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Abstract. In this paper, a conjecture of Mazur, Rubin and Stein concerning certain averages
of modular symbols is proved. To cover levels that are important for elliptic curves, namely
those that are not square-free, we establish results about L-functions with additive twists that
are of independent interest.
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1. Introduction

Motivated by a question regarding ranks of elliptic curves defined over cyclic extensions of
Q, B. Mazur and K. Rubin [10] studied the statistical behaviour of modular symbols associated
to a weight 2 cusp form corresponding to an elliptic curve. Based on both theoretical and
computational arguments (the latter jointly with W. Stein) they formulated a number of
precise conjectures. We state one of them in its formulation given in [12].

For a positive q, let Γ0(q) denote the group of matrices ( a bc d ) of determinant 1 with a, b, c, d ∈
Z and q | c. Let

(1.1) f(z) =
∞∑
n=1

a(n)e2πinz =
∞∑
n=1

A(n)n1/2e2πinz

be a newform of weight 2 for Γ0(q).
For each r ∈ Q, we set

〈r〉+ = 2π

∫ r

i∞
<(if(z)dz) and 〈r〉− = 2πi

∫ r

i∞
<(f(z)dz).

1
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For each x ∈ [0, 1] and M ∈ N, set

G±M(x) =
1

M

∑
0≤a≤Mx

〈 a
M

〉±
.

Mazur, Rubin and Stein, in [10] stated the following conjecture:

Conjecture 1.1. For each x ∈ [0, 1], we have

lim
M→∞

G+
M(x) =

1

2π

∑
n≥1

a(n) sin(2πnx)

n2
;(1.2)

lim
M→∞

G−M(x) =
1

2πi

∑
n≥1

a(n)(cos(2πnx)− 1)

n2
.

The heuristic for this conjecture can be seen by the computation

G+
M(x) =

1

M

∑
0≤a≤Mx

〈 a
M

〉+
= 2π<

(
i

∫ 0

∞

1

M

∑
0≤a≤Mx

f
( a
M

+ iy
)
i dy

)
.

The inner sum is a Riemann sum for the horizontal integral
∫ x
0

. As a heuristic let us replace
the sum with the integral, even though the error is not controlled for small y. Upon doing
this, computing the integral using the Fourier expansion of f gives us the right hand side of
(1.2).

An average version of this conjecture in the case of square-free levels was proved in [12].
The same paper contains the proofs of other conjectures from the original set listed in [10] (see
[11] for a recent presentation of the conjectures in the form of an article). More recently, one
of the original conjectures of [10], namely the one dealing with the variance of the modular
symbols, was proved in [4]. The authors also established a form of Conjecture 1.1 in the
special case that x = 1 and M goes to infinity over a sequence of primes.

In this paper, we prove Conjecture 1.1 for an arbitrary level q, each x ∈ [0, 1] and as M
goes to infinity over any sequence of integers. Our main theorem is as follows.

Theorem 1.2. For each x ∈ [0, 1], as M goes to infinity, we have

G+
M(x) =

1

2π

∑
n≥1

a(n) sin(2πnx)

n2
+Oε

(
(Mq)εM− 1

4 q
1
4

∏
p|(q,M)
p2|q

p
1
2

)
;

G−M(x) =
1

2πi

∑
n≥1

a(n)(cos(2πnx)− 1)

n2
+Oε

(
(Mq)εM− 1

4 q
1
4

∏
p|(q,M)
p2|q

p
1
2

)
,

for any ε > 0.

Very recently, H.-S. Sun [13] announced a similar statement in the special case of q square-
free, with a slightly weaker exponent in q. The main reason for the difference in our results
is that we develop an approximate functional equation for the additive twists of L-functions
applicable to all levels and additive conductors and that we are then able to solve the difficult
problem of bounding the Fourier coefficients of the “dual” function (Proposition 3.6)

The starting point of our method was the use of Eisenstein series with modular symbols in
[12] combined with the computation of its Fourier coefficients in terms of shifted convolution
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series in [6]. In this paper we succeed in avoiding its use and this simplifies our argument. In
an earlier version of the paper, the shifted convolution series itself remained a key tool, but
we are now able to circumvent those too. (In this respect, our method parallels that of [13]).
However, the part we no longer require for the proof of our main theorem contains several
methods and results of independent interest and novelty, including double shifted convolution
series. It is one of the themes of work in progress.

As noted above, previous progress towards the Mazur, Rubin and Stein conjecture concerned
only the case of square-free level (or prime M). Extending to non-square-free levels proved
much less routine than we expected and it led to results of independent interest. For example,
in Proposition 3.8 we prove a general bound for antiderivatives of weight 2 newforms∫ a

d

∞
f(z) dz

that holds for all rational values a/d and levels q. The proof of this bound is based on another
result of independent importance, namely Proposition 3.6. As mentioned in [8, Section 14.9],
the Ramanujan-Petersson bound for Fourier coefficients of a Dirichlet twist of f holds even
when the twist is not a newform, but there is an implied constant which may depend on the
level badly. In Proposition 3.6 we make that dependence entirely explicit.

The twisted cusp form that is the subject of Proposition 3.6 appears as the “dual” func-
tion in a functional equation for additive twists of L-functions for general levels and weights
(Theorem 3.1). Theorem 3.1 is another result of independent interest and can be viewed as
a Voronoi type formula. This is a very well-studied formula in analytic number theory but,
whereas there are various instances of it proved for combinations of the twist and the level
of the newform satisfying certain conditions (e.g. [9]), Theorem 3.1 seems, to our knowledge,
to be the first general result that applies to all twists and levels in this explicit form. A
referee of this work has brought to our attention a Voronoi type formula [1] that appeared
after we announced our results and which is closely related to our Theorem 3.1. Specifically,
the formula of [1] relates additively twisted Fourier coefficients of a Hecke eigenform to a
dual sum of its Fourier coefficients at another cusp, related with the original additive twists.
In our Theorem 3.1, we relate the additively twisted L-function of a Hecke eigenform to a
linear combination of multiplicatively twisted L-functions. This approach, together with the
Atkin–Lehner–Li theory [2], leads to an explicit functional equation, where the “dual” func-
tions are expressed in terms of a linear combination of the original Hecke eigenvalues which
are multiplicatively twisted and also additively twisted. This explicit form turns out to be
precisely the formulation required, because we need bounds for the coefficients of the “dual”
cusp forms (see the proof of Proposition 3.6).

1.1. Outline of the proof of Theorem 1.2. The technical aspects of the proof of Theo-
rem 1.2 are quite complex, and for that reason we supply here a high level roadmap that we
hope will make our proof a bit easier to understand.

The first step in the proof is to express G±M(x) as a sum of modular symbols weighted by
a family of smooth functions hδ that approximates the characteristic function of [0, x]. This
is done in Section 2, where an explicit family {hδ} is constructed. In Lemma 2.1 it is shown
that for any fixed δ = δM < 1 we have

G±M(x) =
1

M

∑
0≤a≤M

〈 a
M

〉±
hδ

( a
M

)
+ error, uniform in q and M.
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In view of this expression, in the following sections we focus on sums of the form

1

M

∑
0≤a≤M

〈 a
M

〉±
h
( a
M

)
for an arbitrary smooth period function h on R. We have

(1.3)
1

M

∑
0≤a≤M

〈 a
M

〉±
h
( a
M

)
= an explicit series involving L(1, f, a/M)

(see (2.15) and (2.14)). Here L(1, f, a/M) is the central value of the additive twist of L-
function.

To study the asymptotics of L(1, f, a/M), which is required for the completion of the proof
of Theorem 1.2, we need a functional equation for L(s, f, a/M) applying to all levels q and
integers M . The functional equation and the explicit Ramanujan-type bound for the Fourier
coefficients of the twisted cusp forms in the case we need them is the content of Corollary 3.7.

Two important implications of the functional equation (also of independent interest) are
the bound (3.27) for modular symbols and the approximate functional equation (3.35), both
of which apply to arbitrary levels.

In Section 4 we substitute L(1, f, a/M) in the right hand side of (1.3), using the approximate
functional equation (3.35), and this leads us to an expression (4.3) consisting of two parts.

The first part is shown (in Lemma 4.2) to contribute the main term. The second part is
complicated, but can be bounded using Weil’s bound for Kloosterman sums and the explicit
Ramanujan-type bound for the Fourier coefficients of twisted cusp forms proved in Corol-
lary 3.7. Combining these two pieces together, we deduce

(1.4)
1

M

∑
0≤a≤M

〈 a
M

〉±
hδ(

a

M
) =

1

2

{∑
n≥1

(
ĥδ(−n)± ĥδ(n)

) a(n)

n

}
+ explicit error term depending on q and M ,

where ĥδ(n) stands for the n-th Fourier coefficient of the periodic function hδ.

As the functions hδ approach the characteristic function of [0, x] as δ → 0, ĥδ(n) approaches
(1− e−2πinx)/(2πin). Applying this to (1.4) and using the explicit form of the error term, we
prove Theorem 1.2. The details of this final computation are shown in Section 5.
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acknowledges. The third author thanks RIKEN iTHEMS for their hospitality where part
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2. An expression of G±M(x)

For a fixed x ∈ [0, 1], consider the characteristic function 1[0,x] of [0, x] extended to R
periodically with period 1. We will construct a family of complex valued smooth functions on
R/Z approximating 1[0,x].
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Let φ : R → R be a smooth, non-negative function, compactly supported in (−1/4, 1/4)

with
∫ 1/2

−1/2 φ(t)dt = 1 and φ(0) = 1. For each δ < 1 and t ∈ (−1/2, 1/2), set

(2.1) φδ(t) = δ−1φ(t/δ)

and extend this to R periodically, with period 1. The approximating functions are hδ defined
by

hδ(t) := 1[−δ,x+δ] ? φδ(t) =

∫ x+δ

−δ
φδ(t− v) dv =

∫ t+δ

t−x−δ
φδ(v) dv,

where ? denotes the convolution. This function is smooth, periodic and satisfies 0 ≤ hδ(t) ≤ 1.
Further,

(2.2) hδ(t) = 0 for (5δ/4 + x, 1− 5δ/4) and its translates.

