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Abstract  

RATIONALE: The activity of the glucocorticoid activating enzyme, 11β-hydroxysteroid 

dehydrogenase type-1 (11HSD1) is altered in diseases such as obesity, inflammation and 

psychiatric disorders. In rodents 11HSD1 converts inert 11-dehydrocorticosterone (11-
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DHC), to the active form, corticosterone (CORT). A sensitive, specific liquid 

chromatography-tandem mass spectrometry method was sought to simultaneously quantify 

total 11-DHC and total and free CORT in murine plasma for simple assessment of 11HSD1 

activity in murine models. 

METHODS: Mass Spectrometry parameters were optimised and the chromatographic 

separation of CORT and 11-DHC was developed. Murine plasma was prepared by 10:1 

chloroform liquid-liquid extraction (LLE) for analysis. Limits of Quantitation (LOQs), 

linearity and other method criteria were assessed, according to bioanalytical method 

validation guidelines. 

RESULTS: Reliable separation of 11-DHC and CORT was achieved, using an ACE Excel 2 

C18-AR (2.1 x 150 mm; 2 m) fused core column at 25oC, with an acidified water; 

acetonitrile gradient over 10 minutes. Analytes were detected by multiple reaction monitoring 

after positive electrospray ionization (m/z 345.1.1 121.2, m/z 347.1121.1 for 11-DHC 

and CORT, respectively). The LOQs were 0.25 and 0.20 ng/mL for 11-DHC and CORT, 

respectively.  

CONCLUSION: This LC/MS method is suitable for the reliable analysis of 11-DHC and 

CORT following simple LLE of murine plasma, bringing preclinical analysis in line with 

recommendations for clinical endocrinology and biochemistry. 

 

Keywords: 11-dehydrocorticosterone, corticosterone, liquid-chromatography tandem mass 

spectrometry, plasma, mouse, 11β-hydroxysteroid dehydrogenase type-1, inflammation 

 

Abbreviations: 11-dehydrocorticosterone (11-DHC); corticosterone (CORT), 11-
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Introduction  

 

Glucocorticoids are essential for the regulation of metabolism, the stress response and 

inflammation. Glucocorticoid action is controlled at two levels: first by the hypothalamic-

pituitary axis, a negative feedback loop which determines the levels of circulating 

glucocorticoids and secondly by metabolism of glucocorticoids in the tissues. The best 

documented example of tissue metabolism of glucocorticoids is 11-hydroxysteroid 

dehydrogenase 1 (11HSD1) [1]. In rodents this enzyme converts inert glucocorticoid 11-

dehydrocorticosterone (11-DHC) to the active form, corticosterone (CORT).  

The activity of 11HSD1 is altered in several disease states including obesity, inflammation 

and psychiatric disorders [2]. The importance of this enzyme has been revealed by murine 

models of global or tissue-specific disruption [3,4] or over-expression [5] of the enzyme. 

Demonstrating the activity of this enzyme is essential in the validation of these murine 

models and in the understanding of the role of this enzyme in health and disease.  The pre-

clinical field is hampered by the lack of a robust assay for the enzyme substrate, 11-

dehydrocorticosterone (11-DHC). Antibodies to 11-DHC are not commercially available, 

and only rarely reported [6]. Immunoassays for CORT have variable cross-reactivity with 

other endogenous steroids, of which there are many. Similar problems in clinical 

biochemistry have been overcome by the use of tandem mass spectrometry (MS); non-

selective immunoassays for sex steroids are now no longer acceptable for publication [7]. 

Furthermore, the advantage of LC/MS analysis is the ability to analyse more than one 

compound in a sample. In 2005 Ronquist et al [8] detailed a 16 minute LC/MS method that 

measured levels of CORT and 11-DHC in murine liver and adipose; however, this was not 

applied to blood and used trifluoracetic acid as a modifier in the chromatographic method.  

