

Edinburgh Research Explorer

Cost Efficient Scheduling of MapReduce Applications on Public
Clouds

Citation for published version:
Zeng, X, Garg, SK, Wen, Z, Strazdins, P, Zomaya, AY & Ranjan, R 2018, 'Cost Efficient Scheduling of
MapReduce Applications on Public Clouds', Journal of Computational Science, vol. 26, pp. 375-388.
https://doi.org/10.1016/j.jocs.2017.07.017

Digital Object Identifier (DOI):
10.1016/j.jocs.2017.07.017

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Computational Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 02. Jan. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/266994591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.jocs.2017.07.017
https://doi.org/10.1016/j.jocs.2017.07.017
https://www.research.ed.ac.uk/portal/en/publications/cost-efficient-scheduling-of-mapreduce-applications-on-public-clouds(872e450f-87e9-4956-9678-5b09f3cd4f84).html

Cost Efficient Scheduling of MapReduce Applications
on Public Clouds

Xuezhi Zeng1, 2Saurabh Kumar Garg, 3Zhenyu Wen, 1Peter Strazdins, 4Albert Y. Zomaya, 5Rajiv Ranjan

1Australian National University, Australia
2University of Tasmania, Australia

3School of Informatics, The University of Edinburg, United Kingdom
4School of Information Technologies, University of Sydney, Australia

5Newcastle University, United Kingdom

Abstract—MapReduce framework has been one of the most prominent ways for efficient processing
large amount of data requiring huge computational capacity. On-demand computing resources of Public
Clouds have become a natural host for these MapReduce applications. However, the decision of what
type and in what amount computing and storage resources should be rented is still a user’s responsibility.
This is not a trivial task particularly when users may have performance constraints such as deadline and
have several Cloud product types to choose with intention of not spending much money. Even though
there are several existing scheduling systems, however most of them are not developed to manage the
scheduling of MapReduce applications. That is, they do not consider things such as number of map and
reduce tasks that are needed to be scheduled and heterogeneity of Virtual Machines (VMs) available. This
paper proposes a novel greedy-based MapReduce application scheduling algorithm (MASA) that
considers the user’s constraints in order to minimize cost of renting Cloud resources while considering
Service Level Agreements (SLA) in terms of the user given budget and deadline constraints. The
simulation results show that MASA can achieve 25-50% cost reduction in comparison to current SLA
agnostic methods and there is only 10% performance disparity between MASA and an exhaustive search
algorithm.

Keywords- Big Data; MapReduce; Cloud Computing; Service Level Agreement; Scheduling; Cross
Layer

1. INTRODUCTION

The efficient processing of Big Data has become a predominant challenge in several emerging
application domains including (but not limited to) enterprise computing, smart cities, remote healthcare,
high energy physics, bio-informatics, and astronomy[1]. For example, online retail companies are
required to analyze click stream data and up-to-the minute inventory status for offering dynamically
priced and customized product bundles. Similarly, banks are looking to detect and react to frauds in based
on analyzing transactional data. On the other hand, cities are evolving into smart cities by fusing and
analyzing data from several sources (e.g., traffic cameras, social media, remote sensing data, GPS data[2-
4]. With the push towards more automation for faster business strategy adaptation, most enterprises are
moving towards the next generation Business Intelligence (BI) systems that can support data-driven
decision making [5]. Such organizations often utilize MapReduce based applications for efficient and
effective large scale processing of their Big Data. This requires either installation of a private Hadoop
Cluster or deployment of MapReduce application on Public Cloud. Given the on-demand, large and
scalable computing and storage resources provided by Clouds, they are becoming more and more
preferable deployment infrastructure.

Public Cloud providers such as Amazon Web Services have started to offer on-demand Hadoop

clusters (PaaS), referred to as Elastic MapReduce, on its EC2 datacenters (IaaS) on pay-as-you-go
basis[6]. However, current scheduling techniques and systems for deploying Hadoop clusters[7] on
public IaaS Clouds are incapable of supporting Service Level Agreement (SLA)-driven data processing
application management. Important SLA constraints include: (i) Deadline: upper bound on the time
finishing the data processing task and (ii) Budget: upper bound on the monetary limit for finishing the
data processing task. In the current practice, public Cloud providers require users (MapReduce
application administrators) to manually decide the mix and type of IaaS resources they need as part of
their Hadoop cluster for finishing the analytic task over their Big Data within SLA constraints.

Research Problem. Clearly, it is impossible to resolve such dependency between IaaS-level hardware

configurations, deployment plan for Hadoops PaaS-level software components and SLA constraints
manually. In particular, the hard challenge is to flexibly select IaaS configurations (I/O capacity, RAM,
VM speed, local storage, cost) for scheduling PaaS-level Hadoops software components (such as number
of Map tasks, number of Reduce tasks; Map Slots per VM, Reduce Slots for VM, Max RAM per slot)
driven by SLA constraints (e.g., analyzing 100GB of Tweets in 10 minutes while subjecting to maximum
budget of $100). The space of possible configurations for big data processing frameworks and hardware
resource is very large, so computing an optimal solution is a NP-complete problem, and therefore
intractable given current technology.

The scheduling problem is further complicated by the fact that MapReduce application workload

characteristics (e.g., data volume, priority, concurrency) and IaaS resource performance (e.g., availability,
throughput, utilization) behavior fluctuate over time. Furthermore, as public Cloud providers desire to
maximize resource utilization and profit, they have mechanisms of dynamically consolidating other types
of workload (e.g. web servers, video streaming, SQL/NoSQL query processing, stream processing) to the
unused physical resources in the cluster which further adds the complexity of dynamically managing
clusters performance for meeting SLA constraints. In reality, the performance degradation depends on
how noisy neighboring application workloads are. In most of the cases, it is likely that MapReduce
applications will miss their deadline, which may result in financial losses based on analytic context. For
example, delays in detecting fraudulent transaction may incur heavy losses to banks. On the other hand,
delays in analyzing customer sentiments for products may lead to revenue loss for on-line retail
companies.

