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Abstract—MapReduce framework has been one of the most prominent ways for efficient processing 
large amount of data requiring huge computational capacity. On-demand computing resources of Public 
Clouds have become a natural host for these MapReduce applications. However, the decision of what 
type and in what amount computing and storage resources should be rented is still a user’s responsibility. 
This is not a trivial task particularly when users may have performance constraints such as deadline and 
have several Cloud product types to choose with intention of not spending much money. Even though 
there are several existing scheduling systems, however most of them are not developed to manage the 
scheduling of MapReduce applications. That is, they do not consider things such as number of map and 
reduce tasks that are needed to be scheduled and heterogeneity of Virtual Machines (VMs) available. This 
paper proposes a novel greedy-based MapReduce application scheduling algorithm (MASA) that 
considers the user’s constraints in order to minimize cost of renting Cloud resources while considering 
Service Level Agreements (SLA) in terms of the user given budget and deadline constraints. The 
simulation results show that MASA can achieve 25-50% cost reduction in comparison to current SLA 
agnostic methods and there is only 10% performance disparity between MASA and an exhaustive search 
algorithm. 

 
Keywords- Big Data; MapReduce; Cloud Computing; Service Level Agreement; Scheduling; Cross 
Layer 
 

1. INTRODUCTION 
 

The efficient processing of Big Data has become a predominant challenge in several emerging 
application domains including (but not limited to) enterprise computing, smart cities, remote healthcare, 
high energy physics, bio-informatics, and astronomy[1]. For example, online retail companies are 
required to analyze click stream data and up-to-the minute inventory status for offering dynamically 
priced and customized product bundles. Similarly, banks are looking to detect and react to frauds in based 
on analyzing transactional data. On the other hand, cities are evolving into smart cities by fusing and 
analyzing data from several sources (e.g., traffic cameras, social media, remote sensing data, GPS data[2-
4]. With the push towards more automation for faster business strategy adaptation, most enterprises are 
moving towards the next generation Business Intelligence (BI) systems that can support data-driven 
decision making [5]. Such organizations often utilize MapReduce based applications for efficient and 
effective large scale processing of their Big Data. This requires either installation of a private Hadoop 
Cluster or deployment of MapReduce application on Public Cloud. Given the on-demand, large and 
scalable computing and storage resources provided by Clouds, they are becoming more and more 
preferable deployment infrastructure.  



 
Public Cloud providers such as Amazon Web Services have started to offer on-demand Hadoop 

clusters (PaaS), referred to as Elastic MapReduce, on its EC2 datacenters (IaaS) on pay-as-you-go 
basis[6]. However, current scheduling techniques and systems for deploying Hadoop clusters[7] on 
public IaaS Clouds are incapable of supporting Service Level Agreement (SLA)-driven data processing 
application management. Important SLA constraints include: (i) Deadline: upper bound on the time 
finishing the data processing task and (ii) Budget: upper bound on the monetary limit for finishing the 
data processing task. In the current practice, public Cloud providers require users (MapReduce 
application administrators) to manually decide the mix and type of IaaS resources they need as part of 
their Hadoop cluster for finishing the analytic task over their Big Data within SLA constraints. 

 
Research Problem. Clearly, it is impossible to resolve such dependency between IaaS-level hardware 

configurations, deployment plan for Hadoops PaaS-level software components and SLA constraints 
manually. In particular, the hard challenge is to flexibly select IaaS configurations (I/O capacity, RAM, 
VM speed, local storage, cost) for scheduling PaaS-level Hadoops software components (such as number 
of Map tasks, number of Reduce tasks; Map Slots per VM, Reduce Slots for VM, Max RAM per slot) 
driven by SLA constraints (e.g., analyzing 100GB of Tweets in 10 minutes while subjecting to maximum 
budget of $100). The space of possible configurations for big data processing frameworks and hardware 
resource is very large, so computing an optimal solution is a NP-complete problem, and therefore 
intractable given current technology. 

 
The scheduling problem is further complicated by the fact that MapReduce application workload 

characteristics (e.g., data volume, priority, concurrency) and IaaS resource performance (e.g., availability, 
throughput, utilization) behavior fluctuate over time. Furthermore, as public Cloud providers desire to 
maximize resource utilization and profit, they have mechanisms of dynamically consolidating other types 
of workload (e.g. web servers, video streaming, SQL/NoSQL query processing, stream processing) to the 
unused physical resources in the cluster which further adds the complexity of dynamically managing 
clusters performance for meeting SLA constraints. In reality, the performance degradation depends on 
how noisy neighboring application workloads are. In most of the cases, it is likely that MapReduce 
applications will miss their deadline, which may result in financial losses based on analytic context. For 
example, delays in detecting fraudulent transaction may incur heavy losses to banks. On the other hand, 
delays in analyzing customer sentiments for products may lead to revenue loss for on-line retail 
companies. 

 
Research Methodology and Contributions. The question of SLA-aware scheduling of applications 

has been addressed previously in context of HPC, Grid, Cloud (at IaaS-layer), and database research over 
the last two decades. Our methodology differentiates itself in the following aspects. First of all, we 
present a mathematical model that enables holistic modeling of relationship between SLA parameters 
(e.g., budget and deadline) and Hadoop clusters configurations in terms of: (i) Big Data volume (ii) PaaS 
component configuration (number of mappers and number of reducers) and IaaS configuration (VM type, 
VM speed). Secondly, we develop a greedy heuristic based MapReduce application scheduling algorithm 
(MASA) that can pro-actively minimize the cost under user’s constraints (budget and deadline), Big Data 
workload (data volume, priority) and IaaS performance (e.g., availability, throughput, and utilization) 
uncertainties. We extensively validate the performance of the SLA model and greedy MapReduce 
application scheduling algorithm (MASA) in the IoTSim simulator tool[8].  

