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a b s t r a c t 

Knowledge of whole heart anatomy is a prerequisite for many clinical applications. Whole heart seg- 

mentation (WHS), which delineates substructures of the heart, can be very valuable for modeling and 

analysis of the anatomy and functions of the heart. However, automating this segmentation can be chal- 

lenging due to the large variation of the heart shape, and different image qualities of the clinical data. To 

achieve this goal, an initial set of training data is generally needed for constructing priors or for training. 

Furthermore, it is difficult to perform comparisons between different methods, largely due to differences 

in the datasets and evaluation metrics used. This manuscript presents the methodologies and evalua- 

tion results for the WHS algorithms selected from the submissions to the Multi-Modality Whole Heart 

Segmentation (MM-WHS) challenge, in conjunction with MICCAI 2017. The challenge provided 120 three- 

dimensional cardiac images covering the whole heart, including 60 CT and 60 MRI volumes, all acquired 
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1. Introduction 

According to the World Health Organization, cardiovascular dis-

eases (CVDs) are the leading cause of death globally ( Mendis et al.,

2011 ). Medical imaging has revolutionized modern medicine and

healthcare, and imaging and computing technologies have become

increasingly important for the diagnosis and treatments of CVDs.

Computed tomography (CT), magnetic resonance imaging (MRI),

positron emission tomography (PET), single photon emission com-

puted tomography (SPECT), and ultrasound (US) have been used

extensively for physiologic understanding and diagnostic purposes

in cardiology ( Kang et al., 2012 ). Among these, CT and MRI are par-

ticularly used to provide clear anatomical information of the heart.

Cardiac MRI has the advantages of being free from ionizing radi-

ation, acquiring images with good contrast between soft tissues

and with relatively high spatial resolution ( Nikolaou et al., 2011 ).

In contrast, cardiac CT, though involves ionizing radiation, is fast,

low cost, and generally of high quality ( Roberts et al., 2008 ). 

To quantify the morphological and pathological changes, it is

commonly a prerequisite to segment the important structures from

the cardiac medical images. Whole heart segmentation (WHS) aims

to extract each of the individual whole heart substructures, includ-

ing the left ventricle (LV), right ventricle (RV), left atrium (LA),

right atrium (RA), myocardium of LV (Myo), ascending aorta (AO)

or the whole aorta, and the pulmonary artery (PA) ( Zhuang, 2013 ),

as Fig. 1 shows. The applications of WHS are numerous. The re-

sults can be used to directly compute the functional indices such
Fig. 1. Examples of cardiac images and WHS results: (a) displays the three orthogonal v

cardiac MRI data and the WHS result. LV: left ventricle; RV: right ventricle; LA: left atriu

artery. 
anual delineation. Ten algorithms for CT data and eleven algorithms for

ve groups, have been evaluated. The results showed that the performance

r than that of MRI WHS. The segmentation of the substructures for differ-

 present different levels of challenge due to the difference in imaging and

 deep learning (DL)-based methods demonstrated great potential, though

 results in the blinded evaluation. Their performance could vary greatly

res and training strategies. The conventional algorithms, mainly based on

nstrated good performance, though the accuracy and computational effi-

allenge, including provision of the annotated training data and the blinded

hms on the test data, continues as an ongoing benchmarking resource via

fudan.edu.cn/zhuangxiahai/0/mmwhs/ ). 

© 2019 The Authors. Published by Elsevier B.V.

cle under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ )

s ejection fraction. Additionally, the geometrical information is

seful in surgical guidance such as in radio-frequency ablation of

he LA. However, the manual delineation of whole heart is labor-

ntensive and tedious, needing almost 8 hours for a single sub-

ect ( Zhuang and Shen, 2016 ). Thus, automating the segmentation

rom multi-modality images, referred to as MM-WHS, is highly de-

ired but still challenging, mainly due to the following reasons

 Zhuang, 2013 ). First, the shape of the heart varies through the car-

iac cycle as the heart contracts and relaxes. It also varies greatly

rom subject to subject, especially for those with pathological and

hysiological changes. Second, the appearance and image quality

an be variable. For example, the enhancement patterns of the CT

mages can differ significantly for different scanners or acquisition

essions. Also, motion artifacts, poor contrast-to-noise ratio and

ignal-to-noise ratio, commonly presented in the clinical data, can

ignificantly deteriorate the image quality and consequently chal-

enge the task. 

.1. State-of-the-art for Whole Heart Segmentation 

In the last ten years, a variety of WHS techniques have been

roposed for cardiac CT and MRI data. Detailed reviews of pre-

iously published algorithms can be found in Kang et al. (2012) ,

huang (2013) and Peng et al. (2016) . Kang et al. (2012) re-

iewed several modalities and corresponding segmentation

lgorithms for the diagnosis and treatments of CVDs. They sum-

arized the roles and characteristics of different modalities of
iews of a cardiac CT image and its corresponding WHS result, (b) shows example 

m; RA: right atrium; Myo: myocardium of LV; AO: ascending aorta; PA: pulmonary 

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
http://creativecommons.org/licenses/by/4.0/
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Table 1 

Summary of previous WHS methods for multi-modality images. PIS: patch-based interactive segmentation; FIMH: International Conference on Functional Imag- 

ing and Modeling of the Heart; MICCAI: International Conference on Medical Image Computing and Computer-assisted Intervention; MedPhys: Medical Physics; 

MedIA: Medical Image Analysis; RadiotherOncol: Radiotherapy and Oncology. 

Reference Data Method Runtime Dice 

Zuluaga et al. (2013) , FIMH 8 CT, 23 MRI MAS 60 min, 30 min 0.89 ± 0.04, 0.91 ± 0.03 

Zhuang et al. (2015) , MedPhys 30 CT MAS 13.2 min 0.92 ± 0.02 

Pace et al. (2015) , MICCAI 20 MRI PIS + Active learning N/A N/A 

Zhuang and Shen (2016) , MedIA 20 CT, 20 MRI Multi-modality MAS 12.58 min 0.90 ± 0.03 

Zhou et al. (2017) , RadiotherOncol 31 CT MAS 10 min N/A 

Cai et al. (2017) , Neurocomputing 14 CT Gaussian filter-based N/A N/A 
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ardiac imaging and the parameter correlation between them.

urthermore, they categorized the WHS techniques into four,

.e., (1) boundary-driven techniques, (2) region-based techniques,

3) graph-cuts techniques, and (4) model fitting techniques. The

dvantages and disadvantages of each category were analyzed

nd summarized. Zhuang (2013) discussed the challenges and

ethodologies of the fully automatic WHS. Particularly, the work

ummarized two key techniques, i.e., the construction of prior

odels and the fitting procedure for segmentation propagation,

or achieving this goal. Based on the types of prior models, the

egmentation methods can be divided into two groups, namely

he deformable model based methods and the atlas-based ap-

roaches. The fitting procedure can be decomposed into three

tages, including localizing the whole heart, initializing the sub-

tructures, and refining the boundary delineation. Hence, this

eview paper by Zhuang (2013) mainly analyzes the algorithms

ased on the classification of prior models and fitting algorithms

or the WHS from different modality images. Peng et al. (2016) re-

iewed both the methodologies of WHS and the structural and

unctional indices of the heart for clinical assessments. In their

ork, the WHS approaches were classified into three categories,

.e., image-driven techniques, model-driven techniques, and the

irect estimation-based methods. 

The three topic review papers mentioned above mainly cover

ublications before 2015. A collection of recent works not in-

luded by them are summarized in Table 1 . Among these works,

huang et al. (2015) proposed an atlas ranking and selection

cheme based on conditional entropy for the multi-atlas based

HS of CT. Zhou et al. (2017) developed a set of CT atlases labeled

ith 15 cardiac substructures. These atlases were then used for au-

omatic WHS of CT via the multi-atlas segmentation (MAS) frame-

ork. Cai et al. (2017) developed a method with window width-

evel adjustment to pre-process CT data, which generates images

ith clear anatomical structures for WHS. They applied a Gaus-

ian filter-based multi-resolution scheme to eliminate the discon-

inuity in the down-sampling decomposition for whole heart im-

ge registration. Zuluaga et al. (2013) developed a MAS scheme

or both CT and MRI WHS. The proposed method ranked and se-

ected optimal atlases based on locally normalized cross correla-

ion. Pace et al. (2015) proposed a patch-based interactive algo-

ithm to extract the heart based on a manual initialization from

xperts. The method employs active learning to identify the areas

hat require user interaction. Zhuang and Shen (2016) developed

 multi-modality MAS framework for WHS of cardiac MRI, which

sed a set of atlases built from both CT and MRI. They proposed

odality invariant metrics for computing the global image similar-

ty and the local similarity. The global image similarity was used to

ank and select atlases, from the multi-modality atlas pool, for seg-

enting a target image, and the local similarity metrics were pro-

osed for the patch-based label fusion, where a multi-scale patch

trategy was developed to obtain a promising performance. 

In conclusion, WHS based on the MAS framework, referred to

s MA-WHS, has been well researched in recent years. MAS seg-

ents an unknown target image by propagating and fusing the la-
els from multiple annotated atlases using image registration tech-

iques. The performance relies on the registration algorithms for

abel propagation and the fusion strategy to combine the segmen-

ation results from the multiple atlases. Both of these two key

teps are generally computationally expensive. 

Recently, deep learning (DL)-based methods have shown great

romise in medical image analysis. They have achieved superior

erformance in various imaging modalities and different clinical

pplications ( Roth et al., 2014; Shen et al., 2017 ). For cardiac seg-

entation, Avendi et al. (2016) proposed a DL algorithm for LV

egmentation. Ngo et al. (2017) trained multiple layers of a deep

elief network to localize the LV, and to define the endocardial

nd epicardial borders, followed by the distance regularized level

et. Recently, Tan et al. (2018) designed a fully automated con-

olutional neural network (CNN) architecture for pixel-wise la-

eling of both the LV and RV with impressive performance, and

o et al. (2018) proposed a deep Poincare map-based method for

V segmentation. DL methods have the potential to provide faster

nd more accurate segmentation, compared to the conventional

pproaches, such as the deformable model based algorithms and

AS methods. However, little work has been reported to date us-

ng DL for WHS, probably due to the limitation of training data and

omplexity of the segmentation task. 

