

Edinburgh Research Explorer

Randomizing TCP payload size for TCP fairness in data center
networks

Citation for published version:
Lee, S, Lee, D, Lee, M, Jung, H & Lee, B 2017, 'Randomizing TCP payload size for TCP fairness in data
center networks', Computer Networks, vol. 129, pp. 79-92. https://doi.org/10.1016/j.comnet.2017.09.007

Digital Object Identifier (DOI):
10.1016/j.comnet.2017.09.007

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computer Networks

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 02. Jan. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/266994595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.comnet.2017.09.007
https://doi.org/10.1016/j.comnet.2017.09.007
https://www.research.ed.ac.uk/portal/en/publications/randomizing-tcp-payload-size-for-tcp-fairness-in-data-center-networks(d0bcbbc9-06b3-487a-99db-a4f97392a11f).html

Randomizing TCP Payload Size for TCP Fairness in Data Center
NetworksI

Soojeon Leea,b, Dongman Leea,∗, Myungjin Leec, Hyungsoo Jungd, Byoung-Sun Leeb

aSchool of Computing, KAIST, Daejeon, 34141, South Korea
bAerospace System Research Section, ETRI, Daejeon, 34129, South Korea

cSchool of Informatics, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
dDivision of Computer Science and Engineering, Hanyang University, 04763, South Korea

Abstract

As many-to-one traffic patterns prevail in data center networks, TCP flows often suffer from severe unfairness
in sharing bottleneck bandwidth, which is known as the TCP outcast problem. The cause of the TCP outcast
problem is the bursty packet losses by a drop-tail queue that triggers TCP timeouts and leads to decreasing
the congestion window. This paper proposes TCPRand, a transport layer solution to TCP outcast. The
main idea of TCPRand is the randomization of TCP payload size, which breaks synchronized packet arrivals
between flows from different input ports. Based on the current congestion window size and the CUBIC’s
congestion window growth function, TCPRand adaptively determines the proper level of randomness. With
extensive ns-3 simulations and experiments, we show that TCPRand guarantees the superior enhancement
of TCP fairness by reducing the TCP timeout period noticeably even in an environment where serious TCP
outcast happens. TCPRand also minimizes the total goodput loss since its adaptive mechanism avoids
unnecessary payload size randomization. Compared with DCTCP, TCPRand performs fairly well and only
requires modification at the transport layer of the sender which makes its deployment relatively easier.

Keywords: Data center networks, TCP outcast, fairness.

1. Introduction

Data center applications such as MapReduce and
network file systems create a many-to-one traffic
pattern that is bursty and barrier-synchronized.
In such a traffic pattern, multiple TCP flows ar-
rive at different input ports of a bottleneck switch
and compete for the same outgoing queue. This
makes those data center applications suffer from

IPortions of this manuscript appeared in IEEE Info-
com 2015. This work was supported in part by the Space
Core Technology Development Program of NRF [NRF-
2014M1A3A3A03034729, Development of core S/W stan-
dard platform for GEO satellite ground control system],
ICT R&D program of MSIP/IITP [B0101-14-0334, Devel-
opment of IoT-based Trustworthy and Smart Home Com-
munity Framework], and a grant from the British Council.

∗Corresponding author
Email addresses: soojeonlee@{kaist.ac.kr,

etri.re.kr} (Soojeon Lee), dlee@cs.kaist.ac.kr
(Dongman Lee), myungjin.lee@ed.ac.uk (Myungjin Lee),
hyungsoo.jung@hanyang.ac.kr (Hyungsoo Jung),
lbs@etri.re.kr (Byoung-Sun Lee)

serious goodput decrease and bad flow completion
time performance due to frequent TCP timeouts
triggered by multiple packet losses. Such a phe-
nomenon can lead to the well-known TCP incast [1]
and outcast problems [2].

The TCP incast problem typically occurs when
TCP senders and a receiver are colocated on the
same rack (or under one aggregate switch) and
all flows go out through the same shallow-buffered
switch [1, 3, 4, 5]. TCP timeouts happen randomly
among flows competing for the outgoing port at a
bottleneck switch. In contrast, the TCP outcast
problem arises when the locations of the senders are
dispersed across different racks. Specifically, the
bottleneck switch penalizes particular flows more
often than others by consecutively dropping more
packets from those flows. Thus, the outcast prob-
lem severely hurts TCP fairness—a crucial met-
ric, especially for barrier-synchronized workloads in
data center networks. In such workloads, speeding
up the slowest flow in a barrier is a key to enhance

Preprint submitted to Elsevier October 6, 2017

the performance since a barrier ends only after ev-
ery flow (including the slowest one) in the barrier
finishes. TCP outcast is attributed to burst ar-
rivals of packets competing for the same output port
and a severe imbalance in the number of incoming
flows per each input port at the bottleneck switch.
Because inter-rack sender placement begins to be
taken into account in order to improve fault toler-
ance in data centers [6], it is of utmost importance
for data center administrators to have a viable so-
lution to the outcast problem.

Several solutions can be applied for the TCP out-
cast problem. The link layer solutions require a
modication to the current switching architecture [7]
or are not widely supported in todays switches [8].
Equal-length routing [2], one of network layer solu-
tions, only works in non-oversubscribed networks.
The cross-layer solution [9] levereages the Explicit
Congestion Notication (ECN) capability, which is
becoming popular at the world largest data centers.
However, there still exist many data centers where
all or majority of switches do not have ECN capabil-
ity due to cost reason; in fact the largest data cen-
ters in South Korea are an exemplar of this reason.
To help such data centers overcome the TCP out-
cast problem efficiently, a transport layer solution
can be viable since it neither relies on any specific
link layer supports nor assumes any particular net-
work topology. However, existing rate-based trans-
port layer approaches are not applicable to TCP
outcast in data centers because they require the
precise control of inter packet spacing time [10, 11]
which operating systems hardly guarantee and are
inappropriate [11] for a multi-hop environment.

The contribution of this paper is a transport
layer solution called TCPRand to TCP outcast.
TCPRand randomizes the TCP payload size to
break the bursty arrival times of back-to-back pack-
ets. By doing so, it prevents the outcast flow suffer-
ing from consecutive packet losses and consequently
reduces TCP timeouts. At the sender side, the pro-
posed solution makes the TCP payload size uni-
formly distributed between [rMin, MSS]. However,
it may increase the packet header overhead due to
the smaller payload size and curtail the total good-
put. To achieve high fairness without loss of to-
tal goodput, it calculates rMin by adapting to the
changes of congestion window (cwnd). It is based
on the observation that for many-to-one applica-
tions (e.g., especially with a barrier synchroniza-
tion property [12]) as cwnd of a flow is growing,
the network is more congested and the port black-

E1

R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

E2 E3 E4 E5 E6 E7 E8

A1 A2 A3 A4 A5 A6 A7 A8

C1 C3C2 C4

Figure 1: Fat-tree topology composed of switches (Cn: Core,
An: Aggregation, and En: Edge) and end-nodes (R: Re-
ceiver and Sn: Sender).

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Go
od
pu
t	
(M

bp
s)

Sender	 ID	 (Si)

Figure 2: The goodput of each flow sent from the 15 senders
described in Figure 1. The flow sent from S1 is the most
outcast one and the flows from S2-S3 are the second outcast
ones.

out happens more frequently. Hence, if cwnd of a
flow increases, the scheme decreases rMin for the
flow.

We use ns-3 [13] to evaluate TCPRand with a
realistic topology (i.e., fat-tree [14]) and workloads
of data center networks, and show that TCPRand
substantially improves TCP fairness and rarely sac-
rifices flow completion times of flows, especially
those of small flows. In addition, we implement
TCPRand by modifying the sender side execution
path of TCP protocol stack in the Linux kernel and
perform extensive experiments in our testbed. We
demonstrate that TCPRand reduces consecutive
packet drops and TCP timeouts significantly, and
as a result, it improves TCP fairness substantially
with a small loss of the overall goodput and negligi-
ble additional retransmission overheads. We also
compare TCPRand with DCTCP (i.e., the most
popular solution with support of switch) and shows
that TCPRand increases fairness as close to 98% of
DCTCP.

2

The remainder of this paper is organized as fol-
lows. In Section 2, we briefly introduce the TCP
outcast problem. Next, we explain the effect of
payload size randomization and why it is a key
technique to the outcast problem in Section 3.
Section 4 provides the details of TCPRand. We
outline our evaluation setup in Section 5 and eval-
uation results are presented in Sections 6 and 7.
Related works are discussed in Section 9 before we
conclude in Section 10.

2. The TCP Outcast Problem

2.1. Overview

The TCP outcast problem is observed easily in
data center networks, where routers or switches are
usually connected through a multi-rooted and hier-
archical topology such as fat-tree [14] and senders
and receivers are leaves of a topology. For instance
in Figure 1, there are 15 senders (i.e., S1-S15) and a
receiver (i.e., R). As many-to-one delivery applica-
tions emerge in such an environment, multiple flows
arrive at different input ports of a receiver’s ingress
switch (i.e., E1) and compete to enter the same out-
going queue. If many flows and a few flows are ar-
riving at two input ports (A1 → E1 and A2 → E1)
and destined to the same output port (E1 → R),
the latter (i.e., the outcast flows) loses the good-
put tremendously because TCP timeout is triggered
more easily to them. It is called the TCP outcast
problem [2], leading to a serious TCP unfairness
among flows. For instance, as shown in Figure 2,
it even results in much higher goodput decrease in
the flows with a short RTT (i.e., from S1) than in
those with a long RTT (i.e., from S4-S15) in a fat-
tree topology.