Research Methodology and Contributions. The question of SLA-aware scheduling of applications

has been addressed previously in context of HPC, Grid, Cloud (at IaaS-layer), and database research over
the last two decades. Our methodology differentiates itself in the following aspects. First of all, we
present a mathematical model that enables holistic modeling of relationship between SLA parameters
(e.g., budget and deadline) and Hadoop clusters configurations in terms of: (i) Big Data volume (ii) PaaS
component configuration (number of mappers and number of reducers) and IaaS configuration (VM type,
VM speed). Secondly, we develop a greedy heuristic based MapReduce application scheduling algorithm
(MASA) that can pro-actively minimize the cost under user’s constraints (budget and deadline), Big Data
workload (data volume, priority) and IaaS performance (e.g., availability, throughput, and utilization)
uncertainties. We extensively validate the performance of the SLA model and greedy MapReduce
application scheduling algorithm (MASA) in the IoTSim simulator tool[8].

The rest of this paper is organized as follows. In Section 2, we discuss some related works. Section 3

presents the high level system scenario that is considered for scheduling MapReduce application (aka.
Jobs) on Public Clouds. Section 4 discusses our mathematical model and its assumptions. In Section 5,

we present our proposed MapReduce application scheduling algorithms. Section 6 presents evaluation of
the performance of our proposed algorithms. In Section 7, we conclude the paper with future directions.

2. RELATED WORKS

While public Clouds have evolved towards heterogeneous hardware configuration for differentiated
processing power, I/O capacity, RAM size, network connectivity and network location, most existing
MapReduce application scheduling platforms (Apache YARN, Apache Mesos, Apache Spark, Amazon
Elastic MapReduce) are designed for homogeneous clusters of hardware resources (VM, Storage, and
Network). These platforms expect MapReduce application administrators to determine the number and
configuration of hardware resources to be allocated PaaS-level components (e.g., number of Map tasks,
number of Reduce tasks; Map Slots per CPU, Reduce Slots for CPU, Max RAM per slot). Branded price
calculators are available from public Cloud providers (Amazon[9], Azure[10]) and academic projects
(Cloudrado[11]) but they cannot recommend hardware configurations to be allocated to PaaS-level
Hadoop components driven by SLA constraints.

There are several works on scheduling different applications on public cloud. Some have proposed

algorithms to manage web applications, others for managing scientific applications and some on scientific
workflow. Data and control flow dependencies in MapReduce applications are quite different from
workflow as number of tasks in an application is not static as in traditional workflow but depends on data
size. Thus, the existing algorithms that are proposed for scientific workflows cannot be applied in this
scenario.

On the other hand, most existing MapReduce research target large scale, clustered infrastructure

environments[12, 13]. In these works, authors proposed models for execution of MapReduce applications
across multiple Clusters, and algorithms to minimize makespan of multiple MapReduce jobs on the same
cluster. However, in this environment, each job is competing for the resources, which is not the case of a
Public Cloud[14-18] and this type of MapReduce infrastructure is limited to task scheduling, ignoring
resource selection and provisioning[13, 19, 20]. Wang et al. [21] shares a similar scenario with these
papers, but the authors assume that map tasks and reduce tasks have the constraints in terms of monetary
and execution time without any consideration of data transmission time. This assumption is not very
realistic, because users are not able to set the specific constraints for each map or reduce task.

In context of the execution of MapReduce applications in public Clouds, most contributions focus on

designing time efficient resource provisioning and task scheduling. Lee et al.[22] proposed dynamically
allocating public Cloud resources to a Hadoop cluster based on a simple SLA constraint: minimize
storage size. Kambatla et al. [23] proposed selecting the optimal set of public Cloud resources for Hadoop
cluster by developing and profiling hardware resource consumption statistics. Similarly, the authors of
[24] proposed selecting configurations of heterogeneous Amazon EC2 resources under various what-if
scenarios (number of Map tasks, number of Reduce tasks, size and distribution of input data). However,
none of these approaches considered deadline and budget SLA constraints while taking scheduling
decisions. Mattess et al. proposed a policy for dynamic provisioning of Cloud resources to speed up
execution of deadline-constrained MapReduce applications, by enabling concurrent execution of tasks, in
order to meet a soft deadline for completion of the Map phase of the application. However, they only
considered soft deadlines at the Map phase while ignoring reduce phase. In contrast in this paper, the
execution of map and reduce tasks is scaled across a public Cloud, where resources can be virtually
unlimitedly, with the goal of meeting user-defined deadline and budget. Moreover, we consider the data
transmission time in our model which might significantly affects total makespan due to large data size.

Some public Cloud providers such as Amazon Auto Scaler controllers implement reactive heuristics to

scale Hadoop clusters based on CPU usage measurements. However, Auto Scaler warrants the
administrator to statically define the CPU thresholds (no support for dynamic scaling based on optimizing
SLA constraints) that triggers the scaling of cluster. There has been lots of research works conducted in
developing performance models of MapReduce applications on Clouds. These performance models are
based on machine learning[25], Markov and fast fourier transforms[26] or using wavelet techniques[27]
and they provide predictions on execution (run) time of Map/Reduce tasks, input data volume, network
I/O patterns, etc. Principal Component Analysis[28] has also been applied to learn performance model
parameters of MapReduce applications. The progress made in MapReduce performance modeling is quite
significant. However, these models cannot be applied directly due to other constraints involved in making
scheduling and deployment of MapReduce applications such as SLA constraints.

The preliminary results of this paper were reflected in our previous work HPCC 2016[29]. The current

work comprehensively extends previous work. We proposed a new improved MapReduce application
scheduling algorithm (MASA) and compared its performance with exhaustive search algorithm and
NonSLA approaches. We have extensively expanded the experiments and thereafter drawn more
conclusions.

In summary, to best of our knowledge, it is the first work that model all the requirements of a map-

reduce job (both computing and communication) and schedule them on Public Cloud in order to
minimize their execution cost while considering SLA parameters such as budget and deadline.

3. SYSTEM MODEL: SCHEDULING FRAMEWORK

Current Big Data processing platforms for deploying MapReduce applications can be divided into
following layers:

• Platform as a Service (PaaS) level software frameworks such as Apache Hadoop[7] (an

implementation of Google’s MapReduce programming model[30]) that enables development of
parallel data processing applications by exploiting capacity of large cluster of commodity
computers. Frameworks such as Apache Hadoop hide the low-level distributed system
management complexities by automatically taking care of activities including task scheduling, data
staging, fault management, inter-process communication and result collection.

