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Colloidal particles with strong, short-ranged attractions can form a gel. We simulate this process
without and with hydrodynamic interactions (HI), using the lattice-Boltzmann method to account
for presence of a thermalized solvent. We show that HI speed up and slow down gelation at low
and high volume fractions, respectively. The transition between these two regimes is linked to the
existence of a percolating cluster shortly after quenching the system. However, when we compare
gels at matched ‘structural age’, we find nearly indistinguishable structures with and without HI.
Our result explains longstanding, unresolved conflicts in the literature.

I. INTRODUCTION

Many applications require particulates to remain dis-
persed throughout a liquid medium against their ten-
dency to sediment or cream due to density mismatch, of-
ten aggravated by a tendency of the suspension to phase
separate. Thus, e.g., sedimentation in a drug suspen-
sion can have dangerous consequences for patients. For
colloids with short-ranged attractions, gravitational sta-
bility can be achieved by quenching the system to form
a space-spanning network, a colloidal gel. In many sys-
tems, gelation is due to the arrest of this phase separation
process by the glass transition [1, 2].

Kinetics do not determine the equilibrium structure of
a system. However, in colloidal gels, which are arrested
states, the kinetics of aggregation crucially affect struc-
ture formation and therefore mechanical properties [3].
Hydrodynamic interactions (HI) clearly affect kinetics
and hence may lead to a lack of predictive power for
numerical simulations of gelation that do not account
for these. Simulating a system with HI is, however, far
from trivial, as historically this has been the most com-
putationally expensive part of such a simulation algo-
rithm [4, 5]. Concerted effort over the last two decades
comparing simulations with and without HI has never-
theless suggested a plethora of effects.

The earliest forays into this topic considered the clus-
tering of a few particles into “fractal” aggregates. Tanaka
and Araki [6] showed that without HI, two-dimensional
(2D) Lennard-Jones-like (LJ-like) particle aggregation
leads to more compact clusters. Whitmer and Luijten [7]
extended this to three-dimensional (3D) clustering for
particles interacting via an Asakura-Oosawa-like (AO-
like) potential, finding the diffusion-limited cluster ag-
gregation (DLCA) result at high interaction strength [8].

Turning from clusters to gels, Yamamoto et al. clar-
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ified the hydrodynamic stabilization of 2D LJ-type gels
formed by quenching to zero temperature [9]. However,
in 3D (colloid volume fractions φ = 0.173 and 0.307)
they found only a minor quantitative effect of HI, ob-
serving that structural evolution does not cease in 3D as
it does in 2D [9]. Furakawa and Tanaka [10] investigated
the time evolution of 3D AO-like gels with φ = 0.13 and
∆U = 4.2kBT and 8.4kBT quenches, with ∆U the con-
tact attraction strength, kB Boltzmann’s constant, and T
the temperature. HI shifted the gelation line and changed
the time dependence of the correlation length in the gel,
ξ ∼ tx, from x = 1/3 to 1/2.

Recently, Varga and collaborators performed large-
scale simulations of colloidal gelation using a highly accel-
erated hydrodynamics algorithm [11]. They contrasted
systems with and without HI over a wide range of φ and
∆U , with both AO-like potentials [12] and a combination
of short-ranged attraction and long-ranged repulsion [13],
finding that HI could lower the gelation line [12], slow
down compaction and speed up coagulation [13]. Roy-
all et al. reported a similar lowering of the gelation line
with the inclusion of hydrodynamic interactions, which
they related to a change in the local structure of colloidal
gels with the inclusion of HI [14].

In this work, we consider gelation with and without HI
for colloids with short-ranged attractions (∆U = 5kBT
and 10kBT ) and 0.075 ≤ φ ≤ 0.225. HI are accounted
for using the lattice-Boltzmann (LB) method [15], which
enables us to simulate systems comparable or even larger
than those of Varga et al. [12, 13]. We use the void vol-
ume (VV) [3, 16] to study the structure of the holes in
the gel. This allows precise analysis of the dynamics of
gelation and identification of the onset of aging, which
agrees with the one obtained from the evolution of the
correlation length. We find that HI indeed speeds up
gelation and slightly steepens the VV power-law scal-
ing for low φ. For φ & 0.16, however, systems with
HI exhibit the same power-law exponent as their non-HI
counterparts and gelation is slowed down. We relate this
crossover to the presence of large clusters immediately
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upon quenching into the spinodal region of the phase di-
agram, which rearrange quickly to achieve percolation.
We demonstrate clearly that aging is, however, not re-
lated to percolation and typically sets in at a much later
time.

