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Abstract 

A new analytical solution to the one-dimensional transient heat conduction equation in a composite spherically 

symmetric water-fuel emulsion droplet, suspended in a hot gas, is obtained. The Robin boundary condition at the 

surface of a droplet and conditions at the fuel-water interface are used. A water sub-droplet is assumed to be located 

at the centre of a fuel droplet, the radius of which was fixed at each time step; it could change at the next time step. 

The Abramzon and Sirignano model is applied for the approximation of the droplet evaporation process. This solution 

and the evaporation model are incorporated into a numerical code in which droplet heating/evaporation and the 

variable thermophysical properties are accounted for. The time instant at which the temperature at the fuel-water 

interface became equal to the boiling temperature of water is identified with the initiation of puffing, giving rise to 

microexplosion. This allowed us to compute the minimal microexplosion delay time. The new solution is applied to a 

typical case of puffing/microexplosion of water/diesel emulsion droplets in high temperature gas. It is shown that the 

new model allows us to understand better the underlying physics of the processes leading to puffing/microexplosion. 

The experimental observations of the microexplosion delay time for various initial droplet sizes are shown to be 

compatible with the predicted values of this time. It is shown that puffing/microexplosions are expected well before 

the droplet surface temperature reaches the boiling temperature of n-dodecane. The numerical code can be potentially 

implemented into Computational Fluid Dynamics codes, which can be applied to the modelling of other fuel and 

water/fuel blends. 

Keywords: n-dodecane; droplet heating; heat conduction equation; microexplosion; puffing; diffusional entrapment; 
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Nomenclature 

A function used in (A1.26) 

B function used in (A1.26) 

BT(M) Spalding heat (mass) transfer 

number 

c specific heat capacity (J/ (kg 

K)) 

F(t,ξ) u(t,R) (K∙m) 

fn coefficients introduced in 

formula (4.5) 

h convective heat transfer 

coefficient (W/(m2K)) 

H(t) ℎ(𝑡)

𝑘𝑓
−

1

𝑅𝑑
(1/m) 

h0 ℎ∙𝑅𝑑

𝑘𝑓
− 1

H0(t) ℎ(𝑡)∙𝑅𝑑

𝑘𝑓
− 1

k thermal conductivity (W/ (m 

K)) or weighting factor 

L latent heat of evaporation (J/kg) 

M molar mass (g/mol) 

Nu Nusselt number 

P thermal radiation term in (3.1) 

(K/s) 

p ambient pressure (atm or Pa) 

�̃�(𝜉) P(R) (K/s) 

pn coefficients used in (4.7) 

(K∙m3/s) 

qn coefficients introduced in 

Formula (4.6) (K∙m) 

R distance (m) 

Rw(d) radius of the water (fuel) 

droplet (m or µm) 

Re Reynolds number 

t time (s) 

T temperature (K) 

u(t,R) T(t,R)∙R (K∙m) 

V(t,ξ) function introduced in Formula 

(A1.14) (K∙m) 

Vfr,w volume fraction of water 

vn eigenfunctions defined in (4.2) 

‖𝑣𝑛‖
2 norm of 𝑣𝑛 (W/ (m∙K))

X mole fraction 

Y mass fraction 

Greek Symbols 

𝜅 thermal diffusivity (m2/s) 

∆t time step (s) 

βn function introduced in Formula 

(4.10)  

θn(t) function defined by Equation 

(4.3) (K∙m) 

λn eigenvalues found from (4.9) 

μ(t) 𝑅𝑑

𝑘𝑓
(ℎ(𝑡) ∙ 𝑇𝑔 + 𝜌𝑙 ∙ 𝐿𝑓 ∙ �̇�𝑑) (K)

μ0(t) Rd ∙ μ(t) (K∙m) 

ξ R/Rd 

ρ density (kg/m3) 

Subscripts 

avg average 

b boiling 

d 

eff 

droplet 

effective 

f fuel 

g ambient gas 

hom homogeneous 

l liquid 

p constant pressure 

ref reference conditions 

s surface 

w water 

0 initial conditions 



1 Introduction 

Water/diesel emulsions have gained much attention as their application allows the simultaneous reduction of NOx 

and soot. The addition of water reduces the adiabatic flame temperature, which inhibits the formation of NOx [1, 2]. 

As water evaporates, it supplies hydroxy (OH) radicals to the combustion process, thereby increasing the oxidation 

rate and reducing soot formation [1, 2]. The application of these emulsions increases brake thermal efficiency by 6% 

and reduces NOx and particulate emissions by 30%. Also, their application allows for a reduction of unburnt 

hydrocarbons by 70% [3, 4]. The degree of atomization and the penetration of the fuel spray plays a vital role in 

enhancing the overall combustion efficiency [5]. Atomization is known to increase the interfacial area of a fuel jet [6]. 

This directly affects the heat/mass transfer rates between droplet and ambient gas [6], which govern the efficiency of 

the combustion process. After the penetration of primary and secondary droplets inside a combustor, the degree of 

atomization can be further enhanced with the help of microexplosions [1, 2, 6]. 

Microexplosion is a phenomenon observed in water-diesel emulsion droplets and is caused by the diffusional 

resistance of the liquid fuel leading to entrapment of the dispersed component (water) inside the diesel droplet interior 

[6]. The droplet temperature is limited by the critical temperatures of leading diesel fuel components, which are much 

higher than the boiling temperature of water [6-8]. The embedded water droplets are distributed unevenly within the 

parent droplet and tend to accumulate near the droplet core. As the pressure inside the bubble, formed at the surface 

of the boiling water sub-droplet, increases, it grows causing thinning of the droplet surface; eventually the vapour 

bubble punches through the surface of the diesel droplet, resulting in destruction of the surface of the parent droplet 

[9]. If the phenomenon leads to total disintegration of fuel droplets, it is called microexplosion, and if it is localised in 

a specific region of the droplet, it is known as puffing [10].  

The idea of microexplosions in water-fuel emulsions dates back to 1965 [2]. Ivanov and Nefedov observed that 

the evaporation of a fuel droplet accelerates on the addition of water. Law et al. [6, 7] investigated microexplosions in 

burning water-in-diesel emulsion droplets with diameters of about 1 mm to develop an efficient hybrid fuel for internal 

combustion engines which can have better anti-knock performance. During the experiments, it was found that the 

internal nucleation was enhanced during the unstable droplet generation mode, which was accompanied by ligament 

absorption in the aft region of the droplet [8, 11]. The role of microexplosions and their effects on the combustion and 

vaporisation behaviour of isolated multicomponent droplets have been widely discussed in the literature [7, 8, 12-15]. 

It was found that parameters such as ambient pressure, ambient temperature and the concentration of volatile 

components influence microexplosions. For water-in-diesel emulsion droplets, it was observed that microexplosions 

become more likely with increasing ambient pressure [12, 16]. This could be related to the fact that at higher pressures 

droplets can reach higher temperatures due to an elevation in the boiling points of diesel components at the surface 

without causing any significant change in the superheat limit of water entrapped within it. Microexplosions occurred 

for a specific range of ambient temperatures [8]; it was noted that at higher ambient temperatures the rate of droplet 

vaporisation is too high for microexplosions to occur, while at low temperatures, superheating does not occur. 