• Infrastructure as a Service (IaaS) that offers unlimited data storage and processing capabilities
hosted in large datacenter farms.

Figure 1 shows our scheduling scenario. In our approach, users submit their requests to a MR

(MapReduce) Cloud broker whose responsibility is to select appropriate IaaS datacenter services for
deploying Hadoop Cluster on behalf of an user (e.g., data analyst) while meeting user-specified SLA
constraints. The users’ deployment request consists of details of map reduce application features
including data size to process, deadline by which a user wants the job to be finished and a budget which
he/she is willing to spend.

MR Cloud Broker has the similar responsibility as a typical Cloud broker, i.e. to interact with users,
understand their requirements and schedule processing based on users’ SLA constraints. The scheduling
algorithm, models, and assumption for making this decision is discussed in the following sections.

The broker will decide which type of Virtual Machines (VMs) to be utilized so that cost of execution

can be minimized. It will also decide where (e.g., type of VM) each map and reduce task should be
executed. After analyzing the user’s request, the MR broker deploys a MapReduce cluster after
negotiating all the required IaaS services from the datacenter provider. In the next section we will discuss
the mathematical model and assumption that is considered as part of our scheduling approach.

Figure 1. MapReduce Job Scheduling on Public Cloud

4. MATHEMATICAL MODEL AND ASSUMPTIONS

MapReduce is a predominant framework for large-scale distributed data processing based on the

divide and conquer paradigm. MapReduce works by breaking the processing into map and reduce phases.
Map task and reduce task are executed in parallel on the different machines within the Hadoop cluster by
MapReduce framework. Map performs filtering and sorting operations, and reduce performs summary
operations. The user can specify map/reduce functions, and types of input/output. Applications that are
processed using MapReduce programming framework (i.e., Hadoop) are called MapReduce applications.

4.1 MapReduce Job Model

The MapReduce job model consists of two phases: map phase and reduce phase as shown in Fig. 2. In

the map phase, the application reads input data and generates intermediate keys. These computations are
generally done in parallel by subtasks, which are called as map tasks. Then, in the reduce phase, another
subtasks, called as reduce tasks, read intermediate keys and produce the program results.

Figure 2. The Structure of MapReduce Model

Hence, we model a MapReduce Job Ji that consists of a set of map tasks Mi and a set of reduce tasks Ri,

where iM ≥ iR . The aggregate data size ∈ Ji is be represented as Size(Ji). It is also the total size of
input datasets of the map tasks, hence Size(Ji) ≡ Sizemap(Ji). On the other hand, the total size of the input
data of the reduce tasks is denoted by function Sizereduce(Ji).

Furthermore, in this paper we consider three types of VMs which can host a map or a reduce task: VM

= {SmallVM, MediumVM, LargeVM}, and the MIPS (millions instructions per seconds) rating of these
VMs is denoted by set VMmips.

We assume that a SmallVM can only run one map task and one reduce task at a given point of time i.e.,

SmallVMmap = 1 and SmallVMreduce = 1. On the other hand, MediumVMmap = 2, MediumVMreduce = 2 and
LargeVMmap = 4 and LargeVMreduce = 4 respectively.

Our modeling assumptions are based on Amazon EC2[9] VM configurations where the number of

processor core doubles across VM types. We also assume that each VM can be allocated network
bandwidth in proportion to their sizes. For example, the bandwidth allocation of each VM type is defined
by the following relation: 4×SmallVMbandwidth = 2×MediumVMbandwidth = LargeVMbandwidth = 4B(Mbps),
where VMbandwidth={SmallVMbandwidth, MediumVMbandwidth, LargeVMbandwidth}.

For clarity and quick reference, we provide in Table Ⅰ a summary of some symbols frequently used
hereafter.

TABLE I. NOTATION FREQUENTLY USED IN MODEL AND ALGORITHM DESCRIPTIONS
Symbol Meaning
MapReduce Workload
J a MapReduce Job or workload set
Ji a MapReduce Job or workload instance
Mi a set of map tasks ∈ Ji
Ri a set of reduce tasks ∈ Ji
Sizemap(Ji) the input data size of map tasks ∈ Ji
Sizereduce(Ji) the input data size of reduce tasks ∈ Ji
MImap the millions of instructions per MB data when

processing each map task
MIreduce the millions of instructions per MB data when

processing each reduce task
Blocksize the default data block size that a distributed file system can store
VM Configuration
VM a set of VM types
VMmips set denoting MIPS rating of VMs
VMmap upper limit on number of map tasks that can be mapped to VM
VMreduce upper limit on number of reduce tasks that can be mapped to VM
VMbandwidth VM’s network bandwidth
Y the leasing cost of a small VM type for an hour
VMj a VM instance j
Ni the number of VM that has been allocated for Ji
Makespan
TT(Mi,VMj) network delay (transfer cost) in transferring input data of map tasks of Ji to

VMj
TT(Ri,VMj) network delay (transfer cost) in transferring input data of reduce tasks of Ji to

VMj
bw
jVM the network bandwidth of VMj

MIMT(Mi) Ji’s aggregated millions instructions(MI) of map tasks
TET(Mi,VMj) the execution time of the map tasks of Ji
MIRT(Ri) Ji’s aggregated millions instructions(MI) of reduce tasks
TET(Ri,VMj) the execution time of the reduce tasks of Ji
Makespan(Ji,hVM) the total makespan of executing Ji over hVM VMs
Makespanmap(Ji,hVM′) the makespan of executing map tasks of Ji over hVM′ VMs
Makespanreduce(Ji,hVM″) the total makespan of executing reduce tasks of Ji over hVM″ VMs
Monetary Cost
COST(Ji,hVM) the cost of execution Ji over hVM VMs

In the following, we first model the makespan of MapReduce Job followed by the monetary cost

model. Finally, we formalize the optimization problem in section 4.3.

