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ORIGINAL PAPER

Geoparsing historical and contemporary literary text
set in the City of Edinburgh

Beatrice Alex1,2 • Claire Grover2 •

Richard Tobin2 • Jon Oberlander2

� The Author(s) 2019

Abstract While a reasonable amount of work has gone into automatically geop-

arsing text at the city or higher levels of granularity for different types of texts in

different domains, there is relatively little research on geoparsing fine-grained

locations such as buildings, green spaces and street names in text. This paper reports

on how the Edinburgh Geoparser performs on this task for different types of literary

text set in Edinburgh, the first UNESCO City of Literature. The non-copyrighted

gold standard datasets created for this purpose are released along with this article.
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1 Introduction

This article presents work on fine-grained geoparsing carried out as part of the

Palimpsest project on mining historical and contemporary literary texts set in

Edinburgh.1 During this project we adapted the Edinburgh Geoparser,2 a tool which

is used to geoparse text, to literary text containing fine-grained place names located

in and around Edinburgh. By fine-grained we mean locations at a lower level of

granularity than the city or village level, such as names of streets, buildings,

monuments or parks.

The output of the Palimpsest project is accessible in a web-based map interface

called LitLong3 as well as via the LitLong:Edinburgh iOS app4 (Loxley et al. 2018).

Both interfaces display the geoparsed literature by allowing users to browse literary

excerpts containing Edinburgh-based locations, search by author, gender and date,

and to create literary paths through the city (see Figs. 1 and 2).

The Edinburgh Geoparser has been applied to historical text in the past (Grover

et al. 2010; Alex et al. 2015). However, up until Palimpsest it was set up to

geoparse up to the city or village level, but did not attempt to locate places at a

lower level of granularity. In Palimpsest the geoparser was extended to geoparse

fine-grained place names like street names, names of buildings, parks or monuments

within the Edinburgh area. As is common for other geoparsing tools and to clarify

the terminology used throughout this paper, its geoparsing process is made up of

two steps: geotagging and a georesolution. Geotagging involves identifying place

names mentioned in the text and georesolution refers to resolving them to

geographical coordinates. This paper presents results obtained in experiments

evaluating the performance of the adapted geoparser for both steps.

After reporting on the background for Palimpsest, related projects and, in

particular, related geoparsing evaluation work in Sect. 2, we will give an overview

of the existing Edinburgh Geoparser and will explain how it was adapted to

geoparse fine-grained place names (see Sect. 3). As a gold standard, we used three

types of literary text for evaluating the adapted geoparser:

• historical, raw optically character recognised (OCRed) text,

• historical, manually crowd-corrected OCRed text and

• contemporary born electronic text.

Section 4 explains how these datasets were selected and prepared, provides counts

on the geoparsing annotation and reports inter-annotator agreement (IAA). We will

then explain in detail how the Edinburgh Geoparser preformed on this data both for

identifying location mentions in text and for georesolving them to latitude and

longitude coordinates in gazetteers (see Sect. 5). An additional contribution along

1 https://www.ed.ac.uk/literatures-languages-cultures/english-literature/research/palimpsest.
2 www.ltg.ed.ac.uk/software/geoparser.
3 www.litlong.org.
4 https://itunes.apple.com/gb/app/litlong-edinburgh/id1004433531?mt=8.
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with this paper is the release of the non-copyrighted gold standard data used in the

evaluation presented.

2 Related work

While there have already been many digital literary mapping projects, in this section

we will present the most relevant ones as well as existing studies evaluating

geoparsing literary text or comparing geoparsers. We refer readers interested in

other literary mapping work to an extensive list of 74 projects recently reviewed by

Luchetta (2017).

The idea for Palimpsest arose out of an initial prototype which visualises a small

set of excerpts set in Edinburgh and manually collected by literary scholars at the

University of Edinburgh, a project which was initiated by the literary scholar Dr.

Miranda Anderson.5 Related smaller-scale endeavours have relied on the collection

of titles or passages by a few individuals or via crowd sourcing (e.g. Edinburgh

Reads6 created by Edinburgh Libraries. A larger crowd sourcing effort is that of the

Fig. 1 The LitLong web interface at www.litlong.org

5 http://palimpsest-eng.appspot.com.
6 https://www.google.com/maps/d/viewer?mid=1hkhLnpdhJEkiKa67NmkCTGxA7MY&hl=en_US&ll=

55.94115059499049%2C-3.252396699999963&z=11.
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Global Book Map.7 It currently contains 142,917 books for 18,103 locations world-

wide and this data is being collected either by users adding and mapping books

manually on the document level or by exploiting metadata from Open Library8 or

from LibraryThing.9 The Global Book Map currently contains 393 entries for

Edinburgh but does not map to fine-grained locations within the city not does it

allow users to browse excerpts containing such locations. This functionality is made

possible by Palimpsest as LitLong users are able to read through the context of

location mentions and thereby immerse themselves in the literary landscape of

Edinburgh.

There have been numerous literary city or area mapping projects involving fine-

grained locations including the Mapping of St.Petersburg10 primarily achieved via

manual analysis combined with online mapping of places in St.Petersburg in works

by Dostoevsky and Gogol. There is also the Literary City site11 presenting a map of

literature set in San Francisco. While there is no explanation on how the location

Fig. 2 A literary path created on LitLong

7 http://www.mappit.net/bookmap.
8 https://openlibrary.org.
9 https://www.librarything.com.
10 http://www.mappingpetersburg.org.
11 http://www.sfchronicle.com/theliterarycity/.
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information was derived for the latter site, we presume it was also created manually.

The Literary Atlas of Europe12 is an interdisciplinary research collaboration

between literary scholars, cartography and visualisation experts mapping literature

set in three distinct regions (Prague, Nordfriesland and Vierwaldstättersee). As far

as we understand, its geoparsing work was also done manually involving literary

experts identifying locations in text and resolving them to latitude and longitude

coordinates. The advantage of such manual work is that it is very accurate.

