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Abstract

Objective: Cognitive impairment (CI) is common in children with epilepsy and
can have devastating effects on their quality of life. Early identification of CI
is a priority to improve outcomes, but the current gold standard of detection
with psychometric assessment is resource intensive and not always available.
This paper proposes exploiting network analysis techniques to characterize rou-
tine clinical electroencephalography (EEG) to help identify CI in children with
early-onset epilepsy (CWEOE) (0-5 y.o.).
Methods: Functional networks from routinely acquired EEGs of 51 newly di-
agnosed CWEOE were analyzed. Combinations of connectivity metrics with
sub-network analysis identified significant correlations between network proper-
ties and cognition scores via rank correlation analysis (Kendall’s τ). Predictive
properties were investigated using a cross-validated classification model with
normal cognition, mild/moderate CI and severe CI classes.
Results: Network analysis revealed phase-dependent connectivity having higher
sensitivity to CI, and significant functional network changes across EEG fre-
quencies. Nearly 70.5% of CWEOE were aptly classified as normal cognition,
mild/moderate CI or severe CI using network features. These features predicted
CI classes 55% better than chance and halved misclassification penalties.
Conclusions: CI in CWEOE can be detected with sensitivity at 85% (in iden-
tifying mild/moderate or severe CI) and specificity of 84%, by network analysis.
Significance: This study outlines a data-driven methodology for identifying
candidate biomarkers of CI in CWEOE from network features. Following addi-
tional replication, the proposed method and its use of routinely acquired EEG
forms an attractive proposition for supporting clinical assessment of CI.
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Highlights

• EEG network analysis correlates with CI in preschool children
with epilepsy

• Classification reveals network features’ predictive potential for CI
identification

• Sensitivity to CI improves with dense networks and phase-based
connectivity measures
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1. Introduction2

Epilepsy is a complex disease that can have devastating effects on quality of3

life [1]. Cognitive impairment (CI), which frequently and severely affects quality4

of life of children and their families, coexists in more than half of children with5

epilepsy [2, 3, 4, 5]. Timely identification of CI, particularly in children with6

early-onset epilepsy (CWEOE; epilepsy onset< 5 years of age) is critical because7

early-life interventions are likely to be more effective, it is the period in which8

childhood epilepsy is most common, and the most severe forms occur during9

this time [6, 7, 8]. An estimated 40% of CWEOE have CI [5]. The urgent need10

for emphasis on early recognition, new interventions and improved public health11

strategies for primary and secondary prevention for CI in epilepsy is highlighted12

in calls to action by august bodies including the International League Against13

Epilepsy, The Institute of Medicine, and the World Health Organization [9, 10].14

Therefore, there is a need to understand the causes of CI and find reliable,15

affordable and non-invasive markers beyond current standard approaches.16

Identification of CI is especially difficult in CWEOE because the gold stan-17

dard of diagnosis by psychological assessments may not be readily available [11],18

it is resource intensive, and can be clinically challenging (e.g. introducing po-19

tential bias from repeated testing) [11]. Thus, reliable, affordable and rapid20

CI screening techniques in clinical care are sought after. Such techniques would21

help focus further medical investigations and resources onto a smaller subgroup,22

producing efficiency gains and cost savings. Graph network analysis of standard23

routine clinical EEG recordings is one such potential technique.24

Analysis of functional EEG networks offers a data-driven methodology for25

understanding diverse brain conditions through the lens of network (connec-26

tivity) properties [12, 13]. Functional networks examined as graphs are well-27

established, and provide advantages in understanding changes in connectivity28

across the brain, e.g. through exploiting properties like small-world topology,29

connected hubs and modularity [13, 14, 15, 16, 17]. Insights into epilepsy, in-30

cluding the severity of cognitive disturbances, outcomes of epilepsy surgery, and31
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Figure 1: Flowchart of data processing chain for an individual child. ICOH = Imaginary part
of coherency, PSI = Phase-slope index, WPLI = Weighted phase-lag index, MST = Minimum
Spanning Tree, CST = Cluster-Span Threshold

disease duration have been found to correlate with the extent of changes in these32

functional networks [18]. Recent work has also found network abnormalities can33

appear in both ictal and interictal states [18]. This supports that network can34

be distinguished in resting-state EEG [18]. Therefore, functional graph analysis35

is well positioned as a potential tool to reveal insights into CI in CWEOE.36

The aim of this study was to identify a reliable EEG network marker which37

could help effectively screen for CI in CWEOE. Our hypothesis was two-fold.38

First, informative network abnormalities relating to CI could be revealed in39

CWEOE using graph network analysis on routine clinical EEGs. Second, iden-40

tified abnormalities could be integrated into a simple machine learning paradigm41

to demonstrate predictive capabilities of the identified networks with respect to42

CI. We aimed to utilize a data-driven, quantitative approach to identify poten-43

tial network markers. Then, we could integrate their information into a simple44

classification pipeline, which could be readily implemented to support clini-45

cal decisions regarding CI. By investigating only routine EEG recordings, we46

hoped to demonstrate that minimal potential cost and effort would be required47

to adopt the proposed techniques into a clinical setting.48

2. Methods49

The data processing pipeline for each child is summarized in Figure 1.50

2.1. Dataset51

The details on study recruitment and assessments are reported elsewhere52

[19]. In summary, newly diagnosed CWEOE of mixed epilepsy types and aeti-53

ologies were recruited as part of a prospective population-based study of neu-54

rodevelopment in CWEOE [20]. Parents gave approval for use of the standard,55

resting-state, awake 10-20 EEG their child had as part of their routine clinical56

care. If a child had multiple EEGs, only the first EEG was used to avoid biasing57
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results toward children with multiple recordings. Additionally, it allowed similar58

selection of resting-state recordings across all children, e.g. awake resting-state.59

