
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gaseous CO2 behaviour during water displacement in a
sandstone core sample

Citation for published version:
Al-zaidi, E, Edlmann, K & Fan, X 2019, 'Gaseous CO2 behaviour during water displacement in a sandstone
core sample', International Journal of Greenhouse Gas Control, vol. 80, pp. 32-42.
https://doi.org/10.1016/j.ijggc.2018.11.015

Digital Object Identifier (DOI):
10.1016/j.ijggc.2018.11.015

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
International Journal of Greenhouse Gas Control

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 02. Jan. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/266996097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ijggc.2018.11.015
https://doi.org/10.1016/j.ijggc.2018.11.015
https://www.research.ed.ac.uk/portal/en/publications/gaseous-co2-behaviour-during-water-displacement-in-a-sandstone-core-sample(3df0512f-7e93-4bbc-a1ba-784ee7df53e8).html


1 
 

Gaseous CO2 Behaviour during Water Displacement in a 1 

Sandstone Core Sample  2 

Ebraheam Al-Zaidia, Katriona Edlmannb, Xianfeng Fan*a 3 

a Institute for Materials and Processes, School of Engineering, The King’s Buildings, The University 4 
of Edinburgh, Mayfield Road, Edinburgh, EH9 3JL, United Kingdom 5 

b School of Geoscience, Grant Institute, The King's Buildings, The University of Edinburgh, James 6 
Hutton Road, Edinburgh EH9 3FE, United Kingdom. 7 

* Corresponding author. Tel.: +44 0 131 6505678; fax: +44 0131 6506551. E-mail address: 8 
x.fan@ed.ac.uk  9 

Abstract: CO2 injection into subsurface formations involves the flow of CO2 through a porous 10 

medium that also contains water. The injection, displacement, migration, storage capacity and security 11 

of CO2 is controlled mainly by the interfacial interactions and capillary, viscous, and buoyancy forces 12 

which are directly influenced by changes in subsurface conditions of pressure and temperature; the 13 

impact of bouncy forces is assumed negligible during this study. In this study, gaseous CO2 is injected 14 

into a water-saturated sandstone core sample to explore the impact of fluid pressure (40-70 bar), 15 

temperature (29-45 °C), and CO2 injection rate (0.1-2 ml/min) on the dynamic pressure evolution and 16 

displacement efficiency. This study highlights the impact of capillary or viscous forces on the two-phase 17 

flow characteristics and shows the conditions where capillary or viscous forces become more 18 

influential. The results reveal a moderate to considerable impact of the parameters investigated on the 19 

differential pressure profile, endpoint CO2 relative permeability (KrCO2max), and irreducible water 20 

saturation (Swr). Overall, the increase in fluid pressure, temperature, and CO2 injection rate cause an 21 

increase in the maximum and final differential pressures, an increase in the KrCO2max, a reduction in the 22 

Swr. Swr was in the range of around 0.38-0.45 while KrCO2max was less than 0.25. The data show a significant 23 

influence for the capillary forces on the pressure and production behaviour. The capillary forces 24 

produce high oscillations in the pressure and production data while the increase in viscous forces 25 

impedes the appearance of these oscillations. The appearance and frequency of the oscillations depend 26 

on the fluid pressure, temperature, and CO2 injection rate but to different extents.  27 

 28 
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 Introduction 29 

Carbon capture and storage (CCS) is regarded as one of the most promising techniques that can 30 

deal effectively with the increasing emissions of anthropogenic CO2 into the atmosphere due to fossil 31 

fuel burning and other human activities (Bachu, 2001; Hangx et al., 2013; Kazemifar et al., 2015). The 32 

captured CO2 can be sequestered in deep saline aquifers, depleted or abandoned oil and gas reservoirs 33 

(Delshad et al., 2010; Gozalpour et al., 2005; Kaveh et al., 2012), or unmineable coal bed seams (Kaveh 34 

et al., 2012; Plug and Bruining, 2007) to enhance recovery from hydrocarbon reservoirs, increase 35 

methane production from coal beds, or extract geothermal heat from subsurface formations (Kaveh et 36 

al., 2012; Tutolo et al., 2015). Figure 1 presents a summary of the pressure and temperature ranges at 37 

which saline aquifers are found underground and highlights that CO2 can exist in a gaseous, liquid or 38 

supercritical phase (Bachu, 2000; Espinoza and Santamarina, 2010; Frailey et al.; Nourpour Aghbash 39 

and Ahmadi; Saraji et al., 2014; Sohrabi et al.).  40 

 41 

Figure 1: The pressure and temperature ranges at which saline aquifers are found underground 42 
(Saraji et al., 2014). This study is conducted under pressure ranged from 40 to 70 bar and temperature 43 
ranged from 29 to 45 °C. 44 

During CO2 injection in subsurface formations, the bulk of the injected CO2 (as a non-wetting fluid) 45 

will displace the formation water (as a wetting fluid) in an immiscible displacement (Basbug et al., 2005; 46 

Herring et al., 2014b). The displacement of the injected CO2 depends on a number of parameters, 47 
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namely, the interfacial interactions (e.g. interfacial tension and wettability), solubility of CO2 in 48 

formation water, densities and viscosities of fluids present, petrophysical properties of the subsurface 49 

formation, injection rate and its duration , and more importantly on the capillary and viscous forces 50 

(Cinar and Riaz, 2014; Duan and Sun, 2003; Pentland et al., 2011b; Trevisan et al., 2017). The capillary 51 

forces at the CO2-water interface are of considerable importance in determining the nature of the flow 52 

through pores (Roof, 1970). Any change in subsurface conditions of pressure and temperature will have 53 

a significant impact on the interfacial interactions (Espinoza and Santamarina, 2010; Liu et al.; Plug and 54 

Bruining, 2007; Yang et al., 2007), the viscous forces due to the change in viscosity  (Bachu and Bennion, 55 

2008b) and the capillary forces. The change in interfacial interactions, and viscous and capillary forces 56 

due to the change in underground conditions will have a considerable influence on the capillary 57 

pressure, relative permeability (Alkan et al., 2010), pore-scale fluid distribution (Al-Menhali and 58 

Krevor, 2014), CO2 injection, fluid migration, capacity and long-term fate of CO2 storage in saline 59 

aquifers (Levine et al., 2011; Saraji et al., 2013; Wang et al., 2015), CO2-enhanced oil and gas recovery 60 

processes (Gozalpour et al., 2005; Qi et al., 2010). According to Salimi et al., the change in capillary 61 

pressure, due to the change in the operational conditions, can have a direct influence the CO2-storage 62 

capacity and the heat recovery due to its impact on the solubility and density of both CO2 and water 63 

(Salimi et al., 2012). Thus, it is of utmost importance to have a deep insight into the dynamic behaviour 64 

of CO2 under different operational conditions.  65 

 66 
CO2 has been used in the oil industry for a long time, in particular, to increase productivity through 67 

Enhanced Oil Recovery (EOR), and extensive research has been undertaken describing multi-phase 68 

flow properties of CO2-oil systems (Bahralolom et al., 1988). On the other hand, much less laboratory 69 

investigations have been done for CO2-water (brine) systems (Perrin and Benson, 2010). Those 70 

published have mainly focused on CO2 wettability (Al-Menhali and Krevor, 2014; Bikkina, 2011; 71 

Farokhpoor et al., 2013a; Kaveh et al., 2012; Sakurovs and Lavrencic, 2011; Saraji et al., 2013), CO2-water 72 

(brine) interfacial tension (Aggelopoulos et al., 2010; Bachu and Bennion, 2008b, 2009; Busch and 73 
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Müller, 2011; Chiquet et al., 2007; Li et al., 2012; Yu et al., 2012), relative permeability (Bachu, 2013; 74 

