the inherent systematic uncertain-
ties in these techniques.

The paper is organised as follows. In Section 2 we discuss the
cosmological influence of both the total neutrino mass and the in-
dividual neutrino masses, and the relevant degeneracies with the
other cosmological parameters. In Section 3 we discuss our sta-
tistical forecasting and model selection methodology. In Section 4
we introduce the future datasets which will be available as priors
for future CMB experiments, and we present and discuss our re-
sults in Section 5. Appendices detail our scheme for protecting de-
generacies in the construction of the Fisher matrix and discuss the
sampling errors in estimates of parameter covariance matrices from
MCMC samples.

2 COSMOLOGICAL SIGNATURES OF NEUTRINO
MASSES

2.1 Massive neutrinos

Massive neutrinos have a small, but measurable effect on both the
primary anisotropies of the CMB and the growth of structure (for
reviews see Elgaroy & Lahav 2005; Lesgourgues & Pastor 2006;
Hannestad 2010). We first consider the primary anisotropies. Since

c© 0000 RAS, MNRAS000, 000–000



Probing the neutrino mass hierarchy with CMB weak lensing 3

Figure 1. Upper: Unlensed CMB temperature power spectra for a model
with massless neutrinos (dashed red) and degenerate massive neutrinos
with ∑mν = 0.37eV (solid black). Both models are flat, have the same
physical densities in cold dark matter and baryons, but different Hub-
ble constants (H0 = 67.93km s−1 Mpc−1 for the massive case andH0 =
71.43km s−1 Mpc−1 for the massless case) to preserve the angular scale of
the acoustic peaks.Lower: Fractional difference between the massive and
massless model. Note that thex-axis is logarithmic forl < 50 and linear for
l > 50.

the r.m.s. momentum of a neutrino of massmν at temperatureTν (z)
satisfies

〈p2
ν 〉

1/2

mν
≈ 3.22

kBTν (z)
mν

=
5.5×10−4

(mν/eV)
(1+ z) , (2)

neutrinos with mass less than 0.5eV are still relativistic at recom-
bination. Their effect on the pre-recombination dynamics of the
background and perturbations is thus very similar to the massless
case and so they impact the anisotropies only indirectly through
the angular diameter distance to last-scatteringdA(z∗). The ratio
of dA(z∗) to the sound horizon at last-scatteringrs(z∗) sets the
angular scale of the CMB acoustic peaks. For light masses, the
change in sound horizon is small but, if all other physical densi-
ties are held fixed,dA(z∗) falls with increasing mass due to the in-
creased expansion rate at late times. The last-scattering therefore
appears closer and the anisotropies are shifted to larger angular
scales. In the flat models considered here, this effect is degenerate
with a change in either the dark energy density (or, equivalently, the
Hubble constant) or the dark energy equation of state parameter w
(Efstathiou & Bond 1999). An example of this degeneracy is shown
in Fig. 1 for flat models withw =−1 and either massless neutrinos
or degenerate massive neutrinos with∑mν = 0.37eV. These mod-
els cannot be distinguished on the basis of their (unlensed)spectra.
However, since the Hubble constants differ by 4%, current priors on
H0 (e.g. Riess et al. 2011) would effectively break the degeneracy
between these models.

The degeneracy is explored in detail in Howlett et al. (2012).
It is not exact due to a number of physical effects, most notably
the late-time integrated-Sachs-Wolfe (ISW) effect; see Fig. 1. This
arises from the late-time decay of the (Weyl) gravitationalpoten-
tial φ +ψ once dark energy dominates the dynamics of the expan-
sion. On large scales (and for adiabatic initial conditions) the evo-
lution of the gravitational potentialφ follows from constancy of the
comoving-gauge curvature perturbation

R =−φ −
2
3

(

ρtot

ρtot+ ptot

)(

φ̇
H

+ψ
)

, (3)

whereρtot and ptot are the total density and pressure (including
contributions from dark energy),H is the conformal Hubble pa-
rameter and dots denote derivatives with respect to conformal time.
The metric potentialψ = φ at late times when anisotropic stresses
can be neglected. The potential is constant for constantptot/ρtot,
but evolution in the latter after last-scattering sources the ISW. In
Fig. 2 we plotptot/ρtot as a function of the scale factora for the
two models considered in Fig. 1. The dominant effect in both cases
is from the radiation–matter transition and the onset of dark en-
ergy domination. The former causesφ +ψ to decay around last-
scattering, sourcing the early-ISW effect which makes a signifi-
cant contribution to the temperature power spectrum aroundthe
first acoustic peak. As dark energy dominates,ptot/ρtot →−1 from
nearly zero during the matter-dominated era causing further de-
cay of the potentials and sourcing the late-time ISW effect.Mas-
sive neutrinos change the picture in the following ways. Com-
pared to massless neutrinos,ρν increases as they become non-
relativistic andpν decreases; the onset of this transition is described
by (Lewis & Challinor 2002)

ρν ≈ ρ0
ν

[

1+
5

7π2

(

mν
kBTν (z)

)2
]

,

pν ≈
ρ0

ν
3

[

1−
5

7π2

(

mν
kBTν (z)

)2
]

, (4)

whereρ0
ν is the energy density per species of massless neutrino. In

the non-relativistic limit (Lewis & Challinor 2002),

ρν ≈
180ρ0

ν
7π4

[

ζ (3)
(

mν
kBTν (z)

)

+O

(

kBTν (z)
mν

)]

,

pν ≈
900ρ0

ν
7π4

[

ζ (5)
(

kBTν (z)
mν

)

+O

(

kBTν (z)
mν

)3
]

. (5)

The ratioptot/ρtot initially falls more quickly in models with mas-
sive neutrinos and this leads to enhanced decay of the Weyl poten-
tial around last-scattering and a larger early ISW effect (see Fig. 1).
If the angular scale of the acoustic peaks and the physical densities
in cold dark matter and baryons are fixed (the latter preserving the
pre-recombination physics), the fraction of energy density in dark
energy is less in models with massive neutrinos and at late times
ptot/ρtot falls less slowly towards−1. This reduces the late ISW
effect.

The direct effect of neutrino masses on the pre-recombination
physics is very small formν ≪ 0.5eV. The enhanced energy den-
sity reduces the sound horizon and damping scale, with the for-
mer being compensated by changes indA(z∗) if we fix the angu-
lar scale of the acoustic peaks. The neutrino perturbationsthem-
selves influence the CMB via the back-reaction from their stress-
energy on the metric perturbations. The corrections areO(1− vν )
wherevν = 1−O(mν/kBTν )2 is the typical neutrino thermal ve-
locity. The size of the effects in the neutrino stress-energy tensor is
O(mν/kBTν )

2ρ0
ν and the relative importance for the metric pertur-

bations and the CMB isO(mν/kBTν )2ρ0
ν/ρtot. For our model with

∑mν = 0.37eV, we expect effects at the 0.1% level consistent with
the small residual differences at highl in the CMB power spectrum
shown in Fig. 1.

We end our discussion of the primary anisotropies by noting
that the effects of 1–10eV masses on the CMB are rather different,
since the neutrinos are already non-relativistic at the time of recom-
bination (Dodelson et al. 1996). At these masses, which are already
ruled out by current upper limits on the total mass, the neutrinos act
as a hot dark matter component.

c© 0000 RAS, MNRAS000, 000–000



4 Alex C. Hall, Anthony Challinor

Figure 2. Upper: Evolution of ptot/ρtot with scale factora for the massive
(solid) and massless (dashed) models in Fig. 1.Lower: Difference between
ptot/ρtot in these models. Also plotted are the relativistic approximation
from equation (4) and the non-relativistic approximation from equation (5).
The differences inptot/ρtot at late times are due to the reduced energy den-
sity in dark energy in the massive model to preserve the angular scale of the
CMB acoustic peaks.