Indeed, for 5δ/4 + x < t < −5δ/4 + 1, we have δ/4 < t − x − δ < t + δ < 1 − δ/4. Since
the support of φδ(v) is contained in (−δ/4, δ/4) and its translations, (2.1) implies that φδ(t)
vanishes in that range.

We further have

(2.3) hδ(t) = 1, for t ∈ [0, x]

and

(2.4) ĥδ(n) =

∫ 1/2

−1/2
hδ(x)e−2πinx dx = ̂1[−δ,x+δ](n) · φ̂δ(n),

for the corresponding nth Fourier coefficients. This implies that, for n 6= 0,

(2.5)

ĥδ(n) =
e2πinδ − e−2πin(x+δ)

2πin

∫ 1/2

−1/2
φδ(t)e

−2πint dt =
e2πinδ − e−2πin(x+δ)

2πin

∫ 1
2δ

−1
2δ

φ(t)e−2πinδt dt

=
e2πinδ − e−2πin(x+δ)

2πin

∫ 1
2

− 1
2

φ(t)e−2πinδt dt.

The last equality follows because φ is supported in (−1/4, 1/4). With the smoothness of hδ
we deduce that, for each K ≥ 0 and n 6= 0,

(2.6) |ĥδ(n)| �K (|n|+ 1)−1(δ(1 + |n|))−K .
This inequality combines a bound that is uniform in δ with a stronger one that, however, is
not uniform in δ. Let

(2.7)
1

2
A±h (M) =

1

M

∑
0≤a≤M

〈 a
M

〉±
h
( a
M

)
.

With these notations, we have the following

Lemma 2.1. For M > 1, consider any fixed δ = δM < 1. Then,

G±M(x) =
1

2
A±hδ(M) +O

(
δMM

1
2 q

1
4 (qM)ε

∏
p|M

ordp(M)<ordp(q)

p
1
4

)
.

Note that the product over primes p |M equals 1 if q is square-free or (q,M) = 1.
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Proof. If a ≤Mx, then a
M
≤ x and thus hδ(t) = 1 by (2.3). These terms give us G±M(x).

The error term is obtained by studying the case xM < a ≤ xM + 5
4
MδM . Then x <

a
M
≤ x + 5

4
δM . By definition,

〈
a
M

〉±
is a linear combination of

∫ a/M
∞ f(z) dz and its complex

conjugate (see (2.11)). In (3.27), we prove a bound for this modular symbol that implies〈 a
M

〉±
hδ

( a
M

)
�M

1
2 q

1
4 (Mq)ε

∏
p|M

ordp(M)<ordp(q)

p
1
4 ,

and thus

(2.8)
1

M

∑
Mx<a≤Mx+ 5

4
MδM

〈 a
M

〉±
hδ

( a
M

)
� 1

M
M

1
2 q

1
4 (qM)εMδM

∏
p|M

ordp(M)<ordp(q)

p
1
4

= M
1
2 q

1
4 (qM)εδM

∏
p|M

ordp(M)<ordp(q)

p
1
4 .

Similarly,

1

M

∑
M− 5

4
MδM<a≤M

〈 a
M

〉±
hδ

( a
M

)
�M

1
2 q

1
4 (qM)εδM

∏
p|M

ordp(M)<ordp(q)

p
1
4 .

If xM + 5
4
MδM < a ≤ M − 5

4
MδM , then x + 5

4
δM < a

M
≤ 1 − 5

4
δM and thus, by (2.2),

hδ(a/M) vanishes. Therefore

1

M

∑
0≤a≤M

〈 a
M

〉±
hδ

( a
M

)

=
1

M

 ∑
0≤a≤Mx

+
∑

xM<a≤Mx+ 5
4
MδM

+
∑

Mx+ 5
4
MδM<a≤M− 5

4
MδM

+
∑

M− 5
4
MδM<a≤M

〈 a
M

〉±
hδ

( a
M

)
=

1

M

∑
0≤a≤Mx

〈 a
M

〉±
· 1 +O

(
δMM

1
2 q

1
4 (qM)ε

∏
p|M

ordp(M)<ordp(q)

p
1
4

)

as required. �

In view of this lemma, we will initially study this average for an arbitrary smooth periodic
h. For each smooth h : R/Z→ C and each positive integer M , we have

(2.9)
1

2
A±h (M) =

∑
n∈Z

ĥ(n)
1

M

∑
0≤a≤M

〈 a
M

〉±
e2πin

a
d =

∑
n∈Z

ĥ(n)
1

M

∑
d|M

∑
a mod d
(a,d)=1

〈a
d

〉±
e2πin

a
d .

We will express the right-hand side of (2.9) in terms of additive twists of the L-function of
f , whose definition we now recall. Let f be a cusp form of weight k for Γ0(q). For a positive
integer d and a ∈ Z, let

L(s, f, a/d) =
∞∑
n=1

a(n)e2πin
a
d

ns

be the additive twist of the L-function for f , and
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(2.10) Λ(s, f, a/d) =

∫ ∞
0

f
(a
d

+ iy
)
ys
dy

y
= (2π)−s Γ (s)L(s, f, a/d).

The series defining L(s, f, a/d) is sometimes called a Voronoi series. It converges absolutely
for <(s) > 1 + (k − 1)/2. For consistency with the formulation of the Mazur-Rubin-Tate
conjecture, we normalise the series so that the central point is at k/2.

Both L(s, f, a/d) and Λ(s, f, a/c) have analytic continuation to s ∈ C. Further properties
are studied in Section 3.

With the notations above, we have〈a
d

〉±
= −π

∫ 0

∞

(
f(
a

d
+ iy)± f(−a

d
+ iy)

)
dy(2.11)

= π
(

Λ(1, f,
a

d
)± Λ(1, f,−a

d
)
)

=
1

2

(
L(1, f,

a

d
)± L(1, f,−a

d
)

)
.

Here we used f(a
d

+ ix) = f(−a
d

+ ix). This implies

(2.12)
∑
amod d
(a,d)=1

〈a
d

〉±
e2πin

a
d = π

∑
amod d
(a,d)=1

(
Λ(1, f,

a

d
)± Λ(1, f,−a

d
)
)
e2πin

a
d .

Applying (2.12) to (2.9),

(2.13) A±h (M) =
∑
n∈Z

ĥ(n)
1

M

∑
d|M

∑
a mod d
(a,d)=1

(
L(1, f,

a

d
)± L(1, f,−a

d
)
)
e2πin

a
d .

Let

(2.14) αn,M(t) =
1

M

∑
a modM

e−2πin
a
ML(t, f,

a

M
) =

1

M

∑
d|M

∑
a mod d
(a,d)=1

e−2πin
a
dL(t, f,

a

d
).

Then we get

(2.15) A±h (M) =
∑
n∈Z

ĥ(n)
(
α−n,M(1)± αn,M(1)

)
.

We will study the properties of L(t, f, a/d), the additive twist of an L-function twists in the
next section. As mentioned in the introduction, we prove our results for general levels and
weights. We summarize the results for the special case of interest of weight 2 in Section 3.4.

3. Properties of the additive twist of an L-function

In this section we bound Fourier coefficients of certain twisted newforms that will appear
in an application of the approximate functional equation (Proposition 3.6). Our bounds are
uniform in terms of the level and they will be crucial for the proof of the main theorem. Those
twisted newforms arise in the context of a general functional equation for the additive twist
of an L-function. Our functional equation is of independent interest because all references we
are aware of give the functional equation only for special combinations of the level and the
denominator of the additive twist [9]. As mentioned in the introduction, a very recent paper
by Assing and Corbett [1] also contains the proof of a Voronoi type summation formula which
is based on a functional equation for L-series with additive twists. Their functional equation
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relates the additively twisted coefficients of the given L-function with Fourier coefficients
at another cusp, related with the additive twists. Our proof makes use of the fact that
additive twists can be represented as a linear combination of multiplicative twists by Dirichlet
characters, by the orthogonality of characters. The explicit form in our theorem is precisely
what we need to prove Proposition 3.6 and Corollary 3.7, which are crucial for our main result.

3.1. Notations. We closely follow [2]. Let k be an integer. For any function h : H→ C and
any matrix γ = ( a bc d ) ∈ GL+

2 (R), define

(h | γ)(z) = det(γ)
k
2 (cz + d)−kh

(
az + b

cz + d

)
.

For a positive integer q and a Dirichlet character ξmod q, let Mk(q, ξ) (resp. Sk(q, ξ)) be
the space of holomorphic modular forms (resp. cusp forms) of level q, weight k and central
character ξ. Then f ∈ Sk(q, ξ) has the following Fourier expansion

f(z) =
∞∑
n=1

a(n)e2πinz.

The Hecke operators Tn for (n, q) = 1, Ud and Bd for d | q are given by:

f | Tn = n
k
2
−1
∑
ac=n

c−1∑
b=0

ξ(a)f |
(
a b
0 c

)

f | Ud = d
k
2
−1

d−1∑
b=0

f |
(

1 b
0 d

)
f | Bd = d−

k
2 f |

(
d 0
0 1

)
.

For a primitive Dirichlet character χ mod r, we define

f | Rχ =
∑

u mod r

χ(u)f |
(
r u
0 r

)
.