As such, no EEG recordings of sleep were analysed in this work. All analy-60

ses were blinded to any treatment or seizure frequency information. Partici-61

pants underwent cognitive assessment with age-appropriate standardized tools,62

e.g. Bayley Scales of Infant and Toddler Development- Third Edition (Bayley-63

III) and Wechsler Preschool and Primary Scale of Intelligence-Third Edition64

(WPPSI-III). Children who scored within ±1 standard deviation (SD) of the65

normative mean were defined as normal, −1 to −2 SD as having mild/moderate66

CI, and < −2 SD as having severe CI. The cognition scores from Bayley-III and67

WPPSI-III tests were converted into a normalized standard score measure. Clin-68

ical details were collected by members of the research team using a standardized69

proforma by direct interview of care-givers, medical records and, where possi-70

ble, patients themselves when they attended for clinical and/or research study71

assessment.72

Table 1 provides the demographic and clinical features for the CWEOE73

which were included in this study. Given the broad anti-epileptic drug (AED)74

therapies and aetiologies present in Table 1, potential interactions from AED75

load or specific aetiology were examined with respect to the designated CI classes76

(e.g. normal, mild/moderate, severe CI). Using a non-parametric version of77

the two-way ANOVA (Friedman’s test [21]) on data from Table 1, revealed no78

significant interactions between any AED load or specific aetiology with respect79

to any CI classes. This in turn suggests that the results identified via network80

analysis are likely driven mainly by cognitive phenomena, as opposed to epileptic81

syndrome or AED load effects.82

A retrospective analysis was done on 32-channel, unipolar montage with83

average reference captured routine EEGs. EEGs were recorded at 20 scalp84

electrodes (FP1, FP2, FPz, F3, F4, F7, F8, Fz, C3, C4, Cz, P3, P4, Pz, T3,85

T4, T5, T6, 01, 02), eight auxiliary electrodes (AUX1-8), two grounding (A1,86

A2) and two ocular electrodes(PG1, PG2).87

2.2. Pre-processing88

EEG recordings were pre-processed in MATLAB using the Fieldtrip tool-89

box [22]. The EEG had a sampling rate of approximately 511 Hz. Recordings90

were re-referenced to a common average reference (CAR), and bandpass fil-91

tered between 0.5-45 Hz in Fieldtrip. The resting-state data was split into non-92

overlapping, two second long sub-trials; long enough to pick up any resting-state93

network activity, while still fitting at least one full period of the lowest included94

frequency.95

Prior to data processing, seizure activity in the EEGs were confirmed by96

clinicians. Whole trials which contained seizure activity were excluded from97

the analysis, rather than excluding only sections of trials with evident seizure98

activity. This helped guarantee that all network trials were derived from a99

minimum of two continuous seconds of seizure-free EEG. The small time window100

helped to balance removing large amounts of useful EEG data, while retaining101

enough data to characterize the frequencies present.102
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Normal (n = 31) Mild/Moderate CI (n = 7) Severe CI (n = 13)
Age in months (SD) 36.18 (19.87)† 26.76 (17.06) 20.37 (18.56)†
Male:Female Ratio 20:11 6:1 6:7
Ethnicity

Asian 2 (6%) – 1 (8%)
Black – 1 (14%) –
White (U.K./European) 29 (94%) 6 (86%) 12 (92%)

Antiepileptic Drugs
None 3 (10%) 1 (14%) –
Monotherapy 26 (84%) 6 (86%) 9 (69%)
Polytherapy 2 (06%) – 4 (31%)

Focal Seizures 12 (39%) 3 (43%) 4 (31%)
Generalized Seizures 18 (58%) 2 (28.%) 9 (69%)
Generalized and Focal 1 (3%) 2 (28.5%) –
Epilepsy aetiology

Cryptogenic 3 (10%) 1 (14%) 5 (38%)
Idiopathic 24 (77%) 4 (57%) 1 (8%)
Symptomatic 3 (10%) 2 (29%) 7 (54%)
Unknown 1 (3%) – –

Cognitive z-score (SD) -0.05 (0.66) -1.41 (0.20) -2.9 (0.27)

Table 1: Demographic and clinical feature information of patients, grouped by CI classes of
normal, mild/moderate CI, and severe CI. Significant differences between groups with respect
to age are indicated by a † (Kruskal-Wallis with post-hoc Mann-Whitney U; H = 6.4697,
p < 0.05, with mean ranks of 30, 23.7143, and 17.6923 for Normal, Mild/Moderate CI and
Severe CI respectively.)

Standard EEG artefacts were rejected using a 2-step approach with manual103

and automatic rejection. Manual artefact rejection first removed clear outliers104

in both trial and channel data based upon high variance values (var > 106).105

Muscle, jump and ocular artefacts were then automatically identified using strict106

rejection criteria relative to the Fieldtrip default suggested values [22] (Fieldtrip107

release range R2015-R2016b, z-value rejection level r = 0.4). All trials contain-108

ing EEG artefacts were excluded from analysis. Subjects were averaged across109

all trials at each frequency band to help reduce potential bias and variance110

resulting from the selection of a shorter analysis window.111

A narrow band (2-Hz wide) approach was used in analysis of clean EEG112

data, similar to work done by Miskovic et al. [23]. Segmenting the frequency113

range into these narrow bands (e.g. 1-3 Hz, 3-5 Hz,...) provided a data-driven114

approach to interrogate networks across subjects. The a priori nature of the in-115

vestigation avoided attempts at equivocating the (likely heterogeneous) impact116

of epilepsy, development, medication etc. on each child’s spectral EEG compo-117

sition. While such narrow bands may eschew some physiological interpretations118

by not adhering to classical frequency bands, the narrow bands promoted iden-119

tification of mainly robust, common network abnormalities across the heteroge-120

neous CWEOE population. If significant network abnormalities were identified121

in these narrow frequency bands (after correction for multiple comparisons, age122

and spurious correlations) then the identified results were likely representative123

of a strong effect.124
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2.3. Network Coupling Analysis125

The processed data was analyzed using functional EEG graph analysis, based126

on ‘functional links’ connecting any pair of EEG channels i and j, derived from127

the cross-spectrum of the data. Appendix A provides the detailed, formal def-128

initions for the cross-spectrum and the network analysis methods described129

below. A summary of these definitions are included here for clarity. In brief,130

this study selected several measures of dependencies in EEG recordings, cre-131

ated graph networks based on these measures and characterized the created132

networks to identify candidate biomarkers for classification and identification of133