Krevor et al., 2015; Liu et al.; Perrin et al., 2009) and capillary pressure (Busch and Müller, 2011; Pini et 75 

al., 2012; Plug and Bruining, 2007). Cinar and Riaz showed that much of the research has been directed 76 

to investigate the fluid properties rather than studying the multiphase flow properties of the CO2-water 77 

systems (Cinar and Riaz, 2014). 78 

The limited investigations of the multiphase flow characteristics of CO2-water (brine) systems have 79 

involved laboratory experiments (Jobard et al., 2013), computational modelling (Jobard et al., 2013; Ma 80 

et al., 2013; Xu et al., 2011), and field scale projects (Wang et al., 2015). The CO2-water (brine) 81 

investigations included core flooding displacements performed at liquid, supercritical and gaseous CO2 82 

conditions. Current literature survey of the CO2-water (brine) multiphase flow experiments showed 83 

that most of these experiments were supercritical (Sc) CO2-brine (water) displacements studies, which 84 

were performed on various porous media such as core samples (Berg et al., 2013; Edlmann et al., 2013), 85 

micromodels (Cao et al., 2016), and packed beds of glass beads (Song et al., 2012; Suekane et al., 2005). 86 

In these studies related to supercritical CO2 migration, researchers have examined various parameters 87 

such as relative permeability curves (Berg et al., 2013; Chang et al., 2013; Krevor et al., 2013; Suekane et 88 

al., 2005; Suenaga and Nakagawa, 2011), capillary pressure curves (Herring et al., 2014a; Wang et al., 89 

2013), CO2 residual saturation and distribution (Alemu et al., 2011; Chang et al., 2013; Herring et al., 90 

2014a; Pentland et al., 2011a; Saeedi et al., 2011; Suekane et al., 2005), heterogeneity impact (Ott et al., 91 

2015; Perrin and Benson, 2010; Shi et al., 2011; Wang et al., 2013), water displacement efficiency (Cao et 92 

al., 2016), mass transfer (Berg et al., 2013), and formation dry-out (Ott et al., 2011). Some liquid (L) CO2-93 

water (brine) core flooding displacements were conducted to investigate the multiphase flow 94 

characteristics of CO2-water-porous media (Manceau et al., 2015), CO2 residual saturation and 95 

distribution (Alemu et al., 2011), and pore-scale heterogeneity (Zhang et al., 2011).  96 

On the other hand, very scarce data was found regarding gaseous (G) CO2 injection into water 97 

(brine) saturated porous systems (Islam et al., 2013; Jiang et al., 2017; Lassen et al., 2015; Yu et al., 2014). 98 
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Even though liquid and supercritical CO2 injection is more efficient, the dynamic behaviour of gaseous 99 

CO2 in reservoir rock is necessary information, particularly considering that many potential saline 100 

storage aquifers are within temperature and pressure conditions of the gaseous CO2 phase (Figure 1) 101 

and that any leakage of CO2 from deeper storage would inevitably result in a phase change to a gaseous 102 

CO2 state (Edlmann et al., 2016; Miocic et al., 2016). The existing GCO2-water experiments were 103 

designed to investigate the crossover zone of flow regimes, impact of capillary number, CO2 injection 104 

rates and permeability on displacement efficiency. Islam et al. conducted GCO2-water experiments at 1 105 

bar and 25 °C using a vertical Hele-Shaw cell filled with micro-beads to investigate the crossover zone 106 

from capillary to viscous to fracture fingering. They observed that all the three fingering patterns can 107 

occur in the cell but at different heights (Islam et al., 2013). Jiang et al. performed both immiscible and 108 

miscible drainage GCO2-water displacements inside a packed bed filled with quartz glass beads to have 109 

a better understanding of the two-phase flow characteristics inside porous media. The experiments 110 

were conducted at CO2 injection rates varying from 0.01 to 3 ml/min and at 60 bar and 24.85 °C. They 111 

observed that: (I) at low CO2 injection rates, the CO2 dissolution increases; (II) the increase in glass beads 112 

diameter (i.e. higher permeability) leads to a decrease in the capillary forces (Jiang et al., 2017). Yu et al. 113 

conducted immiscible drainage GCO2-water displacements at 60 bar and 24.85 °C inside a packed bed 114 

of glass beads (0.2 mm diameter) to study the impact of the capillary number on displacement 115 

efficiency. They noticed that the increase in the capillary number, when it is between 10-11 and 10-10, 116 

results in a sharp reduction in the residual water saturation as a result of increasing the impact of the 117 

viscous forces (Yu et al., 2014).  118 

Despite the considerable research on the CO2–water (brine) systems and its practical importance, 119 

the analysis of the pressure data in core flooding has been widely overlooked (Rezaei and Firoozabadi, 120 

2014). To the authors’ best knowledge, there is no detailed investigation into the dynamic pressure 121 

evolution and displacement efficiency of gaseous CO2 during its injection into a water saturated core 122 

sample. In this paper, laboratory dynamic drainage experiments were performed by injecting pure CO2 123 

into the deionised water-saturated sandstone core sample to investigate the impact of fluid pressure, 124 
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temperature, and CO2 injection rate on the differential pressure profile, water production, and endpoint 125 

effective and relative permeabilities of CO2. This study also highlights the impact of capillary and 126 

viscous forces on the pressure and production data as well as shows the conditions at which capillary 127 

or viscous forces become more influential. During these dynamic displacements, the transient pressure 128 

at the inlet and outlet sides of the core and the transient outflow rates of water and CO2 were measured 129 

and analyzed. The endpoint water saturations of CO2 and water were also calculated.  130 

 Materials  131 

A sandstone core sample from the Guillemot A Field in the North Sea was used to perform the 132 

unsteady state GCO2-water drainage experiments. The core sample has a diameter of 2.54 cm and a 133 

length of 7.62 cm. The average porosity and absolute water permeability of the core sample were about 134 

14% and 15.8 millidarcys, respectively. This study is one in a series, thus the core sample description, 135 

the experimental setup and the CO2-water displacement procedures can be seen in our recent 136 

publication (Al-Zaidi et al., 2018).  137 

 Results and discussion 138 

To gain a deep insight into the dynamic behaviour of GCO2-water drainage displacements under 139 

various fluid pressure, temperature, and injection rate conditions; the inlet and outlet pressure, CO2 140 

and water out flowrate, the irreducible water saturation and endpoint effective and relative 141 

permeabilities of CO2 were measured and analyzed.  142 

In this study, the difference between the pressure transducer readings at the inlet and outlet sides 143 

of the core sample has been used to calculate the differential pressure. The differential pressure during 144 

horizontal CO2 injection is largely influenced by the capillary and viscous forces. The capillary forces 145 

are controlled mainly by the CO2-water interfacial tension, contact angle (i.e. wetting status), pore 146 

diameter and geometry (Alkan et al., 2010; Bikkina et al., 2016; Chatzis and Morrow, 1984; Fulcher Jr et 147 

al., 1985). The wetting status plays an important role in determining the imbibition and the distribution 148 

of the wetting and non-wetting phases inside the porous media (Chalbaud et al., 2007; Espinoza and 149 
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Santamarina, 2010). The capillary forces, which are responsible for the entrapment of one phase by 150 

another during immiscible displacements in porous media (Akbarabadi and Piri, 2013; Chatzis and 151 

Morrow, 1984), arise from the presence of the interface between the immiscible fluids (Bikkina et al., 152 