.2. Motivation and contribution 

Due to the above mentioned challenges, we organized the com-

etition of MM-WHS, providing 120 multi-modality whole heart

mages for developing new WHS algorithms, as well as validating

xisting ones. We also presented a fair evaluation and comparison

ramework for participants. In total, twelve groups who submit-

ed their results and methods were selected, and they all agreed

o contribute to this work, a benchmark for WHS of two modali-

ies, i.e., CT and MRI. In this work, we introduce the related infor-

ation, elaborate on the methodologies of these selective submis-

ions, discuss the results and provide insights into future research.

The rest of this paper is organized as follows. Section 2 provides

etails of the materials and evaluation framework. Section 3 intro-

uces the evaluated methods for benchmarking. Section 4 presents

he results, followed by discussions in Section 5 . We conclude this

ork in Section 6 . 

. Materials and setup 

.1. Data acquisition 

All the CT and MRI data have been anonymized in agreement

ith the local regional ethics committee before being released

o the MM-WHS challenge, and they were acquired in real clin-

cal environments. The cardiac CT/CTA data were obtained from

wo state-of-the-art 64-slice CT scanners (Philips Medical Systems,

etherlands) using a standard coronary CT angiography protocol at

wo sites in Shanghai, China. All the data cover the whole heart
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from the upper abdomen to the aortic arch. The in-plane resolu-

tion of the axial slices is 0.78 × 0.78 mm, and the average slice

thickness is 1.60 mm. The cardiac MRI data were acquired from

two hospitals in London, UK. One set of data was acquired from St.

Thomas Hospital on a 1.5T Philips scanner (Philips Healthcare, Best,

The Netherlands), and the other was from Royal Brompton Hospi-

tal on a Siemens Magnetom Avanto 1.5T scanner (Siemens Med-

ical Systems, Erlangen, Germany). In both sites, a navigator-gated

3D balanced steady state free precession (b-SSFP) sequence was

used for free-breathing whole heart imaging. The data were ac-

quired at a resolution of around (1.6 ∼ 2) × (1.6 ∼ 2) × (2 ∼ 3.2) mm,

and reconstructed to half of its acquisition resolution, i.e., about

(0.8 ∼ 1) × (0.8 ∼ 1) × (1 ∼ 1.6) mm. 

In total, we provided 120 multi-modality whole heart images

from multiple sites, including 60 cardiac CT and 60 cardiac MRI.

For each modality, we selected 20 images to form the training set,

and the remaining 40 to form the test set. For the CT data, we used

random sampling to divide the data into the two sets. This is be-

cause the CT data were acquired from the two sites of the same

hospital, and the data were equally distributed to the two sites.

For the MRI data, they were acquired from two different hospi-

tals. One provided 19 images, and the other provided 41 images.

We divided the data from each hospital into two subsets, one for

training (about one third) and the other for test (about two thirds).

We then combined them to form the training set of 20 cases and

test set of 40 cases. The pathologies involved in the MRI data cov-

ered a wide range of cardiac diseases, including myocardium in-

farction, atrial fibrillation (AF), tricuspid regurgitation, aortic valve

stenosis, Alagille syndrome, Williams syndrome, dilated cardiomy-

opathy, aortic coarctation, and Tetralogy of Fallot. For analyzing

the WHS performance with respect to different pathologies, we

divided them into three categories, i.e., congenital heart disease

(CHD) cases, AF patients, and Others . The numbers of subjects of

these three categories in the training set are respectively 7, 6 and

7, and the numbers in the test set are respectively 9, 13, 18. Please

refer to Section 5.3 for details of discussion. 

2.2. Definition and gold standard 

The WHS in this work aims to delineate and extract the seven

substructures of the heart ( Zhuang, 2013 ). These are: 

(1) The LV blood cavity, also referred to as the LV. The boundary

between the LV and LA is defined by the plane of the mitral

valve annulus, and the boundary between the LV and aorta

is defined by the plane of the aortic valve annulus. The pap-

illary muscles are included in the LV, according to the rec-

ommendation of cardiologists. 

(2) The RV blood cavity, also referred to as the RV. The bound-

ary between the RV and RA is defined by the plane of the

tricuspid valve annulus, and the boundary between the RV

and PA is defined by the plane of the pulmonary valve an-

nulus. 

(3) The LA blood cavity, also referred to as the LA. LA solely con-

sists of the blood pool within the endocardium of the LA

cavity, excluding the pulmonary veins (PVs) and left atrial

appendage. The boundaries between the LA and PVs are de-

termined by following each PV distally to the LA body and

truncating at the point when there is no clear vein to follow

( Tobon-Gomez et al., 2015 ). 

(4) The RA blood cavity, also referred to as the RA. The bound-

aries between the RA and superior/ inferior vena cava are

determined at the point when there is no clear vena cava to

follow, similar to the definition of boundaries between the

LA and PVs. 
(5) The myocardium of the LV, referred to as the Myo. Myo has

two surfaces, i.e., the epicardial surface (Epi) and the endo-

cardial surface of the LV. 

(6) The AO trunk from the aortic valve to the superior level of

the atria, also referred to as the AO. In our training data, the

provided manual segmentation generally covers the whole

ascending aorta to include the aortic arch. This means the

distal end of the segmented great vessel exceeds the cutting

point of the definition. However, in the evaluation we only

consider the major trunk by manually cutting off the part

of aorta which exceeds the superior level of the atria. We

do this to avoid biased evaluation due to the inconsistent

definition of the distal end of a great vessel. 

(7) The PA trunk from the pulmonary valve to the bifurcation

point, also referred to as the PA. Similar to AO, for the train-

ing data we provide the manual segmentation which ex-

ceeds the distal end of the definition. However, for the test

data we truncate the segmentation at the bifurcation point

of the pulmonary artery before evaluating the accuracy of a

result. 

The four blood pool cavities, i.e., LV, RV, LA and RA, are also

eferred to as the four chambers. 

Manual labeling was adopted for generating the gold standard

egmentation. This was done slice-by-slice using the ITK-SNAP

oftware ( Yushkevich et al., 2006 ), either by clinicians or by stu-

ents who majored in biomedical engineering or medical physics

nd were familiar with the whole heart anatomy. Each manual seg-

entation result was examined by a senior researcher specialized

n cardiac imaging with experience of more than five years, and

odifications were made where required. The sagittal and coronal

iews were visualized simultaneously to check the consistency and

moothness of the segmentation, although the manual delineation

as mainly performed in the axial views. For each 3D image, it

ook approximately 6–10 h for the observer to complete the man-

al segmentation of the whole heart. 

.3. Evaluation metrics 

We employed four widely used metrics to evaluate the accuracy

f a segmentation result ( Zhuang, 2013 ): the Dice score, Jaccard in-

ex, surface-to-surface distance (SD), and Hausdorff Distance (HD).

or WHS evaluation, the generalized metrics were used, which are

xpected to be more objective ( Crum et al., 2006; Zhuang, 2013 ). 

For each modality, the data were split into two sets, i.e., the

raining set (20 CT and 20 MRI) and the test set (40 CT and 40

RI). For the training data, both the images and the corresponding

old standard were released to the participants for building, train-

ng and cross-validating their models. For the test data, only the

T and MRI images were released. Once the participants developed

heir algorithms, they could submit their segmentation results on

he test data to the challenge moderators for a final independent

valuation. To avoid parameter tuning via multiple submissions,

he organizers only allowed a maximum of two evaluations of

egmentation accuracies for one algorithm. 

.4. Participants 

Twelve algorithms (teams) were selected for this benchmark

ork. Nine of them provided results for both CT and MRI data, one

xperimented only on the CT data and two worked solely on the

RI data. 

All the 12 teams agreed to include their results in this paper.

o simplify the description below, we used the team abbreviations

eferring to both the teams and their corresponding methods and

esults. The evaluated methods are elaborated on in Section 3 , and
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Table 2 

Summary of submitted methods. 

Teams Tasks Key elements in methods Teams Tasks Key elements in methods 

GUT CT, MRI Two-step CNN, combined with anatomical label 

configurations. 

UOL MRI MAS and discrete registration, to adapt the large 

shape variations. 

KTH CT, MRI Multi-view U-Nets combining hierarchical shape 

prior. 

CUHK1 CT, MRI 3D fully connected network (FCN) with the 

gradient flow optimization and Dice loss function. 

SEU CT Conventional MAS-based method. CUHK2 CT, MRI Hybrid loss guided FCN. 

UCF CT, MRI Multi-object multi-planar CNN with an adaptive 

fusion method. 

UT CT, MRI Local probabilistic atlases coupled with a 

topological graph. 

SIAT CT, MRI 3D U-Net network learn multi-modality features. UB2 ∗ MRI Multi-scale fully convolutional Dense-Nets. 

UB1 ∗ CT, MRI Dilated residual networks. UOE ∗ CT, MRI Two-stage concatenated U-Net. 

∗ Teams submitted results after the challenge deadline are indicated using Asterisk ( ∗). 
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t  
he key contributions of the teams are summarized in Table 2 . Note

hat the three methods, highlighted with an asterisk ( ∗), were sub-

itted after the deadline of the challenge. To be fair to the groups

ho submitted before the deadline, we excluded the late submis-

ions from ranking and competing for the awards of the challenge.

owever, for this manuscript we include all the high quality sub-

issions, to maximize the number of methods for benchmark and

uality of the paper. 

. Evaluated methods 

In this section, we elaborate on the twelve benchmarked algo-

ithms. Table 2 provides the summary for reference. 

.1. Graz University of Technology (GUT) 

Payer et al. (2017) propose a fully automatic whole heart seg-

entation, based on multi-label CNN and using volumetric ker-

els, which consists of two separate CNNs: one to localize the

eart, referred to as localization CNN, and the other to segment

he fine detail of the whole heart structure within a small re-

ion of interest (ROI), referred to as segmentation CNN. The lo-

alization CNN is designed to predict the approximate center of

he bounding box around all heart substructures, based on the U-

et ( Ronneberger et al., 2015 ) and heatmap regression ( Payer et al.,

016 ). A fixed physical size ROI is then cropped around the pre-

icted center, ensuring that it can enclose all interested substruc-

ures of the heart. Within the cropped ROI, the multi-label seg-

entation CNN predicts the label of each pixel. In this method,

he segmentation CNN works on high-resolution ROI, while the lo-

alization CNN works on the low resolution images. This two-step

NN pipeline helps to mitigate the intensive memory and runtime

enerally required by the volumetric kernels equipped 3D CNNs. 