LetNk(q, ξ) denote the set of Hecke-normalized (i.e. the first Fourier coefficient is 1) cuspidal
newforms of weight k and level q and central character ξ. If f ∈ Nk(q, ξ) then f ∈ Sk(q, ξ) is
an eigenform of all Hecke operators Tn for (n, q) = 1 and Ud for d | q ([2, p. 222]).

For a primitive Dirichlet character χmod r, we define the multiplicative twist of f ∈
Nk(q, ξ),

(3.1) fχ(z) :=
∞∑
n=1

a(n)χ(n)e2πinz =
1

τ(χ)
(f | Rχ)(z).

where τ(χ̄) =
∑

αmod r χ(α)e2πi
α
r is the Gauss sum for χ̄. From [2, Proposition 3.1], we can

deduce that fχ ∈ Sk([q, cond(ξ)r, r2], ξχ2). (Here [a, b] stands for the leact common multiple
of a, b.) We will further be using [5, Lemma 1.4], where tight bounds for the level of a twist
of a newform are shown.

It should be stressed that the twist fχ need not be a newform even if f is a newform and
χ is primitive. The main aim of this section is to address this problem in the case of interest,
by decomposing the relevant twist (acted upon by an involution) in terms of newforms.
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3.2. The Atkin–Lehner–Li-operator and additive twists. Assume thatR | q and (R, q/R) =
1. Then a Dirichlet character ξ modulo q can be written as a product of Dirichlet characters
ξR modulo R and ξq/R modulo q/R, i.e., ξ = ξRξq/R.

Put

(3.2) WR =

(
Rx1 x2
qx3 Rx4

)
,

where x1, x2, x3, x4 ∈ Z, x1 ≡ 1 mod q/R, x2 ≡ 1 modR and det(WR) = R(Rx1x4 − q
R
x2x3) =

R. We call the operator induced by WR, the Atkin–Lehner–Li-operator associated to R|q. By
[2, Proposition 1.1], for f ∈ Mk(q, ξ) (resp. Sk(q, ξ)), we have f | WR ∈ Mk(q, ξRξq/R) (resp.

Sk(q, ξRξq/R)) and

f | WR | WR = ξR(−1)ξq/R(R)f.

For f ∈ Sk(q, ξ), let

(3.3) f̃R = f | WR ∈ Sk(q, ξRξq/R).

The aim of this section is to prove the following theorem.

Theorem 3.1. For q,M1 ∈ N let

M =
∏
p|M1

ordp(M1)≥ordp(q)

pordp(M1)

r =
∏
p|M1

ordp(M1)<ordp(q)

pordp(M1)

R =
∏
p|(q,r)

pordp(q)
∏
p|q
p-M1

pordp(q).

For each n|r, we set

rn =
∏

p|r, p-n

p.

For any αmodM1, set α ≡ ar + uM modM1 for amodM and umod r. For a Hecke-
normalized newform f ∈ Nk(q, ξ), we have

(3.4) Λ
(
f, s,

α

Mr

)
=

ik

ϕ(r)

∑
n|r

r

nrn

∑
e|rn

∑
χmodn
primitive

χ(uē)τ(χ)µ
(rn
e

)
ϕ
(rn
e

)

× (ξR′χ
2)(−M)(M2R′)

k
2
−s ξq/R

(
r
ne
a
)
a
(
r
ne

)(
r
ne

)s Λ
(
f̃χR′ , k − s,−

R′a r
ne

M

)
.

Here R′ = [R, cond(ξR)r, r2], R′a r
ne

is the inverse of R′a r
ne

modulo M and f̃χR′ = fχ | WR′ .
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3.2.1. Proof of Theorem 3.1. We first note the following elementary facts we will be using in
the sequel. We have M1 = rM and r | q, with (r,M) = 1. Also R | q, r | R and (R, q/R) = 1.
Moreover, q

R
|M and r < R, except for when r = R = 1 in which case q |M .

We next have the following lemma.

Lemma 3.2. For q ∈ N, assume that R | q and (R, q/R) = 1. Take M ∈ N such that q
R
| M

and (R,M) = 1. For amodM with (a,M) = 1, set

(3.5) V M,a
q,R =

(
RRa 1−RaRa

M

−q M
q/R

Ra

)
be an integral matrix with det(V M,a

q,R ) = R. Here RaRa ≡ 1 modM .
When f ∈ Sk(q, ξ), we have

(3.6) f
( a
M

+ iy
)

= ξR(−M)ξq/R(a)ik(MR
1
2y)−kf̃R

(
− Ra

M
+ i

1

M2Ry

)
.

Proof. Applying [2, Proposition 1.1],

f̃R | V M,a
q,R = ξR(M)ξq/R(Ra)ξR(−1)ξq/R(R)f = ξR(−M)ξq/R(a)f.

Note that

V M,a
q,R

( a
M

+ iy
)

= −Ra
M

+ i
1

M2Ry
.

So we get

f
( a
M

+ iy
)

= ξR(−M)ξq/R(a)
(
f̃R | V M,a

q,R

) ( a
M

+ iy
)

= ξR(−M)ξq/R(a)R
k
2 (−iMRy)−kf̃R

(
− Ra

M
+ i

1

M2Ry

)
. �

For r ∈ N and a Dirichlet character χmod r, define the generalized Gauss sum

cχ(n) =
∑
umod r

χ(u)e2πin
u
r .

Then by orthogonality, for a ∈ Z with (a, r) = 1, we have

e2πin
a
r =

1

ϕ(r)

∑
χmod r

χ(a)cχ(n).

Lemma 3.3. Assume that q, M1, M, r, rn and R are as in the statement of Theorem 3.1.
For any α ∈ Z with (α,M1) = 1, let amodM and umod r be suh that (a,M) = 1, (u, r) = 1
such that α ≡ aq + uM modMr. Then,

(3.7)

f
( α

Mr
+ iy

)
=

1

ϕ(r)

∑
n|r

r

nrn

∑
e|rn

a
( r
ne

)
µ
(rn
e

)
ϕ
(rn
e

) ∑
χmodn
primitive

τ(χ̄)χ(uē)fχ
(a r

ne

M
+ i

r

ne
y
)
.

Proof. Since α
M1

= α
Mr

= a
M

+ u
r

mod 1, we get

(3.8) f
( α

Mr
+iy

)
=

∞∑
m=1

a(m)e2πim
u
r e2πim

a
M

+iy =
1

ϕ(r)

∑
χmod r

χ(u)
∞∑
m=1

a(m)cχ(m)e2πim( a
M

+iy).



ADDITIVE TWISTS AND A CONJECTURE BY MAZUR, RUBIN AND STEIN 11

For a Dirichlet character χmod r, assume that χ is induced from a primitive character
χ∗modn. Let r2 = r

nrn
. By [3, Lemma 4.11], we have cχ(m) = 0 if r2 - m and for any m ∈ N,

(3.9) cχ(mr2) = r2χ∗(rn)τ(χ∗)χ∗(m)µ((rn,m))ϕ((rn,m)).

Applying this to (3.8), we have

(3.10) f
( α

Mr
+ iy

)
=

1

ϕ(r)

∑
χmod r

χ(u)
∞∑
m=1

a(mr2)cχ(mr2)e
2πimr2( a

M
+iy)

=
1

ϕ(r)

∑
χmod r

χ(u)r2χ∗(rn)τ(χ∗)a(r2)
∞∑
m=1

a(m)χ∗(m)µ((rn,m))ϕ((rn,m))e2πim(r2( a
M

+iy)).

The last equality holds because f ∈ Nk(q, ξ), so f | Up = a(p)f for any prime p | q, so
a(mr2) = a(r2)a(m). Note that r2 | r and r | q so r2 | q. By definition, rn is square-free, so
we have

(3.11)
∞∑
m=1

a(m)χ∗(m)µ((rn,m))ϕ((rn,m))e2πimr2z =
∑
e|rn

µ(e)ϕ(e)
∞∑
m=1

a(em)χ∗(em)e2πiemr2z

=
∑
e|rn

µ(e)ϕ(e)a(e)χ∗(e)
∞∑
m=1

a(m)χ∗(m)e2πiemr2z =
∑
e|r0

µ(e)ϕ(e)a(e)χ∗(e)f
χ∗(er2z).

By applying (3.11) to (3.10) and taking z = a
M

+ iy, we get

f
( α

Mr
+ iy

)
=

1

ϕ(r)

∑
χmod r

χ(u)r2τ(χ∗)a(r2)
∑
e|rn

µ(e)ϕ(e)a(e)χ∗

(rn
e

)
fχ∗

(
er2

( a
M

+ iy
))

=
1

ϕ(r)

∑
n|r

r

nrn

∑
e|r0

a
( r
ne

)
µ
(rn
e

)
ϕ
(rn
e

) ∑
χmodn
primitive

τ(χ̄)χ(uē)fχ
(a r

ne

M
+ i

r

ne
y
)
.

�

Now we are ready to prove Theorem 3.1. Let n | r and let χ be a primitive Dirichlet
character modn. By [2, Proposition 3.1], fχ ∈ Sk(R′q/R, ξχ2) and thus by (3.6),

(3.12) fχ
( r
ne
a

M
+ i

r

ne
y
)

= ik(ξR′χ
2)(−M)ξq/R

( r
ne
a
) (
MR′

1
2
r

ne
y
)−k

f̃χR′
(
−
R′a r

ne

M
+ i

1

M2R′ r
ne
y

)
.