A 6-minute on-line extraction LC/MS method for CORT and 11-DHC analysis has been 

described and applied to human and rat placenta [9], but again it has not been applied to 

blood. Peti et al reported an 11-minute LC/MS method for CORT, 11-DHC, progesterone, 

aldosterone, cortisol and cortisone analysis using a high resolution TripleTOF 5600 mass 

spectrometer [10], where the LOQ of CORT and 11-DHC was 3.9 ng/mL. Li et al 

developed a 6-minute LC/MS method for CORT analysis (LOQ of 1 ng/mL), but not 11-

DHC, in mouse plasma [11]. A recent human clinical study by Taylor et al [12], describes 

a 19.7-minute-long LC/MS method for a panel of 13 steroids in serum. The method 



 

 
This article is protected by copyright. All rights reserved. 

includes CORT, with an LOQ of 0.25 ng/mL, but 11-DHC is not included in this panel. A 

14-minute steroid profiling human plasma method includes CORT with an LOQ of 0.5 

ng/mL, but not 11-DHC [13]. To date there has not been a validated method focussing only 

on CORT and 11-DHC in murine plasma. 

In this study we have used a murine model of inflammation known to increase 11HSD1 

activity [14] to report a validated, sensitive liquid chromatography-tandem mass 

spectrometry (LC/MS/MS) based method for quantifying plasma levels of the substrate as 

well as the product of 11-HSD1, 11-DHC and CORT. This method for CORT analysis 

was sensitive enough to analyse the “free” CORT levels in murine plasma, i.e. the 

circulating steroid unbound to corticosteroid binding globulin (CBG), which is thought to 

be the biologically active portion of CORT. 

2. Materials and Methods 

 

2.1 Chemicals, reagents and consumables 

HPLC grade chloroform was from Rathburn Chemicals (Walkerburn, UK). LC/MS grade 

dichloromethane, isopropanol, methanol, acetonitrile and water were from Fisher Scientific 

(Loughborough, UK).  Formic acid was from Sigma Aldrich (Gillingham, UK), [9,11,12,12-

2H4]-cortisol (d4-F) was from CDN (Pointe-Claire, Canada) and the steroids, CORT, 11-

DHC, and epi-corticosterone (epi-CORT), were from Steraloids (Newport, RI, USA). 

 

2.2 Stock solutions and calibration standards 

Stock solutions (1 mg/mL) of analytes (CORT, 11-DHC) and internal standards, (d4-cortisol 

(d4F) and epi-CORT) in methanol, were stored at -200C and were further diluted in methanol 

on the day of use. Calibration standards were diluted in methanol from 0.01 to 500 ng/mL on 

the day of preparation. 

 

2.3 Chromatographic and Mass Spectrometric conditions 

Analysis was performed using an Acquity Classic UPLC system (Waters, Wilmslow, UK) 

interfaced to a QTRAP 5500 (AB Sciex, Warrington, UK) mass spectrometer, operated using 

Sciex Analyst® 1.5.1 Software. Data was processed for quantitation using MultiQuantTM 

Software (Sciex; version 3.0.2). Samples were injected (30 L) on the UPLC system using 

Partial Loop with Needle Overfill (PLNO) on a 50-L loop. Chromatographic separation was 
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achieved using an ACE Excel 2 C18-AR (2.1 x 150 mm; 2 m; Advanced Chromatography 

Technologies, Aberdeen, UK) liquid chromatography column, protected by a KrudKatcherTM 

Ultra (Phenomenex, Macclesfield, UK) as in-line filter. The mobile phase was water (0.1% 

formic acid; v/v) and acetonitrile (0.1% formic acid, v/v). Gradient elution was performed 

from 30 to 90% acetonitrile with a run time of 10 minutes (Table 1). The mass spectrometer 

was operated in positive ion electrospray ionisation (ESI) mode using a TurboIonSpray 

source and data collected in unit resolution (0.7 m/z units full width at half maximum). The 

TurboIonSpray source was operated at 550oC with an IonSpray voltage of 5 kV, a Curtain 

Gas pressure of 20 psi, and nitrogen nebuliser ion source gas 1 (GS1) and heater ion source 

gas 2 (GS2) pressures of 40 psi and 60 psi, respectively. Compound-specific parameters were 

optimised for selected reaction monitoring (SRM) transitions (Table 1) by infusing 

1ng/mL of each steroid standard solution into the source at 3 L/min with a Collision 

Activation Dissociation (CAD) gas at the Medium setting of 2.6 x 10-5 Torr. The curtain, 

source, exhaust and CAD gas was delivered using an MS Table 1N Nitrogen Table (Peak 

Scientific, Inchinnan, UK).  