.2. University of Lubeck (UOL) 

Heinrich and Oster (2017) propose a multi-atlas registration ap-

roach for WHS of MRI, as Fig. 2 shows. This method adopts a dis-

rete registration, which can capture large shape variations across

ifferent scans ( Heinrich et al., 2013b ). Moreover, it can ensure the

lignment of anatomical structures by using dense displacement

ampling and graphical model-based optimization ( Heinrich et al.,
ig. 2. Multi-atlas registration and label fusion with regularization proposed by 

einrich and Oster (2017) . 

i  

l  

v

3

 

(  

m  

f  
013a ). Due to the use of contrast-invariant features ( Xu et al.,

016 ), the multi-atlas registration can implicitly deal with the chal-

enging varying intensity distributions due to different acquisition

rotocols. Within this method, one can register all the training at-

ases to an unseen test image. The warped atlas label images are

hen combined by means of weighted label fusion. Finally, an edge-

reserving smoothing of the generated probability maps is per-

ormed using the multi-label random walk algorithm, as imple-

ented and parameterized in Heinrich and Blendowski (2016) . 

.3. KTH Royal Institute of Technology (KTH) 

Wang and Smedby (2017) propose an automatic WHS frame-

ork combining CNN with statistical shape priors. The additional

hape information, also called shape context ( Mahbod et al., 2018 ),

s used to provide explicit 3D shape knowledge to the CNN. The

ethod uses a random forest based landmark detection to detect

he ROI. The statistical shape models are created using the segmen-

ation masks of the 20 training CT images. The probability map is

enerated from three 2D U-Nets learned from the multi-view slices

f the 3D training images. To estimate the shape of each subregion

f heart, a hierarchical shape prior guided segmentation algorithm

 Wang and Smedby, 2014 ) is then performed on the probability

ap. This shape information is represented using volumetric shape

odels, i.e., signed distance maps of the corresponding shapes. Fi-

ally, the estimated shape information is used as an extra channel,

o train a new set of multi-view U-Nets for the final segmentation

f the whole heart. 

.4. The Chinese University of Hong Kong, Method No. 1 (CUHK1) 

Yang et al. (2017b) apply a general and fully automatic frame-

ork based on a 3D fully convolutional network (FCN). The

ramework is reinforced in the following aspects. First, an ini-

ialization is achieved by inheriting the knowledge from a 3D

onvolutional network trained on the large-scale Sports-1M video

ataset ( Tran et al., 2015 ). Then, the gradient flow is applied

y shortening the back-propagation path and employing several

uxiliary loss functions on the shallow layers of the network. This

s to tackle the low efficiency and over-fitting issues when directly

raining the deep 3D FCNs, due to the gradient vanishing problem

n shallow layers. Finally, the Dice similarity coefficient based

oss function ( Milletari et al., 2016 ) is included into a multi-class

ariant to balance the training for all classes. 

.5. University of Central Florida (UCF) 

Mortazi et al. (2017a) propose a multi-object multi-planar CNN

MO-MP-CNN) method based on an encoder-decoder CNN. The

ultiple CNNs ( Mortazi et al., 2017b ) are trained from three dif-

erent views, i.e., axial, sagittal, and coronal views, in 2D manners.
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Fig. 3. A schematic illustration of the method developed by Yang et al. (2017c) . Digits represent the number of feature volumes in each layer. Volume with dotted line is for 

concatenation. 
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An adaptive fusion method is then employed to combine the mul-

tiple outputs to refine the delineation. Furthermore, they apply a

connected component analysis (CCA) on the final segmentation, to

estimate the reliable (true positive) and unreliable (false positives)

regions. Let n denote the number of classes in the images and

m denote the number of components in each class, then the CCA

could be performed as follows, 

CA (S) = { S 11 , · · · , S nm 

| ∪ S i j = o } & 

{ S 11 , · · · , S nm 

| ∩ S i j = φ} , (1)

where S indicates the segmentation result, i ∈ m and j ∈ n . The

differences between the reliable and unreliable regions are used

to guide the reliability of the segmentation process, namely the

higher the difference, the more reliable the segmentation. 

3.6. The Chinese University of Hong Kong, method no. 2 (CUHK2) 

Yang et al. (2017c) propose to employ a 3D FCN for an end-

to-end dense labeling, as Fig. 3 shows. The proposed network is

coupled with several auxiliary loss functions in a deep supervision

mechanism, to tackle the potential gradient vanishing problem and

class imbalance in training. The network learns a spatial-temporal

knowledge from a large-scale video dataset, and then transfer to

initialize the shallow convolutional layers in the down-sampling

path ( Tran et al., 2015 ). For the class imbalance issue, a hybrid loss

is proposed ( Milletari et al., 2016 ), combining two complementary

components: (1) volume-size weighted cross entropy loss ( wCross )

to preserve branch details such as the PA trunks. (2) multi-class

Dice similarity coefficient loss ( mDSC ) to compact anatomy seg-

mentation. Then, the proposed network can be well trained to si-

multaneously segment different heart substructures, and generate

a segmentation in a dense but detail-preserved format. 

3.7. Southeast University (SEU) 

Yang et al. (2017a) develop a MAS-based method for WHS of

CT images. The proposed method consists of the following major

steps. Firstly, an ROI detection is performed on atlas images and

label images, which are down-sampled and resized to crop and

generate a heart mask. Then, an affine registration is used to

globally align the target image with the atlas images, followed by

a nonrigid registration to refine alignment of local details. In addi-

tion, an atlas ranking step is applied by using mutual information
s the similarity criterion, and those atlases with low similarity

re discarded. A non-rigid registration is further performed by

inimizing the dissimilarity within the heart substructures using

he adaptive stochastic gradient descent method. Finally, the prop-

gated labels are fused with different weights according to the

imilarities between the deformed atlases and the target image. 

.8. University of Tours (UT) 

Galisot et al. (2017) propose an incremental and interactive

tlas-based WHS method, combining several local probabilistic at-

ases based on a topological graph. The training images are used

o construct the probabilistic atlases, for each of the substructures

f the heart. The graph is used to encode the priori knowledge to

ncrementally extract different ROIs. The priori knowledge about

he shape and intensity distributions of substructures is stored as

eatures to the nodes of the graph. The spatial relationships be-

ween these anatomical structures are also learned and stored as

he edges of the graph. In the case of multi-modality data, multiple

raphs are constructed, for example two graphs are built for the

T and MRI images, respectively. A pixelwise classification method

ombining hidden Markov random field is developed to integrate

he probability map information. To correct the misclassifications,

 post-correction is performed based on the Adaboost scheme. 

.9. Shenzhen Institutes of Advanced Technology (SIAT) 

Tong et al. (2017) develop a deeply-supervised end-to-end 3D

-Net for fully automatic WHS. The training dataset are artificially

ugmented by considering each ROI of the heart substructure inde-

endently. To reduce false positives from the surrounding tissues, a

D U-Net is first trained to coarsely detect and segment the whole

eart structure. To take full advantage of multi-modality informa-

ion so that features of different substructures could be better ex-

racted, the cardiac CT and MRI data are fused. Both the size and

he intensity range of the different modality images are normalized

efore training the 3D U-Net model. Finally, the detected ROI is re-

ned to achieve the final WHS, which is performed by a pixel-wise

lassification fashion using the 3D U-Net. 

.10. University of Bern, method no. 1 (UB1 ∗) 

This method designs a voxelwise dilated residual network, re-

erred as VoxDResNet, to segment the whole heart structures from
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D MRI images. It can be used to generate a semantic segmen-

ation of an arbitrary-sized volume data after training. Conven-

ional FCN methods integrate multi-scale contextual information

y reducing the spatial resolution via successive pooling and sub-

ampling layers, for semantic segmentation. By contrast, the pro-

osed method achieves the same goal using dilated convolution

ernels, without decreasing the spatial resolution of the network

utput. Additionally, residual learning is incorporated as pixel-wise

ilated residual modules to alleviate the degrading problem, and

he WHS accuracy can be further improved by avoiding gridding

rtifacts introduced by the dilation ( Yu et al., 2017 ). 

.11. University of Bern, method no. 2 (UB2 ∗) 

This method includes a multi-scale pixel-wise fully convo-

utional Dense-Nets for 3D WHS of MRI images, which could

irectly map a whole volume of data to its volume-wise labels

fter training. The multi-scale context and multi-scale deep su-

ervision strategies are adopted, to enhance feature learning. The

eep neural network is an encoder (contracting path)-decoder

expansive path) architecture. The encoder is focused on feature

earning, while the decoder is used to generate the segmentation

esults. Skip connection is employed to recover spatial context

oss in the down-sampling path. To further boost feature learning

n the contracting path, multi-scale contextual information is

ncorporated. Two down-scaled branch classifiers are inserted into

he network to alleviate the potential gradient vanishing problem.