However, it is very time-consuming to create as individuals have to identify pieces

of literature, mark up all the locations within them and disambiguate them by

assigning latitude/longitude pairs or linking them to gazetteer entries. As a result,

such efforts tend to focus on a few select pieces of literature or do not attempt to

geoparse entire literary works. In comparison, the aim of Palimpsest was to

geoparse the full text of a comprehensive set of literature set in Edinburgh which is

why the Edinburgh Geoparser was employed to assist with this work even though it

is not 100% accurate. In the LitLong interface users are now able to alert the team

when they spot a geoparsing mistake and in future iterations such error notifications

can be fed back into our tools to improve geoparsing accuracy. This goes beyond the

argument made by Solina and Ravnik (2010) of employing automatic methods for

geoparsing literature where possible and combining them with human selection and

interpretation (Solina and Ravnik 2010) as human input can be exploited to optimise

the technology as well.

One of the most well-known projects applying automatic geoparsing to literature

is the Mapping the Lakes project led by Prof. Ian Gregory. His group adapted the

Edinburgh Geoparser to do this work (Cooper and Gregory 2011) and have

presented precision and recall scores for geotagging of 91.6 and 74.4 depending on

the type of gazetteer used (Rupp et al. 2013). Alves and Queiroz (2015) report on

the mapping of Portuguese literature as part of the project LITESCAPE.PT - Atlas

of Literary Landscapes of Mainland Portugal (Alves and Queiroz 2015). Their paper

refers to ‘‘distant reading’’ being employed as part of their methodology. They

mention that they are exploring the use of Portuguese computational linguistics

tools but do not go into detail on their exact methods and how well they perform.

The most relevant work in terms of evaluation of fine-graining geoparsing of

literature is that of Moncla et al. (2017). Their paper evaluates the first step in the

process (geotagging), and their analysis is limited to recognising Paris street names

in French literary text. They report on two methods for identifying street names in

31 French novels and measure performance in terms of precision, recall and

balanced F1-score, metrics which are also used in this paper. While both methods

score high at 0.98 and 0.99 F1, boundary errors are reported but not included in their

calculations. Recognising street names is a relatively easy task given that they are

often signalled by the occurrence of the words rue, avenue or boulevard and these

results support this claim. Furthermore, they carry out manual correction of OCR

errors caused by the digitisation process. In this paper we do not differentiate

between different types of fine-grained locations as the Edinburgh Geoparser aims

to identify all of them. We report geotagging performance using a strict measure of

12 http://www.literaturatlas.eu/en.
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F1 (used in the CoNLL 2002 competition for recognising named entities (Tjong

Kim Sang 2002), see Sect. 5) which includes all boundary errors and therefore

counts them both as false positives and as false negatives. We also do not correct the

original text nor any of the processing steps prior to geotagging.

Earlier work by Moncla and his collaborators involved geoparsing hiking

descriptions containing fine-grained toponyms such as names of churches, cottages,

hamlets and lakes (Moncla et al. 2014). Their NER tagging method is similar to that

employed by the Edinburgh Geoparser in Palimpsest (combining rules with lexical

lookup) and scores very high when applied to a gold standard which was hand-

corrected for part-of-speech (POS) tags. Performance suffers by up to 15% when

automatic POS tagging is used. Their main contribution in terms of georesolution is

a method for resolving location mentions not found in the gazetteer to geographical

areas instead of precise points. It lends itself well for hiking descriptions as location

mentions tend to follow a path and are in close proximity to each other restricted to

a relatively small area. This means that location mentions contained within the

gazetteer can be used to constrain the area of those not found. This method would

potentially work well for travel literature, for example, where the author describes a

walk through the city, but would be less successful for resolving place names in

other types of literary works where they are used to describe the location of a

character or to set the scene of a plot.

There is also existing research on spacial uncertainty of locations mentioned in

literature (Reuschel and Hurni 2011). It mainly focusses on the visualisation of

vague place names as they do not tend to have concrete boundaries. When

geoparsing text containing such names (e.g. the area Leith in Edinburgh) gazetteers

often do not distinguish between them and locations with concrete latitude and

longitude coordinates. The Edinburgh Geoparser processes vague locations (as long

as they are named) in the same way as other place names and their georesolution is

largely dependent on their gazetteer entries.

More recently researchers have started to publish comparisons of different

geoparsers to determine the shortcomings of such systems and possible routes for

future work in this area. For example, Gritta et al. (2017) compared five systems

(GeoTxt13 (Karimzadeh et al. 2013), Yahoo! PlaceSpotter14, CLAVIN15, Topoclus-

ter (DeLozier et al. 2015) and the Edinburgh Geoparser) on two contemporary

English datasets (Wikipedia pages and news articles) in terms of their geotagging

and georesolution performance as well as their speed. The authors argued that a

geoparser must perform well on all three aspects and concluded that, albeit not

performing perfectly, only the Edinburgh Geoparser managed to do so. They also

provided an extensive error analysis and discussed ways in which geoparsers can be

improved which is extremely useful for those working on this kind of technology.

13 http://www.geotxt.org/api/.
14 https://developer.yahoo.com/boss/geo/docs/key-concepts.html.
15 https://clavin.bericotechnologies.com/about-clavin/.
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3 Adapting the Edinburgh Geoparser

For Palimpsest, we adapted the existing default version of the Edinburgh Geoparser

to process literary text set in and around the City of Edinburgh and geotag and

georesolve local Edinburgh-specific place names. We already have experience in

adapting this geoparser to historical text (Alex et al. 2015) but this was the first time

we modified it to work with literary text, both historical and contemporary. The

default geoparser contains the two main components shown in Fig. 3: a text mining

pipeline for recognising place names (geotagging) and other entities in text and a

geographic ambiguity resolution (georesolution) component which chooses between

competing interpretations of place names (i.e. different geographic coordinates)

given their textual context. Both components make extensive use of place name

gazetteers, the selection of which depends on the geoparsing task at hand and the

type of data to be processed.