2.2. Port Blackout

With excessive traffic flows, drop-tail queueing
may drop a series of consecutive packets at each in-
put port, and this is called port blackout [2]. We
refer to [2] for more details on the phenomenon and
here briefly explain it with an example depicted in
Figure 3. The figure illustrates how the port black-
out occurs at a bottleneck switch where a drop-tail
queue management policy is applied and there ex-
ist two input ports (i.e., X and Y) and one output
port (i.e., Z). We consider a case where the packets
of TCP-based bulk data transfer applications arrive
at the switch through ports X and Y and leave it
via port Z.

X1

X2

X3

Y1

Y3

Time

A[Y1]

A[X1]

A[X2]

A[Y2]

A[Y3]

A[X3]

Port X Port Y Port ZOutput Queue

Y1

Y1

Y2 Y1

Y2 Y1

Y3 Y2 Y1

Y2

Figure 3: Port blackout at a switch with fixed-size payloads.
Synchronized packet arrivals make packets arriving at a par-
ticular port (port X in the figure) get discarded with high
probability as the output queue is almost always full when
they arrive. A[p] denotes an arrival time of packet p at the
output queue.

In this setup, packets are almost of the same size
(i.e., the size of TCP/IP headers + MSS). Traffic
is bursty and the inter-frame gap between packets
is constant (e.g., 0.096µs for a gigabit Ethernet ac-
cording to the IEEE 802.3 specification [15]). This
condition can create a situation where packets from
port Y are always stored in the output queue while
packets from port X are always discarded. This
occurs because packet arrivals are almost synchro-
nized and packets from port Y always arrive slightly
ahead of competing packets from port X whenever
one MSS worth of buffer space becomes available
at the output queue. For instance, as shown in
Figure 3, the arrival time of packet Y1 (denoted as
A[Y1]) is ahead of that of packet X1 (i.e., A[X1]),
A[Y2] < A[X2], and so forth. Even though a series
of packet drops happen fairly on ports X and Y by
turns, they damage more seriously to the through-
put of the incoming stream from port X if the
stream consists of less number of TCP flows. As
a consequence, the TCP flows from port X are out-
cast; they experience more frequent TCP timeouts
and lose the goodput more substantially than those
from port Y . This is the essence of the TCP out-
cast problem [2] that has negative impacts on the
TCP fairness among competing flows from different
input ports. It even leads to much higher goodput
decrease in flows with a short RTT than in those
with a long RTT in a fat-tree topology.

3

X1

X2

X3

Y1

Y3

Time

A[Y1]

A[X1]

A[Y2]

A[X2]

A[Y3]

A[X3]

Port X Port Y Port ZOutput Queue

Y1

Y1

X2 Y1

X2 Y1

Y3 X2 Y1

Y2

Non-MSS packet

Figure 4: An illustration of packet payload size random-
ization. The packet payload size randomization technique
creates packets with smaller payload size than MSS, and
breaks the synchronized arrivals of packets, thereby allevi-
ating the impact of the port blackout phenomenon. In the
figure, packet X2 arrives earlier than Y2 and finds the output
queue is not full. Hence, X2 is successfully inserted in the
queue, as opposed to the result in Figure 3. A[p] denotes an
arrival time of packet p at the output queue.

3. Payload Size Randomization

Addressing the TCP outcast problem requires
to reduce the consecutive packet losses at each in-
put port, thereby preventing the port blackout, the
main cause of TCP outcast. In this section, we
introduce a payload size randomization idea which
breaks the bursty and synchronized back-to-back
packet arrivals and as a consequence mitigates the
port blackout phenomenon. Then, through an ex-
periment, we quantitatively show that the random-
ization method substantially mitigates the degree
of the port blackout.

3.1. Avoiding Concurrent Packet Arrivals

The port blackout problem can be ameliorated
by reducing concurrent packet arrivals at two input
ports. At the transport layer, this can be achieved
by the rate-based approach but it is less practical
(see Section 9). Our approach to the problem is
rather to randomize the size of each TCP payload.
The intuition behind this is, randomizing the size of
TCP payload can induce randomness in the arrival
times of packets and it finally breaks the synchro-
nized arrival times of back-to-back packets at each
input port. This can reduce the chance of having
port blackout, and the initial randomness can be

Y2

X2Both X2 and Y2

Neither X2 nor Y2

Figure 5: Enqueue probability of X2 and Y2 at congestion.

preserved all the way down to the receiver in multi-
hop environments.

Let us consider an example illustrated in
Figure 4. In the example, X1 is dropped because
Y1 arrives slightly before X1 (i.e., A[Y1] < A[X1])
when one MSS worth of buffer space is left at the
output queue. Next, the payload size randomiza-
tion technqiue creates a case where the payload size
of X2 is smaller than that of Y2. This results in the
earlier arrival of X2 than Y2 (i.e., A[X2] < A[Y2]).
Hence, X2 is inserted to the output queue whereas
Y2 is dropped (c.f., the opposite phenomenon in
Figure 3 due to the port-blackout). The technique
again affects the dynamics of the arrival times of X3

and Y3 and this time lets Y3 inserted to the queue
and X3 discarded. Because the payload randomiza-
tion technique effectively breaks the synchronized
arrivals of packets, packet drops occur rather alter-
nately across input ports; thus the frequency of the
port blackout phenomenon decreases.

3.2. Understanding the Effect of Payload Size Ran-
domization

To take a closer look at the port blackout phe-
nomenon, we investigate how much a series of
packet drops from each input port can be alleviated
with the payload size randomization at a switch un-
der congestion. Let Q (0 ≤ Q ≤ Qmax) be the out-
put queue length. A packet drop occurs at a drop-
tail queue if a packet arrives when Q = Qmax. To
quantitatively measure the effect of the payload size
randomization, we focus on the enqueue probability
of two packets X2 and Y2 after Y1 is enqueued and
X1 is dropped (see Figure 4). More formally, the
probability of packet pkt to be enqueued at A[pkt],

4

is acquired by:

Pq(pkt) = 1− P (Q = Qmax at A[pkt]) (1)

Based on the notion of Eq. 1, we experimentally
measure the enqueue probabilities of i) X2, ii) Y2,
iii) both X2 and Y2, and iv) neither X2 nor Y2
while randomizing payload sizes. To do so, we write
an offline test code generating two virtual back-to-
back flows (from X and Y). We randomly select
a payload size of each packet within the range of
[rMin, MSS]. We vary the degree of randomness by
changing rMin from 1B to 1,448B at the interval
of 1B. We construct a simple experimental setup
as follows: First, nodes are connected with 1Gbps
links. Second, there are two input ports X and Y ,
and one output port Z. Third, back-to-back pack-
ets arrive continuously at each input port and the
inter-frame gap is 0.096µs (i.e., 8B in a gigabit Eth-
ernet). Last, Y1 is enqueued to the output queue
while X1 is dropped.

By tracing all the packet arrivals and depar-
tures since A[Y1], we measure Pq(X2) and Pq(Y2).
We conduct this test 1,000 times per each rMin.
Figure 5 shows the four types of probabilities of in-
terest. If the regular TCP (i.e., the payload size
is not randomized at all and rMin = 1,448B) is
used, X2 never be enqueued. Of course, this simple
experimental result may not hold in real network
environments since the packet arrival time can be
distorted due to some random factors (e.g., vari-
ations in sending patterns or other unpredictable
random behaviors) [2, 16] and TCP does not gener-
ate endless bursty traffic unlike we did for the test.
However, Figure 5 clearly indicates why the port
blackout is hard to be prevented with the regular
TCP at a drop-tail queueing switch.

As rMin decreases (i.e., from the right of the x-
axis to the left in Figure 5, Pq(X2) increases and
Pq(Y2) decreases. Pq(X2) and Pq(Y2) approach to
0.63 and 0.58, respectively when rMin = 1B. One
interesting observation is that the enqueue proba-
bility of both X2 and Y2 also increases by decreas-
ing rMin. However, the payload size randomization
can make both X2 and Y2 dropped (e.g., with the
probability of 0.11 when rMin = 1B). Nevertheless,
the advantages far outweigh this disadvantage since
the probability of consecutive packet drops reduces
significantly by the randomization mechanism.

Another implication from the above result is that
it is unnecessary to reduce rMin overmuch. There

are two reasons. First, the enqueue probability of
X2 grows up more slowly as rMin approaches to
1B. Second, the lower rMin, the larger the header
overhead. It results in bandwidth waste.