Microexplosion did not occur if the concentration of the volatile components, which determine the energy available 

for microexplosion, was too large or too small [17]. If the concentration of the volatile components is too large, the 

droplet evaporates and does not reach high surface temperatures. The probability of microexplosion increased when 

the radii of water sub-droplets increased and did not occur at all in the case of microemulsions as they tend to behave 

more like solutions [12, 18-21]. When the droplets traverse a spray environment under the influence of turbulent 

eddies, Sheng et al. [17] found that a single microexplosion initiates the simultaneous microexplosion of neighbouring 

droplets. This leads to the uniform initiation of microexplosions throughout the combustor. It was argued that 

microexplosions could be the dominant mode of secondary breakup in water-in-diesel fuel sprays, which can be used 

in combustors [1, 6, 10, 22]. However, there is a dearth of experimental data to support this.  

Law [6] suggested that the distribution of temperature and species within the droplets should be estimated to assess 

the likelihood of occurrence of microexplosions. The modelling of microexplosions involves droplet heating, bubble 

nucleation, bubble growth, and droplet breakup. Although models developed in [23-25] are instrumental in 

understanding the physical background of microexplosion/puffing, their usefulness for engineering applications is less 

obvious. Moreover, in spray combustion calculations, where millions of such droplets undergo heating and 

puffing/microexplosions, it would be technically impossible to use such models due to the need for substantial 

computational resources. A number of authors, including [26, 27], suggested simplified models of the phenomenon. 

The model suggested in [27] is applicable to the analysis of the final stage of the phenomenon when water in fuel 



droplets has evaporated. In this case, the problem focuses on the effect of the expanding water vapour on the liquid 

fuel shell surrounding it. The analysis of the stability of the system was performed under the assumption that the shell 

is spherical at the beginning of the process. This made it possible for the author of [27] to estimate the numbers and 

average diameters of the droplets, produced as a result of the instability development. This number depended on the 

initial thickness of the shell. The rather restrictive assumptions used when developing this model make it rather 

difficult to validate (see [15] for further discussion of this matter). 

In contrast to the above-mentioned models, the focus of the model developed in [28] is on the prediction of the 

time to puffing/microexplosion; the parameter that is particularly important for practical engineering applications. In 

this model it is assumed that a small water sub-droplet is placed in the centre of a fuel droplet, and both droplets are 

spherically symmetric. The surface temperature of the fuel droplet is fixed, and fuel evaporation is not accounted for. 

The transient heat transfer equation is solved inside the droplet, using the Dirichlet boundary condition at its surface. 

The time when the water surface temperature reaches the boiling temperature of water is identified with the beginning 

of the puffing/microexplosion process. The predictions of the model were shown to be consistent with observations 

of relatively small composite droplets (with diameters less than about 1 mm), but not with those of larger droplets [15, 

28]. The main restriction of this model, and of the model suggested in [27], lies in the assumption that a water sub-

droplet is located exactly in the centre of the fuel droplet, which is not supported by the direct observation of composite 

droplets in the general case [15]. 

Apart from this restriction, the model developed in [28] has several other important limitations. Two of these 

limitations appear to be particularly important. Firstly, the fuel droplet surface temperature was fixed, which is not 

consistent with most observations [29]. Secondly, the problem was solved using the Dirichlet boundary conditions, 

while Robin boundary conditions are known to describe more accurately the heating of droplets. The aim of this paper 

is to describe a new model for puffing/microexplosion, using the same assumptions as the model developed in [28], 

but free from the above-mentioned two limitations. 

The basic ideas behind the new model are presented in Section 2. Key equations and approximations are 

summarised in Section 3. The new analytical solution to the transient heat conduction equation in the liquid phase is 

presented in Section 4. The computer algorithm using this solution is described in Section 5. Applications of the new 

algorithm are discussed in Section 6. In Section 7, we summarise the most important results of the paper. 

2 Description of the new model 

As in the model described in [28], in our new model it is assumed that both fuel droplet and water sub-droplet are 

spherically symmetric, as schematically shown in Fig. 1. Although we appreciate the limitation of this approximation 

Fig. 1 Schematic of a water/diesel emulsion droplet in a gas, where R
w
 is the radius of the water sub-droplet inside

the fuel droplet of radius R
d
. T

w
 and T

s
 are the temperatures at the surface of the water sub-droplet and at the

surface of the fuel droplet, respectively. Tg is the ambient temperature. 
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(see the discussion in the previous section) we cannot abandon it. Rd is constant during individual time steps; but it 

can change at the following time steps due to droplet evaporation, in the general case. The effects of swelling are 

ignored in our analysis. Tw and Ts are the temperatures at the water-fuel interface and at the surface of the fuel droplet 

respectively. At the droplet surface, Ts=T(t,Rd) depends on time [29]. The effect of the surface regression due to 

evaporation at individual time steps is not accounted for (see [30, 31] for the details). The thermophysical properties 

of diesel fuel are approximated by the properties of n-dodecane. Our analysis is restricted to stationary droplets. 

The initiation of puffing is usually associated with the nucleation temperature the likelihood of which is sensitive 

to the local temperature, and is expected to be achieved at the water-fuel interface [32-34]. At nucleation temperature, 

bubble nucleation rate can change from a negligible to a substantial value [28]. Researchers have argued that it is 

challenging to attain genuine homogeneous nucleation, which is the upper-limit of heterogeneous nucleation under 

gravity, as processes are complicated by buoyancy [35-37]. Due to the dearth of data, the time instant at which the 

temperature at the water-fuel interface attains the boiling temperature of water is identified with the initiation of 

puffing/microexplosions. It is also referred to as time to puffing or microexplosion delay time [28].  

3 Key equations and approximations 

Ignoring the effects of interaction between droplets and assuming that the temperature distribution inside the 

water-fuel domain is spherically symmetric and the domain is piecewise due to water-fuel interface Rw, the variation 

in temperature in this domain can be inferred from the solution to the transient heat conduction equation [28, 38, 39].

𝜕𝑇

𝜕𝑡
= 𝜅 (

𝜕2𝑇

𝜕𝑅2
+
2

𝑅

𝜕𝑇

𝜕𝑅
) + 𝑃(𝑡, 𝑅), 

(3.1) 

where 

𝜅 =

{

𝜅𝑤 =
𝑘𝑤

𝑐𝑤 ∙ 𝜌𝑤
 when 𝑅 ≤ 𝑅𝑤 

𝜅𝑓 =
𝑘𝑓

𝑐𝑓 ∙ 𝜌𝑓
 when 𝑅𝑤 < 𝑅 ≤ 𝑅𝑑. 

(3.2) 

P(t,R) is the thermal radiation term that takes into account the thermal radiation absorption (the droplet is assumed to 

be semi-transparent). This term will be ignored during analysis as the contribution of this absorption to droplet heating 

was found to be less than 1% for temperatures less than or about 1000 K [40]. 

Equation (3.1) needs to be solved for T≡T(t,R), using the initial/boundary conditions: 

𝑇|𝑡=0 = {
𝑇𝑤0(𝑅)  when 𝑅 ≤ 𝑅𝑤        

𝑇𝑓0(𝑅)  when 𝑅𝑤 < 𝑅 ≤ 𝑅𝑑, 

(3.3) 

T(t,R) is twice continuously differentiable for 0 < t ≤ tL and 0 < R ≤ Rd ; tL is the droplet lifetime. 

