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Abstract: CO2 injection into underground formations involves the flow of CO2 in subsurface rocks 11 

which already contain water. The flow of CO2 into the target formation is governed mainly by capillary 12 

forces, viscous forces and interfacial interactions. Any change in subsurface conditions of pressure and 13 

temperature during injection will have an impact on the capillary and viscous forces and the interfacial 14 

interactions, which, in turn, will have an influence the injection, displacement, migration, and storage 15 

capacity and security of CO2. In this study, an experimental investigation has been designed to explore 16 

the impact of fluid pressure (74-90 bar), temperature (33-55 °C), and injection rate (0.1-1 ml/min) on the 17 

dynamic pressure evolution and displacement efficiency when supercritical CO2 is injected into a 18 

water-saturated sandstone core sample. The study also highlights the impact of the capillary forces and 19 

viscous forces on the two-phase flow characteristics and shows the conditions where capillary forces 20 

or viscous forces become dominant. The authors are not aware of similar experimental studies 21 

conducted in the literature so far. The results revealed a moderate to considerable impact of the 22 

parameters investigated on the differential pressure profile, cumulative produced volumes, endpoint 23 

CO2 relative (effective) permeability and residual water saturation. The extent of the impact of each 24 

parameter (e.g. fluid pressure) was a function of the associated parameters (e.g. temperature and 25 

injection rate). Increasing fluid pressure caused the differential pressure profile of supercritical CO2-26 

water displacement to transform to the likeness of liquid CO2-water displacement, while, increasing 27 

temperature transforms it to the likeness of gaseous CO2-water displacement. Increasing fluid pressure 28 

caused a considerable reduction in the maximum and quasi-differential pressures, an increase in the 29 

endpoint CO2 relative permeability (KrCO2) and a reduction in the residual water saturation (Swr) and 30 
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cumulative produced volumes. Overall, the impact of temperature is opposite to that of fluid pressure. 31 

However, with increasing temperature, the KrCO2 showed a declining trend at high-fluid pressures (90 32 

bar) but an increasing trend at low-fluid pressures (75 bar). Increasing injection rate caused a 33 

considerable increase in the maximum and quasi-differential pressures, a rise in the KrCO2, a reduction 34 

in the Swr, and an increase in the cumulative produced volumes. The Swr was in range of 0.34-0.41 while 35 

KrCO2 was less than 0.37, depending on the operational conditions. Changing the operational conditions 36 

caused a higher impact on KrCO2 than that on Swr. The results indicate that capillary forces dominate the 37 

multiphase flow characteristics as fluid pressure and temperature are increased. 38 

1 Introduction 39 

The storage of carbon dioxide in deep saline aquifers, abounded or depleted oil and gas reservoirs 40 

(Delshad et al., 2010; Gozalpour et al., 2005; Kaveh et al., 2012), and unminable coal bed seams (Kaveh 41 

et al., 2012; Plug and Bruining, 2007a) is increasingly viewed as a promising technology to mitigate the 42 

increasing emissions of anthropogenic CO2 into the atmosphere due to fossil fuel burning and other 43 

human activities (Bachu, 2001; Hangx et al., 2013; Kazemifar et al., 2015), enhance hydrocarbon recovery 44 

or extract geothermal heat (Kaveh et al., 2012; Tutolo et al., 2015).  45 

During the injection process, supercritical (Sc) CO2 will displace formation water in an immiscible 46 

drainage displacement process (Bachu, 2000; Basbug et al., 2005). The multiphase flow properties are 47 

controlled by the interplay of many factors including capillary forces, viscous forces, gravity forces 48 

(Roof, 1970; Rostami et al., 2010), interfacial interactions, solubility of CO2 in formation water, phase 49 

densities and viscosities of the injected and present fluids, petrophysical properties of the aquifer, and 50 

injection rate and its duration (Pentland et al., 2011). Due to the small pore sizes of subsurface rocks 51 

and sands, the capillary forces at the CO2-water interface will have a considerable influence on the two-52 

phase flow through a porous medium (Roof, 1970). The interplay between the capillary forces, viscous 53 

forces as well as gravity forces governs the displacement front behaviour, which potentially has an 54 

impact on fluids distribution, in turn, will have a potential influence on the macroscopic transport 55 
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characteristics such as relative permeability and capillary pressure (Rostami et al., 2010). Change in 56 

fluid pressure, temperature, and injection rate will have a direct impact on most of the aforementioned 57 

factors; therefore, changing the operational conditions will have a moderate to significant influence on 58 

the injectivity (Müller, 2011), migration, storage and long-term integrity efficiency of CO2 processes 59 

(Saraji et al., 2013). The CO2 injectivity is a key factor in determining the amount, pace, and period of 60 

CO2 injection in a saline aquifer (Mijic et al., 2014).  61 

Multiphase flow corresponding with CO2 injection into subsurface formations is a complex 62 

process, thus conducting core-scale displacements under a wide range of parameters (e.g. different 63 

pressure, temperature and injection rate conditions) will provide us with a deeper understanding of 64 

the behaviour of immiscible flow through natural porous media, thereby enabling us to build models 65 

that approximate physics more closely (Aryana and Kovscek, 2012). Despite its importance, the 66 

multiphase flow properties of CO2-water (brine) systems are poorly investigated in comparison to CO2-67 

oil systems (Bahralolom et al., 1988; Perrin and Benson, 2010). Our literature review shows a large 68 

research effort has been allocated to CO2 wettability (Al-Menhali and Krevor, 2014; Bikkina, 2011; 69 

Farokhpoor et al., 2013a; Kaveh et al., 2012; Li, 2015; Sakurovs and Lavrencic, 2011; Saraji et al., 2013; 70 

Yang et al., 2007) and CO2 interfacial tension (Aggelopoulos et al., 2010; Bachu and Bennion, 2008, 2009; 71 

Busch and Müller, 2011; Chiquet et al., 2007; Li et al., 2012; Yu et al., 2012). Cinar and Riaz in their 72 

literature review pointed out the need to more investigations on multiphase flow characteristics of CO2-73 

(water) brine-solid systems (Cinar and Riaz, 2014). 74 

The limited investigations of the multiphase flow characteristics of ScCO2-(water) brine systems 75 

are mainly classified into computational modelling (Jobard et al., 2013; Ma et al., 2013; Mijic et al., 2014; 76 

Xu et al., 2011) and laboratory experiments (Berg et al., 2013; Levine et al., 2011; Pini et al., 2012; Song 77 

et al., 2012; Suekane et al., 2005; Zheng et al., 2017). The laboratory ScCO2-brine (water) experiments 78 

have been conducted on various porous media that include synthetic and natural core samples (Berg 79 

et al., 2013; Edlmann et al., 2013; Levine et al., 2011; Pini et al., 2012), micromodels (Zheng et al., 2017), 80 

and packed bed of glass beads (Song et al., 2012; Suekane et al., 2005). In these experiments, researchers 81 
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investigated the multiphase flow properties by measuring various parameters that include: relative 82 

permeability curves (Berg et al., 2013; Chang et al., 2013; Krevor et al., 2013; Suekane et al., 2005; 83 

Suenaga and Nakagawa, 2011), capillary pressure curves (Herring et al., 2014; Wang et al., 2013), CO2 84 

residual saturation and distribution (Alemu et al., 2011; Chang et al., 2013; Herring et al., 2014; Pentland 85 

et al., 2011; Saeedi et al., 2011; Suekane et al., 2005), heterogeneity impact (Ott et al., 2015; Perrin and 86 

Benson, 2010; Shi et al., 2011; Wang et al., 2013), flow regimes (Armstrong et al., 2017), water 87 

displacement efficiency (Cao et al., 2016), and formation dry out (Ott et al., 2011). 88 