2016) and significantly dominate the multiphase flow, especially in low permeability rocks and 153 

fractured reservoirs (Schembre and Kovscek, 2003). On the other hand, the viscous forces are controlled 154 

mainly by the viscosity of both displacing and displaced fluids, the fluid velocity in the pores, the 155 

amount of each fluid (i.e. saturation) in the pore, and the core sample properties (e.g. frontal area, 156 

permeability, and length). Espinoza and Santamarina (Espinoza and Santamarina, 2010) proposed the 157 

following equation to account for the impact of the capillary and viscous forces on the differential 158 

pressure as follow: 159 

∆𝑃𝑃 = 𝑃𝑃𝐶𝐶𝐶𝐶2 − 𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =  4 𝜎𝜎𝐶𝐶𝐶𝐶2−𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑑𝑑
+ 𝑣𝑣 32 𝐿𝐿

𝑑𝑑2
 �𝑙𝑙𝐶𝐶𝐶𝐶2𝜇𝜇𝐶𝐶𝐶𝐶2+𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝜇𝜇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝐿𝐿
�                                               (1) 160 

Where ΔP is the differential pressure across the core sample (Pa). PCO2 and Pwater are the pressures 161 

of CO2 phase and water phase, respectively. σCO2-water is the CO2-water interfacial tension (mN/m), ϴ the 162 

contact angle, d (m) the diameter of the largest effective pore (Chiquet et al.; Chiquet et al., 2007; 163 

Farokhpoor et al., 2013b; Han et al., 2010), L (m) the length of the core sample, l (m) the length of CO2 164 

or water phase inside the core sample, v (m/s) the fluid velocity in the pores, and µ (Pa·s) the viscosity 165 

of the fluids. The first term of Eq.1 refers to the Young-Laplace equation, which accounts for the 166 

capillary forces, while the second term refers to the Poiseuille’s equation (Espinoza and Santamarina, 167 

2010; Li, 2015), which account for the viscous forces. For small injection rate and high viscosity contrast 168 

conditions the impact of viscous forces can be neglected, thus Eq.1 can be reduced to the Young-Laplace 169 

equation (Li, 2015) as follows: 170 

∆𝑃𝑃 = 𝑃𝑃𝐶𝐶𝐶𝐶2 − 𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =  4 𝜎𝜎𝐶𝐶𝐶𝐶2−𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑑𝑑
                                                                                                   (2) 171 

The Young-Laplace equation is used to determine the critical pressure point, which is the 172 

differential pressure required for the displacing fluid to enter the core sample for the first time. The 173 
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non-wetting fluid cannot enter the core sample unless its pressure becomes higher than the critical 174 

pressure point (Han et al., 2010).  175 

In this study, the experimental results have been categorized into two main sections. The first 176 

section presents and discusses the impact of the experimental fluid pressure, temperature and CO2 177 

injection rate on the differential pressure profiles while the second section deals with the impact of the 178 

parameters investigated on the endpoint CO2 effective (relative) permeability and irreducible water 179 

saturation.  180 

It should be noted that during this study, the term low and high-fluid pressure refers to the 181 

experiments conducted at pressures less and higher than 50 bar, respectively. The low and high 182 

temperature refers to the experiments performed at less or higher than 33 °C, respectively. The low, 183 

medium and high injection rates refer to the experiments performed at injection rate ranging from 0.1 184 

to 0.2 ml/min, from 0.3 to 0.6 ml/min, and from 1 to 2 ml/min, in sequence. The corresponding time 185 

refers to the time required to reach the maximum-differential pressure at the start of the experiment. 186 

The quasi-differential pressure refers to the differential pressure at the end of the experiment. 187 

3.1 Differential Pressure Profile of GCO2-Water Drainage Displacements 188 

To investigate the effect of fluid pressure, experimental temperature, and CO2 injection rate on the 189 

differential pressures, series of GCO2-water displacements were performed at various fluid pressures 190 

(from 40 to 70 bar), experimental temperatures (29-45 °C) and CO2 injection rates (0.1-2 ml/min).   191 

3.1.1 Effect of Fluid Pressure on the Differential Pressure Profile of GCO2-Water Drainage 192 
Displacements 193 

Figure 2 presents the impact of increasing fluid pressure on the differential pressure profile of 194 

GCO2-water drainage displacements. A number of trends are identifiable: Firstly, the differential 195 

pressure profile at all fluid pressures is characterized by a high initial increase, immediately followed 196 

by a steep rapid reduction and then followed by a quasi-differential pressure. Secondly, there are 197 
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multiple oscillations of these cycles. The frequency of these oscillating cycles increases as fluid pressure 198 

increases along with a rise in the values of the maximum and quasi-differential pressures. 199 

The high initial increase in the differential pressure can be related to the capillary pressure. The 200 

following reduction in the differential pressure profile reflects the impact of the reduction in both 201 

capillary forces and viscous forces according to Eq.1. The injection of gaseous CO2 into the core sample 202 

generates the initial increase in differential pressure to overcome the capillary entry pressure for the 203 

invasion of the gaseous CO2 (Chang et al., 2013). The reduction in the capillary forces can be associated 204 

with the reduction in the pore resistance to CO2-water interfaces as the number of pores opened by CO2 205 

is increased (Kwelle, 2017). This agrees very well with Kwell’s finding, who noticed a high reduction 206 

in the differential pressure profile as the CO2-water interface is displaced out of microcapillary tubes 207 

(Kwelle, 2017). The reduction in the viscous forces can be related to the combined effect of the dynamic 208 

change in relative permeability of gaseous CO2 and water and the high rate replacement of a more 209 

viscous fluid (water) with a less viscous fluid (CO2) (Chang et al., 2013). Replacing water by CO2 at a 210 

high rate can be linked to (a) the high mobility ratio due to the high viscosity contrast and (b) gas 211 

expansion effects which generate an increase in volumetric CO2 injection rate inside the core sample.  212 

• The gas expansion can, in turn, be related to the density change of the injected CO2 due to the 213 

temperature difference between inside the water bath (i.e. 29 to 45 °C depending on the experimental 214 

conditions) and outside it (room temperature 18-20 °C). The density of the injected CO2 varies as the 215 

CO2 enters the water bath dependant on the injection rate, fluid pressure and the temperature difference 216 

from the pump to the sample. The density ratio (dr) suggested by Perrin and Benson (Perrin and Benson, 217 

2010) has been used to calculate the injection rate inside the core sample. For instance, at an 218 

experimental pressure of 40 bar, an injection rate of 1 cm3/min at 20 °C becomes 1.7522 cm3/min at 33 219 

°C. However, at an experimental pressure of 70 bar and the same injection rate and temperature 220 

conditions, it becomes 5.281cm3/min. 221 

𝑑𝑑𝑟𝑟 = 𝑃𝑃1 𝑇𝑇2𝑍𝑍2

𝑃𝑃2 𝑇𝑇1𝑍𝑍1
                                                                                                                                (3) 222 
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 223 

Figure 2 reveals that the differential pressure profiles are characterized by multiple differential 224 

pressure (PD) oscillations. The appearance of these PD oscillations can be related to the impact of the 225 

capillary forces at the trailing end of each CO2-water slug during CO2 flooding (Nutt, 1982) or the 226 

capillary end effects. According to Nutt, the impact of the capillary forces at the trailing end of the CO2-227 

water slug is governed by the wetting status of the injected fluid. If a non-wetting fluid (e.g. CO2) is 228 

injected, then the capillary forces will work in an opposite direction to the applied viscous forces. Thus, 229 

as water depletion is progressed, the applied viscous forces will drop until they become less than the 230 

capillary forces. Upon reaching this point, the flow of the non-depleted capillaries is potentially blocked 231 

by the capillary forces (Nutt, 1982). This blockage occurs due to a re-imbibition process of the wetting 232 

phase inside the core sample, which was noticed by Hildenbrand et al (Hildenbrand et al., 2002). 233 