4. Proposed Scheme: TCPRand

In this section, we focus on the design of our
proposed scheme that we call TCPRand. Before
sending a packet, TCPRand determines its payload
size via generating a uniform random number in
the range of [rMin, MSS]. Since rMin is a config-
urable variable (1 ≤ rMin ≤MSS), we can diversify
randomly generated payload sizes by selecting one
rMin value. However, it is unclear what value to
set. Moreover, the degree of port blackout can vary
depending on several factors such as background
traffic, changes in traffic patterns, etc. Due to these
reasons, we consider a scheme that can adaptively
select rMin value and effectively react to changes in
such factors. Our design choice for the adaptation
method lies not only in maximizing the fairness, but
also in minimizing the loss of total goodput in any
circumstances. We design our adaptation method
on top of TCP CUBIC [17], the default congestion
control algorithm in Linux.

4.1. Modeling Adaptive Selection of rMin in CU-
BIC

We focus on CUBIC’s cwnd growth function for
designing an adaptive rMin selection method as
variation in cwnd value can be indicative of the
probability of packet loss, which is a necessary con-
dition of the port blackout.

Let us first take a look at how the CUBIC’s win-
dow growth function (i.e., cwnd(t)), depicted in
Figure 6(a), works. We classify a CUBIC epoch
into 4 stages and present our adaptive rMin selec-
tion strategy for each stage based on its functional
characteristics.

Stage 1) Fast growth of cwnd (when cwnd <
Wmax): At the initial phase of a CUBIC epoch, the
cwnd grows very fast. The rationale here is that
the fast cwnd growth is unlikely to cause a packet
drop since the cwnd is already reduced by a factor
of β just before the start of this epoch. Therefore,
as Strategy 1, we propose to not reduce rMin ag-
gressively.

Stage 2) Slow growth of cwnd (when cwnd <
Wmax): CUBIC slows down the growth of cwnd as
approaching to Wmax since packet losses occurred

5

Wmax=cwnd(K)

=cwnd(0)

t

cwnd(t)=C(t-K)3+Wmax

x=(cwnd-)/(Wmax-)

cwnd 2×Wmax+α

ω

τ

α α

α

(a) CUBIC’s cwnd(t). In CUBIC, when a packet
drop is detected, the cwnd decreases by a factor of
β (= 717/1024 in Linux kernel). Then, a new CU-
BIC epoch begins at t=0, and the initial cwnd of
the epoch α is set to cwnd(0). Wmax (called the
current maximum or the origin point) is the cwnd
where packet losses occurred previously. Refer to
[17] for more details on C and K.

x

1

0.5

Φ

),,(2σµxΦ

(b) Φ: Normal Distribution CDF

Figure 6: Adaptive selection of Φ based on CUBIC’s cwnd.

at Wmax previously. The CUBIC’s heuristic indi-
cates that the probability of packet loss is increas-
ing fast at this stage. To counter the port blackout
actively, Strategy 2 is to reduce rMin aggressively.

Stage 3) Slow growth of cwnd (when cwnd ≥
Wmax): If the cwnd grows past Wmax, CUBIC en-
ters a max probing phase [17]. At the beginning
of the max probing phase, the cwnd grows slowly
to find out a new maximum point nearby as the
CUBIC’s heuristic expects that the probability of
packet loss becomes higher when cwnd ≥ Wmax.
Thus, as Strategy 3, rMin must decrease aggres-
sively again to prevent the port blackout.

Stage 4) Fast growth of cwnd (when cwnd ≥

Wmax): If no packet loss is detected for some pe-
riod of time after stage 3, CUBIC performs a fast
increase of cwnd since it guesses the new maximum
is far away. Thus, Strategy 4 is to not reduce rMin
actively at this stage.

4.2. Adaptive Algorithm to Calculate rMin

We adopt the proposed strategies discussed in
Section 4.1 and propose the TCPRand’s adapta-
tion method (Algorithm 1) to calculate rMin before
sending a packet.

1) How to decide rMin?
rMin is calculated based on Φ(x, µ, σ2),

which is the normal distribution CDF1 shown in
Figure 6(b). As the first parameter of Φ, x is a
normalized distance between cwnd and α as shown
at the line 3 of Algorithm 1. For instance, if cwnd
= Wmax, x = 1. The second and third parameters
of Φ, (i.e., µ and σ2) are the mean and the vari-
ance, respectively and they are configurable. rMin
is determined by the line 5 of Algorithm 1 based
on Φ and the other parameter θ, which is the lower
bound of rMin. We set θ=200B to prevent too much
goodput degradation and to keep reasonable fair-
ness (see the tradeoff between fairness and goodput
depending on rMin in Figure 8).

The normal distribution CDF supports our strat-
egy for each of the 4 stages well as follows. Assume
that µ = 1. At stage 1, Φ increases very slowly
and it leads to the gradual reduction of rMin as
Strategy 1. At stage 2, Φ increases fast and fi-
nally converged to 0.5; it causes the fast reduction
of rMin as Strategy 2. At stage 3, Φ grows quickly
so that the reduction of rMin is still fast as Strat-
egy 3. At stage 4, Φ grows leisurely and leads to
the slow reduction of rMin as Strategy 4.

2) When to turn TCPRand on/off?
Trigger point: Based on Strategy 1, we ac-

tivate TCPRand only when the τ ≤ cwnd. The
trigger point τ shown in Figure 6(a) is acquired by:

τ = Wmax −
Wmax − α

ντ
(2)

where ντ is a scale factor tuning τ . If ντ = 1, τ
= α. If ντ →∞, τ = Wmax.

End point: With Strategy 4, TCPRand can
also set the end point ω, as shown in Figure 6(a).

1To reduce the Φ calculation overhead (not trivial) at
kernel, we pre-calculated Φ for various input parameters and
stored the result in a table. Thus, Φ is acquired by a simple
table lookup.

6

Algorithm 1 Adaptation Method to Select rMin

1: Input: ω, τ , cwnd, µ, σ2, θ
2: if τ ≤ cwnd ≤ ω then

3: x =
cwnd− α
Wmax − α

/* normalized distance from

α */

4: Φ(x, µ, σ2) =
1

2

(
1 + 1√

π

∫ x−µ
σ
√

2

−
(
x−µ
σ
√

2

) e−t
2

dt

)
5: rMin = max(MSS × (1 − Φ(x, µ, σ2)), θ)
6: else
7: rMin = MSS
8: end if

TCPRand is deactivated if cwnd grows above ω,
which is set by:

ω = Wmax +
Wmax − α

νω
(3)

where νω is a scale factor tuning ω. If νω → 0,
ω →∞. If νω = 1, ω = 2×Wmax − α. Preventing
ω from growing too much is useful to avoid unnec-
essary payload size randomization in case of large
cwnd (e.g., when the competing flows finish). Note
that Eqs. (2) and (3) are implemented at line 2 in
Algorithm 1.

5. Evaluation Setup

We evaluate the proposed solution in two ways:
ns-3 simulator and real testbed. We first describe
our evaluation environments, enumerate parame-
ters for TCPRand, and finally outline evaluation
metrics before presenting our results in Section 6
and 7.

5.1. NS-3 Simulation Environment

We incorporate TCPRand with the packet-level
simulator ns-3 to experiment it in a full-blown
topology (i.e., fat-tree [14]) of a data center net-
work as shown in Figure 1. We choose ns-3 because
it enables high performance simulation. We adopt
most of the configuration parameters suggested in
[2] (including link capacity (=1Gbps), TCP min-
RTO value (=2ms), MSS value (=1460B), routing
policy, etc.). The processing delay of each switch
is set to 25 microseconds as suggested in [18]. We
integrate TCPRand to both NewReno and CUBIC
whose source is available at [19]. In the remainder
of the paper, CUBIC and TCP are interchangeably
used unless otherwise mentioned.

5.2. Testbed Environment

To make our testbed realistically reflect a fat-
tree topology (shown in Figure 1), we use a topol-
ogy illustrated in Figure 7. All the machines, on
which TCPRand is running, are equipped with an
Intel Core i7-3770K CPU @3.50GHz, 32GB of main
memory and Intel 82579 Gigabit Ethernet NIC. We
use two different types of switches: Cisco catalyst
2970 which adopts the simple drop-tail queue man-
agement policy and HP 5900 which supports ECN
capability and enables us to run DCTCP for com-
parison with TCPRand. We implement TCPRand
by modifying the TCP output engine in the Linux
kernel 3.2.39. All the offload options including TCP
segmentation offload (TSO), generic segmentation
offload (GSO) and generic receive offload (GRO)
are disabled because they use the offload engine in
NIC and make TCPRand not work as expected.
We evaluate the impact of disabling the options in
Section 7.

TCPRand randomizes the payload size, which in
most cases becomes smaller than MSS, and as a
result it may generate more packets compared to
the regular TCP. Due to its unique characteristics,
we consider the following factors that can affect the
performance of TCPRand as follows:

Appropriate Byte Counting (ABC): Even
though TCP output engine in Linux increases cwnd
based on the number of acks (which works well with
the MSS-sized payload), by enabling ABC [20] op-
tion, cwnd increases based on the “bytes” acked. In
Linux kernels, ABC is implemented only in Reno
but we also implement it in CUBIC to observe its
effects. However, for the scenarios where TCP out-
cast happens (e.g., many flows and a few flows are
arriving at two input ports and destined to the same
output port), the use of ABC did not change the
overall test result. It is because the effect of ABC
is far smaller than that of the port blackout in the
TCP outcast scenarios. Thus, in this paper, we
only show the results experimented without ABC.