CI in CWEOE.134

This study investigates three connectivity analysis methods building from135

the cross-spectrum viz: (1) the imaginary part of coherency (ICOH) [24], (2)136

phase-slope index (PSI) [25], and (3) weighted phase-lag index [26, 27].137

ICOH is a standard measure in functional network analysis [24]. ICOH is138

well documented, and has been shown to provide direct measures of true brain139

interactions from EEG while eliminating self-interaction and volume conduction140

effects [24]. A weakness of ICOH, however, is its dependence on phase-delays,141

resulting in identifying functional connections only at specific phase differences142

between signals, while completely failing for others [26, 27, 28].143

The PSI [25] was selected as a complementary alternative to ICOH for anal-144

ysis. In practice, the PSI examines causal relations (temporal order) between145

two sources for signals of interest, e.g. si and sj [25]. PSI exploits the phase146

differences between the sources to identify the ‘driving’ versus ‘receiving’ re-147

lationship between the sources [25]. Their average phase-slope differences are148

used to identify functional links [25]. Importantly, unlike ICOH, the PSI is149

equally sensitive to all phase differences from cross-spectral data [25]. However,150

the PSI equally weights contributions from all phase differences, meaning even151

small phasic perturbations are equal to the (defining) large perturbations.152

Therefore the weighted phase-lag index (WPLI) was included as a third com-153

parative measurement for analysis [26, 27]. The standard phase-lag index (PLI)154

[26] is a robust measure derived from the asymmetry of instantaneous phase155

differences between two signals, resulting in a measure which is less sensitive to156

volume conduction effects and independent of signal amplitudes [26]. The PLI157

ranges between 0 and 1, where PLI of zero indicates no coupling (or coupling158

with a specific phase difference; see [26] for details), and a PLI of 1 indicates159

perfect phase locking [26]. The PLI’s sensitivity to noise, however, is hindered160

as small perturbations can turn phase lags into leads and vice versa [27].161

A weighted version of the PLI was introduced (weighted PLI; WPLI) [27]162

to counter this effect. The WPLI adds proportional weighting based on the163

imaginary component of the cross-spectrum [27]. The proportional weighting164

alleviates the noise sensitivity in PLI. The WPLI, like the PSI, helps capture165

potential phase-sensitive connections present in EEG networks from another166

perspective.167
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2.4. Adjacency Matrices and Sub-Networks168

The estimated functional connectivity between channel pairs i and j com-169

prising the weighted functional network of a subject can be represented by an170

adjacency matrix. The functional connections found for the ICOH, PSI, and171

WPLI measures were therefore represented via adjacency matrices in the analy-172

sis below. A set of adjacency matrices for a representative normal and impaired173

cognition child in the range of 5-9 Hz are included in Apppendix B, Figures B.5174

and B.6, respectively.175

Constructing and comparing graphs of functional EEG networks built using176

the adjacency matrix can lead to certain biases in the network analysis [29,177

30, 31]. To avoid this issue, two methods for defining unbiased sub-networks178

to represent the functional EEG for comparison and analysis were used: the179

Minimum Spanning Tree (MST) [29] and the Cluster-Span Threshold (CST)180

[32].181

The MST is an acyclic, sub-network graph which connects all nodes (elec-182

trodes) of a graph while minimizing link weights (connectivity strength) based183

on applying Kruskal’s algorithm on the weighted network [29, 33]. In brief,184

the algorithm first orders the link weights in a descending manner, i.e. from185

strongest to weakest connectivity [29]. The MST is then constructed by start-186

ing with the largest link weight and adding the next largest link weight until187

all nodes, N, are connected in an acyclic sub-network with a fixed density of188

M = N −1 [29]. After construction of the sub-network, all weights are assigned189

a value of one [29]. In this manner, the MST is able to efficiently capture a190

majority of essential properties underlying a complex network in an unbiased191

sub-network [29].192

Exploiting the properties of the MST is a relatively recent technique, pre-193

sented in contemporary publications exploring brain networks [29]. However,194

the MST naturally leads to sparse networks in the data due to its acyclic nature195

and, in some occasions, more dense networks may be preferable. Thus, real196

brain network information is potentially lost in MST based EEG graph analysis197

[34].198

By contrast, the CST creates a similar sub-network, but balances the pro-199

portion of cyclic ‘clustering’ (connected) and acyclic ‘spanning’ (unconnected)200

structures within a graph (for details see [32]). This balance thus retains nat-201

urally occurring ’loops’ which can reflect dense networks without potential in-202

formation loss [34] while maintaining the advantages of using an unbiased sub-203

network for analysis. Figure 2 illustrates a topographical example of EEG chan-204

nels connected via MST and CST networks for a randomly selected child. Differ-205

ences in sparsity between the acyclic MST and the cyclic CST sub-networks can206

readily be seen in Figure 2. Both the MST and CST are binary sub-networks207

and consequently have advantages over weighted networks like the adjacency208

matrix, e.g. spurious connections and link density effects [29, 32, 34].209

For each combination of sub-networks and connectivity definitions above210

(e.g. MST-ICOH, CST-ICOH, MST-PSI, etc.) four network metrics were in-211

vestigated for correlation to the cognition standard score measures. To help212
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MST CST

ICOH

PSI

WPLI

Figure 2: Illustrative examples of the MST and CST sub-network graphs of ICOH, PSI and
WPLI for a randomly selected child. EEG channels are displayed as nodes, with functional
connections displayed for each combination of sub-network and connectivity measure.
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reduce potential selection bias, network metrics for analysis were agreed upon a213

priori. Metrics were chosen to account for distinct network properties (e.g. the214

shape of the network, the critical connection points in the network etc.) with215

