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Nephrectomy in Male 129S2/SV Mice
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Progressive Kidney Disease With
Renal Inflammation and Cardiac
Dysfunction
James O’Sullivan1, Sarah Louise Finnie1, Oliver Teenan1, Carolynn Cairns1,
Andrew Boyd1, Matthew A. Bailey1, Adrian Thomson, Jeremy Hughes2,
Cécile Bénézech1, Bryan Ronald Conway1 and Laura Denby1*

1 Centre for Cardiovascular Science, Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh,
United Kingdom, 2 Centre for Inflammation, Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh,
United Kingdom

Chronic kidney disease (CKD) is prevalent worldwide and is associated with significant
co-morbidities including cardiovascular disease (CVD). Traditionally, the subtotal
nephrectomy (remnant kidney) experimental model has been performed in rats to model
progressive renal disease. The model experimentally mimics CKD by reducing nephron
number, resulting in renal insufficiency. Presently, there is a lack of translation of pre-
clinical findings into successful clinical results. The pre-clinical nephrology field would
benefit from reproducible progressive renal disease models in mice in order to avail
of more widely available transgenics and experimental tools to dissect mechanisms of
disease. Here we evaluate if a simplified single step subtotal nephrectomy (STNx) model
performed in the 129S2/SV mouse can recapitulate the renal and cardiac changes
observed in patients with CKD in a reproducible and robust way. The single step
STNx surgery was well-tolerated and resulted in clinically relevant outcomes including
hypertension, increased urinary albumin:creatinine ratio, and significantly increased
serum creatinine, phosphate and urea. STNx mice developed significant left ventricular
hypertrophy without reduced ejection fraction or cardiac fibrosis. Analysis of intra-
renal inflammation revealed persistent recruitment of Ly6Chi monocytes transitioning
to pro-fibrotic inflammatory macrophages in STNx kidneys. Unlike 129S2/SV mice,
C57BL/6 mice exhibited renal fibrosis without proteinuria, renal dysfunction, or cardiac
pathology. Therefore, the 129S2/SV genetic background is susceptible to induction of
progressive proteinuric renal disease and cardiac hypertrophy using our refined, single-
step flank STNx method. This reproducible model could be used to study the systemic
pathophysiological changes induced by CKD in the kidney and the heart, intra-renal
inflammation and for testing new therapies for CKD.

Keywords: chronic kidney disease (CKD), modeling disease, cardiac hypertrophy, renal fibrosis and inflammation,
monocytes/macrophages
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INTRODUCTION

Chronic kidney disease (CKD) is increasing in prevalence
(Eckardt et al., 2013) and is a significant public health problem
due to its associated economic burden (Kerr et al., 2012). Multiple
clinical etiologies result in CKD with hypertension and diabetes
being the leading causes (Horowitz et al., 2015; Alicic et al.,
2017; Obrador and Levin, 2019). CKD progression is staged via
estimated glomerular filtration rate (eGFR) and urinary albumin-
creatinine ratio (ACR) (Stevens and Levin, 2013). Patients with
CKD are at increased risk of cardiovascular disease (CVD) and
this risk increases as renal function declines. Once patients
reach end-stage kidney disease (ESKD) requiring dialysis or
transplantation, the risk of CVD is 10–30x that of the general
population with cardiovascular events accounting for almost 50%
of deaths in CKD patients (Di et al., 2015).

The common end-pathway of progressive CKD is the
deposition of fibrotic scar tissue that replaces the functional
renal parenchyma in the form of tubulointerstitial fibrosis
and glomerulosclerosis. The underlying mechanisms of fibrosis
remain incompletely understood as it is a complex process
involving a diverse array of cell types and molecular pathways,
with cross-talk between cell types being evident (Gewin et al.,
2017). These cell types include fibroblasts, tubular epithelial cells,
macrophages, endothelial cells, dendritic cells, and lymphocytes
(Boor et al., 2010). For example, fibroblasts differentiate into
myofibroblasts, proliferate, and deposit extracellular matrix
components (Mack and Yanagita, 2015). The sources of
myofibroblasts within the injured kidney have been the subject
of intense study, perivascular Gli+ progenitor cells have been
suggested to be particularly important (Kramann et al., 2015).
Another notable feature of CKD is tubular atrophy and loss of
tubular epithelial cells (Venkatachalam et al., 2015; Schelling,
2016; Webster et al., 2017). The renal tubule has long been
thought of as a target of renal injury, however it may also function
as a propagator of injury as tubular cells may undergo cell-cycle
arrest, de-differentiation, and acquire a pro-secretory phenotype
(Gewin, 2018). Cytokines secreted by tubular cells may act as
paracrine factors to promote the production of collagenous
matrix by surrounding myofibroblasts (Gewin, 2018).

Subtotal nephrectomy, or 5/6 nephrectomy, is used as a rodent
model of progressive CKD (Yang et al., 2010). Historically, the
subtotal nephrectomy model was performed in rats, although it
has more recently been conducted in mice (Ma and Fogo, 2003;
Kennedy et al., 2008; Siedlecki et al., 2009; Yang et al., 2010;
Gava et al., 2012; Oosterhuis et al., 2017). The effectiveness of
STNx to produce experimental-CKD in mice has been found to
vary depending on the strain of mouse used (Leelahavanichkul
et al., 2010), with C57BL/6 mice being more resistant (Kren and
Hostetter, 1999; Ma and Fogo, 2003; Leelahavanichkul et al.,
2010) and SV129/CD1 mice being permissive (Ma and Fogo,
2003; Kennedy et al., 2008; Siedlecki et al., 2009; Leelahavanichkul
et al., 2010). However, the results in mice have been inconsistent
and there is a lack of technical information about how the model
was performed, any power calculation data, mortality rates,
information on post-surgery animal welfare and whether the
ARRIVE guidelines were followed. This lack of standardization

in the model in mice likely contributes to the inconsistencies
reported (Chatzimanouil et al., 2018).

We sought with this paper to standardize the STNx model
in mice, to improve animal welfare standards and define the
renal and cardiac effects to enable consistent modeling of the
pathophysiological changes induced during progressive CKD.

MATERIALS AND METHODS

Single Step Flank Subtotal Nephrectomy
Model
The refined STNx model involves a single anesthetic and surgery
(∼40 min), performed via flank incisions that result in improved
animal condition scores, reduced mortality with reproducible
outcomes between studies.

Male 129S2/SV mice were obtained from Envigo and used
when 6–8 weeks old (weighing 24.7 ± 0.37 g SEM). Male
Gli1 × Ai14 mice on a C57BL/6 genetic background were used
at 9 ± 3 weeks old (weighing 31.9 ± 1.1 g SEM). Mice were
group-housed and provided with ad lib access to water and
fed with Rm1 standard chow (Special Diets Services) with the
following content 0.25% Na, 0.67% K, 0.38% Cl. Mice were also
given environmental enrichment. A 12-h light–dark cycle was
maintained. During the study, mice were weighed weekly and had
their condition recorded. ARRIVE guidelines were adhered to at
all times. Only male mice were selected as unlike in other organs,
notable sex difference in myeloid cells, including macrophages
have been documented in the kidney (Bain et al., 2016).