Hildenbrand et al. observed that the re-imbibition process occurs when the excess pressure in the non-234 

wetting phase declines after the gas breakthrough (Hildenbrand et al., 2002), as shown in Figure 3. This 235 

re-imbibition process occurs in a progressive manner starting with the smallest pores and continuing 236 

to the larger pores, leading to the successive loss of the interconnected flow-paths, which, in turn, leads 237 

to a progressive decline in the non-wetting phase relative permeability. Finally, when the last 238 

interconnected flow-path for the non-wetting phase is blocked, the permeability of the non-wetting 239 

phase will drop to zero (Hildenbrand et al., 2002). According to Hildenbrand et al., this re-imbition 240 

process can result in a residual water saturation when certain-gas filled pores become isolated a result 241 

of interrupting the flow pathways. The maximum differential pressure required to open the flow paths 242 

again can be used to determine the largest effective pore radius and, hence, the sealing efficiency of the 243 

rock (Hildenbrand et al., 2002).  244 

Therefore, since our core sample is water-wet, the pressure of the injected CO2 had to build up to 245 

a certain level to overcome the capillary forces that blocked the CO2 outflow rate (Nutt, 1982). Due to 246 

the high compressibility nature of the gaseous CO2, the injected CO2 will accumulate inside the core 247 
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sample and the connections pipes until the differential pressure becomes high enough to overcome the 248 

capillary forces. Once the blocked capillaries are opened to flow, the cumulative CO2 will expel the 249 

liquid drops that block the pores out of the core sample quickly; the rate of expulsion is expected to 250 

increase with the fluid pressure. The development of this phenomenon is highly influenced by the core 251 

sample properties and the injection rate due to their direct impact on viscous and capillary forces. As a 252 

result, this phenomenon is expected to be reduced when the injection rate, i.e. viscous pressure drop, 253 

becomes high enough to overcome the capillary forces (Nutt, 1982). However, due to the cyclic 254 

reduction of the viscous pressure drop (i.e. viscous forces) to the level that becomes insufficient to 255 

overcome the capillary forces, this phenomenon of oscillations can occur frequently. 256 

On the other hand, since the GCO2-water displacements are strongly influenced by the capillary 257 

end effects and viscous instabilities (Müller, 2011), it might be suggested that the appearance of the 258 

oscillations is due to the impact of capillary end effects. The capillary end effects occur at both inlet and 259 

outlet faces of the core sample, but its impact becomes more severe at the outlet face. According to 260 

Müller, the capillary end effects can never be entirely prevented but can be corrected for (Müller, 2011). 261 

The impact of capillary end effects and viscous instabilities can be reduced when the following scaling 262 

coefficient proposed by Rapoport and Leas for stabilized floods becomes greater than one. 263 

𝐿𝐿𝐿𝐿µ ≥ 1                                                                                                                                                      (4) 264 

where L is the length of the medium (cm), u the Darcy velocity (cm/min), and µ the displacing 265 

phase viscosity (cp) (Fathollahi and Rostami, 2015). The scaling coefficients for the 40, 50, and 70 bar 266 

displacements are 0.0773, 0.0844, and 0.285, respectively. The scaling coefficients increased significantly 267 

as the fluid pressure increased from 40 and 50 bar to 70 bar, which indicates a reduction in the impact 268 

of capillary end effects with increasing fluid pressure. However, since the data from Figure 2 reveal an 269 

increase in the frequency of the oscillations with increasing fluid pressure, this indicates that the 270 

capillary end effects are not responsible for the PD oscillation phenomenon. In addition, the 271 
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disappearance of the oscillations at lower injection rates as shown in Figure 7 further supports the idea 272 

that the oscillations are not because of the capillary end effects. 273 

Figure 2 also shows that increasing fluid pressure leads to an increase in the rate of the differential 274 

pressure (PD) oscillations along with increases in the values of the maximum and quasi-differential 275 

pressures and a reduction in the corresponding time (the time required to reach the maximum-276 

differential pressure at the start of the experiment). For illustration, it can be seen that as the fluid 277 

pressure increased from 40 to 50 bar, the rate of the PD oscillations increased by around 33% and the 278 

maximum-differential pressure increased by about 2.50%. The quasi-differential pressure was constant 279 

at around 1 bar. The corresponding time declined by approximately 17%. However, as the fluid 280 

pressure increased from 50 to 70 bar, the PD oscillations substantially increased by 225%, the maximum-281 

differential pressure raised by around 9% and the quasi-differential pressure increased by 165%. The 282 

corresponding time dropped considerably by around 78%. The high reduction in the corresponding 283 

time with increasing fluid pressure can be related mainly to the increase in gaseous CO2 density and 284 

the injection rate inside the core sample due to the expansion effects. As gaseous CO2 becomes denser, 285 

it requires lesser time to be compressed to the required pressure.  286 

The increase in the maximum and quasi-differential pressures with increasing fluid pressure can 287 

be related mainly to the magnitudes of both viscous and capillary forces. According to Eq.1, as the fluid 288 

pressure increases the viscous forces increase [due to the increase in CO2 viscosity and the injection rate 289 

inside the core sample due to expansion impact], while the capillary forces decrease [because of the 290 

reduction in the CO2-water interfacial tension (IFT) (Georgiadis et al., 2010) and the increase in the 291 

contact angle (Banerjee et al., 2013) due to increasing CO2 solubility (Bennion and Bachu; Yang et al., 292 

2007)]. Thus, the increase observed in the differential pressures is the net result of the increase in the 293 

viscous forces and the reduction in the capillary forces. Reducing capillary forces with increasing 294 

pressure is expected to cause a reduction in the extent of differential pressure increase.  295 
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The increase in the PD oscillations means the frequency of liquid drops expelled out of the core 296 

sample is increased. This can be associated mainly with the reduction in the capillary forces and the 297 

increase in gas density with increasing pressure. Increasing the gas density and reducing capillary 298 

forces mean less time was required to reach a differential pressure value which was sufficient to 299 

overcome the capillary forces; thus, increasing the frequency of the PD oscillations.  300 

 301 

Figure 2: Effect of fluid pressure on the differential pressure profile of GCO2-water displacements 302 
conducted at 0.4 ml/min and 33 °C. 303 

 304 

Figure 3: Re-imbibition process in fine-grained rocks (schematic re-imbibition); (A) drainage, (B) 305 
initially water-saturated sample, (C) gas breakthrough, (D) re-imbibition (Hildenbrand et al., 2002). 306 
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3.1.2 Effect of Temperature on the Differential Pressure Profile of GCO2-Water 308 
Displacements 309 

Figure 4 presents the impact of increasing experimental temperature on the differential pressure 310 

profile. The results demonstrate that the increase in the experimental temperature has a significant 311 

impact on the differential pressure profile. Firstly, increasing the temperature increases the frequency 312 

of the PD oscillations. At an experimental temperature of 29 °C, the differential pressure profile 313 

experienced no oscillations. However, as the temperature increased to 31 °C, the oscillations appeared 314 

for the first time. A further increase in the temperature to 33 °C caused the number of oscillations to 315 

increase by double. Secondly, the increase in the temperature prompts an increase in the magnitude of 316 

the maximum-differential pressure. The quasi-differential pressure was almost constant due to the 317 

slight impact of both capillary forces and viscous forces at the end of core flooding.  318 