We also study the structure of gels formed with and
without HI. However, in contrast with most simulations
to date, we do not compare the structure at equal-and-
fixed time. Instead, we compare gels at equivalent points
during their evolution, in which case, surprisingly, gels
formed with and without HI cannot be readily distin-
guished by their structure factor. More sensitive VV
analysis reveals a small influence of HI on structure, but
the difference is much smaller than what can be achieved
by minor variations in the gel age, φ, or ∆U .

Note that we focus throughout on φ ≥ 0.075. At lower
φ, gel formation is so slow that other effects such as grav-
ity and convection will dominate the dynamics of any
real system. Moreover, our method does not give enough
statistics over long enough time to determine the effect
of HI on the position of the gelation boundary. Nonethe-
less, our results suffice to show that HI have a large effect
on the speed at which the quenched system evolves, but
the path that it takes through state space is nearly un-
affected. We discuss how these findings relate to and
reconcile existing literature on HI in colloidal gelation.

II. SIMULATION METHODS

We evaluate the influence of HI on gelation by compar-
ing simulations using strongly damped Langevin dynam-
ics [17] (no HI: NH) to those using a GPU-accelerated
fluctuating LB method [18] (with HI: WH). Particles
are coupled to our LB solvent through the Ahlrichs and
Dünweg method [19], similar to a recent study on col-
loidal crystallization [20]. This captures the relevant far-
field hydrodynamics accurately [19] and approximates
near-field effects. The lubrication regime is not well-
described using the Ahlrichs and Dünweg method, but
this regime is known not to influence gelation [21]. Nev-
ertheless, our particle contacts are always “lubricated”,
that is, we do not account for effects as mechanical fric-
tion that have recently come into prominence in aspects
of suspension dynamics [22]. Lastly, it should be noted
that in a real fluid two particles slow down when they
approach each other because of hydrodynamic coupling;
fluid must be squeezed out of the gap. This near-field
effect, which already occurs outside of the lubrication
regime, is qualitatively captured by the Ahlrichs and
Dünweg method [18] and important for the behavior of
our system, as we will return to shortly.

We match the bulk diffusivity of our particles between
the NH and WH simulations by setting kBT = 1, the
particle diameter σ = 1, and the viscosity of our sus-
pending medium to η = 10, so that D = kBT/(3πησ) =

1.1 × 10−2σ2τ−1, with unit time τ ≡
√
mσ2/(kBT ) and

particle mass m = 1. We express all times in terms of

the Brownian time tB = σ2/(4D) = 23.5τ for a particle
to diffuse its own radius.

A generalized LJ interaction with high exponents was
used to model short-ranged depletion attraction [23]:

Ugen
LJ (r)


= ε

[(
σ

r

)96

− 2

(
σ

r

)48

+ c

]
r < rc

= 0 otherwise

. (1)

Here, r is the center-to-center distance, rc the cut-off dis-
tance, ε the interaction strength, and c the shift in the
potential. This form avoids the sharp cusp that occurs by
adding the AO potential to hard-core repulsion, thereby
improving the stability of our numerical integration. The
range of the attraction is . 6% of the hard core (judged
by where U reaches ±kBT ). Throughout, we deem par-
ticles as belonging to the same cluster if r < 1.05σ.

We equilibrate our systems using a purely repulsive po-
tential: ε = 10kBT , c = 1, and rc = σ. We then quench
into the spinodal region by instantaneously switching to
an attractive interaction: ε = 10kBT or 5kBT , c = 0, and
rc = 1.5σ, so that ∆U = 10kBT or 5kBT . The reduced
second virial coefficient [24] for Ugen

LJ (r) is

b2 = 1 + 3

∫ ∞
σ

dr r2

1− exp

(
−
Ugen
LJ (r)

kBT

) , (2)

with b2 ≈ −5.2× 102 and −4.7 for ε = 10kBT and 5kBT ,
respectively.

