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Abstract 

 

Background and aim:  

Increased ferritin levels have been widely associated with cardiovascular risk in adults. 

Whether ferritin levels and their changes during childhood are related to metabolic syndrome 

(MetS) at adolescence is unknown. We aimed to evaluate these associations using levels of 

ferritin at 5, 10 and 16 years and their linear increases and patterns of sustained increased levels 

across childhood. 

 

Methods 

There were four samples evaluated according to non-missing values for study variables at each 

stage (5 years: 562; 10 years: 381; and 16 years: 567 children; non-missing values at any stage: 

379). MetS risk was evaluated as a continuous Z score. Patterns of sustained increased ferritin 

(highest tertile) and slope of the change of ferritin per year across the follow-up were 

calculated. 

 

Results 

Ferritin levels in the highest versus lowest tertile at five and 16 years were significantly 

positively associated with MetS risk Z score at adolescence in boys and these associations were 

unaffected by adjustment for covariates. Having high, compared to low/moderate ferritin level 

at 2 or more time periods between 5 and 16 years was related to higher Mets Z-score in boys 

only[e.g. 5-10 years adjusted-beta (95 %CI):0.26(0.05-0.48),P<0.05]. In girls, ferritin Z score 

at 10 and 16 years was positively and independently associated with HOMA-IR Z score. In 

girls, the slope of ferritin per year in the highest tertile was positively associated with MetS 

risk Z-score[adjusted-beta (95 %CI):0.21(0.05-0.38),P<0.05]. 

 

Conclusions 

Ferritin levels throughout childhood are positively related to cardiometabolic risk in 

adolescence, with associations varying by sex.  

  



Introduction 

Increased iron stores, defined by ferritin levels, have been associated with metabolic syndrome1 

and risk of diabetes in general adult populations in many studies.2, 3 Iron is an active cofactor 

of oxidative biological reactions whose products have deleterious effects on insulin sensitivity 

and endothelial function.4 Interestingly, not only iron overload but also iron deficiency is 

related to worsening of metabolic profile trough mechanisms still unclear.5, 6 

To date, little is understood about whether the iron-cardiometabolic risk link exists in early life. 

Children have a lower capacity for iron storage than adults since this physiological function 

becomes fully developed in adulthood. It is unknown if changes in ferritin levels across infancy 

and adolescence are associated with metabolic syndrome, and if these changes could have an 

additive effect on cardiometabolic risk. Whether increased ferritin levels, low ferritin levels or 

both are involved in higher cardiometabolic risk during childhood is also unknown. Therefore, 

we conducted a study to evaluate longitudinal and cross-sectional associations between ferritin 

levels measured at 5, 10 and 16 years with metabolic syndrome and its components at 16-17 

years in a cohort of Chilean children. In addition, we evaluated if a linear increase and sustained 

patterns of increased ferritin across childhood were related to MetS risk in adolescence. 

 

Methods 

Subjects 

The cohort included Chilean infants of low/middle socio-economic status from urban Santiago 

recruited between 1991 and 1996 for a trial of iron supplementation. The infants, recruited at 

4 months, were healthy, full-term singleton infants weighing 3 kg or more at birth. At 6 months, 

those who did not have iron deficiency anaemia were randomized to receive iron 

supplementation or usual nutrition between 6 and 12 months. The cohort was assessed for 

developmental outcomes, including ferritin levels, in infancy and at 5, 10 and 16 years.7 At 16-



17 years, participants were also assessed for obesity and cardiovascular risk.8 Three samples 

from the cohort were evaluated: 1) participants with no missing values for ferritin and 

covariates at 5 years and for cardiometabolic risk outcomes at 16 years (n=565); 2) participants 

with no missing values for ferritin and covariates at 10 years and for cardiometabolic risk 

outcomes at 16 years (n=381); 3) participants with no missing values for ferritin, covariates 

and cardiometabolic risk outcomes at 16 years (n=567). A sample with no missing values for 

the study variables at any stage of the follow-up was also evaluated (n=379). The study was 

approved by the institutional review boards of the University of Michigan, the Institute of 

Nutrition and Food Technology (University of Chile), and the University of California, San 

Diego. Participants and their primary caregiver provided informed and written consent. 

Methods for clinical measurements of blood pressure, body mass index and waist 

circumference and biochemical markers of fasting glucose, triglycerides, and HDL cholesterol 

has been described previously7, 8. 