At the interface R=Rw, the following boundary conditions are used: 

𝑇|𝑅=𝑅𝑤− = 𝑇|𝑅=𝑅𝑤+  ;   𝑘𝑤
𝜕𝑇

𝜕𝑅
|
𝑅=𝑅𝑤

−
= 𝑘𝑓

𝜕𝑇

𝜕𝑅
|
𝑅=𝑅𝑤

+

(3.4) 

At the interface R=Rd, the following boundary condition should be satisfied: 

(𝑘𝑓
𝜕𝑇

𝜕𝑅
+ ℎ ∙ 𝑇)|

𝑅=𝑅𝑑
−
= ℎ ∙ 𝑇𝑔 + 𝜌𝑙𝑓 ∙ 𝐿𝑓 ∙ �̇�𝑑,

(3.5) 



where Lf is the heat of evaporation and h is the convective heat transfer coefficient, describing heat reaching the surface 

of the droplet (assumed to be constant during individual time steps). Ignoring the effect of the Stefan flow it is 

estimated as [29]: 

ℎ =
�̅�𝑔

𝑅𝑑
 . 

Assuming a unitary Lewis number, Equation (3.5) is supplemented by the following expression for the droplet 

evaporation rate [40, 41]: 

�̇� = −4𝜋𝑅𝑑
�̅�𝑔

𝑐�̅�𝑔
ln(1 + 𝐵𝑀),

(3.6) 

where BM is the Spalding mass transfer number given as 

𝐵𝑀 =
Y𝑓𝑠 − Y𝑓∞

1 − Y𝑓𝑠
, 

(3.7) 

the mass fraction of vapour fuel Yf∞ at a large distance from the droplet surface is ignored (Yf∞ = 0). Approximation 

(3.6) and the assumption that Nu=2 were used to enable the comparison of our results with those obtained in [30, 43] 

where the same approximations were used. 

Using Equation (3.6), the surface regression rate, �̇�𝑑, can be written in the form

�̇�𝑑 = −
�̅�𝑔 ln(1 + 𝐵𝑀)

𝜌𝑓𝑙 ∙ 𝑐�̅�𝑔 ∙ 𝑅𝑑
. 

(3.8) 

To be consistent with (3.3) and (3.4), we write 

𝑇𝑤0(𝑅𝑤) = 𝑇𝑓0(𝑅𝑤). (3.9) 

The thermophysical properties of the liquid phase components as well as gas phase components are assumed to be 

constant during individual small time steps [40]. 

4 Analytical solutions 

As mentioned earlier, in [28] the solution to Equation (3.1) was obtained assuming that Ts and Rd are constant 

throughout the whole process (the effect of evaporation was not taken into account) and using the Dirichlet boundary 

condition. In what follows, the model is generalised to consider the changes in Ts during individual time steps and Rd 

between time steps taking into account Equations (3.5) and (3.6). The solution to (3.1), using the initial/boundary 

conditions specified in Section 3, is presented as (see Appendix A): 

𝑇(𝜉, 𝑡) =
1

𝑅𝑑 . 𝜉
∑(𝜃𝑛(𝑡) ∙ 𝑣𝑛(𝜉) +

𝜇0(𝑡)

1 + ℎ0
𝜉)

∞

𝑛=1

 , 
(4.1) 

where 



𝑣𝑛(𝑅) =

{

sin(𝜆𝑛 ∙ 𝜉)

sin(𝜆𝑛 ∙ 𝜉𝑤)
 when 0 ≤  𝜉 ≤ 𝜉𝑤  

sin(𝜆𝑛 ∙ 𝜉 + 𝛽𝑛)

sin(𝜆𝑛 ∙ 𝜉𝑤 + 𝛽𝑛)
 when 𝜉𝑤 < 𝜉 ≤ 1 ,

(4.2) 

𝜉 =
𝑅

𝑅𝑑
 ;   𝜉𝑤 =

𝑅𝑤
𝑅𝑑
, 

𝜃𝑛(𝑡) = (𝑞𝑛 + 𝜇0(0) ∙ 𝑓𝑛) exp (−
𝜅 ∙ 𝜆𝑛

2 ∙ 𝑡

𝑅𝑑
2 ) + ∫  (

𝑝𝑛

𝑅𝑑
2 + 𝑓𝑛 ∙ 𝜇0

′ (𝜏)) exp (
𝜅 ∙ 𝜆𝑛

2 ∙ (𝜏 − 𝑡)

𝑅𝑑
2 )𝑑𝜏

𝑡

0

, 
(4.3) 

𝜇0(𝑡) =
𝑅𝑑
2

𝑘𝑓
(ℎ(𝑡) ∙ 𝑇𝑔 + 𝜌𝑙 ∙ 𝐿𝑓 ∙ �̇�𝑑) =

𝑅𝑑 ∙ �̅�𝑔

𝑘𝑓
(𝑇𝑔 − 𝐿𝑓

ln(1 + 𝐵𝑀)

𝑐�̅�𝑔
) , 

(4.4) 

𝑓𝑛 =
1

‖𝑣𝑛‖
2 (∫ (

− 𝜉

1 + ℎ0
)
sin(𝜆𝑛 ∙ 𝜉)

sin(𝜆𝑛 ∙ 𝜉𝑤)
𝑘𝑤𝑑𝜉

𝜉𝑤

0

+∫ (
− 𝜉

1 + ℎ0
)
sin(𝜆𝑛 ∙ 𝜉 + 𝛽𝑛)

sin(𝜆𝑛 ∙ 𝜉𝑤 + 𝛽𝑛)
𝑘𝑓𝑑𝜉

1

𝜉𝑤

) , 
(4.5) 

𝑞𝑛 =
1

‖𝑣𝑛‖
2 (∫ 𝑅𝑑 ∙ 𝜉 ∙ 𝑇0(𝜉)

sin(𝜆𝑛 ∙ 𝜉)

sin(𝜆𝑛 ∙ 𝜉𝑤)
𝑘𝑤𝑑𝜉

𝜉𝑤

0

+∫ 𝑅𝑑 ∙ 𝜉 ∙ 𝑇0(𝜉)
sin(𝜆𝑛 ∙ 𝜉 + 𝛽𝑛)

sin(𝜆𝑛 ∙ 𝜉𝑤 + 𝛽𝑛)
𝑘𝑓𝑑𝜉

1

𝜉𝑤

) , 
(4.6) 

𝑝𝑛 =
1

‖𝑣𝑛‖
2 (∫ 𝑅𝑑

3 ∙ 𝜉 ∙ �̃�(𝜉)
sin(𝜆𝑛 ∙ 𝜉)

sin(𝜆𝑛 ∙ 𝜉𝑤 )

𝜉𝑤

0

𝑘𝑤 𝑑𝜉 +∫ 𝑅𝑑
3 ∙ 𝜉 ∙ �̃�(𝜉)

sin(𝜆𝑛 ∙ 𝜉 + 𝛽𝑛)

sin(𝜆𝑛 ∙ 𝜉𝑤 + 𝛽𝑛)
𝑘𝑓

1

𝜉𝑤

𝑑𝜉), 
(4.7) 

‖𝑣𝑛‖
2
=
𝑘𝑤
2
(𝜉𝑤 csc(𝜉𝑤 ∙ 𝜆𝑛)

2 −
cot(𝜉𝑤 ∙ 𝜆𝑛)

𝜆𝑛
)

+
𝑘𝑓

4
csc(𝛽𝑛 + 𝜉𝑤 ∙ 𝜆𝑛)

2 (2 − 2𝜉𝑤 +
−sin(2(𝛽𝑛 + 𝜆𝑛)) + sin(2(𝛽𝑛 + 𝜉𝑤 ∙ 𝜆𝑛))

𝜆𝑛
) . 