3.1 The Edinburgh gazetteer

There was no freely available gazetteer which includes all the Edinburgh place

names, the use of which we wanted to capture in Palimpsest. These place names

have different granularity, ranging from area names (Portobello, Cramond), through
street names (The Royal Mile, Cockburn Street) to open spaces (The Meadows,
Princes Street Gardens), buildings (Craigmillar Castle, Holyrood Palace), statues
and monuments (Greyfriars Bobby, The Scott Monument) etc. Therefore, a

prerequisite for geoparsing was to create an Edinburgh gazetteer by aggregating

information from a variety of different sources. For street names we used the

Ordnance Survey’s OS Locator (OSL) data,16 for building-level information we

used the Canmore site records database17 from the Royal Commission on the

Ancient and Historic Monuments of Scotland (RCAHMS) which is now part of

Historic Environment Scotland.18 For other information, ranging from area names

through to pub names, we used an Edinburgh subset of Open Street Map (OSM).19

The aim was to create a gazetteer which could be used both as a place name lexicon

when identifying potential place names in text during geotagging and as a gazetteer

for georesolution, i.e. assigning latitude/longitude coordinates to geotagged place

names.

The aggregation process involved converting records from all three sources into

one common XML format followed by a data clean-up stage to discard records

which might trigger faulty geotagging of place names in text. For example,

Canmore contains records for places with generic names such as Station House or

Barracks, as well as records for residential houses with names such as Bonny Views.
OSM contains records for numerous modern-day businesses such as Bay of Bengal
(a restaurant) and Blossom (a guest house). We attempted to exclude records such as

16 https://www.ordnancesurvey.co.uk/business-and-government/products/os-locator.html.
17 https://canmore.org.uk.
18 https://www.historicenvironment.scot.
19 https://www.openstreetmap.org.
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these semi-automatically. The final gazetteer still contains many rather questionable

Edinburgh place names, e.g. Alpine Garden (part of the Royal Botanic Gardens

Edinburgh), Beach House (generic descriptor) or The Waiting Room (a pub). The

presence of this kind of record in the gazetteer, however, does not seem to have had

too deleterious an effect on geotagging and subsequent georesolution.

There are some place names which occur in the Palimpsest works for which none

of the three sources has a record. These are mostly historical forms of modern place

names or spelling variants (for example, Cowgate-port, Nor’ Loch or Edinboro). For
cases where such an omission has been observed, we have manually added

appropriate records. We added 25 records by hand collected as a result of manual

error analysis and 92 records as alternative names for locations which were

suggested by literary scholars involved in the project.

The final version of the Edinburgh gazetteer contains 13,064 records corre-

sponding to 10,204 unique place names. Listing 1 shows some example records in

the gazetteer. The source of each record is stored in the source attribute (as either

rcahms, osm, osl, byhand or altnamelist). Note, we did not eliminate

duplicate entries of places from different sources with slightly different coordinate

values (e.g. see Oxford Bar).

Fig. 3 Overview of the Edinburgh Geoparser pipeline made up of a geotagging and a georesolution
component
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Efforts to build a community and infrastructure for linked open geo-data such as

Pelagios Commons20 and the working group Linked Pasts21 advocate the use of

semantic web technology to create linked open geo-historical gazetteers which can

capture alternative names, vagueness and changing location of places. In practice

we found that the existing gazetteer resources related to Edinburgh were all in

different formats, only some of them openly available and none of them were linked

to each other. Alternative names were not usually recorded and many questionable

names were listed without context which confused the geoparser. This is why the

clean-up stage was so important. Equally, the project only allowed a limited amount

of time for this clean-up which is why we employed semi-automatic methods

instead of carefully curating an Edinburgh gazetteer. Converting the final, combined

Edinburgh gazetteer to one linked open dataset was unfortunately not an option as

not all of the original sources were openly available.

3.2 Geoparsing

The Edinburgh Geoparer’s text mining pipeline first converts an input text into a

common XML format and then each stage of processing incrementally adds

annotations to the mark-up (see Fig. 3). First the text is segmented into paragraphs

which are tokenised to add word and sentence elements. Words are then part-of-

speech tagged using the C&C POS-tagger (Curran and Clark 2003) and lemmatised

using Morpha (Minnen et al. 2000). Subsequently, Named Entity Recognition

(NER) is performed using hand-written rule sets combined with lexical look-up. For

place name recognition (geotagging), extensive lexicons of place names both from

20 http://commons.pelagios.org.
21 http://linkedpasts.org.
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the UK and the rest of the world are used. The choice of gazetteer depends on the

particular type of textual data processed and the geoparsing task at hand.

In the Palimpsest system, this stage is augmented to include a lexicon of

Edinburgh place names derived from the Edinburgh gazetteer. Look-up in the

Edinburgh lexicon precedes look-up in the other place name lexicons that are

included in the default Edinburgh Geoparser. Otherwise, the processes are the same

as in the distributed default version where lexical look-up is combined with context-

sensitive rules to identify entity mentions in the text and disambiguate entity types

(Grover et al. 2010). This works by first performing lexical lookup against a series

of lexicons and adding attributes to the XML elements of phrases matched in text.

The lookup works by preferring longer matches over shorter ones (e.g. Princes
Street Gardens is matched instead of just Princes Street). Ambiguities between

entity types are resolved after lookup using rules (e.g. the preposition in before

Deacon Brodie’s suggest that it is a location, in this case a pub, rather than a person

name).