 

Metabolic syndrome and insulin resistance 

It was decided to evaluate a continuous MetS score instead of using some paediatric MetS 

definitions. The use of the latter approach had supposed lower statistical power on the basis of 

few cases meeting categorical criteria from MetS defnitions (e.g high glucose as glucose > 100 

mg/dL). Similarly, there is no consensus about cut-off values in the different components of 

MetS in children and adolescents. A continuous variable of Z score or scale of SD units for 

MetS was created from an average of Z scores of blood pressure, glucose, triglycerides, HDL 

cholesterol and waist circumference.9 Distribution of these MetS components was normalised 

if required, before calculating the Z scores. The Z scores of diastolic and systolic blood 

pressures were averaged to get a single Z score for blood pressure, and the HDL-C Z score was 

multiplied by -1 before obtaining the overall MetS score, to ensure that all of the components 



of MetS had the same positive association with regard to cardiometabolic risk. Insulin 

resistance was estimated by using the formula of the  homeostatic model assessment (HOMA-

IR) as: (glucose[mg/dL] x insulin [mU/mL])/   405.10 We estimated proportions of non-

overweight, overweight and obesity using both the CDC and WHO reference populations. Cut-

points used were < 1 BMI z score for non-overweight, ≥ 1 BMI Z score and <2 Z BMI z score 

overweight, and ≥ 2 BMI z score for obesity. 

 

Data analysis 

The analyses were conducted in female and male subjects separately given differences by sex 

in cardiometabolic outcomes. Study variables were described as median (and interquartile 

range) and proportions, and differences were estimated by Mann-Whitney U test and Chi 

Square test, respectively. Wilcoxon and sign tests were used to detect significant differences 

or changes in values of ferritin across the different time points during the follow-up.  

We defined two kinds of variable of change over time for ferritin levels as exposure variable. 

One was on the basis of ferritin levels defined in tertiles at 5, 10 and 16 years for participants 

with data available at those time points. Patterns of ferritin levels were then identified from 

different combinations of high ferritin (highest tertile) and low/moderate ferritin (lowest and 

middle tertile). The second approach was the calculation of the slope of ferritin concentration 

per year and use this parameter as continuous and categorical variable (tertiles). The slope 

provides information on variation of ferritin concentration by each unit of time, in this case 

years (11 years of follow-up), which were extrapolated from the trend line of the three time 

points: 5, 10 and 16 years.    Multiple linear regression was used to evaluate associations of 

ferritin tertiles (with lowest tertile as reference) at each stage of follow up and patterns and 

slope of ferritin across the follow-up with the variation of MetS Z score. For the patterns of 

repeated ferritin measurements, low/moderate ferritin at two stages of an interval or in all of 



the stages of follow-up was used as reference. We calculated sex-specific z-scores for ferritin 

in our cohort at each age (5, 10, and 16 years) and used them to model associations between 

ferritin at each age and Z scores or SD units of MetS components and insulin resistance using 

linear regression.  The adjustment consisted of covariates at the respective stage (5, 10, and 16-

17 years): age, BMI Z score, Tanner stage, and haemoglobin levels. At adolescent stage (16-

17 years) C reactive protein (CRP) levels were also available and cross-sectional associations 

were furtherly adjusted for this inflammatory marker. Associations between patterns of 

repeated ferritin measurements and cardiometabolic risk variables in adolescence were 

adjusted for covariates at the end of a determined interval (e.g. if ferritin pattern during the 

interval 5-10 years, covariates used were those at 10 years). We also adjusted this kind of 

associations by using baseline values of covariates along with changes of these across the 

interval (if ferritin pattern during the interval 5-10 years, for instance BMI Z score at 5 years 

and also its change between 5 and 10 years were covariates). 

To approximate to normal distribution ferritin, SBP, DBP and CRP values were log-

transformed in girls and boys, WC and TG in girls and HDL-C in boys. In boys WC was 

transformed as (1/square)*-1, TG as (1/square root)*-1, and HDL-C as its logarithm. 

All analyses were performed using Stata 14.0. 

 

Results 

The study variables are described by sex and age at follow-up in Table 1. No differences by 

sex were found at 5 years of age for ferritin, haemoglobin, and BMI Z score. At 10 years of 

age, girls had higher sexual development than boys (Table 1). At the adolescent stage, boys 

had higher levels of ferritin, haemoglobin, systolic and diastolic blood pressure, glucose 

compared to girls, and girls had higher sexual development, HDL-C and insulin levels 

compared to boys. In boys there was a significant increase in ferritin levels showed in Table 1 



from 5 to 10 years and from 10 to 16-17 years (Wilcoxon and Sign tests P<0.05). In girls, 

changes in ferritin levels were also significant, but with increase from 5 to 10 years, and 

decrease from 10 to 16-17 years (Wilcoxon and Sign tests P<0.05). The slope for average 

annual change in ferritin across the follow-up was higher in boys than girls [mean(SD) 0.67 ± 

1.82 v. -0.50(1.38), P <0.001]. Specific slopes of change in ferritin levels between 5 and 10 

years were [mean(SD)] 0.89 ± 3.23 and 0.99 ± 2.55 in boys and girls respectively. Between 10 

and 16-17 years the slope for boys was 0.49 ± 3.01 and for girls  -1.68 ± 2.31.  