The matter power spectrum is also affected by the presence of
massive neutrinos (Bond et al. 1980). Once non-relativistic, they
increase the expansion rate over the massless case, but the ten-
dency of this to impede growth in the clustering of the other matter
components is mitigated on scales where the neutrinos can clus-
ter. At any time, neutrinos can cluster on scales larger thantheir
proper Jeans (or free-streaming) length, approximatelyvν (z)/H(z).
For massless neutrinos, this is simply the particle horizonand the
comoving Jeans length grows in time in a non-accelerating uni-
verse. However, for non-relativistic neutrinos, the free-streaming
length (Lesgourgues & Pastor 2006):

λFS(z)≈ 7.7
1+ z

√

ΩΛ +Ωm(1+ z)3

(

1 eV
mν

)

h−1 Mpc, (6)

whereΩm is the current density parameter for matter including
non-relativistic massive neutrinos. For a non-relativistic transi-
tion in matter domination,λFS(z) ∼ a1/2, so the comoving free-
streaming lengthdecreases in time. Therefore, the comoving free-
streaming wavenumber [kFS≡ 2πa/λFS(z)] has a minimum given
by the comoving scale of the horizon at the non-relativistictransi-
tion. On scales larger than this, neutrinos have always clustered and
their mass has no effect on the matter power spectrum. Below the
comoving horizon at the non-relativistic transition, neutrinos only
cluster only after they exit the (shrinking) comoving free-streaming
length thus slowing down the growth of structure in the intervening
time. On all scales smaller than the current free-streamingscale,
massive neutrinos are not clustered at the present time giving a
scale-free fractional suppression of the matter power power spec-
trum by roughly−8 fν , where fν = Ων/Ωm (Hu et al. 1998).

For sub-eV neutrino masses,kFS today is at roughly the same
scale that non-linear corrections to the matter power spectrum be-
gin to become important (Hannestad 2010).N-body simulations
indicate a larger suppression of around−9.6 fν at scalesk ≈ 0.5–
1hMpc−1, accurate to about 1% (Brandbyge & Hannestad 2009;
Viel et al. 2010). Note that this is considerably smaller than the
BAO scale (k ≈ 0.15hMpc−1).

One of the key observables considered in this paper is the re-
construction of the CMB weak-lensing deflection field from the

lensed primary anisotropies (for a review, see Lewis & Challinor
2006). In linear theory, the power spectrum of the lensing deflec-
tion angle,Cdd

l , is a line-of-sight integral over the matter power
spectrum, and so the effect of massive neutrinos is similar to their
effect on the growth of large-scale structure. The suppression of
small-scale power is still the primary effect, as shown in the upper
plot of Fig. 3, where we plot the fractional change in the lensing
power spectrum in the presence of massive neutrinos compared to
the massless case. The total mass is 0.095eV, the minimum mass
of the inverted hierarchy. The differences are at the few percent
level, significantly larger than the intrinsic effect in theunlensed
CMB anisotropies which is at the 0.01% level (for l > 100) for
such masses. Moreover, the information is complementary since
the effect in the lensing power spectrum scales roughly withthe
total mass while the intrinsic effect in the unlensed CMB scales
with the square of the masses. Neutrinos also have a small effect on
the cross-correlation of the lensing deflection with the CMBtem-
perature anisotropy (due to the late-time ISW effect) and the CMB
E-mode polarisation (Lewis et al. 2011), and we include both in
our analysis for completeness.

2.2 Individual masses

As we have seen, sub-eV massive neutrinos mostly affect the
primary CMB anisotropies through their effect on the angular-
diameter distancedA(z∗). The masses are therefore degenerate with
other late-time parameters (such as the dark energy model).Even if
the other late-time parameters are fixed by external distance data,
there is very little sensitivity to individual masses sincedA(z∗) is
determined primarily by the summed mass∑mv ≈ 93.14Ων h2 eV.

The signature of massdifferences amongst neutrinos is thus
felt mainly through their effect on the growth of structure.Differ-
ent masses have different free-streaming wavenumbers, andeach
has their own unique signature on the structure formation history
of the universe. As extremes, if all the mass were in one eigenstate
the non-relativistic transition would be earlier than if the masses
were degenerate and the damping in the matter power spectrum
would not extend to such large scales. On scales smaller than,
but close to, the horizon size at the non-relativistic transition for
the degenerate case, the matter power spectrum should therefore
be smaller for the degenerate case compared to if all mass were
in one eigenstate. However, this behaviour reverses on scales be-
low the smaller (i.e. the non-degenerate case) of the free-streaming
scales at the observed redshift, and the degenerate case would have
less suppression of power. This is because on such scales theneu-
trinos would never have clustered since early times and the de-
generate case would have a later non-relativistic transition and a
slightly lower neutrino energy density through the extended tran-
sition epoch (see Figs 3 and 4 in Lesgourgues et al. 2004). These
signatures also show up in the CMB WL power spectrum, which
roughly reflects the matter power spectrum aroundz ∼ 2. This is
illustrated in the lower plot of Fig. 3, where we plot the fractional
difference in the deflection power spectrum compared to the case
of degenerate masses in the two hierarchies at fixed total mass
∑mν = 0.095eV. The situation is rather more subtle than the ex-
treme cases discussed above, since there are effectively two free-
streaming scales and non-relativistic transitions in the normal hier-
archy at this total mass. Although cosmic variance (3% atl = 1000)
dominates the differences in deflection power between the two hier-
archies at each multipole, the broad-band nature of the signal means
that we can combine many multipoles to beat down cosmic variance
(to roughly 0.1% for all multipoles up tol = 1000).

c© 0000 RAS, MNRAS000, 000–000
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Figure 3. Upper: Fractional difference of the lensing power spectrum from
a scenario with massless neutrinos, for a total mass of 0.095eV. The sup-
pression of power on small scales is clearly seen.Lower: Fractional differ-
ence of the lensing power spectrum from a scenario with degenerate neutri-
nos, for a fixed total mass of 0.095 eV in the inverted hierarchy (blue) and
normal hierarchy (green).

It should therefore be possible, at least in principle, to deter-
mine the mass hierarchy from a combination of CMB T+P and
CMB WL observations. Including the oscillation measurements as
prior information significantly ameliorates this task, as we only
have to determine a single model from a choice of two, rather than
deduce the mass splittings purely from cosmology. However,as we
shall see, parameter degeneracies present a considerable obstacle
to realising this goal.

Finally, we note that it has recently been
claimed (Wagner et al. 2012) that non-linearities roughly double
the matter power spectrum differences between the hierarchies for a
fixed total mass appropriate to the mininal-mass inverted hierarchy
(∑mν = 0.095eV) on mildly non-linear scales (k ∼ 1hMpc−1).
However, such small scales are deep in the region where CMB
lensing reconstructions will always be dominated by statistical
noise; see Section 3.2.

Table 1.Fiducial parameters used throughout this work. Note that the den-
sity parameters for massive neutrinos are close to the values in the minimal-
mass normal and inverted hierarchies: they correspond to total masses
∑mν = 0.062eV (normal) and∑mν = 0.105eV (inverted).

Parameter Value

Ωbh2 0.023
Ωch2 0.112

h 0.703
τ 0.085
As 2.42×10−9

ns 0.966
Ων h2 (normal) 0.000666
Ων h2 (inverted) 0.00113

w -1
100θ (z∗) (normal) 1.03957
100θ (z∗) (inverted) 1.04081

Table 2. Central frequenciesν , beam full-widths at half-maximumθfwhm,
and temperature and polarization sensitivities,∆T and ∆P, for the CMB
channels ofCOrE (The COrE Collaboration et al. 2011).

