
Simulation-based Visual Analysis of Individual and

Group Dynamic Behavior

Pawel Gasiorowski 1, Vassil Vassilev2 and Karim Ouazzane2
1The Vinyl Factory, London, UK

2School of Computing, London Metropolitan University, London, UK

Abstract The article presents a new framework for individual

and group dynamic behavior analysis with wide applicability

to video surveillance and security, accidents and safety

management, customer insight and computer games. It

combines graphical multi-agent simulation and motion

pattern recognition for performing visual data analysis using

an object-centric approach. The article describes the

simulation model used for modeling the individual and group

dynamics which is based on the analytical description of

dynamic trajectories in closed micro-worlds and the

individual and group behavior patterns exhibited by the

agents in the visual scene. The simulator is implemented using

3D graphics tools and supports real-time event log analysis

for pattern recognition and classification of the individual and

group agent’s behavior.

Keywords: Visual analytics, Behavior pattern recognition,

Individual and group dynamics, Agent-based simulation,

Ghosting, Ray casting

1 Introduction

 Behaviour analysis of individual and group dynamics in

closed micro-worlds is an area of extensive research in both

academia and industry due to its wide applicability to various

areas - video surveillance and security, accidents and safety

management, business customer insight and video games

programming. Despite the recent advances in the use of

various methods for visual behavior data analysis (i.e.,

Markov models, statistical pattern recognition, qualitative

physics, etc. - see [2-5] for some recent research in analysis of

individual dynamics and [6-8] in group dynamics) and the

availability of some powerful tools for video data analysis in

the market such as 3VR Video Intelligence Platofrm, savVI

Real-TimeEvent Detection, PureTechSystems Video

Analytics, IndigoVision Advanced Analytics, IBM Intelligent

Video Analytics, etc. (see [23-27] for more details on these

products) the problem remains difficult. Two main factors

impact the real-time performance here: the enormous volume

of data, which has to be processed in real-time, and the need to

combine video data processing with complex analytical

symbolic data processing. While the first problem can be

addressed entirely by the technological development, the

second one requires model-driven behavior pattern analysis

which cannot be implemented by the visual data processing

methods alone.

 Fig. 1 General workflow of the framework

We are specifically interested in analyzing the dynamic

behavior of individuals and groups of individuals moving at a

walking speed within enclosed spaces (rooms, corridors,

staircases, floors and open spaces) of big buildings, such as

shopping malls and transport stations, as well as in large

transport vehicles, such as cruiser ships. Our approach for

tackling the complexity of this task is to eliminate the need for

analyzing the entire video stream and replace it with the

analysis of simulated data which approximates the actual

video stream. The framework presented here combines two

complementary methods for data analytics: visual trajectory

analysis based on 3D simulation, and dynamic pattern

classification based on agent’s behavior logic. It forms a

central part of the research program within the Cyber Security

Research Group of London Metropolitan University which is

dedicated to machine processing of video surveillance data in

real time. It includes visual scene extraction, trajectory

reconstruction, dynamic simulation and behaviour analysis for

online processing of live video signals from CCTV cameras

(see Fig. 1). This article reports the core of the framework, the

simulation and behaviour analysis platform which has been

implemented in Java using jMonkey engine [14].

2 Visual simulation as a basis for
behaviour analysis

In their comprehensive book Xiang and Gong [1] classify the

approaches for the development of behavior’s representation

model into four groups: object-based, part-based, pixel-based

and event based. In this part of the research we combine the

object-based approach with the event-driven approach, which

allows us to streamline the video data processing from the

physical camera input to the logical notification output in real-

time. Our approach to dynamic behavior analysis fits within

the tradition of agent-based simulations [9-12] which is widely

used in game programming. The starting point of the

simulation is the reconstructed trajectories of individual

objects in the visual scene [16]. As a result of the simulation

the annotated live video signal is enhanced with additional

information which is used for dynamic behavior analysis in

accordance with the behavior pattern description. The output

is an asynchronous notification corresponding to the identified

pattern – i.e., calling the fire brigade, calling the ambulance,

calling the police or the bomb squad.