Animals were randomized to receive sham or subtotal
nephrectomy surgery (STNx) using a random number generator
website1. Prior to surgery, mice had a timed overnight urine
sample collected (single housed metabolic cage), blood sample
taken (superficial vein) and blood pressure measured (tail cuff).
Immediately prior to surgery, mice were weighed and a total of
four studies including two pilot studies were performed.

Surgery was performed in a sterile surgical environment using
inhalational isoflurane for anesthesia. Once anesthetised, the
mouse was shaved and received perioperative s.c. analgesia.

The mouse was initially placed on the left lateral side and an
incision was made on the flank over the right kidney. The right
kidney was located and carefully maneuvred out of the incision
site. The adrenal gland was carefully blunt dissected away from
the kidney to avoid adrenalectomy. The right renal pedicle was
clamped and a nephrectomy performed. The vascular clamp was
removed, the renal bed checked for signs of bleeding and the
abdominal wall sutured closed and skin clips applied to close the
outer skin incision.

The left kidney was then located and adrenal gland blunt-
dissected away. The renal artery and vein were isolated and
clamped ensuring ischemic time was less than 5 min. Renal poles
(approximately 2/3 renal mass) were then surgically removed and
spongostan applied. The vascular clamp was released and once
hemostasis had been achieved, the kidney was placed back into
the abdomen and the incisions closed. For sham surgery, animals

1http://random.org
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were prepared the same way, had bilateral flank incisions and
both kidneys isolated and manipulated.

At the end of surgery, mice were immediately placed in a fresh
cage with littermates in a hotbox at 28◦C, where they remained
for 7 days. During this time, the mice were checked three times
daily and scored using bespoke animal condition scoring sheets
(Supplementary Table 1). After this time the mice were weighed,
skin clips removed and placed in a regular animal holding room
and maintained under normal conditions.

For quality control purposes, the weight of kidney removed
was calculated to estimate how much residual kidney was left
(with the caveat that the kidneys have a small mismatch in
weights). The weight of the whole right kidney was measured
and compared to the weight of the two pole sections of kidney
removed from the left kidney. In order to maintain consistency
in this model we ensured that the percentage remaining was as
consistent as possible. Residual kidney mass was calculated by
the following:

% left renal mass remaining = 100 – [(left kidney sections
weight/whole right kidney weight)∗ 100]

Animals were schedule 1 culled in compliance with United
Kingdom Home Office regulations. Upon confirmation of death,
blood was obtained via cardiac puncture and the animal perfused
with PBS and tibia length recorded. For isolation of serum,
blood was allowed to clot and spun down at 3000G for 20 min
at 4◦C. Organs were removed and weighed, prior to being cut
into predefined sections with sections for RNA and protein snap
frozen in liquid nitrogen, while those for histology were placed in
10% formalin for 24-h, before embedding in paraffin to produce
FFPE sections. For flow cytometry studies kidney portions were
collected in PBS on ice prior to processing.

Histology
Three µM thick FFPE sections were cut and deparaffinized prior
to staining with picrosirius red in accordance with manufacturer’s
guidelines (Abcam, ab150681). Slides were imaged using ZEISS
Axio Scan.Z1 Slide Scanner. Quantification of images was carried
out using Image-Pro Premier 9.2.

RNA Extraction, Gene and miRNA
Expression
Tissue was homogenized using Qiagen TissueLyser II. RNA was
extracted from homogenized tissue with the RNeasy Mini Kit
(Qiagen 74106) and RNA yields were quantified using NanoDrop
1000 (Thermo Fisher). Reverse transcription was carried out
using high-capacity cDNA synthesis kit (Applied Biosystems,
4368814). Quantitative real-time PCR (qRT-PCR) was carried out
using specific Taqman gene probes (Table 1).

Renal Function Analysis
Timed overnight collections of urine (18 h) were performed at
baseline, 6-weeks post-STNx and 10-weeks post-STNx from mice
housed singly in metabolic cages. Blood was collected at baseline

TABLE 1 | Taqman gene and miRNA expression assays used for qRT-PCR
in these studies.

Gene Probe/assay ID

Col1a1 Mm00801666_g1

Col3a1 Mm01254476_m1

Col4a1 Mm01210125_m1

Acta2 Mm00725412_s1

Mmp2 Mm00439498_m1

Tgfb1 Mm01178820_m1

Il1b Mm00434228_m1

Tnf Mm00443258_m1

Ppia Mm02342430_g1

Nppa Mm01255747_g1

Nppb Mm01255770_g1

Gapdh Mm99999915_g1

miR-21-5p 000397

miR-214-3p 002306

u6 001973

and at termination. Urine and serum were stored at−20◦C prior
to analysis by an in-house biochemical analysis service2.

Mouse urine albumin measurements were determined using
a commercial Microalbumin Kit (DiaSys Diagnostics Systems,
Germany) adapted for use on a Cobas Mira analyzer (Roche
Diagnostics, Ltd., Welwyn Garden City, United Kingdom).
The immunoturbidimetric assay was standardized against
purified mouse albumin standards (Sigma Chemical, Co., Poole,
United Kingdom) with samples diluted in phosphate buffer saline
as appropriate. Within run precision was CV < 5% while intra-
batch precision was CV < 7.1%.

Urine ion concentration was determined using ion-
selective electrodes using the SPOTCHEMTM E-Plate with the
SPOTCHEMTM EL Analyzer. Urine osmolality was measured
by freezing-point depression on a Micro-Digital i-Osmometer
(Type 16M, CamLab, United Kingdom).

Echocardiography for Cardiac Structure
and Function
Echocardiography was carried out by University of Edinburgh
pre-clinical imaging facility under isoflurane anesthesia at 6
and 10-weeks post-surgery as previously published (Respress
and Wehrens, 2010; Gao et al., 2011; Lindsey et al., 2018).
A parasternal long-axis view of the heart was used to obtain
EKV (ECG-gated Kilohertz Visualization) over one cardiac cycle.
Spectral Doppler was carried out in parasternal short-axis view
and used to assess mitral valve and blood-flow. Doppler sample
volume was placed across the mitral valve for measurement of E
(early) and A (late, atrial) wave velocity. Doppler sample volume
was placed at mid-left ventricular level to measure isovolumic
relaxation (IV RT).

Blood-Pressure Analysis
Systolic blood-pressure was measured via a non-invasive tail-
cuff method in a customized machine (Wang et al., 2017).

2https://surf.ed.ac.uk/facilities/specialist-assay-service/
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Mice were trained prior to the start of the study. The mice
were placed in a hot-box at 32◦C for 5–10 min prior to blood-
pressure measurement.