Nevertheless, despite the wide research on CO2–water (brine) systems and despite its high 89 

importance, the literature provided shows that the analysis of the pressure data in core flooding has 90 

been widely overlooked (Rezaei and Firoozabadi, 2014). In this paper, laboratory dynamic drainage 91 

experiments were performed by injecting pure CO2 in its supercritical state into the core sample to 92 

investigate the impact of fluid pressure, temperature and injection rate on the multiphase flow 93 

characteristics, especially focusing on the differential pressure profile, water production profile, 94 

residual water saturation, and endpoint effective and relative permeabilities of CO2. One of the main 95 

objectives of this investigation is to shed more light on the impact of capillary forces and viscous forces 96 

on the two-phase flow characteristics and highlights the conditions at which the capillary forces or 97 

viscous forces become dominant. To the authors’ best knowledge, no such experimental investigation 98 

has been conducted to explore the dynamic pressure evolution and displacement efficiency when 99 

supercritical CO2 is flooded into a deionised water-saturated sandstone core sample. The results of this 100 

study would be of importance for evaluating CO2 injectivity, fluid migration and entrapment, 101 

displacement efficiency, CO2 storage capacity (Levine et al., 2011; Wang et al., 2015), and efficiency and 102 

integrity of the CO2 sequestration processes (Busch and Müller, 2011; Rathnaweera et al., 2015).  103 

 104 
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2 Materials  105 

The unsteady state dynamic drainage experiments (ScCO2-water displacements) were conducted 106 

on a sandstone core sample from Guillemot A Field in the North Sea. The core sample used in this work 107 

is of 2.54 cm diameter and 7.62 cm length. The average porosity and absolute water permeability of the 108 

core sample are about 14% and 15.8 millidarcys, respectively. To calculate the core sample pore volume 109 

and porosity, the core was saturated with deionized water and then the weight difference between the 110 

dry and the wet core sample was used. This study is one in a series, therefore, the core sample 111 

description, core sample setup and CO2-water displacements procedures can be found in Al-Zaidi et 112 

al. (Al-Zaidi et al., 2018b). 113 

3 Results and Discussions  114 

To gain a proper understanding of the two-phase flow characteristics of ScCO2-water drainage 115 

displacements, the differential pressure profile, production profile, residual water saturation and 116 

endpoint relative and effective permeabilities of CO2 were measured and analysed.  117 

The differential pressure refers to the difference between the readings of the pressure transducers 118 

at the inlet and the outlet sides of the core sample. The capillary and viscous forces are the most 119 

influential forces that govern the differential pressure profile when CO2 is injected in a horizontal 120 

direction. Espinoza and Santamarina related the capillary and viscous forces with the differential 121 

pressure (Espinoza and Santamarina, 2010) as follows: 122 

∆𝑃 = 𝑃𝐶𝑂2 − 𝑃𝑤𝑎𝑡𝑒𝑟 =  4 
𝜎𝐶𝑂2−𝑤𝑎𝑡𝑒𝑟 𝐶𝑂𝑆𝜃

𝑑
+ 𝑣 

32 𝐿

𝑑2  (
𝑙𝐶𝑂2𝜇𝐶𝑂2+𝑙𝑤𝑎𝑡𝑒𝑟𝜇𝑤𝑎𝑡𝑒𝑟

𝐿
)                                                         (1) 123 

where ΔP is the differential pressure across the core sample (Pa). PCO2 and Pwater are the CO2 phase 124 

and water bulk pressures, respectively; σCO2-water is the CO2-water interfacial tension (mN/m), θ the 125 

contact angle between fluids and core sample surface, d (m) the diameter of the largest effective pore 126 

(Chiquet et al., 2007; Farokhpoor et al., 2013b), v (m/sec) the fluid velocity in the pores, L (m) the length 127 

of the core sample, l (m) length of CO2 or water phase inside the core sample, and µ (Pa·s) the viscosity 128 
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of the fluids. The first term of Eq.1 refers to the Young-Laplace equation, which accounts for the 129 

capillary forces, while the second term refers to the Poiseuille’s equation (Espinoza and Santamarina, 130 

2010; Li, 2015), which accounts for the viscous forces. The capillary forces which exist because of the 131 

presence of the CO2-water interface inside pore network (Bikkina et al., 2016) govern the multiphase 132 

flow during immiscible displacements (Schembre and Kovscek, 2003) and leads to the trapping of one 133 

phase by another during immiscible displacements (Akbarabadi and Piri, 2013; Chatzis and Morrow, 134 

1984). The capillary forces are determined by CO2-water interfacial tension, wettability of the system as 135 

well as the core sample pore size distribution (Alkan et al., 2010; Bikkina et al., 2016; Chatzis and 136 

Morrow, 1984; Fulcher Jr et al., 1985). The viscous forces are governed by the injection rate, the viscosity 137 

of the displacing and displaced fluids, and the core sample properties such as cross sectional area, core 138 

sample length, and permeability.  139 

In this study, the experimental data has been categorized into four main sections. The first three 140 

sections deal with the impact of fluid pressure (75-90 bar), temperature (33-55 °C) and injection rate 141 

(0.1- 1ml/min) on the differential pressure profile and production behaviour; while the fourth section 142 

deal with their influence on the endpoint CO2 effective (relative) permeability and residual water 143 

saturation. It should be noted that during this study, the corresponding time refers to the time required 144 

to reach the maximum-differential pressure at the start of the experiment. The quasi-differential 145 

pressure refers to the differential pressure measured at the end of the core flooding. For the pump 146 

injection rates of 0.1, 0.4, 0.6, and 1 ml/min, the Darcy flux is around 0.0197, 0.079, 0.118, and 0.197 147 

cm/min while the average linear velocity is around 0.141, 0.564, 0.846, and 1.41 cm/min. It is worth 148 

stating that for comparative purposes, we will maintain the use of injection rate from the pump as our 149 

reference “flowrate” in this study. 150 

3.1 Effect of Fluid Pressure on the Differential Pressure Profile of ScCO2-Water 151 

Displacements. 152 

To have a thorough understanding about the effect of fluid pressure on the differential pressure 153 

and water recovery of ScCO2-water displacements, experiments were conducted under various fluid 154 
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pressures (75-90 bar), temperatures (33 and 45 °C) and injection rates (0.1,0.4, and 1 ml/min). The 155 

discussion of the pressure data will be presented in two sections. The first section deals with 156 

experiments conducted at 33 °C while the second one deals with experiments performed at 45 °C. 157 

3.1.1 Effect of Fluid Pressure on the Differential Pressure Profile of ScCO2-Water 158 

Displacements Conducted at 33 °C. 159 

The results from Figure 1-3 show that for all fluid pressures, the differential pressure increased 160 

sharply; then, it dropped steeply (under low pressure and high temperature conditions) or gradually 161 

(under high pressure and low temperature conditions) until it reached a nearly quasi-steady drop.  162 

Increasing fluid pressure caused a substantial drop in the maximum and quasi-differential pressures; 163 

the extent of this drop decreased as CO2 injection rate increased. The reduction in the maximum 164 

differential pressure was always greater than the reduction in the quasi-differential pressure. The 165 

increase or a decrease in the corresponding time with increasing fluid pressure is dependent on the 166 

injection rate. Increasing fluid pressure led the differential pressure profile of the ScCO2-water 167 

displacements to transform from the likeness of a gaseous CO2 behaviour to a liquid-like CO2 168 

behaviour. It caused also a slight increase in the differential pressure profile of the 90 bar-experiment 169 

until it became slightly higher than the differential pressure profile of the 80 bar-experiment at the end 170 

of the displacements. 171 

The data from Figure 1-3 present the effect of increasing fluid pressure on the differential pressure 172 

profile. The data shows that the profile of the differential pressure is characterized by a sharp increase 173 

that is followed by a strong or gradual reduction (depending on the pressure and temperature range) 174 

until it reached an almost quasi-steady profile. In general, a similar behaviour has been reported by 175 