With regard overweight and obesity, this Chilean cohort presented a considerable proportion 

of overweight and obesity (44% at 5 and 10 years, and 34% at 16-17 years) (Supplementary 

table 1). Serum ferritin levels increased across categories of non-overweight, overweight, and 

obesity in each age group analysed (Supplementary table 2).  

Table 2 shows linear regression analyses for relationships between sex-specific Z score of 

ferritin at the three ages and sex-specific Z scores for MetS components and insulin resistance 

at adolescent stage. In girls, Z scores for ferritin levels at 10 and 16-17 years of age were 

significantly (P=0.046 and P=0.014) and independently associated with the Z score of insulin 

resistance but not with any of the MetS components at the adolescent stage. In boys, ferritin 

level Z score at 5 years old was inversely associated with the Z score of HDL-C in adolescence 

in unadjusted and adjusted models, whereas significant unadjusted associations with Z scores 

of waist circumference, HDL-C and insulin resistance did not remain significant after 

adjustment for covariates. In adolescence, there were significant cross-sectional associations 

between Z scores of ferritin and fasting glucose and triglycerides  independent of adjustment 

for covariates in boys  and  with insulin resistance (measured by HOMA-IR) in both sexes.  

Ferritin levels in the highest tertile at five years (compared to the lowest tertile) were positively 

associated with MetS risk Z score in adolescence in boys (Figure 1), and this association was 

unaffected by adjustment for baseline BMI Z score and haemoglobin levels. Also in boys, there 



was a significant cross-sectional association between ferritin levels measured in adolescence 

in the highest tertile and increasing MetS risk Z score, independently of adjustment for BMI Z 

score, CRP levels, haemoglobin levels and Tanner stage. No significant associations were 

found between ferritin at 10 years and MetS Z score at adolescent stage. No significant 

associations were found in girls (Figure 1). 

Having high, compared to low/moderate ferritin level at 2 or more time periods between 5 and 

16 years was related to higher Mets risk z-score in boys only (p<0.05) (Figure 2). A sensitivity 

analysis by adjusting the associations in figure 2 for baseline values of covariates along with 

changes of these across the interval, showed very similar beta coefficients to those in figure 2 

(Supplementary table 3). 

The slope values for ferritin levels as a continuous variable were marginally associated 

(P=0.06) with MetS risk z-score only in girls and significantly associated with MetS risk z-

score when comparing highest to lowest tertile of ferritin slope (Supplementary table 4). High 

ferritin levels at the three time points was associated with MetS rik Z score in boys only 

(Supplementary table 5). More details on these associations are provided in the supplementary 

material as “additional results” along with a sensitivity analysis and an extra-adjustment. 

 

In the different age stages, the correlation between ferritin and MetS Z scores was stronger in 

overweight (including obese) children in comparison with non-overweight children 

(Supplementary figures 1, 2 and 3).  

 

Discussion 

This study showed that ferritin levels in infancy and childhood are positively and longitudinally 

associated with cardiometabolic risk at adolescent stage. Moreover, patterns of sustained high 

levels of ferritin throughout childhood were associated with worse metabolic profile in 



adolescence. In general, in male but not in female subjects the associations of ferritin at 

different ages with MetS were independent of covariates. However, only in girls, a linear 

increase in terms of the slope of ferritin from measurements at 5, 10 and 16 years, was 

independently associated with MetS risk. The above findings highlight serum ferritin as a factor 

associated with cardiometabolic risk from early life and indicate sex differences in the 

association. 

 

Contrast with previous studies 

Only five studies conducted to date on the association of ferritin and other iron status markers 

with cardiometabolic risk variables in children were identified from a systematic literature 

search performed in September 2016. All studies are cross-sectional and four are from Asian 

paediatric populations (Table 3). All these studies included children and/or adolescents from 

general populations, except the study by Bougle and Brouard in Canadian children, who studied 

overweight and obese children specifically.11 This latter study is the only one, along with the 

present studies, reporting associations adjusted for inflammatory markers. Lee et al. , like our 

study, evaluated outcomes of MetS and its components,12 while the others evaluated MetS 

components (categorical or continuous variables). In general, the studies showed no significant 

association between ferritin and most of the cardiometabolic risk outcomes they evaluated. Zhu 

et al. did not find association between ferritin and any MetS component in 1126 Chinese 

children.13 Ferritin levels  were significantly and positively associated with waist 

circumference in the studies by Lee et al. and Jeon et al. in Korean children,12, 14 with 

triglycerides in the studies by Bougle and Brouard and Kim et al.,11, 15 and inversely associated 

with HDL-C in the studies by Bougle and Brouard, Kim et al., and Lee et al.11, 12, 15 None of 

the studies reported associations between ferritin and fasting glucose or blood pressure. 