 

2.4 Sample collection and preparation 

2.4.1 Preclinical murine model  

Male C57BL6 mice (>10 weeks old; (Harlan Olac, Bicester, UK)) were housed 4 to 5 per cage 

under standard conditions on a 12 h light/dark cycle (lights on at 7:00 am) with ad libitum 

access to food (standard chow) and water. All procedures were performed under the aegis of 

the UK Animals (Scientific Procedures) Act, 1986, and the EU directive 2010/63/EU and with 

local ethical committee approval. 

2.4.2 Administration of lipopolysaccharide (LPS) by intra-peritoneal (ip) injection  

Mice were administered either 0.9% saline solution (vehicle) or LPS (100 µg/kg; derived 

from Escherichia coli 0111:B4, Sigma-Aldrich, Gillingham, UK) by a single ip injection 

between 07:30h and 09:15h. Mice were culled by decapitation 3 hours later.  

2.4.3 Administration of LPS intranasally  

Mice were administered LPS (1 mg/mL) intra-nasally at 09:00 h. A control group was left 

untreated. Mice were culled by decapitation 24 h later and blood collected for steroid 

analysis. 
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2.4.4 Blood collection 

Trunk blood from the mice was collected into EDTA-coated tubes, centrifuged (1000 x g, 10 

minutes, 4oC) and the plasma transferred to labelled vials and stored at -80 0C prior to steroid 

analysis. 

 

2.5 Sample Extraction protocol 

2.5.1 Steroid extraction from murine plasma by Liquid Liquid Extraction (LLE) 

Murine plasma (50 or 150 L) was aliquoted into glass tubes, enriched with internal 

standards d4F and epi-CORT (2.5 ng each) and extracted by adding chloroform (0.5 or 1.5 

mL) and mixing well. After vortexing, the supernatant was transferred to a clean glass tube 

75 x 10 mm, 4.5-mL glass tube, reduced to dryness under oxygen-free nitrogen (600C), 

reconstituted in water-acetonitrile (30:70, (v/v); 70 L) and transferred to an autosampler 

vial.  

2.5.2 Preparation of plasma for analysis of free CORT  

Plasma (150 µL) was incubated (37oC; 30 min) before being applied to an Ultracel-30 

membrane in an Amicon Ultra-Centrifugal Filter Unit (Millipore, Livingstone, UK) and 

subjected to centrifugation (14,000 x g, 37oC; 30 min). The ultrafiltrate (150 L) was 

subjected to 10:1 chloroform steroid extraction as described above (2.5.1), and the extract 

was assessed for CORT levels which represents the free component.  

 

2.6 Method validation 

To validate the developed LLE LC/MS/MS assay, the recovery, linearity and lower limits of 

detection and quantitation were determined in accordance with the European Medicines 

Agency bioanalytical method validation guidelines [11].  

2.6.1 Recovery of 11-DHC and CORT from water  

The absolute recovery was assessed by enriching water with 2.5 ng of 11-DHC and CORT and 

using the LLE method described (2.5.1). The peak areas of CORT and 11-DHC in these 

enriched aqueous samples were compared with those from pure water subjected to the 

extraction procedure and post-spiked with CORT and 11-DHC (2.5 ng). 

2.6.2 Recovery of internal standards, epi-CORT and d4F from plasma  
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Recoveries of d4F and epi-CORT from pooled control murine plasma (150 L) enriched with 

D4F and epi-CORT (2.5 ng) were ascertained using the extraction procedure described in 2.5.1 

and 2.5.2. The peak areas of d4F and epi-CORT from these ‘pre-spiked’ plasma samples were 

divided by those of plasma that was post-spiked with d4F and epi-CORT (2.5 ng) and the 

percentage recovery of the internal standards from mouse plasma was calculated. The pre-

spiked values were compared with those from pure-solutions of d4F and epi-CORT (2.5 ng) to 

calculate the matrix effects on the internal standards [9, 10]. 

  

 

 

2.6.3 Assay specificity 

The ion ratio of quantifier and qualifier ions for each analyte was assessed in all biological 

samples. The criterion for acceptance is ratios within 20% of the ratio for analytical standards, 

as defined in bioanalytical validation guidelines [11]. 