Bikini et al. and Ott et al. (Bikkina et al., 2016; Ott et al., 2015). The sharp increase in the differential 176 

pressure occurred because the injected CO2 entered the pore network of the sandstone core sample for 177 

the first time and had to overcome the entry pressure of the sandstone pore network. According to Eq.1, 178 

the strong reduction in the differential pressure can be attributed to the reduction in both capillary and 179 

viscous forces. The reduction in the capillary forces is expected to occur when capillary pore throats are 180 
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opened to flow, i.e. after CO2 breakthrough (Kwelle, 2017). On the other hand, the reduction in the 181 

viscous forces can be associated with the replacement of a more viscous fluid (water) by a less viscous 182 

fluid (CO2) and with the increase in the CO2 relative permeability at the expense of water relative 183 

permeability (Chang et al., 2013).  184 

The gas expansion effect can occur as a result of the change in the injected CO2 density due to the 185 

temperature difference inside and outside the water bath (Carpenter, 2014; Perrin and Benson, 2010). 186 

During this study, the density of the injected CO2 varies as the CO2 enters the water bath. The density 187 

change, i.e. density ratio, is a function of the injection rate, fluid pressure and the temperature difference 188 

from the pump (under room temperature) to the core sample inside the water bath. The density ratio 189 

(dr) suggested by Perrin and Benson (Perrin and Benson, 2010) has been used to calculate the volumetric 190 

injection rate inside the core sample. For instance, at a fluid pressure of 40 bar, an injection rate of 1 191 

ml/min at 20 °C becomes 1.108 ml/min at 33 °C. 192 

𝑑𝑟 =
𝑑𝐶𝑂2

20 °𝐶,   40 𝑏𝑎𝑟𝑠

𝑑𝐶𝑂2
33°𝐶,   40 𝑏𝑎𝑟𝑠

                                                                                                                                                      (3) 193 

The data from Figure 1-3 reveal that the increase in the fluid pressure led to a considerable 194 

reduction in the maximum and quasi-differential pressures along with the increase or a decrease in the 195 

corresponding time depending on the injection rate; the corresponding time increased with increasing 196 

fluid pressure at an injection rate of 0.1 ml/min and decreased at an injection rate of 0.4 ml/min and 197 

higher. For illustration, the data from Figure 1 exhibits that as the fluid pressure increased (from 75 to 198 

90 bar) at 0.1 ml/min injection rate, the maximum-differential pressure dropped by around 72% (from 199 

0.36 to 0.102 bar) and the quasi-differential pressure decreased by around 69.5% (from 0.154 to 0.047 200 

bar) but the corresponding time increased by around 66% (from 6.5 to 10.8 min). The data from Figure 201 

2 shows that as the fluid pressure increased (from 75 to 90 bar) at 0.4 ml/min, the maximum-differential 202 

pressure dropped by around 46.6% (from 1.121 to 0.599 bar), the quasi-differential pressure declined 203 

by around 39% (from 0.363 to 0.221 bar), and the corresponding time reduced by around 68.4% (from 204 

1.9 to 0.6 min). The data from Figure 3 shows that increasing the fluid pressure (from 75 to 80 and then 205 
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to 90 bar) at 1 ml/min, caused the maximum-differential pressure to drop by around 40% (from 2.492 206 

to 1.496 bar), the quasi-differential pressure to decline by around 38% (from 0.994 to 0.614), and the 207 

corresponding time to decline by around 15.6% (from 3.2 to 2.7 min).  208 

The reduction in the differential pressure of supercritical CO2-water systems is also observed by 209 

us with supercritical CO2-oil systems, for more information see Al-Zaidi et al. (Al-Zaidi et al., 2018a). 210 

According to Eq.1, the reduction observed in the differential pressure profile is the net result of the 211 

reduction in the capillary forces and the increase in the viscous forces with increasing fluid pressure. 212 

The reduction in the capillary forces with increasing fluid pressure is due to the reduction in the CO2-213 

water interfacial tension, as shown in Figure 4, and the increase in contact angle because of the increase 214 

in CO2 solubility (Jung and Wan, 2012; Plug and Bruining, 2007b; Yang et al., 2007). The increase in the 215 

viscous forces with increasing fluid pressure is due to the increase in CO2 viscosity (Peace software, 216 

2017). For illustration, as the fluid pressure increased from 75 to 90 bar, the ScCO2 viscosity increased 217 

from 33.3095 to 53.837 × [ 10-6 (Pa·s)] (Peace software, 2017), and the CO2-water interfacial tension (IFT) 218 

reduced slightly, by around 3 Nm/m, from around 28 to 25 mN/m as shown in Figure 4  (Bachu and 219 

Bennion, 2008). As a result, the reduction observed in the differential pressure with increasing fluid 220 

pressure might be related mainly to the increase in contact angle. This is in agreement with the findings 221 

by Yang et al. (Yang et al., 2005), Liu et al. (Liu et al., 2010), and Jung and Wan (Jung and Wan, 2012). 222 

Yang et al. (Yang et al., 2005) and Liu et al. (Liu et al., 2010) noticed that using a supercritical CO2 phase 223 

with reservoir rocks leads to a higher alteration towards less water-wetting status compared to gaseous 224 

and liquid CO2 phases. Moreover, Jung and Wan (Jung and Wan, 2012) found that contact angle 225 

increases significantly with increasing fluid pressure up to 100 bar when the fluid pressure is higher 226 

than the critical pressure of CO2 (larger than 73.8 bar) but remains fairly constant when the fluid 227 

pressure is less than the critical pressure or above 100 bar. 228 

Regarding the change in the corresponding time, the increase observed in the corresponding time 229 

at low injection rate (0.1 ml/min) can be linked to the transformation of a supercritical CO2-water 230 

behaviour to a liquid-like CO2-water behaviour; this transformation can result in reducing the mobility 231 
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ratio and the expansion impact effect due to the low sensitive nature of liquid CO2 to pressure and 232 

temperature change, more discussion will follow later. However, the reduction in the corresponding 233 

time with higher injection rate (0.4 ml/min) is likely to be related to the reduction in the magnitude of 234 

the maximum differential pressure with increasing fluid pressure.  235 

 The data from Figure 1-2 showed that the drop in the maximum-differential pressure with 236 

increasing fluid pressure was always higher than that in the quasi-differential pressure. This can be 237 

related to fact that the dynamic reduction in both capillary and viscous forces at the end of the 238 

displacement is less than that at the start of the displacement. 239 

The results from Figure 1-2 showed also that as the CO2 injection rate increased, the reduction in 240 

the differential pressure, due to increasing fluid pressure, decreased. This is because the reduction 241 

observed in the differential pressure profile is the net result of the increase in the viscous forces and the 242 

reduction in the capillary forces with increasing fluid pressure. Thus, with increasing injection rate, the 243 

contribution of the viscous forces to the net pressure drop increase while the contribution of the 244 

capillary forces decreases (Rezaei and Firoozabadi, 2014), thereby leading to a less reduction in the 245 

differential pressure. 246 

 247 

The data from Figure 1-2 show also that as the fluid pressure increased, the differential pressure 248 

profile of the ScCO2-water displacements transformed from the likeness of a gaseous CO2 behaviour to 249 

a liquid CO2 behaviour; this transformation occurs at lower-fluid pressures with increasing injection 250 

rate. For instance, the differential pressure profile of the 75 bar-experiment is very similar to that of a 251 

typical high-fluid pressure gaseous CO2-water displacement while that of 90 bar-experiment is virtually 252 