Recall that f̃χR′ = fχ | WR′ ∈ Sk(R′q/R, ξR′χ2ξq/R).
Applying Lemma 3.3, we get

Λ(s, f,
α

Mr
) =

∫ ∞
0

f
( α

Mr
+ iy

)
ys
dy

y

=
1

ϕ(r)

∑
n|r

r

nrn

∑
e|rn

∑
χmodn
primitive

χ(uē)τ(χ)µ
(rn
e

)
ϕ
(rn
e

)
a
( r
ne

)∫ ∞
0

fχ
( r
ne
a

M
+ i

r

ne
y
)
ys
dy

y
.
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By (3.12),∫ ∞
0

fχ
( r
ne
a

M
+ i

r

ne
y
)
ys
dy

y

= ik(ξR′χ
2)(−M)ξq/R

( r
ne
a
)∫ ∞

0

(
MR′

1
2
r

ne
y
)−k

f̃χR′
(
−
R′a r

ne

M
+ i

1

M2R′ r
ne
y

)
ys
dy

y

= ik(ξR′χ
2)(−M)(M2R′)

k
2
−s ξq/R

(
r
ne
a
)(

r
ne

) s

Λ(k − s, f̃χR′ ,−
R′a r

ne

M
).

This implies (3.4).

3.3. Decomposition of f̃χR′ and its Fourier coefficients. In this section, we restrict to
the case of trivial central character ξ, which is the case we need for the proof of our main
theorem. We do so to avoid further complicating the presentation. The results, appropriately
adjusted, hold for general central characters too.

The aims of this section are to decompose f̃χR′ in terms of newforms and to bound its
Fourier coefficients. The former aim will be achieved by Lemma 3.4 and Proposition 3.5,
whereas the latter is the subject of Proposition 3.6.

We first fix some notation we will be using throughout the section:

• q ∈ N;
• r | q and for any prime p | r, ordp(r) < ordp(q). (Thus, if q is square-free then r = 1);
• R | q such that r | R and (R, q/R) = 1;
• χ is a primitive Dirichlet character modulo r∗ | r. (When r∗ = 1 then χ = 1);
• R′ = [R, r2];
• R∗ is the r∗-primary factor of q, i.e., R∗ =

∏
p|r∗ p

ordp(q).

With these notations we have the following lemma.

Lemma 3.4. Let f be a Hecke-normalized newform f ∈ Nk(q). Then there exist q′ | [q, r2∗]
with q

R∗
| q′ and Fχ ∈ Nk (q′, χ2), such that

fχ(z) =
∑
`|r∗

µ(`)(Fχ | U` | B`)(z).

We set

(3.13) Fχ(z) =
∞∑
n=1

aχ(n)e2πinz,

and define a multiplicative function βFχ: for each prime p | r∗ satisfying Fχ | Up 6= 0

(3.14) βFχ(pj) =


1 if j = 0

−aχ(p) if j = 1

−pk−1χ2(p) if j = 2 and p - q′,
0 otherwise.

Let
r∗0 =

∏
p|r∗, p-q′
Fχ|Up 6=0

p2
∏

p|(r∗,q′)
Fχ|Up 6=0

p.
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Then

(3.15) fχ =
∑
`|r∗0

βFχ(`)Fχ | B` ∈ Sk([q, r2], χ2).

Proof. The proof of the first assertion is based on a repeated use of [2, Theorem 3.2]. For each
p | r∗, let χp be the primitive Dirichlet character of conductor pordp(r∗) so that χ =

∏
p|r∗ χp.

By [2, Theorem 3.2], there exists a newform Fχp ∈ Nk(q
′
p, χ

2
p), for some level q′p such that

(q/pordp(q)) | q′p
fχp = Fχp − Fχp | Up | Bp.

Further, by [5, Lemma 1.4], we know that q′p | [q, p2 ordp(r∗)]. If ` 6= p is a prime divisor of r∗,
then, recalling the notations introduced in Section 3.1,

fχpχ` = F χ`
χp −

1

τ(χ`)
Fχp | Up | Bp | Rχ` .

It is easy to see that Fχp |Up|Bp|Rχ` = χ`(p)Fχp|Up|Rχ` |Bp. Also, by [2, Proposition 3.3],

Fχp | Up | Rχ` = χ`(p)Fχp | Rχ` | Up = χ`(p)τ(χ`)F
χ`
χp | Up.

So we finally get
fχpχ` = F χ`

χp − F
χ`
χp | Up | Bp.

In the same way, we apply [2, Theorem 3.2] to Fχp to deduce that there exists a Fχpχ` ∈
Nk(q

′
p`, (χpχ`)

2), for some q′p`|[qp`, p2 ordp(r∗)p2 ord`(r∗)] with (q/pordp(q)`ord`(q)) | q′p` such that

F χ`
χp = Fχpχ` − Fχpχ` | U` | B`.

This implies
fχpχ` = Fχpχ` | (I2 − U` | B`)(I2 − Up | Bp).

where F | I2 = F . Continuing in the same way, we obtain

fχ = Fχ |
(∏
p|r∗

[
I2 − Up | Bp

])
=
∑
`|r∗

µ(`)(Fχ | U` | B`).

for some Fχ ∈ Nk (q′, χ2) and some q′ | [q, r2∗].
To prove (3.15) we first observe that

fχ = Fχ |
( ∏

p|r∗
Fχ|Up 6=0

[
I2 − Up | Bp

])
.

Now, if p | r∗ and p - q′, then, by the definition of Up and by Fχ|Tp = aχ(p)Fχ we have

Fχ | Up = aχ(p)Fχ − pk−1χ2(p)Fχ | Bp.

If, on the other hand, p | r∗ and p | q′, then χ(p) = 0 and Fχ | Up = aχ(p)Fχ. Thus

(3.16) fχ = Fχ |
( ∏
p|r∗, p-q′
Fχ|Up 6=0

[
I2 − aχ(p)Bp − pk−1χ2(p)Bp2

] ∏
p|(r∗,q′)
Fχ|Up 6=0

[
I2 − aχ(p)Bp

])
=
∑
`|r∗0

βFχ(`)Fχ | B`.

�
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We can use this lemma to prove the following proposition.

Proposition 3.5. With the notation fixed in the beginning of the section, let f be a Hecke–
normalized newform f ∈ Nk(q) and let Fχ be the newform in Nk (q′, χ2) (for some q′ | [q, r2∗])
as in Lemma 3.4. Let R′∗ be the (r∗, q

′)-primary factor of q′ and set Q∗ = R∗R′

R′∗Rr∗0
.

Then R′/R′∗r∗0, Q∗ ∈ Z and

(3.17) f̃χR′(z) = fχ | WR′(z) =
∑
`|r∗0

βFχ(`)`−
k
2

(
Q∗
r∗0
`

) k
2
F̃χ RR′∗

R∗

(
Q∗
r∗0
`
z
)
.

where F̃χ RR′∗
R∗

= Fχ | WRR′∗
R∗

. Further there exists λRR′∗
R∗

(Fχ) ∈ C of absolute value one such that

λRR′∗
R∗

(Fχ)F̃χ RR′∗
R∗
∈ Nk

(
R′∗q/R∗, χ

2
)
.

(The constant λRR′∗
R∗

(Fχ) is an Atkin–Lehner–Li pseudo eigenvalue.)

Proof. We first easily see using the definitions of the invariants involved that

(3.18) R′∗
q

R∗
= q′

We next prove that R′∗r∗0 | R′. Since R′∗ | R′, we only need to check that ordp(R
′
∗r∗0) ≤

ordp(R
′) for each prime p | r∗0. Take a prime p | r∗0. By definition this implies that Fχ | Up 6= 0,

which, by [2, Corollary 3.1], is equivalent to either

• p - R′∗, or
• p‖R′∗, or
• p2 | R′∗ and ordp(cond(χ2)) = ordp(R

′
∗).

Recall that p | r∗0 implies that p | r∗ so p | r. Since R′ = [R, r2], we have p2 | R′
Now we consider each case with the prime p | r∗0. When p - R′∗ then ordp(r∗0) = 2 so

ordp(R
′
∗r∗0) = 2 ≤ ordp(R

′). When ordp(R
′
∗) = 1 then ordp(r∗0) = 1, so ordp(R

′
∗r∗0) = 2 ≤

ordp(R
′). When ordp(R

′
∗) ≥ 2 and ordp(cond(χ2)) = ordp(R

′
∗), we first note that

ordp(R
′
∗) = ordp(cond(χ2)) ≤ ordp(r∗) ≤ ordp(r).

Moreover ordp(r∗0) = 1. So we get

ordp(R
′
∗r∗0) ≤ ordp(r) + ordp(r∗0) = ordp(r) + 1 ≤ 2 ordp(r) ≤ ordp(R

′).

Therefore, we conclude that R′∗r∗0 | R′.
We can use this to verify the integrality of Q∗. We have R

R∗
∈ Z and R

R∗
| R′. Moreover

(R/R∗, R
′
∗r∗0) = 1. So Q∗ = R∗R′

R′∗Rr∗0
= R′

R
R∗
R′∗r∗0

∈ Z.

Finally, we derive a formula for

fχ | WR′ =
∑
`|r∗0

βFχ(`)Fχ | B` | WR′ .

Since, as shown above, R′∗r∗0 | R′, we have ` | R′ for each ` | r∗0. Then, by [2, Proposition 1.5],

Fχ | B` | WR′ = `−
k
2Fχ | WR′

`
.

Note that the WR′-operator on the left-hand side is an operator for level R′ q
R

and the WR′
`

-

operator on the right-hand side is an operator for level R′

`
q
R

.
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Set

WR′
`

=

(
R′

`
x1 x2

q
R
R′

`
x3

R′

`
x4

)
,

where x1, x2, x3, x4 ∈ Z, det(WR′/`) = R′/`, x1 ≡ 1 mod q/R and x2 ≡ 1 modR′/`.
Since, by (3.18), Fχ ∈ Nk(R

′
∗q/R∗, χ

2), we lower the level of WR′
`

to R′∗
q
R∗

:

WR′
`

= WR′∗
R
R∗

(
Q∗

r∗0
`

1

)
where WR′∗

R
R∗

=

( R
R∗
R′∗x1 x2

R′∗
q
R∗
x3

R′

`
x4

)
.