 
The rest of this paper is organized as follows. In Section 2, we discuss some related works. Section 3 

presents the high level system scenario that is considered for scheduling MapReduce application (aka. 
Jobs) on Public Clouds. Section 4 discusses our mathematical model and its assumptions. In Section 5, 



we present our proposed MapReduce application scheduling algorithms. Section 6 presents evaluation of 
the performance of our proposed algorithms. In Section 7, we conclude the paper with future directions. 

2. RELATED WORKS 
 

While public Clouds have evolved towards heterogeneous hardware configuration for differentiated 
processing power, I/O capacity, RAM size, network connectivity and network location, most existing 
MapReduce application scheduling platforms (Apache YARN, Apache Mesos, Apache Spark, Amazon 
Elastic MapReduce) are designed for homogeneous clusters of hardware resources (VM, Storage, and 
Network). These platforms expect MapReduce application administrators to determine the number and 
configuration of hardware resources to be allocated PaaS-level components (e.g., number of Map tasks, 
number of Reduce tasks; Map Slots per CPU, Reduce Slots for CPU, Max RAM per slot). Branded price 
calculators are available from public Cloud providers (Amazon[9], Azure[10]) and academic projects 
(Cloudrado[11]) but they cannot recommend hardware configurations to be allocated to PaaS-level 
Hadoop components driven by SLA constraints. 

 
There are several works on scheduling different applications on public cloud. Some have proposed 

algorithms to manage web applications, others for managing scientific applications and some on scientific 
workflow. Data and control flow dependencies in MapReduce applications are quite different from 
workflow as number of tasks in an application is not static as in traditional workflow but depends on data 
size. Thus, the existing algorithms that are proposed for scientific workflows cannot be applied in this 
scenario. 

 
On the other hand, most existing MapReduce research target large scale, clustered infrastructure 

environments[12, 13]. In these works, authors proposed models for execution of MapReduce applications 
across multiple Clusters, and algorithms to minimize makespan of multiple MapReduce jobs on the same 
cluster. However, in this environment, each job is competing for the resources, which is not the case of a 
Public Cloud[14-18] and this type of MapReduce infrastructure is limited to task scheduling, ignoring 
resource selection and provisioning[13, 19, 20].  Wang et al. [21]  shares a similar scenario with these 
papers, but the authors assume that map tasks and reduce tasks have the constraints in terms of monetary 
and execution time without any consideration of data transmission time. This assumption is not very 
realistic, because users are not able to set the specific constraints for each map or reduce task. 

 
In context of the execution of MapReduce applications in public Clouds, most contributions focus on 

designing time efficient resource provisioning and task scheduling. Lee et al.[22] proposed dynamically 
allocating public Cloud resources to a Hadoop cluster based on a simple SLA constraint: minimize 
storage size. Kambatla et al. [23] proposed selecting the optimal set of public Cloud resources for Hadoop 
cluster by developing and profiling hardware resource consumption statistics. Similarly, the authors of 
[24] proposed selecting configurations of heterogeneous Amazon EC2 resources under various what-if 
scenarios (number of Map tasks, number of Reduce tasks, size and distribution of input data). However, 
none of these approaches considered deadline and budget SLA constraints while taking scheduling 
decisions. Mattess et al. proposed a policy for dynamic provisioning of Cloud resources to speed up 
execution of deadline-constrained MapReduce applications, by enabling concurrent execution of tasks, in 
order to meet a soft deadline for completion of the Map phase of the application. However, they only 
considered soft deadlines at the Map phase while ignoring reduce phase. In contrast in this paper, the 
execution of map and reduce tasks is scaled across a public Cloud, where resources can be virtually 
unlimitedly, with the goal of meeting user-defined deadline and budget.  Moreover, we consider the data 
transmission time in our model which might significantly affects total makespan due to large data size. 

 



 
 
Some public Cloud providers such as Amazon Auto Scaler controllers implement reactive heuristics to 

scale Hadoop clusters based on CPU usage measurements. However, Auto Scaler warrants the 
administrator to statically define the CPU thresholds (no support for dynamic scaling based on optimizing 
SLA constraints) that triggers the scaling of cluster. There has been lots of research works conducted in 
developing performance models of MapReduce applications on Clouds. These performance models are 
based on machine learning[25], Markov and fast fourier transforms[26] or using wavelet techniques[27] 
and they provide predictions on execution (run) time of Map/Reduce tasks, input data volume, network 
I/O patterns, etc. Principal Component Analysis[28] has also been applied to learn performance model 
parameters of MapReduce applications. The progress made in MapReduce performance modeling is quite 
significant. However, these models cannot be applied directly due to other constraints involved in making 
scheduling and deployment of MapReduce applications such as SLA constraints. 

 
The preliminary results of this paper were reflected in our previous work HPCC 2016[29]. The current 

work comprehensively extends previous work. We proposed a new improved MapReduce application 
scheduling algorithm (MASA) and compared its performance with exhaustive search algorithm and 
NonSLA approaches. We have extensively expanded the experiments and thereafter drawn more 
conclusions. 

 
In summary, to best of our knowledge, it is the first work that model all the requirements of a map- 

reduce job (both computing and communication) and schedule them on Public Cloud in order to 
minimize their execution cost while considering SLA parameters such as budget and deadline. 