2.6.4 Sensitivity and linearity (LOD, LOQ, accuracy and precision) 

Six sets of calibration standards (0.1-400 ng) were prepared and extracted by LLE and analysed 

by LC/MS/MS. The detection and quantitation limits (LOD and LOQ, respectively) were 

calculated using the standard deviation of the response () and the slope (m) [11] using the 

following equations: LOD=3.3 (/m) and LOQ=10 (/m). Linearity was evaluated in 

calibration standards generated on six different days, assessing the peak area ratios of the 

analyte (CORT and 11-DHC) divided by that of the internal standard (D4F and Epi-CORT). 

Regression analyses with weighting options (equal,1/x, 1/x2) were explored. The results 

derived using the two internal standards were compared. 

2.6.5 Reproducibility 

The accuracy and precision were determined by assessing calibration standards, following 

extraction, at the LLOQ and at low, medium and high amounts of 11-DHC and CORT (2.5, 10, 

150 ng) in replicates of six prepared on the same day (intra) and of three prepared on different 

days (inter). The precision was calculated as the relative standard deviation of the mean (RSD), 

calculated as the standard deviation of the replicates divided by the average of the replicates 

and multiplied by 100. The amount of steroid in each sample was calculated using the 

calibration curve and accuracy calculated as the relative mean error (RME), where the 

calculated amount minus the theoretical amount is divided by the theoretical amount multiplied 
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by 100. According to bioanalytical guidelines [11,12] the accuracy and precision are 

considered acceptable when <15% for all points and <20% for the LOQ. 

2.6.6 Stability 

Extracts of three aliquots of plasma, enriched with d4F and epi-CORT (2.5 ng), were analysed 

immediately after preparation and then allowed to remain at 10oC in the autosampler for 12 

hours, or at -20oC for 7 days or 2 months prior to repeat analysis. The concentration of 11-DHC 

and CORT was calculated from the standard curve prepared and stored with the samples and 

calculated as a percentage of the initial value. The stability was acceptable if the change in 

concentration measured was <20%. 

 

2.7 Method application 

The amounts of total and free CORT and total 11-DHC were quantified in murine plasma. The 

concentrations of endogenous steroids were compared before and after LPS treatment in two 

separate mouse experiments; intra-peritoneal injection and intra-nasal injection in C57BL6 

mice. 

 

3. Results and discussion 

 

3.1 Mass spectrometric parameters  

All steroidal analytes and internal standards generated singly charged positive ions and 

underwent transitions in Multiple Reaction Mode (MRM) to product ions typical of pregnene 

steroids. The common product ion of m/z 121 is from the A-ring of the steroid structure, first 

described by Williams et al [20], using stable isotope labelled testosterone to identify 

fragments from collision induced dissociation. It was also shown by Ronquist-Nii et al in 

corticosteroids [8]. 

 

3.2 Chromatographic development 

Due to the mass difference in molecular mass between 11-DHC and CORT of only 2 Da, the 

natural 2H and 13C isotopologues of 11-DHC register signals within the corticosterone MRM.  

Thus, chromatographic separation of 11-DHC and CORT was essential.  Initially, a Sunfire 

C18 (100 x 2.1 mm; 3.5 m, Waters) column was trialled for separation of the steroids, but 

selectivity was improved using an ACE Excel C18-AR column (150 x 2.1 mm; 2 m, ACT, 

Aberdeen, UK), due to the longer column length, smaller particle size and a modified 
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stationary phase. This not only afforded improved sensitivity but also robust, reliable 

chromatographic separation. Under these conditions, the isobaric internal standard, epi-

CORT was resolved temporally (Figure 1), which was also necessary. 