Here WRR′∗
R∗

is an operator for level R′∗q/R∗ and we get

(Fχ | WR′
`

)(z) =

(
Fχ | WRR′∗

R∗
|
(
Q∗

r∗0
`

1

))
(z) =

(
Q∗
r∗0
`

) k
2
F̃χ RR′∗

R∗

(
Q∗
r∗0
`
z
)
.

This implies (3.17). Finally, by [2], there exists a constant λRR′∗
R∗

(Fχ) of absolute value one,

such that

λRR′∗
R∗

(Fχ)F̃χ RR′∗
R∗
∈ N(R′∗q/R∗, χ

2, k).

�

The above lemma and proposition allow us to prove good bounds the Fourier coefficients of

f̃χR′(z):

Proposition 3.6. With the notations in Proposition 3.5, set

(3.19) f̃χR′(z) =
∞∑
m=1

bχ,R′(m)e2πimz.

Then bχ,R′(m) = 0 when Q∗ - m, and otherwise, for m ∈ N,

(3.20)
∣∣∣(Q∗m)−

k−1
2 bχ,R′ (Q∗m)

∣∣∣�ε

(
m

r∗0

)ε
(Q∗r∗0)

1
2 σ−1+2ε(r∗0),

for any ε > 0.

In the above proposition σs(n) =
∑

d|n d
s is the sum of divisors function.

Proof. Applying Proposition 3.5, we normalize the Fourier expansion of F̃χ RR′∗
R∗

as

(3.21) F̃χ RR′∗
R∗

(z) = λRR′∗
R∗

(Fχ)
∞∑
n=1

ãχ,R′∗ RR∗
(n)e2πinz.

By [2, (1.1)], we get

(3.22) ãχ,R′∗ RR∗
(p) =

{
χ2(p)aχ(p) if p - R′∗ RR∗
aχ(p) if p | R′∗ RR∗ .

We then apply (3.21) to (3.17) to get

(3.23) f̃χR′(z) = λR′∗ RR∗
(Fχ)

∑
`|r∗0

βFχ(`)`−
k
2

(
Q∗
r∗0
`

) k
2

∞∑
n=1

ãχ,R′∗ RR∗
(n)e2πinQ∗

r∗0
`
z.
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Comparing both sides, bχ,R′(m) = 0 when Q∗ - m. For m ∈ N,

(3.24) bχ,R′ (Q∗m) = λR′∗ RR∗
(Fχ)

∑
`|r∗0
r∗0
`
|m

βFχ(`)`−
k
2

(
Q∗
r∗0
`

) k
2
ãχ,R′∗ RR∗

(
m

r∗0/`

)

= λR′∗ RR∗
(Fχ)

∑
`|(r∗0,m)

βFχ(r∗0/`)(r∗0/`)
− k

2 (Q∗`)
k
2 ãχ,R′∗ RR∗

(m
`

)
.

Recalling (3.14), we deduce that bχ,R′ (Q∗m) equals

λR′∗ RR∗
(Fχ)

∑
`|(r∗0,m)

[ ∏
p‖r∗0/`

(−p−
k
2 aχ(p))

∏
p2‖r∗0/`

(−p−1χ2(p))

]
(Q∗`)

k
2 ãχ,R′∗ RR∗

(m
`

)
.

For any m ∈ N, since Fχ and F̃χ RR′∗
R∗

(z) are newforms, we have

|aχ(m)| �ε m
k−1
2

+ε and
∣∣∣ãχ,R′∗ RR∗ (m)

∣∣∣�ε m
k−1
2

+ε,

for any ε > 0. Thus we finally get

∣∣∣(Q∗m)−
k−1
2 bχ,R′ (Q∗m)

∣∣∣�ε (Q∗m)−
k−1
2

∑
`|(r∗0,m)

[ ∏
p‖ r∗0

`

p−
k
2 p

k−1
2

+ε
∏

p2‖ r∗0
`

p−1
]
Q

k
2
∗ `

k
2

(m
`

) k−1
2

+ε

= Q
1
2
∗m

ε
∑

`|(r∗0,m)

[ ∏
p‖ r∗0

`

p−
1
2
+ε
∏

p2‖ r∗0
`

p−1
]
`

1
2
−ε

≤ mεr
1
2
−ε
∗0 Q

1
2
∗
∑
`|r∗0

[∏
p‖`

p−
1
2
+ε
∏
p2‖`

p−1
]
`−

1
2
+ε ≤

(
m

r∗0

)ε
(Q∗r∗0)

1
2

∑
`|r∗0

`−1+2ε

=

(
m

r∗0

)ε
(Q∗r∗0)

1
2σ−1+2ε(r∗0).

�

3.4. Additive twists in the special case applying to Theorem 1.2. We now further
specialize to the case of weight 2. This is the setting of our main theorem, where we consider
Hecke-normalized newforms of weight 2 and level q. By Theorem 3.1 and Proposition 3.6
we have Corollary 3.7. As applications of this corollary, we then obtain an upper bound for∣∣∫∞

0
f(a/d+ iy) dy

∣∣ (3.27) and the approximate functional equation (3.35) for L(1, f, a/d).
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Corollary 3.7. Let f be a Hecke-normalized newform of weight 2 for level q. Let a, d be
coprime integers and set

Md =
∏
p|d

ordp(d)≥ordp(q)

pordp(d),

rd =
∏
p|d

ordp(d)<ordp(q)

pordp(d),

Rd =
∏

p|(q,rd)

pordp(q)
∏

p|q, p-d

pordp(q),

R′d = [Rd, r
2
d].

Further, consider a1 modMd and a2 mod rd such that a ≡ a1rd+a2Md mod d. Then we have

(3.25) (M2
dR
′
d)
s−1Λ(s, f,

a

d
)

=
−1

ϕ(rd)

∑
n|rd,

rd
n

square-free

(n,rd/n)=1

∑
χmodn
primitive

τ(χ)χ

(
a2

(rd
n

))
χ2(Md)Λ(2− s, f̃χR′d ,−

R′da1
Md

).

Here R′da1 is the inverse of R′da1 modulo Md.
We also repeat the following notations for the reader’s convenience. For a primitive Dirichlet

character χ for cond(χ) = rd∗ | rd, define the invariants

Rd∗ =
∏
p|rd∗

pordp(q),

R′d∗ =
∏

p|(rd∗,q′)

pordp(q
′),

rd∗0 =
∏

p|rd∗, p-q′,
Fχ|Up 6=0

p2
∏

p|(rd∗,q′)
Fχ|Up 6=0

p,

Qd∗ =
Rd∗R

′
d

R′d∗Rdrd∗0
,

and bχ,R′d(m) as given in Proposition 3.5 and Proposition 3.6. Then bχ,R′d(m) = 0 when
Qd∗ - m and for n ∈ N, we get

(3.26)
∣∣∣(Qd∗n)−

1
2 bχ,R′d (Qd∗n)

∣∣∣�ε

(
n

rd∗0

)ε
(Qd∗rd∗0)

1
2σ−1+2ε(r∗0),

for any ε > 0.

Proof. This is just a specialization of Theorem 3.1 and Proposition 3.6 to the case k = 2 and
trivial central character ξ. The functional equation (3.4) simplifies in this case to (3.25).

Indeed, suppose that, for some n | rd and e |
∏

p|rd,r-n p, we have rd 6= ne. Then a(rd/ne) = 0.

This is because, if p | rd
ne
| rd, then r2 | q (by the definition of rd) and thus a(pm) = 0, for all
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m ∈ N, since f is a newform. Therefore, e = rd/n. Since
∏

p|rd,r-n p |
rd
n

and e |
∏

p|rd,r-n p, we

have e =
∏

p|rd,r-n p = rd
n

and hence, (n, rd/n) = 1 and rn
n

is square-free. �

As an application of this corollary we prove the following proposition which we need for the
proof of our main theorem, but which is also of independent interest.

Proposition 3.8. Let f be a Hecke-normalized newform of weight 2 for level q. Then, for
each ε > 0,

(3.27)

∣∣∣∣∣
∫ a

d

∞
f(z) dz

∣∣∣∣∣ =

∣∣∣∣∫ ∞
0

f
(a
d

+ iy
)
dy

∣∣∣∣�ε d
1
2 q

1
4 (qd)ε

∏
p|d

ordp(d)<ordp(q)

p
1
4 .

Note that the product over p equals 1 if q is square-free.

Proof. We first observe that

(3.28) M2
dR
′
d =

d2Rd

(Rd, r2d)
= [q, d2].

The second equality holds because

(q, d2) = (Rdq/Rd,M
2
d r

2
d) = (q/Rd,M

2
d ) (Rd, r

2
d) =

q

Rd

(Rd, r
2
d),

since q
Rd
|Md. Thus we have (Rd, r

2
d) = (q, d2)Rd

q
.

It follows from this that on the line <(t) = 1 + ε,

(3.29) (M2
dR
′
d)

t
2 Λ(t+

1

2
, f,

a

d
)�ε [q, d2]1/2+ε

because of the Stirling bound for the Gamma function.
Similarly, using Corollary 3.7 we will deduce the following bound for t with <(t) = −ε:

(3.30) (M2
dR
′
d)

t
2 Λ(t+

1

2
, f,

a

d
)�ε (dq)εdq

1
2

∏
p|d

ordp(d)<ordp(q)

p
1
2 .