Nagle’s algorithm and congestion control:
To observe how TCPRand cooperates with different
congestion control mechanisms, we choose Reno,
BIC and CUBIC [17] and test them with or without
the Nagle’s algorithm [21]. However, for the TCP
outcast scenarios, there is no noticeable difference
among the six combinations since the port blackout
overwhelms their effect. Thus, we only address the
case with CUBIC and the Nagle’s algorithm since
CUBIC is the default congestion management pro-

7

N3+N2
flows

N1
flow(s)

Switch

S1

N3+N2+N1
flows

N3
flow(s)

N2
flow(s)

Switch

S2

N3
flow(s)

Switch

S4

R

Figure 7: Abstracted subset topology of fat-tree in Figure 1.

tocol in Linux today and most bulk transfer appli-
cations enable the Nagle’s algorithm.
SACK: By default, SACK is enabled for the

fast recovery from multiple packet losses in today’s
Linux. However we also conduct experiments with-
out SACK to see its role in TCP outcast scenarios
when combined with TCPRand.

5.3. TCPRand Parameters

TCPRand has four parameters (i.e., σ2, µ, ντ ,
νω), thus allowing many possible combinations of
these parameters. For instance, we can vary pa-
rameter values as follows: σ2={0.2, 1, 5}, µ={1,
0}, ντ={∞, 1}, νω={0, 1}. A larger σ2 causes
faster growth of Φ when x < µ but Φ grows slowly
when x ≥ µ. With a smaller µ, more aggressive
increase of Φ can be observed. τ = α if ντ = 1,
while τ = Wmax if ντ → ∞. ω = 2 ×Wmax − α
if νω = 1, while ω → ∞ if νω = 0. Out of many
configurations possible, we conduct evaluation with
the three sets of configurations denoted in the form
of (σ2, µ, ντ , νω). One configured as (1, 1, 1, 1)
represents a moderate setting, which is our default
setting. The other is set as (1, 1, ∞, 1) which rep-
resents the most conservative setting. The third is
the most aggressive setting that is configured as (1,
0, 1, 0). Unless otherwise mentioned, we use the
default setting while we mix and match the config-
urations when necessary.

5.4. Evaluation Metrics

We are primarily interested in evaluating
TCPRand with two key metrics: fairness and good-
put across both real testbed and simulation cases.
We shortly define each of them next.
Fairness: We use Jain’s fairness index [22] de-

fined as follows:

Fairness(g1, g2, · · · , gn) =
(
∑n
i=1 gi)

2

n×
∑n
i=1 g

2
i

(4)

0
0.2
0.4
0.6
0.8
1

N
NT

10
00

NT
60
0

NT
20
0

NT
10
0

NT
50 C

CT
10
00

CT
60
0

CT
20
0

CT
10
0

CT
50 CT
D

DC
TC
PFa

irn
es
s	 I
nd
ex

Transport	 Scheme

Qmax=20 Qmax=60 Qmax=100

(a) Fairness by different Qmax

0.7

0.8

0.9

1

NT
10
00

NT
60
0

NT
20
0

NT
10
0

NT
50

CT
10
00

CT
60
0

CT
20
0

CT
10
0

CT
50 CT
D

DC
TC
P

N
or
m
al
ize

d	
Go

od
pu
t	
Ra

tio

Transport	 Scheme

Qmax=20 Qmax=60 Qmax=100

(b) Total goodput by different Qmax

0
0.2
0.4
0.6
0.8
1

N
NT

10
00

NT
60
0

NT
20
0

NT
10
0

NT
50 C

CT
10
00

CT
60
0

CT
20
0

CT
10
0

CT
50 CT
D

DC
TC
PFa

irn
es
s	I
nd
ex

Transport	Scheme

None 150Mbps 300Mbps 450Mbps

(c) Fairness by different background traffic amount

Figure 8: Effect of Qmax and background traffic. N:
NewReno, NTx: NewReno+TCPRand(rMin=x bytes), C:
CUBIC, CTx: CUBIC+TCPRand(rMin=x bytes), CTD:
CUBIC+ Adaptive TCPRand with (σ2, µ, ντ , νω)=(1, 1,
1, 1) and DCTCP.

where gi is the average goodput of flows sent by Si.
Note that in the ideal case, fairness index is 1.

Goodput: As typically defined, we obtain good-
put by dividing the amount of application-level data
by the total time taken until the completion of its
delivery. Total goodput is the sum of all flows’
goodputs.

8

In addition to the two key metrics discussed
above, we also show other interesting metrics such
as flow completion time (FCT) (which is espe-
cially important for short flows), consecutive packet
losses, timeouts (in terms of frequency and period)
and flow convergence trend (to show the stability
of TCPRand flows compared to TCP ones).

6. NS-3 Simulation Results

We evaluate TCPRand in an ns-3 environment.
First, the evaluation focus lies on the two metrics
(i.e., fairness and goodput) while we vary network
conditions such as switch queue size (Qmax) and
the amount of background traffic. Second, we mea-
sure the timeouts, the main cause of TCP out-
cast, in two different aspects: frequency and pe-
riod. Third, we show how tolerable TCPRand is
to TCP outcast varying the number of competing
flows. Fourth, we conduct simulation with data
center workloads [23] to show that TCPRand in
general supports flows with different sizes well.

6.1. Fairness and Goodput Analysis

A total of 15 senders (S1-S15) generate one TCP
flow per sender to receiver R in the fat-tree topol-
ogy in Figure 1. We check how TCPRand miti-
gates the TCP outcast problem. In doing so, we
analyze how TCPRand interacts with varying the
maximum length (Qmax, expressed as the number
of packets) of the drop-tail queue and background
traffic values. Specifically, each sender simultane-
ously generates a flow for 10 seconds. Each flow
sent from sender Sn is denoted by Fn. Thus, in the
fat-tree, E1 is the most bottlenecked switch and F1

is the most outcast flow since F1 competes with
F2:15 for the output queue at E1.

We additionally plot the results of TCPRand
with static settings (i.e., fixed rMin) alongside
TCPRand (denoted as CTD in Figure 8) to demon-
strate why the adaptive rMin selection method is
better than configuring rMin statically. We also
compare TCPRand with DCTCP, a representative
cross-layer protocol for data center networks whose
congestion control mechanism requires additional
switch support including random early marking and
Explicit Congestion Notification (ECN). We do this
comparison in order to shed light on how close the
performance of a pure transport layer solution like
TCPRand can be to that of a cross-layer approach

like DCTCP. For DCTCP, we set a marking thresh-
old to 0.2×Qmax as proposed and used for 1Gbps
link in [9].

6.1.1. Impact of Qmax on fairness and goodput

To see the effect of Qmax to TCPRand, we set
Qmax = {20, 60, 100} in the unit of packet. Nota-
tions for transport schemes are given in the caption
of Figure 8. As shown in Figure 8(a), the regu-
lar TCP (i.e., N and C) suffers from the unfair-
ness caused by the TCP outcast. As decreasing
rMin statically, the outcast flows recover quickly
and the fairness index approaches to 1 regardless
of Qmax. However, more aggressive reduction of
rMin triggers more loss of total goodput as shown in
Figure 8(b) (goodput ratio normalized to that of N
or C). For instance, given Qmax = 100, as rMin de-
creases, the fairness of CTx increases (0.976, 0.991
and 0.996 with CT200, CT100 and CT50, respec-
tively). However, there are consistent decreases
in goodput of CTx: (0.855, 0.85 and 0.835 with
CT200, CT100 and CT50, respectively).

Overall, DCTCP shows good balance between
fairness and goodput. DCTCP can minimize packet
drop itself by keeping the queue length short
with the help of switch’s ECN capability, whereas
TCPRand promotes fair packet drops among flows
through the payload size randomization. Little
difference in total goodput between CUBIC and
DCTCP (see DCTCP bars at Qmax = 60 or 100
in Figure 8(b)) is because CUBIC flows fully uti-
lize the link capacity at an aggregated level and
so do DCTCP flows. However, when Qmax =
20, DCTCP loses the goodput considerably (i.e.,
0.936). It is because the marking threshold (i.e.,
4 = 0.2× 20) is too small for senders to increase its
cwnd high enough to acquire full goodput by the
DCTCP congestion control algorithm.

6.1.2. Impact of background traffic on fairness

For this simulation, given 15 senders, we make
each sender additionally generate, to the receiver,
10, 20 and 30Mbps UDP CBR traffic, accounting
for 150, 300 and 450Mbps aggregate background
traffic, respectively. Figure 8(c) shows the effect of
background traffic to the fairness where Qmax = 20.
We clearly observe that TCPRand always achieves
higher fairness than the regular TCP. However, the
larger the background flows, the smaller the ad-
ditional fairness gain of TCPRand to the regular
TCP. Note that in this simulation, the payload
size of the background flows is not randomized.