 
 
 

3. SYSTEM MODEL: SCHEDULING FRAMEWORK 
 

Current Big Data processing platforms for deploying MapReduce applications can be divided into 
following layers: 

 
• Platform as a Service (PaaS) level software frameworks such as Apache Hadoop[7] (an 

implementation of Google’s MapReduce programming model[30]) that enables development of 
parallel data processing applications by exploiting capacity of large cluster of commodity 
computers. Frameworks such as Apache Hadoop hide the low-level distributed system 
management complexities by automatically taking care of activities including task scheduling, data 
staging, fault management, inter-process communication and result collection. 

• Infrastructure as a Service (IaaS) that offers unlimited data storage and processing capabilities 
hosted in large datacenter farms. 

 
Figure 1 shows our scheduling scenario. In our approach, users submit their requests to a MR 

(MapReduce) Cloud broker whose responsibility is to select appropriate IaaS datacenter services for 
deploying Hadoop Cluster on behalf of an user (e.g., data analyst) while meeting user-specified SLA 
constraints. The users’ deployment request consists of details of map reduce application features 
including data size to process, deadline by which a user wants the job to be finished and a budget which 
he/she is willing to spend. 

 



MR Cloud Broker has the similar responsibility as a typical Cloud broker, i.e. to interact with users, 
understand their requirements and schedule processing based on users’ SLA constraints. The scheduling 
algorithm, models, and assumption for making this decision is discussed in the following sections. 

 
The broker will decide which type of Virtual Machines (VMs) to be utilized so that cost of execution 

can be minimized. It will also decide where (e.g., type of VM) each map and reduce task should be 
executed. After analyzing the user’s request, the MR broker deploys a MapReduce cluster after 
negotiating all the required IaaS services from the datacenter provider. In the next section we will discuss 
the mathematical model and assumption that is considered as part of our scheduling approach. 

 

 
Figure 1.  MapReduce Job Scheduling on Public Cloud 

 
4. MATHEMATICAL MODEL AND ASSUMPTIONS 

 
MapReduce is a predominant framework for large-scale distributed data processing based on the 

divide and conquer paradigm. MapReduce works by breaking the processing into map and reduce phases. 
Map task and reduce task are executed in parallel on the different machines within the Hadoop cluster by 
MapReduce framework. Map performs filtering and sorting operations, and reduce performs summary 
operations. The user can specify map/reduce functions, and types of input/output. Applications that are 
processed using MapReduce programming framework (i.e., Hadoop) are called MapReduce applications. 



4.1 MapReduce Job Model 
 
The MapReduce job model consists of two phases: map phase and reduce phase as shown in Fig. 2.  In 

the map phase, the application reads input data and generates intermediate keys. These computations are 
generally done in parallel by subtasks, which are called as map tasks. Then, in the reduce phase, another 
subtasks, called as reduce tasks, read intermediate keys and produce the program results. 

 

 
Figure 2.  The Structure of MapReduce Model 

 
Hence, we model a MapReduce Job Ji that consists of a set of map tasks Mi and a set of reduce tasks Ri, 

where iM  ≥  iR . The aggregate data size ∈ Ji is be represented as Size(Ji). It is also the total size of 
input datasets of the map tasks, hence Size(Ji)  ≡  Sizemap(Ji). On the other hand, the total size of the input 
data of the reduce tasks is denoted by function Sizereduce(Ji). 

 
Furthermore, in this paper we consider three types of VMs which can host a map or a reduce task: VM 

= {SmallVM, MediumVM, LargeVM}, and the MIPS (millions instructions per seconds) rating of these 
VMs is denoted by set VMmips.  

 
We assume that a SmallVM can only run one map task and one reduce task at a given point of time i.e., 

SmallVMmap = 1 and SmallVMreduce = 1. On the other hand, MediumVMmap = 2, MediumVMreduce = 2 and 
LargeVMmap = 4 and LargeVMreduce = 4 respectively. 

 
Our modeling assumptions are based on Amazon EC2[9] VM configurations where the number of 

processor core doubles across VM types. We also assume that each VM can be allocated network 
bandwidth in proportion to their sizes. For example, the bandwidth allocation of each VM type is defined 
by the following relation: 4×SmallVMbandwidth = 2×MediumVMbandwidth = LargeVMbandwidth = 4B(Mbps), 
where VMbandwidth={SmallVMbandwidth, MediumVMbandwidth, LargeVMbandwidth}. 

 



For clarity and quick reference, we provide in Table Ⅰ a summary of some symbols frequently used 
hereafter. 

TABLE I.  NOTATION FREQUENTLY USED IN MODEL AND ALGORITHM DESCRIPTIONS 
Symbol Meaning 
MapReduce Workload 
J a MapReduce Job or workload set 
Ji a MapReduce Job or workload instance 
Mi a set of map tasks ∈  Ji 
Ri a set of reduce tasks ∈ Ji 
Sizemap(Ji) the input data size of map tasks ∈  Ji 
Sizereduce(Ji) the input data size of reduce tasks ∈ Ji 
MImap the millions of instructions per MB data when 

processing each map task 
MIreduce the millions of instructions per MB data when 

processing each reduce task 
Blocksize the default data block size that a distributed file system can store 
VM Configuration 
VM a set of VM types 
VMmips set denoting MIPS rating of VMs 
VMmap upper limit on number of map tasks that can be mapped to VM 
VMreduce upper limit on number of reduce tasks that can be mapped to VM 
VMbandwidth VM’s network bandwidth 
Y the leasing cost of a small VM type for an hour 
VMj a VM instance  j 
Ni the number of VM that has been allocated for Ji 
Makespan 
TT(Mi,VMj) network delay (transfer cost) in transferring input data of map tasks of Ji to 