We use a time step ∆t = 0.002 and equilibrate each
sample for 50tB before quenching to simulate gelation
and aging for another 550tB for φ > 0.1 and 5500tB for
φ ≤ 0.1. We prepare our systems in a cubic box with
edge L = 48σ (with σ = LB spacing) for 12 points in φ ∈
[0.075, 0.225], so that we simulate between N = 15,841
and 47,523 particles. For each data point, we run 10
independent simulations using the Molecular Dynamics
package ESPResSo [25, 26] to obtain sufficient statistics.

III. RESULTS

A. Percolation

We start by examining the time evolution of the frac-
tion of particles in the largest cluster nc = Nc/N , Fig. 1,
which shows the asymptotic approach to nc = 1 as a
function of time, where we have indicated the time tp at
which each system first percolates (+,×), which is at or
immediately after the asymptotic behavior in nc sets in.
For low φ and ∆U = 10kBT the asymptotic power law
exponent is higher for WH than NH. This difference is
less marked at ∆U = 5kBT (data not shown), but the
trend remains. For sufficiently high φ, hydrodynamics
slow down cluster growth. The power-law asymptotes
are identical within errors, with little difference between
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FIG. 1. The fraction of particles in the largest cluster, nc,
for ∆U = 10kBT at three φ (labelled), as a function of time
t (in Brownian time units tB): � = NH, � = WH; × (WH)
and + (NH) indicate percolation points; and error bars give
standard errors. Black dotted lines and numbers indicate the
exponent of asymptotic power laws, with standard error ±0.1.

∆U = 10 and 5kBT . A crossover between these two kinds
of behavior occurs at intermediate φ for both ∆U .

At low enough φ, small clusters form initially from
particles already in close contact. These clusters diffuse,
bonding on contact, leading to a fractal-like network.
Such rearrangements are sped up by HI, which enhance
cluster translational and rotational mobility by allowing
collective effects, as found previously [12]. At higher φ,
particles travel only a short distance to bond. Now, com-
paction dominates, i.e., the approach of colloids to form
a bond contributes more to the formation of a gel net-
work than motion of (small) clusters. This approach is
slowed down by the need to squeeze fluid from between
particles, again agreeing with recent work [12].

B. Void-volume Analysis

To identify structural differences between WH and NH
systems, we calculate the void volume (VV). The VV
of a point in space is the volume of a sphere centered
at that point in contact with a particle surface [3, 16].
Figure 2a shows probability density functions (PDFs) for
WH and NH systems at time t = ta when aging starts,
for ∆U = 10kBT and three φ. We will define aging once
we have analyzed these VV PDFs to set the scene.

Our low-noise PDF data over five orders of magnitude
show small but systematic differences between the WH
and NH cases. At ta, the WH systems at low φ have more
small and fewer big holes than the NH systems, while
the trend reverses for high φ. The VV PDFs contain
information that is complementary to the structure factor
S(q); we return to this shortly.

From the PDFs, we compute the mean, 〈VV〉, whose
evolution gives a time-dependent length scale

λVV(t) ≡
(
〈VV〉(t)− 〈VV〉(0)

)1/3
, (3)

which measures the growth in void radius, Fig. 2b. It
better distinguishes the NH and WH systems and allows
us to define aging.

There appears to be two power-law regimes λVV ∝ tx.
Initially, the WH (x ≈ 0.40) and NH (x ≈ 0.36) systems
are slightly different at the lowest φ, but for higher φ
their power laws are identical within errors, x ≈ 0.35
and 0.33 respectively. This regime is associated with the
gelation process. The second regime, which is less well
developed at the lowest φ, has exponent 0.05 ± 0.005,
which we associate with aging.

We define the aging time, ta, as the crossover between
these two regimes. In practice, this is done by fitting
a local power-law tx to obtain a running exponent x(t)
and using the criterion x = 0.08 for the onset of aging,
Fig. 2b (�,�). The percolation times, tp, identified ear-
lier (+,×), are also shown. In each pair of data sets, we
see that the NH and WH systems have the same λVV

when they successively reach tp and then ta. In other
words, the gels have (nearly) the same structures when
they have reached a comparable evolutionary stage. Ob-
servations for ∆U = 5kBT are qualitatively similar, also
reference Fig. 2a.

C. The Structure Factor

The structure factor, S(q), as a function of the wave
vector q at ta for the WH and NH systems, Fig. 2c, shows
a broad, low-q peak in all cases (at qm), defining a sec-
ond characteristic length scale, q−1m . As expected, qm
increases with φ. Moreover, the S(q) for WH and NH at
t = ta are identical within error bars at all φ, supporting
the conclusion we drew from the lower-noise VV data;
Fig. 2a.