The output of the text mining pipeline contains named entity annotations for

person and place names as well as dates. This is the input to the georesolution step

which looks up place names in one or more gazetteers. Candidate matches are

ranked to arrive at the most probable interpretation given the context of the

document. In Palimpsest, look-up in the Edinburgh gazetteer precedes look-up in

more general Ordnance Survey22 and GeoNames23 gazetteers. Ranking uses

heuristics combined with weighting of information such as geographic feature and

size. We assume that a degree of geographic coherence holds within documents in

that the relevant text is more likely to mention many places in a single area rather

than a set of geographically unrelated places. To model this, proximity between

gazetteer records for all the places mentioned in the document is strongly weighted

to ensure that all locations mutually constrain one another to be as close together as

possible. Thus the highest ranked interpretation of Haymarket will be the one in

Edinburgh in a document containing many Edinburgh or Scottish place names and

the one in London in a document with more London-based or English place names.

More details on the ranking of location candidates can be found in Grover et al.

(2010), Alex et al. (2015) as well as in the documentation of the Edinburgh

Geoparser.24

The georesolution results are added as XML annotations along with their

immediate context of each place name. This information is used for display in the

Palimpsest interfaces. We call the context surrounding a georesolved Edinburgh

place name mention a Palimpsest snippet. In the final system implementation, we

set this context to be the sentence containing the location as well as the previous and

the following sentence without crossing paragraph boundaries.

The Palimpsest snippets are also ranked by an ‘interestingness’-score (i-score).

This was inspired by work on automatic prediction of text aesthetics and

interestingness (Ganguly et al. 2014). The aim is to rank snippets per document

22 https://www.ordnancesurvey.co.uk.
23 http://www.geonames.org.
24 http://groups.inf.ed.ac.uk/geoparser/documentation/v1.0/html/index.html.
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to give those snippets where the Edinburgh place name is not only a mention in

passing more importance and therefore make them appear earlier on in the user

interfaces. We compute this score by checking for a number of features, including

snippet length, the presence of multiple Edinburgh-based locations in the snippet,

the presence of at least one Edinburgh-based location (excluding variants of

Edinburgh), an adjective or adverb appearing in the snippet, the presence of

different forms of certain verbs (be, do, say or go) and word repetition within the

snippet. The i-score is computed by treating each of the features equally and its

value can range between 0 and 1 where 1 represents snippets for which all features

apply and 0 those where none of the features apply. The idea is not to list snippets

containing the georesolved locations in the order they appear in the literary work but

to order them by ‘interestingness’. The web-based user interface orders snippets by

i-score but does not make this ordering apparent to the user. Figure 4 shows how

multiple excerpts from the same work (in this case excerpts from Margaret

Oliphant’s Royal Edinburgh containing the place name North Loch) are displayed to
the user (Oliphant 1890). The excerpt with the highest i-score is displayed first and

the others can be browsed by swiping left or right. The i-score computation is

preliminary work and still requires feature development and optimisation which is

beyond the scope of this paper but it is mentioned here to provide some context.

Fig. 4 One of four literary excerpts in Margaret Oliphant’s Royal Edinburgh containing mentions of
North Loch. The user can read them one by one by swiping left or right. The arrow points to bars which
are used to visualise multiple excerpts
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The output of the Edinburgh Geoparser is fed into a database which serves as the

input data for the user interfaces. It comprises of 546 literary works mentioning

1600 unique Edinburgh locations appearing in more than 47,000 literary excerpts.

The literary source data which is part of this Palimpsest corpus is described in more

detail in the next section.

We have described the creation of a historically-informed local-level gazetteer

for Edinburgh, the product of significant amounts of processing of the source data,

as well as the Edinburgh Geoparser and any changes that were made to it for the

Palimpsest project. If we were to port our pipeline to a new city, we would need a

new local-level gazetteer. We often get asked how much work would be involved in

creating such a resource for a different city and how long it would take to port the

Edinburgh Geoparser to process text centred around that city. These questions are

difficult to answer because it depends largely on the available gazetteer resources.

This will get easier as more local gazetteers are being made available. However,

especially when combining different gazetteer resources for one city, a clean-up

stage is unavoidable.

While not as extensive as the Edinburgh gazetteer, we have successfully created

local gazetteers for Aberdeen and Dundee in a recent project where we applied a

text mining pipeline similar to the one described here to Scottish historical

newspapers from the nineteenth and early twentieth centuries. The basis for these

local gazetteers was the open source resource, OS Open Names25 which was made

available after the Palimpsest research project was completed. It supplies ‘‘a

comprehensive dataset of place names, roads numbers and postcodes for Great

Britain’’. We were able to use initial characters of postcodes, i.e. DD for Dundee

and AB for Aberdeen, to extract all the place names and their coordinates from the

OS data covering the larger area around each of the cities. We then used an

appropriate bounding square to identify those place names which are actually within

the city. The programming involved in accessing relevant entries was quite simple

and only required some format conversion to create gazetteer entries suitable for use

with our pipeline. This technique has allowed quite robust local-level geoparsing of

historical newspapers and can be replicated for document collections relating to

places anywhere within Great Britain. Rapid porting to place names in other

countries would require resources similar to OS Open Names.

Creating a new gazetteer and making changes to the geoparser is feasible by

other researchers external to the core development team. In fact, the tool is already

used in several research collaborations in the area of DH and very detailed

documentation on its various components and their usage is available. The first

author of this paper has also published a Programming Historian lesson on how to

get started using the Edinburgh Geoparser (Alex 2017) on behalf of the team who

are also available for further technical support in cases where that is needed.

25 https://www.ordnancesurvey.co.uk/opendatadownload/products.html#OPNAME.
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4 Data and annotation

The Palimpsest corpus is made up of 503 historical, out-of-copyright works of

literature and 43 works written by contemporary authors, all of which were

geoparsed to identify fine-grained Edinburgh-specific locations and other place

name mentions and their latitude and longitude coordinates.

4.1 Literary source data

The pool of historical Edinburgh-specific documents was collected via a semi-

automatic information retrieval method where automatic location-based information

retrieval was combined with a manual curation cycle, a process we refer to as

assisted curation (Alex et al. 2017). The information retrieval was run over large

literary document collections from different data providers (including all worldwide

public domain material from HathiTrust,26 the British Library Nineteenth Century

Books collection,27 all public domain English Project Gutenberg books,28 the

Oxford Text Archive data29 and works obtained from the National Library of

Scotland30). The contemporary works were specifically chosen by literary scholars

as they are known to be good examples of literature set in Edinburgh. For the

processing of the latter, we obtained permission from authors and publishers.