(4.8) 

Positive eigenvalues λn are found from the solution to the following equation: 

𝜆 cos(𝜆 + 𝛽) + ℎ0 sin(𝜆 + 𝛽) = 0, (4.9) 

where 

𝛽𝑛 = cot
−1 (

(𝑘𝑓 − 𝑘𝑤)

𝑘𝑓 ∙ 𝜉𝑤 ∙ 𝜆𝑛
+
𝑘𝑤 cot(𝜉𝑤 ∙ 𝜆𝑛)

𝑘𝑓
) − 𝜉𝑤 ∙ 𝜆𝑛,

(4.10) 

 n=1, 2, 3 … , 0 < λ1 < λ2… 

ℎ0 =
ℎ ∙ 𝑅𝑑
𝑘𝑓

− 1 = constant > −1,   ℎ(𝑡) =
�̅�𝑔 ∙ 𝑁𝑢

2𝑅𝑑
. 

(4.11) 

When the properties of water are assumed to be identical to those of fuel (homogeneous droplets), Solution (4.1) 

reduces to the one presented previously in [30, 42] (see Appendix B). 



5 Algorithm 

The solution algorithm, which we used, is summarised below. 

(1) Assume that the values of p and Tg are known. The value of Rw is assumed to be constant throughout

the droplet lifetime; water swelling is ignored.

(2) Compute the values of Tavg(w) and Tavg(f) using volume averaging given by the relation

𝑇avg (𝑤) = ∫
3𝜉2 ∙ T(𝜉)

𝜉𝑤
3

𝑑𝜉
𝜉𝑤

0

, 
(5.1) 

𝑇𝑎𝑣𝑔 (𝑓) = ∫
3𝜉2 ∙ T(𝜉)

1 − 𝜉𝑤
3

𝑑𝜉.
1

𝜉𝑤

 
(5.2) 

(3) Calculate the thermophysical properties of water and liquid fuel using Tavg(w) and Tavg(f) from the initial

distribution of temperatures in the liquid phase or using values inferred from the previous iteration;

these include cpfl, cpwl, ρfl, ρwl, kfl, kwl and Lf(Ts). The approximations for the transport properties of the

components are the same as in [40, 42].

(4) Use the Clausius-Clapeyron equation to find the mole and mass fractions of the gas phase components

(n-dodecane and air) using the equations:

𝑋𝑖 =
1

𝑝
exp [

𝐿𝑖
𝑅𝑢
(
1

𝑇𝑏,𝑖
−
1

𝑇𝑠
)] 

(5.3) 

𝑌𝑖 =
𝑋𝑖 ∙ 𝑀𝑖

∑ 𝑋𝑗 ∙ 𝑀𝑗𝑗

, 
(5.4) 

where p is ambient pressure (in atm) and Ru=8.3145 J∙mol−1∙K−1. 

(5) Compute the values of the reference temperature Tref and reference composition Yref in the gas phase

using the standard ‘1/3 rule’.

𝑇ref = 𝑇𝑠 +
(𝑇∞ − 𝑇𝑠)

3
;  𝑌ref = 𝑌𝑠 +

(𝑌∞ − 𝑌𝑠)

3
 , 

(5.5) 

where subscripts s, ∞ refer to the values at the surface of the droplet and ambient gas, respectively. For 

n-dodecane vapour, Y∞ is assumed to be zero.

(6) Calculate �̇�.

(7) Compute the Nusselt number for the gas phase and h0 using (4.11). It is assumed that Nu = constant

=2.

(8) Find λn and βn using (4.9) and (4.10); use Equation (4.1) to find the temperature distribution inside the

droplet after time step ∆t.

(9) Replace Ts=T(1), T0 (ξ)=T(ξ) and Rd = Rd,old + �̇�𝑑∙∆t for the next iteration; where Rd,old is the droplet

radius at the beginning of ∆t.

(10) Return to step 2; repeat for the next ∆t. Continue until T(ξw)=373.15 K.

The number of recursions multiplied by ∆t will give us the value of the puffing/microexplosion delay time. 

6 Analysis 

The analysis was performed for a stationary water-in-diesel emulsion (WIDE) droplet assuming a unitary Lewis 

number in the gas film without accounting for thermal radiation. The thermophysical properties of n-dodecane were 

used to approximate those of diesel fuel.  



Firstly, we verified the predictions of our code by considering a spherical domain (droplet) filled entirely with 

liquid n-dodecane. The computations were carried out on one 3.3 GHz Kernel using Wolfram Mathematica v 12.0 . 

The series in Equation (4.1) converged well for 90 terms for all the cases. The number of terms needed for the 

convergence of T(ξ) depends on the time step ∆t which was taken as 1 μs. The ambient temperature and ambient 

pressure were taken as 1000 K and 3000 kPa, respectively. Over 1000 time steps were used. The initial radius of the 

droplet was Rd0 = 5 μm and the initial droplet temperature was taken equal to 300 K. The results of our calculations 

are shown in Fig. 2(a)-(d). The temperature distributions shown in Fig. 2(a) and (b) are in excellent agreement with 

Fig. 8, reported in [31], and Fig. 3(b) in [30], respectively. The results shown in Fig. 2(c, d) are also consistent with 

Fig 4 (a, b) reported in [30]. The predicted maximum surface temperature, 685.8 K, is the same as found in [30, 43]. 

Note that, in Fig. 2(d) the offset between the curves is the result of a different step size for ∆t. 

For analysis of a composite droplet of diesel and water, the droplet initial temperature and ambient gas 

temperature were taken as 300 K and 700 K, respectively. The ambient pressure was set to 101.325 kPa and the volume 

fraction of water Vfr,w was taken as 15%, as in the experiments described in [28]. It is assumed that 

puffing/microexplosion will occur when the fuel-water interface temperature becomes equal to the boiling point of 

water, i.e. when T(ξw )=Tbw. ξ is R normalised by the initial droplet radius Rd0. 

Fig. 3 (a) shows the spatiotemporal temperature distribution at several time instants using the new model. Note 

the sharp change in the slopes of the curves at ξw (fuel-water interface). It can be observed that as the droplet heats up, 

ξw shifts and tends to merge with the droplet surface. ξw(i) and ξw(f) represent the interface between n-dodecane and 

water at the initial and later stages, respectively. The changes in this parameter are attributed to shrinking of droplets 

(b)(a)

(d)(c)

Fig. 2 Plots showing the comparison between the results predicted by the new model and the model presented in 

[30]. The results are presented for n-dodecane droplets heated and evaporated in air (Ma = 29 kg/kmole. Mf = 170 

kg/kmole (C12H26)) for Rd0 = 5 μm, T0 = 300 K, Tg = 1000 K, p = 3000 kPa; (a) and (b) represent the temperature 

distribution T(ξ) at different time instants, (c) and (d) show the variation of Ts and Rd (μm) with time (ms). The 

predictions of the current model are shown as solid curves, those of the model described in [30] as dashed curves’ 



due to evaporation. The microexplosion delay time for this particular case is 0.21 ms. The results presented in Fig. 3 

(b) were obtained using the model developed in [28] in which the Dirichlet boundary conditions were assumed at the

surface of the droplet and the effects due to changes in the droplet surface temperature and evaporation were ignored.

The microexplosion delay time for this case is 0.036 ms. The parameters of the model were the same as for the case

mentioned earlier (Rd0 = 5 μm, T0 =300 K, Tg=700 K, p=1 atm=101.325 kPa, Vfr,w = 15%).