The appearance and frequency of the PD cycles with increasing temperature have three potential 319 

explanations. The first potential reason behind the onset of the oscillations and their frequency is the 320 

increase in the capillary forces despite the slight increase in viscous forces under these conditions. The 321 

increase in temperature leads to an increase in the CO2-water IFT (Iglauer et al., 2012) with a reduction 322 

in the contact angle (Yang et al., 2007) due to the decline in the CO2 solubility (Bennion and Bachu; Yang 323 

et al., 2007) as well as a slight increase in CO2 viscosity, and a slight increase in CO2 injection rate inside 324 

the core sample due to expansion effect. For illustration, as the experimental temperature increased 325 

from 29 to 31 °C, CO2-water IFT increases from to 42.9 to 44.42 mN/m, CO2 viscosity increases very 326 

slightly from 16.72 to 16.755 × [10-6(Pa·s)] and CO2 injection inside the core sample increased from 327 

around 0.45 to 0.46 ml/min. However, a further increase in the experimental temperature to 33 °C 328 

caused the CO2-water IFT to decrease to 34.1 mN/m (Bachu and Bennion, 2008a), CO2 viscosity to 329 

increase to 16.805 × [10-6(Pa·s)] and CO2 injection to increase to 0.466 ml/min. 330 

 The second possible reason might be related to the fluctuating behaviour in the CO2-water IFT 331 

when the experimental temperature is around the critical point (Bennion and Bachu), as shown in 332 

Figure 5. The third potential reason is that the PD oscillations might occur because of increasing 333 
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temperature which results in a quicker increase in the movement of CO2 molecules. This is because each 334 

individual molecule has more energy as it becomes hotter, according to the Kinetic molecular theory 335 

(Physics, 2017). A high energetic CO2 molecule might open the closed flow path, due to the increase in 336 

capillary forces, quicker.  337 

The results indicate that for the sandstone core sample (from the Guillemot A field, North Sea) 338 

used in the experiment and under the aforementioned experimental conditions, the onset temperature 339 

point of the oscillations is around 31 °C. The characteristics of the sandstone sample, e.g. pore size 340 

distribution, play a key role in the onset of the PD oscillations phenomena as they have a direct 341 

influence on the magnitude of the capillary forces as illustrated by Young-Laplace law (Eq.2). 342 

The data also reveals that as the experimental temperature increased from 29 to 31 °C, the 343 

maximum-differential pressure increased by around 12.5% (from 0.72 to 0.81 bar) and the 344 

corresponding time dropped by around 9.1% (from 12.1 to 11 min). However, increasing the 345 

temperature from 31 to 33 °C caused the differential pressure to decline slightly by 1.23% (from 0.82 to 346 

0.81 bar) and the corresponding time dropped by 30% (from 11 to 7.7 min). The increase and decrease 347 

in the maximum-differential pressure can be related mainly to the increase or decrease in the capillary 348 

forces due to CO2-water IFT, as stated above. The highest reduction in the corresponding time occurred 349 

as the temperature increased to 33 °C. This can be related to the highest reduction in the CO2-water IFT 350 

(Bennion and Bachu), as shown in Figure 5. 351 
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 352 

Figure 4: Effect of temperature on the differential pressure profile of GCO2-water displacements 353 
conducted at 50 bar and 0.4 ml/min. 354 

 355 

Figure 5: Interfacial tension for CO2-Pure Water Systems adopted from (Bachu and Bennion, 2008b). 356 

To further investigate the effect of the temperature on the differential pressure profile, and 357 

especially on the PD oscillations, additional GCO2-water displacement experiments were conducted 358 

under a high-pressure of 70 bar and higher temperature conditions.  359 

 The data from Figure 6 shows that increasing the experimental temperature by 12 degrees (from 360 

33 to 45 °C) at a high-pressure caused no further increase in the rate of the PD oscillations. Yet, it 361 

instigated a very slight increase in the maximum and quasi-differential pressures with a small reduction 362 

in the corresponding time. The maximum differential pressure increased by only 4.2% (from 0.854 to 363 
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0.89 bar) and the quasi-differential pressure by 4.81% (from 0.208 to 0.218 bar). The corresponding time 364 

declined by around 17% (from 1.8 to 1.5 min).  365 

The data showed no further increase in the PD oscillations occurred when there are no fluctuations 366 

in the IFT as the temperature increased from 33 to 45 °C, as shown in Figure 5. This suggests that the 367 

IFT fluctuations might have highly influenced the frequency of PD oscillations. 368 

The increase in the maximum and quasi-differential pressures can be related to the increase in the 369 

capillary forces (because of the increasing CO2-water interfacial tension and the reducing contact angle 370 

(Yang et al., 2007)), and the slight increase in the viscous forces (because of the increasing injection rate). 371 

The magnitude of the viscous forces might have slightly declined because of the slight reduction in CO2 372 

viscosity with increasing temperature. For illustration, as the experimental temperature increased from 373 

33 to 45 °C, the CO2-water IFT increases from around 29.15 to around 33.4 mN/m (Bennion and Bachu),  374 

and the CO2 injection rate inside the core sample increased from 1.315 to 1.748 ml/min but the viscosity 375 

decreases from 20.743 to 19.05 × [10-6(Pa·s)]. 376 

 377 

Figure 6: Effect of temperature on the differential pressure profile of GCO2-water displacements 378 
conducted at 70 bar and 0.4 ml/min. 379 
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3.1.3 Effect of CO2 Injection Rate on the Differential Pressure Profile of GCO2-Water Core 380 
Floodings 381 

Figure 7, Figure 8 and Figure 9 show the impact of increasing CO2 injection rate on the differential 382 

pressure profile. For Figure 8, the experiments conducted at higher injection rate (2 ml/min) lasted 383 

shorter than those conducted at lower injection rate (1 ml/min) to explore the impact of injection 384 

volumes on the displacement efficiency. The results reveal that increasing the injection rate has a 385 

significant impact on the differential pressure profile, mainly at early stages of core flooding. The data 386 

reveal a number of important observations (A-E). 387 

A) The data show that the higher the injection rate, the higher the maximum differential pressure 388 

is. However, increasing the injection rate caused a slight increase in the quasi-differential pressure; the 389 

corresponding time decreased at low injection rates and increased at high injection rates. For 390 

illustration, as the CO2 injection rate increased from 0.1 to 0.2 ml/min, the maximum-differential 391 

pressure increased by 33.54% (from 0.161 to 0.215 bar), and the quasi-differential pressure by 5.88% 392 

(from 0.068 to 0.072 bar) while the corresponding time reduced by almost half (from 13.5 to 6.5 min). 393 

However, as the CO2 injection rate increased from 1 to 2 ml/min, the maximum-differential pressure 394 

increased by around 44% (from 0.833 to 1.201 bar), the quasi-differential pressure increased by around 395 

15% (from 0.254 to 0.291 bar), and the corresponding time increased by 12% (from 3.3 to 3.7 min). The 396 

increase in the corresponding time at high injection rates despite the increase in the CO2 injection rate 397 

can be related to the high increase in the magnitude of the maximum-differential pressure as well as 398 

the low-density nature of the gaseous CO2. Since the injected gaseous CO2 was at low pressure (40 bar), 399 

it needed a longer time to reach the higher maximum-differential pressure of 1.201 bar during the 2 400 

ml/min-displacement.  401 

B) The data from Figure 7 and Figure 8 reveals that as the injection rate increased by tenfold (from 402 

0.1 to 1 ml/min, and from 0.2 to 2 ml/min), the quasi-differential pressure increased by only around 403 

fourfold, (from 0.068 to 0.254 bar, and from 0.072 to 0.291 bar). This might be related to a potential 404 
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increase in the relative permeability with increasing injection rate (Akbarabadi and Piri; Chang et al., 405 