2.1 The trajectory data

There are three separate types of input data used by the

simulator – static visual scene information, dynamic

trajectories of the moving objects and asynchronous event

notifications. The simulator performs initial setup of the visual

scene which can be updated later in the case of synchronous or

asynchronous changes in the scene (e.g. appearance of a new

agent as a result of moving inside the scope of the camera,

appearance of a new object as a result of changing the viewing

angle, disappearance of an objects from the visual scene,

changing the viewing angle, receiving an additional signal,

etc.). A sample XML of the visual scene is shown below:

<scene id="vc#00000BF>

 <camera id="cctv#0000XX">

 <frustrum>

 <viewAngle>

 <quaternionW>0.1739063</quaternionW>

 <quaternionX>-0.7228111</quaternionX>

 <quaternionY>0.19664077</quaternionY>

 <quaternionZ>0.63924426</quaternionZ>

 </viewAngle>

 <viewDirection>

 <vectorX>-0.7644838</vectorX>

 <vectorY>-0.6443617</vectorY>

 <vectorZ>-0.019037962</vectorZ>

 </viewDirection>

 <aspectRatio>

 <width>1280</width>

 <height>1024</height>

 </aspectRatio>

 </frustrum>

 </camera>

 <objects total="8">

 <object id="obj#00001 type="dynamic"

 shape="humanoid">

 <objectsFeatures>

 <proximityTrigger>3.00f</proximityTrigger>

 <sightRangeTrigger>10.0f</sightRangeTrigger>

 <velocity>2.25f</velocity>

 ...

 </objectsFeatures>

 </object>

 ...

 </objects>

</scene>

Between the changes in the visual scene the simulation is

driven entirely by data from the reconstructed trajectories of

individual objects [16]. The trajectories are described

analytically in a standard vector notation for representing

location and motion. This description is based on the

quaternions theory instead of purely trigonometric equations,

in order to represent more complex movements involving

rotation, changing the direction and twisting while moving

[13]. While the trajectories provide information about the

location and movements of individual agents only, the

simulation generates additional information which allow the

analysis of the dynamic group behavior as well. In our

experiments the trajectories are simulated but the information

are provided by the module responsible for reconstructing the

trajectories which is currently under development.

2.2 The simulation entities

In the simulation we adopt an agent approach similar to the

toy world which is widely used in AI for controlling intelligent

robots and is also endorsed by the 3D games programming

community [13]. The main entities used to build the

simulation are:

Agent: an abstraction of humans or any other entities capable of

some sort of movements (i.e., shopper in the shopping mall,

passenger in a vehicle, traveler at the station, etc.). Their

behavior is essentially either dynamic or active but always

autonomous.

Pair: two agents involved in dynamic interaction (i.e., handshaking,

hugging, pushing, punching or kicking each other)

Group: several agents sharing some common behaviors, allowing to

treat them as one entity (i.e. flow of people moving into the

direction of an open door, people climbing the same stairs,

people walking in the same room, etc.). The groups exhibit both

external dynamic (relative to the scene) and internal dynamic

(relative to the included individual agents).

Object: an object that is part of the scene and with which the agents

can interact during their physical movements (i.e., doors, stairs,

floor, shelves, etc.). Typically they do not change their relative

position within the scene and remain static for a period of time.

Scene: well-defined boundaries where each agent can move (i.e. a

room in a building or a compartment in a transport vehicle). It

provides the basis for coordinates of the restricted micro-world

observed by a video camera.

The dynamics of the scene is analyzed through recognition

and classification of various events, activities and situations

which are observed within the visual scene. They correspond

to the real-life dynamics observed by the CCTV cameras.

2.3 Changing the location

The key aspect of online simulation is the execution of agent’s

trajectories in real time. However, depending on the purpose

of the simulation, the trajectory information does not have to

come from a camera. With the possibility to use gravity and

incoming data on agent’s movements arriving at a constant

rate, it is possible to calculate the movements of an agent with

a relatively high precision, absolutely sufficient for visual

analysis of the dynamic behavior. Calculating the positions in

the next frame, when moving horizontally along a straight line,

is implemented easily using vector calculus. The position is

determined on the basis of the current location, the relative

velocity of movement and the forward direction vector [14].

But when the agent moves on a curved path, its position needs

to be calculated through combining the motion formula with

some kind of rotation. Our algorithm is inspired by the ideas

of Reynolds [19], which are especially appropriate for real-

time simulations due to the fact that the speed of movement is

not relative to the visual frames and thus, it does not depend

on the speed of the simulation. The new position is calculated

using quaternions, while the actual position of the agent is

used only for smoothening of the trajectory. An example of

such a curved trajectory is shown in Fig. 2. The calculations in

this case are relatively simple and can be done in real-time.