To give an example, Fig. 5 provides an excerpt from a book in the British Library

Nineteenth Century Books collection which illustrates how Edinburgh locations can

be used to set the scene (Hibbert-Ware 1883, p.248). Some place names are used to

describe merely where something takes place (i.e. Tam Neil had left the tavern in
Libberton Wynd, he, in company with his apprentice Jock, was walking at a smart
pace along the road to Duddingston village, ...). Libberton Wynd was a steep street

in Edinburgh which no longer exists today, and had in fact disappeared when this

story was published. It got demolished around the time when George the IV Bridge

was built at the beginning of the 1830s. Other place names are used when describing

the mood of a story (e.g. The moon had risen, and in its pure, pale light Salisbury
Crags, a bold and lofty amphitheater of precipitous rocks, stood out clearly defined
against the starlit sky ...).

4.2 Creating the gold standard

To examine the effect which text quality and publication date have on geoparsing

performance, the experiments described in the next section were carried out for

books from three of the collections that were processed in Palimpsest, two of the

historical text collections as well as the contemporary books:

26 https://www.hathitrust.org.
27 http://www.bbk.ac.uk/lib/elib/databases/arts/nineteenth-century-books.
28 http://www.gutenberg.org.
29 https://ota.ox.ac.uk.
30 http://nls.uk.
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• OCRED: historical OCRed texts from the British Library Nineteenth Century

Books collection containing OCR errors,

• CORRECTED: historical OCRed texts from the Project Gutenberg collection which

were crowd-corrected by hand, and

• MODERN: contemporary (born digital) pieces of text set in Edinburgh, including

works by authors like Muriel Spark, Irvine Welsh, Alexander McCall Smith and

Doug Johnstone.

We carried out the same experiments (see Sect. 5) for all three sets to show how

geoparsing performance varies across these data types. To do this type of evaluation

we required a gold standard for each dataset, i.e. a sample manually annotated for

Fig. 5 Literary excerpt from Mary Clementina Hibbert-Ware’s book called His Dearest Wish (1883, vol.
2, p. 248)
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place names and their latitude and longitude coordinates. As the gold standard was

created after the tuning of the Edinburgh Geoparser was completed and not used for

system development, they can be considered as unseen test data.31

To prepare the gold standard, we selected a small sub-set of each of the three

collections (approximately 2.5% per collection). We did that by splitting each

document into small 5000-byte chunks and selecting a sub-set of chunks per

document, without guaranteeing that a chunk will contain a location. This type of

random sampling assures that the distribution of locations in the gold standard

remains representative of each collection.

Each collection of text chunks was then manually annotated for location

mentions and latitude/longitude coordinates to create a gold standard used in the

experiments described in Sect. 5. This was done by linguistically trained annotators

in two stages. Firstly, all location mentions were annotated using the Brat annotation

tool (Stenetorp et al. 2012).32 Annotators were instructed to mark up all place

names (fine-grained or not), including vernacular or made up names. Each annotated

location mention could be given an optional ‘‘Edinburgh-specific’’ attribute to

distinguish it as being a place located in Edinburgh or in its close surroundings. The

annotation guidelines specified to mark up a location as Edinburgh-specific if it

occurred within the Lothian area as defined on Wikipedia.33

The gold location mentions were then annotated further with latitude and

longitude coordinate information. This was done using the Edinburgh Geo-

annotator, a web-based georesolution annotation and evaluation tool which we

developed in-house (Alex et al. 2014). This tool includes a map-based annotation

interface which lets annotators select candidate pins on a Google map. For each

location mention appearing in the text, annotators were able to choose between

different competing candidates occurring in the gazetteers used by the Edinburgh

Geoparser for georesolving the Palimpsest datasets. Locations not present in the

gazetteer were marked as ‘‘not found’’.

Some figures regarding the number of document chunks and locations in each

gold standard collection can be found in Tables 1 and 2. The OCRED gold data, the

largest gold dataset with 250 document chunks, contains an average of 12.2

locations per chunk. The CORRECTED and the MODERN texts contain fewer but roughly

the same number of document chunks (78 and 80, respectively). The CORRECTED

chunks contain on average 9.9 locations, whereas the MODERN text data contains only

on average 5.5 locations per chunk. When examining the Edinburgh-specific

locations only, the MODERN texts contain on average 1.7 locations per chunk,

whereas the historical collections contain only 1.1 or 1.2 locations per chunk. While

the historical text collections are more dense in location mentions overall, the

modern works contain by far the largest percentage of Edinburgh-specific locations

(31.7% of location mentions are based in Edinburgh). This is unsurprising as they

31 The OCRED and CORRECTED gold data sub-sets are made available at https://github.com/LitPalimpsest/

Palimpsest. The MODERN data is under copyright restrictions and we only have permission to make its

geoparser output available via the LitLong interfaces.
32 http://brat.nlplab.org.
33 https://upload.wikimedia.org/wikipedia/commons/8/83/The_Lothians.png.

Geoparsing historical and contemporary literary text set...

123

https://github.com/LitPalimpsest/Palimpsest
https://github.com/LitPalimpsest/Palimpsest
http://brat.nlplab.org
https://upload.wikimedia.org/wikipedia/commons/8/83/The_Lothians.png


are well-known examples of Edinburgh-specific literature. The historical texts were

retrieved in a semi-automatic fashion which resulted in the discovery of less well-

known works, and in ones containing on average less Edinburgh-specific locations

(see Table 1).