VMj 
TT(Ri,VMj) network delay (transfer cost) in transferring input data of reduce tasks of Ji to 

VMj 
bw
jVM  the network bandwidth of VMj 

MIMT(Mi) Ji’s aggregated millions instructions(MI) of map tasks 
TET(Mi,VMj) the execution time of the map tasks of Ji 
MIRT(Ri) Ji’s aggregated millions instructions(MI) of reduce tasks 
TET(Ri,VMj) the execution time of the reduce tasks of Ji 
Makespan(Ji,hVM) the total makespan of executing Ji over hVM VMs 
Makespanmap(Ji,hVM′) the makespan of executing map tasks of Ji over hVM′ VMs 
Makespanreduce(Ji,hVM″) the total makespan of executing reduce tasks of Ji over hVM″ VMs 
Monetary Cost 
COST(Ji,hVM) the cost of execution Ji over hVM VMs 
 

 
In the following, we first model the makespan of MapReduce Job followed by the monetary cost 

model. Finally, we formalize the optimization problem in section 4.3. 



4.2 Makespan of MapReduce Job 
 
As we discussed above, each type of VM has its corresponding capacity limit for processing the map 

and reduce tasks as shown in Eq. 1 and Eq. 2 respectively: 
 
VMmap = {SmallVMmap, MediumVMmap,  LargeVMmap}                            (1) 
 
VMreduce = {SmallVMreduce, MediumVMreduce,  LargeVMreduce}               (2) 
 
In general, MapReduce jobs are processed in four stages[30]. In the first stage, input data is transferred 

to the MapReduce cluster. In the second stage, Map tasks process the data. In the third stage, shuffling of 
intermediate data is done and in last stage Reduce tasks aggregate the result set emitted by different Map 
tasks. Based on these four stages, we can model the makespan of a MapReduce Job by splitting it into 
four steps: map data transfer, map task execution, reduce data transfer and reduces task execution. Figure 
3 denotes the composition of makespan by provisioning three VM resources (one Large VM, Medium 
VM and Small VM respectively) and running a MapReduce job with three map tasks and two reduce 
tasks. 
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Figure 3.  The compositions of makespan when executing a MapReduce Job 



4.2.1 Network delay of transferring input data to Map task 
Given a MapReduce Job Ji, we apply the Eq. 3 to calculate the network data transfer delay: 
 

 TT(Mi,VMj)  = C0 + C1* bw
j

imap

VM

JSize

iN
)(

,  bw
jVM  ∈  VMbandwidth                                                            (3) 

 
, where C0 and C1 are constants. 

 
4.2.2 Map task execution delay 
In order to calculate the execution time of map tasks, we model following equation: 

MIMT(Mi) =  MImap  ×  
i

imap

M
JSize )(

                                                         (4) 

 
As denoted in the table 1, MImap is the millions of instructions per MB data when processing each map 

task. Therefore, the execution time of a map task on a given VMj is : 

TET(Mi,VMj)  = mips
jVM

 )MIMT(Mi ,        
mips
jVM  ∈  VMmips                                           (5) 

4.2.3 Network delay of transferring input data to Reduce task   
As we have discussed above, the number of reduce tasks of Ji is always less than the number of map 

tasks. Moreover, the data size of the reduce tasks must also differ from that of map tasks. Thus, the 
network delay of transferring data to VMj where a reduce task will be processed is: 

TT(Ri,VMj)  =  C2* Ni + C3 * bw
j

ireduce

VM
JSize )( ,     

bw
jVM  ∈  VMbandwidth                             (6) 

, where C2 and C3 are constants. 
4.2.4 Reduce task execution delay 
Similar to map task, we calculate the execution time of a reduce tasks on a VM using the concept: 

MIRT (millions instructions of reduce task), which is defined as: 

MIRT(Mi) =  MIreduce  ×  
i

ireduce

R
JSize )(                                             (7) 

 
As denoted in the table 1, MIreduce is the millions of instructions per MB data when processing each 

reduce task. Therefore, the execution time of a reduce task on a given VMj is: 
 

TET(Ri,VMj)  = mips
jVM

 )MIRT(Ri ,  
mips
jVM  ∈  VMmips                                                      (8) 

 
A MapReduce Job may not be executed in a single VM, the makespan of Ji over a set of map and 

reduce tasks mapped to VMs hVM can be computed as shown in Equation 9. The hVM has two subsets 
hVM′ and hVM″, representing the VMs that executed map and reduce tasks respectively. 

 
Makespan(Ji,hVM) = Makespanmap(Mi,hVM′)  +  Makespanreduce(Ri,hVM″)  



 =   ′hVM  VM 
max        

j∈
( TT(Mi,VMj)   + TET(Mi,VMj)) 

 +   ″hVM  VM 
max        

h ∈
(TT(Ri,VMh)   + TET(Ri,VMh))                                                                  (9) 

 
, where =iM ∑

∈   ′hVM  jVM

map
jVM  and =iR ∑

∈   ″hVM  hVM

reduce
hVM .   map

jVM   is the maximum number of map tasks 

that VMj can host, and reduce
hVM     is the maximum number of reduce tasks that VMh can host. 