ν θfwhm ∆T ∆P

(GHz) (arcmin) (µKarcmin) (µKarcmin)

105 10.0 2.7 4.6
135 7.8 2.6 4.5
165 6.4 2.6 4.6
195 5.4 2.6 4.5
225 4.7 2.6 4.5

3 STATISTICAL METHODS

3.1 Markov-chain Monte Carlo

The principal tool we use to forecast parameter constraintsis
Markov-chain Monte Carlo (MCMC). We first generate fiducial
unlensed CMB spectra,CT T

l , CT E
l and CEE

l , the lensing deflec-
tion power spectrum,Cdd

l , and the cross-correlations,CTd
l andCEd

l ,
using the publicly-available Boltzmann code CAMB (Lewis etal.
2000) with fiducial parametersθ0. We then analyse the mean log-
likelihood as a function of parametersθ , given by

−2〈lnP(θ |θ0)〉= Tr[C(θ0)C
−1(θ )]+ ln

|C(θ )|
|C(θ0)|

−dim(C), (7)

where C is the covariance matrix of the data vectord =
[aT

lm,a
E
lm,a

d
lm], which consists of the unlensed temperature andE-

mode polarization, and the reconstructed lensing deflection mul-
tipoles. Note thatC includes instrument noise and the statistical
noise of the lensing reconstruction. The mean log-likelihood has
been normalised to zero at the maximum-likelihood point, where
θ = θ0. Such a likelihood was considered in e.g. Lewis & King
(2006) in the context of extracting cluster masses from CMB lens-
ing.

Our fiducial parameters are given in Table 1, and are
the maximum likelihood estimates from the WMAP 7-year
release (Komatsu et al. 2011) except for the density parame-
ters for massive neutrinos which we take to be close to the
values for the minimal-mass normal and inverted hierarchies.
We use noise levels appropriate to the proposedCOrE mis-
sion (The COrE Collaboration et al. 2011); see Table 2. We account
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Figure 4. Power spectrum of the statistical noise on lensing reconstruc-
tions forCOrE using only temperature information (red) or temperature and
polarization (blue). The linear-theory lensing deflectionpower spectrum is
also shown (black), along with the effect of including the non-linear matter
power spectrum (black dashed).

crudely for removal of astrophysical foregrounds by using only the
frequency channels in the range 105–225GHz and retaining a frac-
tion fsky = 0.7 of the sky. We implement the latter approximately
by reducing the number of degrees of freedom per observable at
each multipole from 2l +1 to (2l +1) fsky when evaluating equa-
tion (7). We retain multipoles up tolmax = 2500. To compute the
statistical noise on the lensing deflection reconstruction, we use the
optimal quadratic estimator of Okamoto & Hu (2003); the noise
power spectrum is shown in Fig. 4 for reconstructions fromCOrE
using only temperature or temperature andE andB-mode polariza-
tion. ForCOrE, theE-B estimator dominates the reconstruction.

Note that we use theunlensed temperature andE-mode polar-
ization in the likelihood. These are not directly observable but we
use them as a simple work-around of the double-counting issues
that may arise when jointly analysing the lensed CMB and lensre-
construction.

We impose the priorw > −1 on the dark energy equation of
state. This represents prior preference for a model in whichdark
energy is described by a field satisfying the weak energy condi-
tion. Models withw < −1 do exist, but possess greater complex-
ity (Fang et al. 2008), and are potentially unstable at the quantum
level (Carroll et al. 2003). Since the data do not preferw either side
of −1, we select the simpler model,w >−1.

We sample from the likelihood using the publicly-available
COSMOMC package (Lewis & Bridle 2002), modified to include
the effects of neutrino mass splitting. We use a modified version
of the FUTURCMB lensing add-on for COSMOMC (Perotto et al.
2006) including the small correlation between theE-mode polar-
ization and the lensing deflection (Lewis et al. 2011) calculated in
CAMB asCEd

l . COSMOMC works natively with the angular scale
of the sound horizon at recombination,θ (z∗) as opposed toh, so
we include the fiducial value of this parameter in Table 1 for com-
pleteness.

When forecasting standard deviations of parameters, we must
estimate the covariance matrix from the MCMC chains. For those
parameters whose marginalised posteriors are approximately Gaus-
sian, this is the quantity that should be compared to the results of
a Fisher analysis (parameters with hard priors do not fall into this
category and so do not require standard deviation estimates). How-

ever, these estimates are inherently statistical in nature. If we wish
to compare the results of the MCMC analysis to those of a Fisher
analysis we need to know the typical statistical fluctuationof our
covariance matrix estimates. This translates into some scatter in
the eigenvalues and eigenvectors, a matter that we explore in Ap-
pendix B.

3.2 Fisher analysis

In Section 5, we make some comparisons between parameter con-
straints obtained with MCMC and those from a Fisher analysis.
The Fisher information matrix is the Hessian of (minus) the mean
log-likelihood at the fiducial parameters. To the extent that the
likelihood is Gaussian in the parameters, constraints derived from
MCMC exploration of the mean log-likelihood should agree with
the Fisher analysis. Differentiating equation (7) with respect to
the parameters gives the Fisher matrix (see, for example Dodelson
2003)

Fi j =
1
2

Tr

[

C
−1 ∂C

∂θi
C
−1 ∂C

∂θ j

]

=
lmax

∑
l=2

∑
XX ′,YY ′

∂CXX ′

l

∂θi
[Cov(XX ′,YY ′)]−1

l
∂CYY ′

l

∂θ j
, (8)

where Cov(XX ′,YY ′) is the covariance of the power spectra esti-
mators, including noise, andXX ′ andYY ′ stand for the spectraT T ,
EE, T E, dd, T d, andEd, with dd the weak lensing power spec-
trum etc. Assuming Gaussian fields and noise, the specific form of
Cov(XX ′,YY ′) is

[Cov(XX ′,YY ′)]l =
1

(2l +1) fsky

(

C̃
XY
l C̃

X ′Y ′

l + C̃
XY ′

l C̃
X ′Y
l

)

, (9)

wherefsky is the fractional sky coverage. The tildes denote the total
power spectra including instrument noise forXX ′ = T T and EE
and reconstruction noise forXX ′ = dd. The inverse of the Fisher
matrix gives the covariance matrix between the parameters and its
diagonal elements give the 1σ marginalised errors on parameters.

When constructing the Fisher matrix, it is important to use ac-
curate power spectrum derivatives, since numerical noise in these
can artificially break degeneracies leading to over-optimistic pa-
rameter constraints. We found this particularly troublesome for the
lensing deflection field derivatives. Our brute-force solution was
to run CAMB at a high accuracy setting (accuracy boost=5) to
remove this noise, as it was found not to be due to a bad choice
of derivative step size1. In addition, we found it necessary to en-
force some parameter degeneracies directly in the construction of
the Fisher matrix. We detail these issues in Appendix A.

3.3 Bayesian model selection

Distinguishing between the two hierarchies is a problem of model
selection. We can quantify our relative degree of belief in different
models by use of the Bayes’ factor, defined as the ratio of Bayesian
evidences. Consider two modelsM andM′ (for example, normal
and inverted hierarchies), with parameter vectorsθ andθ ′, not nec-
essarily of the same dimension. Letx be the data vector. The ratio
of posterior probabilities is

1 We used a pre-January 2012 version of CAMB for this work. Several im-
provements in numerical accuracy were made for the January 2012 version;
see Howlett et al. (2012).
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p(M′|x)
p(M|x)

=
p(x|M′)p(M′)

p(x|M)p(M)
, (10)

wherep(M) is our prior degree of belief in the modelM and sim-
ilarly for M′. The evidencep(x|M) is found by marginalising the
product of the likelihoodp(x|θ ,M) and the parameter priorp(θ |M)
over parameters. Assuming noa priori preference for either model,
p(M) = p(M′), and so the ratio of posterior probabilities becomes
the Bayes’ factor

B ≡

∫

dθ ′p(x|θ ′,M′)p(θ ′|M′)
∫

dθ p(x|θ ,M)p(θ |M)
. (11)

EvaluatingB involves a difficult multi-parameter integration but
we may make some analytical progress by approximating the like-
lihood as Gaussian, the ‘Laplace approximation’ (for example,
MacKay 2003). For the case of∑mν andw, the prior cuts off the
posterior at close to the maximum likelihood point, so the integra-
tion over these parameters must be performed numerically. Starting
from our MCMC chain samples, we perform a least-squares fit of
a multi-variate Gaussian to the likelihood. For model selection, we
parametrize the neutrino masses in terms of the lightest mass, rather
than the total mass, so that the prior volumes for the two hierarchies
are equal. We calculate the evidence assuming a uniform prior in
the lightest mass (and the other parameters) by first integrating ana-
lytically the Gaussian fit over all parameters exceptw and the mass.
The resulting two-dimensional Gaussian is integrated overthe prior
range numerically. The Bayes’ factor then reduces to a product of
the maximum likelihood ratio and an ‘Occam factor’ in analogy
to the fully Gaussian case. However, here the Occam factor derives
from both the Gaussian covariance and the degree to which thelike-
lihood is cut off by the prior.