identical to that of a typical liquid CO2-water displacement (Al-Zaidi et al., 2018b). Increasing the CO2 253 

injection rate from 0.1 to 0.4 ml/min caused the transition from a gaseous to liquid CO2 behaviour to 254 

occur at lower fluid pressure. For the 0.1 ml/min-displacements, the transition towards liquid CO2 255 

behaviour occurred at 90 bar. Nonetheless, for the 0.4 ml/min-displacements, it started from 77 bar. The 256 

similarity to a gaseous or a liquid CO2 behaviour has been decided mainly on the rate of reduction in 257 
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the differential pressure profile during early times of flooding; the gaseous CO2 displacements are 258 

characterized by a high-pressure drop at early stages while the liquid CO2 displacements are 259 

characterized by a slight drop (Al-Zaidi et al., 2018b). The transformation of the differential pressure 260 

profile at low pressures with increasing injection rate can be related to the increase in viscous pressure 261 

drop (with increasing injection rate) that leads to a reduction in the total pressure drop (as stated above); 262 

this, in turn, caused the appearance of the liquid CO2 like differential pressure profile, which is 263 

characterized by a gradual pressure drop at early stages. 264 

The transformation of the differential pressure profile with increasing fluid pressure proposes that 265 

the capillary and viscous properties of a supercritical CO2 phase become similar to that of gaseous CO2 266 

phase at low fluid pressures and similar to that of liquid CO2 phase at high fluid pressures; liquid CO2 267 

is characterized by higher viscous forces and lesser capillary forces compared to gaseous CO2. With 268 

increasing fluid pressure, the viscous forces of supercritical CO2 phase become higher while the 269 

capillary forces become lesser. This is because the increase in the fluid pressure leads to the increase in 270 

the CO2 viscosity as well as the decrease in the interfacial tension and the increase in the contact angle 271 

due to the increasing CO2 solubility (Espinoza and Santamarina, 2010; Plug and Bruining, 2007a). 272 

Moreover, the transformation towards liquid CO2 behaviour might have occurred because the 273 

wettability behaviour of liquid and supercritical CO2 phases become very close to each other at high-274 

pressure conditions. The wettability of the core sample with supercritical and liquid CO2 might have 275 

been altered towards hydrophobic wetting status at high pressures. This potential wettability alteration 276 

might have occurred due to the fluid pressure increase in case of supercritical CO2 (Jung and Wan, 2012; 277 

Yang et al., 2005) (as illustrated above), and CO2 phase transformation in case of liquid CO2 (Yang et al., 278 

2007). Yang et al. observed that as gaseous CO2 phase transforms to liquid CO2, the wetting status 279 

becomes hydrophobic (Yang et al., 2007).  280 

The data from Figure 1 show that after about 170 min, the differential pressure profile of the 90 281 

bar-experiment experienced a gradual increase until it became slightly higher than the differential 282 
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pressure profile of the 80 bar-experiment. The reason is not entirely clear. However, the first possible 283 

explanation is that as water depletion progressed and, hence, the viscous pressure drop across the core 284 

sample diminished, the flow of CO2 through non-depleted capillaries was partially blocked by the 285 

capillary forces (Nutt, 1982), more discussion can be seen in in Al-Zaidi et al. (Al-Zaidi et al., 2018a; Al-286 

Zaidi et al., 2018b). As a result, the pressure of the CO2 had to build up to a certain level to overcome 287 

the capillary forces (Hildenbrand et al., 2002; Nutt, 1982). The second possible explanation is that, after 288 

around 170 min, the impact of viscous forces became higher than that of capillary forces as most of the 289 

water was displaced; thereby CO2 was flowing through opened pores. The result was less impact for 290 

capillary forces (Kwelle, 2017). 291 

 292 

Figure 1: Effect of fluid pressure on the differential pressure profile of ScCO2-water displacements 293 
conducted at 0.1 ml/min and 33 °C. 294 
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 295 

Figure 2: Effect of fluid pressure on the differential pressure profile of ScCO2-water displacements 296 
conducted at 0.4 ml/min and 33 °C. 297 

 298 

Figure 3: Effect of fluid pressure on the differential pressure profile of ScCO2-water displacements 299 
conducted at 1 ml/min and 33 °C. 300 
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 301 

Figure 4: Experimental interfacial tension for CO2-Pure Water Systems adopted from (Bachu and 302 
Bennion, 2008). 303 

3.1.2 Effect of Fluid Pressure on the Differential Pressure Profile of ScCO2-Water 304 

Displacements Conducted at Higher Temperatures (45 °C). 305 

Figure 5 presents the effect of increasing fluid pressure on the differential pressure at a higher 306 

temperature (45 °C). Overall, in comparison to experiments conducted under lower temperature (33 307 

°C) conditions, the differential pressure profile of the higher temperature (45 °C) displacements 308 

becomes more similar to gaseous CO2 behaviour than liquid CO2 behaviour.  309 

The data from Figure 5 reveals also that the differential pressure profile experienced the highest 310 

reduction within the first three to five minutes of running the experiments and reached a quasi-pressure 311 

state after around 20 min. This indicates that most of the water recovery happened during the first five 312 

minutes of running the coreflooding. As a result, the differential pressure profile of the 80 and 90 bar 313 
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because the reduction in the differential pressure profile (due to the decline of the capillary forces with 315 

increasing pressure) was equalled by the increase in the differential pressure profile (owing to the 316 

increase of the viscous forces with increasing pressure). This suggests that in comparison to capillary 317 
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were occupied by the injected CO2 (Chang et al., 2013). Consequently, the impact of the capillary forces 320 

was significantly reduced (Kwelle, 2017).  321 

 322 

Figure 5: Effect of fluid pressure on the differential pressure profile of ScCO2-water displacements 323 
conducted at 0.4 ml/min, and 45 °C. 324 

3.1.3 Effect of Temperature on the Differential Pressure Profile of ScCO2-Water Drainage 325 

Displacements. 326 

To have a deep understanding of the effect of temperature on the differential pressure and water 327 

recovery of ScCO2-water displacements, a series of experiments were conducted under different 328 

temperatures (33 and 45 °C), different injection rates (0.1, 0.4, and 1ml/min), and different fluid 329 

pressures (75-90 bar) conditions.  330 

The data from Figure 6-9 show that increasing temperature caused the differential pressure profile 331 

to transform to the likeness of gaseous CO2 behaviour. Increasing temperature caused a significant 332 

increase in the maximum and quasi-differential pressures; the extent of this increase increased with the 333 

injection rate. The corresponding time decreases or increases depending on the CO2 injection rate. 334 

Increasing temperature at a lower fluid pressure (75 bar) led to the appearance of the differential 335 

pressure oscillations in addition to the increase in the maximum and quasi-differential pressures. 336 
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The data from Figure 6-9 show the effect of increasing temperature on the differential pressure at 338 

different fluid pressures and injection rates. Contrary to the fluid pressure effects, the increase in 339 

temperature, from 33 to 45 °C at 90 bar, caused the differential pressure profile to transform to the 340 

likeness of gaseous CO2 behaviour, as shown in Figure 6. The increase in temperature produced a 341 

notable increase in the maximum and quasi-differential pressures; the extent of this increase increased 342 

with the injection rate. The reduction or increase in the corresponding time is dependent on the CO2 343 

injection rate; the corresponding time decreased with increasing temperature at an injection rate of 0.1 344 

ml/min and increased with increasing temperature at an injection rate of 0.4 ml/min and higher; which 345 

is opposite to the impact of fluid pressure as stated above. For illustration, the data from Figure 6 shows 346 

that as the temperature increased (from 33 to 45 °C) at 0.1 ml/min and 90 bar, the maximum-differential 347 

pressure increased by around 133% (from around 0.11 to 0.256 bar) but the corresponding times 348 

dropped by around 44.5% (from around 11 to 6.1 min). The quasi-differential pressure was almost 349 

identical, apart from the gradual increase of the differential pressure profile after about 170 min, see 350 