 

4.3 Monetary Cost 
 
In this paper, we have used the price schema of Amazon EC2 [31] to estimate the cost per hour of 

using a hosted VM. It is a reasonable and practical assumption, since today many users rent public cloud 
resources (e.g. Amazon EC2) instead of maintaining their own private resources to run their MapReduce 
application. 

 
We assume that the VMs are charged under pay-as-you-go model (e.g. per minute). For example, the 

price of hiring or leasing computation time of a SmallVM for 30 minutes at Y dollar per minute base rate 
will be 30×Y dollars.  Accordingly, in our model, the MediumVM and LargeVM cost 2Y dollars and 4Y 
dollars per minute respectively.  

 
In summary, the total cost of processing a MapReduce Job Ji on set of heterogeneous VMs will be: 
 
 
COST(Ji,hVM) =  
 
Makespanmap(Mi,hVM′)×   

[ ] [ ] [ ])arg42(
′hVM  

eVMLVMYMediumVMVMYSmallVMVMY jj
VM

j
j

∈×+∈×+∈×∑
∈

 + 

Makespanreduce(Ri,hVM″)×   
[ ] [ ] [ ])arg42(

″hVM  
eVMLVMYMediumVMVMYSmallVMVMY jj

VM
j

h

∈×+∈×+∈×∑
∈

                   (10) 

 
 

4.4 Optimization Problems 
 
It is evident from Equation 4 and 7 that by increasing the level of parallelism for map and reduce tasks 

(i.e. hiring more and more number of VMs), the overall makespan can be reduced. Furthermore, using 
more powerful VMs (Large vs. Small) has further potential to improve the makespan due to superior 
processor speed and network I/O capacity. However, adding more VMs and replacing small VM with 
larger VM will certainly lead to elevated monetary Cost. In other words, there exists a trade-off between 
makespan and monetary cost for a MapReduce application. 

 
In this paper, we consider the following optimization problem: How to minimize the monetary cost to 

process a given set of MapReduce Jobs J while meeting the deadline C.  
 



The problem is formalized as: 
 
 

argmin ∑
∈JJi

hVM),COST(Ji  

Subject to: C
JJi

≤∑
∈

 hVM),Makespan(Ji                                        (11) 

 
 
4.5 Proposed Mapreduce Application Schuduling Algorithm (MASA)  

 
The provisioning and scheduling problem discussed above is a multidimensional knapsack problem 

that was shown to be NP-complete as they map to 0-1 Knapsack problems[32]. Thus a heuristic approach 
is necessary to solve the problem. In this section, we present the details of MapReduce application 
scheduling algorithm, called MASA with the goals of optimizing Equations (11) considering the budget 
and deadline SLA requirements 

 
In MapReduce frameworks such as Hadoop, in general data is distributed across several cluster nodes 

where map tasks are scheduled in round robin fashion in order to have balanced load across each cluster 
node. In other words, each node will be executing a more or less equal number of map tasks considering 
homogeneous configuration across nodes. Thus, without loss of generality we can assume there is one 
large size map task running on each node instead of several small map tasks. 

 
Algorithm 1 describes the important steps of MASA algorithm. In the first step, the lower bound and 

upper bound number of map tasks are calculated such that user specified deadline and budget constraint 
can be achieved. For the sake of simplicity, the lower bound of map tasks equals one. The upper bound of 

map tasks can be calculated by 
Blocksize

)(JSize imap . As denoted in Table Ⅰ, Sizemap(Ji) means the input data 

size of map tasks Ji. Blocksize represents the default data block size that a distributed file system can 
store. The second step is to decide the scope of reduce task number. Since the number of reduce task is 
smaller than the number of map task, we set the lower bound of reduce tasks as one and upper bound of 
reduce tasks as the number of map task. The main step followed is to compute allocation based on the 
pair of map tasks and reduce tasks for the coming request. Specifically, MASA iteratively computes (in a 
greedy fashion) all possible number of map tasks and reduce tasks according to the aforementioned lower 
bound and upper bound. Then, the number of same type VMs (SmallVM or Medium VM or LargeVM) is 
calculated (in Line 6). After that, MASA allocates each possible pair of map and reduce tasks into these 
VMs. For each potential allocation, makespan and cost is calculated according to the formulas discussed 
in above subsection. In each iteration, MASA discards the bad allocation that have either makespan 
exceeding deadline or cost going beyond budget. After the iteration (Line 4 to 19),  a set of valid 
allocations are collected and stored in AllocList.  Finally, we pick the allocation which has the minimal 
monetary cost from AllocList (see Line 21), and deploy the MapReduce jobs based the allocation. 

 
 
 
 
 
 



Algorithm 1: MASA  
Data Input: User Request = r1;  // details of MapReduce application and SLA requirements(deadline  
and budget)  
Result:        Allocation aij;              //allocation of map and reduce tasks to VMs 
1. Minmap  = Calculate Lower bound on number of mappers; 
2. Maxmap = Calculate Upper bound on number of mappers; 
3. Let AllocList be the list of possible allocations;  
4. for i ∈  (Minmap, Maxmap) do 
5.        for  j ∈ (1,i) do 

               //For allocation, calculate number for the same type of VM; 
6.               CalculateNumberofVM; 
7.               aij = Compute Allocation(i,j, r1); 
8.              // calculate makespan and cost of the above allocation 
9.               calculate makespan(r1,aij); 
10.               calculate cost(r1, aij);             // compare the makespan with deadline 
11.                if makespan > deadline || cost > budget  then 
12.                     delete this allocation; 
13.                 else  
14.                         if makespan < deadline & cost < budget  then 
15.                                   insert it into AllocList 
16.                          end; 
17.                   end; 
18.           end; 
19.    end; 
20.            // choose the minimum cost allocation from AllocList 
21.              ChooseMimimum_Allocation(AllocList); 
22.              Deploy r1 based on chosen allocation; 