We perform model comparison in the case of the minimal-
mass inverted hierarchy taking the ‘data’ to be the fiducial power
spectra (plus noise) calculated in the inverted hierarchy.When anal-
ysed assuming the normal hierarchy, the likelihood has a local max-
imum within the prior volume. We locate this point, and the likeli-
hood there, leaving us to fit only the covariance of the multi-variate
Gaussian. The Bayes’ factor we calculate is the ratio of the evi-
dences derived from the respective mean log-likelihoods. Although
this will generally differ from the mean Bayes’ factor, we denote
it by 〈B〉 noting that its value should be typical in an ensemble of
data from the minimal-mass inverted hierarchy.

The smaller the volume of the likelihood confidence ellipsoid,
the more finely-tuned the model must be to fit the data. Such mod-
els are penalised in the Bayes’ factor in favour of models which
do not need such fine-tuning (MacKay 2003). The other term in
the Bayes’ factor, involving the ratio of the maximum likelihoods,
represents the data’s sensitivity to the mass splitting. Ifcosmol-
ogy were insensitive to mass splittings, the ratio of maximum like-
lihoods would always be unity if the true total mass were large
enough to be realised in either hierarchy. In this case, the Occam
factor will generally favour the normal hierarchy as the likelihood
is non-zero over a greater range of the prior volume.

Jeffreys (1961) proposed model selection criteria depending
on the value taken by the Bayes’ factor. If lnB > 5, evidence for
model M′ is ‘decisive’ over modelM, if 2.5 < lnB < 5 the evi-
dence is ‘strong’, and if 1< lnB < 2.5 it is ‘substantial’. For a dis-
cussion of the suitability of these criteria, and the usefulness ofB
as a statistic, see Efstathiou (2008) and Jenkins & Peacock (2011).

4 EXTERNAL DATASETS

In this section we discuss the various priors from non-CMB
data that we include in our analysis. For a comprehensive sur-
vey of the utility of external data in constraining neutrinomasses,
see Abazajian et al. (2011). We consider only a subset of all pos-
sible probes, since the main focus of this paper is information
from primary CMB anisotropies with a weak lensing reconstruc-
tion. CMB experiments offer a relatively clean source of cosmolog-
ical information at multipolesl < 2000 since the relevant physics
is simple and well-understood and extra-Galactic foregrounds are
sub-dominant to the primary CMB fluctuations.

We only include external geometric probes (H0, luminosity
distances from supernovae and BAO) here. Other direct probes of
the clustering of matter on small scales, such as galaxy cluster-
ing, galaxy weak lensing, the Ly-α forest and cluster abundances
are potentially very useful probes of neutrino masses because of
the scale-dependent growth associated with neutrino free-streaming
(see Section 2). However, associated problems such as redshift-
space distortions, scale-dependent galaxy bias, source redshift un-
certainties, and the fact that the free-streaming scale lies close to the
non-linearity scale at low redshift make it interesting to see what
can be achieved with only the CMB and relatively clean geometric
probes.

4.1 Hubble constant

As we discuss later in Section 5, our Fisher matrix indicatesthat the
geometric degeneracy betweenh, w and neutrino mass is not com-
pletely broken by lensing. The neutrino mass contributes tothis
degeneracy in a small way, so we might hope to improve our fore-
casts with a simple prior onH0. Current precision from the Hubble
Space Telescope is around the 3% level (Riess et al. 2011), but for
the purpose of forecasting we impose a 2% prior, not unrealistic on
the time-scale of a mission likeCOrE (Freedman & Madore 2010).

4.2 WFIRST Type 1a supernovae

Distance modulus information from Type 1a supernovae offers ge-
ometric information about the universe which can be a usefulprobe
of late-time phenomena such as dark energy (Riess et al. 1998;
Perlmutter et al. 1999), as well as a tool for breaking geometric de-
generacies inherent in the CMB (Efstathiou et al. 1999; Lineweaver
1998).

In this work, we forecast distance modulus measurements
from the Wide-Field InfraRed Survey Telescope (WFIRST ;
Green et al. 2011), the highest ranked recommendation for
large space-based missions in the 2010 US Decadal Sur-
vey (Decadal Survey of Astronomy and Astrophysics 2010). Ex-
pected survey characteristics were taken from theWFIRST In-
terim Report2. We assume their ‘conservative’ figure of merit as-
sumption, but double the survey time to 12 months. We forecast
200 supernovae in each of eight redshift bins betweenz = 0.4
and z = 1.2, each bin having∆z = 0.1. We augment this sam-
ple with 500 nearby (z < 0.1) supernovae, as forecast by the Fig-
ure of Merit Science Working Group Panel3. We assume a scatter

2 http://wfirst.gsfc.nasa.gov/science/WFIRST_Interim_Report.pdf
3 http://wfirst.gsfc.nasa.gov/science/fomswg/fomswg_technical.pdf
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Table 3.Forecast BOSS errors ondA(z) andH(z) in three redshifts bins.

z dA(z) H(z)

0.35 1.0% 1.8%
0.60 1.1% 1.7%
2.50 1.5% 1.5%

σM(z) = 0.11+0.033z of the apparent magnitudes for each super-
nova, after light-curve fitting, about the (unknown) absolute mag-
nitudeM. The mean absolute magnitude in each redshift bin then
has varianceσ2

tot(zi) = σ2
M(zi)/Ni +σ2

sys(zi), whereNi is the num-

ber of supernovae in each bin andσ2
sys(z) = 0.02(1+ z)/1.8 repre-

sents a floor in the scatter due to systematic effects. Our treatment
is consistent with theWFIRST ‘conservative’ forecasts. We neglect
potential biases through use of different light curve fitters, and as-
sume all such uncertainty is contained in our systematic error.

We construct the mean log-likelihood after marginalising over
the absolute magnitudeM (see Appendix F of Lewis & Bridle
2002). Assuming no correlation between redshift bins, we have,
up to a constant,

−2〈lnP(θ |θ0)〉=∑
i

∆µ2
i

σ2
tot(zi)

−

(

∑
i

1

σ2
tot(zi)

)−1(

∑
i

∆µi

σ2
tot(zi)

)2

, (12)

where∆µi ≡ µ(zi;θ )− µ(zi;θ0) with µ(zi;θ ) the distance mod-
ulus at parametersθ , andθ0 is the fiducial model. The sums are
over redshift bins. The second term in equation (12) arises from the
marginalisation and ensures that the log-likelihood does not change
under∆µi → ∆µi +M.

4.3 BOSS baryon acoustic oscillations

The sound horizon at the baryon drag epoch, when baryons
were effectively released from photons, imprints a characteris-
tic scale in the matter distribution. Observing projections of this
standard ruler in the galaxy distribution allows one to map out
H(z) anddA(z) at a range of redshifts (Blake & Glazebrook 2003;
Seo & Eisenstein 2003; Hu & Haiman 2003). Current measure-
ments of BAO are limited to the spherically-averaged correlation
function (or power spectrum) which is sensitive to an effective
distance[d2

A(z)/H(z)]1/3; see, for example, Beutler et al. (2011);
Blake et al. (2011); Anderson et al. (2012) for the most recent mea-
surements.