A comparison of Fig. 3 (a) and Fig. 3 (b) shows that the microexplosion delay time inferred from calculations 

using the new model is about 6 times greater than that inferred from calculations using the old model. This difference 

is attributed to the fact that the temperature at the surface of the droplet used in the analysis of [28] was much higher 

than that inferred from calculations using the new model. In [28], it was assumed that the temperature at the droplet 

surface is fixed (it does not depend on time). It can be seen that in Fig. 3 (a) the slope of the curves in the region ξw to 

1 changes from concave upwards to concave downwards as heating progresses. This can be linked to the changes in 

heat fluxes shown in Fig. 4. The values of heat flux were obtained by calculating the derivatives of temperature, as in 

the approach used in [44]. In this figure, the heat fluxes entering at ξw and 1 at various times are shown. The shift in 

concavity occurs because heat flux entering at ξw increases and exceeds heat flux values at 1. At ξw, heat flux increases 

until t ≈ 0.145 ms, and then starts to decrease. 

(a) (b) 

Fig. 3 Plots of T(ξ) at several time instants for Rd0 = 5 μm, T0 = 300 K, Tg = 700 K, p = 1 atm = 101.325 kPa, Vfr,w 

= 15%; (a) refers to the results obtained using the new model (b) shows the results obtained using the model 

described in [25]. Note different normalisations in (a) and (b). 

Heat Flux ቀ
𝐖

𝐦𝐦𝟐ቁ 

Fig. 4 Heat flux (W/mm2) vs time (ms), inferred from calculations using the new model, for a composite droplet 

(solid) and pure n-dodecane droplet (dashed). 
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Calculations similar to those that produced the results shown in Fig. 3 were performed for droplets of various 

diameters using both new and previous models. The results are presented in Fig. 5. The same experimental conditions 

as in [22, 28] (T0 =300 K, Tg=700 K, p=1 atm=101.325 kPa, Vfr,w = 15%) were used. As can be seen in Fig. 5, the 

models predict rather different times to puffing/microexplosion, although both models predict an increase in this time 

as the droplet diameter increases. The new approach predicts longer times than the previous model which can be 

attributed to lower temperatures at the droplet surface inferred from the calculations using the new model. It can be 

seen that the points referring to experimental observations lie between the results inferred from the calculations using 

the new model and those using the model suggested in [28]. Note that both old and new models only describe correctly 

the trends in the experimental data, and not the values of individual times to puffing/microexplosion. This is something 

that we expected, remembering the very stringent assumptions which were made when developing these models.  

The apparent overprediction of the time to puffing by the new model can be attributed to the important assumption 

made in the model that the water sub-droplet is located exactly at the centre of the n-dodecane droplet (see the relevant 

discussion in Section 1). In realistic cases, the water sub-droplet is likely to be shifted relative to the centre of the fuel 

Fig. 6 (a) Rd (μm) vs time (ms); (b) Ts (K) versus time (ms), using the same conditions as in Fig. 3; composite 

droplet (solid), pure n-dodecane droplet (dashed). 

(a) (b) 

Fig. 5 A comparison between the times to puffing (ms) inferred from calculations using the new and previous models 

as the functions of the droplet diameters (μm) and the experimentally observed values. Calculations were performed 

using the same parameters as in Fig. 3 
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droplet (cf. the results of observations of microexplosions described in [15, 45]), which would lead to a substantial 

reduction in the time to puffing. All the experimental observations are found to be below those predicted by the new 

model. As can be seen, no experimental values overshoot the values predicted by the new model. The effect of 

composite droplets on their heating/evaporation is demonstrated in Fig. 6. All parameters were taken to be the same 

as in the previous case (T0 =300 K, Tg=700 K, p=1 atm=101.325 kPa, Vfr,w = 15%). Fig. 6 (a) presents the evolution 

of droplet radius with time. It can be seen that the droplet evaporation rate increases gradually with time thereby 

causing a reduction in droplet radius. It is found that the droplet radius reduces by about 3.2% before 

puffing/microexplosion is expected. The rate of droplet evaporation increases at the later stage of the process mainly 

due to higher values of surface temperature Ts, as presented in Fig. 6 (b). As can be seen from this figure, 

puffing/microexplosion takes place well before the surface attains the boiling point of n-dodecane. The surface 

temperature when puffing/microexplosion is expected was found to be 441.071K which is much lower than the n-

dodecane boiling temperature used in the model suggested in [25]. The comparison of the curves for composite 

droplets and pure droplets, Fig. 6 (b), shows that the surface temperature changes slightly faster in the latter case. 

7 Conclusion 

A novel model for puffing/microexplosion of emulsion droplets is suggested. In this model, it is assumed that a 

water sub-droplet is entrapped in the centre of a fuel droplet, and the analytical solution to the one-dimensional 

transient heat conduction equation, which describes heat transfer from the surface of the droplet into the liquid phase, 

is used at each time step. This solution uses the Robin boundary condition at the droplet surface and the conditions at 

the water-fuel interface. Surface regression due to evaporation at the droplet surface is accounted for, but the effects 

of swelling of water and fuel are ignored. It is assumed that the time to puffing/microexplosion is equal to the time 

required to heat the water-fuel interface to the boiling point of water. 

The code was verified using the model for homogeneous droplet heating and evaporation developed earlier. The 

predictions of the new model for the emulsion droplets were compared with those of the previously developed model 

which was based on the Dirichlet boundary condition at the droplet surface and in which the effects of changes in the 

droplet surface temperature and evaporation were ignored. The new model predicts longer times to 

puffing/microexplosion than those predicted by the previously developed model. The experimental observations of 

the microexplosion delay times for various initial droplet diameters were found to be below the predicted values. This 

is attributed to the expectation that water sub-droplets are not precisely positioned at the fuel droplet centre, which 

would lead to a large reduction in the time to puffing/microexplosion. A significant reduction in the droplet radius, 

due to evaporation, was noted before predicted puffing/microexplosion. It was observed that microexplosion/puffing 

takes place well before the surface attains the boiling point of n-dodecane. The suggested numerical algorithm can be 

used for the development of computational fluid dynamics (CFD) codes. 
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Appendix A 

Derivation of Equation (4.1) 

Introducing the variable 

𝑢 = 𝑇 ∙ 𝑅 (A1.1) 

we can simplify Eq. (3.1) and initial/boundary conditions (3.3), (3.4) and (3.5) to: 

𝜕𝑢

𝜕𝑡
= 𝜅 (

𝜕2𝑢

𝜕𝑅2
) + 𝑅 ∙ 𝑃(𝑅) 

(A1.2) 

for t ϵ [t0,t0+∆t] and R ϵ [0,Rd], 

where 

𝜅 =

{

𝜅𝑤 =
𝑘𝑤

𝑐𝑤 ∙ 𝜌𝑤
  when 𝑅 ≤ 𝑅𝑤       

𝜅𝑓 =
𝑘𝑓

𝑐𝑓 ∙ 𝜌𝑓
 when 𝑅𝑤 < 𝑅 ≤ 𝑅𝑑 

𝑢|𝑡=0 = {
𝑅 ∙ 𝑇𝑤0(𝑅)   when 0 ≤ 𝑅 ≤ 𝑅𝑤      

𝑅 ∙ 𝑇𝑓0(𝑅)  when 𝑅𝑤 < 𝑅 ≤ 𝑅𝑑, 
(A1.3) 

𝑢|𝑅=𝑅𝑤− = 𝑢|𝑅=𝑅𝑤+          ;   𝑘𝑤(𝑅𝑤 ∙ 𝑢𝑅
′ − 𝑢)|𝑅=𝑅𝑤− = 𝑘𝑓(𝑅𝑤 ∙ 𝑢𝑅

′ − 𝑢)|𝑅=𝑅𝑤+ (A1.4) 

(𝑢𝑅
′ + 𝐻(𝑡) ∙ 𝑢)|𝑅=𝑅𝑑− = 𝜇(𝑡), (A1.5) 

𝐻(𝑡) =
ℎ(𝑡)

𝑘𝑓
−
1

𝑅𝑑
 and  𝜇(𝑡) =

𝑅𝑑
𝑘𝑓
(ℎ(𝑡) ∙ 𝑇𝑔 + 𝜌𝑙 ∙ 𝐿𝑓 ∙ �̇�𝑑).

