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Abstract—Estimation of radionuclide release is an important
problem due to its impact on population and environment.
Especially, radioactivity release, plume height, and wind velocity
need to be estimated reliably to plan emergency response in case
of any unforeseen situation. In this paper, a non-linear estimation
technique based on Unscented Kalman Filter has been proposed
to estimate radioactivity release, wind velocity, and height of re-
lease using environmental data collected from radiation monitors
placed in the proximity of release point. The Gaussian plume
model has been considered to model atmospheric dispersion
phenomenon of radionuclide release and for the calculation of
dose rates. The performance of the proposed estimation technique
has been evaluated in terms of root mean squared error. The
estimation algorithm is found to be performing satisfactorily.

Index Terms—Atmospheric Dispersion, Dose Rate, Gaussian
Plume Model, Radionuclide Release, Unscented Kalman Filter

I. INTRODUCTION

Estimation of radioactivity due to release of a radionuclide
into the environment from a nuclear reactor under normal
operation or accidental conditions is a regulatory requirement.
Particularly, at the initial release stage, a good estimate of the
radionuclide spread in a range of tens of kms is of paramount
importance due to pressing requirements for citizen protection
and immediate evacuation arrangement. Release of radionu-
clide from a reactor creates radioactive plume near the nuclear
power plant (NPP). These radioactive plumes got dispersed
in the atmosphere and transported by the wind in various
directions. This could cause potentially serious radioactive
doses in the area covered by the plume and its surrounding.
Environmental radiation monitoring detectors placed around
an NPP usually track the amount of radioactive dose in the
atmosphere. However, sometimes it is uncertain to know the
exact amount of radioactive release. Timely prediction of
dispersion of radioactivity release is very much essential to
evaluate the adequacy of emergency response measures and
to know its environmental impact. Therefore, it is necessary
to estimate the release activity for atmospheric dispersion of
radioactive materials.
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The environmental monitors placed around an NPP employ
radionuclide release information to measure dose rates. Cal-
culation of dose rate is dependent on the plume shape and the
distribution of radionuclide concentration. In various reported
works, an assumption of uniform concentration distribution
of radionuclide has been utilized for simplicity as it leads
to a simple expression for dose calculation. Nevertheless, a
more appropriate choice is to assume a Gaussian concentration
distribution. The Gaussian plume model has been widely used
in the literature with different simplifications [1]. In this work,
the Gaussian plume dispersion model has been considered to
model radionuclide release in atmosphere and for calculation
of dose rates due its suitability for modelling radionuclide
release from point sources.

From the measured readings of environmental radiation
monitors, it is possible to estimate release rate, wind speed,
and effective height of release for a given scenario. Many
works have been reported in the literature where an esti-
mation technique is employed to evaluate different impor-
tant parameters related to radionuclide release activity. For
instance, linear Kalman filter based methods utilizing off-
line recorded radiation monitoring data have been applied for
on-line source term estimation for short-range atmospheric
dispersion of radionuclide release [2], [3]. Kalman filter based
data assimilation techniques combining model predictions and
measurements have been suggested in the design of nuclear
emergency response system [4], [5]. Data assimilation ap-
proaches established on ensemble Kalman filter are applied to
Monte Carlo atmospheric dispersion model [6], [7]. An atmo-
spheric dispersion module for radioactivity release evaluations
using a Kalman filter technique has been developed as a part
of diagnostic system for accident management in [8]. Different
modified ensemble Kalman filters for atmospheric dispersion
modelling have been recently proposed by Zhang et al. [9],
[10]. Particle filter based methods have been integrated with
atmospheric transport model to improve model predictions
[11], [12].

In this work, an Unscented Kalman Filter (UKF) technique
is suggested for the estimation of radioactivity release, plume
height, and wind velocity using the dose rates measured with
the help of underlying modelling relationship. The methodol-
ogy utilizes Gaussian plume model for atmospheric dispersion
and for dose rate calculation. The algorithm uses environ-
mental radiation monitoring data collected from six radiation
detectors close to the release point. Performance of the UKF
algorithm during estimation has been validated using root
mean squared error measure.
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The paper is organized as follows: Section II describes
mathematical models of atmospheric dispersion and dose rate
calculation. Section III briefly presents the principles of UKF
technique. Section IV presents the application of non-linear
estimation technique to the radioactivity release estimation.
Finally, conclusions are drawn in Section V.

II. MODELLING OF RADIOACTIVITY RELEASE ACTIVITY

The process of transport and dispersion of radioactive plume
with time needs to be modelled correctly to have a good
estimate of release rate and release height. The relationship
between distribution of radionuclide in air with time and the
dose rate is established thereafter.