(relatively) little inter-correlation. Due to the natural exclusion/inclusion of cy-216

cles, the network metrics differ for the MST and CST, respectively. However, all217

metrics across sub-networks were selected to be comparable regarding network218

properties. Pictorial examples of the selected network metrics, alongside short219

definitions, are given in Figure 3.220

2.5. Statistical Analysis221

Statistical analysis was done using Matlab 2015a. Correlation between in-222

dividual network metrics and the cognition standard score was measured using223

Kendall’s tau (τ) [35]. Kendall’s τ calculates the difference between concordant224

and discordant pairs [35, 36], and is a strong choice for describing correlation225

in ordinal or ranking properties. In this work, the normalized cognition stan-226

dard scores’ relative rankings serve as the ordered data explored using the τ227

correlation. The design of Kendall’s τ is also relatively robust to false pos-228

itive correlations from data outliers [35, 36], providing additional mitigation229

to spurious correlations in the results. Furthermore, as Kendall’s τ is a non-230

parametric hypothesis test it did not rely on any underlying assumptions about231

the distribution of the data. Therefore the correlation analysis was robust to232

any potential ceiling, floor or skewed distribution effects present in the reported233

cognition standard score measures.234

Correlation trends are reported both as uncorrected p < 0.05 values, and235

with multiple comparison (Bonferroni) corrections, similar in style to previous236

literature [37]. For each frequency bin (2-Hz wide) and network, we compared237

and corrected for the 4 separate graph measures using the Bonferroni technique238

(i.e. p = 0.05/4 = 0.0125 was set as the threshold for significance). Dependency239

was assumed across the small 2-Hz frequency bins, similar in principle to [37],240

and as such we do not include the frequency bins in the Bonferroni correction.241

Correlations which are found to be potentially significant under this assumption242

are indicated by the † symbol for Bonferroni corrections.243

2.6. Classification244

A multi-class classification scheme was devised using the Weka toolbox [38,245

39]. Class labels of normal, mild/moderate CI, and severe CI were applied.246

Primary feature selection included all correlations identified by the statisti-247

cal analysis, thereby promoting interpretation of the retained network features.248

Then, a second feature selection phase using nested 5-fold cross-validation se-249

lected prominent features via bi-directional subspace evaluation [40]. Within250

this nested cross-validation, features identified as important in > 70% of the251

folds were selected for use in classification.252

Due to the natural skew of the data (towards normalcy), and the context253

of the classification problem (e.g. misclassifying different classes has various254

implications), a cost-sensitive classifier was developed [41]. In order to properly255
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MST CST
Diameter: The longest 'shortest 

path' from any two nodes

Max Degree: The node with 

the largest number of connecting 

edges

Leaf Fraction: The fraction of 

the total nodes with degree = 1

Betweenness Centrality: 
Measures 'centrality' of nodes with 

respect to various shortest paths

Betweenness Centrality: 
Measures 'centrality' of nodes with 

respect to various shortest paths

Variance Degree: The 

variance of all degree values in a 

graph

Average Degree: The 

average degree of all graph nodes

Clustering Coe cient: 
Formed 'clustering' triangles out of 

all possible triangle clusters (max)

Figure 3: Illustration of all graph analysis metrics for the Minimum Spanning Tree (MST)
and Cluster-Span Threshold (CST) networks using simple example graphs. Nodes (dots)
represent EEG channel electrodes. Edges (lines) represent functional interactions between
EEG channels identified by a connectivity measure, e.g. ICOH/PSI/WPLI.
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Multi-class Classification Cost Matrix
CI-Predicted Class

Normal Mild/Mod. Severe

CI-True
Class

Normal 0 2.5 2.5
Mild/Mod. 5 0 1

Severe 5 1 0

Table 2: Weighted cost matrix for misclassification of cognitive impairment (CI) for normal
(±1 SD), mild/moderate (−1 to −2 SD) and severe (< −2 SD) classes. Rows represent true
class labels, with columns as the predicted classification labels.

develop such a classifier, an appropriate cost matrix needed to be identified.256

Using guidelines outlined in the literature [41], the cost matrix in Table 2 was257

developed, with predicted classes represented on the rows and real classes given258

on the columns.259

The defined matrix satisfies several key concerns in multi-class cost-matrix260

development [41]. The weights on misclassification were carefully selected to261

reflect probable clinical concerns in classification with guidance from paediatric262

neurologists (RC, JS). The cost for incorrectly classifying an impaired child as263

normal was twice as heavy compared to misclassifying a normal child into either264

impaired group. This was still significantly more punishing than if impairment265

was correctly identified but misclassification occurred in determining between266

mild/moderate or severe impairment. These weighted values prioritized accu-267

rately including as many ‘true positive’ CWEOE with CI first, i.e. increasing268

sensitivity, followed by a secondary prioritization on being able to discern the269

level of CI. These boundaries provide a more clinically relevant classification270

context in the analysis.271

Using the selected features and developed cost-sensitive matrix, a nested272

5-fold cross-validation trained a simple K -Nearest Neighbour (KNN) classifier,273

with N = 3 neighbours and Euclidean distance to minimize the above costs. By274

demonstrating the proof-of-concept results with KNN, we aimed to demonstrate275

significant network responses found from the proposed analysis pipeline could276

be exploited using a simple to implement (and interpret) classification scheme.277

Other potential (and more complex) classifiers are given some consideration278

in the Discussion section below. A repeated ‘bagging’ (Boostrap Aggregation279

[42]) approach was used to reduce variance in the classifier at a rate of 100280

iterations/fold. Results were evaluated upon their overall classification accuracy281

and total penalty costs (e.g. sum of all mistakes based on the cost matrix).282

Random classification and naive classification (e.g. only choosing a single283

class for all subjects) were included for comparison. In this study, random clas-284

sification refers to classification of any ’true’ class label to a randomly selected285

’predicted’ class label. Based on the distribution of subjects into the classes, a286

‘chance’ level for each class is used to assign the ’predicted’ label at random.287