hus, more efficient gradients can be back-propagated from loss

unction to the shallow layers. 
Table 3 

Results of the ten evaluated algorithms on CT datas

Teams Dice Jaccard SD 

GUT 0.908 ± 0.086 0.832 ± 0.037 1.11

KTH 0.894 ± 0.030 0.810 ± 0.048 1.38

CUHK1 0.890 ± 0.049 0.805 ± 0.074 1.43

CUHK2 0.886 ± 0.047 0.798 ± 0.072 1.68

UCF 0.879 ± 0.079 0.792 ± 0.106 1.53

SEU 0.879 ± 0.023 0.784 ± 0.036 1.70

SIAT 0.849 ± 0.061 0.742 ± 0.086 1.92

UT 0.838 ± 0.152 0.742 ± 0.161 4.81

UB1 ∗ 0.887 ± 0.030 0.798 ± 0.048 1.44

UOE ∗ 0.806 ± 0.159 0.697 ± 0.166 4.19

Average 0.859 ± 0.108 0.763 ± 0.118 3.25

0.875 ± 0.083 0.784 ± 0.010 1.84

0.872 ± 0.087 0.780 ± 0.102 2.12

Table 4 

Results of the eleven evaluated algorithms on MRI 

Teams Dice Jaccard SD 

UOL 0.870 ± 0.035 0.772 ± 0.054 1.7

GUT 0.863 ± 0.043 0.762 ± 0.064 1.8

KTH 0.855 ± 0.069 0.753 ± 0.094 1.9

UCF 0.818 ± 0.096 0.701 ± 0.118 3.0

UT 0.817 ± 0.059 0.695 ± 0.081 2.4

CUHK2 0.810 ± 0.071 0.687 ± 0.091 2.3

CUHK1 0.783 ± 0.097 0.653 ± 0.117 3.2

SIAT 0.674 ± 0.182 0.532 ± 0.178 9.7

UB2 ∗ 0.874 ± 0.039 0.778 ± 0.060 1.6

UB1 ∗ 0.869 ± 0.058 0.773 ± 0.079 1.7

UOE ∗ 0.832 ± 0.081 0.720 ± 0.105 2.4

Average 0.844 ± 0.047 0.734 ± 0.072 2.0

0.820 ± 0.107 0.707 ± 0.127 3.1

0.824 ± 0.102 0.711 ± 0.125 2.9
.12. University of Edinburgh (UOE ∗) 

Wang and Smedby (2017) develop a two-stage concatenated U-

et framework that simultaneously detects an ROI of the heart

nd classifies pixels into different substructures without losing the

riginal resolution. The first U-Net uses a down-sampled 3D vol-

me to produce a coarse prediction of the pixel labels, which is

hen re-sampled to the original resolution. The architecture of the

econd U-Net is inspired by the super-resolution CNN (SRCNN)

 Dong et al., 2016 ) with skipping connections and recursive units

 Kim et al., 2016 ). It inputs a two-channel 4D volume, consist-

ng of the output of the first U-Net and the original data. In the

est phase, a dynamic-tile layer is introduced between the two U-

ets to crop an ROI from both the input and output volume of

he first U-Net. This layer is removed when performing an end-to-

nd training to simplify the implementation. Unlike the other U-

et based architecture, the proposed method can directly perform

 prediction on the images with their original resolutions, thanks

o the SRCNN-like network architecture. 

. Results 

Tables 3 and 4 present the quantitative results of the eval-

ated algorithms on the CT and MRI datasets, respectively.

he mean Dice scores of the evaluated methods for MM-WHS

re respectively 0.872 ± 0.087 (CT) and 0.824 ± 0.102 (MRI), and

he mean HDs are respectively 37.684 ± 17.026 mm (CT) and

9.209 ± 23.435 mm (MRI). In general, the evaluated algorithms

btain better WHS accuracies for CT than for MRI, using the four

etrics. Section 5.2 provides a discussion of the difference be-

ween modalities. 

For the CT data, the results are generally promising. The best

ice score (0.908 ± 0.086) and the best HD (25.242 ± 10.813 mm)
et. 

(mm) HD (mm) DL/MAS 

7 ± 0.250 25.242 ± 10.813 DL 

7 ± 0.516 31.146 ± 13.203 DL 

2 ± 0.590 29.006 ± 15.804 DL 

1 ± 0.593 41.974 ± 16.287 DL 

8 ± 1.006 28.481 ± 11.434 DL 

5 ± 0.399 34.129 ± 12.528 MAS 

5 ± 0.924 44.880 ± 16.084 DL 

2 ± 13.604 34.634 ± 12.351 MAS 

3 ± 0.302 55.426 ± 10.924 DL 

7 ± 7.780 51.922 ± 17.482 DL 

9 ± 9.748 34.382 ± 12.468 MAS 

0 ± 2.963 38.510 ± 17.890 DL 

4 ± 5.133 37.684 ± 17.026 ALL 

dataset. 

(mm) HD (mm) DL/MAS 

00 ± 0.649 28.535 ± 13.220 MAS 

90 ± 0.781 30.227 ± 14.046 DL 

63 ± 1.012 30.201 ± 13.216 DL 

40 ± 3.097 40.092 ± 21.119 DL 

20 ± 0.925 30.938 ± 12.190 MAS 

85 ± 0.944 33.101 ± 13.804 DL 

33 ± 1.783 44.837 ± 15.658 DL 

76 ± 6.366 92.889 ± 18.001 DL 

31 ± 0.580 28.995 ± 13.030 DL 

57 ± 0.814 30.018 ± 14.156 DL 

72 ± 1.892 41.465 ± 16.758 DL 

60 ± 0.876 29.737 ± 12.771 MAS 

27 ± 3.640 41.314 ± 24.711 DL 

33 ± 3.339 39.209 ± 23.435 ALL 
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Fig. 4. Boxplot of Dice scores of the whole heart segmentation on CT dataset by the ten methods. 
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were both achieved by GUT, which is a DL-based algorithm

with anatomical label configurations. For the MRI data, the best

Dice score (0.874 ± 0.039) was obtained by UB2 ∗, which is a

DL-based method and a delayed submission; and the best HD

(28.535 ± 13.220 mm) was achieved by UOL, an MAS-based al-

gorithm. Here, the average accuracy of MAS (two teams) was

better than that of the DL-based segmentation (nine teams) in

all evaluation metrics. However, the number of MAS-based ap-

proaches is limited, namely two, and the performance across

different DL methods was variable, similar to the results from

the CT experiment. For example, the top four DL methods by

Dice scores, i.e., GUT, KTH, UB1 ∗ and UB2 ∗, achieved comparable

mean Dice scores to that of UOL ( p = 0.157, p = 0.073, p = 0.903 and

p = 0.448), but the other DL approaches generated much poorer re-

sults ( p < 0.001). The discussion of different methodologies will be

given in Section 5.4 . 

Fig. 4 shows the boxplots of the evaluated algorithms on CT

data. One can see that they achieved relatively accurate segmen-

tation for all substructures of the heart, except for the PA whose

variability in terms of shape and appearance is notably greater. For

GUT, KTH, CUHK1, UB1 ∗, and CUHK2, the delineation of PA is rea-

sonably good with the mean Dice score larger than 0.80. Fig. 5

presents the boxplots on the MRI data. The five methods, i.e., UB2 ∗,

UOL, UB1 ∗, GUT, and KTH, all demonstrate good Dice scores on the

segmentation of four chambers and LV myocardium. Similar to the

conclusion drawn from Tables 3 and 4 , the segmentation on the CT

images is generally better than that on the MRI data as indicated

by the quantitative evaluation metrics. 

Fig. 6 shows the 3D visualization of the cases with the me-

dian and worst WHS Dice scores by the evaluated methods on the

CT data. Most of the median cases look reasonably good, though

some contain patchy noise; and the worst cases require significant

improvements. Specifically, UOE ∗ median case contains significant

amount of misclassification in AO, and parts of the LV are labeled

as LA in the UOE ∗ and SIAT median cases. In the worst cases, the

CUHK1 and CUHK2 results do not have a complete shape of the

RV; KTH and SIAT contain a large amount of misclassification, par-

ticularly in myocardium; UCF mistakes the RA as LV; UOE ∗ only
m  
egments the LA, and UT generates a result with wrong orienta-

ion. 

Fig. 7 visualizes the median and worst results on MRI WHS.

ompared with the CT results, even the median cases of MRI cases

re poor. For example, the SIAT method could perform well on

ost of the CT cases, but failed to generate acceptable results for

ost of the MRI images, including the median cases presented

n the figure. The worst cases of UOE ∗, CUHK2 and UB1 miss at

east one substructure, and UCF and SIAT results do not contain

ny complete substructure of the whole heart. In conclusion, the

T segmentation results look better than the MRI results, which

s consistent with the quantitative results. Also, one can see from

igs. 6 and 7 that the resulting shape from the two MAS-based

ethods looks more realistic, even though the segmentation could

ometimes be very poor or even a failure, such as the worst MRI

ase by UOL and the worst CT case by UT. 

The computational complexity of a DL method in the testing

tage is related to the complexity of the network. In addition,

L methods can be implemented with the help of a GPU. Hence,

he WHS of a case can be done within seconds or a minute on

verage. By contrast, the conventional approaches are commonly

mplemented with iterated optimization procedures, such as the

tlas-to-target registration in the MAS, and thus could be computa-

ionally expensive. However, due to the difference of implementa-

ion and hardware an objective comparison between the evaluated

ethods can be difficult. For reference, we summarize the infor-

ation regarding to the implementation details and their average

un time in Table 5 . 

. Discussion 

.1. Overall performance of the evaluated algorithms 

The segmentation accuracies reported for the four chambers are

enerally good, but the segmentation of the other substructures

emonstrates more challenges. For example, one can see from

igs. 4 and 5 that in CT WHS the PA segmentation is much poorer

ompared to other substructures; in MRI WHS, the segmentation of

yocardium, AO and PA appears to be more difficult. One reason
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Fig. 5. Boxplot of Dice scores of the whole heart segmentation on MRI dataset by the eleven methods. 

Fig. 6. 3D visualization of the WHS results of the median and worse cases in the CT test dataset by the ten evaluated methods. The color bar indicates the correspondence 

of substructures. Note that the colors of Myo and LV in 3D visualization do not look exactly the same as the keys in the color bar, due to the 50% transparency setting for 

Myo rendering and the addition effect from two colors (LV and 50% Myo) for LV rendering, respectively. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 7. 3D visualization of the WHS results of the median and worse cases in the MRI test dataset by the eleven evaluated methods. 
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Table 5 

Details on the average run time and computer systems used for the evaluated methods. T: average run time; Proc: average run time 

includes the pre- and post-processing of the images for the DL-based methods. 