Flow Cytometry
Tissue was placed in gentleMACSTM C Tubes with digestion
buffer (Collagenase Type II 0.425 mg/mL, Collagenase D
0.625 mg/mL, Dispase 1 mg/mL and DNAse 30 µg/mL)
and dissociated using the gentleMACSTM Dissociator.
Cellular suspensions were digested at 37◦C for 30 min then
gentleMACSTM dissociated for a second time. The cellular
suspensions were then put through 100, 70, and 40 µM
sieves sequentially and red blood lysis performed with Red
Blood Cell Lysing Buffer (Sigma). The concentration of the
resultant single cell suspension was determined using a cell
counter and cells dispensed into 96-well round-bottom plate
and incubated with appropriate rat anti-mouse antibodies
(Table 2). Unstained samples, compensation beads for each
antibody, FMO samples and cell suspensions were run on
the six laser LSR Fortessa cell analyzer (BD Biosciences)
using DAPI to determine live cells. Data was analyzed using
FlowJo software.

Statistical Analysis
A pilot study was performed using Col1a1 gene expression as
the outcome measure. Power calculations derived from the pilot
study determined that n = 9 mice in each group were required
to ensure sufficient power (95%) to detect a 30% difference of
in Col1a1 expression at a 5% level of significance. To account
for mortality at 9% (combined anesthetic and model mortality),
n = 10 mice/group was employed. For C57BL/6 study the results
are from a pilot study performed on group size n = 6.

All data was assessed for normal distribution using the
D’Agostino-Pearson normality test. Comparisons between
two, normally-distributed, data points were carried out
via Student’s t-test. Comparisons between two unpaired,
non-normally distributed data points were carried out via
Mann–Whitney test. All data generated was subjected to
Grubbs outlier test, outliers were removed from analysis. ACR
at 6 and 10-weeks post-surgery (Figure 1D) was assessed for
statistical significance via two-way ANOVA for repeat measures
with Sidak’s multiple comparison test. Gene and miRNA
expression at 6 and 10-weeks post-surgery (Figures 2D,E) were

TABLE 2 | Antibodies utilized in flow cytometry.

Antibody Clone/flurochrome/final concentration

Live DAPI/1:1000

CD45 30-F11/APC or BV650/1:100

F4/80 BM8/Pe-Cy7/1:200

MHCII M5/114.15.2/APC-Cy7/1:400

Ly6G 1A8/e450/1:200

Ly6C HK1.4/AF700/1:200

CD11b M1_70/PE Dazzle/1:1000

CD11c N418/BV605/1:100

CD206 MR5D3/APC/1:200

compared via ordinary two-way ANOVA with Tukey’s multiple
comparison test.

RESULTS

Effect of One-Step Flank STNx on Renal
Function
We utilized initially male 129S2/SV mice because they have
been shown to be sensitive to developing renal dysfunction
in previous studies. Following our refined single step flank
subtotal nephrectomy (STNx) procedure there was no significant
difference in body weight between the sham and STNx animals
during the 10-week study run (Supplementary Figure 1A). The
use of a single surgery procedure was well-tolerated. In total
across four studies (pilot and full studies), 53 male 129S2/SV
mice aged 7–10 weeks (weights 24.7 ± 0.37 g SEM) and 10
male Gli1 × Ai14 mice on a C57BL/6 genetic background aged
9 ± 3 weeks (weights 31.9 ± 1.1 g SEM) were subjected to STNx
or sham surgery. There was an overall model failure rate of 9%
(5% mortality, 2% anesthetic death, and 2% early termination
rate due to deteriorating animal body condition scoring). Group
housing the mice post-surgery resulted in improved animal
condition scores and faster recovery compared to single housing
(Supplementary Figure 1B). Animal stress peaked day 3 post-
surgery as assessed by body condition score for single and
grouped house, which may suggest analgesia up to day 2 post-
surgery may be warranted (Supplementary Figure 1B). Across
the studies the mean percentage of residual left kidney mass was
32.9± 0.98% SEM (Supplementary Figure 1C).

Initially we examined the effect of the STNx performed on
129S2/SV male mice on renal excretory function and proteinuria
as patients with CKD have increased serum creatinine (Jha et al.,
2013; Levey et al., 2014; Hill et al., 2016), urea (Jörres et al., 2004;
Almeras and Argilés, 2009; Lau and Vaziri, 2016; Vanholder et al.,
2018), and phosphate (Martin and González, 2011; Felsenfeld
et al., 2015; Ritter and Slatopolsky, 2016; Vervloet et al., 2017)
levels as well as proteinuria. Biochemical analysis of blood
samples from mice 10-weeks post-STNx consistently revealed
significant increases in serum creatinine (9.29 vs. 4 µmol/l)
(Figure 1A), phosphate (2.74 vs. 1.84 mmol/L) (Figure 1B)
and urea (11.62 vs. 6.35 mmol/L) (Figure 1C) compared to
sham operated mice indicating a reduction of renal excretion.
Total urinary albumin excretion was significantly increased 123-
fold in STNx mice compared to controls (Table 3). STNx mice
had a significant increase in urinary albumin:creatinine ratio
(ACR) at 6 and 10-weeks post-surgery, with ACR significantly
increasing from 6 to 10-weeks post-surgery indicating progressive
proteinuria (Figure 1D). Renal sodium excretion was not
significantly different between STNx and sham operated mice
at both 6-weeks (174 ± 24 vs. 121 ± 26 µmol/18 h) and
10-weeks (167 ± 20 vs. 132 ± 24 µmol/18 h; Table 3).
Chloride excretion was also not different between groups at
6-weeks (372 ± 38 vs. 290 ± 61 µmol/18 h) and 10-weeks
(255 ± 21 vs. 271 ± 25 µmol/18 h; Table 3). Potassium
excretion was significantly different between groups, reflecting
an increase in excretion in STNX mice at 6-weeks (380 ± 32
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FIGURE 1 | Effect of single-step subtotal nephrectomy on renal function. 129S2/SV mice were subjected to flank single-step STNx or sham surgery and were culled
10-weeks post-surgery. Urine and blood at 10-weeks post-STNx or sham surgery was analyzed for renal function parameters. (A) Serum creatinine, (B) phosphate,
(C) urea. Sham: n = 7, STNx: n = 8. Student’s t-test was used for statistical analysis. ∗∗P ≤ 0.01, ∗∗∗∗P ≤ 0.0001. Plotted as mean ± SEM. (D) Urinary
albumin:creatinine ratios (log10) were calculated from timed overnight (18 h) collections from animals 6 and 10-weeks post-surgery. Sham: n = 7, STNx: n = 8. All
comparisons made via two-way ANOVA for repeat measures, with Sidak’s multiple comparisons test. ∗∗∗∗P ≤ 0.0001 vs. sham (of same timepoint), ††P ≤ 0.01 vs.
STNx 6-week. Plotted as mean ± SEM.

vs. 260 ± 45 µmol/18 h, P = 0.019); potassium excretion
was not different between groups at 10-weeks (234 ± 15 vs.
218 ± 28 µmol/18 h; Table 3). Urine osmolarity was also
measured with no significant difference at 6-weeks between sham
and STNx groups (1272.7 vs. 1157.5 mOsm) but by 10-weeks
post-STNx there was significantly lower osmolarity compared
with sham animals (Table 3).