Table 3 lists some examples of Edinburgh-specific place names in the gold

standard. The most frequent mentions are well-known locations today, including

one location nickname (Auld Reekie, another name for Edinburgh). Examples of

infrequently used mentions of place names include names of areas, streets, buildings

and establishments which still exist today (e.g. Drummond Street, Rutland Square
or Balerno). Others are names of places which have either disappeared altogether

(e.g. Calton Gaol, an old prison on Carlton Hill now the site of St Andrew’s House),

which have changed their purpose (e.g. House of Bruntsfield, now part of James

Gillespie’s High School), which have had multiple locations (e.g. Physic-garden) or
are now known under a different name (e.g. Empire Theatre, now called the Festival

Theatre). There is also one example of a name with a spelling variation (e.g. auld
Toun referring to Old Town) and two names containing OCR errors (Sahsbury
Crags is referring to Salisbury Crags and SdvermiUs which should be Silvermills).

Georesolution of such locations can be difficult, especially if names contain errors

or spelling variants or if they have moved or disappeared over time.

Table 1 Number of document chunks (5000 bytes each), place names and Edinburgh-specific place

names in each gold standard collection

Dataset Chunks All place names Edinburgh place names

Total Avg. Total % of all Avg.

OCRED 250 3039 12.2 283 9.3 1.1

CORRECTED 78 770 9.9 92 12.0 1.2

MODERN 80 438 5.5 139 31.7 1.7

Avg. refers to average per chunk, % of all means percentage of Edinburgh-specific place names over all

place names

Table 2 Location ratio (LR) of

unique over all location

mentions for all and Edinburgh-

specific place names in each

gold standard collection

Dataset Place names Unique place names LR

All place names

OCRED 3039 1473 0.48

CORRECTED 770 425 0.55

MODERN 438 231 0.53

Edinburgh place names

OCRED 283 125 0.44

CORRECTED 92 42 0.46

MODERN 139 81 0.58
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4.3 Inter-annotator agreement

A small sub-part (10%) of each gold standard dataset was doubly annotated to

determine inter-annotator agreement (IAA). IAA is measured for geotagging and

georesolution by comparing the annotations of one annotator to those of another.

This is done to gage how difficult it is for a person to geoparse a piece of text. It also

helps to understand if the annotation guidelines are clear and gives us an idea of

how well a machine might be expected to geoparse text automatically if it worked at

human capacity.

4.3.1 Geotagging

The IAA of the location entity annotation is measured in precision, recall and

balanced F1-score (see Table 4).34 What figure constitutes precision or recall when

computing IAA depends on which order the annotators are compared to each other

and is therefore marked as P/R in our tables. The results show that IAA F1-scores

for geotagging locations in text are high across all three collections (ranging

between 0.96 and 0.98 in F1 for all locations and between 0.91 and 1 in F1 for

Edinburgh-specific locations). Agreement is lowest (F1 ¼ 0:91) for OCRED text for

Edinburgh-specific place names.

Some of the location tagging disagreements are due to mismatching boundary

annotations, e.g. St. Provincial’s versus St. Provincial, bay of Lochnannagh versus

Table 3 Most frequent and

infrequent Edinburgh place

names in the gold standard data

Most frequent place names Least frequent place names

Count Place name Count Place name

134 Edinburgh 1 Drummond Street

11 Dalkeith 1 Rankeillor Street

9 George Street 1 Empire Theatre

8 Moray Place 1 Tron Kirk

8 Forth 1 Rutland Square

7 Holyrood 1 Potterrow

7 Canongate 1 Greyfriars Church

7 Arthur’s Seat 1 St Cecilia’s Hall

6 Scotland Street 1 Sandy Bell’s Bar

6 Queen Street 1 House of Bruntsfield

6 Princes Street 1 Balerno

6 Leith 1 auld Toun

6 High Street 1 Calton Gaol

5 Edinburgh Castle 1 Physic-garden

5 Cowgate 1 Sahsbury Crags

5 Auld Reekie 1 SdvermiUs

34 We do not compute IAA for named entity annotations as Cohen’s kappa scores because this metric

was found to be inappropriate for this type of annotation as discussed in detail by Deleger et al. (2012).
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Lochnannagh or Forth bridge versus Forth. In some of these cases the boundary

decision affects the georesolution coordinates so it is important to get the entity

annotation as correctly as possible to avoid cascading errors. In a few rare cases, one

or the other annotator forgot to annotate a location. In one of those cases, we noticed

that the place name contains an OCR error (Loch Raiiza for Loch Ranza) and it is

possible that this error contributed to the oversight. Overall, however, we can

conclude that the annotation of location names is a relatively easy task for human

beings to perform consistently but that it is marginally more difficult when

annotating OCRED text.

4.3.2 Georesolution

We also measured IAA accuracy for georesolution by taking the gold location

markup for 10% of each gold dataset and letting two annotators georesolve it

independently to pins on the map corresponding to candidate entries matched in the

gazetteers. Table 5 lists how many locations were resolved manually to lati-

tude/longitude coordinates by both annotators (Pin selected), how many locations

were not found in the gazetteers (Not in gaz) and for how many either annotator

decided that none of the suggested pins were appropriate (None selected). Note that

IAA accuracy scores are computed only for those locations for which a pin was

selected. The other figures provide an insight into gazetteer coverage.

Table 6 shows the georesolution IAA measured in exact accuracy (Acc.) as a

strict measure but also in accuracy at different distances in kilometers (A@n).