2013) that leads to a reduction in the viscous pressure drop. 406 

C) The data previously shown in Figure 2 reveals that the differential pressure profile of the 40 407 

bar-experiments is characterized by PD oscillations at 0.4 ml/min CO2 injection rate. Surprisingly, the 408 

data from Figure 7 and Figure 8 reveal no PD oscillations at lower and higher CO2 injection rates. The 409 

disappearance of the PD oscillations at higher injection rates (e.g. 1-2 ml/min) can be related to the high 410 

increase in the pressure drop due to viscous forces. Thus, the viscous forces impeded the capillary 411 

forces, which are responsible for the observed PD oscillations phenomenon (Nutt, 1982). On the other 412 

hand, at lower CO2 injection rates (e.g. 0.1 to 0.2 ml/min), CO2 might flow through preferential inlet and 413 

outlet pores (Gunde et al., 2010) that are characterized by low resistance to flow and by less capillary 414 

forces. Consequently, CO2 does not need to pass through the smallest channels that are characterized 415 

by higher resistance to CO2 flow and higher capillary forces, hence avoiding the impact of the capillary 416 

forces that cause the oscillations.  417 

D) To look in detail at the unexpected results regarding the appearance and disappearance of the 418 

PD oscillations and the impact of CO2 injection rate on the differential pressure profile, further 419 

experiments were conducted at 40 bar and over a more detailed range of injection rates, as shown in 420 

Figure 9. It should be noted that the 0.4 ml/min GCO2-water displacement is repeated to make sure that 421 

the observations were not an experimental error.  422 

The results from Figure 9 show clearly that the PD oscillations occurred only at 0.4 ml/min for the 423 

experiments conducted at a low pressure of 40 bar. Overall, the data confirm that the increase in the 424 

injection rate produces an increase in the maximum-differential pressure and a reduction in its 425 

corresponding time for this range of injection rates. The quasi-differential pressure reduced slightly 426 

due to the potential increase in the relative permeabilities (Akbarabadi and Piri; Chang et al., 2013).  427 

The data from Figure 9 can be divided into two groups. The first group includes the experiments 428 

conducted at a CO2 injection rate of 0.3 and 0.4 ml/min while the second group involves the experiments 429 
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performed at 0.5 and 0.6 ml/min. As the CO2 injection rate increased for the first lower injection rate 430 

group, the maximum-differential pressure was almost constant at around 0.76 bar, but the 431 

corresponding time reduced by 25% (from around 20 to 15 min). The second higher injection rate group 432 

is characterized by a constant maximum-differential pressure of 0.938 bar and a constant corresponding 433 

time of 6.5 min. Thus, the data reveals that shifting the CO2 injection rate to the second group caused 434 

the maximum-differential pressure to increase by 23.42% and the corresponding time to reduce by 435 

around 57%. The increase in the maximum-differential pressure associated with shifting the CO2 436 

injection rate might be related to the properties of the core sample. It might have occurred because as 437 

the injection rate increased from the first to the second group, the maximum-differential pressure had 438 

to further increase to open new preferential flow paths for the injected CO2 (Gunde et al., 2010). The 439 

nearly constant maximum-differential pressure for each group might indicate a minimal impact for the 440 

viscous forces on the differential pressure at low pressures. It indicates also that the expected increase 441 

in the maximum-differential pressure due to increasing injection rate is reduced by the potential 442 

increase in the relative permeability due to the increasing injection rate (Akbarabadi and Piri; Chang et 443 

al., 2013). 444 

 445 

Figure 7: Effect of CO2 injection rate on the differential pressure profile of GCO2-water 446 
displacements conducted at 40 bar and 33 °C. 447 
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 448 

Figure 8: Effect of CO2 injection rate on the differential pressure profile of GCO2-water 449 
displacements conducted at 40 bar and 33 °C. 450 

 451 

Figure 9: Effect of CO2 injection rate on the differential pressure profile of GCO2-water 452 
displacements conducted at 40 bar and 33 °C. 453 

E) To further investigate the effect of CO2 injection rate on the differential pressure profile and the 454 

phenomenon of the PD oscillations particularly, a second set of GCO2-water displacements have been 455 

performed at a higher pressure (70 bar). To enable a clear comparison, the data was presented in two 456 

figures: Figure 10 and Figure 11. 457 
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E.1) The data shows clearly that conducting GCO2-water displacements at higher pressure (70 bar) 458 

caused the PD oscillations to appear over a wider range of CO2 injection rates (from 0.2 to 1 ml/min). It 459 

reveals also that the change in the maximum and quasi-differential pressures, corresponding time and 460 

PD oscillations depend on the range of the injection rate; the highest change occurred as the injection 461 

rate increased from 0.4 to 1 ml/min. For illustration, as the CO2 injection rate increased from 0.4 to 1 462 

ml/min, the maximum-differential pressure increased considerably by around 258% (from 0.845 to 463 

3.024 bar) and the quasi-differential pressure increased by around 224.5% (from 0.265 to 0.86 bar). The 464 

corresponding time prolonged by 140% (from 1 to 2.4 min), despite the increase in the injection rate, 465 

due to the increase in the maximum-differential pressure. The frequency of the PD oscillations was 466 

almost constant for the last 20 min of both experiments. The increase in the maximum and quasi-467 

differential pressures can be attributed to the increase in the viscous forces; the increase in the 468 

corresponding time can be related to the high increase in the magnitude of the maximum differential 469 

pressure.  470 

E.2) On the other hand, as the CO2 injection rate increased from 0.2 to 0.4 ml/min, the maximum-471 

differential pressure was almost constant at around 0.85 bar, the quasi-differential pressure slightly 472 

increased, the corresponding time slightly reduced, and the frequency of the PD oscillations 473 

considerably decreased but the magnitude of the PD oscillations significantly increased from around 474 

0.25 to 0.825 bar. The nearly constant maximum-differential pressure (0.85 bar) at the low injection rates 475 

(0.2 to 0.4 ml/min)-core floodings reveals a negligible impact of the viscous forces on the differential 476 

pressure at the conditions investigated. However, the reduction in the frequency of the PD oscillations 477 

might be attributed to CO2 flow through preferential flow paths (Gunde et al., 2010).  478 

The frequency of the PD oscillations might depend to a considerable extent on the core sample 479 

properties, the change in CO2 distribution due to the change in the CO2 injection rate, and the 480 

operational conditions. For illustration, as the CO2 injection rate increased from 0.2 to 0.4 ml/min, the 481 

CO2 might have distributed over a wider range of capillaries. Consequently, as the viscous pressure 482 

drop declined because of water depletion, the CO2 flow inside the smaller capillaries was blocked due 483 
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to their higher resistance to CO2 flow. Later, as the pressure drop continued, the CO2 flow in larger 484 

capillaries was blocked, too. Ultimately, it came to the point when all capillaries were blocked by the 485 

capillary forces (Hildenbrand et al., 2002; Nutt, 1982). Thus, the increase in CO2 distribution with 486 

increasing injection rate might have led to prolonging the time required for the capillary forces to block 487 

the CO2 production from all opened interconnected flow paths. As a result, since the volume of the 488 

opened capillaries were larger with increasing injection rate from 0.2 to 0.4 ml/min; therefore, the 489 

frequency of the PD oscillations was reduced. 490 

  491 

Figure 10: Effect of CO2 injection rate on the differential pressure profile of GCO2-water displacements 492 
conducted at 70 bar and 33 °C. 493 