Renal fibrosis remains one of the best histological markers
of progressive kidney disease (Ito et al., 2004; Hewitson, 2009;

Hewitson et al., 2017). At 10-weeks post-STNx, renal fibrosis
as measured by picrosirius red staining was increased 3.4-fold
(increasing from 0.62 ± 0.12% in sham kidneys to 2.11 ± 0.37%
in STNx kidneys) (Figures 2A,B). Evidence of tubulointerstitial
fibrosis and glomerulosclerosis was observed along with tubular
dilation (Figure 2A). 6-weeks post-STNx surgery, when ACR
was already increased, there were no significant pro-fibrotic
gene expression changes (Supplementary Figure 2). However, by
10-weeks post-STNx surgery, gene expression analysis revealed
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TABLE 3 | Urine parameters measured in male 129S2/SV mice 10-weeks
post-STNx.

Urine parameters Sham (10-weeks) STNx (10-weeks)

Na excretion 131.94 ± 24 µM/18 h 166.77 ± 20 µM/18 h

K excretion 271.78 ± 28 µM/18 h 164.45 ± 21 µM/18 h

Cl excretion 270.84 ± 25 µM/18 h 225.75 ± 11 µM/18 h

Total albumin 3.39 ± 0.48 µg/18 h 418.16 ± 89 µg/18 h ∗∗∗

Osmolality 1347 ± 89 mOsm 914.5 ± 63 mOsm ∗∗∗

Ion excretion, total albumin and osmolality was measured in 18 h-timed
urine collection from mice 10-weeks post-surgery or age-matched sham mice.
∗∗∗P < 0.001 unpaired t-test.

significant increases in the expression of pro-fibrotic genes
(Col1a1, Col3a1, Col4a1, Acta2, Mmp2, Tgf β1) (Figure 2C).
When gene expression of pro-inflammatory genes (Il1β and
Tnfα) were examined there was no difference in expression
compared to sham animals at 6 weeks but a significant increase
from 6 to 10-weeks post-STNx (Figure 2D). We have previously
reported that miR-21 and miR-214 are consistently elevated in
the kidney following injury (Denby et al., 2011), however, these
miRs have not been assessed in progressive renal dysfunction
induced by STNx in 129S2/SV mice. We found that the pro-
fibrotic miRNA miR-214-3p (Denby et al., 2014; Bai et al.,
2019) was significantly upregulated 6-weeks post-STNx surgery
(Figure 2E), prior to pro-fibrotic gene expression changes, with
no change in the pro-fibrotic miRNA miR-21-5p expression
(Denby et al., 2011; Chau et al., 2012; Gomez et al., 2015;
Hennino et al., 2016). At 10-weeks post-STNx surgery, miR-
21-5p was significantly upregulated 2.4-fold and miR-214-3p
remained significantly elevated with a 3.5-fold higher expression
compared to sham kidneys (Figure 2E). Significant increases
in miR-214-3p and miR-21-5p expression were detected in the
kidneys of STNx group animals between the 6 and 10-week
post-surgery timepoints (Figure 2E).

Effect of One-Step Flank STNx on
Intra-Renal Inflammation
As we observed an increase in pro-inflammatory gene expression
markers 10-weeks post-STNx, we sought to further characterize
the nature of the inflammatory cells in kidneys from mice
that underwent STNx. Analysis by flow cytometry (gating
strategy provided in Supplementary Figure 3A) revealed that
at 10-weeks post-STNx there was a significant increase in
the proportion of cells in the kidney that expressed CD45+
compared to sham kidneys (2.23% STNx vs. 0.96% Sham,
Figures 3A,B and Supplementary Figure 3B). Similarly, a
significant increase in CD45+ cells was also observed in
the hearts of animals subjected to STNx (Supplementary
Figure 3C). Further analysis of the CD45+ population in the
kidney revealed no significant difference in the proportion of
CD45+ inflammatory cells constituted by neutrophils (7.9%
STNx vs. 4.5% Sham; Figure 3C), CD11b+ F4/80lo macrophages
(monocyte derived), or CD11b+ F4/80hi macrophages (resident
population) (Figures 3D,E). However, further subset analysis of
the CD11b+ F4/80lo population revealed a clear waterfall effect

in the STNx kidneys with Ly6Chi monocytes transitioning to
Ly6Clo MHCII+ macrophages, an effect which was absent in
the sham kidney (Figure 3F). Furthermore, the percentage of
CD45+ CD11b+ F4/80lo Ly6Chi cells was significantly increased
in the STNx kidneys (Figure 3G). Analysis of the CD11b+
F4/80hi resident macrophages population revealed that there was
significantly increased expression of CD206 in these resident
macrophages in the STNx kidneys (Figure 3H).