 
5 EVALUATION 

 
In this section, we evaluate the performance of our proposed MASA algorithm. In order to better 

demonstrate the performance of MASA, we use two algorithms as benchmark. The first one is existing 
MapReduce scheduling approach (NonSLA or SLA agnostic). We refer to the existing approach as 
NonSLA Algorithm. The second one is exhaustive search algorithm which gives a solution close to 
optimal. We comprehensively compare MASA against NonSLA algorithm and exhaustive search 
algorithm. The following sections give the details for NonSLA algorithm and exhaustive search 
algorithm respectively. 

6.1 Benchmarking Algorithms 

6.1.1 NonSLA Algorithm: existing scheduling approach 
This algorithm describes existing MapReduce scheduling approach (NonSLA or SLA agnostic). In 

this algorithm, rather than specifying budget and deadline, each user will randomly specify which types 
of VM(Small VM, Medium VM  or Large VM s/he intends to initiate to run his/her MapReduce tasks. 
The broker will calculate the maximum number of VMs required so that MapReduce job finished by end 
of the deadline. The broker then schedules the job after initiating these VMs. As a consequence, NonSLA 



algorithm may meet the deadline but the cost goes very high, or the cost may fall in the scope of the 
budget, but the deadline can’t be met. Obviously, NonSLA algorithm doesn’t target the trade-off between 
budget and deadline and is not able to find the optimized solution from both budget and deadline 
perspectives. 

 
Algorithm 2: NonSLA Algorithm                                                             
Data Input: User Request = r1;  // details of MapReduce application and deadline (d)  and 
budget(b)  and VM type to initiate 
Result:        Allocation aij;              //allocation of map and reduce tasks to VMs 

               //Number of VMs to be initiated 

1. NumofVMs = 
dVMType

b
t ×cos ; 

2. aij = Compute_Allocation(NumofVMs,r1); 
3. deploy request r1 based on aij; 

 
6.1.2 Exhaustive Search Algorithm 

Algorithm 3 depicts the procedures how exhaustive search algorithm works. Similarly, the lower 
bound and upper bound number of map tasks are calculated such that user specified deadline and budget 
constraint can be achieved. Following, in each iteration the exhaustive search algorithm selects all 
possible VM set that consists of the aforementioned different type of VMs {SmallVM, MediumVM, 
LargeVM}. In the main step of compute allocation, the algorithm computes the best possible VM set 
upon all possible pair of number of map tasks and reduces tasks that can minimize the cost, while 
meeting the deadline constraint. The algorithm chooses the optimized allocation by searching all possible 
allocations; this is why we call it exhaustive search. Thus, it will give a solution that is very close to the 
optimal solution. 

 
Algorithm 3:  Exhaustive Search Algorithm                                                            
Data Input: User Request = r1;  // details of MapReduce application and SLA 
requirements(deadline  and budget)  
Result:        Allocation aij;              //allocation of map and reduce tasks to VMs 
1. Minmap  = Calculate Lower bound on number of mappers; 
2. Maxmap = Calculate Upper bound on number of mappers; 
3. Let AllocList be the list of possible allocations;  
4. for i ∈  (Minmap, Maxmap) do 
5.        for  j ∈ (1,i) do 

             //For allocation, select possible VM set = {SmallVM, MediumVM, LargeVM} where 
its’ 

               //total capacity of processing the map tasks equals i 
6.               selectVMset(SmallVM, MediumVM, LargeVM); 
7.               aij = Compute Allocation(i,j, r1); 
8.              // calculate makespan and cost of the above allocation 
9.               calculate makespan(r1,aij); 
10.               calculate cost(r1, aij);             // compare the makespan with deadline 
11.                if makespan > deadline || cost > budget  then 
12.                     delete this allocation; 



13.                 else  
14.                         if makespan < deadline & cost < budget  then 
15.                                   insert it into AllocList 
16.                          end; 
17.                   end; 
18.           end; 
19.    end; 
20.            // choose the minimum cost allocation from AllocList 
21.              ChooseMimimum_Allocation(AllocList); 
22.              Deploy r1 based on chosen allocation; 

 
 
6.2 Experimental Setup 
To model a real Public Cloud environment and MapReduce application scheduling scenario, we 

utilized IoTSIM[8]. Our simulation setup considers multiple MapReduce jobs with different deadlines 
being submitted to MR Cloud Brokers. 

6.2.1 User Requests Generation 
Typically, on the user’s side, a request for deploying and executing MapReduce application consist of 

details of application characteristic along with SLA constraints, such as deadline and budget. Next, we 
discuss how SLA constraints are modelled in our experiments. 

 
• Deadline is defined as the maximum time (upper bound) that user would like to wait until the 

MapReduce job finishes execution. The deadline is measured in minutes. Deadline is calculated 
based on the makespan. Let maxExTime represents the maximum makespan of a MapReduce 
application, Let minExTime represents the minimum makespan of a MapReduce application. Then, 

the estimated execution time (α)  =  
2
minExTime+maxExTime .    