4.2 Makespan of MapReduce Job

As we discussed above, each type of VM has its corresponding capacity limit for processing the map

and reduce tasks as shown in Eq. 1 and Eq. 2 respectively:

VMmap = {SmallVMmap, MediumVMmap, LargeVMmap} (1)

VMreduce = {SmallVMreduce, MediumVMreduce, LargeVMreduce} (2)

In general, MapReduce jobs are processed in four stages[30]. In the first stage, input data is transferred

to the MapReduce cluster. In the second stage, Map tasks process the data. In the third stage, shuffling of
intermediate data is done and in last stage Reduce tasks aggregate the result set emitted by different Map
tasks. Based on these four stages, we can model the makespan of a MapReduce Job by splitting it into
four steps: map data transfer, map task execution, reduce data transfer and reduces task execution. Figure
3 denotes the composition of makespan by provisioning three VM resources (one Large VM, Medium
VM and Small VM respectively) and running a MapReduce job with three map tasks and two reduce
tasks.

Core Map1

Small VM

Map2

Medium VM

Map3

Large	VM

Core Core

Core Core

Core Core

Reduce1

Reduce2

Transfer Time
(map phrase)

Task Execution Time
(map phrase)

Transfer Time
(reduce phrase)

Task Execution Time
(reduce phrase)

Data
Transfer

Task
Execution

VM
Instance

Figure 3. The compositions of makespan when executing a MapReduce Job

4.2.1 Network delay of transferring input data to Map task
Given a MapReduce Job Ji, we apply the Eq. 3 to calculate the network data transfer delay:

 TT(Mi,VMj) = C0 + C1* bw
j

imap

VM

JSize

iN
)(

, bw
jVM ∈ VMbandwidth (3)

, where C0 and C1 are constants.

4.2.2 Map task execution delay
In order to calculate the execution time of map tasks, we model following equation:

MIMT(Mi) = MImap ×
i

imap

M
JSize)(

 (4)

As denoted in the table 1, MImap is the millions of instructions per MB data when processing each map

task. Therefore, the execution time of a map task on a given VMj is :

TET(Mi,VMj) = mips
jVM

)MIMT(Mi ,
mips
jVM ∈ VMmips (5)

4.2.3 Network delay of transferring input data to Reduce task
As we have discussed above, the number of reduce tasks of Ji is always less than the number of map

tasks. Moreover, the data size of the reduce tasks must also differ from that of map tasks. Thus, the
network delay of transferring data to VMj where a reduce task will be processed is:

TT(Ri,VMj) = C2* Ni + C3 * bw
j

ireduce

VM
JSize)(,

bw
jVM ∈ VMbandwidth (6)

, where C2 and C3 are constants.
4.2.4 Reduce task execution delay
Similar to map task, we calculate the execution time of a reduce tasks on a VM using the concept:

MIRT (millions instructions of reduce task), which is defined as:

MIRT(Mi) = MIreduce ×
i

ireduce

R
JSize)((7)

As denoted in the table 1, MIreduce is the millions of instructions per MB data when processing each

reduce task. Therefore, the execution time of a reduce task on a given VMj is:

TET(Ri,VMj) = mips
jVM

)MIRT(Ri ,
mips
jVM ∈ VMmips (8)

A MapReduce Job may not be executed in a single VM, the makespan of Ji over a set of map and

reduce tasks mapped to VMs hVM can be computed as shown in Equation 9. The hVM has two subsets
hVM′ and hVM″, representing the VMs that executed map and reduce tasks respectively.

Makespan(Ji,hVM) = Makespanmap(Mi,hVM′) + Makespanreduce(Ri,hVM″)

 = ′hVM VM
max

j∈
(TT(Mi,VMj) + TET(Mi,VMj))

 + ″hVM VM
max

h ∈
(TT(Ri,VMh) + TET(Ri,VMh)) (9)

, where =iM ∑

∈ ′hVM jVM

map
jVM and =iR ∑

∈ ″hVM hVM

reduce
hVM . map

jVM is the maximum number of map tasks

that VMj can host, and reduce
hVM is the maximum number of reduce tasks that VMh can host.

4.3 Monetary Cost

In this paper, we have used the price schema of Amazon EC2 [31] to estimate the cost per hour of

using a hosted VM. It is a reasonable and practical assumption, since today many users rent public cloud
resources (e.g. Amazon EC2) instead of maintaining their own private resources to run their MapReduce
application.

We assume that the VMs are charged under pay-as-you-go model (e.g. per minute). For example, the

price of hiring or leasing computation time of a SmallVM for 30 minutes at Y dollar per minute base rate
will be 30×Y dollars. Accordingly, in our model, the MediumVM and LargeVM cost 2Y dollars and 4Y
dollars per minute respectively.

In summary, the total cost of processing a MapReduce Job Ji on set of heterogeneous VMs will be:

COST(Ji,hVM) =

Makespanmap(Mi,hVM′)×

[] [] [])arg42(
′hVM

eVMLVMYMediumVMVMYSmallVMVMY jj
VM

j
j

∈×+∈×+∈×∑
∈

 +

Makespanreduce(Ri,hVM″)×
[] [] [])arg42(

″hVM
eVMLVMYMediumVMVMYSmallVMVMY jj

VM
j

h

∈×+∈×+∈×∑
∈

 (10)

4.4 Optimization Problems

It is evident from Equation 4 and 7 that by increasing the level of parallelism for map and reduce tasks

(i.e. hiring more and more number of VMs), the overall makespan can be reduced. Furthermore, using
more powerful VMs (Large vs. Small) has further potential to improve the makespan due to superior
processor speed and network I/O capacity. However, adding more VMs and replacing small VM with
larger VM will certainly lead to elevated monetary Cost. In other words, there exists a trade-off between
makespan and monetary cost for a MapReduce application.

In this paper, we consider the following optimization problem: How to minimize the monetary cost to

process a given set of MapReduce Jobs J while meeting the deadline C.

The problem is formalized as:

argmin ∑
∈JJi

hVM),COST(Ji

Subject to: C
JJi

≤∑
∈

 hVM),Makespan(Ji (11)

4.5 Proposed Mapreduce Application Schuduling Algorithm (MASA)

The provisioning and scheduling problem discussed above is a multidimensional knapsack problem

that was shown to be NP-complete as they map to 0-1 Knapsack problems[32]. Thus a heuristic approach
is necessary to solve the problem. In this section, we present the details of MapReduce application
scheduling algorithm, called MASA with the goals of optimizing Equations (11) considering the budget
and deadline SLA requirements

In MapReduce frameworks such as Hadoop, in general data is distributed across several cluster nodes

where map tasks are scheduled in round robin fashion in order to have balanced load across each cluster
node. In other words, each node will be executing a more or less equal number of map tasks considering
homogeneous configuration across nodes. Thus, without loss of generality we can assume there is one
large size map task running on each node instead of several small map tasks.