Teams T (MRI) T (CT) Proc GPU CPU and RAM Programming language 

GUT 21 s 104 s Y GTX TITAN X; 12GB Intel i7-4820K; 32GB Python, C + + 

UOL N/A N/A N/A N/A N/A N/A 

KTH 7 min 5 min Y GTX1080; 8GB Intel Xeon E5 1620; 32GB Python, C + + 

CUHK1 68.55 s 87.38 s N TITAN X (PASCAL); 12GB Intel i5-6500; 16GB Python + TensorFlow 

SEU N/A 20 min N/A N/A Intel 7900X; 16G Python + Elastix 

CUHK2 66.03 s 89.79 s N TITAN X (PASCAL); 12GB Intel i5-6500; 16GB Python + TensorFlow 

UCF 17 s 50 s N TITAN XP; 12GB Intel Xeon E5-2630 v3; N/A Python + TensorFlow 

UT 14 min 21 min N/A N/A Intel Core i7-4600; 16GB C + +, Cli 

SIAT 7 s 11 s N GTX TITAN X; 12GB Intel Core i5-7640X; 32GB Python 

UB2 ∗ 30 s N/A N GTX 1080 Ti; 11GB Intel(R) i7; 32GB Python + TensorFlow 

UB1 ∗ 28 s 23 s N GTX 1080 Ti; 11GB Intel(R) i7; 32GB Python + TensorFlow 

UOE ∗ 0.11 s 0.22 s N Telsa K80; 24GB Intel Xeon E5-2686 v4; 64GB Python + TensorFlow 

Table 6 

The inter-observer (Inter-Ob) and intra-observer (Intra-Ob) variabilities of 

the MRI segmentation in Dice scores (%). 

LV Myo RV LA 

Inter-Ob 93.7 ± 1.33 81.1 ± 2.90 90.1 ± 1.96 83.7 ± 4.58 

Intra-Ob 94.2 ± 0.84 83.9 ± 1.23 91.2 ± 2.59 86.8 ± 3.23 

RA AO PA WHS 

Inter-Ob 85.8 ± 3.10 87.6 ± 5.24 76.3 ± 14.34 87.8 ± 1.36 

Intra-Ob 87.2 ± 2.48 91.1 ± 1.65 82.6 ± 3.77 89.5 ± 1.03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

The performance of each substructure and WHS on different patholo- 

gies of the MRI in Dice scores (%). 

LV Myo RV LA 

AF 80.4 ± 17.9 71.8 ± 13.4 71.5 ± 15.8 84.4 ± 9.7 

CHD 85.5 ± 16.6 69.6 ± 18.1 87.5 ± 11.3 78.2 ± 18.4 

Others 91.2 ± 7.7 79.6 ± 8.2 88.6 ± 7.7 81.9 ± 1.14 

RA AO PA WHS 

AF 84.7 ± 10.1 76.5 ± 18.3 71.4 ± 20.7 79.0 ± 10.3 

CHD 83.5 ± 11.3 80.9 ± 10.3 67.7 ± 23.4 81.7 ± 12.9 

Others 81.2 ± 15.7 83.4 ± 13.4 73.4 ± 15.5 85.3 ± 7.2 
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could be that these regions have much larger variation in terms of

shapes and image appearance across different scans. Particularly,

the diverse pathologies can result in heterogeneous intensity of the

myocardium and the blood, please refer to Section 5.3 for a de-

tailed discussion. 

Another reason could be the ambiguity in the manual de-

lineations which are used as the ground truth for training of

learning-based algorithms. This is likely to be greater for MR data

than CT, as the image quality of whole heart MRI is generally lower

(poorer contrast and signal-to-noise ratio). Table 6 shows the inter-

and intra-observer variabilities in the manual delineation derived

from a subset of MRI data. These are computed from the mean of

6 subjects (for inter-observer) and 4 subjects (for intra-observer),

respectively. The inter-observer variabilities are comparable to the

mean dice scores of the highest ranked methods (UOL and UB2 ∗)

in Table 4 . Furthermore, the observer variation studies confirm that

it can be more challenging to achieve consistent segmentation re-

sults on certain substructures, even for experienced observers. For

example, in the variation studies the mean Dice scores of PA and

Myo are much worse than those of the other substructures, partic-

ularly of LV and RV, which agrees with the different performance

of the automatic methods in these substructures. Note that each

of the gold standard segmentation used in this work was done by

one rater, which is a limitation since the variability of manual seg-

mentation between observers could be considerably large. 

5.2. Discussion of different modalities: CT versus MRI 

The MRI WHS is generally more challenging than the CT WHS,

which is confirmed by the results presented in this work. The

mean generalized Dice score of CT WHS is evidently better than

that of MRI WHS averaged from the evaluated algorithms, namely

0.872 ± 0.087 (CT) versus 0.824 ± 0.102 (MRI), and p -value is 0.011

after the false discovery rate (FDR) correction ( Benjamini et al.,

2001 ). There is a significant difference between the mean HDs

of the two modalities, namely 34.382 ± 12.468 mm (CT) versus

39.209 ± 23.435 mm (MRI) ( p < 0.01, after FDR correction). One can

further confirm this by comparing the results for these two tasks
n Tables 3 and 4 , as nine methods have been evaluated on both

f the CT and MRI test data, and the same algorithms gener-

lly achieve better accuracies for CT data. Similar conclusion can

lso be drawn for the individual substructures as well as for the

hole heart, when one compares the boxplots of segmentation

ice scores between Figs. 4 and 5 . 

.3. Discussion of different pathologies 

The pathologies of patients in this study cover a wide range of

ardiac diseases. In particular, the MRI data include patients with

HD and AF, in whom the heart shape and size can vary con-

iderably and in whom image quality can be more variable. We

ave therefore categorized the pathologies into three subgroups,

.e., CHD, AF and Others , and discuss the WHS performance for

ach. 

The average WHS Dice scores of the evaluated methods

n these three categories were respectively 0.817 ± 0.129 (CHD),

.790 ± 0.103 (AF), 0.853 ± 0.072 ( Others ), as presented in Table 7 .

he p -values of the WHS Dice scores after FDR correction are as

ollows, p = 0.001 between AF and CHD, p = 0.005 between AF and

thers , and p = 0.017 between CHD and Others , indicating significant

ifference between these categories. One can see that the WHS

esult from the category of Others was evidently better than the

ther two with statistical significance. 

For the CHD cohort, the evaluated methods tended to achieve

ess accurate results, especially in the substructures of LA, Myo and

A, probably due to large shape variations of the heart in these

atients. For the AF patients, because of the irregular heart rhythm

nd shortness of breath, the image quality can be degraded,

hich could result in less accurate WHS results for the evaluated

ethods. Interestingly, we have found that the LA segmentation

rom AF patients was particularly more accurate ( p = 0.007, after

DR correction), and the ventricle segmentation, i.e., LV and RV,

as much worse ( p = 0.025 and p = 0.012, after FDR correction). This

ould be owing to the fact that the LA was larger for AF patients,
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Table 8 

Summary of the DL-based methods. The abbreviations are as follows, 

Dim: dimension; MS: multi-stage; E-D: encode-decode CNN; MM-train: 

trained on multi-modality datasets. 

Teams Dim MS Network Prior Pre-train MM-train 

GUT 3D Y U-Net N N N 

KTH 2D Y U-Net Y N N 

CUHK1 3D N FCN N Y N 

CUHK2 3D N FCN N Y N 

UCF 2D N E-D N N N 

SIAT 3D Y U-Net N N Y 

UB2 ∗ 3D N E-D N N N 

UB1 ∗ 3D N FCN N N N 

UOE ∗ 3D Y U-Net N N N 
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nd therefore could be easier to be recognized from the images by

he algorithms. We therefore conclude that the segmentation of

he substructures for different categories of patients can present

ifferent levels of challenges due to the difference in image quality

nd shape variations of the heart. 

.4. Discussion of different methodologies 

As Tables 3 and 4 summarize, 9 out of the 11 benchmarked CT

HS methods and 8 out of the 10 MRI WHS algorithms are based

n deep neural networks. Overall, the DL-based approaches have

hown great potentials, particularly in CT WHS. However, several

eported poor results based on their mean HDs as well as Dice

cores, such as SIAT, UB1 ∗ and UOE ∗ for CT WHS, and UCF, CUHK1

nd SIAT for MRI WHS. The boxplots of Dice scores in Figs. 4 and

 confirm that some of the DL methods have very large interquar-

ile ranges and outliers. Figs. 6 and 7 visualize the 3D segmentation

esults of the median and the worst cases of each method. One can

ee that the resulting heart shapes of several cases are totally un-

ealistic, such as the worst CT case of UOE ∗, the median and worst

RI cases of SIAT, and the worst MRI cases of CUHK1 and UCF. 

The performance of the DL methods could vary greatly across

ifferent network structures and training strategies, as summarized

n Table 8 . One can see that most of the DL-based approaches are

D-based networks, except for KTH and UCF, which were based

n multi-view 2D networks. The performance of 2D networks was

omparable to that of 3D networks. For example, no significant

ifference was found between KTH and the two top performing 3D

etwork-based methods, i.e., UB1 ∗ and GUT, in the MRI WHS Dice

cores, as neither of the p -values was less than 0.1. This may be

wing to the increased number of training data by using 2D net-

orks, since one 3D image can be split into tens to hundreds of 2D

lices. Additionally, the DL-based approaches are generally based

n U-Net or FCN, except for UCF and UB2 ∗ which were based

n encoder-decoder CNN. Two teams, i.e., CUHK1 and CUHK2,

mployed a pre-trained network to avoid overfitting. However, no

ignificant difference was found between the different network

rchitectures in terms of WHS Dice scores, and neither was there

etween the methods using pre-trained models and those which

id not, as none of the p -values was less than 0.5. Only one

eam, i.e., KTH, embedded shape priors into the deep learning

ramework, which demonstrated good potential in improving the

egmentation performance. Finally, SIAT was the only method

o train the network using both the CT and MRI data, but the

esulting network did not perform well. Hence, it is still an open

uestion in terms of how to improve the generalization ability of

 segmentation network by using multi-modality training data. 

The conventional methods, mainly based on MAS in the eval-

ated methods, could generate stable results with more realistic

hapes, though they were not necessarily competitive in terms of

ean accuracies and computation efficiency. Particularly, in MRI
HS the MAS-based methods achieved no worse mean accura-

ies compared to the DL-based approaches, though only two MAS

ethods were submitted for evaluation. Finally, the advantages

nd potential limitations of all the evaluated methods are summa-

ized in Table 9 . 