A. Atmospheric Dispersion Model

Atmospheric dispersion models have a significant role in
the accident management of an NPP. The spatio-temporal
diffusion of a radionuclide is modelled using atmospheric
dispersion model, which formulates a dynamical model of
radionuclide contaminant transport in the atmosphere. In this
work, the adopted modeling technique for atmospheric dis-
persion phenomenon is built on the Gaussian plume model
[13]. The main reasons for its selection over other atmospheric
dispersion model is that the Gaussian plume model is suitable
for modelling radionuclide release from point sources. The
model is applicable for plain and homogeneous terrain con-
ditions for distances in the range of tens of kms. In addition,
it is suitable for short-term as well as long-term impacts.
The model requires few parameters and its straightforward
representation allows for quick calculation of the radionuclide
release activity. The Gaussian plume model assumes that
the concentrations of the dispersed radionuclide are normally
distributed along the plume centreline. It further assumes
homogeneous and stationary meteorological condition with
constant source term data [14]. Inputs to the Gaussian plume
model are meteorological parameters like wind direction, mean
wind speed, atmospheric stability class, and release parameters
such as release rate, release height, mean energy of the release
etc. The radionuclide activity concentration can be written as
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where x, y, and z denote downwind distance from the release
point, crosswind distance from centreline of plume, and height
above the ground respectively. q̇ denotes the release rate of
radionuclide, u is the average wind speed, h is the height of re-
lease. σy (x) and σz (x) denote plume dispersion parameters in
y and z direction respectively. These parameters are associated
with travel distance and atmospheric turbulence. The plume
dispersion parameters can be calculated from wind velocity
measurements fluctuations and can also be determined from
atmospheric stability classification based on Pasquill-Gifford.

B. Dose Rate Calculation Model

The calculation of dose rates from release of radioactivity
depends on the knowledge of the release such as amount and

composition and on the information of meteorological dis-
persion parameters. Generally, dose rate monitors are placed
around an NPP to supply real time data that is utilized to
compute important atmospheric dispersion parameters. The
absorbed dose rate in air at a receptor position by a Gaussian
plume is given by:
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where ζ (x, y, z) denotes activity concentration at point
(x, y, z) in the plume with plume origin at (0, 0, 0). Eγ denotes
photon energy. µ and µa denotes linear mass attenuation factor
and energy absorption factor for photons in air respectively.
For simplicity it is assumed that the photon yield to be equal
to one. r is the distance between plume point and receptor
point and is given by
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The linear dose build-up factor for Compton scattered radiation
is given by

B (µr) = 1 + kµr, k =
µ− µa
µa

(4)

III. NON-LINEAR ESTIMATION TECHNIQUE

A general non-linear discrete-time system can be written as

xk = f (xk−1, uk−1) + wk−1
yk = h (xk, uk) + vk

(5)

where f and h denote state prediction and observation function
respectively. u ∈ Rnu , x ∈ Rnx , and y ∈ Rny are input,
state, and output vector respectively. w ∈ Rnw and v ∈ Rnv

are process noise and measurement noise vectors respectively.
The process and measurement noise covariances are assumed
to be white, uncorrelated, and Gaussian with zero mean and
covariance Qk = E
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A Kalman filter based state estimation algorithm involves
two recursive steps, state prediction and state correction.
Initially, the current estimate of state vector is used along
with the dynamical model of the system for estimation of state
vector at next instant. Predicted estimates of the state vector
are then fused with the measurement data in the second step
such that the covariance of the error becomes minimum.

A. Unscented Transformation
The unscented Kalman filter is based on unscented trans-

formation which is a statistical alternative to the analytical
linearisation approach. The unscented transformation deter-
mines a set of sigma points from the assumed prior Gaussian
distribution using scaling parameters and weight vectors. The
scaling parameter can be computed as,

λ = α2 (L+ κ)− L (7)



and weight factors can be obtained as,

ηm0 = λ/(L+ λ)
ηc0 = λ/(L+ λ) +

(
1− α2 + β

)
ηmi = ηci = 1/[2 (L+ λ)], i = 1, 2, . . . , 2L

(8)

where α, β, and κ are primary, secondary, and tertiary scaling
parameters respectively. L defines the length of state vector.