Fitting a time-dependent sequence of S(q) [27] yields
qm(t), Fig. 2d, which can be directly compared to small-
angle scattering experiments [23], in which gelation is
associated with the sudden slowdown in the decrease in
qm with time. The ta obtained using the VV analysis
plotted in Fig. 2d (�,�) matches this transition point
well within errors, showing that it is the onset of aging
rather than percolation (+,×) that identifies gelation.
The negative of the power law exponents obtained from
our void-volume analysis, see Fig. 2b, is consistent with
the corresponding regimes in Fig. 2d within the error, see
the respective dashed power-law fits.

D. Two Structural Times

We have defined and examined two structural times:
tp, when a percolating cluster first exists, and ta, where
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FIG. 2. Structural properties for gelling systems with ∆U = 10kBT , (� = NH, � = WH), and for three φ as indicated by
the labels and use of line type; the result for ∆U = 5kBT is analogous. (a) Void volume (VV) probability density functions
(PDFs) at the aging time ta. Error bars indicate the standard error, which is typically smaller than the symbol size. One in
five data points is shown to improve the presentation, but the lines that serve as guides to the eye go through every data point.
(b) The time dependence of the void growth length, λVV, see Eq. (3), again only one in five data points is shown. (+,×) and
(�,�) = percolation (tp) and aging onset times, respectively. The number in parentheses indicates the factor by which λVV

is multiplied to separate the data. The thin dashed black lines and numbers indicate power-law fits and associated exponents
(with error ±0.005), respectively. Only for φ = 0.075 is there an appreciable difference in the NH/WH initial exponent. (c)
Structure factors S(q) at ta, corresponding to the data in (a). We only show error bars up to qσ = 1 for every third data point
to improve the presentation, the curves connect all data points; the region of the central peak is not shown qσ < 0.2. (d) The
peak position of the structure factor qm as a function of time. The three WH/NH data sets have been shifted up by the amount
indicated in parentheses to prevent overlaps. The dashed line indicates a power law with exponent −0.04± 0.005.

the power-law evolution of VV and S(Q) show an abrupt
change in exponent. We therefore classify the system’s
evolution into three stages: ‘pre-gelation’ at t < tp, gela-
tion at tp < t < ta, and aging at t > ta. The dependence
tp and ta on φ is shown in Fig. 3.

It is clear that HI speed up the system’s dynamics be-
low a certain φ and slow it down above this value. The
crossover occurs at φ = 0.095 ± 0.002 for tp and this ef-
fect is pronounced, while for ta we find a crossover at
φ = 0.16 ± 0.01 and 0.16 ± 0.002 for weak and strong
gels, respectively. Interestingly, percolation occurs at the

same time independent of ∆U , but ta is significantly in-
creased upon lowering ∆U , with ta being substantially
larger for systems without HI at low φ.

We have also plotted in Fig. 3 the time to form a span-
ning cluster in φ → 0 diffusion-limited cluster aggrega-
tion (DLCA) [8] approximation:

tDLCA ∝ tBφ−df/(3−df ), (4)

with a fractal dimension df ≈ 1.8 [28]. This behaves
neither as tp nor as ta, and does not describe our system.
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curves connect the points belonging to a set of data and serve
as guides to the eye. The standard error is indicated using er-
ror bars, but is typically small. The gray vertical lines indicate
the φ values, for which there is a crossover, the light-gray field
indicates the error therein. Finally, the thick black dashed
lines show the diffusion-limited cluster aggregation (DLCA)
prediction for the gel time, tDLCA, see Eq. (4), with prefactor
1 and fractal dimension df = 1.8.

E. 〈VV〉-〈NN〉 State Space Trajectories

We have shown that HI can strongly affect the dynam-
ics of gelation, but that when compared at two equal
structural times tp and ta, there is little difference in the
particle network. This similarity can be brought out by
plotting the system’s trajectory in a ‘state space’ formed
by 〈VV〉 and the average number of neighbors 〈NN〉,
Fig. 4, in which time is parametric.