Accuracy scores are determined by matching coordinate pairs at different distances

(0 to 5 km). The reason for providing the relaxed accuracy scores is that in some

cases the gazetteers contain duplicate entries for the same location. For example, the

Edinburgh gazetteer contains two candidates for Oxford Bar (see Sect. 3.1). Each

annotator can only select one of them as the gold annotation in the same way as the

Geoparser only chooses a top candidate as its georesolution prediction. While the

annotation guidelines say to choose the most central pin for a location (e.g. the most

mid-way point for a street, or the pin closest to the middle of a park) sometimes it

can be difficult to choose between competing candidates. This is why we believe

Table 4 IAA for location

mention annotation for all place

names and Edinburgh-specific

place names

We report number of true

positives (TP), false positives

(FP), false negatives (FN),

precision or recall (P/R) and

balanced F1-score (F1)

IAA for geotagging

Dataset TP FP FN P/R P/R F1

All place names

OCRED 283 12 12 0.96 0.96 0.96

CORRECTED 79 5 1 0.94 0.99 0.96

MODERN 31 0 1 1.00 0.97 0.98

Edinburgh place names

OCRED 21 3 1 0.88 0.96 0.91

CORRECTED 7 0 0 1.00 1.00 1.00

MODERN 17 1 0 0.94 1.00 0.97
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exact accuracy at small distances (e.g. up to 1 km) to be a reasonable metric to

consider when evaluating georesolution of fine-grained locations. We report

accuracy at up to 5 km for information purposes.

The results show that IAA scores for georesolution of all place names are

reasonably high, ranging between 91.7 and 93.8% exact accuracy across the three

datasets and, for example, between 95.8% and 96.7% accuracy at a distance of

0.5 km. IAA figures are even higher for Edinburgh-specific place names for the

historical data (94.1% and 100% exact accuracy). These findings support the

hypothesis that on a more granular level within a city it is easier to disambiguate

different place names as there is less ambiguity at least within the boundaries of a

city. However, given that the number of Edinburgh-specific locations in the doubly

Table 5 Georesolution IAA counts for all locations and Edinburgh-specific locations

IAA georesolution counts

Dataset Pin selected Not in gaz None selected

All locations

OCRED 295 77 35

CORRECTED 80 17 15

MODERN 32 8 0

Edinburgh locations

OCRED 17 3 2

CORRECTED 5 0 2

MODERN 14 3 0

We report number of locations for which both annotators selected a pin (pin selected), number of

locations not found in gazetteer (not in gaz) and number of locations for which either annotator did not

select any of the pins on the map (none selected)

Table 6 Georesolution IAA figures for all locations and Edinburgh-specific locations

IAA georesolution accuracies

Dataset Acc. (%) A@0.1 (%) A@0.5 (%) A@1 (%) A@5 (%)

All locations

OCRED 92.3 94.5 96.7 97.3 98.9

CORRECTED 93.8 93.8 95.8 100.0 100.0

MODERN 91.7 95.8 95.8 95.8 95.8

Edinburgh locations

OCRED 94.1 94.1 94.1 100.0 100.0

CORRECTED 100.0 100.0 100.0 100.0 100.0

MODERN 85.7 85.7 85.7 85.7 100.0

We report exact accuracy in terms of lat/long coordinates (Acc.), accuracy at 0.1 km (A@0.1), at 0.5 km

(A@0.5), etc. up to accuracy at 5 km (A@5)
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annotated data is fairly small, it is difficult to draw conclusions that would definitely

hold true for larger datasets. The reason for the lower 85.7% agreement for the

MODERN data for Edinburgh-specific locations is that one annotator chose the pin for

Edinburgh (the populated place) from the Edinburgh gazetteer whereas the other

chose the pin for Edinburgh (the populated place) from the more general Ordnance

Survey gazetteer. Technically both are correct which is why at a distance of more

than 1 km accuracy increases to 100%.

Overall, IAA figures for geotagging and georesolution are suggesting that they

are both relatively easy tasks for human beings to perform given clear annotation

guidelines and instructions. However, the figures also show that doing these tasks

manually can lead to disagreements. This helps us to put the performance of a

computer doing the same tasks automatically into perspective.

5 Automatic geoparsing

In this section we report the results for automatic geotagging and georesolution

using the adapted Edinburgh Geoparser. We use the same evaluation metrics as

those reported for the IAA measurements (precision, recall and F1-score as well as

accuracy).

5.1 Geotagging

We firstly examine the geoparser’s geotagging performance to understand how well

it is able to recognise location mentions in text. We first compare a baseline, the

performance of the default Edinburgh Geoparser35 when used in combination with

the GeoNames gazetteer (see Table 7) to that of the Palimpsest adapted geoparser

described in Sect. 3 (see Table 8) for all place names present in the gold standard.

It is difficult to draw any meaningful conclusions from the baseline scores

because the default geoparser was not designed for geoparsing literary text nor for

geotagging and georesolving fine-grained place names. The slightly lower

performance for the MODERN data (F1 ¼ 0:61) is caused in part by its higher

frequency of Edinburgh-specific locations. What is apparent however is that the

process of adapting the Edinburgh Geoparser has paid off. The results show an

increase in F1-score across all three datasets, ranging between 0.05 and 0.14 with

the biggest improvement obtained for the MODERN data.

Geotagging performance of the adapted geoparser varies across the three gold

standard sets. When looking at all location mentions occurring in the text, the tagger

performs best on MODERN text (F1 ¼ 0:75), worst on historical OCRED text (F ¼ 0:68)
and roughly in-between on historical CORRECTED text (F1 ¼ 0:72). While precision

scores are very similar across all three collections, the difference in F1-score is

caused by the fact that recall scores vary considerably. This finding is partly in line

with previous observations and experiments which have found that OCRed text has

a negative cascading effect on natural language processing tasks (Kolak and Resnik

35 This distribution can be downloaded at www.ltg.ed.ac.uk/software/geoparser.
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2005; Lopresti 2005, 2008b; Alex et al. 2012) and information retrieval (Hauser

et al. 2007; Lopresti 2008a; Reynaert 2008; Gotscharek et al. 2011).

Overall, the geotagging scores seem low even for modern text. One major reason

is that most of the geoparser adaptation effort was targeted towards aggregating an

Edinburgh-specific location gazetteer, which means that there was less focus on

tagging and resolving other locations correctly. When geotagging Edinburgh-

specific locations, performance is much higher for the MODERN texts than for both

historical text collections. Aside from OCR quality, historical language variations

and the higher percentage of Edinburgh-specific locations in the MODERN text, the

reason for this difference is also the fact that the Edinburgh-specific location

gazetteer is made up of a series of modern gazetteer resources (including street

names from OS Locator, buildings and monuments from RCAHMS and locations

from OSM). Recall for MODERN text is higher as the gazetteer contains modern

locations occurring in the Edinburgh area. A similar but more reduced effect can

also be seen when examining the recall scores obtained for identifying all location

mentions.