 

3.3 Method Validation 

3.3.1 Recovery following extraction by LLE of 150 L murine plasma 

Protein precipitation was pursued initially, but yielded considerable chromatographic 

interference around the retention times of epi-CORT, CORT and 11-DHC. Liquid-liquid 

extraction (LLE) using chloroform (10:1) was assessed and gave a much cleaner extract with 

no interfering peaks. The results obtained following extraction of two different volumes of 

pooled mouse plasma (50 and 150 µL) were compared. The variability of the calculated 

amounts at 50 µL (32.1% for CORT and 38.3% for 11-DHC) was much larger than that seen 

in the 150 µL extracts (13.4% for CORT and 14.2% for 11-DHC). Therefore, 150 µL was 

considered the acceptable and reliable volume that would still allow data to be collected from 

individual experimental animals. Using the 10:1 chloroform LLE approach, average and 

acceptable recoveries of 89.1% 11-DHC and 87.2% of CORT from aqueous solution were 

seen, calculated by comparing the peak areas of 11-DHC and CORT pre-spiked with that of 

an extract that had been post-spiked with 11-DHC and CORT (Table 2). The recovery from 

plasma (n=3; 150 µL) of the non-endogenous internal standards epi-CORT (89± 2.9%) and 

d4F (93.1± 2.2%) was excellent. 

3.3.2 Assay specificity for LLE 

No interfering peaks were seen in chromatographic traces of LLE extracted plasma for the 

internal standards d4F or epi-CORT. The quantifier/qualifier ratio of 11-DHC and CORT in 

six different plasma extracts was 0.72 ±0.04 and 0.79 ±0.06, respectively, in close agreement 

with that of extracted analytical standards (0.75±0.02 for 11-DHC and 0.81±0.04 for CORT). 

3.3.3 Sensitivity (LOD and LOQ) and linearity 

The LOD and LOQ were calculated by extrapolation to be 0.1 ng/mL and 0.25 ng/mL for 11-

DHC and 0.1 ng and 0.20 ng/mL for CORT. Based on regression parameters, d4F was 

consistently found to be the best internal standard for 11-DHC while epi-CORT was the best 

internal standard for CORT. This was determined by assessing the widest dynamic range and 

the best line fit for the calibration curves. The calibration curves were linear over the range 

0.1-500 ng/mL for 11-DHC and CORT. The mean regression coefficients of the standard 

curves (n=6) were r2=0.995±-0.003 for 11-DHC and r2=0.997 ±-0.002 for CORT, with 
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weighting of 1/x applied for optimal fitting of the lowest amounts. This is an improvement on 

previously reported analysis of CORT in murine plasma by tandem mass spectrometry (LOQ 

of 1 ng/mL; [15]. Of importance, their method did not detect or report the amount of 11-DHC 

in the murine plasma. 

3.3.5 Accuracy, precision, reproducibility 

The precision and accuracy were acceptable for 11-DHC and CORT at low, medium and high 

levels (2.5, 10 and 150 ng/mL) (Table 2). When applying the LOQs to a volume of 150 µL 

the levels of 11-DHC and CORT fell comfortably above the LOQ (0.25 ng/mL for 11-DHC 

and 0.20 ng/mL for CORT) and the upper limit of the assay (500 ng for 11-DHC and CORT).  

3.3.6 Sample stability 

The stability of the extracts was acceptable upon short term storage, changing to 97.2% for 

CORT and 96.4% for 11-DHC (autosampler at 10oC for 12 h). Storage at -20oC for 1 week 

saw a change to 95.4% and 94.2% for 11-DHC, and longer-term (2 months at -20oC) this 

changed to 93.1% for CORT and 90.8% for 11-DHC. These assessments reflect conditions of 

normal laboratory practice and are acceptable.  

 

3.4 Method Application 

The plasma from 53 individual mice, treated with LPS or vehicle (0.9% saline) (2.4.1 and 

2.4.2) were analysed using the validated protocol, where CORT was found to range between 

52 and 480 ng/mL (150-1387 nM) and 11-DHC was detected in the range 3-40 ng/mL (4-120 

nM); comfortably within the validated ranges of the assay (0.57-1445 nM for CORT, 0.7-

1453 nM for 11-DHC).  

Furthermore, the extraction protocol was applied to assess total and free CORT in 14 mouse 

plasma samples (2.4.3). The plasma was subject to ultrafiltration, the filtrate was extracted by 

LLE (2.5.2) and analysed following the validated method, with samples falling in the range 

1- 7 nM CORT, within the validation of the method. Treatment of the mice with LPS sees an 

increase in total CORT but also in free CORT. The concentration of the available pool of 

CORT indicates that free steroids increased from 6 to 15% of the total CORT, following LPS 

treatment (Figure 2). 