〈VV〉 is mainly sensitive for the structure of the voids
(and by extension the gel), while 〈NN〉 probes the arrest
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FIG. 4. State-space plot for the structural evolution of col-
loidal gels. The space is spanned by the average void volume
〈VV〉 and average number of nearest neighbors 〈NN〉. The
graphs show the path taken by weak, ∆U = 5kBT , (a) and a
strong, ∆U = 10kBT , gels (b), respectively, for 3 different vol-
ume fractions φ as labeled; NH (red, square) and WH (blue,
circle). The standard error is smaller than the symbol size in
all cases and the paths are followed in time in the direction
indicated by the black arrow. The symbols (+,×) and (�,�)
mark the percolation and aging time, respectively, with and
without hydrodynamics.

inside the branches of the gel. The systems start with a
low average number of neighbors and a low average void
volume: 〈VV0〉 ≈ 0.024φ2 holds over the entire range of
considered φ. As expected both parameters quickly in-
crease as the gel forms. The path taken through state
space is initially nearly insensitive to HI. After longer
times, small differences between the NH and WH systems
appear, predominantly for weak low-φ gels, with the lat-
ter having a slightly larger 〈VV〉. For high φ and/or ∆U ,
these differences are small or insignificant.
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IV. DISCUSSION

A. The Role of Percolation

The presence of percolated or nearly-percolated struc-
tures immediately after quenching the equilibrated fluid
into the spinodal region of our phase diagram is impor-
tant in understanding the results presented above, and
in reconciling apparently contradictory results in the lit-
erature. To see this, we first enquire whether such struc-
tures exist. Various analytical expressions in the litera-
ture, such as that based on Grimaldi’s tree ansatz [29] or
from fitting the adhesive hard sphere simulations of Mil-
lar and Frenkel [30], are problematic for mapping onto
our systems. The former ignores short-time rearrange-
ments due to the finite-range attraction upon quench-
ing, while using the latter involves far-fetched extrapola-
tion (to very low ‘stickiness parameter’). On the other
hand, recent work on attractive colloidal gels in 2D shows
the importance of structural correlations for the onset of
rigidity percolation [31]. Moreover, early simulations of
Hayward, Heerman, and Binder [32] of the kinetic Ising
model give a dynamic percolation line inside the two-
phase region that is almost vertical, rising from zero tem-
perature at a concentration of c ≈ 0.16, which translates
to φ ≈ 0.10 (taking c = 1 to be random close packing at
φ ≈ 0.64). Interestingly, the crossover in tp, Fig. 3, oc-
curs at φ ≈ 0.1. It is therefore reasonable to suggest that
there are nearly-spanning networks or spanning networks
present throughout the whole φ-range of our simulations,
at both high and low ∆U , which has three consequences.

Firstly, on the most coarse-grained level, the pre-
existence of such large-scale structures is the basic
physics behind the observation that, despite the large
difference in dynamics, systems with and without HI fol-
low nearly identical paths through state space, Fig. 4.
Secondly, it explains the poor predictive power of Eq. 4,
which can only be expected to (and indeed does [7]) hold
in the limit of very low φ, where long-range diffusion
dominates, and for large ∆U , where rearrangements af-
ter initial bonding are irrelevant. Finally, the crossover
from the pre-existence of nearly-percolating structures to
a pre-existing spanning network at φ ≈ 0.1 explains why
we see a change in the scaling of tp(φ) at the same φ,
Fig. 3. Only very small local movements of these pre-
existing large clusters are needed to bring about per-
colation. The physics here are dominated by the need
to squeeze out solvent between particles that eventually
bridge such clusters, so that HI slow down the dynamics,
as observed.

Once a spanning network exists, further growth of the
gel structure occurs by accretion of clusters and single
particles onto this backbone, depending on the volume
fraction considered, until eventually the aging dynamics
set in. The crossover in ta occurs when φ & 0.16, because
at lower volume fractions the system reaches the aging
state through exploration of pre-arrested configurations
by localized cluster movements. That is, at φ ≈ 0.1,

collective effects are still important to reach the aging
state, whereas for φ & 0.16 the squeeze-flow contributions
dominate the system percolating and aging.

B. Reconciling Literature Results

We next place our results in the context of a large
literature reporting simulation of colloidal gels.

First, there has been persistent reports in the litera-
ture of two different modes of gelation: equilibrium and
non-equilibrium, with the former attributed to perco-
lation [33–35] and the latter to arrested phase separa-
tion [1, 23, 36–38]. There have been recent attempts
to unify the two pictures by simulations [2] and by ex-
periments [39], with the latter showing a crossover for
percolation to arrested phase separation at φ ≈ 0.2 for
nano-emulsions based on rheological measurements. Our
results do not directly address this issue. However, they
do point to the importance of whether there is a pre-
existing percolating cluster at the beginning of the ag-
gregation process.