Effect of One-Step Flank STNx on
Vascular and Cardiac Parameters
We next determined the effect of the STNx surgery on vascular
and cardiac function in the 129S2/SV mice we had measured
renal excretory function and proteinuria. We determined
systolic blood pressure using tail vein plethysmograph in
trained conscious mice at baseline, at 6-weeks post-surgery
and at study end. The mean systolic blood pressure at
6-weeks was not significantly different in STNx mice compared
with sham animals, but was significantly increased from
115 ± 2.6 mmHg in sham animals to 153.1 ± 4.6 mmHg
in STNx animals 10-weeks post-STNx surgery (Figure 4A).
The STNx mice also had significantly increased heart mass
compared to sham animals at 10-weeks post-STNx surgery
(Figure 4B). Therefore, we sought to determine the effects
of the progressive loss of renal function induced by our
one-step STNx surgery in the 129S2/SV mice on cardiac
function as measured by echocardiography (ECHO) carried
out at baseline, 6- and 10-weeks post-surgery (Figure 4C and
Table 4). No significant differences in percentage ejection fraction
were detected, although there was a trend for a reduction
10-weeks post-STNx. At 6-weeks, changes were detected in
% fractional area change (FAC) and area change, indicating
that adaption had begun to occur at this point (Table 4),
but no statistical difference was detected in heart weight (data
not shown). By 10-weeks, STNx animals had increased cardiac
wall thickness (0.88 ± 0.02 to 1.05 ± 0.04 mm) and left-
ventricle mass (182.7 ± 9.06 to 234.6 ± 17.75 mm) compared
with sham animals (Table 4), which mirrored the increased
heart weights measured at 10-weeks post-STNx (Figure 4B).
Doppler imaging performed on the mitral valve revealed a
significantly increased left ventricle isovolumetric relaxation time
(IV RT) at 10-weeks post-STNx, but not 6-weeks post-STNx,
suggesting STNx induced renal dysfunction may lead to diastolic
dysfunction over time (Lindsey et al., 2018; Schnelle et al.,
2018). As ECHO analysis suggested cardiac hypertrophy and
diastolic dysfunction had occurred, cardiac fibrosis was assessed
histologically. At 10-weeks post-STNx there was no significant
increase in total collagen deposition in the heart (Figures 4D,E).
At 6-weeks post-STNx, no change in expression for fibrillar
collagen genes Col1a1 and Col3a1 was observed (Figure 4F),
however Col3a1 expression was significantly increased at
10-weeks compared with sham animals (Figure 4G). There
was significantly higher expression of the cardiac hypertrophy
markers ANP (Nppa) and BNP (Nppb) in the STNx compared
with sham animals at 6-weeks with ANP remaining increased a
10-weeks (Figures 4F,G).
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FIGURE 2 | Continued
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FIGURE 2 | Single-step subtotal nephrectomy induces significant renal fibrosis. 129S2/SV mice were subjected to flank single-step STNx or sham surgery and were
culled 10-weeks post-surgery. At sacrifice kidney sections were snap frozen for RNA analysis and to prepare FFPE 3 µM sections. (A) Picrosirius red staining for
total collagen in kidneys. Exemplar images are provided at 5x magnification, scale bar 100 µM. B-1 = Tubulointerstitial fibrosis, B-2 = glomerulosclerosis,
B-3 = tubular dilation. (B) Quantification of fibrosis (% PSR staining). Sham: n = 7, STNx: n = 11. Student’s t-test was used for statistical analysis. ∗P < 0.05. Plotted
as mean ± SEM. (C) Pro-fibrotic gene expression in whole kidney tissue was determined by quantitative real-time PCR (qRT-PCR) carried out with specific Taqman
probes for each gene, normalized to housekeeper Ppia. Sham: n = 6, STNx: n = 10. Col1a1 was found to have non-parametric distribution, therefore Mann–Whitney
test was used, Student’s t-test was used for other genes. ∗∗∗∗P < 0.0001, ∗∗∗P < 0.001, ∗∗P < 0.01. Plotted as RQ mean ± SEM. (D) Inflammatory gene
expression in whole kidney tissue at 6 and 10-weeks post-surgery was determined by quantitative real-time PCR (qRT-PCR) carried out with specific Taqman probes
for each gene, normalized to housekeeper Ppia. Sham 6-week: n = 3, STNx 6-week: n = 5, Sham 10-week: n = 6, STNx 10-week: n = 10. All comparisons made via
an ordinary two-way ANOVA with Tukey’s multiple comparisons test. ∗∗∗P < 0.001 vs. sham (of same timepoint), ∗∗∗∗P < 0.0001 vs. sham (of same timepoint),
††P < 0.01 vs. STNx 6-week, ††††P < 0.0001 vs. STNx 6-week. Plotted as mean ± SEM. (E) Renal fibrosis-associated miRNA expression in whole kidney tissue at 6
and 10-weeks post-surgery was determined by quantitative real-time PCR (qRT-PCR) carried out with specific Taqman probes for each miRNA, normalized to
housekeeper U6. Sham 6-week: n = 3, STNx 6-week: n = 5, Sham 10-week: n = 6, STNx 10-week: n = 10. All comparisons made via an ordinary two-way ANOVA
with Tukey’s multiple comparisons test. ∗∗∗P < 0.001 vs. sham (of same timepoint), †††† P < 0.0001 vs. STNx 6-week. Plotted as mean ± SEM.

To demonstrate consistent outputs from the STNx model
presented in this manuscript, two independent studies were
compared in male 129S2/SV mice run 1.5 years apart (Figure 5).
Between the two studies there were no significant differences
in the amount of renal fibrosis detected, the increase in ACRs
induced, amount of LVH (measured by heart weight:normalized
to tibia) or gene expression of collagen 1 in renal tissue (Figure 5).

Effect of Genetic Background on
One-Step Flank STNx Induced Renal and
Cardiac Dysfunction
Subtotal nephrectomy is known to be a strain-dependent model,
with C57BL/6 mice being resistant to developing fibrosis (Ma
and Fogo, 2003; Leelahavanichkul et al., 2010). However, this
strain is commonly used as a background for the production
of transgenic animals. To assess how the single step STNx
performs in this genetic background, a Gli1 reporter mouse
(Gli1 × Ai14) on a C57BL/6 background was used. An increase
in total collagen expression (sham: 0.81 ± 0.03%, STNx:
2.57 ± 0.42%) along with histological hallmarks of renal fibrosis
(tubulointerstitial fibrosis and glomerulosclerosis) was observed
(Supplementary Figures 4A,B), as well as a significant increase
in pro-fibrotic genes and inflammatory genes (Supplementary
Figure 4C). However, the urinary ACRs of STNx animals
were not different to sham at 6 or 10-weeks post-surgery
(Supplementary Figure 4D) and there was no increase in heart
weight observed (Supplementary Figure 4E).

DISCUSSION

Clinically, CKD is characterized by worsening excretory function
with or without proteinuria and renal biopsies typically show
glomerulosclerosis, tubulointerstitial fibrosis, and inflammatory
cell infiltrates. In addition, CKD is associated with the
development of CVD, characterized by hypertension and cardiac
and vascular dysfunction. Therefore, we set out to establish
if a one-step flank STNx performed in male 129S2/SV mice
could model these clinical CKD parameters in a consistent
and robust manner.

Urinary albumin to creatinine ratio (ACR) is an important
prognostic indicator for progression of renal disease (Feldman
et al., 2014; Vassalotti et al., 2016), and cardiovascular events

(Waheed et al., 2012). Furthermore, regression of albuminuria
is associated with improved renal outcomes (Perkins et al.,
2007) and hence represents a therapeutic target in CKD patients
(Heerspink and Gansevoort, 2015). Hence, the significantly
increased ACR in STNx mice compared to sham operated mice
represents an important clinically-relevant readout for testing
novel therapeutics in this model. Indeed, this was a key readout
used to demonstrate the efficacy of ACE inhibition in seminal
studies in the rat subtotal nephrectomy model (Meyer et al., 1985;
Anderson et al., 1986), which represents one of the few therapies
that have been successfully translated from rodent models
to human CKD. Urinary excretion of sodium, chloride and
potassium were largely comparable between sham-operated and
STNx mice at both time points. Although GFR was not directly
measured here, the major reduction in filtration following STNx
would significantly reduce the filtered load for sodium, chloride
and potassium and our data indicate a proportionate decline
tubular reabsorption. Thus, over this time course, the renal
tubule adapted to maintain electrolyte excretion and preserve
balance. The STNx group showed a progressive decline in urine
osmolarity, indicating a reduced concentrating capacity in the
remnant kidney.

Male 129S2/SV mice subjected to the refined one-step STNx
developed increased serum creatinine, BUN and phosphate
which are important clinical manifestations of renal disease.
There was approximately a twofold increase in both creatinine
and urea by 10-weeks post-STNx, however, the coefficient of
variation (CV) for urea was only 11.1% compared to 39.8%
for creatinine suggesting that serum urea measurements are
more reliable as kidney injury markers in rodents. In this
context, it would be interesting to measure some newer markers
of renal function such as Cystatin C (Song et al., 2009) to
further validate this model of progressive renal dysfunction
in mice. The increase in serum phosphate is important as
hyperphosphatemia is observed in late-stage CKD and is a driver
of secondary hyperparathyroidism (Locatelli et al., 2002), mineral
bone disorder and vascular calcification (Felsenfeld et al., 2015).
Hyperphosphatemia is also thought to contribute to cardiac
hypertrophy and calcification of heart valves and conduction
system (Di et al., 2015).