 



The contrasting and significant cross-sectional findings in Chilean boys with regard to the 

above studies could be explained in terms of differences in age range and study design. In the 

Chilean cohort, participants were evaluated at the same age at each evaluation and 

cardiometabolic risk outcomes were at the adolescent stage (16-17 years), a higher and 

narrower age range than in the above studies. 

The longitudinal and cross-sectional positive associations between ferritin at each stage of 

childhood (except at 10 years) and MetS described in the present study were significant in boys 

but not in girls. This sex difference appears to be explained by a threshold effect derived from 

higher levels of cardiometabolic risk factors in boys at the adolescent stage, rather than by 

higher iron stores in boys since at 5 years there was no significant sex difference in ferritin 

levels. Two recent prospective studies in adults which evaluated both sexes have also shown 

significant associations between ferritin and development of MetS with stronger associations 

for men than for premenopausal women,16, 17 although one study in a Swiss population did not 

find difference by sex.18 However, some cross-sectional studies have described non-significant 

ferritin-MetS associations in men.19-21 The association could be stronger in men given higher 

iron storage capacity in comparison with women. 

 

The relationship between the pattern of repeated measurements of ferritin and MetS appeared 

to differ by sex. In boys, a pattern of sustained high ferritin levels throughout the follow-up 

was significantly associated with MetS risk, whereas in girls a linear change in ferritin levels 

across follow-up was associated with MetS risk. It is of notice that the slope of change in ferritin 

levels in girls tended to be negative due to puberty-related menstrual iron losses. Therefore, an 

association between the slope of change in ferritin levels and HOMA-IR should be interpreted 

as the less decline in ferritin concentration across the follow-up the higher the values of the 

insulin resistance index. In boys the association appear markedly influenced by threshold 



effects of ferritin and/or cardiometabolic risk outcomes. There are no studies on trajectories of 

ferritin and cardiometabolic risk in adults, although one study evaluated change in ferritin 

regarding development of MetS after 6.5 years follow-up.22 In this study conducted in a Finnish 

population, men or women who had incident MetS presented higher changes in ferritin values 

between baseline and the end of the follow-up.22 Future studies should test patterns of sustained 

high ferritin and slopes from repeated measurements of ferritin over time regarding 

cardiometabolic outcomes in adults and other paediatric populations to contrast our findings 

by sex. 

Only in girls, there was a longitudinal association between ferritin at 10 years and insulin 

resistance at adolescence, and later at adolescence, ferritin levels were cross-sectionally 

associated with the index of insulin resistance (HOMA-IR) in both sexes. This could be 

explained in terms of sexual development differences. At 10 years, 60% of the girls were in 

adolescent stage v. 29% in boys, and at 16-17 years both sexes reached adolescent stage. None 

of the three studies that evaluated relationship between ferritin and HOMA-IR in Table 3 found 

those variables significantly associated.11, 12, 15. In line with our findings, Aigner et al. found in 

Caucasian adolescents an isolated inverse association between the soluble transferrin receptor 

(sTfR)/ ferritin index (lower values represent higher body iron content) and HOMA-IR in girls, 

and consistent inverse associations with systolic and diastolic blood pressure, and triglyceride 

levels in boys23. However, in that study no associations with ferritin and sTfR were separately 

evaluated.    The finding in Chilean girls contrasts with the lack of association between ferritin 

at 10 and 16 years with MetS score in the same girls, as higher insulin resistance is strongly 

correlated with higher MetS scores.Given that the relationship between iron and 

glucose/insulin metabolism is bi-directional,5 insulin levels could modulate iron stores 

throughout the growth process in girls. However, the difference by sex in the ferritin-MetS 

association must be mainly explained by menstrual blood loses in girls. 



 

Serum ferritin levels were increased in overweight and obese children, and the correlation between 

serum ferritin at the different age stages and MetS Z score at adolescence was stronger in overweight 

children v. non-overweight children. A higher body mass implies a higher capacity for iron storage. 