At the next stage, we introduce variable ξ=R/Rd and function F(t,ξ)=u(t,R) (this approach was used in [30] to reduce 

the problem with a moving boundary to one with a stationary boundary). 

For 0 ≤ 𝑅 ≤ 𝑅𝑑  ;   0 ≤ 𝜉 ≤1, 

Using ξ and F(t,ξ) Equation (A1.2) can be rewritten as 

𝑅𝑑
2 ∙ 𝐹𝑡

′ = 𝜅 ∙ 𝐹𝜉𝜉
′′ + 𝜉 ∙ �̇�𝑑(𝑡) ∙ 𝑅𝑑 ∙ 𝐹𝜉

′ + 𝑅𝑑
3 ∙ 𝜉 ∙ �̃�(𝜉) (A1.6) 

for t ϵ [t0,t0+∆t] and ξ ϵ [0,1]. 

Ignoring the effect of evaporation during the individual time step (the term proportional to �̇�𝑑(𝑡) in Equation

(A1.6)) but not in the boundary conditions, the expression (A1.6) can be rewritten as 

𝑅𝑑
2 . 𝐹𝑡

′ = 𝜅. 𝐹𝜉𝜉
′′ + 𝑅𝑑

3 ∙ 𝜉 ∙ �̃�(𝜉). (A1.7) 

The initial/boundary conditions are presented as 



𝐹|𝑡=0 = {
𝑅𝑑 ∙ 𝜉 ∙ 𝑇𝑤0(𝜉)  when 0 ≤  𝜉 ≤ 𝜉𝑤   

𝑅𝑑 ∙ 𝜉 ∙ 𝑇𝑓0(𝜉)  when 𝜉𝑤 < 𝜉 ≤ 1 , 

(A1.8) 

where 
𝜉𝑤 =

𝑅𝑤
𝑅𝑑
, 

𝐹|𝜉𝑤− = 𝐹|𝜉𝑤+  ;  𝑘𝑤(𝜉𝑤 ∙ 𝐹𝜉
′ − 𝐹)|

𝜉𝑤
− = 𝑘𝑓(𝜉𝑤 ∙ 𝐹𝜉

′ − 𝐹)|
𝜉𝑤
+ , (A1.9) 

(𝐹𝜉
′ + 𝐻0(𝑡) ∙ 𝐹)|𝜉=1−

= 𝜇0(𝑡), (A1.10) 

𝐻0(𝑡) = 𝐻(𝑡) ∙ 𝑅𝑑 =
ℎ(𝑡) ∙ 𝑅𝑑
𝑘𝑓

− 1 = ℎ0 = constant > −1,
(A1.11) 

𝜇0(𝑡) = 𝜇(𝑡) ∙ 𝑅𝑑 =
𝑅𝑑
2

𝑘𝑓
(ℎ(𝑡) ∙ 𝑇𝑔 + 𝜌𝑙 ∙ 𝐿𝑓 ∙ �̇�𝑑), 

(A1.12) 

ℎ(𝑡) =
�̅�𝑔 ∙ 𝑁𝑢

2𝑅𝑑
. 

(A1.13) 

h(t) and h0 are considered constant during the individual time step. For stationary droplets, ignoring the effects of 

evaporation on convective heating of droplets (assuming that the heat transfer Spalding number is small), we have 
Nu=2. 

To convert the inhomogeneous boundary condition (Equation (A1.10)) into homogeneous ones, we introduce function 
V(t,ξ) via the equation 

𝐹(𝑡, 𝜉) = 𝑉(𝑡, 𝜉) +
𝜇0(𝑡)

1 + ℎ0
𝜉. 

(A1.14) 

Using (A1.14), we can rewrite (A1.7) as 

𝑅𝑑
2 ∙ 𝑉𝑡

′ = 𝜅 ∙ 𝑉𝜉𝜉
′′ −

�̇�0(𝑡) ∙ 𝑅𝑑
2

1 + ℎ0
𝜉 + 𝑅𝑑

3 ∙ 𝜉 ∙ �̃�(𝜉). 
(A1.15) 

The initial/boundary conditions are presented as: 

𝑉|𝑡=0 = 𝑅𝑑 ∙ 𝜉 ∙ 𝑇0(𝜉 ∙ 𝑅𝑑) −
𝜇0(𝑡)

1 + ℎ0
𝜉, 

(A1.16) 

𝑇0(𝜉 ∙ 𝑅𝑑) = {
𝑇𝑤0(𝜉 ∙ 𝑅𝑑)  when 0 ≤  𝜉 ≤ 𝜉𝑤  

𝑇𝑓0(𝜉 ∙ 𝑅𝑑)  when 𝜉𝑤 < 𝜉 ≤ 1, 

𝑉|𝜉𝑤− = 𝑉|𝜉𝑤+ ;    𝑘𝑤(𝜉𝑤 ∙ 𝑉𝜉
′ − 𝑉)|

𝜉𝑤
− = 𝑘𝑓(𝜉𝑤 ∙ 𝑉𝜉

′ − 𝑉)|
𝜉𝑤
+ , (A1.17) 

(𝑉𝜉
′ + ℎ0𝑉)|𝜉=1−

= 0. (A1.18) 

We look for the solution to (A1.15) in the form 



𝑉(𝑡, 𝜉) = ∑𝜃𝑛(𝑡) ∙ 𝑣𝑛(𝜉)

∞

𝑛=1

, 
(A1.19) 

where eigenfunctions vn(ξ) form the full set of non-trivial solutions to the equation: 

𝑑2𝑣

𝑑𝜉2
+ 𝜆2 ∙ 𝑣 = 0.

(A1.20) 

(A1.20) is to be solved using the following boundary conditions 

𝑣|𝜉=0 = (𝑣𝜉
′ + ℎ0 ∙ 𝑣)|𝜉=1−

= 0, (A1.21) 

𝑣|𝜉𝑤− = 𝑣|𝜉𝑤+ ;    𝑘𝑤(𝜉𝑤 ∙ 𝑣𝜉
′ − 𝑣)|

𝜉𝑤
− = 𝑘𝑓(𝜉𝑤 ∙ 𝑣𝜉

′ − 𝑣)|
𝜉𝑤
+

(A1.22) 

The general solution to (A1.20) subject to these boundary conditions can be presented as: 

𝑣𝑛(𝜉) = {
𝐴1 cos(𝜆 ∙ 𝜉) + 𝐵1 sin(𝜆 ∙ 𝜉)   when 0 ≤  𝜉 ≤ 𝜉𝑤   

𝐴2 cos(𝜆 ∙ 𝜉) + 𝐵2 sin(𝜆 ∙ 𝜉)    when 𝜉𝑤 < 𝜉 ≤ 1 . 