9

0
1
2
3
4
5
6
7

20 60 100Ti
m
eo
ut
	 F
re
qu
en
cy
	 R
at
io
	

Qmax

F1 avg(F2:3)… avg(F4:!5)…F1 avg(F2:3) avg(F4:15)

(a) Timeout frequency ratio of TCPRand to TCP

0
0.5
1

1.5
2

2.5
3

3.5

20 60 100

Ti
m
eo
ut
	 P
er
io
d	
Ra

tio
	

Qmax

F1 avg(F2:3)… avg(F4:!5)…F1 avg(F2:3) avg(F4:15)avg(F4:15)

(b) Timeout period ratio of TCPRand to TCP

Figure 9: The effect of TCPRand to timeouts. F1, avg(F2:3)
and avg(F4:15) in legend indicate the timeout statistics from
the 2-hop flow (the most outcast flow), an average of 4-hop
flows (F2 and F3) and an average of 6-hop flows (from F4 to
F15) in Figure 1, respectively.

Thus the effect of the payload size randomization to
the port blackout is restricted more as the amount
of background traffic increases. However, even
with the largest background traffic (i.e., 450Mbps),
TCPRand still achieves a noticeable fairness im-
provement. DCTCP also achieves high fairness
(i.e., 0.887) under the same background traffic con-
dition.

6.2. Timeout

To investigate the exact reason of the fairness in-
crease caused by TCPRand, we measure two met-
rics regarding timeout: frequency and period. Note
that the former indicates the number of timeouts
triggered while the latter does the total amount of

time halted by the timeouts. Using the results from
the simulation performed in Section 6.1, we com-
pare the timeout frequency and timeout period of
TCPRand (i.e., CTD) to the regular TCP (i.e., CU-
BIC) in Figure 9.

Timeout frequency: Since TCPRand gen-
erates (smaller but) more packets than TCP, it
causes more packet losses than TCP. As shown in
Figure 9(a), when the Qmax is small (i.e., 20), this
property makes all TCPRand flows (regardless of
the senders’ locations on the topology in Figure 1)
experience more timeouts than TCP ones. How-
ever, as Qmax increases, TCPRand reduces the
timeout frequency more than TCP. For instance
when Qmax = 100, all TCPRand flows experience
even less timeouts than TCP ones. It turns out that
the shuffle effects triggered by TCPRand at bot-
tleneck queue further decreases consecutive packet
losses (the main cause of timeout) at each input
port.
Timeout period: More importantly, compared

to TCP, TCPRand always reduces the timeout pe-
riod of the outcast flow (F1) regardless of Qmax
(see Figure 9(b)). This result may look contra-
dictory to what is shown in Figure 9(a). For in-
stance, when Qmax = 20, TCPRand increases the
timeout frequency of F1 by a factor of ∼3 but de-
creases the timeout period of F1 by half compared
to TCP. This is because TCPRand reduces the con-
secutive timeouts, and hence keeps RTO small. In
other words, consecutive timeouts trigger the expo-
nential backoff to the retransmit timer; preventing
them makes it possible to drastically decrease the
timeout period. TCPRand is effective in preventing
such consecutive timeouts for the outcast flow, thus
decreasing its overall timeout period. Furthermore,
as Qmax increases (i.e., Qmax ≥ 60), TCPRand re-
duces the timeout period of all the flows even in-
cluding the non-outcast ones (F4-F15).

6.3. Influence of Different Number of Senders

To understand how TCPRand operates at the
bottleneck queue under a varying number of
senders, we use a larger fat-tree that comprises of
8-port switches. A 8-ary fat-tree topology consists
of 80 switches and 128 hosts. We make a 2-hop flow
compete with the different numbers of 6-hop flows2.
Note that given a receiver, there are all 112 6-hop

2For simplicity, we do not generate 4-hop flows for this
simulation.

10

0
40
80
120
160
200
240
280
320
360
400

2 4 8 16 32 64 112

Go
od

pu
t	p

er
	F
lo
w
	(M

bp
s)

Number	of	6-hop	flow(s)

2-hop	flow 6-hop	flow

(a) CUBIC

0
40
80
120
160
200
240
280
320
360
400

2 4 8 16 32 64 112

Go
od

pu
t	p

er
	F
lo
w
	(M

bp
s)

Number	of	6-hop	flow(s)

2-hop	flow 6-hop	flow

(b) TCPRand

Figure 10: Goodput of CUBIC and TCPRand flows when a
2-hop flow competes with different number of 6-hop flow(s)
in 8-ary fat-tree topology where there are 128 servers.

senders in the topology. In the simulation, Qmax is
set to 100.

Figure 10 shows how TCPRand affects the good-
put of a 2-hop and 6-hop flow(s). From the figure,
we first observe that the 2-hop flow acquires more
goodput than the 6-hop flow(s) when the number
of the 6-hop flow(s) is ≤ 2. This is because in gen-
eral TCP throughput is proportional to the inverse
of RTT [24]. However, as the number of the 6-hop
flows increases, the 2-hop CUBIC flow starts to suf-
fer from TCP outcast as shown in Figure 10(a). On
the other hand, the goodputs of TCPRand flows
agree to their fair share of bandwidth well regard-
less of the number of 6-hop flows, and the TCP
outcast problem is successfully mitigated even in a
larger topology (see Figure 10(b)).

0.6

0.7

0.8

0.9

1

1.1

Short Mid. Long

No
rm

al
ize

d	
FC
T

Flow	 Size

Mining,	 L=0.2 Mining,	 L=0.8 Web,	 L=0.2 Web,	 L=0.8

(a) Average FCT for data mining workload

0.6

0.7

0.8

0.9

1

1.1

Short Mid. Long

No
rm

al
ize

d	
FC
T

Flow	 Size

Mining,	 L=0.2 Mining,	 L=0.8 Web,	 L=0.2 Web,	 L=0.8

(b) 100 percentile FCT for data mining
workload

0

0.2

0.4

0.6

0.8

1

1.2

Short Mid. Long Short Mid. Long

No
rm

al
ize

d	
FC
T

Flow	 Size

CTD DCTCP

Load=0.2 Load=0.8

(c) Average FCT for web search workload

0

0.2

0.4

0.6

0.8

1

1.2

Short Mid. Long Short Mid. Long

No
rm

al
ize

d	
FC
T

Flow	 Size

CTD DCTCP

Load=0.2 Load=0.8

(d) 100 percentile FCT for web search work-
load

Figure 11: FCT of TCPRand and DCTCP normalized to
that of CUBIC for different workloads and traffic loads per
flow size group. Sizes of short, mid and long flows are
[0, 100KB), [100KB, 10MB), and [10MB, ∞), respectively.

11

6.4. Analysis with Real Data Center Workloads

Since TCPRand tends to keep the payload size
less than MSS, it may increase flow completion
time (FCT), in particular that of short flows, which
in general originates from latency-sensitive applica-
tions. To answer that question, we trace the effect
of TCPRand to FCT using two realistic data center
workloads (i.e., web search and data mining) [23]
that consist of a mix of short and long flows. Flow
arrivals follow a Poisson process, and the sender and
receiver for each flow are chosen randomly among
all the 16 end-nodes (i.e., R and S1-S15 in Figure 1).
The flow arrival rate (i.e., load in the fabric) is var-
ied from 0.2 to 0.8 as suggested in [23].

Figure 11 shows the FCT of TCPRand and
DCTCP normalized to CUBIC per flow size group.
Regarding TCPRand, two trends are observed
while DCTCP in general is efficient in decreasing
FCT. First, TCPRand increases neither the aver-
age nor the 100 percentile FCT of short flows in
both web search and data mining workloads notice-
ably. It is because many short flows are extremely
small in real (especially in data mining) workloads
and many of them finish before TCPRand per-
forms the aggressive reduction of rMin. Second,
under high traffic load (i.e., Load=0.8), the CU-
BIC (especially long) flows often suffer from time-
outs, whereas TCPRand is in general effective in
suppressing timeouts. Hence, long TCPRand flows
in general achieve shorter FCTs than CUBIC flows
under high traffic load. Moreover, since the web
search workload contains more long flows than the
data mining one and TCPRand reduces the timeout
period of that long flows, the 100 percentile FCT
(especially of long flows) of TCPRand under high
traffic load decreases as shown in Figure 11(d).

7. Experimental Results

We now evaluate TCPRand in a real testbed.
The main purpose of this evaluation in the testbed
is to confirm that TCPRand in practice improves
fairness without compromising goodput in the pres-
ence of TCP outcast. Next, we conduct microscopic
analysis to shed light on how several aspects (packet
drops, timeouts, and retransmissions) in TCP con-
gestion control are affected by TCPRand.

We construct a testbed which simplifies the fat-
tree topology in Figure 1 but still preserves its
essential nature for creating TCP outcast. The
testbed topology is shown in Figure 7. This topol-
ogy allows us to create many TCP outcast cases

with different combinations of (N1, N2, N3) where
N1, N2 and N3 are the number of flows generated
by S1, S2 and S4, respectively in Figure 7. In fact,
we tested TCPRand in many TCP outcast events
and found in all cases TCPRand achieves similar
fairness and goodput. Thus, out of them, we choose
two combinations: i) (2, 4, 26) for mimicking the
observation in [2] that more flows come from distant
senders while less flows come from close senders in
the fat-tree and ii) (26, 4, 2) as the opposite of
case i) to show that TCPRand can solve the TCP
outcast problem even in unusual situations.