Algorithm 1 describes the important steps of MASA algorithm. In the first step, the lower bound and

upper bound number of map tasks are calculated such that user specified deadline and budget constraint
can be achieved. For the sake of simplicity, the lower bound of map tasks equals one. The upper bound of

map tasks can be calculated by
Blocksize

)(JSize imap . As denoted in Table Ⅰ, Sizemap(Ji) means the input data

size of map tasks Ji. Blocksize represents the default data block size that a distributed file system can
store. The second step is to decide the scope of reduce task number. Since the number of reduce task is
smaller than the number of map task, we set the lower bound of reduce tasks as one and upper bound of
reduce tasks as the number of map task. The main step followed is to compute allocation based on the
pair of map tasks and reduce tasks for the coming request. Specifically, MASA iteratively computes (in a
greedy fashion) all possible number of map tasks and reduce tasks according to the aforementioned lower
bound and upper bound. Then, the number of same type VMs (SmallVM or Medium VM or LargeVM) is
calculated (in Line 6). After that, MASA allocates each possible pair of map and reduce tasks into these
VMs. For each potential allocation, makespan and cost is calculated according to the formulas discussed
in above subsection. In each iteration, MASA discards the bad allocation that have either makespan
exceeding deadline or cost going beyond budget. After the iteration (Line 4 to 19), a set of valid
allocations are collected and stored in AllocList. Finally, we pick the allocation which has the minimal
monetary cost from AllocList (see Line 21), and deploy the MapReduce jobs based the allocation.

Algorithm 1: MASA
Data Input: User Request = r1; // details of MapReduce application and SLA requirements(deadline
and budget)
Result: Allocation aij; //allocation of map and reduce tasks to VMs
1. Minmap = Calculate Lower bound on number of mappers;
2. Maxmap = Calculate Upper bound on number of mappers;
3. Let AllocList be the list of possible allocations;
4. for i ∈ (Minmap, Maxmap) do
5. for j ∈ (1,i) do

 //For allocation, calculate number for the same type of VM;
6. CalculateNumberofVM;
7. aij = Compute Allocation(i,j, r1);
8. // calculate makespan and cost of the above allocation
9. calculate makespan(r1,aij);
10. calculate cost(r1, aij); // compare the makespan with deadline
11. if makespan > deadline || cost > budget then
12. delete this allocation;
13. else
14. if makespan < deadline & cost < budget then
15. insert it into AllocList
16. end;
17. end;
18. end;
19. end;
20. // choose the minimum cost allocation from AllocList
21. ChooseMimimum_Allocation(AllocList);
22. Deploy r1 based on chosen allocation;

5 EVALUATION

In this section, we evaluate the performance of our proposed MASA algorithm. In order to better

demonstrate the performance of MASA, we use two algorithms as benchmark. The first one is existing
MapReduce scheduling approach (NonSLA or SLA agnostic). We refer to the existing approach as
NonSLA Algorithm. The second one is exhaustive search algorithm which gives a solution close to
optimal. We comprehensively compare MASA against NonSLA algorithm and exhaustive search
algorithm. The following sections give the details for NonSLA algorithm and exhaustive search
algorithm respectively.

6.1 Benchmarking Algorithms

6.1.1 NonSLA Algorithm: existing scheduling approach
This algorithm describes existing MapReduce scheduling approach (NonSLA or SLA agnostic). In

this algorithm, rather than specifying budget and deadline, each user will randomly specify which types
of VM(Small VM, Medium VM or Large VM s/he intends to initiate to run his/her MapReduce tasks.
The broker will calculate the maximum number of VMs required so that MapReduce job finished by end
of the deadline. The broker then schedules the job after initiating these VMs. As a consequence, NonSLA

algorithm may meet the deadline but the cost goes very high, or the cost may fall in the scope of the
budget, but the deadline can’t be met. Obviously, NonSLA algorithm doesn’t target the trade-off between
budget and deadline and is not able to find the optimized solution from both budget and deadline
perspectives.

Algorithm 2: NonSLA Algorithm
Data Input: User Request = r1; // details of MapReduce application and deadline (d) and
budget(b) and VM type to initiate
Result: Allocation aij; //allocation of map and reduce tasks to VMs

 //Number of VMs to be initiated

1. NumofVMs =
dVMType

b
t ×cos ;

2. aij = Compute_Allocation(NumofVMs,r1);
3. deploy request r1 based on aij;

6.1.2 Exhaustive Search Algorithm

Algorithm 3 depicts the procedures how exhaustive search algorithm works. Similarly, the lower
bound and upper bound number of map tasks are calculated such that user specified deadline and budget
constraint can be achieved. Following, in each iteration the exhaustive search algorithm selects all
possible VM set that consists of the aforementioned different type of VMs {SmallVM, MediumVM,
LargeVM}. In the main step of compute allocation, the algorithm computes the best possible VM set
upon all possible pair of number of map tasks and reduces tasks that can minimize the cost, while
meeting the deadline constraint. The algorithm chooses the optimized allocation by searching all possible
allocations; this is why we call it exhaustive search. Thus, it will give a solution that is very close to the
optimal solution.