Section 3.1.1 above for more information. The data from Figure 7 shows that increasing the temperature 351 

(from 33 to 55 °C) at 0.4 ml/min and 90 bar, caused the maximum-differential pressure to rise by around 352 

75.5% (from 0.599 to 1.051 bar), the quasi-differential pressure to increase by 54% (from 0.224 to 0.345 353 

bar), and the corresponding time to extend by around 17% (from 0.6 to 0.7 ml/min). The corresponding 354 

time of both 33 and 45 °C-displacements was equal and their differential profiles were almost identical 355 

during the last period. The data from Figure 8 shows that for the displacements conducted at 1 ml/min 356 

and 90 bar, increasing the temperature (from 33 to 55 °C) led the maximum-differential pressure to 357 

increase by around 246.6% (from 0.786 to 2.724 bar), the quasi-differential pressure to increase by about 358 

201% (from 0.299 to 0.901 bar), and the corresponding time to extend by 47% (from 1.7 to 2.5 min).  359 

According to Eq.1, the increase observed in the differential pressure profile with increasing 360 

temperature can be related mainly to the increase in the capillary forces and slightly to the increase in 361 

the applied viscous forces. The increase in the capillary forces with increasing temperature is due to the 362 

increase in the CO2-water interfacial tension and the reduction in the contact angle because of the 363 
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reduction in CO2 solubility (Bachu and Bennion, 2008; Yang et al., 2007). On the other hand, the slight 364 

increase in the viscous forces with increasing temperature, despite the reduction in the CO2 dynamic 365 

viscosity, is because of increasing the CO2 injection rate due to expansion impact. For the experiments 366 

conducted at 90 bar-0.4 ml/min, as the temperature increased from 33 to 55 °C, the IFT increased from 367 

25 to 28 mN/m and the CO2 injection rate inside the core sample increased from 0.506 to 1.296 ml/min 368 

but the CO2 viscosity decreased from 53.837 to 22.26 × [10-6 (Pa·s)](Peace software, 2017).  369 

The results from Figure 9 show the effect of increasing temperature on the differential pressure at 370 

a lower fluid pressure (75 bar). Increasing temperature from 33 to 45 °C led to the appearance of the 371 

differential pressure oscillations for the first time. As the temperature further increased to 55 °C, the 372 

magnitude of the oscillations increased. Moreover, increasing temperature from 33 to 55 °C caused the 373 

maximum-differential pressure to increase by around 29% (from 1.12 to 1.444 bar), the quasi-differential 374 

pressure to increase by about 21% (from 0.367 to 0.444 bar) and the corresponding times to prolong by 375 

175% (from 1 to 1.17 min). The differential pressure oscillations are likely to appear because of the 376 

reduction in the ratio of the viscous forces to capillary forces. Thus, the capillary forces became higher 377 

than the viscous forces and; a result, the water flow paths were closed (Nutt, 1982).  378 

 379 

Figure 6: Effect of temperature on the differential pressure profile of ScCO2-water displacements 380 
conducted at 90 bar and 0.1 ml/min. 381 
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 382 

Figure 7: Effect of temperature on the differential pressure profile of ScCO2-water displacements 383 
conducted at 90 bar and 0.4 ml/min. 384 

 385 

Figure 8: Effect of temperature on the differential pressure profile of ScCO2-water displacements 386 
conducted at 90 bar and 1 ml/min. 387 
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 388 

Figure 9: Effect of temperature on the differential pressure profile of ScCO2-water displacements 389 
conducted at 75 bar and 0.4 ml/min.  390 

3.1.4 Effect of Injection Rate on the Differential Pressure Profile of ScCO2-Water Drainage 391 

Displacements. 392 
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corresponding time increased by 340% (from 0.5 to 2.2 min) for the displacements conducted at 90 bar 408 

and 45 °C, as shown in Figure 11; and (III) the maximum-differential pressure increased by about 111% 409 

(from 1.16 to 2.4446 bar), the quasi-differential pressure by 129% (from around 0.271 to 0.621 bar), and 410 

the corresponding time was constant for the displacements conducted at 74 bar and 45 °C, as shown in 411 

Figure 12.  412 

According to Eq.1, the increase observed in the differential pressure can be related to the increase 413 

in the viscous forces owing to increasing the injection rate; however, the extent of the increase is 414 

dependent on the associated fluid pressure and temperature conditions. The reduction in 415 

corresponding time at low-temperature and high-pressure conditions can be related to the low 416 

maximum-differential pressure because of the transformation of the ScCO2-water displacement 417 

behaviour to the likeness of a liquid CO2-water displacement (Al-Zaidi et al., 2018b); while the increase 418 

in the corresponding time at high-temperature and high-pressure conditions can be associated with the 419 

high maximum-differential pressure because of the transformation of the ScCO2-water displacement 420 

profile to the likeness of a gaseous CO2-water displacement (Al-Zaidi et al., 2018b). 421 

The data in Figure 11 also show that the increase in the injection rate caused a slight change in the 422 

differential pressure profile. After its first reduction, the differential pressure increased for a small 423 

period, then continued its reduction until the end of the displacements; the rate of the reduction 424 

decreased with time. The increase in the differential pressure profile for a small period means that the 425 

injected CO2 had to open new flow paths after the initial entry. This depends on the core sample 426 

properties and operational conditions due to their direct impact on capillary and viscous forces. 427 

Moreover, the data from Figure 11 also show that the differential pressure profile of the 0.4 and 0.6 428 

ml/min experiments became nearly identical, during the last period, after around 14 min. This suggests 429 

that the effect of pressure drop due to viscous forces became negligible after around 14 min as the 430 

majority of water was depleted.  431 
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 432 

Figure 10: Effect of CO2 injection rate on the differential pressure profile of ScCO2-water displacements 433 
conducted at 90 bar and 33 °C. 434 

 435 

Figure 11: Effect of CO2 injection rate on the differential pressure profile of ScCO2-water displacements 436 
conducted at 90 bar and 45 °C. 437 
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 438 

Figure 12: Effect of CO2 injection rate on the differential pressure profile of ScCO2-water displacements 439 
conducted at 74 bar and 45 °C. 440 

In summary, the results show that for all fluid pressures, temperatures and CO2 injection rates the 441 

differential pressure increased sharply; then, it dropped steeply (under low pressures and high 442 

temperature conditions) or gradually (under high pressures and low temperature conditions) until it 443 

reached an almost quasi-steady status. Increasing fluid pressure caused the differential pressure profile 444 

of the ScCO2-water displacements to transform to the likeness of liquid CO2 behaviour. On contrary, 445 

increasing temperature caused it to transform to the likeness of gaseous CO2 behaviour. Increasing 446 

injection rate caused the transition from gaseous to liquid CO2 behaviour to occur at lower fluid 447 

pressures.  Increasing fluid pressure caused a slight change in the differential pressure profile; the 448 

differential pressure profile of the 90 bar-experiment increased gradually until it became slightly higher 449 

than the differential pressure profile of the 80 bar-experiment at the end of the flooding. Increasing 450 

temperature at a lower fluid pressure (75 bar) caused the appearance of the differential pressure 451 

oscillations. The increase in the injection rate caused a slight change in the differential pressure profile. 452 