Second, our results reconcile the apparently contradic-
tory findings of Yamamoto et al. [9] and Furakawa and
Tanaka [10]. The former work reports a minor effect of
HI, because their φ range is in the compaction regime.
The latter, and more recently Varga et al. [12] and Roy-
all et al. [14], report substantial structural differences at
intermediate φ when gels are compared at equal times.
We find the same when we compare systems at equal
absolute times, rather than at equal structural times, es-
pecially when we do so for t < ta.

Third, contrary to Furakawa and Tanaka, we find gels
at φ = 0.075 in both WH and NH systems at high and low
∆U . This may reflect their protocol of comparing WH
and NH systems at equal times, and/or the closeness to
the gelation line of their gels. Neither do we observe a
crossover from t−1/3 to t−1/2 in qm(t) upon including HI.
Instead, we find a weak power-law aging in the long-time
regime (t > ta). Furakawa and Tanaka’s finding here
may reflect their limited data range. We can fit a slope
of −1/3 to a limited range of our qm data. While our data
range is still limited in the long-time limit, our finding of
slow aging agrees with Yamamoto et al.’s observation of
a continuous gel evolution in 3D systems [9].

Fourth, we analyzed the gel structure using the
three-point correlation approach introduced by Royall et
al. [14]. However, at equal structural times, we did not
observe a difference between the local structure of sys-
tems with and without HI. The three-point correlation
functions were identical within the error bar. In addi-
tion, dividing these three-point functions by the regular
pair correlation function to highlight certain features, as
suggested by Royall et al., proved uninformative, due to
rather large errors this process induced. The pronounced
effect on local structure, as indicated by the authors of
Ref. [14], could be due to their measurements having
closer proximity to the gel line.
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Finally, our short-time qm data does not support the
power-law dependence found by Poon et al. [23]: our
limited data is consistent with a stretched exponential
fit (not shown here). Clearly the mapping between the
evolution of λVV and qm breaks down at small times.

C. The Gelation Boundary

The rapid increase of tp and ta with decreasing φ and
∆U necessitates prohibitively long simulations to estab-
lish the effect of HI on the gelation boundary using our
methodology. However, we do find that HI significantly
speed up gelation in the range 0.075 ≤ φ < 0.1. This
may contribute to the observed shift in the gel line re-
ported by Varga et al. [12] and Royall et al. [14], and some
of the results reported by Furakawa and Tanaka [10].
At low enough φ, the time for cluster-cluster collision
becomes longer than the time needed for single cluster
compaction. Gelation fails and the system phase sepa-
rates. If gravitational effects, which dominate in practice
in this regime, can be eliminated, we would expect HI to
shift the gel line to slightly lower φ, as collective mobility
should speed up the thermal exploration of a cluster’s
neighborhood and slow down its compaction. However,
it would be very difficult to perform a matched structural
age comparison, due to the divergent time scales near the
gelation line.

V. CONCLUSION AND OUTLOOK

We find two regimes in our simulation of colloidal gels
with and without HI. At φ . 0.1, HI speed up gela-
tion, while at φ & 0.2 HI slow down gelation, with a

crossover between the two regimes at φ ≈ 0.16. This
division appears to be in line with seemingly conflicting
results reported in the literature on the effect of HI on
the gel structure. There appear to be large structural
effects when we compare gels with and without HI at
equal times, especially for low φ, but these effects are
minor at high φ. However, when we compare the struc-
ture at equal structural times, i.e., those times at which
the structures are in the same point of their structural
evolution, these differences disappear and the HI effects
on the structure of the gel are much smaller than the
effects of parameters such as the age of the gel and the
colloid volume fraction.

The results presented here suggest several opportuni-
ties for follow-up studies. It would be worthwhile to ap-
ply this methodology to explore states closer to the gela-
tion line and to gels with other kinds of inter-particle in-
teractions, such as short-ranged attraction coupled with
medium-ranged repulsion. Repeating our analysis using
other numerical methods for hydrodynamic interactions,
which make different approximations for the solution of
Stokes’ equations, would also be beneficial and may give
closure to the discussion on the effect of hydrodynamic
interactions on gelation.
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