A major advance in BAO detection will come from the com-
pletion of BOSS (Schlegel et al. 2009), part of SDSS-III. This
should allow separate measurements of the angular diameterdis-
tance and Hubble parameter in several redshift bins. In Table 3
we show the forecast constraints ondA(z) and H(z), taken from
the SDSS-III Project Description4. What is actually measured is
dA(z)/rs andH(z)rs, wherers is the sound horizon at the baryon
drag epoch, and it is this quantity we compute in our MCMC anal-
ysis. The two are mildly correlated, and we assume a correlation co-
efficient of 0.4, consistent with the value found in Seo & Eisenstein
(2007).

4 http://www.sdss3.org/collaboration/description.pdf

Table 4. Parameter errors (1σ ) in the two hierarchies, comparing MCMC
and Fisher matrix results. We assume noise levels appropriate toCOrE and
use only CMB T+P+WL. We quote 68% upper limits on∑mν andw.

Inverted Normal

MCMC Fisher MCMC Fisher

Ωbh2 3.71×10−5 3.84×10−5 3.62×10−5 3.82×10−5

Ωch2 4.34×10−4 5.60×10−4 4.30×10−4 5.50×10−4

h 0.014 0.041 0.015 0.042
τ 2.32×10−3 2.33×10−3 2.34×10−3 2.43×10−3

log1010As 7.00×10−3 8.26×10−3 6.83×10−3 8.17×10−3

ns 1.63×10−3 1.86×10−3 1.62×10−3 1.86×10−3

∑mν (eV) < 0.136 < 0.171 < 0.098 < 0.151
w <−0.93 <−0.87 <−0.93 <−0.87

5 RESULTS

5.1 Neutrino mass forecasts

We begin by considering CMB data alone. The results of our
MCMC runs are displayed in Table 4, along with Fisher matrix
results for comparison. The forecast 68% upper limit on the total
neutrino mass with CMB T+P+WL withCOrE-like noise levels
is 0.136eV for the inverted hierarchy, and 0.098eV for the normal
hierarchy from the MCMC analysis. Recall that in the fiducialmod-
els,∑mν = 0.105eV in the inverted hierarchy and∑mν = 0.062eV
in the normal hierarchy. For Gaussian marginalised posterior distri-
butions, truncated by the prior on the minimum total mass, these
upper limits correspond to 1σ errors of 0.036 and 0.039eV for
the inverted and normal hierarchies, respectively. These results
are consistent with the MCMC forecasts in theCOrE White Pa-
per (The COrE Collaboration et al. 2011). They derived 95% up-
per limits on the lightest neutrino mass of the two hierarchies of
0.045eV and 0.034eV for the inverted and normal hierarchies re-
spectively. Our corresponding values are 0.044eV (inverted) and
0.039eV (normal), the slight differences probably being due to the
slightly different fiducial parameters used. The 1σ errors on the
other parameters are also consistent, with small differences due to
the different parameter sets used. The marginalised 68 and 95%
confidence regions for the massive neutrino energy density and the
other parameters are plotted in Figs 5 and 6, along with Fisher ma-
trix results.

Comparing our MCMC results with those from the Fisher ma-
trix, we note significant discrepancies. The Fisher matrix overesti-
mates the forecast 1σ errors on∑mν andw by a factor of two and
on h by a factor of three, but agrees well with the MCMC results
for the other parameters. A likely cause of this discrepancyis the
strong angular-diameter degeneracy betweenh, w, and∑mν in the
unlensed CMB power spectra. This degeneracy is not completely
broken by the inclusion of the lensing reconstruction and may in-
troduce some non-Gaussianity into the likelihood, thus violating
the Fisher approximation.

An additional source of the discrepancy concerns our chosen
parameter set. As discussed in Appendix A, using the (h,∑mν ,w)
parametrization requires fixing the ratio of certain power spectra
derivatives to eliminate numerical noise at intermediate and high
multipoles. The results of the Fisher analysis are sensitive to this
ratio, which involvesdA(z∗) derivatives. If instead we replaceh
with θ (z∗) as a parameter in the Fisher analysis, in which case we
enforce∂Cl/∂w= 0 at intermediate and high multipoles for the un-
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Figure 5. Marginalised confidence regions (68 and 95 per cent) between
the massive neutrino energy density and the rest of the parameter set for
the inverted hierarchy. Shaded regions are MCMC results, and contours are
from the Fisher matrix.

lensed CMB spectra, on transforming back toh we do not recover
accurately the original Fisher matrix. Sensitivity to suchchoices is
clearly unsatisfactory, and is the likely explanation for the differ-
ences in forecast errors in these parameters.

A similar discrepancy between MCMC and Fisher forecasts
was found in Perotto et al. (2006) in the context of forecasting for
Planck-like noise, although their disparity is much smaller than
ours reported here. In that work, the discrepancies reducedwhen
lensing reconstruction was included. It was argued that, since lens-
ing breaks the main degeneracies in the unlensed CMB, including it
brings the posterior closer to a multivariate Gaussian and improves
the agreement between Fisher and MCMC analyses. The same is
almost certainly true in our forecasts, but is possible thatthe sig-
nificantly lower noise levels we have used make the Fisher results
more vulnerable to numerical effects even with lens reconstruction
included. Note that we checked that running our Fisher analysis
with thePlanck-like noise levels used in Perotto et al. (2006) repro-
duces their neutrino mass forecasts. It is interesting thatthe Fisher
forecasts on neutrino mass in Kaplinghat et al. (2003) from arather
more sensitive, higher-resolution CMB satellite are comparable to
our MCMC results. In particular, they find a 1σ error of 0.044eV
assuming two massless and one massive neutrinos.

With CMB T+P+WL, the constraints on neutrino masses are
limited by degeneracies with other parameters. To illustrate this,
we note that the conditional errors on the total neutrino mass using
θ (z∗) (rather thanh) in a Fisher analysis are 0.0242 and 0.0192eV
for the normal and inverted hierarchies, respectively. In this param-
eter set, the conditional information on neutrino masses isdomi-
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Figure 6. As Fig. 5 but for the normal hierarchy.

nated byCdd
l . The most relevant degeneracy for neutrino masses is

with the cold dark matter density, as can be seen in Figs 5 and 6. We
may understand this as an effect of the lensing potential, since no
such degeneracy is observed with just the unlensed CMB. Inspec-
tion of the derivatives ofCdd

l with respect to∑mν andΩch2 reveals
broadly similar features. Increasing neutrino mass damps the lens-
ing potential on small scales, with large scales unaffected, as dis-
cussed in Section 2. Increasing the cold dark matter densityboosts
the lensing potential on small scales, leaving large scalesrelatively
unaffected. To see this, note that increasingΩch2 pushes back the
epoch of matter–radiation equality to earlier times. For modes that
are sub-Hubble during radiation domination, the gravitational po-
tential undergoes oscillations with decaying amplitude until settling
down to a constant value again well into matter domination. With
matter–radiation equality earlier, the potential decays less during
the shorter sub-Hubble radiation-dominated phase and the potential
on scales smaller than horizon scale at matter–radiation equality is
increased. On large scales there is no such effect. The change in the
power spectrum of the gravitational potential appears to dominate
other changes, such as the mapping froml to k due to the reduced
distance to typical lenses on increasingΩch2, in determining the
effect onCdd

l . Since the effect of increases in neutrino mass and
cold dark matter density have opposite sign in the lensing power
spectrum, the parameters are positively correlated.

Finally we note that there is little difference in our MCMC
results between the hierarchies. This is in contrast to the Fisher ma-
trix results, which give a 35% larger limit on the total mass relative
to the fiducial value in the normal hierarchy compared to the in-
verted. However, since we believe the Fisher results are unreliable,
it is clear that this difference is not significant.
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Table 5. Upper limits (68%) on the total neutrino mass∑mν and dark en-
ergy equation-of-state parameterw for inverted (top) and normal (bottom)
hierarchies, combining different external datasets (see text for details).