Algorithm 3: Exhaustive Search Algorithm
Data Input: User Request = r1; // details of MapReduce application and SLA
requirements(deadline and budget)
Result: Allocation aij; //allocation of map and reduce tasks to VMs
1. Minmap = Calculate Lower bound on number of mappers;
2. Maxmap = Calculate Upper bound on number of mappers;
3. Let AllocList be the list of possible allocations;
4. for i ∈ (Minmap, Maxmap) do
5. for j ∈ (1,i) do

 //For allocation, select possible VM set = {SmallVM, MediumVM, LargeVM} where
its’

 //total capacity of processing the map tasks equals i
6. selectVMset(SmallVM, MediumVM, LargeVM);
7. aij = Compute Allocation(i,j, r1);
8. // calculate makespan and cost of the above allocation
9. calculate makespan(r1,aij);
10. calculate cost(r1, aij); // compare the makespan with deadline
11. if makespan > deadline || cost > budget then
12. delete this allocation;

13. else
14. if makespan < deadline & cost < budget then
15. insert it into AllocList
16. end;
17. end;
18. end;
19. end;
20. // choose the minimum cost allocation from AllocList
21. ChooseMimimum_Allocation(AllocList);
22. Deploy r1 based on chosen allocation;

6.2 Experimental Setup
To model a real Public Cloud environment and MapReduce application scheduling scenario, we

utilized IoTSIM[8]. Our simulation setup considers multiple MapReduce jobs with different deadlines
being submitted to MR Cloud Brokers.

6.2.1 User Requests Generation
Typically, on the user’s side, a request for deploying and executing MapReduce application consist of

details of application characteristic along with SLA constraints, such as deadline and budget. Next, we
discuss how SLA constraints are modelled in our experiments.

• Deadline is defined as the maximum time (upper bound) that user would like to wait until the

MapReduce job finishes execution. The deadline is measured in minutes. Deadline is calculated
based on the makespan. Let maxExTime represents the maximum makespan of a MapReduce
application, Let minExTime represents the minimum makespan of a MapReduce application. Then,

the estimated execution time (α) =
2
minExTime+maxExTime .

Based on this, we derived three different classes of deadline as following:

tight deadline = 0.5×α
 medium deadline = α

 relaxed deadline = 1.5×α

• Budget represents the money that each user is willing to pay for the execution of its MapReduce

tasks. The budget is calculated and modelled as follows. Let maxCost represents the maximum
cost required to process all tasks in MapReduce job. Let minCost represents the minimum cost
required to process all tasks in a MapReduce job, Then

β=
2

minCost +maxCost

Based on this, we derived three different classes of budgets that can be specified by a user as
following:

low budget = 0.5 ×β
 medium budget =β

high budget = 1.5 ×β

• Data Size is the size of data that will be processed by the MapReduce job. The unit of data size is

MB. For experiments, three types of MapReduce jobs are considered based on data size: short,
medium and long. The medium job has 5 times more data size than the short job, while the long
job has 10 times the data size of the short job. The data size of each MapReduce job is modelled
based on a uniform distribution.

• Size of Map Task is defined by millions of instructions that need to be executed to process each
MB (Megabyte) data when processing each map task during the map phase. The unit of this
parameter is Millions Instructions (MI) per MB. It is modelled using a uniform distribution. It is
worth to mention that each MapReduce application has different MI for map task depending on its
characteristics of the job execution during map phrase. Verma et al.[33] extracted a single job
profile using an automated profiling tool which can uniquely capture and demonstrate critical
performance characterizes of the job execution for different MapReduce applications. It can be
deduced that MI for map task represents the nature of different MapReduce applications.

• Size of Reduce Task, similarly is defined by millions of instructions that need to be executed to
process each MB (Megabyte) data when processing each reduce task during the reduce phase. The
unit of this parameter is Millions Instructions (MI) per MB. It is modelled as a uniform distribution.
It is worth to mention that each MapReduce application has different MI for reduce task depending
on its characteristics of the job execution during reduce phrase.

6.2.2 VM Configuration Modelling

 We need to include the hardware information, and the configuration information of VMs
We consider three types of VMs: Small, Medium and Large. The VM configurations are listed in the

Table Ⅱ.

TABLE II. VM CONFIGURATION

VM Type Small Medium Large
Number of CPUs in a VM 1 2 4

MIPS for each core x 2x 4x
Cost Per hour y 2y 4y

6.2.3 Evaluation metrics

As the aim of MR Cloud Broker is to reduce the cost without missing the deadline and budget, the
following two metrics are quantified during evaluation:

• Average Makespan: The average makespan shows how fast MapReduce jobs are executed. Let

MKi represent the makespan of MapReduce Job Ji and is calculated using Equation 9. The N is
the number of MapReduce jobs. Then, the average makespan is calculated by the following
formulas:

average makespan =
∑
∈Ni

i

N
MK

• Average Cost: The average cost presents how much does it cost to process MapReduce jobs.
Let TCi represent the cost of processing MapReduce job Ji and is calculated using Equation 10.
Let N is the number of MapReduce jobs. Then, the average cost is calculated by the following
formulas:

average cost = ∑
∈Ni

i

N
TC

6.2.4 Evaluation Scenarios

To understand the behavior and performance of our proposed algorithms, we consider the following
four types of scenarios. In each scenario, different experimental parameters discussed above will be
varied.

• Variation in the number of concurrent user requests
• Variation in the VM MIPS configurations
• Variation in the Deadlines
• Variation in the Budgets
• Variation in Request Sizes and deadlines

6 ANALYSIS OF EXPERIMENTAL RESULTS

In this section, we analyze the experimental results upon the above evaluation scenarios and draw
comprehensive conclusions about the performance of our proposed MASA algorithm against NonSLA
and exhaustive search algorithm.

7.1 Variation in Number of Concurrent User requests
In this scenario, we change the number of MapReduce Jobs (5, 10, 20) submitted simultaneously

while keeping other independent variables (VM Configuration, deadline and budget etc.) at medium level.
Each batch of MapReduce jobs consists of 30% short jobs, 30% medium jobs and 40% long jobs. Figure
4(a) and 4(b) clearly shows how our proposed exhaustive search algorithm and MASA outperform
NonSLA based existing algorithm for executing MapReduce jobs on Public Clouds. MASA can achieve
very similar performance to the Exhaustive search algorithm, and can achieve roughly 25% lower
average makespan and 50% average costs.

6.1.1.1.1.1 Average Makespan

6.1.1.1.1.2 Average Cost
6.1.1.1.2

Figure 4. Variation in Number of Concurrent User requests

7.2 Variation in VM MIPS Configuration
In this scenario, we vary MIPS rating of VMs. We define three different types of MIPS Configurations

(small, medium or high) as in the following:
• Low MIPS means the MIPS of medium VM is 1.5 times than that of small VM, and the MIPS

of large VM is 1.5 times than that of medium VM;

• Medium MIPS means the MIPS of medium VM is 2 times that of small VM, and the MIPS of
large VM is 2 times than that of medium VM;

• High MIPS means the MIPS of medium VM is 2.5 times that of small VM, and the MIPS of
large VM is 2.5 times that of medium VM.