7.1. Fairness and Goodput Analysis

Fairness: Figures 12(a) and 12(b) show that re-
gardless of (σ2, µ, ντ , νω) configurations, TCPRand
always achieves a higher fairness index than CU-
BIC. While not shown for brevity, we measure the
fairness with many other combinations of the con-
figuration parameters and observe that higher fair-
ness is in general achieved as configurations be-
come more aggressive (i.e., with smaller µ and τ ,
or larger ω) in randomizing the payload. Even
with the most conservative setting (1, 1, ∞, 1),
TCPRand still obtains 16-41% higher fairness than
CUBIC. Moreover, regardless of the configuration
parameters or switch types, TCPRand always guar-
antees 0.9 or higher fairness index in all the sce-
narios we experimented. In addition, we also ob-
serve that TCPRand’s fairness index is comparable
to DCTCP’s in Figure 12(b).

Loss of total goodput: If µ = 1, TCPRand
always keeps the additional loss of total goodput
to CUBIC low (<1% in Figure 12(c) and <4% in
Figure 12(d)). Although we do not show the exact
picture for brevity, even for the case where TCP
outcast does not happen (i.e., the same number
of flows compete) and the total number of com-
peting flow is small (i.e., 3), TCPRand minimizes
the total goodput loss (∼1%) effectively. This in-
dicates that even though TCPRand is mainly de-
signed to pursue more fairness for TCP outcast sce-
narios, it causes only a trivial amount of additional
total goodput loss for non-outcast scenarios; this
is possible since the proposed adaptive randomiza-
tion scheme in Algorithm 1 avoids unnecessary pay-
load size randomization. In the worst case, com-
pared to CUBIC, the additional loss of total good-
put is marginal (∼2.3% in Figure 12(c) and ∼4.7%
in Figure 12(d)). This level of goodput loss can be
acceptable as well because most many-to-one ap-
plications that are barrier synchronized [12] may

12

0

0.2

0.4

0.6

0.8

1

(2,	 4,	 26) (26,	 4,	 2)

Fa
irn

es
s	 I
nd
ex

(N₁,	 N₂,	 N₃)

(1,0,1,0) (1,1,∞,1) CUBIC

(a) Fairness index, Cisco Catalyst 2970

0

0.2

0.4

0.6

0.8

1

(2,	4,	26) (26,	4,	2)

Fa
irn

es
s	I
nd
ex

(N₁,	N₂,	N₃)

(1,0,1,0) (1,1,∞,1) CUBIC DCTCP

(b) Fairness index, HP 5900

0.8

0.85

0.9

0.95

1

(2,	4,	26) (26,	4,	2)

No
rm

al
ize

d	
Go

od
pu
t

(N₁,	N₂,	N₃)

(1,0,1,0) (1,1,∞,1)

(c) Normalized goodput, Cisco Catalyst
2970

0.8

0.85

0.9

0.95

1

1.05

(2,	4,	26) (26,	4,	2)

No
rm

al
ize

d	
Go

od
pu
t

(N₁,	N₂,	N₃)

(1,0,1,0) (1,1,∞,1) DCTCP

(d) Normalized goodput, HP 5900

Figure 12: Fairness and total goodput of TCPRand, CU-
BIC and DCTCP under the testbed with the topology in
Figure 7, respectively. The 4-tuple in legend corresponds to
(σ2, µ, ντ , νω) of TCPRand. (1, 0, 1, 0) is the most ag-
gressive setting while (1, 1, ∞, 1) is the most conservative
configuration. We use two different types of switches (Cisco
Catalyst 2970 and HP 5900) to confirm that TCPRand is
effective to TCP outcast in various hardware settings. Note
that HP 5900 is ECN-capable and thus allows DCTCP ex-
periments.

improve their job completion time performance by

enhancing the goodput of the slowest TCP connec-
tion rather than maximizing total goodput. The
total goodput of DCTCP is similar to that of CU-
BIC under the outcast scenarios (see Figure 12(d)).

7.2. Microscopic Analysis on Improved Fairness

To further understand what effects TCPRand
brings to TCP flows in detail, we conduct a mi-
croscopic analysis with a simplest topology exhibit-
ing the TCP outcast problem. We do this in our
testbed instead of ns-3 simulator since the testbed
environment can best reflect the microscopic be-
haviors caused by the temporal port blackout that
happens at an output queue of commodity hard-
ware switches.

We use the same testbed shown in Figure 7 where
we only use two senders (S1 and S2) and one re-
ceiver (R). S1 creates one flow (denoted as F1)
to R and S2 does M flows (from F2 to FM+1, de-
noted as F2:M+1) to the same R. We vary M where
M={5, 10, 15, 20, 25}. Out of these five cases, we
only present the most prominent results that are ob-
served when M={5, 15, 25}. We disable the adap-
tive rMin selection method and statically set rMin
values. rMin of each flow is set to 1,448, 1,000, 600
or 200 bytes to make our analysis more tractable.
For the measurements, we use iperf and run it for
100 seconds per each case. All flows (i.e., F1:M+1)
start transmission simultaneously3

Basically, SACK is enabled in our experiments as
most modern Linux distributions support SACK by
default, but for a broader analysis, we also present
results while disabling SACK as well. We exam-
ine consecutive packet drops, TCP timeouts, and
packet retransmission for the analysis.

Consecutive packet drops: Figure 13 shows
the distribution of packet drops that the outcast
flow experiences with SACK option when M=15.
For the experiment, both S1 and S2 use the same
rMin. As shown in Figure 13(a), as rMin decreases,
the ratio of single-isolated packet drops to the to-
tal packet drops increases. Omitted for brevity, the
largest increase is observed with the smallest rMin
(i.e., 200B) across all M’s. This indicates that more
aggressive payload size randomization prevents con-
secutive packet drops more effectively. Figure 13(b)
shows the detailed distribution of consecutive (i.e.,

3Note that we also conducted experiments by varying the
arrival times of some flows and found no visible difference in
the results.

13

0

0.2

0.4

0.6

0.8

1

Dr
op
	 R
at
io

Single-‐isolated	 Packet	 Drop

1448 1000 600 200rMin	 (Bytes)

(a) Ratio of single-isolated packet drops to total packet
drops

0

0.05

0.1

0.15

0.2

2 3 4 5

Dr
op
	 R
at
io

Consecutive	 Packet	 Drops

1448 1000 600 200rMin	 (Bytes)

(b) Ratio of consecutive packet drops to total packet drops

Figure 13: The outcast flow’s packet drop distribution with
SACK when M=15 using Cisco Catalyst 2970.

2 ∼ 5) packet drops. It is clearly observed that
the frequency of consecutive packet drops decreases
dramatically (especially for more than two consec-
utive drops) as rMin decreases. When SACK is off,
the number of consecutive packet drops decreases
considerably up to M=15, and stops decreasing as
M further increases.

TCP timeouts: Figure 14 shows that
TCPRand+SACK prevents the outcast flow
from experiencing any TCP timeout; although
omitted for brevity, only one configuration caused
at most 4 timeouts when M=25. On the other
hand, disabling SACK shows two intriguing pat-
terns in Figure 14(b). i) TCPRand reduces the
number of TCP timeouts enormously with smaller
rMin values; when M=15, TCP timeouts decrease
from 204 (rMin=1,448, regular TCP) to 9 times.
ii) However, when M grows to 25, TCPRand fails
to reduce TCP timeouts noticeably. Even for the
regular TCP, enabling SACK option greatly helps

14
48

10
00

60
0

20
0

14
48

10
00

60
0

20
0

14
48

10
00

60
0

20
0

14
48

10
00

60
0

20
0

0
1
2
3
4
5
6

14
48

14
48

14
48

14
48

10
00

10
00

10
00

10
00 60
0

60
0

60
0

60
0

20
0

20
0

20
0

20
0

rMin	 at	 S1 (Bytes)

#
of
	 R
et
ra
ns
m
iss
io
ns
	 (x
10

3)

rMin	 at	 S₂ (Bytes)

F1 avgF1 avg(F2:M+1)

(a) With SACK

14
48

10
00

60
0

20
0

14
48

10
00

60
0

20
0

14
48

10
00

60
0

20
0

14
48

10
00

60
0

20
0

0
100
200
300
400

0
2
4
6
8

10

14
48

14
48

14
48

14
48

10
00

10
00

10
00

10
00 60
0

60
0

60
0

60
0

20
0

20
0

20
0

20
0

rMin	 at	 S₁ (Bytes)

#
of
	 	 t
im

eo
ut
s

#	
of
	 R
et
ra
ns
m
iss
io
ns
	 (x
10

3)

rMin	 at	 S₂ (Bytes)

F1 avgF1 avg(F2:M+1)Timeouts	 of	 F1

(b) Without SACK

Figure 14: The number of TCP timeouts and retransmissions
when M=15 (with Cisco Catalyst 2970). Note that no TCP
timeout is observed with SACK.

reduce the number of TCP timeouts (e.g., only
one timeout when M=25). This is because SACK
makes a flow recover efficiently against multiple
packet losses. However, there still exists unfairness
(as illustrated with Figure 12(b)) since the outcast
flow must recover from multiple packet losses alone
while the non-outcast flows share the recovery
burden among themselves.