Higher ferritin in people with obesity could also be explained by insulin resistance rather than by obesity 

itself 24,25. Since ferritin is an acute phase reactant, their circulating levels might be influenced by 

conditions in which chronic low grade inflammation is prominent, with parallel iron retention in several 

tissues, as an evolutionary mechanism to avoid iron use by potential pathogens 26. Another known 

source of increased serum ferritin levels is liver injury, which results in the release of ferritin into the 

bloodstream 27. In this sense, hepatic steatosis, a condition characterized by lipid accumulation in the 

liver in terms of triglycerides and fatty acids, appears to lead to an environment of increased oxidative 

stress, insulin resistance and necrotic signals in obese subjects, ending up in hepatic damage 28. In 

addition, adipocytes secrete inflammatory interleukins which contribute to increased inflammatory 

activity of obese subjects 29.Thus, liver injury, hypertrophied adipocytes and inflammation concur 

during the clinical course of overweight and obesity, to alter the circulating levels of ferritin. However, 

despite the influence of weight status, the ferritin-MetS association found in boys remained significant 

after adjustment for BMI Z score. 

 

Ethnicity is an important aspect to take into account when it comes to cardiometbolic risk. The 

vast majority of the Chilean population is mestizo: mixed Spanish and Indigenous ancestry. 

Although, Indigenous ethnicities are different according to geographic location, several studies 

have shown higher risk of diabetes and cardiovascular disease in Indigenous groups such as 

PIMA (Arizona, U.S), Australian and Canadian Aboriginal communities 30,31,32. Although 

genetic susceptibility may be implied, as observed for the PIMA community29, social 

inequalities are more likely to explain why Indigenous ethnic groups are more prone to 

cardiometabolic risk31,32. Since these groups are ethnic minorities, poverty, lower educational 

level and higher rates of unemployment might be associated with higher cardiometabolic risk. 



In addition to the partial Indigenous ancestry, the Chilean children of this cohort belong to low 

and middle socioeconomic status, and thus higher cardiometabolic risk is expected. However, 

the above aspects would support an inverse ferritin-MetS association rather than a positive 

association as it was found. In fact, because of poor nutrition socioeconomically deprived or 

marginal communities would tend to have lower iron levels concomitantly with hypercaloric 

diets, unfavourable environments for physical activity and higher rates of cardiovascular risk 

factors33 . However, further studies in children from diverse ethnic groups are needed to 

confirm the longitudinal and cross-sectional associations we found. 

 

Several limitations have to be mentioned. First, because of lack of availability of variables, 

there was no evaluation of cross-sectional associations between ferritin cardiometabolic risk at 

5 and 10 years since cardiometabolic risk outcomes were measured only at the adolescent stage. 

Second, there were no available measures of subclinical/clinical inflammation at 5 and 10 

years, meaning that it is not possible to account for ferritin acting as an acute phase reactant. 

Adjustment for BMI Z score might partly have corrected the associations for the potential effect 

of subclinical inflammation derived from adiposity on ferritin levels. It is also important to bear 

in mind that CRP levels in adolescence were not associated with cardiometabolic risk and 

insulin resistance and did not affect the associations in the multivariable models (data not 

shown). Third, hepatic injury increases ferritin levels and the associations reported in this study 

were not adjusted for hepatic injury markers. However, in general children were in good health 

status. Our findings in girls might need further characterisation in large samples at different 

tanner stages to properly evaluate puberty-related changes in iron status and cardiometabolic 

risk.  

 



On the other hand, our study has some relevant strengths. To the best of our knowledge this is 

the first study evaluating longitudinal association between ferritin levels and cardiometabolic 

risk in paediatric populations. Moreover, the Chilean cohort analysis is the first study analysing 

patterns of three repeated measurements of ferritin over time regarding cardiometabolic risk. 

The study is also the first to adjust the cross-sectional ferritin-cardiometabolic risk association 

in children for a systemic inflammation marker such as CRP levels. The evaluation of the 

children at specific ages in the Chilean cohort allowed a more precise characterisation of the 

association in terms of a more homogeneous group of subjects in comparison with previous 

studies. 

Conclusion 

Both serum ferritin at different time points in childhood and its change or patterns of sustained 

high concentration throughout childhood are associated with MetS and insulin resistance but 

with differences by sex in those relationships. Patterns of sustained high ferritin and slopes 

from repeated measurements of ferritin over time should be tested regarding cardiometabolic 

outcomes in adults and other paediatric populations to establish whether the difference by sex 

of the present study is replicable. It is uncertain if the association between high ferritin and 

higher cardiometabolic risk reported in the Chilean cohort, commonly described in adults, 

would remain significant after adjustments for hepatic function markers. 
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