Naive classification (e.g. single-class classification), assumes that all subjects288

belong to only one class. Classification accuracy and misclassification penalties289

are then calculated based on the presumed (single) class assignment. This study290
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looked at naive classification for each class label, and have reported comparisons291

to each possible naive classification.292

3. Results293

Of 64 children enrolled into the parent study, 13 were excluded from the294

current study due to corrupted EEG data and inconsistent or incompatible EEG295

acquisition parameters. There were data available for analysis on 51 children296

(32:19 male-to-female ratio, mean age and SD of 30.85 ± 20.08 months). On297

average approximately 455 ± 325 two second trials were used for each child in298

the analysis, totalling 15.16± 11.87 minutes of resting-state EEG data for each299

child. Thirty-one children had normal cognition, 7 had mild/moderate CI, and300

13 had severe CI.301

3.1. Correlation Analysis302

Each combination of functional link analysis (ICOH/PSI/WPLI) and sub-303

network selection (MST/CST) techniques uncovered likely correlations between304

at least one network metric (outlined in Figure 3) and the cognition standard305

score measures. A summary of the significant correlations between the MST306

metrics and the standard scores are shown in Table 3. All MST correlations307

were in the medium to high frequency range, 9 − 31 Hz, with no significant308

results in lower frequencies. Activity above approximately 9 Hz is outside of the309

expected range for the delta, theta and alpha bands in young children [43, 44].310

Sets of contiguous frequency bands with significant correlations were found in311

the ICOH and PSI connectivity measures, and are reported together as a single312

frequency range. Overlapping correlations retained at significant levels after313

partial correlation correcting for age are also reported for the MST using a314

modified Kendall’s τ .315

Similarly, significant correlations between the CST metrics and the cogni-316

tion standard scores are shown in Table 4. Several significant CST metrics exist317

in the lower frequency range (< 9 Hz), indicating a potential sensitivity of the318

CST to lower frequencies. No sets of continuous frequency bands were discov-319

ered, but several sets were trending towards this phenomenon within ICOH.320

Multiple overlapping correlations remaining after partial correlation correction321

for age from the modified τ in the CST at lower frequencies indicate additional322

sensitivity.323

Both the MST and CST demonstrate high sensitivity in the phase-dependent324

measures (PSI, WPLI) compared to the standard ICOH.325

3.2. KNN Classification326

Based upon CST’s sensitivity, a preliminary classification scheme assessed327

the potential predictive qualities of the CST network metrics in identifying CI328

classes. The relative quality of the classifications are examined using classifica-329

tion accuracy and total ‘cost’ (i.e. penalty for misidentification) [41].330
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MST analysis of cognition standard score measures
Network Type Network Measurement Frequency Range(s) (Hz) Correlation (τ̄ ± SD)

ICOH Diameter – –
ICOH Maximum Degree – –
ICOH Leaf Fraction – –
ICOH Betweenness Centrality 13-17 Hz −0.231± 0.001
PSI Diameter 9-19 Hz 0.239± 0.032†∗

PSI Maximum Degree 11-13 Hz −0.232± 0.000∗

PSI Maximum Degree 15-17 Hz −0.258± 0.000†∗

PSI Maximum Degree 21-23 Hz −0.219± 0.000
PSI Leaf Fraction 11-13 Hz −0.201± 0.000
PSI Leaf Fraction 15-19 Hz −0.246± 0.003
PSI Betweenness Centrality 9-13 Hz −0.218± 0.012∗

PSI Betweenness Centrality 17-19 Hz −0.259± 0.000†∗

WPLI Diameter – –
WPLI Maximum Degree 29-31 Hz −0.310± 0.000†∗

WPLI Leaf Fraction – –
WPLI Betweenness Centrality 23-25 Hz 0.223± 0.000

Table 3: Summary of Kendall’s τ correlation trends between various graph metrics and the
cognition standard scores using the Minimum Spanning Tree (MST). For all values |τ | was
between 0.201 and 0.310; mean = 0.239± 0.0278 and uncorrected p < 0.05. Significant values
across contiguous narrow-band frequencies have been grouped together for ease of interpreta-
tion.
† Significant with Bonferroni correction at the level of frequencies.
∗ Significant after partial correlation correction to age of subjects, via modified τ with uncor-
rected p < 0.05.

The subset of CST metrics for classification, identified from significant cor-331

relations and chosen via cross-validated feature selection, included five network332

metrics across the three connectivity measures. For ICOH, the identified subset333

selected was the betweenness centrality at ranges 11-13 and 19-21 Hz along-334

side the clustering coefficient at a range of 15-17 Hz. The subset also included335

the PSI average degree at 13-15 Hz and the WPLI variance degree from 1-3336

Hz. These results indicate specifically which network metrics, from a machine-337

learning perspective, contributed the most information for building an accurate338

classification model. As such, the classifier was trained specifically, and only,339

using these 5 key metrics. An illustrative example of these 5 selected network340

metrics (e.g. features) are shown in Figure 4 as scatter plots. When training341

the classifier, these network features are used to identify the underlying patterns342

not readily observed, and are incorporated into guiding the machine learning343

algorithm.344

The resulting confusion matrix from the 5-fold cross-validated, cost-sensitive345

classification analysis is seen in Table 5.346

The overall classification accuracy was defined as the number of true label347

classes correctly predicted by the classifier, e.g. the true positive diagonal of348

Table 5. Presently, approximately 36 of the 51 children’s cognitive class (e.g.349

normal, mild/moderate CI, severe CI) were correctly predicted, giving a total350

accuracy of the classifier at 70.6%. Using Table 2, an overall ‘cost-penalty’ value351

was calculated at 38 points, based on the children who were misclassified, i.e.352
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CST analysis of cognition standard score measures
Network Type Network Measurement Frequency Range(s) (Hz) Correlation (τ̄ ± SD)

ICOH Clustering Coefficient 15-17 Hz −0.290± 0.000†∗

ICOH Average Degree – –
ICOH Variance of Degree 13-15 Hz −0.200± 0.000
ICOH Variance of Degree 21-23 Hz −0.203± 0.000
ICOH Betweenness Centrality 11-13 Hz −0.273± 0.000†∗

ICOH Betweenness Centrality 15-17 Hz −0.241± 0.000
ICOH Betweenness Centrality 19-21 Hz −0.203± 0.000
PSI Clustering Coefficient – –
PSI Average Degree 13-15 Hz −0.210± 0.000
PSI Variance of Degree 15-17 Hz −0.277± 0.000†∗