Based on this, we derived three different classes of deadline as following: 
 

tight deadline = 0.5×α 
 medium deadline = α 

 relaxed deadline = 1.5×α 
 
• Budget represents the money that each user is willing to pay for the execution of its MapReduce 

tasks. The budget is calculated and modelled as follows. Let maxCost represents the maximum 
cost required to process all tasks in MapReduce job. Let minCost represents the minimum cost 
required to process all tasks in a MapReduce job, Then 
 

β= 
2

minCost +maxCost  

 
Based on this, we derived three different classes of budgets that can be specified by a user as 
following: 

low budget = 0.5 ×β 
   medium budget =β 

high budget = 1.5 ×β 



 
• Data Size is the size of data that will be processed by the MapReduce job. The unit of data size is 

MB. For experiments, three types of MapReduce jobs are considered based on data size: short, 
medium and long. The medium job has 5 times more data size than the short job, while the long 
job has 10 times the data size of the short job. The data size of each MapReduce job is modelled 
based on a uniform distribution.  

• Size of Map Task is defined by millions of instructions that need to be executed to process each 
MB (Megabyte) data when processing each map task during the map phase. The unit of this 
parameter is Millions Instructions (MI) per MB. It is modelled using a uniform distribution. It is 
worth to mention that each MapReduce application has different MI  for map task depending on its 
characteristics of the job execution during map phrase. Verma et al.[33] extracted a single job 
profile using an automated profiling tool which can uniquely capture and demonstrate critical 
performance characterizes of the job execution for different MapReduce applications. It can be 
deduced that MI for map task represents the nature of different MapReduce applications. 

• Size of Reduce Task, similarly is defined by millions of instructions that need to be executed to 
process each MB (Megabyte) data when processing each reduce task during the reduce phase. The 
unit of this parameter is Millions Instructions (MI) per MB. It is modelled as a uniform distribution. 
It is worth to mention that each MapReduce application has different MI for reduce task depending 
on its characteristics of the job execution during reduce phrase. 

 

6.2.2 VM Configuration Modelling 

    We need to include the hardware information, and the configuration information of VMs  
We consider three types of VMs: Small, Medium and Large. The VM configurations are listed in the 

Table Ⅱ. 

TABLE II.  VM CONFIGURATION 
 

VM Type Small Medium Large 
Number of CPUs in a VM 1 2 4 

MIPS for each core x 2x 4x 
Cost Per hour y 2y 4y 

 
6.2.3 Evaluation metrics 

As the aim of MR Cloud Broker is to reduce the cost without missing the deadline and budget, the 
following two metrics are quantified during evaluation: 

 
• Average Makespan: The average makespan shows how fast MapReduce jobs are executed. Let 

MKi represent the makespan of MapReduce Job Ji and is calculated using Equation 9. The N is 
the number of MapReduce jobs. Then, the average makespan is calculated by the following 
formulas: 

 

average makespan = 
∑
∈Ni

i

N
MK

 
 



• Average Cost: The average cost presents how much does it cost to process MapReduce jobs. 
Let TCi represent the cost of processing MapReduce job Ji and is calculated using Equation 10. 
Let N is the number of MapReduce jobs. Then, the average cost is calculated by the following 
formulas: 

average cost  =  ∑
∈Ni

i

N
TC  

 
6.2.4 Evaluation Scenarios 

To understand the behavior and performance of our proposed algorithms, we consider the following 
four types of scenarios. In each scenario, different experimental parameters discussed above will be 
varied. 

• Variation in the number of concurrent user requests 
• Variation in the VM MIPS configurations 
• Variation in the Deadlines 
• Variation in the Budgets 
• Variation in Request Sizes and deadlines 

 
6 ANALYSIS OF EXPERIMENTAL RESULTS 

In this section, we analyze the experimental results upon the above evaluation scenarios and draw 
comprehensive conclusions about the performance of our proposed MASA algorithm against NonSLA 
and exhaustive search algorithm. 

7.1 Variation in Number of Concurrent User requests 
In this  scenario, we change the number of MapReduce Jobs (5, 10, 20) submitted simultaneously 

while keeping other independent variables (VM Configuration, deadline and budget etc.) at medium level. 
Each batch of MapReduce jobs consists of 30% short jobs, 30% medium jobs and 40% long jobs. Figure 
4(a) and 4(b) clearly shows how our proposed exhaustive search algorithm and MASA outperform 
NonSLA based existing algorithm for executing MapReduce jobs on Public Clouds. MASA can achieve 
very similar performance to the Exhaustive search algorithm, and can achieve roughly 25% lower 
average makespan and 50% average costs. 
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6.1.1.1.1.2 Average Cost 
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Figure 4.  Variation in Number of Concurrent User requests 

7.2 Variation in VM MIPS Configuration 
In this scenario, we vary MIPS rating of VMs. We define three different types of MIPS Configurations 

(small, medium or high) as in the following: 
• Low MIPS means the MIPS of medium VM is 1.5 times than that of small VM, and the MIPS 

of large VM is 1.5 times than that of medium VM; 



• Medium MIPS means the MIPS of medium VM is 2 times  that of small VM, and the MIPS of 
large VM is 2 times than that of medium VM; 

• High MIPS means the MIPS of medium VM is 2.5 times that of small VM, and the MIPS of 
large VM is 2.5 times that of medium VM. 