(A1.23) 

Note that: 

𝐴2 cos(𝜆 ∙ 𝜉) + 𝐵2 sin(𝜆 ∙ 𝜉) = √𝐴2
2 + 𝐵2

2 sin ቀ𝜆 ∙ 𝜉 + tan−1 ቀ
𝐴2

𝐵2
ቁቁ. (A1.24) 

From (A1.21) we have A1 = 0. Making the following replacements    𝐵1 → 𝐵 ;  √𝐴2
2 + 𝐵2

2 → 𝐴  and tan−1 ቀ
𝐴2

𝐵2
ቁ →

𝛽 , (A1.23) can be written as 

𝑣𝑛(𝑅) = {
𝐵 sin(𝜆 ∙ 𝜉)        when 0 ≤  𝜉 ≤ 𝜉𝑤    

𝐴 sin(𝜆 ∙ 𝜉 + 𝛽)    when 𝜉𝑤 < 𝜉 ≤ 1 . (A1.25) 

From the first equation in (A1.22) we have 

𝐵 sin(𝜆 ∙ 𝜉𝑤) = 𝐴 sin(𝜆 ∙ 𝜉𝑤 + 𝛽). (A1.26) 

Condition (A1.26) is satisfied when 

𝐵 =
1

sin(𝜆 ∙ 𝜉𝑤)
 ;   𝐴 =

1

sin(𝜆 ∙ 𝜉𝑤 + 𝛽)
 . 

β is obtained from the flux exchange at the interface given in Equations (A1.22) and (A1.17). It can be presented as 

𝛽𝑛 = cot
−1 (

(𝑘𝑓 − 𝑘𝑤)

𝑘𝑓 ∙ 𝜉𝑤 ∙ 𝜆𝑛
+
𝑘𝑤 cot(𝜉𝑤 ∙ 𝜆𝑛)

𝑘𝑓
) + 𝑖 ∙ 𝜋 − 𝜉𝑤 ∙ 𝜆𝑛 . (A1.27) 

where i= 0,1,2,3… 

We restrict our analysis to the case when i = 0. The values of the eigenfunctions would be the same for other values 

of this parameter. 

A countable set of positive eigenvalues λn is obtained from the solution to Equation (A1.21). This equation can be re-

arranged to: 



𝜆 cos(𝜆 + 𝛽) + ℎ0 sin(𝜆 + 𝛽) = 0 . (A1.28) 

Remembering (A1.25) we obtain the following expressions for vn 

𝑣𝑛(𝜉) =

{

sin(𝜆𝑛 ∙ 𝜉)

sin(𝜆𝑛 ∙ 𝜉𝑤)
 when 0 ≤  𝜉 ≤ 𝜉𝑤

sin(𝜆𝑛 ∙ 𝜉 + 𝛽𝑛)

sin(𝜆𝑛 ∙ 𝜉𝑤 + 𝛽𝑛)
 when 𝜉𝑤 < 𝜉 ≤ 1 . 

(A1.29) 

Functions vn (R) are orthogonal with weight (see [28, 46] for details on orthogonality) 

𝑘 = {
𝑘𝑤    when 0 ≤  𝜉 ≤ 𝜉𝑤
𝑘𝑓  when 𝜉𝑤 < 𝜉 ≤ 1  .

(A1.30) 

This means that ∫ 𝑣𝑛(𝜉) ∙ 𝑣𝑚(𝜉) ∙ 𝑘 𝑑𝜉
1

0
= 𝛿𝑛𝑚 ∙ ‖𝑣𝑛‖

2
, where

𝛿𝑛𝑚 = {
1  when 𝑛 = 𝑚 
0  when 𝑛 ≠ 𝑚 

The norm of vn can be obtained from the expression 

‖𝑣𝑛‖
2
= ∫ 𝑣𝑛

2 ∙ 𝑘 ∙ 𝑑𝜉
1

0

= ∫ (
sin(𝜆𝑛 ∙ 𝜉)

sin(𝜆𝑛 ∙ 𝜉𝑤 )
)

2

𝑘𝑤 𝑑𝜉 +
𝜉𝑤

0

∫ (
sin(𝜆𝑛 ∙ 𝜉 + 𝛽𝑛)

sin(𝜆𝑛 ∙ 𝜉𝑤 + 𝛽𝑛)
)

2

𝑘𝑓 𝑑𝜉
1

𝜉𝑤

=
𝑘𝑤
2
(𝜉𝑤 csc(𝜉𝑤 ∙ 𝜆𝑛)

2 −
cot(𝜉𝑤 ∙ 𝜆𝑛)

𝜆𝑛
)

+
𝑘𝑓

4
csc(𝛽𝑛 + 𝜉𝑤 ∙ 𝜆𝑛)

2 (2 − 2𝜉𝑤 +
− sin(2(𝛽𝑛 + 𝜆𝑛)) + sin(2(𝛽𝑛 + 𝜉𝑤 ∙ 𝜆𝑛))

𝜆𝑛
). 

(A1.31) 

Solution (A1.19) for V(t,ξ) with vn(ξ) defined by (A1.29) satisfies the boundary conditions for (A1.15). The fact that 

functions vn(ξ) are orthogonal with the weight k makes it possible for us to expand functions in (A1.15) and initial 

conditions (A1.16) as: 

𝑓(𝜉) =
−𝜉

1 + ℎ0
= ∑𝑓𝑛 ∙ 𝑣𝑛(𝜉)

∞

𝑛=1

(A1.32) 

𝐹0(𝜉) = 𝑅𝑑 ∙ 𝜉 ∙ 𝑇0(𝜉 ∙ 𝑅𝑑) = ∑𝑞𝑛 ∙ 𝑣𝑛(𝜉)

∞

𝑛=1

(A1.33) 

𝑅𝑑
3 ∙ 𝜉 ∙ �̃�(𝜉) = ∑𝑝𝑛 ∙ 𝑣𝑛(𝜉)

∞

𝑛=1

(A1.34) 

𝑓𝑛 =
1

‖𝑣𝑛‖
2∫ 𝑓(𝜉) ∙ 𝑣𝑛(𝜉) ∙ 𝑘

1

0

𝑑𝜉 =
1

‖𝑣𝑛‖
2

(

∫
−𝜉

1 + ℎ0

sin(𝜆𝑛 ∙ 𝜉)

sin(𝜆𝑛 ∙ 𝜉𝑤 )
𝑘𝑤

𝜉𝑤

0

𝑑𝜉 +

∫
−𝜉

1 + ℎ0

sin(𝜆𝑛 ∙ 𝜉 + 𝛽𝑛)

sin(𝜆𝑛 ∙ 𝜉𝑤 + 𝛽𝑛)
𝑘𝑓

1

𝜉𝑤

𝑑𝜉
)

(A1.35) 



𝑞𝑛 =
1

‖𝑣𝑛‖
2∫ 𝐹0(𝜉) ∙ 𝑣𝑛(𝜉) ∙ 𝑘

1

0

𝑑𝜉 =
1

‖𝑣𝑛‖
2

(

∫ 𝑅𝑑 ∙ 𝜉 ∙ 𝑇𝑤0(𝜉 ∙ 𝑅𝑑)
sin(𝜆𝑛 ∙ 𝜉)

sin(𝜆𝑛 ∙ 𝜉𝑤 )

𝜉𝑤

0

𝑘𝑤 𝑑𝜉 +

∫ 𝑅𝑑 ∙ 𝜉 ∙ 𝑇𝑓0(𝜉 ∙ 𝑅𝑑)
sin(𝜆𝑛 ∙ 𝜉 + 𝛽𝑛)

sin(𝜆𝑛 ∙ 𝜉𝑤 + 𝛽𝑛)
𝑘𝑓

1

𝜉𝑤

𝑑𝜉
)

(A1.36) 