 494 

Figure 11: Effect of CO2 injection rate on the differential pressure profile of GCO2-water 495 
displacements conducted at 70 bar and 33 °C. 496 
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In summary, fluid pressure, temperature and CO2 injection rate exert significant influences on the 497 

differential pressure profile of the GCO2-water drainage displacements. The differential pressure 498 

profile at all fluid pressures, temperatures and injection rates is characterized by a high initial increase 499 

immediately followed by a steep rapid pressure reduction and then by a quasi-pressure drop.  500 

The differential pressure is controlled by the interplay of both capillary and viscous forces. The 501 

increase in capillary forces leads to the appearance of the PD oscillations (the onset points) while the 502 

increase in viscous forces causes their impedance. 503 

 There are multiple cycles of these oscillations and the occurrence and frequency of these 504 

oscillations vary with fluid pressure, temperature and injection rate. The frequency of these oscillating 505 

cycles increases as fluid pressure and fluid temperature increase but vary with injection rate and seem 506 

to be fluid pressure dependent. These oscillations occurred only at 0.4 ml/min at low pressures (i.e. 40 507 

bar), but they appeared over a wider range of injection rates at higher pressures (i.e. 70 bar). The 508 

maximum-differential pressure reached during each cycle increases with increasing fluid pressure, 509 

temperature and injection rate.  510 

3.2 Effect of Fluid Pressure, Temperature, and Injection Rate on Irreducible Water 511 
Saturation and Endpoint Effective and Relative Permeabilities of CO2 512 

The effective and relative permeabilities of CO2 are significantly important to the determination of 513 

the efficiency and integrity of CO2 sequestration in subsurface formations (Busch and Müller, 2011; 514 

Rathnaweera et al., 2015). At the end of the flooding experiment, the volume of the water produced 515 

was measured, and the irreducible water saturation was calculated. Then, the core sample was weighed 516 

to confirm the irreducible water saturation calculations. To calculate the endpoint effective (relative) 517 

CO2 permeability using Darcy’s law, the average quasi-differential pressure and the average CO2 518 

outflow rate of the last period were used (Akbarabadi and Piri; Chang et al., 2013). The CO2 viscosity 519 

at the experimental pressure and temperature was calculated using the Peace software website (Peace 520 

software, 2017).  521 

The results from Table 1 shows that both endpoint CO2 relative permeability (KrCO2max) (Armstrong 522 

et al., 2017) and irreducible water saturation (Swr) are dependent on the experimental conditions at 523 

which they are measured. The Swr was in the range of around 0.38-0.45 while the KrCO2max was less than 524 

0.25. Busch and Müller obtained a low relative permeability for CO2, too (Busch and Müller, 2011). Such 525 
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low relative permeability would tend to decrease injectivity while increasing displacements efficiency 526 

(Levine et al., 2011). 527 

The results from Table 1 reveal that in general the increase in fluid pressure, temperature, and 528 

injection rate lead to an increase in the KrCO2max and a decline in the Swr. In case of increasing fluid 529 

pressure and temperature, the high increase in the KrCO2 can be attributed mainly to the high increase 530 

in the injection rate inside the core sample due to the high impact of gas expansion (Rostami et al., 2010; 531 

Skauge et al.). This increase in volumetric CO2 injection rate might result in forcing the CO2 to flow 532 

through a wider range of the core sample pores. 533 

The displacements efficiency is controlled by many factors that include relative permeability, 534 

wetting conditions, viscous fingering, gravity segregation, channelling, the amount of crossflow/mass 535 

transfer (Chukwudeme and Hamouda, 2009), mobility ratio, and capillary number (Kazemifar et al., 536 

2015). The capillary number (Ca) refers to the ratio of the viscous forces to capillary forces (Lenormand 537 

et al., 1988). The mobility ratio (M) refers to the ratio of the displaced to the displacing phase viscosities. 538 

Increasing the contrast between the viscosity of the displacing and displaced fluid leads to a higher M 539 

which will result in a more unstable configuration front. The following formulas are used to define 540 

them: 541 

𝐶𝐶𝐶𝐶 =  𝜇𝜇2 𝑉𝑉2
𝜎𝜎 𝐶𝐶𝐶𝐶𝐶𝐶 𝜃𝜃

                                                                                                                                                  (5) 542 

𝑀𝑀 = 𝜇𝜇2
𝜇𝜇1

                                                                                                                                                           (6) 543 

where µ is the dynamic viscosity, σ the interfacial tension between the displaced and the displacing 544 

phases, 1 the subscript of the displaced phase, 2 the subscript of the displacing phase, ϴ the contact 545 

angle between the two fluids and the surface, and V2 the bulk velocity of the displacing fluid. The 546 

flowing equation is used to define the bulk velocity. 547 

𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑄𝑄
𝐴𝐴 ∅

                                                                                                                                                     (7) 548 
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where Q is the volumetric injection rate, A the area of the frontal face of the core sample, and ϕ the 549 

core sample porosity (Kazemifar et al., 2015). Based on the magnitudes of the Ca and the M, three 550 

different regimes can be defined (Kazemifar et al., 2015). For the GCO2-water displacement investigated 551 

both Ca and M are small, which suggest a capillary fingering regime.  552 

 The reduction observed in the Swr can be attributed mainly to the increase in the Ca and the 553 

reduction in the M. This is because the Ca and M are the most influential dimensionless parameters that 554 

govern GCO2-water core flooding displacement (Kazemifar et al., 2015). As the Ca increases, the impact 555 

of the capillary forces compared to viscous forces decreases. The balance between the viscous forces 556 

and capillary forces governs the pore scale drainage displacements (Heaviside and Black, 1983). The 557 

capillary forces are responsible for the trapping of the injected CO2 (Akbarabadi and Piri, 2013; Bachu 558 

and Shaw, 2003). Thus, decreasing the capillary forces (e.g. due to the reduction in the interfacial 559 

tension) will lower the Swr (i.e. enhance the fluid displacements) (Ahmadi et al., 2015). On the other 560 

hand, reducing M will result in a more uniform displacement of water by CO2 (Bennion and Bachu, 561 

2006), which can result in reducing the Swr. The data from Table 1 show that the increase in the Ca and 562 

the reduction in the M can lead to a reduction in the Swr even when the change in both Ca and M is 563 

small. Ding and Kantzas observed that the critical Ca for the gas-water system is 2E-8 (Ding and 564 

Kantzas, 2007). 565 

The results from Table 1 reveal that increasing the fluid pressure from 40 to 70 bar at 33 °C and 0.4 566 

ml/min caused the KrCO2max to increase by around 0.099 and the Swr to decrease by around 0.047. The 567 

largest increase in the KrCO2max and the highest reduction in the Swr occurred as the fluid pressure 568 

increased from low-fluid pressure displacements (40 and 50 bar) to high-fluid pressure displacements 569 

(70 bar). The observed trend of the KrCO2max and Swr are in agreement with the findings of Liu et al. and 570 