No priors H0 WFIRST BOSS Combined

∑mν (eV) 0.136 0.131 0.131 0.119 0.118
w -0.93 -0.97 -0.98 -0.98 -0.99

∑mν (eV) 0.098 0.095 0.095 0.082 0.080
w -0.93 -0.97 -0.98 -0.98 -0.99
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Figure 7. Marginalised confidence regions (68 and 95 per cent) between
Ων h2, Ωch2, andw, with (green) and without (blue) a 2% prior onH0, for
inverted (top) and normal (bottom) hierarchies.

5.2 Inclusion of external datasets

We now consider to what extent external data can improve the con-
straints on massive neutrinos by breaking degeneracies in the CMB
T+P+WL analysis.

We start with the effect of including a prior of width 2% on
the Hubble constant. The error on the total neutrino mass (and w)
is reported in Table 5. The Hubble prior changes this little since
lensing has broken most of the degeneracy between neutrino mass
andh that is present in the unlensed CMB leaving a marginalised
error onh from CMP T+P+WL alone comparable to the width of
theH0 prior (see Table 4). The most important degeneracy for neu-
trino mass is with the cold dark matter, as seen in Figs 5 and 6.
The inclusion of anH0 prior has little effect on this degeneracy; see
Fig. 7. However, the constraint onw is reduced by over a factor of
2. This is due to the breaking of the degeneracy betweenh andw,
a consequence of the geometric degeneracy in the unlensed CMB
which is not completely removed by the lensing reconstruction.

When we include forecast observations of Type 1A super-
novae fromWFIRST, we see similar improvements in∑mν and
w as when including theH0 prior; see Table 5. After marginalising
over absolute magnitude, the supernovae data are essentially dis-
tance ratios and so, out toz = 1, are mostly sensitive in flat models
to Ωm andw. The density parameter is well constrained by super-
novae which, when combining with the CMB, sharpens up con-
straints onh despite the supernovae distance ratios providing no
direct measure of this parameter. Moreover,w is well constrained
since distances at low redshift are sensitive to the evolution of dark
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Figure 8. As Fig. 7 but with theH0 prior replaced by forecast Type 1A
supernovae data fromWFIRST.

energy. The MCMC results show that the total neutrino mass has
little degeneracy with the geometric parametersh andw, so the er-
rors on∑mν do not change by much with the inclusion ofWFIRST
data. The degeneracy withΩch2 is again preserved, as shown in
Fig. 8.

A greater improvement is seen when forecast BAO data from
the complete BOSS is included as a prior. The 68% upper limits
on the summed mass shrink to 0.119eV and 0.082eV for the in-
verted and normal hierarchies, respectively, and the upperlimit on
w becomes−0.98 for both hierarchies (Table 5). The outperfor-
mance of BAO data compared to Type 1a supernovae is probably a
combination of effects. Firstly, the supernovae provide only relative
distance information (i.e. ratios) at low redshifts, whichin combi-
nation with a well-constrained distance measurement to recombi-
nation from the CMB does not provide as strong a constraint onthe
evolution of the expansion rate as an absolute distance measure-
ment from BAO. This effect is partly compensated by the fact that
our BAO measurements are at higher redshifts, closer to the last-
scattering surface, and so do not provide as long a lever arm as the
supernoave. Secondly, the BAO measurements probe both the an-
gular diameter distance and the Hubble rate, thus offering an inter-
nal consistency check that supernoave do not possess. Finally, our
forecasted supernovae measurements contain a limiting systematic
floor to the error budget which is not shared by the BAO. The effect
of BOSS information is shown in Fig. 9. We see from this plot that
the degeneracy withΩch2 still remains, although with its strength
reduced.

Finally, the combination of all priors gives excellent preci-
sion on both∑mν andw, the 68% upper limits being 0.118eV and
−0.99 for the inverted hierarchy, and 0.080eV and−0.99 for the
normal hierarchy; see Table 5 and also Fig. 10 for confidence re-
gions. The corresponding 1σ errors assuming truncated Gausssian
posterior distributions are 0.018 and 0.021eV. The 95% upper limit
in the normal hierarchy is 0.103eV (which agrees well with Guas-
sian extrapolation from the 68% limit). The implication of this is
that, even if cosmology had no sensitivity to mass splittings but
only to the total mass, the inverted hierarchy would typically be
disfavoured at almost the 2σ level if neutrinos were indeed in the
minimal-mass normal hierarchy.

c© 0000 RAS, MNRAS000, 000–000



Probing the neutrino mass hierarchy with CMB weak lensing 11

Ωνh2

Ω
c h

2

1.2 1.4 1.6 1.8 2 2.2 2.4

x 10
−3

0.1115

0.112

0.1125

0.113

0.1135

0.114

Ωνh2
w

1.2 1.4 1.6 1.8 2 2.2 2.4

x 10
−3

−1

−0.95

−0.9

−0.85

−0.8

Ωνh2

Ω
c h

2

1 1.5 2

x 10
−3

0.1115

0.112

0.1125

0.113

0.1135

0.114

Ωνh2

w

1 1.5 2

x 10
−3

−1

−0.95

−0.9

−0.85

−0.8

Figure 9. As Fig. 7 but with theH0 prior replaced by forecast BAO data
from BOSS.
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Figure 10. As Fig. 7 but with all external data included (H0, Type 1A su-
pernovae, and BAO).

5.3 Behaviour with fiducial mass

We have repeated our MCMC analysis for different fiducial masses.
In Table 6 we report the 1σ errors on the total neutrino mass for
various fiducial values. For the fiducial masses less than 0.373eV,
the 1σ error is computed from the 68% upper limits, assuming the
marginalised posterior distribution on∑mν can be approximated
by a Gaussian truncated by the lower limit on the total mass inthe

Table 6.1σ error (see text for details) on the total neutrino mass as a func-
tion of fiducial mass, from MCMC runs including only CMB T+P+WL.

Fiducial Mass (eV) Hierarchy σ(∑mν ) (eV)

0.062 Normal 0.039
0.105 Inverted 0.036
0.140 Inverted 0.024
0.373 Degenerate 0.037
0.559 Degenerate 0.037

respective hierarchy. For total masses greater than 0.3eV, the pres-
ence of mass splitting becomes unimportant, so we forecast assum-
ing three degenerate neutrinos, which speeds up the calculations. In
these cases, we simply quote the standard deviation of the samples.
The forecasts are for CMB T+P+WL alone.

We observe only a mild variation of the error with fiducial
mass, which we interpret as a balance between two competing
effects. As the mass increases, the distinctive effect of neutrino
free-streaming on the lensing power spectrum is pushed to smaller
scales where the reconstruction noise is higher. However, we spec-
ulate that the error from the unlensed CMB alone on the total mass
shoulddecrease until the neutrinos are sufficiently massive to be
non-relativistic as recombination, at which point it should flatten
out5.

5.4 Hierarchy biasing

Given our uncertainty in the hierarchy, how should we estimate
masses from future data? The Bayesian approach to this problem
is that of Bayesian model averaging (Hoeting et al. 1999), inwhich
the posterior probabilities for the parameters in each model are
weighted according to the posterior probability of each model. This
correctly propagates model uncertainty into parameter errors. In the
limit that the evidence for one model is overwhelming, Bayesian
model averaging reduces to parameter estimation from that model.
In the case that the posterior probabilities for the parameters are
similar in each model, averaging is equivalent to using either model
alone.

It is therefore interesting to see how the posterior probabilities
of the parameters differ between the two hierarchies. To this end,
we forecast posteriors adopting the normal hierarchy for fiducial
data taken in the inverted hierarchy (with∑mν = 0.105eV. Note
that this fiducial total mass can realised in both hierarchies. For
CMB T+P+WL, we find no significant bias in any of the cosmo-
logical parameters as a result of this procedure. The largest bias is
in θ (z∗), its maximum likelihood value being shifted from its ‘true’
value by 0.76σ . When all priors from external data are included, the
greatest bias is inw which is shifted by 0.68σ .