PSI Variance of Degree 21-23 Hz −0.217± 0.000
PSI Betweenness Centrality 5-7 Hz 0.204± 0.000∗

PSI Betweenness Centrality 15-17 Hz −0.248± 0.000
WPLI Clustering Coefficient 1-3 Hz −0.236± 0.000∗

WPLI Clustering Coefficient 17-19 Hz 0.287± 0.000†∗

WPLI Average Degree – –
WPLI Variance of Degree 1-3 Hz −0.236± 0.000∗

WPLI Betweenness Centrality – –

Table 4: Summary of Kendall’s τ correlation trends between various graph metrics and the
cognition standard scores using the Cluster-Span Threshold (CST).For all values |τ | was be-
tween 0.201 and 0.290; mean = 0.237 ± 0.033, and uncorrected p < 0.05. Significant values
across contiguous narrow-band frequencies have been grouped together for ease of interpreta-
tion.
† Significant with Bonferroni correction at the level of frequencies.
∗ Significant after partial correlation correction to age of subjects, via modified τ with uncor-
rected p < 0.05.

Confusion Matrix from Classification Results
CI-Predicted Class

Normal Mild/Mod. Severe

CI-True
Class

Normal 26 2 3
Mild/Mod. 2 3 2

Severe 1 5 7

Table 5: Resulting confusion matrix from the 5-fold cross-validated, cost-sensitive classifica-
tion scheme for all n = 51 children based on costs in Table 2. Rows represent true class labels,
with columns as the predicted labels from the classification. Bold values along the diagonal
show true positive classification results, where actual and predicted cognitive classes were ac-
curately identified. Italicized values indicate children predicted to have CI, i.e. mild/moderate
or severe class, by the classification scheme.
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Figure 4: Scatter plot displaying the distribution of children for each of the 5 features used in
training the KNN classification. Each panel displays network values on the y-axis, with the
normalized cognition standard score (z-score) on the x-axis. Children classified into normal,
mild/moderate CI and severe CI classes are displayed in red, green and blue respectively.
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Classification Scheme
Network Analysis Random Naive Class Naive Value

Total Accuracy 70.6% (36/51) 45.4%(≈23/51) Normal Cognition 60.8% (31/51)
Mild/Moderate CI 13.7% (7/51)
Severe CI 25.5% (13/51)

Total Cost Penalty 38 pts ≈65 pts Normal Cognition 100 pts
Mild/Moderate CI 90.5 pts
Severe CI 84.5 pts

Table 6: Summary table of overall classification accuracies and total cost penalty for the pro-
posed network analysis, random classification, and naive (single class) classification. Naive
classification is split to show overall classification accuracy and cost penalties if all children
were assigned as normal cognition, mild/moderate CI or severe CI classes. Total accuracy in-
cludes the approximate number of children with true positive predictions, out of total number
of children evaluated.

their cognitive class was not correctly predicted.353

The expected random classification accuracy is based on the distribution354

of individuals belonging to each class, i.e. 31, 7 and 13 children for the nor-355

mal, mild/moderate and severe classes respectively. Random accuracy would356

be expected at 45.4%, with cost-penalty varying depending on misclassification357

distributions. Using the average misclassification penalty and the percentage of358

misidentified children (approximately 28 of the 51 subjects), the cost-penalty359

would be at least 65 points.360

The naive, or single-class, classification scheme assumed all subjects be-361

longed to a single cognition class in order to calculate the accuracy and misclas-362

sification costs under this scheme. For example, if all children were considered as363

belonging to the ‘normal’ cognition class (i.e. naively classified as normal), then364

exactly 31 of the 51 children (those whose true class is ‘normal’-the first row of365

Table 5) would be correctly identified. This would give the naive classification366

scheme an accuracy of 60.8%. Repeating this naive classification scheme for367

mild/moderate and severe classes resulted in classification accuracies of 13.7%368

(7/51), and 25.5% (13/51) respectively. Similarly, the total cost-penalty for369

each naive classification would be 100, 90.5 and 84.5 points respectively, using370

the same procedure and the penalty costs from Table 2.371

Overall, the results indicate gains in classification accuracy and a reduced372

total penalty as compared to both random and naive classification. This is373

summarized in Table 6.374

4. Discussion375

The main finding of this study is demonstrating how graph analysis can be376

exploited to identify potential computational biomarkers for CI in CWEOE di-377

rectly from routinely collected clinical EEG. The results revealed a substantial378

pool of potential network characteristics which might helpful in identifying CI in379

CWEOE via several different network analysis and dependency combinations.380

The breadth of these combinations emphasizes that network analysis of paedi-381

atric EEG is well-suited for identifying possible CI markers in CWEOE. The382
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automated and quantitative nature of the processing chain, ability to appropri-383

ately predict CI classes, and its use of routinely acquired EEG data make the384

proposed methods an attractive proposition for clinical applications.385

Flexibility in sensitivity and robustness of particular networks to features386

of interest is an advantage of this analysis. For instance, the sensitivity of387

phase-dependent connectivity measures, e.g. PSI and WPLI, was more preva-388

lent compared to standard ICOH. This is not surprising as phase-oriented mea-389

sures were developed to improve upon phase ambiguities in traditional ICOH390

measurements [25, 28]. In addition, the sensitivity of PSI in picking up signifi-391

cant correlations can be attributed in part to its equal treatment of small phase392

differences in leading and lagging signals [25]. Such small phase differences con-393

tribute equally in PSI, while counting for proportionally less in the WPLI by394

definition [27, 26]. By construction, the WPLI results are substantially more395

robust to noise and small perturbations in phase, through proportionally reflect-396

ing phase differences in network connections with appropriate weights, providing397

results for only large phase differences. Together these measures reflect trade-off398

choices between sensitivity and robustness for network analysis.399

Of interest for paediatric populations is the CST’s capability to identify400

low frequency correlations in phase-dependent coherency measures. Both the401

PSI and WPLI demonstrate sensitivity to lower frequencies, not present in the402

ICOH or MST, in general. This is critical considering that in preschool chil-403

dren lower frequencies typically contain the bands of interest present in adult404