The serum urea levels recorded in the mice following the
single step flank STNx procedure were significantly increased
compared to age matched sham controls, however, these levels
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FIGURE 3 | Analysis of inflammatory infiltrate in the STNx kidney. 129S2/SV mice were subjected to flank single-step STNx or sham surgery and were culled
10-weeks post-surgery. At sacrifice n = 5 Sham and n = 4 STNx kidneys were perfused and kidneys digested for flow cytometry and analyzed on the 6L Fortessa
Flow Analyzer. (A) Plot of CD45+ cells and neutrophils (CD45 + Ly6Ghi ) in kidney. (B) Quantification of the percentage of total cells that express CD45+ in the kidney.
(C) Quantification of Neutrophils (CD45+ Ly6Ghi ) in the kidney. (D) Analysis of CD45+ Ly6G– CD11b+ F4/80+ population in the kidney. (E) Quantification of CD45+

Ly6G– CD11b+ F4/80+ population in the kidney. (F) Subset analysis and quantification of CD45+ Ly6G– CD11b+ F4/80lo population into monocytes (Ly6Chi

MHCII–), transitioning monocyte-macrophages and macrophages (Ly6C– MHCII+). (G) Expression and quantification of the proportion of CD45+ Ly6G– CD11b+

F4/80lo that express Ly6C. (H) Analysis and quantification of CD206 expression in the resident macrophage population CD45+ Ly6G– CD11b+ F4/80hi . N = 5 Sham
N = 4 STNx statistical analysis by Mann–Whitney test ∗P < 0.05.
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FIGURE 4 | Continued
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FIGURE 4 | Single-step flank STNx induces cardiac dysfunction and hypertrophy but not cardiac fibrosis. 129S2/SV mice were subjected to flank single-step STNx
or sham surgery and were culled 10-weeks post-surgery. At sacrifice heart sections were taken and snap frozen for RNA analysis and to prepare FFPE 3 µM
sections. (A) Systolic blood pressure was measured via tail cuff at 6 and 10-weeks post-surgery. Sham: n = 4, STNx: n = 5. One way-ANOVA with Tukey’s multiple
comparison test, all compared to sham. ∗P ≤ 0.05, †P < 0.05 vs. STNx at 6 weeks. Plotted as mean ± SEM. (B) Heart weight at cull normalized to tibia length.
Sham: n = 7, STNx: n = 11. Student’s t-test was used for statistical analysis. ∗∗P ≤ 0.01. Plotted as mean ± SEM. (C) Exemplar images of the analysis of EKV
echocardiography via VisualSonics software. A = diastole, B = systole. Trace lines were drawn along the epicardial and endocardial borders at both end systole and
end diastole. Left ventricle (LV) major axes were also traced at end systole and end diastole by drawing a line from the LV apex endocardium or LV apex epicardium,
to the mitral valve line. (D) Picrosirius red stain for total collagen in hearts. Exemplar images are provided at 5x magnification. (E) Quantification of fibrosis (% PSR
staining) carried out via Image-Pro Plus 7. Sham: n = 7, STNx: n = 8. Student’s t-test was used for statistical analysis. Plotted as mean ± SEM. (F) Gene expression
in whole heart tissue was assessed 6 weeks post-STNx using quantitative real-time PCR (qRT-PCR) using specific Taqman probes for each gene, normalized to
housekeeper Gapdh. Sham: n = 3, STNx: n = 5. Student’s t-test was used for statistical analysis. ∗P ≤ 0.05. Plotted as mean ± SEM. (G) Gene expression in whole
heart tissue 10-weeks post-STNx or sham surgery was assessed using quantitative real-time PCR (qRT-PCR) using specific Taqman probes for each gene,
normalized to housekeeper Gapdh. Sham: n = 8, STNx: n = 10. Col1a1, Col3a1, and Nppa expression were determined to have non-parametric distribution.
Mann–Whitney test was used for statistical analysis on Col1a1, Col3a1 and Nppa, Student’s t-test was used on Nppb. ∗P ≤ 0.05. Plotted as mean ± SEM.

TABLE 4 | Cardiac echocardiography measurements in STNX and Sham animals at 6 and 10-weeks post-surgery.

6-weeks post-surgery 10-weeks post-surgery

Sham STNx Sham STNx

EKV: n = 8 n = 10 n = 8 n = 10

Ejection fraction (%) 59.1 ± 1.5 48.8 ± 4.4 54.4 ± 4 45.9 ± 2.8

Fractional area change (%) 40.5 ± 0.8 32.2 ± 3.3 ∗ 37.2 ± 3.2 29.8 ± 2.3

Area change (mm2) 9.21 ± 0.8 7.21 ± 0.64 ∗ 8.73 ± 0.86 6.91 ± 0.34 †

Cardiac wall thickness (mm) 0.92 ± 0.03 1.02 ± 0.04 0.88 ± 0.02 1.04 ± 0.04 ††

LV mass (mg) 189.1 ± 10.7 215.8 ± 16.3 182.7 ± 9.1 234.6 ± 17.7 †

Mitral valve spectral doppler: n = 8 n = 9 n = 8 n = 9

E wave (mm/s) 770 ± 27.4 650 ± 41.7∗ 747 ± 25.6 663 ± 38.9

A wave (mm/s) 457 ± 24.5 479 ± 44.3 443 ± 39.9 471 ± 45.5

LV IV RT 24.5 ± 1.24 28.2 ± 1.75 24.1 ± 0.82 28.6 ± 1.38 †

Echocardiography measurements were obtained under isoflurane anesthesia at 6 and 10-week post-STNx or sham surgery. Sham: n = 8, STNx: n = 10. Student’s t-test
was used for statistical analysis of difference between sham and STNx groups at 6 or 10-weeks post-surgery. ∗P ≤ 0.05 at 6-weeks vs. sham. †P ≤ 0.05, ††P ≤ 0.01 at
10-weeks vs. sham.

are lower than those observed in some other studies which
might suggest this surgery resulted in less tissue being taken
and a less severe renal dysfunction being induced which resulted
in less mortality. The lack of a statistical difference in body
weight appears to support this too. There are very few studies
that document the amount of tissue taken beyond those studies
that showed the relationship between renal function and the
amount of tissue removed (Rambausek et al., 1985). In our
studies in male SV129/SV mice, when on average 32.9% of
left renal tissue remained, all mice developed renal dysfunction
with significant alterations in renal excretory function and
proteinuria. Importantly, the low mortality rate in this STNx
model means animals survived to pre-defined study end-points
which maintained statistical power in the studies.