𝑝𝑛 =
1

‖𝑣𝑛‖
2∫ 𝑅𝑑

3 ∙ 𝜉 ∙ �̃�(𝜉) ∙ 𝑣𝑛(𝜉) ∙ 𝑘
1

0

𝑑𝜉 =
1

‖𝑣𝑛‖
2

(

∫ 𝑅𝑑
3 ∙ 𝜉 ∙ �̃�(𝜉)

sin(𝜆𝑛 ∙ 𝜉)

sin(𝜆𝑛 ∙ 𝜉𝑤 )

𝜉𝑤

0

𝑘𝑤 𝑑𝜉 +

∫ 𝑅𝑑
3 ∙ 𝜉 ∙ �̃�(𝜉)

sin(𝜆𝑛 ∙ 𝜉 + 𝛽𝑛)

sin(𝜆𝑛 ∙ 𝜉𝑤 + 𝛽𝑛)
𝑘𝑓

1

𝜉𝑤

𝑑𝜉
)

(A1.37) 

Remembering (A1.15) and (A1.19), and using Equations (A1.32)-(A1.37) we can write 

∑(𝑅𝑑
2(𝑡) ∙ 𝜃𝑛

′ (𝑡) + 𝜅 ∙ 𝜆𝑛
2 ∙ 𝜃𝑛(𝑡))𝑣𝑛(𝜉)

∞

𝑛=1

=∑(𝑓𝑛 ∙ 𝑅𝑑
2(𝑡) ∙ 𝜇0

′ (𝑡))𝑣𝑛(𝜉)

∞

𝑛=1

+∑𝑝𝑛 ∙ 𝑣𝑛(𝜉).

∞

𝑛=1

(A1.38) 

This equation is satisfied if and only if the coefficients on the two sides are equal, i.e. 

𝑅𝑑
2 ∙ 𝜃𝑛

′ (𝑡) + 𝜅 ∙ 𝜆𝑛
2 ∙ 𝜃𝑛(𝑡) = 𝑓𝑛 ∙ 𝑅𝑑

2 ∙ 𝜇0
′ (𝑡) + 𝑝𝑛 . (A1.39) 

(A1.39) needs to be solved using the initial condition 

𝜃𝑛(0) = 𝑞𝑛 + 𝑓𝑛 ∙ 𝜇0(0). (A1.40) 

The complementary solution to the homogeneous equation 

𝑅𝑑
2 ∙ 𝜃𝑛

′ (𝑡) + 𝜅 ∙ 𝜆𝑛
2 ∙ 𝜃𝑛(𝑡) = 0,

using (A1.40), can be presented as: 

𝜃𝑛(𝑡) = 𝜃𝑛(0) exp (−
𝜅 ∙ 𝜆𝑛

2 ∙ 𝑡

𝑅𝑑
2 ). 

Remembering (A1.40), this solution can be presented as: 

𝜃𝑛(𝑡) = (𝑞𝑛 + 𝜇0(0) ∙ 𝑓𝑛) exp (−
𝜅 ∙ 𝜆𝑛

2 ∙ 𝑡

𝑅𝑑
2 ). 

The particular solution to (A1.39) can be presented as 

𝜃𝑛(𝑡) = (𝑞𝑛 + 𝜇0(0) ∙ 𝑓𝑛) exp (−
𝜅 ∙ 𝜆𝑛

2 ∙ 𝑡

𝑅𝑑
2 ) + ∫  (

𝑝𝑛

𝑅𝑑
2 + 𝑓𝑛 ∙ 𝜇0

′ (𝜏)) exp (
𝜅 ∙ 𝜆𝑛

2 (𝜏 − 𝑡)

𝑅𝑑
2 )𝑑𝜏.

𝑡

0

 
(A1.41) 

This allows us to obtain the final equation for temperature distribution inside the droplet: 

𝑇(𝜉, 𝑡) =
1

𝑅𝑑 ∙ 𝜉
∑(𝜃𝑛(𝑡) ∙ 𝑣𝑛(𝜉) +

𝜇0(𝑡)

1 + ℎ0
𝜉)

∞

𝑛=1

 . 
(A1.42) 

This expression is the same as given in Formula (4.1). 

Appendix B 

The verification of the model using the prediction of the previously developed model for homogeneous droplets 

To perform a comparison between the new model and the model described in [43], we assume that all properties of 

water are the same as those of fuel: 



𝑘𝑤 = 𝑘𝑓;   𝜅𝑤 = 𝜅𝑓 . (B1.1) 

Using (A1.27), we obtain β = 0. The eigenfunctions vn(ξ), defined by (A1.29), become continuous functions and can 

be rewritten as 

𝑣𝑛(𝜉) =
sin(𝜆𝑛 ∙ 𝜉)

sin(𝜆𝑛 ∙ 𝜉𝑤)
 when 0 ≤  𝜉 ≤ 1 . 

(B1.2) 

We introduce subscript (hom) to denote the functions for homogeneous droplets [30]: 

𝑣𝑛(𝜉) =
𝑣𝑛(hom)(𝜉)

sin(𝜆𝑛 ∙ 𝜉𝑤)
 . 

(B1.3) 

Using  

(A1.31), ‖𝑣𝑛‖
2
 can be rewritten as

‖𝑣𝑛‖
2
= 𝑘𝑓 csc(𝜉𝑤 ∙ 𝜆𝑛)

2
1

2
(1 −

sin(2𝜆𝑛)

𝜆𝑛
) 

or 

(B1.4) 

‖𝑣𝑛‖
2
= 𝑘𝑓 csc(𝜉𝑤 ∙ 𝜆𝑛)

2 ∙ ‖𝑣𝑛‖(hom)
2

 . (B1.5) 

Using Equations (A1.35), (B1.3) and (B1.5), fn can be rewritten as 

𝑓𝑛 =
1

𝑘𝑓 csc(𝜉𝑤 . 𝜆𝑛)
2 ∙ ‖𝑣𝑛‖(hom)

2 ∫ (
− 𝜉

1 + ℎ0
) csc(𝜉𝑤 ∙ 𝜆𝑛) 𝑣𝑛(hom)(𝜉) ∙ 𝑘𝑓𝑑𝜉

1

0

 . 

This expression can be reduced to 

𝑓𝑛 = sin(𝜉𝑤 ∙ 𝜆𝑛) ∙ 𝑓𝑛(hom). (B1.6) 

Following the same procedure, we obtain the following expressions for qn and θn (t): 

𝑞𝑛 = sin(𝜉𝑤 ∙ 𝜆𝑛) ∙ 𝑞𝑛(hom), (B1.7) 

𝑝𝑛 = sin(𝜉𝑤 ∙ 𝜆𝑛) ∙ 𝑝𝑛(hom), (B1.8) 

𝜃𝑛(𝑡) = sin(𝜉𝑤 ∙ 𝜆𝑛) ∙ 𝜃𝑛(hom)(𝑡). (B1.9) 

Recalling the definition of Teff introduced in [43] 

𝑇𝑔 +
𝜌𝑙 ∙ 𝐿𝑓 ∙ �̇�𝑑

ℎ
= 𝑇eff,

and using (A1.42), (B1.3) and (B1.9), the final equation for droplet heating reduces to 

𝑇(𝜉, 𝑡) =
1

𝑅𝑑 ∙ 𝜉
∑(𝜃𝑛(𝑡) ∙ 𝑣𝑛(𝜉))

∞

𝑛=1

+ 𝑇eff .
(B1.10) 



This expression is the same as derived in [43] for heating and evaporation of a homogeneous droplet (see Equation 

(16) in this paper) if we do not take into account the contribution of radiative heating. This shows the consistency of

our new model and the model developed in [43] for homogeneous droplets.
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