After its first reduction, the differential pressure increased for a small period, then continued its 453 

reduction until the end of the displacements.  454 
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injection rate and temperature caused a considerable increase in the maximum and quasi-differential 457 

pressures; this considerable increase is dependent on the concomitant operational conditions. For 458 

increasing temperature, the maximum and quasi-differential pressures increased with the injection 459 

rate. For increasing injection rate, the maximum and quasi-differential pressures increased with the 460 

temperature and reduced with the fluid pressure. The results indicate that capillary forces have more 461 

impact on the differential pressure profiles than viscous forces when fluid pressure and temperature 462 

increased but the viscous forces have more impact when injection rate increased significantly. 463 

 The magnitude of the corresponding time is dependent on many factors such as the operational 464 

conditions (e.g. CO2 injection rate, fluid pressure and temperature) and the core sample and fluids 465 

properties. This is because of the direct impact of the above factors on the capillary entry pressure (due 466 

to their influence on the CO2-water interfacial tension and core sample wettability) as well as their direct 467 

impact on the density of the injected fluid and the expansion effect. For illustration, a displacement 468 

characterized by lower entry pressure, dense CO2 and high injection rate will reach its maximum-469 

differential pressure faster. Increasing injection rate caused the corresponding time to decrease at low-470 

temperature (33 °C) and high-fluid pressure (90 bar) conditions but increase at high-temperature (45 471 

°C) and high-fluid pressure (90 bar) conditions. For increasing fluid pressure and temperature, the 472 

decrease or increase in the corresponding time is dependent on the injection rate. For increasing fluid 473 

pressure, the corresponding time increased at an injection rate of 0.1 ml/min but decreased at an 474 

injection rate of 0.4 ml/min and higher. However, for increasing temperature, the corresponding time 475 

decreased at an injection rate of 0.1 ml/min but increased at an injection rate of 0.4 ml/min and higher. 476 

3.2 Water Production Behaviour 477 

This section deals with the impact of fluid pressure, temperature, and CO2 injection rate on the 478 

production behaviour of supercritical CO2-water displacements. 479 
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3.2.1  Effect of Fluid Pressure on ScCO2-Water Production Behaviour 480 

Figure 13 shows the effect of increasing fluid pressure on the cumulative produced volumes. The 481 

data reveal that increase in fluid pressure led to a reduction in the cumulative produced volumes. As 482 

the fluid pressure increased, the difference between the cumulative produced volumes and the 483 

cumulative injected volumes decreased. The difference was 1.9, 0.75, 0.38, and -0.363 for the 484 

experiments performed at 75, 77, 80, and 90 bar, respectively. The 75 bar-experiment corresponded to 485 

the highest difference while the 90 bar-experiment corresponded to the lowest. For the experiments 486 

performed at 75, 77, and 80 bar, the cumulative produced volumes were higher than the cumulative 487 

injected volumes. As the fluid pressure increased to 90 bar, the cumulative produced volumes became 488 

less than the cumulative injected volumes. The high cumulative produced volumes at low pressures 489 

mean less volume of CO2 can be stored at these conditions. However, if the goal is to enhance oil 490 

production by reducing the cost of CO2 then low pressures is a better choice. The increase observed in 491 

the cumulative produced volumes can be related mainly to the water production. This is because after 492 

about 5 min until the end of the displacements the cumulative produced volumes and the cumulative 493 

injected volumes were identical. The similarity between the cumulative injected and produced volumes 494 

means that CO2 volumes cannot cause an increase in the cumulative volumes under our experimental 495 

rig configuration. This is because the produced CO2 shrinks again to its original injected volume after 496 

leaving the core sample. Thus, the increase in the cumulative volumes at early stages might reflect the 497 

displacement efficiency and the impact of CO2 expansion. 498 
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 499 

Figure 13: Effect of fluid pressure on the cumulative produced volumes of water and CO2 of ScCO2-500 
water displacements conducted at 0.4 ml/min, and 33 °C. 501 

3.2.2 Effect of Temperature on ScCO2-Water Production Behaviour 502 

The effect of increasing temperature on the cumulative produced volumes is shown in Figure 14. 503 

The data reveal that as temperature increased, the cumulative produced volumes increased 504 

considerably. As the temperature increased from 33 °C to 55 °C, the cumulative produced volumes 505 

increased by around 10.6% (from 20.2 to 22.338 ml). The increase in the cumulative produced volumes 506 

can be attributed to the increasing gas expansion and the reducing CO2 solubility because of increasing 507 

temperature (Bachu and Bennion, 2008; Yang et al., 2007). The increase in cumulative produced means 508 

less CO2 can be stored in hot temperature environment.  509 
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 510 

Figure 14: Effect of temperature on the cumulative produced volumes of water and CO2 of ScCO2-water 511 
displacements conducted at 90 bar and 0.4 ml/min. 512 

3.2.3 Effect of Injection Rate on Water Production Behaviour during ScCO2 injection. 513 

Figure 15 shows the effect of increasing injection rate on the cumulative produced volumes. The 514 

data from Figure 14 and Figure 15 reveal that as the injection rate increased, from 0.1 to 0.4 ml/min, the 515 

cumulative produced volumes increased. The cumulative produced volumes increased by around 9% 516 

(from 22.627 to 24.662 ml) at 33 °C and increased by around 2.7% (from 13.711 to 14.078 ml) at 45 °C. 517 

The increase in the cumulative volume with increasing injection rate can be related to the increase in 518 

water recovery due to the increase in the viscous forces at the expense of capillary forces, which try to 519 

reduce production.  520 
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 521 

Figure 15: Effect of temperature on the cumulative produced volumes of water and CO2 of ScCO2-water 522 
displacements conducted at 90 bar and 0.1 ml/min. 523 

In summary, the increase in fluid pressure led to a reduction in the cumulative produced 524 

volumes while increasing temperature and injection rate caused an increase in them.  525 

3.3 Effect of Fluid Pressure, Temperature, and Injection Rate on Endpoint CO2 526 

Effective (Relative) Permeability and Residual Water Saturation  527 

The determination of the effective and relative permeability of CO2 is of practical interest for CO2 528 

sequestration processes in subsurface formations (Rathnaweera et al., 2015) such as determining the 529 

efficiency and integrity of CO2 storage (Busch and Müller, 2011). At the end of the flooding experiment, 530 

the volume of the produced water was measured, and the residual water saturation was calculated 531 

using the mass balance concept. Then, the core sample was weighed to confirm the calculated residual 532 

water saturation. To calculate the endpoint effective permeability and endpoint relative permeability 533 

of supercritical CO2 using Darcy’s law, the average differential pressure and the average CO2 outflow 534 

rate of the last period were used (Akbarabadi and Piri, 2011; Chang et al., 2013). The CO2 viscosity at 535 

the fluid pressure and temperature was calculated using the Peace software website (Peace software, 536 

2017).  537 

Table 1 presents the endpoint effective (KfCO2) and relative permeabilities (KrCO2) of supercritical 538 

CO2 as well as the residual water saturation (Swr) as a function of fluid pressure, temperature, and 539 
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injection rate. The results show that both KrCO2 (Armstrong et al., 2017) and Swr are dependent on the 540 

experimental conditions at which they are measured. The Swr was in range of 0.34 to 0.41 while KrCO2 541 

was less than 0.37. Akbarabadi and Piri, as well as, Busch and Müller observed a low relative 542 

permeability for CO2 (Akbarabadi and Piri, 2011; Busch and Müller, 2011), too. Such low relative 543 

permeability would tend to decrease injectivity while increasing displacements efficiency (Levine et al., 544 

2011). The results showed a remarkable impact for the parameters investigated on the KrCO2 with a lesser 545 

impact on the Swr. The data from Table 1 show also that the amount of the injected volumes showed no 546 

impact on the Swr trend. Based on the logarithmic values of the viscosity ratio (M) and capillary number 547 

(Ca), the invasion pattern of this study is capillary fingering regime, as shown in Figure 16.  548 