Figure 5(a) and 5(b) shows how MASA performs in comparison to NonSLA algorithm and Exhaustive

Search Algorithms. Overall MASA still incur very low cost to the user in comparison to NonSLA
algorithm and very close to Exhaustive search algorithm. As difference between VMs’s MIPS
configuration increases, exhaustive search algorithm and MASA tend to select more number of large
VMs than smaller VMs due to which the average makespan decreases considerably. However, as cost of
Large VMs is much higher as compared against small VMs, the decrease in the average cost is only
appropriately 25% from Low MIPS to High MIPS configuration.

6.1.1.1.2.1 Average Makespan

6.1.1.1.2.2 Average Cost

Figure 5. Variation in VM MIPS Configuration

7.3 Variation in Deadline
In this scenario, we set the aforementioned different type of deadlines (tight, medium or relaxed) for

the same batch of MapReduce job requests. Figure 6(a) and 6(b) show how the performance of
exhaustive search algorithm, MASA and NonSLA algorithm are affected by the deadline. It can be
clearly seen that NonSLA approach performance is more than 25% worse than the counterpart of
exhaustive search algorithm and MASA in terms of average makespan as well as average cost. When
deadline is relaxed, exhaustive search algorithm can achieve just 10% lower average makespan and
average cost than MASA. As deadline becomes stricter, MASA approach performance is similar to
exhaustive algorithm. The principal reason behind this behavior is that as deadlines get stricter, the set of
possible VMs that can host map and reduce tasks is restricted and is often tilted towards superior VM
configurations.

(a) Average Makespan

(b) Average Cost

Figure 6. Variation in Deadline

7.4 Variation in Budget
In this scenario, we set the aforementioned different type of budget (low, medium or high) for the

same batch of MapReduce job requests. Figure 7(a) and 7(b) show how different types of budget affect
the performance of exhaustive search algorithm, MASA and NonSLA algorithm. Still, NonSLA approach
performance incurs higher average makespan and cost than the counterpart of exhaustive search
algorithm and MASA. As budget become relaxed, the difference of average makespan between NonSLA
and our proposed algorithm (MASA) becomes less. This is because that as budget get relaxed, more VMs
that are often tilted towards superior VM configurations could be invested to achieve lower average
makespan. It can be also observed, MASA still able to achieve an allocation very close to optimal.

(a) Average Makespan

(b) Average Cost

Figure 7. Variation in Budget

7.5 Variation in Request Sizes and Deadlines
In this scenario, we mix different types of deadline (tight, medium, relax) for different types of

MapReduce jobs (short, medium, long) while keeping VM Configuration and cost model as the same.
The deadline is varied as follows:

• R4S, M4M, L4T means we set relax deadline for short jobs, medium deadline for medium jobs
and tight deadline for long jobs;

• M4S, T4M, R4L means we set medium deadline for short jobs, tight deadline for medium jobs
and relax deadline for long jobs;

• T4S, R4M, M4L means we set tight deadline for short jobs, relax deadline for medium jobs
and medium deadline for long jobs.

Figure 8(a) and 8(b) shows how MASA performs in comparison to NonSLA when different deadline

distribution models are applied for different mixed concurrent requests. Overall, MASA still are better at
cost optimization comparing to NonSLA algorithm. Even though overall makespan of job increases, both
exhaustive search algorithm and MASA outperform NonSLA counterpart. With variation in deadlines,
MASA gives very close allocation to exhaustive search and thus achieves a solution that cost within 10%
of optimal average cost and average makespan.

(a) Average Makespan

(b) Average Cost

Figure 8. Variation in Request Sizes and Deadlines

7.1 Discussion

Experimetnal results hightlight the performance achived through MASA. While this paper does
not consider the geo-distributed setting for opitmising the MapReduce applications.

To this end, we first need to extend the models in IoTSim to correcty similuate the dynamic of the
geo-distributed system. Further, a new algorithm which considers the influence of the available
bandwidth is required. Moreover, the available bandwidth may change drastically due to the
complex and unprediction of internet.

In this paper, we do not consider that the interaction of our appproach with Software Define
Networking(SDN). The interaction can significanlty benefit of optimizing data transfer delays
between distributed file-system, Mappers, and Reducers. We will also investigate new scheduling
approaches which can undertake joint optimization of QoS parameters across VMs and SDN-
enabled datacenter networking infrastructure.

CONCLUSIONS

As Big Data is gaining importance, more and more applications have been redesigned to use Big Data

frameworks such as Apache Hadoop that supports MapReduce programming model. These applications
are generally hosted on Public Clouds that provide virtually infinite on-demand storage and computing
resources. This paper identified an important gap in the literature concerning scheduling of MapReduce
jobs on Public Clouds considering while meeting SLA requirements of a user in terms of budget and
deadline.

To this end, we first modelled the scheduling problem and then proposed a novel MapReduce
application scheduling algorithms (we call MASA) which: (i) computes in a greedy manner the best
combination of VMs for scheduling Map and Reduce tasks and (ii) considers run-time uncertainties (e.g.,
availability, throughput, and utilization) during resource allocation process. Our proposed algorithm
MASA minimize data analysis cost while avoiding SLA violations.

The extensive IoTSim-based evaluation clearly shows that our proposed algorithm MASA can help

users reduce cost of executing MapReduce applications on public Clouds by about 25% to 50%. The cost
saving efficiency of the proposed SLA-aware scheduling approach depends on the complexity (e.g.,
number of Mappers, number of Reducers, input data size, output data size) of MapReduce application.
Moreover, when we compared solution to optimal one, it achieves allocations which are very close to
exhaustive search algorithm in most of the scenarios.

7 REFERENCES
[1] L. Wang, W. Song, and P. Liu, "Link the remote sensing big data to the image features via wavelet transformation," Cluster Computing, vol. 19, pp.