Our findings about bias are in contrast to the results of
De Bernardis et al. (2009), who found shifts in parameters compa-
rable to their 1σ errors, with a significant shift in the value of∑mν .
Direct comparisons are difficult since they use a galaxy weaklens-
ing survey instead of a CMB lensing reconstruction. However, the
main source of discrepancy is likely due to the parametrization of
the hierarchy in De Bernardis et al. (2009), which was found to be
strongly degenerate with∑mν .

5.5 Distinguishing the hierarchies

Distinguishing the hierarchies is properly a question of model se-
lection. We discuss this for the two cases of fiducial models that
are the mimimal-mass normal hierarchy and the minimal-massin-
verted hierarchy.

If the masses are in the normal hierarchy, sensitivity to mass
splittings is not required to rule out the inverted hierarchy if the true

5 For such large masses, the effect on the CMB spectra is roughly linear in
the total mass. However, for light masses, their effect on scalesl > 500 for
fixed θ (z∗) is roughly quadratic in the mass (see Section 2) which would
give a constant error in the square of the mass.
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Table 7. Values of ln〈B〉 for the inverted to normal hierarchies when the
fiducial model is the inverted hierarchy (with∑mν = 0.105eV). The values
are for T+P+WL plus the indicated external data.

No priors H0 WFIRST BOSS Combined

-1.08 2.66 2.53 2.53 2.51

total mass is low enough and the observations have sufficientsen-
sitivity to the total mass. With no sensitivity to mass splittings, the
likelihoods for the two hierarchies would necessarily be equal at
the same total mass (and all other parameters) but the lower bound
on total mass in the inverted hierarchy would exclude the region
of high likelihood giving significant odds in favour of the (correct)
normal hierarchy. Of course, sensitivity to mass splittings would
reduce the likelihood in the inverted hierarchy compared tothe nor-
mal, further favouring the latter.

We do not consider the minimal-mass normal hierarchy in de-
tail here since our Gaussian-fitting to the likelihood is likely to be
very noisy when the prior range excludes the peak of the likeli-
hood. However, we note that lower limits on the Bayes’ factorcan
be inferred from the results of Section 5 by assuming no sensitiv-
ity to mass splittings. The forecast constraint on total mass using
all external data then gives an odds ratio of 15:1 in favour ofthe
normal hierarchy in the most favourable case of the minimum to-
tal mass (0.056eV). In our forecasting, the peak of the likelihood
when analysing with the correct hierarchy is necessarily atthe true
parameter values. Under one-sigma fluctuations of the peak down-
wards and upwards, due to cosmic variance and measurement error,
the odds ratios vary between 70:1 and 4:1.

For the case of the inverted hierarchy, we compute typical
Bayes’ factors with the approximations discussed in Section 3.3.
Our results for ln〈B〉 are shown in Table 7, where the Bayes’ fac-
tor B is the ratio of evidence for the inverted to normal hierarchies.
With no external data, the Bayes factor is negative, indicating that
the normal hierarchy would be preferred by the data even though
the actual model is inverted. As noted in Section 3.3, this arises
because the Occam factor favours the normal hierarchy when the
likelihoods have only weak sensitivity to mass splittings and the
fiducial total mass can be realised in both hierarchies. We have ver-
ified that the other factor inB, the ratio of maximum likelihood
values, is sub-dominant compared to the Occam factor.

The addition of geometric priors to the CMB data pushes
the Bayes’ factors into the positive ‘strong’ evidence regime with
odds ratios around 12:1 in favour of the (correct) inverted hierar-
chy. Again, the Occam factor dominates the likelihood ratio(which
equalse0.23) but now favours the inverted hierarchy, due to small
differences in the shapes and peak positions of the likelihoods for
the two hierarchies. We note that our results for the Bayes’ fac-
tors with external geometric data are comparable to those reported
by Jimenez et al. (2010) for a full-sky, cosmic-variance-limited
galaxy weak lensing measurement with median redshift 3, although
our treatment of the mass hierarchies is rather different totheirs.

Note that to calculate our Bayes’ factors, we have to calculate
the value of the maximum likelihood when an inverted model is
analysed as if it were normal. Since we simply use the maximum-
likelihood included in the MCMC chains, there is some error intro-
duced. Since the true value cannot exceed unity, and we typically
find minimum χ2 values around 0.4, the logarithm of the Bayes’
factors could belower by up to 0.2. One consequence of this is

that there is little significance in the anomalously low Bayes’ factor
found in the ‘all priors’ case.

6 CONCLUSIONS

We have forecast constraints on cosmological parameters including
light neutrino masses with future CMB temperature, polarization
and weak-lensing-reconstruction information from a post-Planck
space-based experiment such asCOrE. Constraints on mass split-
tings from oscillation data were used as a prior to delimit two possi-
ble mass hierarchies, normal and inverted. We performed MCMC-
based forecasts for fiducial models with masses close to the min-
imal masses in the normal and inverted hierarchies (specifically,
we took∑mν = 0.062eV for normal and∑mν = 0.105eV for in-
verted). Our results show that theCOrE mission alone could place
68% upper bounds on the total neutrino mass of 0.098 and 0.136eV
for the normal and inverted hierarchies. For Gaussian marginalised
posterior distributions truncated by the prior on the minimal mass
in each hierarchy, these would correspond to 1σ errors of 0.039 and
0.036eV.

We found good agreement between our MCMC results and a
Fisher matrix forecast for all parameters except the neutrino mass,
equation-of-state of dark energyw and the Hubble parameterh,
for which the Fisher matrix overestimates the errors by at least a
factor of two. These parameters are highly degenerate in theun-
lensed CMB spectra for very light masses with only the combina-
tion that enters the angular scale of the sound horizon at recom-
bination,θ (z∗), well constrained. Any independent information in
the unlensed CMB spectra on intermediate and small scales con-
strains combinations of squared-masses as the minimal-masses are
approached, these being the leading corrections to the neutrino ve-
locity, energy density and pressure in the ultra-relativistic limit.
This dependence on mass further violates the Gaussianity assump-
tion made in Fisher forecasts when the total mass is used as a pa-
rameter with ultra-light neutrinos. The∑mν–w–h degeneracy is not
fully broken by the lensing reconstruction. As a result, ourFisher
results proved rather unstable to changes in parametrisation and
details of the method of calculation of power spectra derivatives.
We therefore advise caution when using Fisher matrices to forecast
constraints with ultra-light neutrino masses such as thoseconsid-
ered in this work.

We have also considered the addition of forecast geometric in-
formation from BAO from the complete SDSS-III BOSS, and Type
1a supernovae distance moduli fromWFIRST, as well as a future
2% constraint on the Hubble constant. These are relatively ‘clean’
probes, free from the problems of biasing and non-linearityinher-
ent in using galaxy clustering information directly, and from instru-
mental effects such as from variations in the point-spread function
in cosmic shear. The distance information offered by these probes
brings down the 68% upper limit on the total neutrino mass to 0.118
and 0.08eV for the inverted and normal hierarchies (corresponding
to Gaussian 1σ errors of 0.018 and 0.021eV). We also find percent-
level precision on the dark energy equation of state parameter w.
We have found that the BAO data is the most effective geometric
probe when combined with CMB T+P+WL. This is likely due to
a combination of effects. Compared to supernovae, the BAO mea-
surements provide absolute distance measurements and measures
of the Hubble rate. BAO are at higher redshift, which provides less
of a lever arm with the angular-diameter distance to last-scattering
from the CMB than supernoave, but with the low redshift end not
extending so far into dark-energy domination (which confuses neu-
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trino mass determinations from CMB-calibrated relative distances).
Moreover, our supernovae forecasts include a limiting systematic
floor to the errors which is not the case for BAO.