In general, increasing fluid pressure led to an increase in the KrCO2. This is in agreement with the 549 

findings of Bennion and Bachu (Bennion and Bachu, 2006a). The magnitude of the increase in the KrCO2 550 

with increasing fluid pressure depends on the concomitant injection rate and temperature; the endpoint 551 

decreased with increasing the injection rate and temperature. The highest increase occurred with low 552 

injection rate and low-temperature. As the fluid pressure increased from 75 to 90 bar at 33 °C, the KrCO2 553 

increased: (I) by about 0.114 for the 0.1 ml/min-displacements, (II) by around 0.08 for the 0.4 ml/min-554 

displacements, and (III) by approximately 0.07 for the 1 ml/min-displacements. However, as the fluid 555 

pressure increased from 75 to 90 bar at 45 °C, the KrCO2 increased by about 0.046 for the 0.4 ml/min-556 

displacements. The reduction in the KrCO2 as the temperature increased from 33 to 45 °C might be 557 

associated with the increase in the capillary forces which hinder the flowrate of the injected CO2. It 558 

should be noted that Liu et al also observed an increase in the KrCO2 with increasing fluid pressure (Liu 559 

et al., 2010). Bennion and Bachu observed also an increase in the KrCO2 and the maximum endpoint CO2 560 

saturation (i.e. reduction in the Swr) and attributed that to decreasing interfacial tension with increasing 561 

pressure (Bennion and Bachu, 2006a).  562 

The results from Table 1 show that in compassion to its impact on KrCO2,  the fluid pressure showed 563 

a lesser influence on the Swr. Overall, the increase in fluid pressure led to decrease the Swr (Bennion and 564 

Bachu, 2006a). Increasing the fluid pressure from 75 to 90 bar at 33 °C resulted in decreasing the Swr: (I) 565 
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by 0.027 for the 0.1 ml/min displacements, (II) by 0.015 for the 0.4 ml/min displacements, and (III) by 566 

0.016 for the 1 ml/min displacements. Increasing the fluid pressure from 75 to 90 bar at 45 °C and 0.4 567 

ml/min produced a reduction in the Swr by 0.025. The main reasons behind the reduction in the Swr are 568 

the increase in the Ca and the reduction in the M as illustrated in Table 1. It should be noted that the 569 

displacement conducted at 80 bar-0.1 ml/min-33 °C showed the lowest Swr of 0.343 and the highest KrCO2 570 

of around 0.223, the reason is not entirely clear. However, this might be related to the transition from 571 

the likeness of gaseous to liquid CO2 behaviour as the fluid pressure increased from 75 to 80 and then 572 

to 90 bar, as shown in Figure 1. 573 

The results from Table 1 reveal that the impact of the temperature on the KrCO2 depends largely on 574 

the associated fluid pressure and injection rate. The KrCO2 showed a declining trend with increasing 575 

temperature at high-fluid pressures (90 bar) but an increasing trend at lower-fluid pressures (75 bar). 576 

With increasing fluid temperature, the percentage of the reduction in the KrCO2 at high-fluid pressures 577 

increased with the injection rate. For the 90 bar-core floodings, increasing temperature from 33 to 45 °C 578 

at low injection rate (0.1ml/min) caused the KrCO2 to decrease by around 0.081. As the temperature 579 

increased from 33 to 55 °C, the KrCO2 dropped by about 0.121 for the 0.4ml/min-displacements, and by 580 

0.239 for the 1 ml/min-displacements. On the other hand, for the 75 bar-core floodings, as the 581 

temperature increased from 33 to 55 °C, the KrCO2 increased slightly by around 0.015; the reason is not 582 

clear. However, it might be also associated with the slight increase in pressure drop despite the high 583 

reduction in CO2 viscosity with increasing temperature; the slight increase in pressure drop might be 584 

associated with the transfer of supercritical CO2 behaviour towards gaseous CO2 behaviour, especially 585 

under high-temperature and low-fluid pressure conditions, as shown in Figure 9. It should be noted 586 

that there is no consensus in the literature about the effect of temperature on the relative permeability. 587 

For illustration, Bennion and Bachu  (Bennion and Bachu, 2006b) observed a reduction in the relative 588 

permeability with increasing temperature. On the other hand, Lee et al. observed almost no change in 589 

the relative permeability with increasing temperature (Lee et al., 2009).  590 
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Generally, the results from Table 1 reveal that the increase in temperature led to an increase in the 591 

Swr. The magnitude of the increase depends on the associated fluid pressure and injection rate. Overall, 592 

as the temperature increased, the increase in the Swr increased with the injection rate and fluid pressure. 593 

As the temperature increased from 33 to 45 °C, the Swr increased by 0.004 for the experiments conducted 594 

at 90 bar and 0.1 ml/min. When the temperature increased from 33 to 55 °C, the Swr increased by 0.021 595 

for the experiments conducted at 90 bar and 0.4 ml/min, by 0.041 for the experiments conducted at 90 596 

bar and 1 ml/min, and by 0.018 for the experiments conducted at 75 bar and 0.4 ml/min and. Overall, 597 

the reduction in the KrCO2 and the increase in Swr can be related to the reduction in the Ca and the increase 598 

in the M. 599 

In general, the results from Table 1 reveal that the increase in the CO2 injection rate caused a rise 600 

in the KrCO2 and a reduction in the Swr. These findings agree qualitatively with those obtained by Chang 601 

et al. and Akbarabadi and Piri (Akbarabadi and Piri, 2011; Chang et al., 2013). As the injection rate 602 

increased, the change in the KrCO2 and Swr increased with the fluid pressure but decreased with the 603 

temperature. Overall, as the injection rate increased from 0.1 to 1 ml/min, the KrCO2 increased by about 604 

0.038 for the 75 bar-33 °C-core floodings, by around 0.134 for the 90 bar-33 °C-core floodings, by about 605 

1.68 for the 74 bar-45 °C-core floodings, and by 0.084 for the 90 bar-45 °C-core floodings. The Swr 606 

decreased by 0.033, 0.034, 0.006, and 0.012 for the above experiments, respectively. Since M is constant, 607 

the reduction in the Swr can be related mainly to the increase observed in the Ca. On the other hand, the 608 

displacements conducted at 80 bar showed an opposite behaviour. As the injection rate increased from 609 

0.1 to 1ml/min, the KrCO2 decreased by 0.08 and the Swr increased by 0.041. The reason is not entirely 610 

clear. However, this might be related to the transition of supercritical CO2 behaviour from gaseous to 611 

liquid-like CO2 behaviour as the fluid pressure increased from 75 to 80 and then to 90 bar, see Figure 1. 612 

 613 

 614 
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Table 1: Effect of fluid pressure, temperature, and injection rate on the endpoint effective permeability 615 
(KfCO2), endpoint relative permeability (KrCO2) and residual water saturation (Swr). 616 

Parameter Experiment KfCO2 (mD) KrCO2 Swr Ca M 
Injected 

CO2 (ml) 