EEGs, e.g. the delta/theta/alpha bands [43, 44]. During development these405

bands shift to higher frequencies [45], reflecting a large scale reorganization of406

the endogenous brain electric fields and suggesting a transition to more func-407

tionally integrated and coordinated neuronal activity [23]. The (low) chance of408

all such significant findings being spurious is less detrimental than the potential409

impact from disregarding these findings altogether. The ability to detect net-410

work disruptions potentially present in these critical bands in CWEOE provides411

high impact value, and the possibility for adjusting potential therapeutic and412

treatment strategies for clinicians and researchers.413

The identified subset of metrics for classification provide additional informa-414

tion. All of the features in the subset reflected distribution measures of hub-like415

network structures in the brain, relating to the balance between heterogene-416

ity and centrality within the network. The implicated metrics, other than the417

variance degree, corresponded to measures identifying local, centralized ‘criti-418

cal’ nodes in a network. Their negative correlation to the cognition standard419

scores imply that children with more locally centralized brain networks, and420

consequently with less well distributed hub-like structures, are more likely to421

have corresponding cognitive impairment. This is reasonable, since if there ex-422

ists a small set of central, critical hubs responsible for communication across423

the brain, disruption of these critical points (e.g. due to seizure activity and/or424

diffuse damage in the brain) would have severely negative effects on commu-425

nication connections. This is also supported by the negative correlation in the426

variance degree metric in the WPLI. The variance degree can be interpreted as a427

measure of a network’s heterogeneity [46]. As such, the negative variance degree428
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in the low (1-3 Hz) frequency range may reflect stunted cognitive development,429

as normal maturation is associated with reduced activation in low frequencies430

[47, 43, 48, 44, 49], implying a decrease in local connectivity and heterogeneity431

of the networks. This compliments the above conclusions, suggesting a sensitiv-432

ity in the likely well-centralized networks to significant disruptions by epilepsy.433

The disrupted networks may then be reflected by the continued heterogeneity434

and local connectivity of low frequency structures in impaired children.435

Being able to predict the likely extent of CI using the identified markers436

could provide an advantageous tool for clinicians. Specifically, being able to pair437

specific network features to an effective prediction of CI would allow clinicians438

to retain interpretation of the chosen network features while providing a tool to439

quickly and objectively separate similar cases. To this end, the cost-sensitive,440

simple KNN classifier explored in this work illustrates an early step towards this441

aim.442

Evaluating the network-based classifier results show the analysis was suc-443

cessful at two levels. First, the proposed classifier was able to generally iden-444

tify cognitively normal children from impaired children, when grouping the445

mild/moderate CI and severe CI classes. This is seen in the first column of446

Table 5 where only three impaired children are misidentified as ‘normal cogni-447

tion’, giving a sensitivity of 85%. In other words, 17 of the 20 actual impaired448

children were correctly identified as belonging to either the mild/moderate or449

severe CI classes, demonstrating that the proposed network analysis and clas-450

sifier was largely successful with respect to predicting children with some form451

of impaired cognition, based on using the standard score definition. Similarly,452

only five normal children were misidentified as generally impaired (i.e. classified453

to either the mild/moderate or severe CI classes; top row of Table 5), giving a454

specificity of approximately 84% (26/31) for appropriately identifying children455

in the range of normal cognition. In addition, the network coupled classifier456

was able to separate out cases of mild/moderate impairment from severe im-457

pairment decently, with > 50% of impaired children correctly predicted. Thus,458

the proposed classifier and associated methods provide considerable sensitivity459

(85%) and specificity (84%) for clinicians in determining potential CI, while still460

remaining relatively accurate in separating CI according to severity.461

Statistical analysis in this manuscript was utilized as a first-pass means to462

reduce the potential feature space for classification. Through identifying po-463

tentially significant networks of interest, the number of features to test in the464

classification step was substantially reduced. Through the statistical analysis,465

pertinent features from a relevant and manageable feature space were selected.466

It bears repeating that Kendall’s τ was a non-parametric significance test, which467

means it did not rely on an underlying assumption of a normal (or any other)468

distribution in the data. Kendall’s τ correlation was therefore robust to the469

apparent flooring effect seen in the severe CI class, as it utilized concordant470

and discordant pairs. As such, the conclusions drawn from the statistical anal-471

ysis were unaffected by this phenomena. Future endeavours could refine such472

features, based on different choices for the statistical analysis. Using a more473

rigid/flexible analysis could lead to further culling/relaxation of the feature474

18



space and provide an adjustable framework for examining network property475

changes in CWEOE. Other future work could include alternative narrow-band476

frequency binning and less strict automated rejection methods. Significant cor-477

relations across sets of consecutive (and nearly consecutive) frequency bands478

indicate likely targets for other potential follow-up studies.479

The KNN classifier utilized in this study is a well-established classification480

scheme [50], chosen a priori to help promote easier understanding of the classifi-481

cation results in this pilot study. Its simplicity in implementation helps support482

repeatability in the analysis methods for clinicians and researchers who may not483

be as experienced in implementing more sophisticated classification paradigms.484

Of course future developments to the described methods could include inte-485

grating more complex classification schemes, such as deep convolutional neural486

networks (dCNN) [51, 52, 53]. Utilizing dCNN in context with the presented487

results, however, may require a significant amount of data to function well and488

reduce the straight-forward interpretation of how the classification was calcu-489

lated (although this may change in coming years- interested readers should see490