This analysis is more involved, and we present most of the details. For <(t) = −ε, by (3.25)
and (3.19), we get

(3.31) (M2
dR
′
d)

t
2 Λ(t+

1

2
, f,

a

d
)

�ε (M2
dR
′
d)

1+ε
2

1

ϕ(rd)

∑
rd∗|rd,

rd
rd∗

square-free

(rd,rd/rd∗)=1

∑
χmod rd∗
primitive

√
rd∗

∞∑
m=1

∣∣∣m− 1
2 bχ,R′d(m)

∣∣∣
m1+ε

.

Note that bχ,R′d(m) = 0 unless Qd∗ - m. Applying the bound (3.26), for any 0 < ε′ < ε, we get

∞∑
m=1

∣∣∣m− 1
2 bχ,R′d(m)

∣∣∣
m1+ε

�ε Q
− 1

2
−ε

d∗ σ−1+2ε′(rd∗0)r
1
2
−ε′

d∗0

∞∑
n=1

nε
′

n1+ε

≤ σ−1+2ε′(rd∗0)r
1
2
−ε′

d∗0
ζ(1 + ε− ε′)�ε,ε′′ r

1
2
+ε′′

d∗0
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since Qd∗ ∈ N. Also we have

rd∗0 =
∏

p|r∗, p-q′
Fχ|Up 6=0

p2
∏

p|(r∗,q′)
Fχ|Up 6=0

p ≤
∏
p|rd∗

p2.

Applying this to (3.31), we get

(3.32) (M2
dR
′
d)

t
2 Λ(t+

1

2
, f,

a

d
)�ε,ε′′ (M2

dR
′
d)

1+ε
2

1

ϕ(rd)

∑
rd∗|rd

rd
rd∗

square-free

(rd∗,rd/rd∗)=1

√
rd∗
∏
p|rd∗

p1+2ε′′
∑

χmod rd∗
primitive

1

≤ (M2
dR
′
d)

1+ε
2

∑
rd∗|rd

rd
rd∗

square-free

(rd∗,rd/rd∗)=1

√
rd∗
∏
p|rd∗

p1+2ε′′ ,

since rd∗ | rd and
∑

χ mod rd∗
primitive

1 ≤ ϕ(rd∗) ≤ ϕ(rd). Upon setting rd
rd∗

= `, the right-hand side

becomes

(M2
dR
′
d)

1+ε
2

∑
`|rd

square-free
(rd/`,`)=1

√
rd/`

∏
p|rd/`

p1+2ε′′ = (M2
dR
′
d)

1+ε
2 r

1
2
d

∏
p|rd

p1+2ε′′
∑
`|rd

square-free
(rd/`,`)=1

`−
3
2
−2ε′′

�ε,ε′′ (M2
dR
′
d)

1+ε
2 r

1
2
d

∏
p|rd

p1+ε
′′′
.

Thus

(3.33) (M2
dR
′
d)

t
2 Λ(t+

1

2
, f,

a

d
)�ε [q, d2]

1
2 (dq)εr

1
2
d

∏
p|rd

p,

as M2
dR
′
d = [q, d2]. More explicitly,

[q, d2]
1
2 r

1
2
d

∏
p|rd

p = q
1
2d

∏
p|d,ordp(d)<ordp(q)

p
1
2
ordp(d)+1

(q, d2)
1
2

and by examining the exponent of each p in the right-hand side, we see that the right-hand
side is

≤ q
1
2d

∏
p|d

ordp(d)<
1
2
ordp(q)

p−
1
2
ordp(d)+1

∏
p|d

1
2
ordp(q)≤ordp(d)<ordp(q)

p−
1
2
(ordp(q)−ordp(d))+1.

When p | d and ordp(d) < ordp(q), both ordp(d) ≥ 1 and ordp(q)− ordp(d) ≥ 1. So we get

(3.34)

∏
p|d,ordp(d)<ordp(q)

p
1
2
ordp(d)+1

(q, d2)
1
2

≤
∏
p|d

ordp(d)<ordp(q)

p
1
2 .

Combining (3.34) with (3.33), we get (3.30) for <(t) = −ε.
Recall that at <(t) = 1 + ε,

Λ(t+
1

2
, f,

a

d
)�ε (qd)ε.



20 NIKOLAOS DIAMANTIS, JEFFREY HOFFSTEIN, EREN MEHMET KIRAL, AND MIN LEE

Similarly, by (3.30), for <(t) = −ε,

Λ(t+
1

2
, f,

a

d
)�ε (dq)εdq

1
2

∏
p|d

ordp(d)<ordp(q)

p
1
2 .

By the Phragmén-Lindelöf convexity principle and (2.10) we deduce the proposition.
�

Finally, the functional equation of Corollary 3.7 implies the approximate functional equation
(see e.g. [8, Theorem 5.3], even though the theorem is stated for an L-function with an Euler
product, it applies to the case of additive twists, since the proof does not use the Euler
product). This states

(3.35) L
(

1, f,
a

d

)
=
∑
n≥1

a(n)e2πin
a
d

n
V

(
MdR

′
d

1
2X

2πn

)

− 1

ϕ(rd)

∑
rd∗|rd

rd
rd∗

square-free

(rd∗,rd/rd∗)=1

∑
χ mod rd∗,
primitive

τ(χ)χ(a2(rd/rd∗))χ
2(Md)

×
∞∑
n=1

bχ,R′ (Qd∗n) e
−2πiQd∗n

R′
d
a1

Md

Qd∗n
V

(
MdR

′
d

1
2

2πQd∗nX

)
for all X > 0, with

(3.36) V (y) :=
1

2πi

∫
(2)

(2πy)uG(u)Γ(u)du.

Here G(u) is any even function which is entire and bounded in vertical strips, of arbitrary
polynomial decay as | Imu| → ∞ and such that G(0) = 1.

4. The asymptotics of A±h (M) as M →∞.

Recall the description for αn,M(t) given in (2.14)

αn,M(t) =
1

M

∑
d|M

∑
amod d
(a,d)=1

e−2πin
a
dL
(
f, t,

a

d

)
.

Our aim is to analyze the asymptotics of

A±h (M) =
∑
n∈Z

ĥ(n)(α−n,M(1)± αn,M(1)),

as M →∞.
We first prove the formula (4.12) for αn,M(1). To accomplish this, we first apply the

approximate functional equation given in (3.35). Then we estimate error terms by applying
Weil’s bound for Kloosterman sums and making use of our explicitly described terms.

For d |M , we recall the notations Md, rd and Rd given in Corollary 3.7:

d = Mdrd, (Md, rd) = 1, rd | Rd, Rd | q and (q/Rd, Rd) = 1.
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Moreover rd < Rd unless rd = Rd = 1. Also R′d = [Rd, r
2
d], M

2
dR
′
d = [q, d2]. For any divisor rd∗

of rd, we haveR′d∗ | [Rd∗, r
2
d∗] and rd∗0 as described in Corollary 3.7. Recall thatQd∗ =

Rd∗R
′
d

R′d∗Rdrd∗0
.

and it is proved in Lemma 3.4 that Qd∗ ∈ N. Finally, a1 modMd and a2 mod rd are such that
a ≡ a1rd + a2Md mod d.

We apply (3.35) to each L(t, f, a
d
), with X = Xd, and substitute into (2.14) with t = 1:

(4.1) αn,M(1) =
1

M

∑
d|M

∑
a mod d
(a,d)=1

e−2πin
a
d

∑
`≥1

a(`)e2πi`
a
d

`
V

(
MdR

′
d

1
2Xd

2π`

)

− 1

M

∑
d|M

∑
a mod d
(a,d)=1

e−2πin
a
d

1

ϕ(rd)

∑
rd∗|rd

rd
rd∗

square-free

(rd∗,rd/rd∗)=1

∑
χ mod rd∗,
primitive

τ(χ)χ(a2(rd/rd∗))χ
2(Md)

×
∞∑
`=1

bχ,R′ (Qd∗`) e
−2πiQd∗`

R′
d
a1

Md

Qd∗`
V

(
MdR

′
d

1
2

2πQd∗`Xd

)
.

Here R′da1R
′
da1 ≡ 1 modMd. Set Xd = X

MdR
′ 12
d

, with X independent of d. Since

∑
d|M

∑
amod d
(a,d)=1

e2πi
a
d
(−n+`) =

{
M, if n ≡ `modM

0, otherwise

and

(4.2)
∑

a mod d
(a,d)=1

e−2πin
a
dχ(a2(rd/rd∗))e

−2πiQd∗`
R′
d
a1

Md

=
∑

a1 modMd
(a1,Md)=1

e
−2πin a1

Md e
−2πiQd∗`

R′
d
a1

Md

∑
a2 mod rd
(a2,rd)=1

χ(a2(rd/rd∗))e
−2πina2

rd

= S
(
n, `Qd∗R′d;Md

)
χ(−rd/rd∗)cχ̃rd (n),

we get

(4.3) αn,M(1) =
∑
`≥1

`≡nmodM

a(`)

`
V

(
X

2π`

)

− 1

M

∑
d|M

1

ϕ(rd)

∑
rd∗|rd

rd
rd∗

square-free

(rd∗,rd/rd∗)=1

∑
χ mod rd∗,
primitive

τ(χ)χ(−(rd/rd∗)M
2
d )cχ̃rd (n)

×
∞∑
`=1

bχ,R′ (Qd∗`)

Qd∗`
S(n, `Qd∗R′d;Md)V

(
M2

dR
′
d

2πQd∗`X

)
.
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Here χ̃rd is a Dirichlet character modulo rd, which is induced from the primitive character
χmod rd∗.