.5. Comparisons with the literature 

Table 1 summarizes the WHS results from recent literature. Pre-

ious works were mainly based on conventional segmentation al-

orithms, such as MAS which achieved the most competitive per-

ormance before the introduction of DL-based methodologies. The

est mean Dice score of WHS was around 0.90 for CT images from

he literature, though it is important to notice that objective inter-

ork comparisons can be difficult, due to the difference in the

valuation metrics, implementations and study group pathologies.

his is comparable to the results from the best performing meth-

ds in this challenge. For MRI data, both Zuluaga et al. (2013) and

huang and Shen (2016) reported a mean WHS Dice score of

round 0.90, which is evidently better than the blinded evalua-

ion results from this challenge. This could be attributed to the

sage of the multi-modality atlases in the previous works, which

mproved the WHS by having more prior knowledge. By contrast,

n this study only SIAT used multi-modality images to train their

eural network, and the result was not promising. Hence, how to

ffectively train a neural network with multi-modality images re-

ains an open question. 

Table 10 summarizes the recent public datasets for car-

iac segmentation, which mainly focus on specific substructures

f the heart. Radau et al. (2009) , Suinesiaputra et al. (2011) ,

etitjean et al. (2015) and Bernard et al. (2018) organized the

hallenges for segmenting the left, right or both ventricles.

oghari et al. (2016) organized a challenge for the segmenta-

ion of blood pool and myocardium from 3D MRI data. This

ork was aimed to offer pre-procedural planning of children with

omplex CHD. Karim et al. (2013) , Tobon-Gomez et al. (2015) ,

arim et al. (2018) and Zhao and Xiong (2018) provided data for

enchmarking algorithms of LA, LA wall, or LA scar segmenta-

ion for patients suffering from AF. Zhuang et al. (2019) organized

 challenge for benchmarking the segmentation of ventricles and

yocardium from multi-sequence cardiac MRI. Transfer learning

r domain adaptation was particularly emphasized to achieve the

egmentation of LGE MRI with the knowledge from other MRI se-

uences. 

.6. Progress and challenges 

The MM-WHS challenge provides an open-access dataset and

ngoing evaluation framework for researchers, to develop and

ompare their algorithms. Both the conventional methods and the

ew DL-based algorithms have made great progress, as shown in

his paper. It is worth mentioning that the best performing DL

ethods have demonstrated great potential of generating accu-

ate and reliable WHS results, such as GUT, UB1 ∗ and UB2 ∗, even

hough they had limited training data (20 CT and 20 MRI). Despite

his, there are limitations need to be overcome, particularly from

he methodological point of view. 

WHS of MRI is more challenging than that of CT. In general, the

mage quality of MRI data is poorer than that of CT data, in terms

f contrast-to-noise ratio, signal-to-noise ratio and spatial resolu-

ion. In some patients, there can be blurring and/or ghosting arti-

acts due to the poorly corrected respiratory motion. In addition,

he MRI datasets in this study included the particularly challeng-

ng cases from patients with CHD and AF. The former had large and

hallenging variations in cardiac anatomy, and the latter tented to

ave degraded image quality due to the irregular heart rhythm
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Table 9 

Summary of the advantages and limitations of the twelve evaluated methods. 

Method Strengths Limitations 

GUT - Combining localization and segmentation CNNs to reduce the requirements of 

memory and computation time. 

- Good segmentation performance for both CT and MRI. 

- Based on an automatically localized landmark in the 

center of the heart, the cropping of a fixed physical 

size ROI is required for segmentation. 

UOL - The discrete registration can capture large shape variations across scans. 

- The regularization is used to obtain smooth surfaces that are important for mesh 

generation and motion or electrophysiological modelling. 

- Only tested on the MRI data. 

- The automatic cropping of ROI sometimes do not cover 

the whole heart. 

KTH - Combining shape context information with orthogonal U-Nets for more consistent 

segmentation in 3-D views. 

- Good segmentation performance, particularly for CT. 

- Potential of overfitting because the U-Nets rely much 

on the shape context channels. 

- Weighting factors of the shape context generation are 

determined empirically. 

CUHK1 - Pre-trained 3-D Network provides good initialization and reduces overfitting. 

- Auxiliary loss functions are used to promote gradient flow and ease the training 

procedure. 

- Tackling the class-imbalance problem using a multi-class Dice based metric. 

- The introduced hyperparameters need determining 

empirically. 

- Relatively poor performance in MRI WHS. 

UCF - Multi-planar information reinforce the segmentation along the three orthogonal 

planes. 

- Multiple 3-D CNNs require less memory compared to a 3-D CNN. 

- The softmax function in the last layer could cause 

information loss due to class normalization. 

CUHK2 - Coupling the 3-D FCN with transfer learning and deep supervision mechanism to 

tackle potential training difficulties caused by overfitting and vanishing gradient. 

- Enhance local contrast and reduce the image inhomogeneity. 

- Relatively poor performance in MRI WHS. 

SEU - Three-step multi-atlas image registration method is lightweight for computing 

resources. 

- The method can be easily deployed. 

- Only tested on the CT data. 

UT - The proposed incremental segmentation method is based on local atlases and 

allows users to perform partial and incremental segmentation. 

- The registration of MRI atlas can be inaccurate, and the 

evaluated segmentation accuracy is low. 

SIAT - Combining a 3-D U-Net with a ROI detection to alleviate the impact of surrounding 

tissues and reduce the computational complexity. 

- Fusing MRI and CT images to increase the training samples and take full advantage 

of multimodality information so that features of different substructures can be 

better extracted. 

- Poor segmentation performance, particularly for MRI 

data. 

UB1 ∗ - The focal loss and Dice loss are well encapsulated into a complementary learning 

objective to segment both hard and easy classes. 

- Late submission of the WHS results. 

UB2 ∗ - Multi-scale context and multi-scale deep supervision are employed to enhance 

feature learning and to alleviate the potential gradient vanishing problem during 

training. 

- Reliable performance on the tested MR data. 

- Late submission of the WHS results. 

- Only tested on the MRI data. 

UOE ∗ - The proposed two-stage U-Net framework can directly segment the images with 

their original resolution. 

- Late submission of the WHS results. 

- Poor performance, particularly for CT data. 

Table 10 

Summary of the previous challenges related to cardiac segmentation from MICCAI society. 

Organizers/refernece Year Data Target Pathology 

Radau et al. (2009) 2009 45 cine MRI LV hypertrophy, infarction 

Suinesiaputra et al. (2011) 2011 200 cine MRI LV myocardial infarction 

Karim et al. (2013) 2013 60 MRI LA scar atrial fibrillation 

Petitjean et al. (2015) 2012 48 cine MRI RV congenital heart disease 

Tobon-Gomez et al. (2015) 2013 30 CT + 30 MRI LA atrial fibrillation 

Karim et al. (2018) 2016 10 CT + 10 MRI LA wall atrial fibrillation 

Moghari et al. (2016) 2016 20 MRI Blood pool, Myo congenital heart disease 

Bernard et al. (2018) 2017 150 cine MRI Ventricles infarction, dilated/ hypertrophic 

cardiomyopathy, abnormal RV 

Zhao and Xiong (2018) 2018 150 LGE-MRI LA atrial fibrillation 

Zhuang et al. (2019) 2019 45 multi-modal MRI Ventricles cardiomyopathy 
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and shortness of breath of the patients. Enlarging the size of train-

ing data is commonly pursued to improve the learning-based seg-

mentation algorithms. However, availability of whole heart train-

ing images can be difficult as well. One potential solution is to

use artificial training data, such as by means of data augmen-

tation or image synthesis using generative adversarial networks

( Goodfellow et al., 2014 ). Furthermore, shape constraints can be

incorporated into the training and prediction framework, which is

particularly useful for the DL-based methods to avoid generating

results of unrealistic shapes. 
p  

o

. Conclusion 

Knowledge of the detailed anatomy of the heart structure is

linically important as it is closely related to cardiac function and

atient symptoms. Manual WHS is labor-intensive and also suf-

ers from poor reproducibility. A fully automated multi-modality

HS is therefore highly in demand. However, achieving this goal is

till challenging, mainly due to the variable quality of whole heart

mages, complex structure of the heart and large variation of the

hape. This manuscript describes the MM-WHS challenge which

rovides 120 clinical CT/ MRI images, elaborates on the method-

logies of twelve evaluated methods, and analyzes their results. 
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The challenge provides the same training data and test dataset

or all the submitted methods. Note that these data are also open

o researchers in future. The evaluation has been performed by the

rganizers, blind to the participants for a fair comparison. The re-

ults show that WHS of CT has been more successful than that of

RI from the twelve submissions. For segmentation of the sub-

tructures, the four chambers are generally easy to segment. By

ontrast, the great vessels, including aorta and pulmonary artery,

till need more effort s to achieve good results. The performance

f the DL-based methods submitted to this challenge was variable,

ith the best performing methods achieving high accuracy while

he lowest performing methods were poor. The conventional atlas-

ased approaches generally performed well, though only 2 of the

1 MRI WHS methods and 2 of the 10 CT WHS algorithms sub-

itted were none-DL-based. The hybrid methods, combining deep

earning with prior information from either the multi-modality at-

ases or shape information of the heart substructures, should have

ood potential and be worthy of future exploration. 

uthors contributions 

XZ initialized the challenge event, provided the 60 CT images,

1 MRI images (with KR and SO) of the 60 MRI images, and the

anual segmentations of all the 120 images. GY, RM, JK, and DF

rovided the other 19 MRI images. XZ, GY and LL organized the

hallenge event, and LL evaluated all the submitted segmentation

esults. CP, DS, MU, MPH, JO, CW, OS, CB, XY, PAH, AM, UB, JB, GYu,

S, GG, JYR, TB, QT, WS, and XL were participants of the MM-WHS

hallenge and contributed equally. GZ, ZS, CW, TM and DN submit-

ed their results after the deadline of the challenge. All the partic-

pants provided their results for evaluation and the description of

heir algorithms. All the authors have read and approved the pub-

ication of this work. 

eclaration of Competing Interest 

We wish to confirm that there are no known conflicts of inter-

st associated with this publication and there has been no signi-

cation financial support for this work that could have influenced

ts outcome. We confirm that the manuscript has been read and

pproved by all named authors and that there are no other of au-

hors listed in the manuscript has been approved by all of us. We

onfirm that we have given due consideration to the protection of

ntellectual property associated with this work and that there are

o impediments to publication, including the timing of publication,

ith respect to intellectual property. In so doing we confirm that

e have followed the regulations of our institutions concerning in-

ellectual property. 