[53]). Nevertheless, including such classification schemes could help improve the491

results, especially at the second tier discrimination, e.g. at the level of discern-492

ing between the cognitive impairment types (e.g. mild/moderate CI from severe493

CI). A thorough investigation into incorporating and comparing additional clas-494

sifiers thus is a strong potential avenue for expansion of this research.495

The NEUROPROFILE cohort was advantageous in that formal neuropsy-496

chological testing was coupled with EEG recordings, making it ideal for this497

investigation. However, there are study limitations. Although this study used498

routine clinical EEGs used in the diagnosis of incidence cases of CWEOE,499

the three classes of normal, mild/moderate and severe impairment were un-500

balanced; this occurred naturally. The majority of the sample was taken from501

a population-based cohort, and mitigating potential influences from imbalanced502

data was taken into account as much as possible when conducting the research,503

e.g. through cost-sensitive analysis. Imbalanced data is not uncommon, but504

the unbalanced distribution of CI in the current study reflects findings in a true505

population-based cohort [20]. Furthermore, trialling this methodology in older506

children with epilepsy may be an avenue for future studies, to provide further507

insights as to the relationship between aetiology and CI, as well as provide508

additional replications of the proposed techniques.509

5. Limitations510

Within the studied cohort of CWEOE, the epilepsy type and aetiologies were511

heterogenous. Thus we are unable to determine if the model and methods used512

have greater or lesser predictive value in specific subsets. Testing in a larger,513

more homogeneous sample would provide clarification.514

A gender disparity was noted within the normal cognition and mild/moderate515

CI groups. Although this study reflects a true population, further studies are516

needed to investigate this phenomena.517
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Note that the spectral components in the very low frequency narrow band518

(e.g.1-3 Hz) may not be fully reliable due to the small epoch length, i.e. two519

seconds. Information gained from the very low frequency band needs to be520

interpreted with some care, as spurious connections are more likely to be present.521

Again, however, the large number of trial epochs averaged for each child helped522

mitigate these potential spurious connections.523

We recognize a limitation in the assumption of dependency between the524

frequency bins. While there is likely a strong local family dependency between525

the narrow bins, the endpoints on the chosen frequency spectrum may not have526

as strong of a relation. Therefore, significance at these level should be considered527

carefully as they are more likely to be a false positive. However, the robust528

nature of τ and chosen features from a machine-learning perspective help to529

moderate potential impacts from this assumption on the presented results.530

The use of a data-driven, narrow band approach in the analysis had a trade-531

off of not using patient-specific frequency ranges for each child. Future studies532

could be done to investigate how individualized frequencies, e.g. using individ-533

ual alpha frequencies (IAF), could be aligned, interpreted and correlated when534

assessing network abnormalities in the CWEOE population.535

Only a small set of the available network analysis methods were explored in536

this analysis. These were chosen prior to starting the project in order to limit537

potential multiple comparisons and focus the study on a select few state-of-538

the-art techniques. The selected dependency metrics (e.g. ICOH, PSI, WPLI)539

and sub-network graphs (MST, CST) in this study are by no means a compre-540

hensive set. Other network analysis techniques and measures of dependencies541

offer potential avenues to further explore techniques which could help identify542

CI in CWEOE. For other potential network analysis methods, the authors re-543

fer interested readers to recent reviews [54, 55] covering the extensive available544

techniques utilizing network analysis in brain signal processing.545

6. Conclusions546

This study explored processing EEG using network analysis to demonstrate547

its use in identifying markers of CI in CWEOE for the first time. Results from548

the study demonstrate these network markers in identifying critical structures of549

CWEOE with CI and illustrate their potential predictive abilities using prelimi-550

nary classification techniques. Replication of the identified methods using other551

datasets, with alternative narrow-band frequency binning, less strict automated552

rejection methods, and including correlations with brain MRI abnormalities may553

bolster the generalizability and applicability of the proposed techniques.554
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Appendix A. Network Coupling Definitions885

Appendix A outlines the key network definitions and details for the presented886

analysis. For in-depth reviews see [56, 13], and for further reading [12, 57, 58].887

Cross-spectrum888

Functional EEG connections are established through measures of interde-
pendency between signals si and sj [58] for any pair of EEG channels i and
j. A common measurement for examining this interdependency is the cross-
spectrum function Sij(f) [59, 24, 58]. Formally, let xi(f) and xj(f) be the
complex Fourier transforms of the time series signals si and sj for any pair (i, j)
of EEG channels. Then the cross-spectrum can be calculated as

Sij(f) ≡ 〈xi(f)x†j(f)〉 (A.1)

where † indicates the complex conjugation, and 〈〉 refers to the expectation value889

(also written as E{}) [24].890

Imaginary Part of Coherency (ICOH)891

Coherency is defined as the normalized cross-spectrum[24]:

Cij(f) ≡ Sij(f)

(Sii(f)Sjj(f))1/2
(A.2)

Therefore, the imaginary part of coherency is defined as [24]

ICohij(f) ≡ Im{Cij(f)} (A.3)

where Im{} refers to taking the imaginary part of a value, in this case the892

complex coherency measure.893

Phase-Slope Index (PSI)894

The PSI is defined as:

Ψij(f) = Im{
∑
f∈F

C†ij(f)Cij(f + δf)} (A.4)

where Cij(f) is as defined in equation A.2, δf is the frequency resolution, and895

f ∈ F is the set of frequencies over which the phase-slope is calculated. See [25]896

for details.897

Phase-Lag Index898

The PLI is defined as: [26, 27]

Θij ≡ |〈sign(Im{Sij(f)})〉| (A.5)

29



where sign(·) is the positive or negative sign, and Im{Sij(f)} is the imaginary899

part of the cross-spectrum. Note that ICOH in equation (A.3) reflects the imag-900

inary part of the normalized cross-spectrum, while the standard cross-spectrum901

is used here.902

Weighted Phase-Lag Index (WPLI)903

The weighted PLI (WPLI) is defined as: [27]

Φij(f) ≡ |〈|S|sign(S)〉|
〈|S|〉

(A.6)

where S = Im{Sij(f)}.904
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Appendix B. Supplementary Figures905

ICOH

5 10 15 20

5

10

15

20
0

0.1

0.2

0.3

0.4

0.5

PSI

5 10 15 20

5

10

15

20
0

0.5

1

1.5

2

2.5

3

WPLI

5 10 15 20

5

10

15

20
0

0.05

0.1

0.15

0.2

Figure B.5: Adjacency matrices for a representative ‘normal cognition’ child calculated by
ICOH, PSI and WPLI between the 5-9 Hz frequency range.
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Figure B.6: Adjacency matrices for a representative ‘impaired cognition’ child calculated by
ICOH, PSI and WPLI between the 5-9 Hz frequency range.
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