 

4. Conclusions 

The use of immunoassays in steroid biochemistry is gradually being replaced by 

chromatographic-MS methods in the clinical research arena but this presents additional 

challenges in the pre-clinical field due to limited sample volumes from small animals. 
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Nonetheless advancing technology is now bringing these within reach allowing 

improvements in the specificity of biochemical data.  

 

This presented LC/MS/MS method allows reliable analysis of active and inactive 

glucocorticoids in plasma from individual animals. In contrast to previous methods of plasma 

steroid extraction, some of which used more costly solid phase extraction (SPE), the present 

method uses a relatively simple and cost-effective liquid-liquid extraction (LLE) with highly 

efficient recoveries of the steroid analytes (~90%). It is likely that other steroids will be 

present within the plasma extract offering possibilities of broader spectrum data for 

individual animals, depending upon the research question. Under current conditions, this 

approach consumed 150 μL of plasma, but with technological advances already available 

beyond the instrumental specifications described here it will probably lead to gains in this 

field of pre-clinical research.  
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Table 1 Instrument settings for CORT, 11-DHC and Internal Standards  

Chromatographic Conditions (Flow Rate 0.5 mL/min) 

Time (mins) 

Mobile Phase A (%):  

Water (0.1% FA, v/v) 

Mobile Phase B (%) 

Acetonitrile (0.1% FA, v/v) 

0 70 30 

1.5 70 30 

3 10 90 

4 10 90 

6 70 30 

10 70 30 

 

Compound Dependent Multiple Reaction Monitoring parameters of the Mass Spectrometer
1 

Analyte 
Mass transition (m/z) 

Time 

(msec) 

DP EP CE CXP 

11-DHC 

345.1 →121.2 

(345.1→ 90.9) 

30 

30 

51 

61 

10 

10 

33 

71 

8 

10 

CORT and 

Epi-CORT 

347.1 → 121.1 

(347.1→91.1) 

30 

30 

66 

        66 

10 

10 

69 

69 

8 

8 

D4F 

367.1→121.1 

(367.0→91.1) 

30 

30 

121  

121 

10 

10 

25 

25 

20 

20 

 

1 Conditions established following electrospray ionisation at 5 kV, 550oC. FA – Formic Acid; 

DP= Declustering Potential (V); CE = Collision Energy (eV); CXP = Collision Cell Exit 

Potential (V) 

Quantitative ion with qualitative ion shown in brackets 
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Table 2 Recovery and indices of intra- and inter-day precision and accuracy for 

quantitation of mouse plasma enriched at LOQ (0.25 and 0.20 ng/mL), low (2.5), medium 

(10) and high (150) levels of 11-DHC and CORT 

 

Amount 

(ng/mL) 

% Recovery Intra-day precision and accuracy Inter-day precision and accuracy 

 Mean± RSD Precision,  

RSD (%) 

Accuracy,  

RME (%) 

Precision,  

RSD (%) 

Accuracy,  

RME (%) 

0.25 (11-DHC) 

0.20 (CORT) 

87.2±3.4 

89.1±2.0 

10.13 

9.80 

15.32 

17.30 

12.92 

18.37 

12.39 

10.92 

2.5 (11-DHC) 

2.5 (CORT) 

89.5±2.1 

86.1±3.1 

4.19 

4.70 

3.94 

8.11 

14.74 

11.21 

10.27 

8.45 

10 (11-DHC) 

10 (CORT) 

90.2±5.4 

86.3±2.4 

4.31 

5.22 

8.23 

7.32 

3.97 

4.23 

10.20 

2.50 

150 (11-DHC)  

150 (CORT) 

89.5±3.4 

87.3±2.4 

6.23 

7.90 

1.20 

2.50 

9.44 

12.30 

5.56 

3.50 

 

Relative Standard Deviation = RSD; Relative Mean Error (RME). 
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Figure 1: Extracted Ion Chromatograms  11-DHC, CORT, epi-CORT and d4F 

demonstrating chromatographic resolution of isobaric epimers CORT and Epi-CORT and of 

11-DHC and CORT 
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Figure 2: Concentrations of corticosterone (CORT) in mouse plasma, 3h following i.p. 

injection of vehicle (0.9% saline) or 100 µg/kg lipopolysaccharide (LPS). Measured 

amounts were within the validated range. Data are mean ± SEM (n=7/group). 

 

 