The relationship between CKD and hypertension is
bidirectional. CKD is known to cause hypertension and
hypertension is a known risk factor for CKD (Gosmanova
and Kovesdy, 2016). 86% of CKD patients have hypertension
(Gosmanova and Kovesdy, 2016). Blood pressure lowering
strategies have been shown to decrease progression of kidney
disease and all-cause mortality in patients with CKD (Peters et al.,
2017). At 10-weeks post-STNx, a significant increase in systolic
blood pressure was detected using tail vein plethysmograph. This
was in agreement with several other studies (Kennedy et al., 2008;
Leelahavanichkul et al., 2010; Gava et al., 2012). However, this is

contrast to subtotal nephrectomy two-step models run in 129SV
and FVB mice, where no change in blood pressure was observed
(Siedlecki et al., 2009; Dilauro et al., 2010). Interestingly, sham
mice from the 129SV study had higher systolic blood pressures
than recorded in our study (129 ± 4 mmHg; Siedlecki et al.,
2009 sham versus 115 ± 2.6 mmHg sham operated in our
study). The mice in this study were trained prior to blood
pressure measurements to ensure the results were not affected
by stress of the procedure, potentially explaining the lower
conscious blood pressures obtained. However, the diet of the
mice differing between studies could also explain these effects
as increased dietary NaCl is known to aggravate hypertension.
Similarly, group housing of the animals may also have affected
our results, as this is a less stressful environment for the
animals that may have led to our sham animals having lower
systolic blood pressure.

The refined single-step flank STNx performed on 129S2/SV
mice results in significant renal fibrosis, accompanied by
histological hallmarks tubulointerstitial fibrosis (TIF) and
glomerulosclerosis (GS) by 10-weeks post-surgery. Both TIF
and GS are observed in CKD patients (Nakagawa et al., 2015),
with TIF being an important predictor of disease progression
(Nath, 1992). Increases in three collagen genes mirror what
can be seen histologically. Col1a1 and Col3a1 encode fibrillar
collagens (Delella et al., 2017) which are important extracellular

Frontiers in Physiology | www.frontiersin.org 11 November 2019 | Volume 10 | Article 1365

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01365 November 13, 2019 Time: 16:46 # 12

O’Sullivan et al. Modeling Progressive Kidney Disease

FIGURE 5 | Comparison between independent STNx studies conducted in male 129S2/SV mice. Male 129S2/SV mice (bought from Envigo) were subjected to
STNx in two separate studies, 1.5 years apart (Study 1 – March 2017; Study 2 – September 2018). Plotted as mean ± SEM. (A) Quantification of picrosirius red
stain for total renal collagen, via Image-Pro Plus. Study #1 Sham: n = 7, study #1 STNx: n = 11, Study #2 Sham: n = 7, study #2 STNx: n = 6. (B) Renal Col1a1
gene expression at 10-weeks post-surgery. Study #1 Sham: n = 6, study #1 STNx: n = 10, Study #2 Sham: n = 8, study #2 STNx: n = 10. (C) Heart weight
normalized to tibia length at cull, 10-weeks post-surgery. Study #1 Sham: n = 7, study #1 STNx: n = 11, Study #2 Sham: n = 8, study #2 STNx: n = 10. (D) Log10
albumin:creatinine ratio (ACR) at 10-weeks post-surgery. Study #1 Sham: n = 7, Study #1 STNx: n = 11, Study #2 Sham: n = 7, study #2 STNx: n = 8. Statistical
analysis carried out via ordinary one-way ANOVA with Tukey’s multiple comparisons test. ∗P < 0.05 vs. sham (same study), ∗∗P < 0.01, ∗∗∗P < 0.001,
∗∗∗∗P < 0.0001.

matrix components (Nakagawa and Duffield, 2013). Col4a1 is
an important basement membrane component (Jones et al.,
2016), suggesting possible basement membrane expansion in
STNx kidneys. Acta2 encodes α-smooth muscle actin, a marker
of activated myofibroblasts, which increase in number in renal
fibrosis (Bernard et al., 2014) and secrete excess extracellular
matrix components (Bernard et al., 2014). The increased
expression of miR-21 and miR-214 is of interest given the pro-
fibrotic role these miRNAs are known to have in the kidney
(Denby et al., 2014). Importantly, miR-21 and miR-214 have also
been shown to be up-regulated in the kidneys of patients with
CKD, indicating that the STNx model mimics the mechanisms
that promote fibrosis in human disease (Lv et al., 2018). Taken
together, increased expression of these genes and miRNAs in
the kidney suggests a pro-fibrotic environment is present in the

kidneys of mice subjected to STNx on both the histological and
molecular level.

Gene expression of the cardiac hypertrophy marker ANP
(Kerkelä et al., 2015; Riaz et al., 2015) was increased in hearts at
both 6 and 10-weeks post-STNx whilst BNP (Kerkelä et al., 2015)
was only significantly increased at 6-weeks. This coupled with
the increased heart weight detected at 10-weeks post-STNx and
increased average cardiac wall thickness and left-ventricular mass
detected by ECHO at 10-weeks post-STNx suggests significant
hypertrophy had taken place, although cardiac fibrosis had
not manifested at the histological level at this time-point.
However, no significant change in these measures was detected
at 6-weeks post-STNx, indicating the development of this cardiac
hypertrophy in the STNx model is time dependent. Prolonged
isovolumic relaxation time (IV RT) was observed at 10-weeks
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post-STNx (but not at 6-weeks), indicating diastolic dysfunction
is present in these mice via impairment of myocardial relaxation
(Schnelle et al., 2018). No significant decrease in ejection fraction
was observed, indicating that adaptive measures taken by the
heart to overcome the increased stress have been successful up
until 10-weeks post-STNx. It is likely necessary to extend the
timeline of the model past 10-weeks post-surgery in order to
observe diastolic dysfunction and fibrosis.

The STNx model has been extensively reviewed from the
point of heart-kidney interactions (Bongartz et al., 2012;
Hewitson et al., 2015; Liu, 2019). A common comment in reviews
of the literature is that in mice this model is highly variable
if not uniformly performed and you can get conflicting results
depending on the strain. Here we are able to present data
which shows that in 129S2/SV male mice you can achieve
reproducible physiological readouts using the single step STNx
model described, with the added advantage of low mortality
and improved animal welfare. The model is amenable to
echocardiography studies which allow longitudinal studies of
cardiac structure and function. Utilizing the 129S2/SV mouse
also allows for the inflammatory cell profile to be examined
in detail as multiple validated antibodies are available for
mouse unlike rat.

Low grade inflammation is common in CKD patients (Amdur
et al., 2016), with patients typically exhibiting elevated CRP,
TNFα, and IL-6 levels (Panichi et al., 2001; Lacson and
Levin, 2004). Furthermore, macrophage infiltration into the
kidney in CKD has been found to correlate with a decline
in kidney function (Eardley et al., 2006; Amdur et al., 2016).
The analysis of the inflammatory cell content of the STNx
mice revealed there is increased CD45+ hematopoietic cell
content in the STNx kidney and heart. The STNx model mimics
the findings in human CKD of increased inflammation, with
flow cytometry data demonstrating persistent Ly6Chi monocyte
recruitment to the STNx kidney where they transition into
pro-inflammatory macrophages. Previous work has identified a
CD11b+ Ly6Chi population to be induced with the onset of
renal injury following ischemia reperfusion injury and unilateral
ureteric obstruction (Lin et al., 2009; Clements et al., 2016).
Importantly, in our study we excluded Ly6G+ neutrophils and
found that significantly more CD45+ Ly6G− CD11b+ F4/80lo
cells express Ly6C. This population has been previously shown
to have a pro-inflammatory gene signature (Clements et al.,
2016), and promote fibrosis in other organs such as the liver
(Ramachandran et al., 2012). Within the CD45+ CD11b+ F4/80hi
resident macrophage population there was a significantly greater
expression of CD206 (Mannose receptor 1, Mrc1). This C-type
lectin is expressed predominantly by tissue macrophages and
is involved in phagocytosis and acts as a scavenger receptor
(Taylor et al., 2005). CD206 is classically thought of as an
alternatively activated or M2 macrophage marker (Murray et al.,
2014). The increase in the Mrc1 expression is confined to the
resident macrophage population that may suggest that resident
macrophages may play an important role in scavenging of debris
and scar tissue. Hence, this STNx model in mice affords an
opportunity in future studies to perform detailed mechanistic
studies of the role of each immune cell subset in progressive CKD.