cknowledgements 

This work was funded in part by the National Natural Sci-

nce Foundation of China (NSFC) grant ( 61971142 ), the Science

nd Technology Commission of Shanghai Municipality grant

 17JC1401600 ) and the British Heart Foundation Project grant

 PG/16/78/32402 ). 

eferences 

vendi, M.R. , Kheradvar, A. , Jafarkhani, H. , 2016. A combined deep-learning and de-

formable-model approach to fully automatic segmentation of the left ventricle
in cardiac MRI. Med. Image Anal. 30, 108–119 . 

enjamini, Y. , Yekutieli, D. , et al. , 2001. The control of the false discovery rate in

multiple testing under dependency. Ann. Stat. 29 (4), 1165–1188 . 
ernard, O. , Lalande, A. , Zotti, C. , Cervenansky, F. , Yang, X. , Heng, P.-A. , Cetin, I. ,

Lekadir, K. , Camara, O. , Ballester, M.A.G. , et al. , 2018. Deep learning techniques
for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the

problem solved? IEEE Trans. Med. Imag. 37 (11), 2514–2525 . 
ai, K. , Yang, R. , Chen, H. , Li, L. , Zhou, J. , Ou, S. , Liu, F. , 2017. A framework combining
window width-level adjustment and Gaussian filter-based multi-resolution for

automatic whole heart segmentation. Neurocomputing 220, 138–150 . 
rum, W.R. , Camara, O. , Hill, D.L.G. , 2006. Generalized overlap measures for evalu-

ation and validation in medical image analysis. IEEE Trans. Med. Imag. 25 (11),
1451–1461 . 

ong, C. , Loy, C.C. , He, K. , Tang, X. , 2016. Image super-resolution using deep convo-
lutional networks. IEEE Trans. Pattern Anal. Mach.Intell. 38 (2), 295–307 . 

alisot, G. , Brouard, T. , Ramel, J.-Y. , 2017. Local probabilistic atlases and a posteriori

correction for the segmentation of heart images. In: International Workshop on
Statistical Atlases and Computational Models of the Heart, pp. 207–214 . 

oodfellow, I. , Pouget-Abadie, J. , Mirza, M. , Xu, B. , Warde-Farley, D. , Ozair, S. ,
Courville, A. , Bengio, Y. , 2014. Generative adversarial nets. In: Advances in neu-

ral information processing systems, pp. 2672–2680 . 
einrich, M.P. , Blendowski, M. , 2016. Multi-organ segmentation using vantage point

forests and binary context features. In: International Conference on Medical Im-

age Computing and Computer-Assisted Intervention, pp. 598–606 . 
einrich, M.P. , Jenkinson, M. , Bartlomiej W., P. , Brady, M. , Schnabel, J.A. , 2013. To-

wards realtime multimodal fusion for image-guided interventions using self-
similarities. In: International conference on medical image computing and com-

puter-assisted intervention, pp. 187–194 . 
einrich, M.P. , Jenkinson, M. , Brady, M. , Schnabel, J.A. , 2013. MRF-Based deformable

registration and ventilation estimation of lung CT. IEEE Trans. Med. Imag. 32 (7),

1239–1248 . 
einrich, M.P. , Oster, J. , 2017. MRI whole heart segmentation using discrete nonlin-

ear registration and fast non-local fusion. In: International Workshop on Statis-
tical Atlases and Computational Models of the Heart, pp. 233–241 . 

ang, D. , Woo, J. , Kuo, C.C.J. , Slomka, P.J. , Dey, D. , Germano, G. , 2012. Heart chambers
and whole heart segmentation techniques: a review. J. Electron. Imag. 21 (1),

010901 . 

arim, R. , Blake, L.-E. , Inoue, J. , Tao, Q. , Jia, S. , Housden, R.J. , Bhagirath, P. , Duval, J.-L. ,
Varela, M. , Behar, J. , et al. , 2018. Algorithms for left atrial wall segmentation

and thickness–evaluation on an open-source CT and MRI image database. Med.
Image Anal. 50, 36–53 . 

arim, R. , Housden, R.J. , Balasubramaniam, M. , Chen, Z. , Perry, D. , Uddin, A. , Al-Bey-
atti, Y. , Palkhi, E. , Acheampong, P. , Obom, S. , et al. , 2013. Evaluation of current

algorithms for segmentation of scar tissue from late gadolinium enhancement

cardiovascular magnetic resonance of the left atrium: an open-access grand
challenge. J. Cardiovasc. Magnetic Reson. 15 (1), 105 . 

im, J. , Kwon Lee, J. , Mu Lee, K. , 2016. Deeply-recursive convolutional network for
image super-resolution. In: Proceedings of the IEEE conference on computer vi-

sion and pattern recognition, pp. 1637–1645 . 
ahbod, A. , Chowdhury, M. , Smedby, O. , Wang, C. , 2018. Automatic brain segmenta-

tion using artificial neural networks with shape context. Pattern Recognit. Lett.

101, 74–79 . 
endis, S. , Puska, P. , Norrving, B. , et al. , 2011. Global Atlas on Cardiovascular Disease

Prevention and Control. World Health Organization . 
illetari, F. , Navab, N. , Ahmadi, S.-A. , 2016. V-net: Fully convolutional neural net-

works for volumetric medical image segmentation. In: International Conference
on 3D Vision, pp. 565–571 . 

o, Y. , Liu, F. , McIlwraith, D. , Yang, G. , Zhang, J. , He, T. , Guo, Y. , 2018. The deep
poincaré map: a novel approach for left ventricle segmentation. In: Interna-

tional Conference on Medical Image Computing and Computer-Assisted Inter-

vention, pp. 561–568 . 
oghari, M.H., Pace, D.F., Akhondi-Asl, A., Powell, A.J., 2016. HVSMR 2016: MICCAI

workshop on whole-heart and great vessel segmentation from 3D cardiovascu-
lar MRI in congenital heart disease. http://segchd.csail.mit.edu/index.html . 

ortazi, A. , Burt, J. , Bagci, U. , 2017. Multi-planar deep segmentation networks for
cardiac substructures from MRI and CT. In: International Workshop on Statistical

Atlases and Computational Models of the Heart, pp. 199–206 . 

ortazi, A. , Karim, R. , Rhode, K. , Burt, J. , Bagci, U. , 2017. CardiacNET: segmentation
of left atrium and proximal pulmonary veins from MRI using multi-view CNN.

In: International Conference on Medical Image Computing and Computer-As-
sisted Intervention, pp. 377–385 . 

go, T.A. , Lu, Z. , Carneiro, G. , 2017. Combining deep learning and level set for the au-
tomated segmentation of the left ventricle of the heart from cardiac cine mag-

netic resonance. Med. Image Anal. 35, 159–171 . 

ikolaou, K. , Alkadhi, H. , Bamberg, F. , Leschka, S. , Wintersperger, B.J. , 2011. MRI and
CT in the diagnosis of coronary artery disease: indications and applications. In-

sightsImag. 2 (1), 9–24 . 
ace, D.F. , Dalca, A.V. , Geva, T. , Powell, A.J. , Moghari, M.H. , Golland, P. , 2015. Inter-

active whole-heart segmentation in congenital heart disease. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention,

pp. 80–88 . 

ayer, C. , Štern, D. , Bischof, H. , Urschler, M. , 2016. Regressing heatmaps for multi-
ple landmark localization using CNNs. In: International Conference on Medical

Image Computing and Computer-Assisted Intervention, pp. 230–238 . 
ayer, C. , Štern, D. , Bischof, H. , Urschler, M. , 2017. Multi-label whole heart segmen-

tation using CNNs and anatomical label configurations. In: International Work-
shop on Statistical Atlases and Computational Models of the Heart, pp. 190–

198 . 

eng, P. , Lekadir, K. , Gooya, A. , Shao, L. , Petersen, S.E. , Frangi, A.F. , 2016. A review of
heart chamber segmentation for structural and functional analysis using cardiac

magnetic resonance imaging. Magnetic Reson. Mater. Phys. Biol. Med. 29 (2),
155–195 . 

etitjean, C. , Zuluaga, M.A. , Bai, W. , Dacher, J.-N. , Grosgeorge, D. , Caudron, J. ,

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100003399
https://doi.org/10.13039/501100000274
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0001
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0001
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0001
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0001
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0002
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0002
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0002
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0002
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0003
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0003
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0003
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0003
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0003
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0003
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0003
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0003
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0003
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0003
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0003
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0003
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0004
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0004
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0004
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0004
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0004
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0004
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0004
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0004
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0005
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0005
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0005
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0005
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0006
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0006
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0006
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0006
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0006
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0007
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0007
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0007
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0007
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0008
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0008
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0008
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0008
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0008
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0008
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0008
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0008
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0008
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0009
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0009
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0009
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0010
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0010
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0010
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0010
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0010
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0010
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0011
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0011
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0011
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0011
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0011
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0012
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0012
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0012
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0013
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0013
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0013
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0013
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0013
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0013
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0013
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0014
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0014
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0014
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0014
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0014
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0014
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0014
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0014
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0014
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0014
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0014
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0014
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0015
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0015
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0015
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0015
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0015
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0015
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0015
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0015
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0015
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0015
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0015
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0015
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0016
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0016
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0016
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0016
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0017
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0017
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0017
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0017
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0017
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0018
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0018
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0018
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0018
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0018
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0019
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0019
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0019
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0019
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0020
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0020
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0020
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0020
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0020
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0020
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0020
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0020
http://segchd.csail.mit.edu/index.html
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0021
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0021
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0021
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0021
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0022
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0022
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0022
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0022
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0022
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0022
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0023
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0023
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0023
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0023
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0024
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0024
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0024
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0024
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0024
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0024
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0025
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0025
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0025
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0025
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0025
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0025
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0025
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0026
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0026
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0026
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0026
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0026
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0027
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0027
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0027
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0027
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0027
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0028
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0028
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0028
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0028
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0028
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0028
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0028
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0029
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0029
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0029
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0029
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0029
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0029


14 X. Zhuang, L. Li and C. Payer et al. / Medical Image Analysis 58 (2019) 101537 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y  

 

 

Y  

 

Y  

 

Y  

Y  

 

Z  

Z  

 

Z  

Z  

 

Z  

Z  

Z  

 

 

Ruan, S. , Ayed, I.B. , Cardoso, M.J. , Chen, H.-C. , et al. , 2015. Right ventricle
segmentation from cardiac MRI: a collation study. Med. Image Anal. 19 (1),

187–202 . 
Radau, P. , Lu, Y. , Connelly, K. , Paul, G. , Dick, A. , Wright, G. , 2009. Evaluation frame-

work for algorithms segmenting short axis cardiac MRI. MIDAS J.-Cardiac MR
Left Ventricle Segmentation Challenge 49 . 