Bennion and Bachu (Bennion and Bachu, 2006; Liu et al.). Liu et al also observed an increase in the KrCO2 571 

with increasing pressure (Liu et al.). Bennion and Bachu observed an increase in the KrCO2 and increase 572 

in the maximum endpoint CO2 saturation (i.e. decrease in Swr) with increasing pressure; they attributed 573 
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that to the reduction in IFT with increasing pressure (Bennion and Bachu, 2006). The observed trend of 574 

the KrCO2max and Swr can also be associated with the relatively high increase in the Ca and the high 575 

reduction in the M.  576 

The results from Table 1 reveal that increasing temperature led to an increase in the KrCO2max. On 577 

the other hand, increasing temperature caused a reduction in the Swr for the displacements conducted 578 

at high-fluid pressure (70 bar) and over a high temperature increase (33-45 °C). Nonetheless, for the 579 

experiments conducted at low-fluid pressure (50 bar) and over a small temperature increase (29-33 °C), 580 

the trend of the Swr depends on the magnitude of the experimental temperature. For the high-fluid 581 

pressure displacements, when the temperature increased from 33 to 45 °C at 70 bar, the KrCO2max 582 

increased by around 0.035 and the Swr decreased by around 0.02. The reduction in the Swr for the 70 bar 583 

displacements can be attributed also to the high increase in the Ca and the high reduction in the M. For 584 

the low-fluid pressure displacements, as the temperature increased slightly from 29 to 33 °C at 50 bar, 585 

the KrCO2max increased by around 0.016. Nevertheless, the Swr value was between around 0.40 and 0.41. 586 

The Swr saturation slightly increased by around 0.01 as the temperature increased from 29 to 31 °C, and 587 

then slightly decreased by about 0.005 as the temperature increased from 31 to 33 °C. The slight increase 588 

in the Swr might be related to the slight reduction in the Ca as well as the impact of the capillary forces, 589 

which can be seen through the appearance of the PD oscillations when the temperature increased to 31 590 

°C, see Section 3.2 for more information; the PD oscillations might result in hindering water production 591 

to a slight extent. On the other hand, the slight reduction in the Swr, when the temperature further 592 

increased to 33 °C, can be associated with the relatively high increase in the Ca as well as the slight 593 

reduction in the M.  594 

Overall, the results from Table 1 shows that the increase in the CO2 injection rate caused an increase 595 

in the KrCO2max and a reduction in the Swr. Increasing the injection rate from 0.1 to 2 ml/min at 40 bar and 596 

33 °C resulted in an increase in the KrCO2max by around 0.157 and a reduction in the Swr by around 0.05. 597 

These findings agree with those in Chang et al. and Akbarabadi and Piri (Akbarabadi and Piri; Chang 598 
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et al., 2013). However, for the core flooding at 0.4 ml/min or less, the Swr trend is not clear. Moreover, 599 

the KrCO2max of the experiments conducted at 40 bar-0.2 ml-33 °C does not fit linearly in the trend. 600 

Increasing the injection rate from 0.6 to 1 ml/min resulted in the highest reduction in the Swr. This can 601 

be corresponded to the high increase in the Ca from around 7.9 E-8 to 1.3 E-7. For the core flooding 602 

performed at 70 bar and 33 °C, increasing the injection rate from 0.2 to 1 ml/min caused a very slight 603 

reduction in the Swr by 0.0077. However, the KrCO2max increased substantially as the injection rate 604 

increased from 0.2 to 0.4 ml/min. Nevertheless, as the injection rate increased to 1 ml/min, a significant 605 

reduction in the KrCO2max happened again, the reason is not clear. The very slight reduction in the Swr 606 

might be because only a slight increase occurred in the Ca and that M was constant.  607 

Table 1: Effect of fluid pressure, temperature, and injection rate on endpoint effective and relative 608 
permeabilities of gaseous CO2 and irreducible water saturation  609 

Pa
ra
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et
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K
fC

O
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K
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O
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Sw
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M
 

C
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Fl
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Pr
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su
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 E

ff
ec

t 40 bar-0.4 ml/min-33 °C 1.768 0.113 0.4244 46.26 5.265E-08 

50 bar-0.4 ml/min-33 °C 1.987 0.127 0.4089 44.56 6.250E-08 

70 bar-0.4 ml/min-33 °C 2.613 0.212 0.3779 36.10 2.504E-07 

Te
m

pe
ra

tu
re

 E
ff

ec
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50 bar-0.4 ml/min-29 °C 1.507 0.096 0.4012 48.69 4.748E-08 

50 bar-0.4 ml/min-31 °C 1.738 0.111 0.4147 46.57 4.698E-08 

50 bar-0.4 ml/min-33 °C 1.987 0.127 0.4089 44.56 6.250E-08 

70 bar-0.4 ml/min-33 °C 2.613 0.212 0.3779 36.10 2.547E-07 

70 bar-0.4 ml/min-45 °C 3.675 0.247 0.3566 31.34 2.714E-07 

In
je

ct
io

n 
R

at
e 

Ef
fe

ct
 

40 bar-0.1 ml/min-33 °C 0.67 0.043 0.38 46.26 1.316E-08 

40 bar-0.2 ml/min-33 °C 1.265 0.081 0.446 46.26 2.632E-08 

40 bar-0.3 ml/min-33 °C 0.955 0.061 0.436 46.26 3.948E-08 

40 bar-0.4 ml/min-33 °C 1.493 0.095 0.4244 46.26 5.265E-08 

40 bar-0.5 ml/min-33 °C 1.528 0.097 0.436 46.26 6.581E-08 

40 bar-0.6 ml/min-33 °C 1.535 0.098 0.4167 46.26 7.897E-08 

40 bar-1 ml/min-33 °C 1.793 0.114 0.3837 46.26 1.316E-07 
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40 bar-2 ml/min-33 °C 3.13 0.20 0.391 46.26 2.632E-07 

70 bar-0.2 ml/min-33 °C 2.421 0.154 0.3798 36.10 1.273E-07 

70 bar-0.4 ml/min-33 °C 3.625 0.167 0.3779 36.10 2.547E-07 

70 bar-1 ml/min-33 °C 1.976 0.128 0.3721 36.10 6.368E-07 

4. Conclusion 610 

In this paper, the effect of fluid pressure, temperature, and CO2 injection rate on gaseous CO2 611 

dynamic behaviour during its flooding of a water-saturated sandstone core sample have been 612 

investigated in detail. The results indicate that the parameters investigated have a moderate to 613 

significant influence on the differential pressure profile, endpoint CO2 relative and effective 614 

permeabilities and irreducible water saturation.  615 

For all fluid pressures, temperatures, and injection rates, the differential pressure profiles are 616 

characterized by a sharp increase, immediately followed by a steep pressure reduction, and finally, by 617 

a gradual pressure reduction. The differential pressure profiles are controlled by the interplay of both 618 

capillary and viscous forces. The capillary forces produce cyclic oscillations within the differential 619 

pressure and fluid production data; the increase in the viscous forces impede the appearance of these 620 

oscillations. The appearance and frequency of the oscillations depend on the fluid pressure, 621 

temperature, and CO2 injection rates. In general, the frequency of the oscillations increased with 622 

increasing pressure and temperature. The differential pressure oscillation cycles exhibit a very 623 

interesting response to varying injection rate, they are dependent on the fluid pressure. At 40 bar, the 624 

oscillations were only observed at an injection rate of 0.4 ml/min, whereas at 70 bar the oscillations 625 

occurred at all injection rates tested (0.2, 0.4, and 1ml/min).  626 

In general, the increase in fluid pressure, temperature, and injection rate led to an increase in the 627 

maximum and quasi-differential pressures; the extent of the increase in the differential pressure is 628 

dependent on the fluid pressure, temperature, and injection rate. Increasing the fluid pressure and 629 

temperature caused a reduction in the time required to achieve the maximum-differential pressure at 630 
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the start of the experiment, i.e. corresponding time. Whereas, increasing the injection rate caused the 631 

corresponding time to decrease at low injection rates and increase at high injection rates. 632 

In general, the increase in fluid pressure, temperature, and injection rate led to an increase in the 633 

endpoint CO2 relative permeability (KrCO2max) and a decline in the irreducible water saturation (Swr). The 634 

Swr was in the range of around 0.38-0.45 while the KrCO2max was less than 0.25. 635 
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