For the last sum of (4.3) we use Weil’s bound for Kloosterman sums, which implies, as
(R′d,Md) = 1 and (Qd∗,Md) = 1,

(4.4)
∣∣S(n, `Qd∗R′d;Md)

∣∣ ≤ (n, `,Md)
1
2M

1
2
d σ0(Md)

By applying (4.4) and (3.20), we get

(4.5)

∣∣∣∣∣
∞∑
`=1

bχ,R′ (Qd∗`)

Qd∗`
S(n, `Qd∗R′d;Md)V

(
M2

dR
′
d

2πQd∗`X

)∣∣∣∣∣
�ε M

1
2
d σ0(Md)r

1
2
−ε

d∗0 σ−1+2ε(rd∗0)
∞∑
`=1

(n, `,Md)
1
2

`
1
2
−ε

V

(
M2

dR
′
d

2πQd∗`X

)
for any ε > 0. Since (n, `,Md) | (n,Md), we get

≤M
1
2
d σ0(Md)r

1
2
−ε

d∗0 σ−1+2ε(rd∗0)
∑

g|(n,Md)

gε
∞∑
`=1

1

`
1
2
−ε
V

(
M2

dR
′
d

2πQd∗`gX

)
.

If y < M−ε′ , one easily checks, by moving the line of integration in (3.36) to the right, that
V (y)�M−Kε′ , for arbitrarily large Kε. Consequently,

(4.6)
∑

g|(n,Md)

gε
∞∑
`=1

1

`
1
2
−ε
V

(
M2

dR
′
d

2πQd∗`gX

)
�

∑
g|(n,Md)

gε
∑

`�Mε′ M2
d
R′
d

2πQd∗gX

1

`
1
2
−ε

�
∑

g|(n,Md)

gεM ε′
(

M2
dR
′
d

2πQd∗gX

) 1
2
+ε

≤
∑

g|(n,Md)

gεM ε′
(
M2

dR
′
d

2πgX

) 1
2
+ε

since Qd∗ ≥ 1 (See Proposition 3.6). Applying this to (4.5), we get

(4.7)

∣∣∣∣∣
∞∑
`=1

bχ,R′ (Qd∗`)

Qd∗`
S(n, `Qd∗R′d;Md)V

(
M2

dR
′
d

2πQd∗`X

)∣∣∣∣∣
�ε M

1
2
d σ0(Md)r

1
2
−ε

d∗0 σ−1+2ε(rd∗0)
∑

g|(n,Md)

gεM ε′
(
M2

dR
′
d

2πgX

) 1
2
+ε

� X−
1
2
−εM ε′M

3
2
+2ε

d σ0(Md)R
′
d

1
2
+ε
∏
p|rd∗

p

By definition of R′d, we have

R′d = [Rd, r
2
d] = Rdrd

rd
(Rd, r2d)

= Rdrd
1

(Rd/rd, rd)
≤ Rdrd.
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The third equality holds since rd | Rd. Also recall that d = Mdrd. Therefore, referring to
(4.7), we have

(4.8)

∣∣∣∣∣
∞∑
`=1

bχ,R′ (Qd∗`)

Qd∗`
S(n, `Qd∗R′d;Md)V

(
M2

dR
′
d

2πQd∗`X

)∣∣∣∣∣
�ε X

− 1
2
−εM ε′d

3
2
+2εσ0(Md)r

−1−ε
d R

1
2
+ε

d

∏
p|rd∗

p.

Note (see (3.9)) that cχ̃rd (n) = 0 if rd
rd∗rd0

- n. Here rd0 =
∏

p|rd,p-rd∗ p = rd
rd∗

since rd/rd∗ is

square-free and (rd∗, rd/rd∗) = 1. So rd
rd∗rd0

= 1 and we get

cχ̃rd (n) = τ(χ)χ(n)µ ((rd/rd∗, n))ϕ ((rd/rd∗, n)) .

Thus

(4.9)
∣∣cχ̃rd (n)

∣∣ ≤ √rd∗ϕ((n, rd/rd∗)) ≤
rd√
rd∗

.

By applying (4.8) and (4.9) to the second summation in (4.3), we get

(4.10)
1

M

∑
d|M

1

ϕ(rd)

∑
rd∗|rd

rd
rd∗

square-free

(rd∗,rd/rd∗)=1

∑
χ mod rd∗
primitive

τ(χ)χ(−(rd/rd∗)M
2
d )cχ̃rd (n)

×
∞∑
`=1

bχ,R′ (Qd∗`)

Qd∗`
S(n, `Qd∗R′d;Md)V

(
M2

dR
′
d

2πQd∗`X

)

� X−
1
2
−εM ε′

M

∑
d|M

σ0(Md)d
3
2
+2εr−εd R

1
2
+ε

d

∑
`|rd,

square-free
(rd/`,`)=1

∏
p|rd/`

p

�ε
X−

1
2
−εM ε′

M

∑
d|M

σ0(Md)d
3
2
+2εr−εd R

1
2
+ε

d

∏
p|rd

p.

Since d |M , we see that the right-hand side is

≤ M
1
2
+2ε+ε′σ0(M)

X
1
2
+ε

∑
d|M

∏
p|q,
p-d

p(
1
2
+ε) ordp(q)

∏
p|rd

p1+( 1
2
+ε) ordp(q).

For each d |M ,

(4.11)
∏
p|q,
p-d

p(
1
2
+ε) ordp(q)

∏
p|rd

p1+( 1
2
+ε) ordp(q) = q

1
2
+ε
∏
p|(d,q)

p−( 1
2
+ε) ordp(q)

∏
p|rd

p1+( 1
2
+ε) ordp(q)

≤ q
1
2
+ε

∏
p|d

ordp(d)<ordp(q)

p ≤ q
1
2
+ε

∏
p|(q,M)
p2|q

p.
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The condition of the last product implies that the term is 1 when q is square-free or (q,M) =
1. We thus have

(4.12) αn,M(1) =
∑

`≡n modM

a(`)

`
V

(
X

2π`

)
+O

(
M

1
2
+2ε+ε′σ0(M)2X−

1
2
−εq

1
2
+ε

∏
p|(q,M)
p2|q

p

)
.

This allows us to prove the following lemma.

Lemma 4.1. Let M > 1. For each X > 0, we have
(4.13)∑

n∈Z

ĥ(n)α±n,M(1) =
∑
n∈Z

ĥ(n)
∑

m≡±nmodM

a(m)

m
V

(
X

2πm

)
+O

(
X−

1
2
−εM

1
2
+εq

1
2
+ε

∏
p|(q,M)
p2|q

p

)
,

for any ε > 0.

Proof. Replacing ` by m in (4.12), we get

(4.14)
∑
n∈Z

ĥ(n)α±n,M(1) =
∑
n∈Z

ĥ(n)
∑

m≡±nmodM

a(m)

m
V

(
X

2πm

)
+O

(
M

1
2
+2ε+ε′σ0(M)2X−

1
2
−εq

1
2
+ε

∏
p|(q,M)
p2|q

p

(∑
n∈Z

|ĥ(n)|
))

.

Now, for h = hδ with δ = δM > M−1+η, for some 0 < η < 1, (2.6) implies that∑
n∈Z

δ(|n|+1)>(|n|+1)1−ηM1−η

|ĥδ(n)| �K

∑
n∈Z

δ(|n|+1)>(|n|+1)1−ηM1−η

(1 + |n|)−1(δ(|n|+ 1))−K ,

for arbitrary K. Choosing K = K ′/(1− η), with K ′ � 1, we see that this portion of the sum
is �M−K′ , for arbitrary K ′.

Taking the remaining portion of the sum,∑
n∈Z

δ(|n|+1)≤(|n|+1)1−ηM1−η

|ĥδ(n)| �
∑
n∈Z

|n|�M2/η−2

|ĥδ(n)| �M ε′′ ,

as for n 6= 0, |ĥδ(n)| ≤ 1/|n|. Thus the error term of (4.14) is

Oε
(
X−

1
2
−εM

1
2
+εq

1
2
+ε

∏
p|(q,M)
p2|q

p

)
,

with a new ε > 0. �

The next proposition gives us an estimate for the first term of the right-hand side of (4.13).

Lemma 4.2. For h = hδ with δ = δM > M−1+η, for some fixed η > 0, we have,∑
n∈Z

ĥδ(n)
∑

m≡±nmodM

a(m)

m
V

(
X

2πm

)
=
∑
n≥1

ĥ(±n)
a(n)

n
+O

(
X−

1
2
+ε
)

+O
(
X

1
2
+εM−1+ε

)
.
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Proof. Referring to (4.13), we consider

∑
n∈Z

ĥ(n)
∑

m≡±nmodM

a(m)

m
V

(
X

2πm

)
=
∑
n≥1

ĥ(±n)
a(n)

n
V

(
X

2πn

)
+
∑
n∈Z

∑
m≡±nmodM

m 6=±n

a(m)

m
V

(
X

2πm

)
.

We first consider the diagonal terms with m = ±n in the sum. Upon moving the line of
integration of the integral

V (y) =
1

2πi

∫
(2)

(2πy)uG(u)Γ(u)du,

(see (3.36)) we get

∑
n≥1

ĥ(±n)
a(n)

n
V

(
X

2πn

)
=
∑
n≥1

ĥ(±n)
a(n)

n
+
∑
n≥1

ĥ(±n)
a(n)

n

1

2πi

∫
(− 1

2
+ε)

(
X

2πn

)u
G(u)

Γ(u+ 1)

(2π)u
du

u
.

Since the second sum is �
∑

n≥1 |ĥ(±n)|n−ε′X−1/2+ε, inequality (2.6) implies that the sum
converges and we have

(4.15)
∑
n≥1

ĥ(±n)
a(n)

n
+Oε

(
X−1/2+ε

)
.