Packet retransmissions: Figure 14 shows the
number of packet retransmissions of flows (repre-
sented by the left y-axis in each graph). We make
the following observations:

First, when rMin of the non-outcast flows (i.e.,
F2:16 at S2) is fixed, decreasing rMin of the out-
cast flow (i.e., F1 at S1) increases the number of
packets retransmitted by the outcast flow. For in-
stance, see in Figures 14(a) and 14(b) a configura-
tion where rMin of F2:16 is set to 1,000B: as rMin
of F1 reduces from 1,448B to 200B, F1 has an in-
creasing number of retransmissions. This is because

14

decreasing rMin usually makes TCPRand generate
more packets (smaller than MSS) than the regular
TCP.

Second, when rMin of the outcast flow (F1)
is fixed, reducing rMin of the non-outcast flows
(F2:16) tends to decrease the number of packet re-
transmissions in F1. For example, from the solid
line in Figure 14(a), compare points where (rMin of
F1, rMin of F2:16) are (1,000, 1,448), (1,000, 1,000),
(1,000, 600) and (1,000, 200); we clearly observe a
decreasing trend in the number of retransmissions
of F1.

Third, Figures 14(a) and 14(b) show that the lack
of selective acknowledgement mechanism makes
TCPRand of the outcast flow retransmit more
packets. In contrast, when M < 15 (the graph
is omitted), we observe that TCPRand without
SACK has the similar pattern to that with SACK.

The final observation is that in all cases, the out-
cast flow (F1 at S1) does more packet retransmis-
sions than the non-outcast flows (F2:16 at S2) as
expected.

Throughout the analysis, we find out that
TCPRand in general decreases the number of con-
secutive drops, TCP timeouts and packet retrans-
missions of the outcast flow. Another interesting
finding is that TCPRand alongside SACK option
is most effective in alleviating several adversary
events to TCP performance. However, even with
SACK, statically changing rMin value is insufficient
to completely address the TCP outcast problem,
reassuring that our adaptive payload size random-
ization method is absolutely necessary.

8. Further Considerations

8.1. TCP Incast

TCP incast is another important problem which
shares high similarity with TCP outcast problem.
Hence, it is a natural question to ask whether or not
TCPRand adversely affects the TCP incast prob-
lem. To answer that question, we perform a simula-
tion to compare the goodput of CUBIC, TCPRand
and DCTCP under a TCP incast scenario. In the
simulation, the file size (or block size) is 128 KB
and Qmax = 100.

Figure 15 shows that DCTCP in general achieves
better goodput gain than the other two (CUBIC
and TCPRand). This is mainly because DCTCP
keeps queue length small (thus, mitigating packet
drop itself) whereas TCPRand only promotes fair

0

100

200

300

400

500

600

700

800

900

1000

403836343230282624222018161412108642

Go
od

pu
t	 (
M
bp

s)

Number	 of	 Senders

CUBIC TCPRand DCTCP

Figure 15: Comparison of TCP, TCPRand and DCTCP in a
TCP incast scenario (Qmax = 100 and block size = 128KB).
We use a simple star topology composed of 40 senders, one
receiver and a 1GbE switch among them.

packet drops. In comparison with CUBIC, we find
that TCPRand does not make the TCP incast prob-
lem worse than CUBIC. We also observe the similar
trends (the graph is omitted) with different param-
eter values such as Qmax and block sizes.

8.2. Flow Convergence

Since fair sharing of network bandwidth is one
of the key characteristics of TCP, it is important
to check if the payload size randomization process
of TCPRand violates this property. Thus, we ex-
periment how TCPRand flows converge on a sim-
ple testbed composed of five senders (from each of
which one flow is generated), one receiver and a
1GbE switch among them. Each flow starts se-
quentially with 30 second interval and have different
durations (i.e., 270s, 210s, 150s, 90s, and 30s), re-
spectively as done in [25]. Figure 16(a) and 16(b)
show how TCP and TCPRand flows converge, re-
spectively. As shown in the figure, the convergence
trends of TCP and TCPRand flows are quite simi-
lar, assuring that flow convergence in TCPRand is
comparable to that of TCP.

8.3. Congestion Window Variation

To observe the effect of payload size randomiza-
tion to the congestion window, we compare the con-
gestion window variation of CUBIC and TCPRand
in our testbed and show the result in Figure 17.
Each flow (i.e., Flow1 and Flow2) in Figure 17
is generated from different senders at the same

15

0

200

400

600

800

1000

0 30 60 90 120 150 180 210 240

Th
ro
ug

hp
ut
	 (M

bp
s)

Time	 (Seconds)

Flow1 Flow2 Flow3 Flow4 Flow5

(a) Convergence of TCP flows

0

200

400

600

800

1000

0 30 60 90 120 150 180 210 240

Th
ro
ug

hp
ut
	 (M

bp
s)

Time	 (Seconds)

Flow1 Flow2 Flow3 Flow4 Flow5

(b) Convergence of TCPRand flows

Figure 16: Flow convergence in terms of network bandwidth
sharing.

No. of concurrent flows

1 10 100 1000

CUBIC 4.6% 5.3% 7.9% 10.2%
TCPRand 12.5% 16.1% 28.0% 42.2%

Table 1: CPU overheads of CUBIC and TCPRand.

time and destined to one receiver. As shown in
Figure 17(a), the congestion window variation of
the two CUBIC flows is rather synchronized, ex-
plaining why TCP is prone to port blackout, the
main cause of TCP outcast. However, the conges-
tion window of TCPRand shown in Figure 17(b)
varies more asynchronously, which evidently shows
the reduction of port blackout probability.

8.4. CPU Overhead

By default in Linux, offload options such as TSO
are enabled to reduce CPU overhead if its NICs sup-
port them. On the other hand, TCPRand requires
to switch off those options, and thus can require
more CPU cycles. Here we measure the amount
of CPU resources used by TCPRand and compare
it with that of CUBIC measured while TSO is en-
abled. In our testbed, one CUBIC flow consumes
4.6% of the resources of one core, whereas one

��

��

���

���

���

���

� �� �� �� �� ���

�
�
�
�

�
��

�
�
��
�
�
�
�
�
��
�

���������

�����
�����

(a) CUBIC

��

��

���

���

���

���

� �� �� �� �� ���

�
�
�
�

�
��

�
�
��
�
�
�
�
�
��
�

���������

�����
�����

(b) TCPRand

Figure 17: Congestion window variation.

TCPRand flow consumes 12.5%. As the number of
concurrent flows increases, the CPU overheads in
both schemes grow linearly (see Table 1). For in-
stance, 100 flows make CUBIC and TCPRand con-
sume 7.9% and 28.0% of the resources of one core,
respectively. In an extreme case where there exist
1,000 flows in a host, the CUBIC flows consume
10.2% and the TCPRand flows consume 42.2% of
the resources of one core. While TCPRand con-
sumes more CPU resources than CUBIC, those
amounts of CPU clock consumption may be ac-
ceptable since commodity servers are equipped with
multicore CPUs.

9. Related Work

Link layer solutions: Random early detection
(RED) [26] and stochastic fair queueing (SFQ) [8]
have been tested to solve the TCP outcast prob-
lem. Prakash et al. [2] point out that RED shows
RTT bias while SFQ makes flows have through-
put fairly and achieves RTT fairness but uncom-
mon in commodity switches. More importantly,
a large-scale deployment of commodity off-the-
shelf (COTS) switches enables low cost construc-
tion of data center networks. Unfortunately, these
switches employ neither RED nor SFQ [2]. It would
be prohibitively costly to replace them with high-
end switches that are capable of exploiting these ac-
tive queue management strategies. Zhang et al. [7]
propose a protocol that supports bandwidth shar-
ing by allocating switch buffer; the switch deter-
mines the size of the congestion window of its pass-
ing flow. However, all the switches in data centers
must be modified for supporting such a feature to
make use of this solution.