793-810, 2016.
[2] L. Wang, J. Zhang, P. Liu, K.-K. R. Choo, and F. Huang, "Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing

image classification," Soft Computing, pp. 1-9, 2016.
[3] C. Yin, Z. Xiong, H. Chen, J. Wang, D. Cooper, and B. David, "A literature survey on smart cities," Science China Information Sciences, vol. 58,

pp. 1-18, 2015.
[4] L. Wang, K. Lu, P. Liu, R. Ranjan, and L. Chen, "IK-SVD: dictionary learning for spatial big data via incremental atom update," Computing in

Science & Engineering, vol. 16, pp. 41-52, 2014.
[5] H. Chen, R. H. Chiang, and V. C. Storey, "Business Intelligence and Analytics: From Big Data to Big Impact," MIS quarterly, vol. 36, pp. 1165-

1188, 2012.
[6] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. a. S. Netto, and R. Buyya, "Big data computing and clouds: Trends and future directions," Journal

of Parallel and Distributed Computing, 2014.
[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The hadoop distributed file system," in 2010 IEEE 26th symposium on mass storage systems

and technologies (MSST), 2010, pp. 1-10.
[8] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos, and R. Ranjan, "IOTSim: A simulator for analysing IoT applications,"

Journal of Systems Architecture, 2016.
[9] J. Murty, Programming amazon web services: S3, EC2, SQS, FPS, and SimpleDB: " O'Reilly Media, Inc.", 2008.
[10] "Windows Azure: http://www.microsoft.com/windowsazure, 2012.."
[11] "Cloud computing price comparison — cloudorado - find best cloud server from top cloud computing companies," https://www.cloudorado.com/,

accessed August 2016.
[12] Y. Geng, S. Chen, Y. Wu, R. Wu, G. Yang, and W. Zheng, "Location-aware MapReduce in virtual cloud," in 2011 International Conference on

Parallel Processing, 2011, pp. 275-284.
[13] M. Mattess, R. N. Calheiros, and R. Buyya, "Scaling mapreduce applications across hybrid clouds to meet soft deadlines," in Advanced Information

Networking and Applications (AINA), 2013 IEEE 27th International Conference on, 2013, pp. 629-636.
[14] A. Verma, L. Cherkasova, and R. H. Campbell, "Two sides of a coin: Optimizing the schedule of mapreduce jobs to minimize their makespan and

improve cluster performance," in 2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2012, pp. 11-18.

[15] J. Polo, D. Carrera, Y. Becerra, M. Steinder, and I. Whalley, "Performance-driven task co-scheduling for mapreduce environments," in 2010 IEEE
Network Operations and Management Symposium-NOMS 2010, 2010, pp. 373-380.

[16] K. Kc and K. Anyanwu, "Scheduling hadoop jobs to meet deadlines," in Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, 2010, pp. 388-392.

[17] L. Wang, Y. Ma, J. Yan, V. Chang, and A. Y. Zomaya, "pipsCloud: High performance cloud computing for remote sensing big data management
and processing," Future Generation Computer Systems, 2016.

[18] L. Wang, D. Chen, Y. Hu, Y. Ma, and J. Wang, "Towards enabling cyberinfrastructure as a service in clouds," Computers & Electrical Engineering,
vol. 39, pp. 3-14, 2013.

[19] M. Alrokayan, A. V. Dastjerdi, and R. Buyya, "SLA-aware Provisioning and Scheduling of Cloud Resources for Big Data Analytics," 2014.
[20] G. Lee, N. Tolia, P. Ranganathan, and R. H. Katz, "Topology-aware resource allocation for data-intensive workloads," in Proceedings of the first

ACM asia-pacific workshop on Workshop on systems, 2010, pp. 1-6.
[21] Y. Wang and W. Shi, "Budget-driven scheduling algorithms for batches of MapReduce jobs in heterogeneous clouds," IEEE Transactions on Cloud

Computing, vol. 2, pp. 306-319, 2014.
[22] G. Lee and R. H. Katz, "Heterogeneity-Aware Resource Allocation and Scheduling in the Cloud," in HotCloud, 2011.
[23] K. Kambatla, A. Pathak, and H. Pucha, "Towards Optimizing Hadoop Provisioning in the Cloud," HotCloud, vol. 9, p. 12, 2009.
[24] H. Herodotou and S. Babu, "A What-if Engine for Cost-based MapReduce Optimization," IEEE Data Eng. Bull., vol. 36, pp. 5-14, 2013.
[25] A. Matsunaga and J. A. Fortes, "On the use of machine learning to predict the time and resources consumed by applications," in Proceedings of the

2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, 2010, pp. 495-504.
[26] Z. Gong, X. Gu, and J. Wilkes, "Press: Predictive elastic resource scaling for cloud systems," in 2010 International Conference on Network and

Service Management, 2010, pp. 9-16.
[27] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, "Agile: Elastic distributed resource scaling for infrastructure-as-a-service," in Proceedings

of the 10th International Conference on Autonomic Computing (ICAC 13), 2013, pp. 69-82.

[28] H. Yang, Z. Luan, W. Li, and D. Qian, "MapReduce workload modeling with statistical approach," Journal of grid computing, vol. 10, pp. 279-310,
2012.

[29] X.Zeng, S. K. Garg, Z. Wen, P. Strazdins, L. Wang and R. Ranjan, "SLA-Aware Scheduling of Map-Reduce Applications on Public Clouds," The
18th IEEE International Conference on High Performance Computing and Communications (HPCC 2016) [Bibtex], 2016.

[30] J. Dean and S. Ghemawat, "MapReduce : Simplified Data Processing on Large Clusters," Communications of the ACM, vol. 51, pp. 1-13, 2008.
[31] C. Vecchiola, X. Chu, M. Mattess, and R. Buyya, "Aneka—integration of private and public clouds," Cloud computing principles and paradigms,

Willy, USA, 2011.
[32] S. Martello and P. Toth, "An algorithm for the generalized assignment problem," Operational research, vol. 81, pp. 589-603, 1981.
[33] A. Verma, L. Cherkasova, and R. H. Campbell, "Resource provisioning framework for mapreduce jobs with performance goals," in

ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and Open Distributed Processing, 2011, pp. 165-186.