 
Figure 5(a) and 5(b) shows how MASA performs in comparison to NonSLA algorithm and Exhaustive 

Search Algorithms. Overall MASA still incur very low cost to the user in comparison to NonSLA 
algorithm and very close to Exhaustive search algorithm. As difference between VMs’s MIPS 
configuration increases, exhaustive search algorithm and MASA tend to select more number of large 
VMs than smaller VMs due to which the average makespan decreases considerably. However, as cost of 
Large VMs is much higher as compared against small VMs, the decrease in the average cost is only 
appropriately 25% from Low MIPS to High MIPS configuration. 
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Figure 5.  Variation in VM MIPS Configuration 

 
 

7.3 Variation in Deadline 
In this scenario, we set the aforementioned different type of deadlines (tight, medium or relaxed) for 

the same batch of MapReduce job requests. Figure 6(a) and 6(b) show how the performance of 
exhaustive search algorithm, MASA and NonSLA algorithm are affected by the deadline. It can be 
clearly seen that NonSLA approach performance is more than 25% worse than the counterpart of 
exhaustive search algorithm and MASA in terms of average makespan as well as average cost. When 
deadline is relaxed, exhaustive search algorithm can achieve just 10% lower average makespan and 
average cost than MASA. As deadline becomes stricter, MASA approach performance is similar to 
exhaustive algorithm. The principal reason behind this behavior is that as deadlines get stricter, the set of 
possible VMs that can host map and reduce tasks is restricted and is often tilted towards superior VM 
configurations. 

 



 
 

(a) Average Makespan 
 

 
 

(b) Average Cost 

Figure 6.  Variation in Deadline 

7.4 Variation in Budget 
In this scenario, we set the aforementioned different type of budget (low, medium or high) for the 

same batch of MapReduce job requests. Figure 7(a) and 7(b) show how different types of budget affect 
the performance of exhaustive search algorithm, MASA and NonSLA algorithm. Still, NonSLA approach 
performance incurs higher average makespan and cost than the counterpart of exhaustive search 
algorithm and MASA. As budget become relaxed, the difference of average makespan between NonSLA 
and our proposed algorithm (MASA) becomes less. This is because that as budget get relaxed, more VMs 
that are often tilted towards superior VM configurations could be invested to achieve lower average 
makespan. It can be also observed, MASA still able to achieve an allocation very close to optimal. 
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Figure 7.  Variation in Budget 

7.5 Variation in Request Sizes and Deadlines 
In this scenario, we mix different types of deadline (tight, medium, relax) for different types of 

MapReduce jobs (short, medium, long) while keeping VM Configuration and cost model as the same. 
The deadline is varied as follows: 



• R4S, M4M, L4T means we set relax deadline for short jobs, medium deadline for medium jobs 
and tight deadline for long jobs; 

• M4S, T4M, R4L means we set medium deadline for short jobs, tight deadline for medium jobs 
and relax deadline for long jobs; 

• T4S, R4M, M4L means we set tight deadline for short jobs, relax deadline for medium jobs 
and medium deadline for long jobs. 

 
Figure 8(a) and 8(b) shows how MASA performs in comparison to NonSLA when different deadline 

distribution models are applied for different mixed concurrent requests. Overall, MASA still are better at 
cost optimization comparing to NonSLA algorithm. Even though overall makespan of job increases, both 
exhaustive search algorithm and MASA outperform NonSLA counterpart. With variation in deadlines, 
MASA gives very close allocation to exhaustive search and thus achieves a solution that cost within 10% 
of optimal average cost and average makespan.  

 
 

 
 

(a) Average Makespan 
 
 



 
 

(b) Average Cost 
 

Figure 8.  Variation in Request Sizes and Deadlines 

 

7.1 Discussion 

Experimetnal results hightlight the performance achived through MASA. While this paper does  
not consider the geo-distributed setting for opitmising the MapReduce applications.  

To this end, we first need to extend the models in IoTSim to correcty similuate the dynamic of the 
geo-distributed system. Further, a new algorithm which considers the influence of the available 
bandwidth is required. Moreover, the available bandwidth may change drastically due to the 
complex and unprediction of internet.    

In this paper, we do not consider that the interaction of  our appproach with Software Define 
Networking(SDN). The interaction can significanlty benefit of optimizing data transfer delays 
between distributed file-system, Mappers, and Reducers. We will also investigate new scheduling 
approaches which can undertake joint optimization of QoS parameters across VMs and SDN-
enabled datacenter networking infrastructure. 

 
CONCLUSIONS  

 
As Big Data is gaining importance, more and more applications have been redesigned to use Big Data 

frameworks such as Apache Hadoop that supports MapReduce programming model. These applications 
are generally hosted on Public Clouds that provide virtually infinite on-demand storage and computing 
resources. This paper identified an important gap in the literature concerning scheduling of MapReduce 
jobs on Public Clouds considering while meeting SLA requirements of a user in terms of budget and 
deadline. 

 



To this end, we first modelled the scheduling problem and then proposed a novel MapReduce 
application scheduling algorithms (we call MASA) which: (i) computes in a greedy manner the best 
combination of VMs for scheduling Map and Reduce tasks and (ii) considers run-time uncertainties (e.g., 
availability, throughput, and utilization) during resource allocation process. Our proposed algorithm 
MASA minimize data analysis cost while avoiding SLA violations. 

 
The extensive IoTSim-based evaluation clearly shows that our proposed algorithm MASA can help 

users reduce cost of executing MapReduce applications on public Clouds by about 25% to 50%. The cost 
saving efficiency of the proposed SLA-aware scheduling approach depends on the complexity (e.g., 
number of Mappers, number of Reducers, input data size, output data size) of MapReduce application. 
Moreover, when we compared solution to optimal one, it achieves allocations which are very close to 
exhaustive search algorithm in most of the scenarios.  
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