Roberts, W.T. , Bax, J.J. , Davies, L.C. , 2008. Cardiac CT and CT coronary angiography:
technology and application. Heart 94 (6), 781–792 . 

Ronneberger, O. , Fischer, P. , Brox, T. , 2015. U-net: convolutional networks for

biomedical image segmentation. In: International Conference on Medical image
computing and computer-assisted intervention, pp. 234–241 . 

Roth, H.R. , Lu, L. , Seff, A. , Cherry, K.M. , Hoffman, J. , Wang, S. , Liu, J. , Turkbey, E. ,
Summers, R.M. , 2014. A new 2.5 D representation for lymph node detection us-

ing random sets of deep convolutional neural network observations. In: Inter-
national conference on medical image computing and computer-assisted inter-

vention, pp. 520–527 . 

Shen, D. , Wu, G. , Suk, H.-I. , 2017. Deep learning in medical image analysis. Annu.
Rev. Biomed. Eng. 19, 221–248 . 

Suinesiaputra, A. , Cowan, B.R. , Finn, J.P. , Fonseca, C.G. , Kadish, A.H. , Lee, D.C. , Medra-
no-Gracia, P. , Warfield, S.K. , Tao, W. , Young, A .A . , 2011. Left ventricular segmen-

tation challenge from cardiac MRI: a collation study. In: International Workshop
on Statistical Atlases and Computational Models of the Heart, pp. 88–97 . 

Tan, L.K. , McLaughlin, R.A. , Lim, E. , Abdul Aziz, Y.F. , Liew, Y.M. , 2018. Fully automated

segmentation of the left ventricle in cine cardiac MRI using neural network re-
gression. J. Magnetic Reson. Imag. 48 (1), 140–152 . 

Tobon-Gomez, C. , Geers, A.J. , Peters, J. , Weese, J. , Pinto, K. , Karim, R. , Ammar, M. ,
Daoudi, A. , Margeta, J. , Sandoval, Z. , et al. , 2015. Benchmark for algorithms seg-

menting the left atrium from 3D CT and MRI datasets. IEEE Trans. Med. Imag.
34 (7), 1460–1473 . 

Tong, Q. , Ning, M. , Si, W. , Liao, X. , Qin, J. , 2017. 3D deeply-supervised U-Net based

whole heart segmentation. In: International Workshop on Statistical Atlases and
Computational Models of the Heart, pp. 224–232 . 

Tran, D. , Bourdev, L. , Fergus, R. , Torresani, L. , Paluri, M. , 2015. Learning spatiotempo-
ral features with 3D convolutional networks. In: Proceedings of the IEEE inter-

national conference on computer vision, pp. 4 489–4 497 . 
Wang, C. , Smedby, O. , 2014. Automatic multi-organ segmentation in non-enhanced

CT datasets using hierarchical shape priors. In: International Conference on Pat-

tern Recognition, pp. 3327–3332 . 
Wang, C. , Smedby, O. , 2017. Automatic whole heart segmentation using deep learn-

ing and shape context. In: International Workshop on Statistical Atlases and
Computational Models of the Heart, pp. 242–249 . 

Xu, Z. , Lee, C.P. , Heinrich, M.P. , Modat, M. , Rueckert, D. , Ourselin, S. , Abramson, R.G. ,
Landman, B.A. , 2016. Evaluation of six registration methods for the human ab-

domen on clinically acquired CT. IEEE Trans. Biomed. Eng. 63 (8), 1563–1572 . 
ang, G. , Sun, C. , Chen, Y. , Tang, L. , Shu, H. , Dillenseger, J.-l. , 2017. Automatic whole
heart segmentation in CT images based on multi-atlas image registration. In:

International Workshop on Statistical Atlases and Computational Models of the
Heart, pp. 250–257 . 

ang, X. , Bian, C. , Yu, L. , Ni, D. , Heng, P.-A. , 2017. 3D convolutional networks
for fully automatic fine-grained whole heart partition. In: International Work-

shop on Statistical Atlases and Computational Models of the Heart, pp. 181–
189 . 

ang, X. , Bian, C. , Yu, L. , Ni, D. , Heng, P.-A. , 2017. Hybrid loss guided convolutional

networks for whole heart parsing. In: International Workshop on Statistical At-
lases and Computational Models of the Heart, pp. 215–223 . 

u, F. , Koltun, V. , Funkhouser, T. , 2017. Dilated residual networks. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 472–

480 . 
ushkevich, P.A. , Piven, J. , Hazlett, H.C. , Smith, R.G. , Ho, S. , Gee, J.C. , Gerig, G. , 2006.

User-guided 3d active contour segmentation of anatomical structures: signifi-

cantly improved efficiency and reliability. Neuroimage 31 (3), 1116–1128 . 
hao, J., Xiong, Z., 2018. 2018 atrial segmentation challenge. http://atriaseg2018.

cardiacatlas.org/ . 
hou, R. , Liao, Z. , Pan, T. , Milgrom, S.A. , Pinnix, C.C. , Shi, A. , Tang, L. , Yang, J. ,

Liu, Y. , Gomez, D. , et al. , 2017. Cardiac atlas development and validation for
automatic segmentation of cardiac substructures. Radiother. Oncol. 122 (1), 

66–71 . 

huang, X. , 2013. Challenges and methodologies of fully automatic whole heart seg-
mentation: a review. J. Healthcare Eng. 4 (3), 371–407 . 

huang, X. , Bai, W. , Song, J. , Zhan, S. , Qian, X. , Shi, W. , Lian, Y. , Rueckert, D. , 2015.
Multiatlas whole heart segmentation of CT data using conditional entropy for

atlas ranking and selection. Med. Phys. 42 (7), 3822–3833 . 
huang, X., Li, L., Xu, J., Zhou, Y., Luo, X., 2019. Multi-sequence cardiac MR segmen-

tation challenge. https://zmiclab.github.io/mscmrseg19/ . 

huang, X. , Shen, J. , 2016. Multi-scale patch and multi-modality atlases for whole
heart segmentation of MRI. Med. Image Anal. 31, 77–87 . 

uluaga, M.A. , Cardoso, M.J. , Modat, M. , Ourselin, S. , 2013. Multi-atlas propagation
whole heart segmentation from MRI and CTA using a local normalised corre-

lation coefficient criterion. In: International Conference on Functional Imaging
and Modeling of the Heart, pp. 174–181 . 

http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0029
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0029
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0029
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0029
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0029
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0029
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0030
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0030
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0030
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0030
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0030
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0030
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0030
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0031
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0031
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0031
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0031
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0032
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0032
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0032
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0032
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0033
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0033
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0033
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0033
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0033
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0033
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0033
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0033
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0033
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0033
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0034
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0034
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0034
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0034
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0035
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0035
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0035
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0035
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0035
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0035
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0035
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0035
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0035
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0035
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0035
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0036
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0036
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0036
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0036
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0036
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0036
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0037
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0037
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0037
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0037
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0037
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0037
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0037
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0037
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0037
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0037
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0037
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0037
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0038
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0038
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0038
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0038
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0038
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0038
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0039
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0039
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0039
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0039
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0039
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0039
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0040
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0040
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0040
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0041
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0041
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0041
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0042
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0042
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0042
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0042
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0042
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0042
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0042
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0042
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0042
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0043
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0043
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0043
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0043
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0043
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0043
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0043
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0044
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0044
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0044
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0044
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0044
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0044
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0045
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0045
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0045
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0045
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0045
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0045
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0046
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0046
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0046
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0046
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0047
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0047
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0047
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0047
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0047
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0047
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0047
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0047
http://atriaseg2018.cardiacatlas.org/
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0048
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0048
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0048
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0048
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0048
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0048
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0048
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0048
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0048
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0048
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0048
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0048
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0049
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0049
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0050
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0050
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0050
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0050
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0050
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0050
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0050
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0050
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0050
https://zmiclab.github.io/mscmrseg19/
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0051
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0051
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0051
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0052
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0052
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0052
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0052
http://refhub.elsevier.com/S1361-8415(19)30075-1/sbref0052

	Evaluation of algorithms for Multi-Modality Whole Heart Segmentation: An open-access grand challenge
	1 Introduction
	1.1 State-of-the-art for Whole Heart Segmentation
	1.2 Motivation and contribution

	2 Materials and setup
	2.1 Data acquisition
	2.2 Definition and gold standard
	2.3 Evaluation metrics
	2.4 Participants

	3 Evaluated methods
	3.1 Graz University of Technology (GUT)
	3.2 University of Lubeck (UOL)
	3.3 KTH Royal Institute of Technology (KTH)
	3.4 The Chinese University of Hong Kong, Method No. 1 (CUHK1)
	3.5 University of Central Florida (UCF)
	3.6 The Chinese University of Hong Kong, method no. 2 (CUHK2)
	3.7 Southeast University (SEU)
	3.8 University of Tours (UT)
	3.9 Shenzhen Institutes of Advanced Technology (SIAT)
	3.10 University of Bern, method no. 1 (UB1*)
	3.11 University of Bern, method no. 2 (UB2*)
	3.12 University of Edinburgh (UOE*)

	4 Results
	5 Discussion
	5.1 Overall performance of the evaluated algorithms
	5.2 Discussion of different modalities: CT versus MRI
	5.3 Discussion of different pathologies
	5.4 Discussion of different methodologies
	5.5 Comparisons with the literature
	5.6 Progress and challenges

	6 Conclusion
	Authors contributions
	Declaration of Competing Interest
	Acknowledgements
	References