F
lu

id
 P

re
ss

u
re

 E
ff

ec
t 

75 bar-0.1 ml/min-33 °C 1.095 0.06982 0.411 6.417E-08 22.47 20.19 

80 bar-0.1ml/min-33°C 3.495 0.22287 0.343 6.613E-08 16.31 24.7 

90 bar-0.1ml/min-33°C 2.880 0.18370 0.384 7.413E-08 13.91 25.82 

75 bar-0.4ml/min-33°C 1.858 0.11849 0.372 2.566E-07 22.47 20.6 

77 bar-0.4ml/min-33°C 2.207 0.14077 0.374 2.594E-07 19.53 19.84 

80 bar-0.4ml/min-33°C 2.388 0.15228 0.372 2.645E-07 16.31 18.36 

90 bar-0.4ml/min-33°C 3.128 0.19949 0.357 2.965E-07 13.91 37.36 

75 bar-1ml/min-33°C 1.696 0.10818 0.366 6.417E-07 22.47 20 

80 bar-1ml/min-33°C 2.307 0.14715 0.362 6.613E-07 16.31 20.5 

90 bar-1ml/min-33°C 2.815 0.17951 0.35 7.413E-07 13.91 20.3 

75 bar-0.4ml/min-45°C 1.897 0.12099 0.39 2.577E-07 29.59 19.52 

80 bar-0.4ml/min-45°C 2.714 0.17306 0.363 2.497E-07 27.93 19.24 

90 bar-0.4ml/min-45°C 2.619 0.16701 0.365 2.467E-07 20.62 20.04 

T
em

p
er

at
u

re
 E

ff
ec

t 

90 bar-0.1ml/min-33°C 3.677 0.23451 0.384 7.413E-08 13.91 25.82 

90 bar-0.1ml/min-45°C 2.404 0.15330 0.388 6.168E-08 20.62 25.14 

90 bar-0.4ml/min-33°C 4.019 25.632 0.357 2.965E-07 13.91 37.36 

90 bar-0.4ml/min-45°C 2.629 0.16769 0.365 2.467E-07 20.62 20 

90 bar-0.4ml/min-55°C 2.123 0.13538 0.378 2.445E-07 22.73 20.08 

90 bar-1ml/min-33°C 5.780 0.36862 0.35 7.413E-07 13.91 20.3 

90 bar-1ml/min-45°C 2.918 0.18607 0.374 6.168E-07 20.62 36.7 

90 bar-1ml/min-55°C 2.032 0.12.960 0.391 6.114E-07 22.73 18.8 

75 bar-0.4ml/min-33°C 1.921 0.12254 0.372 2.566E-07 22.47 20.6 

75 bar-0.4ml/min-45°C 1.995 0.12722 0.39 2.577E-07 29.59 19.4 

75 bar-0.4ml/min-55°C 2.160 0.13777 0.39 2.641E-07 25.91 19.16 

In
je

ct
io

n
 R

at
e 

E
ff

ec
t 

75 bar-0.1ml/min-33°C 1.095 0.06982 0.411 6.417E-08 22.47 20.19 

75 bar-0.4ml/min-33°C 1.921 0.12254 0.372 2.566E-07 22.47 20.6 

75 bar-1ml/min-33°C 1.696 0.10818 0.378 6.417E-07 22.47 20 

90 bar-0.1ml/min-33°C 3.677 0.23451 0.384 7.41E-08 13.91 25.82 
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90 bar-0.2ml/min-33°C 1.755 0.1119 0.386 1.48E-07 13.91 17.24 

90 bar-0.4ml/min-33°C 4.019 0.25632 0.357 2.97E-07 13.91 37.36 

90 bar-1ml/min-33°C 5.78 0.36862 0.35  7.41E-07 13.91 20.3 

74 bar-0.4ml/min-45°C 2.902 0.18508 0.39 2.60E-07 29.94 25 

74 bar-1ml/min-45°C 3.166 0.20192 0.384 6.50E-07 29.94 20.56 

90 bar-0.1ml/min-45°C 2.404 0.1533 0.368 6.17E-08 20.62 25.14 

90 bar-0.4ml/min-45°C 2.629 0.16769 0.365 2.47E-07 20.62 19.76 

90 bar-0.6ml/min-45°C 4.333 0.27636 0.353 3.70E-07 20.62 29.63 

90 bar-1ml/min-45°C 3.711 0.23666 0.356 6.17E-07 20.62 37.1 

80 bar-0.1ml/min-33°C 3.569 0.22761 0.343 6.613E-08 16.31 24.7 

80 bar-0.4ml/min-33°C 2.388 0.15228 0.372 2.645E-07 16.31 18.36 

80 bar-1ml/min-33°C 2.307 0.14715 0.384 6.613E-07 16.31 20.5 

 617 

 618 

Figure 16: Stability diagram showing three flow regimes and the locations of the PEG200, water displacement, and 619 
the data of this study. The dashed lines indicate the flow regimes according to Zhang et al., and the shaded areas 620 
indicate flow regimes according to Lenormand et al. (Lenormand et al., 1988; Zhang et al., 2011).  621 

4 Conclusion 622 

This study investigated the impact of fluid pressure, temperature, and CO2 injection rate on the 623 

dynamic pressure evolution, displacement efficiency, and endpoint CO2 effective (relative) 624 

permeability during the injection of supercritical CO2 into a water-saturated sandstone core sample. 625 

The experiments highlight the importance of the balance between capillary and viscous forces on the 626 
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pressure and production data. The results reveal that the extent of the impact of each parameter (e.g. 627 

fluid pressure) on the pressure and production profiles is a function of the associated parameters (e.g. 628 

temperature and injection rate). The results indicate that capillary forces dominate the multiphase flow 629 

characteristics as fluid pressure and temperature are increased.  630 

 631 

Importantly, the results demonstrate that increasing fluid pressure caused a considerable reduction in 632 

the differential pressure and a transformation of the profile of the ScCO2-water displacements to be 633 

similar to that of liquid CO2-water displacements; while, increasing temperature resulted in a 634 

significant increase in the differential pressure profile and a transition towards that of gaseous CO2-635 

water displacements. Increasing the injection rate caused the transformation to occur at lower 636 

pressures, and led to a substantial increase in the differential pressure; the extent of this increase 637 

increased with increasing temperature and reduced with increasing fluid pressure. The changes 638 

observed in the differential pressure with varying fluid pressure and temperature reflect a change in 639 

the influence of the capillary forces. The change in the capillary forces will have a direct impact on the 640 

displacement efficiency and the entry pressure. For illustration, the reduction in the capillary forces 641 

with increasing fluid pressure will reduce the entry pressure; thereby, it will have a reduction impact 642 

on the storage capacity and sealing efficiency of the target formation by enhancing the upward 643 

migration of CO2. The reduction observed in the differential pressure as CO2 transformed to a liquid-644 

like behaviour means less energy is required for the displacement of fluids in host formations, which 645 

can reduce the cost of production significantly.  646 

 647 

Also, of particular importance is that increasing temperature at a lower fluid pressure (75 bar) caused 648 

the appearance of the differential pressure oscillations. The appearance of the oscillations can increase 649 

CO2 residual saturation due to the re-imbibition process accompanied with these oscillations, thereby 650 

increasing the storage capacity and integrity of CO2. The differential pressure required to open the 651 
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blocked flow channels during these oscillations can be useful in calculating the largest effective pore 652 

diameters and hence the sealing efficiency of the rock.  653 

 654 

The time required to reach the maximum differential pressure, i.e. the corresponding time, is dependent 655 

on fluid pressure, temperature, and injection rate. The change in the corresponding time might give an 656 

indication whether the change in the operational conditions can hasten or delay the time of CO2 657 

breakthrough out of the system.  658 

 659 

The increase in fluid pressure led to a reduction in the cumulative produced volumes. On the other 660 

hand, increasing temperature and injection rate caused an increase in the cumulative produced 661 

volumes.  662 

 663 

The results show that both endpoint relative CO2 permeability (KrCO2) and residual water saturation 664 

(Swr) are dependent on the experimental conditions at which they are measured. The Swr was in range 665 

of 0.34 -0.41 while KrCO2 was less than 0.37. Increasing pressure and injection rate caused an increase in 666 

KrCO2 and a reduction in Swr. KrCO2 showed a declining trend with increasing temperature at high fluid 667 

pressures (90 bar) but an increasing trend at lower fluid pressures (75 bar). Swr increased as temperature 668 

increased.   669 
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