The precision achieved on the total neutrino mass when all our
datasets are combined would be sufficient to disfavour the inverted
hierarchy at typically greater than the 2σ level if neutrinos were in
the minimal-mass normal hierarchy. For the alternative case of the
inverted hierarchy, we approximated the Bayes’ factor withan ex-
tension of the ‘Laplace’ method to deal with the prior boundaries.
With CMB T+P+WL alone, and a fiducial model with total mass
0.105eV close to the minimum value of 0.095eV, the Occam fac-
tor (which gives weight to models whose parameters do not need
to be so tightly constrained to fit the data) leads to weak favouring
of the (wrong) normal hierarchy over the inverted with 3:1 odds.
This situation is overturned by including the geometric datasets, in
which case we typically find odds ratios of 12:1 (‘strong’ evidence)
correctly in favour of the inverted hierarchy. The best prospect for
distinguishing the hierarchies is for these minimal-mass configu-
rations – mass splittings and their orderings become irrelevant for
cosmological observables at higher masses.

We also ran MCMC analyses to calculate potential biases on
parameters by analysing data assuming the wrong hierarchy.We
found no biases greater than 1σ when analysing an inverted model
while assuming it to be a normal model. This is in contrast to the re-
sults of De Bernardis et al. (2009), although direct comparisons are
difficult since they forecast for different datasets and parametrize
the hierarchies differently. We note that a straightforward solution
to dealing with such potential biases is to perform Bayesianmodel
averaging. This would correctly propagate model uncertainty into
parameter errors.

Our results show that CMB lensing, combined with priors on
mass splittings from oscillation data and external geometric data, is
a promising route to determining whether neutrino masses are hier-
archical and, if they are, the ordering of the mass eigenstates. CMB
lensing provides a relatively clean measure of the effect ofneu-
trino masses on the clustering of matter below the free-streaming
scale. However, even in the most optimistic scenario we consider,
the evidence for either hierarchy will never be very strong for these
cosmological probes. We would expect our evidence ratios toin-
crease with the addition of other measures of broad-band power in
the matter power spectrum, although at the risk of bringing in a host
of other systematic effects. One particularly interestingdata com-
bination to consider further is combining CMB lensing and cos-
mic shear tomography. This is free of the issues of galaxy bias, but
non-linear effects will be important for cosmic shear and motivates
further studies of the effects of individual masses on the non-linear
power spectrum (Wagner et al. 2012).
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APPENDIX A: PROTECTING DEGENERACIES IN THE
FISHER MATRIX

In constructing the Fisher matrix, we found it necessary to protect
several near-exact degeneracies at intermediate and highl. We did
this for the well-knownτ–As degeneracy by enforcing a propor-
tionality between the appropriate derivatives. This was also done
for w–h, where the effect on the unlensedT T , EE, andT E spectra
is purely through the angular diameter distance at small scales. The
necessity of taking one-sided derivatives forw (w >−1) can cause
a small phase shift with respect to theh-derivative, which can break
degeneracies: a simple one-sided derivative at a point actually gives
the second-order-accurate derivative about the mid-point. A similar
problem was noted in Eisenstein et al. (1999) when differentiating
with respect to curvature. This makes determining the proportion-
ality constant between theh andw derivatives of the power spectra
at high l from the ratio at some intermediate multipole problem-
atic. Even with a one-sided derivative accurate to second order (us-
ing appropriate finite-difference coefficients) this problem did not
disappear. Instead, we chose to enforce the degeneracy by com-
puting the derivatives ofdA(z∗) with respect tow and h, and us-
ing their ratio as the proportionality constant between∂Cl/∂w and
∂Cl/∂h (see Equation B3 of Eisenstein et al. 1999). This was done
for l &100, with the precise multipole chosen for a smooth transi-
tion. In addition, this enforcement was made across theT T , EE,
andT E spectra by using the same proportionality constant in each
case, since the physics governing the degeneracy is in each case the
same. Our Fisher results are fairly insensitive to the enforcement
of theh–w degeneracy, and the choice of multipole (l ≈100) above
which it is enforced.

No such degeneracy was enforced forΣmν–h or Σmν–w, since
an inspection of theΣmν derivative of the CMB spectra at fixed
dA(z∗) revealed a non-zero signal at small scales which did not dis-
appear when more accurate derivatives (4th-order truncation error
with large step sizes to beat down numerical noise) were imple-
mented. This signal is the direct contribution of massive neutrinos
to the pre-recombination physics discussed in Section 2. Itis very
small, but large enough partially to break the geometric degeneracy
with h andw.

Double-sided derivatives were used for each parameter except
w where the phantom (w < −1) regime is not considered and for
which we used a second-order-accurate, one-sided derivative. A
step size of 5% was used in computing the derivatives, which rep-
resents a compromise between numerical noise and Taylor series
convergence (Press et al. 2007). We checked the stability ofour re-
sults to different step sizes, and found variation of at most10% in
our marginalised errors with the high accuracy settings used to run
CAMB.

APPENDIX B: COVARIANCE MATRIX ESTIMATION

To compare the statistical quantities inferred from MCMC chains to
those of a Fisher analysis, it is useful to have some idea of the mag-
nitude of the statistical fluctuations in the former. For a chain with a
large number of uncorrelated samples, we would expect thesefluc-
tuations to be small, but it is important to test whether the scatter is
small enough to resolve any sharp degeneracies present in the like-
lihood. In this section, we investigate the effect of statistical fluc-
tuations on the eigenstructure of the empirical covariancematrix
calculated from the chains.

We explore this issue by generating random realisations of a
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covariance matrix, with the mean matrix given by the output of a
Fisher analysis. We use the parameters in Table 1, but now addition-
ally include the primordial helium abundanceYHe as a parameter
with fiducial value 0.24.

We assume that each covariance matrix has been estimated
from a realisation ofN independent parameter samples from a
Gaussian posterior,{θ n

i }
n=1...N
i=1...9 . The unbiased estimator for the co-

variance matrix is then

Ĉi j =
1

N −1

N

∑
n=1

(θ n
i − θ̄i)(θ n

j − θ̄ j) , (B1)

whereθ̄i is the empirical mean of theθ n
i . An application of Wick’s

Theorem then gives the covariance of these estimators

〈(Ĉi j −Ci j)(Ĉkl −Ckl)〉=
1

N −1
(CikC jl +CilC jk), (B2)

whereCi j is the ‘true’ covariance matrix of the posterior from
which the samples are drawn (we takeCi j from the output of our
Fisher analysis). We now assume that the estimatorĈi j is Gaussian
distributed, which is true for largeN by the central-limit theorem.
Using our fiducial covariance matrixCi j, we draw random reali-
sations ofĈi j from a Gaussian distribution with meanCi j and co-
variance given by equation (B2), and study the scatter in itseigen-
structure about the mean. The results are displayed in Figs B1, B2
and B3 for 1000 realisations, withN = 15000. A typical Markov
chain might be around 30000 samples long, but since these arecor-
related, we have implicitly thinned the chain by a factor of two.

Our results show that, in this application, the highest and low-
est eigenvalues of the covariance matrix may be determined with
percent-level accuracy with 15000 samples. In Fig. B3 we show
the distribution of the neutrino mass component of the most poorly
constrained eigenvector. In our fiducial model, this eigenvector is
responsible for most of the neutrino mass variance. We see that the
degeneracy direction most relevant for neutrino mass is constrained
at the percent level.

We conclude from this exercise that MCMC covariance ma-
trix estimation is sufficiently robust to the effects of finite sample
size for our purposes. It remains to be seen how more degenerate
fiducial models may be under-sampled by Monte Carlo techniques.
This might be relevant to models with a redshift-dependent dark en-
ergy equation-of-state, where we might expect strong degeneracies
in the posterior.
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Figure B1. Histogram of fractional variations in the lowest eigenvalues
of the empirical covariance matrices in an ensemble of 1000 matrices.
Each empirical covariance matrix has statistics appropriate to it being esti-
mated from 15000 independent samples from a Gaussian posterior in nine-
dimensional parameter space with covariance given from a Fisher analysis.
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Figure B2. As Fig. B1 but for the highest eigenvalue.
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Figure B3. As Fig. B1 but for the neutrino mass component of the most
poorly constrained eigenvector. This component is the dominant source of
the marginalised neutrino mass error in this case.
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