Table 7 Baseline geotagging results for all place names using the default Edinburgh Geoparser

Default geoparser NER results

Dataset TP FP FN P R F1

All place names

OCRED 1795 854 1244 0.68 0.59 0.63

CORRECTED 471 199 299 0.70 0.61 0.65

MODERN 267 167 171 0.62 0.61 0.61

We report number of true positives (TP), false positives (FP), false negatives (FN), precision (P), recall

(R) and balanced F1-score (F1)

Table 8 Geotagging results for

all place names and Edinburgh-

specific place names using the

adapted geoparser

We report number of true

positives (TP), false positives

(FP), false negatives (FN),

precision (P), recall (R) and

balanced F1-score (F1)

Adapted geoparser NER results

Dataset TP FP FN P R F1

All place names

OCRED 1780 410 1259 0.81 0.59 0.68

CORRECTED 487 106 283 0.82 0.63 0.72

MODERN 302 68 136 0.82 0.69 0.75

Edinburgh place names

OCRED 164 49 119 0.77 0.58 0.66

CORRECTED 52 5 40 0.91 0.57 0.70

MODERN 103 8 36 0.93 0.74 0.82
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5.2 Georesolution

We also wanted to examine the georesolution performance of the Edinburgh

Geoparser to understand how well it is able to assign latitude and longitude

coordinates to location mentions and distinguish between multiple candidates in the

case of ambiguous place names. Table 10 presents the georesolution scores for all

three gold standard sets, both for all and Edinburgh-specific locations.

In this case, accuracy scores are reported only for locations which are contained

in the gazetteer and for which the annotator was able to select a pin on the map

when creating the gold standard annotation. Numbers of locations where this was

not the case are also listed in Table 9. The figures show that a fair number of

location mentions do not occur in the gazetteer. Most of them are fine-grained

locations outside of the Edinburgh area, locations in other cities (e.g. India House in

London) or made-up place names (e.g. Wrinkly Scaurs) which were annotated in the
gold standard.

Table 9 Georesolution results

for all locations and Edinburgh-

specific locations

We report number of locations

georesolved, number of

locations not found in gazetteer

(not in gaz) and number of

locations for which the annotator

was unable to select any of the

pins on the map (none selected)

Adapted geoparser resolution stats

Dataset Georesolved Not in gaz None selected

All locations

OCRED 1718 1001 320

CORRECTED 484 190 96

MODERN 316 96 26

Edinburgh locations

OCRED 205 59 19

CORRECTED 59 20 13

MODERN 110 23 6

Table 10 Georesolution results for all locations and Edinburgh-specific locations

Adapted geoparser resolution accuracies

Dataset Acc. (%) A@0.1 (%) A@0.5 (%) A@1 (%) A@5 (%)

All locations

OCRED 65.9 66.5 69.0 72.8 85.9

CORRECTED 66.3 69.0 73.3 76.4 86.2

MODERN 70.3 75.0 79.7 81.3 86.1

Edinburgh locations

OCRED 84.9 88.8 93.2 94.6 96.1

CORRECTED 78.0 83.1 94.9 96.6 96.6

MODERN 70.9 82.7 90.9 95.5 98.2

We report exact accuracy in terms of lat/long coordinates (Acc.), accuracy at 0.1 km (A@0.1), at 0.5 km

(A@0.5), etc. up to accuracy at 5 km (A@5)

B. Alex et al.

123



Georesolution accuracy scores are presented in Table 10. Exact accuracy scores

for all locations increase when moving from historical and lower-quality to modern

and high-quality text. The biggest difference (of over 10%) occurs for accuracy

measured at 0.5 km. For Edinburgh-specific locations only, exact accuracy is lowest

for MODERN text and considerably so (70.9%). One reason could be the fact that the

location ratio within that set is largest (see location ratio figures in Table 2). When

evaluating accuracy at increasing (but small) distances, this performance difference

decreases. So the reason for the low exact accuracy for MODERN text is also caused by

the system choosing a correct duplicate candidate in the vicinity of the annotated

gold candidate. At 1 km, georesolution accuracy for MODERN text is similar to the

results obtained for the historical datasets.

Accuracy scores for resolving Edinburgh-specific locations only are considerably

higher than those obtained for georesolving all locations (e.g. 21.8% higher for

historical OCRED text at a distance of 1 km). A lot of our work in Palimpsest was

spent on aggregating and cleaning the Edinburgh gazetteer which was necessary to

map literature set in Edinburgh. It is encouraging to see that this effort has paid off.

6 Summary and conclusion

This article has presented extensive evaluation of the Edinburgh Geoparser for

geoparsing fine-grained location names in literary text using three manually

annotated gold standard sets. The non-copyrighted gold standard test sets are made

available for future research. Our evaluation was done both for the geotagging and

the georesolution steps of the Edinburgh Geoparser using different types of literary

data manually annotated for comparison (historical versus modern text, clean text

versus text containing OCR errors). We also computed inter-annotator agreement

scores as an upper bound to system performance and have shown that both tasks are

relatively easy to perform manually even if not completely consistently.

We have shown that the historical text containing errors is more difficult to

geotag automatically and that the availability of a suitable gazetteer is essential for

geotagging and georesolution. Name variations in the text can throw the system as

not all of them might be recorded in the gazetteer and some place names might be

missing altogether, for example because they have disappeared over time. While we

have shown that putting effort into developing the Edinburgh gazetteer paid off in

terms of geoparsing fine-grained locations, a lot more work can be done to improve

performance. In future work, we are hoping to integrate errors spotted by users of

the LitLong interfaces in a feedback mechanism to increase geoparsing performance

overall.
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