16

Network layer solutions: Equal-length rout-
ing [2] makes all flows from senders routed up to
the core switch regardless of the senders’ locations.
Then, all the flows take the same downward path
from the core to the destination which leads to RTT
fairness. It uses a detour path to increase the path
similarity instead of the shortest path. However,
this approach causes performance degradation if
data center networks are oversubscribed. Further-
more, it significantly lacks flexibility.
Transport layer solutions: The rate-based de-

livery (e.g., TCP pacing [10] and sending time ran-
domization [12]) has also been considered as a so-
lution to the TCP outcast problem. TCP pacing,
combined with the window based congestion con-
trol, avoids burst delivery by giving some inter-
val between the transmission times of two consec-
utive packets and shows inverse RTT bias. How-
ever, the TCP outcast problem still remains con-
siderably in TCP pacing [2]. Chandrayana et al.
propose a scheme randomizing the sending times
by adjusting the inter-packet gap [11]. This, how-
ever, cannot retain the initial randomness created
by the sender throughout the routing path mainly
due to the bursty departure process at the first
bottleneck queue. This makes the approach in-
effective in a multi-hop environment. Moreover,
the rate-based delivery has a severe practical lim-
itation because it is practically infeasible to do
(sub-)microsecond level packet spacing [27] (e.g., in
1/10Gbps link), quite strictly required to get better
randomness effects in data center networks (where
RTT < 1ms [5]). Even though a high resolution
timer (e.g., hrtimer in Linux) is available, operat-
ing systems hardly guarantee the precise control of
inter-packet spacing time. Furthermore, frequent
timer interrupts lead to a large interrupt handling
overhead [5].
Hybrid solution: Alizadeh et al. propose

DCTCP [9], which is a cross-layer (i.e., link layer
+ transport layer) approach. In comparison with
DCTCP , we observed that DCTCP is effective to
mitigate the TCP outcast problem by controlling
a congested port’s queue length properly. How-
ever, DCTCP must leverage random early marking
and Explicit Congestion Notification (ECN) capa-
bility, which are not yet widely supported by most
commodity ToR switches especially in small and
medium data centers to our knowledge.
Per-packet scheduling: There have been sev-

eral recent proposals on per-packet scheduling [23,
28, 29, 30]. These new datacenter transports are

known to achieve near-optimal flow completion
times. Hence, they are likely to mitigate effectively
pathological congestion collapses such as TCP in-
cast and outcast. However, a forklift upgrade is
inevitable, meaning that all of the datacenter com-
ponents (hosts and switches) should unanimously
support one such scheme. Whereas this constraint
may not be an issue in private datacenters, it can
be a challenging problem in public cloud datacen-
ters (e.g., Amazon EC2) where tenants can run dif-
ferent kinds of transport protocols in their virtual
machines. On the other hand, pure transport ap-
proaches like TCPRand can be incrementally de-
ployed (e.g., application by application) for cloud
datacenter environments.

10. Conclusion

We proposed a payload size randomization
scheme called TCPRand to address the TCP out-
cast problem in data center networks. TCPRand
is a pure transport layer solution, which is easily-
deployable and practical to the TCP outcast prob-
lem. Without relying on any special link layer
support such as ECN, TCPRand guarantees su-
perior enhancement of TCP fairness by reducing
the timeout period of the outcast flow. Further-
more, it rarely sacrifices the total goodput since
TCPRand avoids unnecessary payload size random-
ization. The flow convergence of TCPRand is also
comparable to that of TCP. We envision that in-
tegrating TCPRand into TSO engine in NICs can
reduce the CPU overhead, and leave it as future
work.

References

[1] D. Nagle, D. Serenyi, A. Matthews, The Panasas Ac-
tiveScale Storage Cluster: Delivering Scalable High
Bandwidth Storage, in: ACM/IEEE Supercomputing,
2004.

[2] P. Prakash, A. Dixit, Y. C. Hu, R. Kompella, The TCP
Outcast Problem: Exposing Unfairness in Data Center
Networks, in: USENIX NSDI, 2012.

[3] Y. Chen, R. Griffith, J. Liu, R. H. Katz, A. D.Joseph,
Understanding TCP Incast Throughput Collapse in
Datacenter Networks, in: WREN, 2009.

[4] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. An-
dersen, G. R. Ganger, G. A. Gibson, S. Seshan, Mea-
surement and Analysis of TCP Throughput Collapse
in Cluster-based Storage Systems, in: USENIX FAST,
2008.

[5] V. Vasudevan, A. Phanishayee, H. Shah, E. Kre-
vat, D. G. Andersen, G. R. Ganger, G. A. Gibson1,
B. Mueller, Safe and Effective Fine-grained TCP Re-
transmissions for Datacenter Communication, in: ACM
SIGCOMM, 2009.

17

[6] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M.
Kang, P. Sharma, Application-driven Bandwidth Guar-
antees in Datacenters, in: ACM SIGCOMM, 2014.

[7] J. Zhang, F. Ren, X. Yue, R. Shu, C. Lin, Sharing
bandwidth by allocating switch buffer in data center
networks, IEEE JSAC 32 (1) (2014) 39–51.

[8] P. E. McKenney, Stochastic fairness queueing, in: IEEE
INFOCOM, 1990.

[9] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Pa-
tel, B. Prabhakar, S. Sengupta, M. Sridharan, Data
Center TCP (DCTCP), in: ACM SIGCOMM, 2010.

[10] A. Aggarwal, S. Savage, T. Anderson, Understanding
the Performance of TCP Pacing, in: IEEE INFOCOM,
2000.

[11] K. Chandrayana, S. Ramakrishnan, B. Sikdar,
S. Kalyanaraman, On randomizing the sending times
in tcp and other window based algorithms, Computer
Networks 50 (3) (2006) 422–447.

[12] H. Wu, Z. Feng, C. Guo, Y. Zhang, ICTCP: Incast
Congestion Control for TCP in Data Center Networks,
in: ACM CoNEXT, 2010.

[13] http://www.nsnam.org.
[14] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable com-

modity datacenter network architecture, in: ACM SIG-
COMM, 2008.

[15] IEEE Std 802.3-2002, IEEE Standard for Information
technology— Telecommunications and information ex-
change between systems— Local and metropolitan area
networks— Specific requirements, Part 3: Carrier sense
multiple access with collision detection (CSMA/CD) ac-
cess method and physical layer specifications (2002).

[16] R. Kapoor, A. Snoeren, G. Voelker, G. Porter, Bullet
trains: a study of NIC burst behavior at microsecond
timescales, in: ACM CoNEXT, 2013.

[17] I. Rhee, L. Xu, CUBIC: A new TCP-friendly high-speed
TCP variant, in: PFLDNet Workshop, 2005.

[18] Design Best Practices for Latency Optimization,
Financial Services Technical Decision Maker White
Paper, http://www.cisco.com/application/pdf/

en/us/guest/netsol/ns407/c654/ccmigration_

09186a008091d542.pdf.
[19] http://www.nsnam.org/wiki/Current_Development.
[20] http://tools.ietf.org/html/rfc3465.
[21] J. Nagle, Congestion control in IP/TCP internetworks,

RFC896, Internet Engineering Task Force (1984).
[22] R. Jain, A. Durresi, G. Babic, Throughput Fairness In-

dex: An Explanation, ATM Forum/99-0045 (1999).
[23] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKe-

own, B. Prabhakar, S. Shenker, pFabric: Minimal Near-
Optimal Datacenter Transport, in: ACM SIGCOMM,
2013.

[24] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling
TCP Throughput: A Simple Model and its Empirical
Validation, in: ACM SIGCOMM, 1998.

[25] G. Judd, Attaining the Promise and Avoiding the Pit-
falls of TCP in the Datacenter, in: USENIX NSDI,
2015.

[26] S. Floyd, V. Jacobson, Random early detection gate-
ways for congestion avoidance, IEEE/ACM ToN 1 (4)
(1993) 397–413.

[27] C. Lee, K. Jang, S. Moon, Reviving Delay-based TCP
for Data Centers, (Poster) in ACM SIGCOMM (2012).

[28] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, W. Sun,
PIAS: Practical Information-Agnostic Flow Scheduling
for Data Center Networks, in: ACM HotNets, 2014.

[29] M. Grosvenor, M. Schwarzkopf, I. Gog, R. Watson,
A. Moore, S. Hand, J. Crowcroft, Queues Dont Mat-
ter When You Can JUMP Them!, in: USENIX NSDI,
2015.

[30] P. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Rat-
nasamy, S. Shenker, Phost: Distributed Near-optimal
Datacenter Transport over Commodity Network Fab-
ric, in: ACM CoNEXT, 2015.

18

http://www.nsnam.org
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns407/c654/ccmigration_09186a008091d542.pdf
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns407/c654/ccmigration_09186a008091d542.pdf
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns407/c654/ccmigration_09186a008091d542.pdf
http://www.nsnam.org/wiki/Current_Development
http://tools.ietf.org/html/rfc3465

	Introduction
	The TCP Outcast Problem
	Overview
	Port Blackout

	Payload Size Randomization
	Avoiding Concurrent Packet Arrivals
	Understanding the Effect of Payload Size Randomization

	Proposed Scheme: TCPRand
	Modeling Adaptive Selection of rMin in CUBIC
	Adaptive Algorithm to Calculate rMin

	Evaluation Setup
	NS-3 Simulation Environment
	Testbed Environment
	TCPRand Parameters
	Evaluation Metrics

	NS-3 Simulation Results
	Fairness and Goodput Analysis
	Impact of Qmax on fairness and goodput
	Impact of background traffic on fairness

	Timeout
	Influence of Different Number of Senders
	Analysis with Real Data Center Workloads

	Experimental Results
	Fairness and Goodput Analysis
	Microscopic Analysis on Improved Fairness

	Further Considerations
	TCP Incast
	Flow Convergence
	Congestion Window Variation
	CPU Overhead

	Related Work
	Conclusion