B. Unscented Kalman Filter
The UKF algorithm is implemented after computing the

unscented transformation. The main steps involved in the UKF
algorithm are summarized as follows:

1) Calculate sigma points Sigma points are computed
using the prior state estimate (x̂k) and covariance (Pk)
at each discrete time step, as follows
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[
x̂k−1Γ x̂k−1Γ +
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where Γ is a 1× nx vector of ones.
2) Prediction Transformation Each generated sigma

points are fed to the non-linear state prediction function
and then the a priori state and covariance are estimated
using weighted averages of the transformed sigma-
points.
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3) Observation Transformation Transformed sigma-
points are then passed to the observation function and
are then utilized to compute predicted output, output
covariance matrix, and cross-covariance between state
and output.
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Calculate the cross covariance between state and output
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4) Measurement Update This step involves calculation
of Kalman gain and updating state estimate and error
covariance matrix.
Calculate the Kalman gain

Kk = P xyk (P yyk )
−1 (17)

Update state estimate

x̂k = x̂k|k−1 +Kk

(
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Update error covariance

Pk = Pk|k−1 −KkP
yy
k KT

k (19)

These estimates are then employed as the previous (k − 1)
estimates for the next time step of the UKF. The procedure is
repeated at each time step of the UKF for the desired number
of time steps.

IV. RESULT AND DISCUSSION

In this study, a non-linear estimation technique based on
Unscented Kalman Filter is proposed to evaluate the release
rate, wind speed, and release height in case of radionuclide
release. Six radiation detectors are placed at 60 degrees apart
at a distance of 1.5 km from the source. These detectors are
placed at the ground level and their placement is shown in
Figure 1. The coordinate axes are fixed, and the mean wind
direction is assumed to be constant at 30 degrees to X-axis.
The measurement data is generated using the model given in
Section II. The varying release rate and the wind speed data
were first generated. Using the wind speed and release rate
data, a set of dose rates for the 6 detectors (D1 to D6) were
generated with height of release taken as 100 m.

The state and measurement vector for the system are repre-
sented by a random walk model and they are given as follows,
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The algorithm is applied to estimate different states using
environmental radiation monitoring data collected close to the
release point. To validate the efficacy of the proposed approach
in tracking step variations, the wind speed has been changed
at 250 s from an initial value of 4 m/s to 6 m/s. Measured
and estimated dose rates at six different detector locations are
shown in Figures 2–7. The corresponding estimated and true



Fig. 1. Location of different dose rate detectors.

states, i.e. release rate, wind speed, and height of release are
shown in Figures 8, 9, and 10 respectively. The algorithm is
able to track the step change in wind speed. The filter shows
very small perturbation in the estimation of height around
the time of application of perturbation in wind speed. From
the simulation results, it is evident that the estimated states
from UKF are in good agreement with the true values. The
algorithm is able to track the step change in wind speed in
addition to other states and measurements.

With regards to the application of the UKF algorithm, the
process noise and measurement noise covariance matrices are
selected after analysing the filter performance at different
values of Q and R. A tuning measure based on computing the
variance of innovations have been adopted here. The values
of Q matrices have been varied for a fixed value of R and
the variance of innovation have been calculated. The range
of Q and R matrices are varied from Q = 1 × 10−6I3 to
Q = 1 × 10−1I3 and R = 1 × 10−5I6 to R = 1 × 101I6
respectively. For all the six detectors these values are plot-
ted in Figure 11. The values of Q and R are selected as
Q = 1 × 10−3I3 and R = 1 × 10−4I6, where I3 and I6
denotes identity matrices of order 3 and 6 respectively.

To quantitatively assess the performance of UKF algorithm,
a measure based on Root Mean Squared Errors (RMSE) has
been adopted. It is given by

RMSE =

√√√√ 1

N

n∑
i=1

(xi − x̂i)2 (22)

where N denotes the total number of samples. xi and x̂i are
true and estimated quantities respectively. RMSE between true
values and estimated values of states are computed. They are
given in Table I. The error values indicate that the estimated
values are close to the measured values.

V. CONCLUSION

A non-linear estimation technique utilizing the unscented
Kalman filter has been proposed in the paper to estimate

Fig. 2. Measured and estimated dose rates at detector 1.

Fig. 3. Measured and estimated dose rates at detector 2.

Fig. 4. Measured and estimated dose rates at detector 3.

radionuclide release estimation. The proposed method em-
ploys the Gaussian plume model of atmospheric dispersion
for calculating the radionuclide concentration and dose rates.
Measurement data obtained from six different environmental
radiation monitoring detectors close to the release point is
utilized for estimation purposes. The performance of filter



Fig. 5. Measured and estimated dose rates at detector 4.

Fig. 6. Measured and estimated dose rates at detector 5.

Fig. 7. Measured and estimated dose rates at detector 6.

is enhanced by tuning covariance matrices associated with
process and measurement noise. The estimation algorithm is
found to reliably estimate radioactivity release, wind velocity,
and height of release. It can be clearly verified from the
simulation results that the estimation algorithm is performing
satisfactorily.

Fig. 8. True and estimated release rate.

Fig. 9. True and estimated wind speed.

Fig. 10. True and estimated effective height of release.
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