Now we are left with the off-diagonal, namely the terms n 6= ±m. Note that the length of
the sum over m is Oε

(
X1+ε

)
by the rapid decay of V . We separate into two cases: |n| ≤M/2

and |n| > M/2.
For the latter, (2.6) implies

∑
n∈Z

|n|>M/2

ĥ(n)
∑

m≡±nmodM
m6=±n

a(m)

m
V

(
X

2πm

)
�

∑
n∈Z

|n|>M/2

(δM(1 + |n|))−K

1 + |n|
∑

m≡±nmodM
0<m�X1+ε,m 6=±n

1

m1/2−ε

� δ−KM
∑
n∈Z

|n|>M/2

(1 + |n|)−K−1
∑

0<m�X1+ε

1

m1/2−ε �K,ε δ
−K
M M−KX1/2+ε.

Since, δM > 1/M1−η, that is, δMM > Mη, by assuming X will be less than some fixed power
of Mq, we get O

(
(qM)−K

)
with K > 1 arbitrarily large.

For the former case we note that as m 6= ±n, the congruence relation modulo M forces
m > M/2. We then calculate using K = 0 in (2.6), and recalling that the contribution from
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m > X1+ε is smaller than (Mq)−K for arbitrary K � 1, we get

(4.16)
∑
n∈Z,
|n|≤M/2

ĥ(n)
∑

m≡±nmodM
m 6=±n

a(m)

m
V

(
X

2πm

)
�

∑
|n|≤M/2

1

|n|+ 1

∑
0<|`|�X1+ε/M

a(±n+M`)

(±n+M`)

�
∑
|n|≤M/2

1

|n|+ 1

∑
0<|`|�X1+ε/M
(±n+M`)>0

M−1/2+ε

(±n
M

+ `)1/2−ε
�ε X

1/2+εM−1+ε.

Combining (4.15) with (4.16) yields the proposition. �

We can combine Lemma 4.2 with Lemma 4.1 to get the asymptotics of
∑
ĥ(n)α±n,M(1).

To this end, we will compare the error terms produced in Lemmas 4.1 and 4.2 to determine
a value of X that gives the optimal bound. Setting the error terms from (4.13) and (4.16)
equal, we get

X−
1
2M

1
2 q

1
2

∏
p|(q,M)
p2|q

p = X
1
2M−1.

This gives us

X = M
3
2 q

1
2

∏
p|(q,M)
p2|q

p.

Thus the error from these two contributions is

Oε
(
X

1
2M−1(Mq)ε

)
= Oε

(
(Mq)εM− 1

4 q
1
4

∏
p|(q,M)
p2|q

p
1
2

)
.

The remaining error (from (4.15)) is dominated by these terms since X−1/2+ε � X−1/2+εM .
From this, together with Lemmas 4.1 and 4.2, we deduce the following

Proposition 4.3. Let M > 1. For h = hδ with δ = δM > M−1+η for some fixed 0 < η < 1,
we have, ∑

n∈Z

ĥδ(n)α±n,M(1) =
∑
n≥1

ĥδ(±n)
a(n)

n
+Oε

(
(Mq)εM− 1

4 q
1
4

∏
p|(q,M)
p2|q

p
1
2

)
.

Therefore we obtain

A±h (M) =
∑
n≥1

(ĥδ(−n)± ĥδ(n))
a(n)

n
+Oε

(
(Mq)εM− 1

4 q
1
4

∏
p|(q,M)
p2|q

p
1
2

)
.

In the next section we study the sum∑
n≥1

(ĥδ(−n)± ĥδ(n))
a(n)

n
,

choose δM for the final error term and conclude the proof of Theorem 1.2.
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5. Proof of Theorem 1.2

For fixed x we consider h = hδ. Combining (2.7) and Proposition 4.3 we deduce

(5.1)
1

2
A±h (M) =

1

M

∑
0≤a≤M

〈 a
M

〉±
hδ(

a

M
)

=
∑
n≥1

(ĥδ(−n)± ĥδ(n))
a(n)

n
+O

(
(Mq)εM− 1

4 q
1
4

∏
p|(q,M)
p2|q

p
1
2

)
.

Lemma 5.1. For h = hδ with δ = δM , we have∑
n≥1

ĥδ(n)
a(n)

n
=
∑
n≥1

1− e−2πinx

2πin

a(n)

n
+Oε

(
δ

1
2
−ε

M

)
.

Proof. We have

(5.2)

∣∣∣∣∣∑
n≥1

ĥδ(n)
a(n)

n
−
∑
n≥1

1− e−2πinx

2πin

a(n)

n

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
n>δ−1

M

ĥδ(n)
a(n)

n

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
n>δ−1

M

1− e−2πinx

2πin

a(n)

n

∣∣∣∣∣∣
+

δ−1
M∑
n=1

∣∣∣∣ĥδ(n)− 1− e−2πinx

2πin

∣∣∣∣ a(n)

n
.

Because of (2.6), we have∣∣∣∣∣∣
∑
n>δ−1

M

ĥδ(n)
a(n)

n

∣∣∣∣∣∣�
∑
n>δ−1

M

1

n
3
2
−ε
�ε δ

1
2
−ε

M .

Since 1−e−2πinx

2πin
is likewise � n−1, the same bound holds for the second sum in the right-hand

side of (5.2).
For the last sum of (5.2), we observe that, because of (2.5), we have

(5.3) ĥδ(n) =
1− e−2πinx

2πin
+

1

2πin

∫ 1
2

− 1
2

φ(t)
(
(e2πiδMn(1−t) − 1)− e−2πinx(e−2πinδM (1+t) − 1)

)
dt

=
1− e−2πinx

2πin
+

1

2πin
O (nδM)

because e2πiδMn(1−t) = 1 +O (nδM) (since nδM ≤ 1). Thus

δ−1
M∑
n=1

∣∣∣∣ĥδ(n)− 1− e−2πinx

2πin

∣∣∣∣ a(n)

n
�ε δM

dδ−1
M e∑
n=1

1

n
1
2
−ε
�ε δMδ

− 1
2
−ε

M = δ
1
2
−ε

M .

�

Similarly, we can prove that∑
n≥1

ĥδ(−n)
a(n)

n
=
∑
n≥1

1− e2πinx

−2πin

a(n)

n
+Oε(δ

1
2
−ε

M ).

Entering this and Lemma 5.1 into (5.1), we derive the main terms of Theorem 1.2.



To determine the error term we note that the error terms we have obtained from our analysis

are Oε
(
δ

1
2
−ε

M

)
from the above,

δMM
1
2 q

1
4 (qM)ε

∏
p|M

ordp(M)<ordp(q)

p
1
4 ≤ Oε

(
δMM

1
2 q

1
4 (qM)ε

∏
p|(q,M)
p2|q

p
1
4

)

from Lemma 2.1, and

Oε
(

(Mq)εM− 1
4 q

1
4

∏
p|(q,M)
p2|q

p
1
2

)

from Proposition 4.3.
Setting

δMM
1
2 q

1
4 (qM)ε

∏
p|(q,M)
p2|q

p
1
4 = (Mq)εM− 1

4 q
1
4

∏
p|(q,M)
p2|q

p
1
2

gives us

δ
1
2
M = (Mq)εM− 3

8

∏
p|(q,M),
p2|q

p
1
8

So certainly δ
1
2
M is smaller than other error terms in (5.1):

δ
1
2
M < M− 1

4 q
1
4

∏
p|(q,M)
p2|q

p
1
2 .

Thus the final error is

Oε
(

(Mq)εM− 1
4 q

1
4

∏
p|(q,M)
p2|q

p
1
2

)
.

This completes the proof of Theorem 1.2.
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[7] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Tables of integral transforms. Vol. I.
McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954. Based, in part, on notes left by
Harry Bateman.

[8] Henryk Iwaniec and Emmanuel Kowalski. Analytic number theory, volume 53 of American Mathematical
Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.



ADDITIVE TWISTS AND A CONJECTURE BY MAZUR, RUBIN AND STEIN 29

[9] E. Kowalski, P. Michel, and J. VanderKam. Rankin-Selberg L-functions in the level aspect. Duke Math.
J., 114(1):123–191, 2002.

[10] B. Mazur and K. Rubin. The statistical behavior of modular symbols and arithmetic conjectures. Pre-
sentation at Toronto, Nov., 2016.

[11] B. Mazur and K. Rubin. Arithmetic conjectures suggested by the statistical behavior of modular symbols.
arXiv:1910.12798v2, 2019.

[12] Yiannis N. Petridis and Morten S. Risager. Arithmetic statistics of modular symbols. Invent. Math.,
212(3):997–1053, 2018.

[13] H.-S. Sun. A proof for conjecture of Mazur-Rubin-Stein. preprint, pages 1–6, 2019.

E-mail address: nikolaos.diamantis@nottingham.ac.uk

School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, United
Kingdom

E-mail address: jhoff@math.brown.edu

Mathematics Department, Brown University, Providence, RI 02912, USA

E-mail address: erenmehmetkiral@protonmail.com

Department of Mathematics, Keio University, Building 14, 443, 3-14-1 Kouhoku-ku, Hiyoshi,
Yokohama, 223-8522 Japan

E-mail address: min.lee@bristol.ac.uk

School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, United
Kingdom


	1. Introduction
	1.1. Outline of the proof of Theorem 1.2

	2. An expression of GM(x)
	3. Properties of the additive twist of an L-function
	3.1. Notations
	3.2. The Atkin–Lehner–Li-operator and additive twists
	3.3. Decomposition of f"0365fR' and its Fourier coefficients
	3.4. Additive twists in the special case applying to Theorem 1.2

	4. The asymptotics of Ah(M) as M .
	5. Proof of Theorem 1.2
	References