A number of refinements to traditional methods of
undertaking subtotal nephrectomy were employed in the
refined single-step STNx surgery used in this study with a key
focus on animal welfare. One of the key differences between
the surgical methods presented in this paper and the majority
of previously published studies is the use of a single-surgery
via flank incisions to perform both the nephrectomy and
contralateral partial nephrectomy. Multiple papers have been
published where nephrectomy is performed in one surgery,
then 1–2 weeks later, resection of the poles or renal artery
ligation is performed in a separate surgery (Kren and Hostetter,
1999; Ma and Fogo, 2003; Soler et al., 2008; Windt et al., 2008;
Leelahavanichkul et al., 2010; Yang et al., 2010; Babelova et al.,
2012; Gava et al., 2012; Li et al., 2012; Purnomo et al., 2013; Hyde
et al., 2014; Ucero et al., 2014; Vavrinec et al., 2016; Rosendahl
et al., 2018). Reducing the number of surgeries to which the mice
are subjected, by performing the single-step STNx surgery has
a number of benefits for animal welfare including: the animals
undergo anesthesia on one less occasion, the length of time
the mice are on-procedure is decreased, and requirement for
analgesics is reduced. Our approach also avoids hypertrophy
of the remaining kidney or remnant kidney (depending on the
surgical order) between surgeries. Renal tissue during this phase
could be argued to be in the “regenerative mode” and thus may be
more resistant to the development of fibrosis which would not be
present in this refined STNx model. Animal welfare in response
to STNx was monitored weekly throughout the study using an
animal condition scoring sheet (Supplementary Table 1), which
included body condition scoring. A cumulative score of 5 or
higher resulted in a mandatory schedule 1 termination of the
animal. We found that group housing resulted in improved
animal welfare scores, therefore group housing animals is
recommended. Decreased weight and body condition score
in mice is an important determinant of health status (Foltz
and Ullman-Culleré, 1999; Ullman-Culleré and Foltz, 1999;
Burkholder et al., 2012) and mice subjected to STNx were found
not to differ in weight in comparison to sham animals at any
time-point during the 10-weeks between surgery and sacrifice.
In studies which use traditional two-step subtotal nephrectomy
protocols, most (Leelahavanichkul et al., 2010; Gava et al., 2012;
Zeng et al., 2018) but not all (Siedlecki et al., 2009), report a
reduction in body weight with subtotal nephrectomized animals
compared to sham controls. The lack of a difference in body
weight may be due to this model inducing milder progressive
renal disease as systolic blood pressure and ACRs were not
significantly increased until 6-weeks post-surgery. However, this
may also be in part due to improved animal welfare brought
about by group housing. This study could have benefited from
a side by side comparison with the traditional two-step STNx to
fully demonstrate its advantages, however, the mortality rates for
this surgery can be high and in a recent study shown to be 60%
4 weeks post-surgery (Tan et al., 2019). Therefore, in the interests
of animal welfare it is not appropriate to run such a study.

The mortality following subtotal nephrectomy has been poorly
reported in the literature, but is often high, for example 43% by
12-weeks post-surgery (Ma and Fogo, 2003). Other studies report
no mortality but it is not clear if this included animals that either
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did not develop significant renal dysfunction or were terminated
prematurely due to animal welfare concerns. In our model in total
9% of animals did not complete the study due to a combination
of mortality during follow-up (n = 3), exceeding animal welfare
scoring limits (n = 2) or failure to recover from anesthetic (n = 2).
These data suggest that the single-step STNx surgery is well-
tolerated by the mice, although a small mortality rate needs to
be factored into power calculations.

The subtotal nephrectomy is known to be a strain-dependent
model. Both the 129S2/SV and CD1 strain have been reported
to be permissive to injury (Ma and Fogo, 2003; Kennedy et al.,
2008; Siedlecki et al., 2009; Leelahavanichkul et al., 2010). In
our 129S2/SV mice no cardiac fibrosis was detected per se but
on the gene expression level Collagen III was increased by 10-
weeks post-surgery. Using the CD1 strain of mice, cardiac fibrosis
can be induced with the added insult of additional dietary salt
(Fontes et al., 2015) which may be required in this model too. In
a pilot study in this genetic background, the refined STNx model
resulted in significant renal fibrosis and increased pro-fibrotic
gene expression in the kidney which matches that previously
observed (Ma and Fogo, 2003). However, there were no functional
alterations detectable, e.g., increased ACR or changes in heart
weight. This indicates that STNx in C57BL/6 mice may not be
the best pre-clinical model to test novel therapies where clinically
relevant renal and cardiac outcomes are required. These results
mirror the experience of other groups with subtotal nephrectomy
in C57BL/6 mice (Ma and Fogo, 2003; Leelahavanichkul et al.,
2010), with additional stimuli such as angiotensin II infusion
required to produce hard renal outcomes (Leelahavanichkul et al.,
2010). The resistance to development of albuminuria in the
C57BL/6 mice is well-recognized, albumin overloaded 129S2/SV
mice develop abundant albuminuria whereas C57BL/6 show
none despite increased serum albumin (Ishola et al., 2006). The
significant increase in fibrosis observed, however, suggests that
for studies into renal fibrosis, the STNx model could be further
utilized to understand the precise pathophysiology of progressive
renal fibrosis using genetic knockout mice on the C57BL/6
genetic background.

Summary
Together, these data provide evidence that conducting the
subtotal nephrectomy model with our refined protocol in male
129S2/SV mice results in renal dysfunction, renal inflammation,
and fibrosis with systemic pathologies akin to what is
observed in patients.

This model is also suitable for testing new therapies for
CKD given its progressive nature, clinically relevant biochemical
measurements and cardiac dysfunction. In addition, these
therapies can be given with standard therapy of ACEi to examine
physiological effects beyond those offered by blood pressure
reduction alone.

C57BL/6 mice as previously reported are refractory to
proteinuric renal dysfunction, blood pressure and cardiac
changes but do develop significant renal fibrotic disease.
Therefore, for pathophysiological studies of fibrosis the STNx
model in C57BL/6 background may offer some insight when
using genetic knockout models on this genetic background.
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