Fig. 2. An agent moving along curved path.

2.4 Gathering of agents and grouping

Unlike the statistical approach to simulation used in crowd

behavior, which performs well on a macro level but do not

give much on a micro level [1,6-8], we base the behavior

analysis on the individual agent’s behavior. It still allows

group behavior analysis for small groups in enclosed spaces,

or “mini-crowds”, which is within our scope of interest.

Fig. 3. Gathering of multiple agents in the visual scene

In our approach the individual and group dynamics are linked

logically and not statistically. This is a critical feature of our

approach to group behavior analysis since our main aim is to

analyze the individual and group dynamics from the point of

view of the individual interactions and interrelations between

the agents in the scene. It is essential, for example, to be able

to establish when a group is being formed but to continue

tracking both the individual members of the group as well as

the group as a whole, because the individual behavior of the

agents within the group are superimposed. Fig. 3 shows a

slightly more "crowded" scene with a number of agents

wandering around while being in a group. It is also important

to be able to analyze the group dynamics in relation to other

groups which may exist in the same scene. In our case this is

possible thanks to the logical approach adopted to grouping.

3 Events on the visual scene

The simulation plays a dual role in our framework. On one

hand, it is used for formation of the dynamic patterns of

behavior. On the other hand, it allows generating additional

information relevant to the agent’s behavior which is based on

the laws of physics and the logics of the visual scene.

During the construction of our simulator we have incorporated

a number of techniques widely used in game programming

[17] and robot control systems [19]. The most important of

them are the invisible bounding box volumes surrounding the

agents and the ray casting [21]. The API of jMonkey we

used for development utilizes these concepts in the form of

listeners known as “ghosts” and “Line-of-Sights” leads

(LOS). The “ghosts” in combination with LOS can be used for

further enhancement of the control over agent’s dynamic

behavior:

•••• to estimate the spatial dimensions of entities within their

existing space.

•••• to extrapolate the trajectories beyond the scene of visibility.

•••• to calculate the distances between objects on the path of

movement or on the line of sight.

•••• to induce logically new relations between objects, like

detecting obstacles in front/sides of the agents, preventing

collisions with objects and predicting reactions.

3.1 Identification of the physical space
occupied by the objects using “ghosts”

The bounding boxes in the visual space represent objects that

have been successfully recognized and delivered as an input

to the simulation. With the knowledge of physical boundaries

of the objects, we start outlining a set of rules for the event

logging strategy such as taking into account the relationships

between objects based on proximity values and overlapping of

their mutual spaces. These volumes or "ghosts" have been

highlighted with yellow wireframes in the simulation to

visually evaluate their accuracy at runtime as it is shown in

Fig. 4.

Fig. 4. Ghosts attached to an autonomous agent and its limbs.

Using bounding boxes has the advantage; the boxing does not

cause any slowdowns of the simulation since the boxes are not

participating in any physical collision calculations. Any

recognized object that is passed to the simulator can be

equipped with its own “ghost” to support better logging, but

the obvious drawback is in the limited area of coverage. This

problem is addressed by another technique in 3D graphics

programming known as ray casting.

3.2 Estimating the physical dimensions using
ray casting techniques

The ray casting is a technique that is based on the idea of

casting a ray from one point in a specified direction and

checking if any geometry comes into contact with it. This will

enable us to establish the existence of geometries in a

particular area of the visual space (Fig.5). This method is also

often called the Line-of-Sight (LOS) and it determines

whether two geometries in the environment can “see” each

other with respect to another that can cause an occlusion [20].

In our simulator the ray casting technique has twofold usage -

firstly it allows us to equip each agent with a “sight sense” and

secondly, it enhances the event logging by scanning each

agent's surroundings.

Fig. 5. Ray casting by an agent relative to movement direction

3.3 Detecting obstacles by “sighting” the agent

The full sight sense of an agent has been developed with the

use of several rays casted from head position over an arc. The

main difference in our approach compared to the case of a

single ray casting used in robot motion control [18] lies in the

positioning of rays. Each line is being re-rendered with a ¼ π

* 0.1 angular offset from the previous one at each frame of the

simulation. Because LOS technique has been applied to every

agent, it is possible to determine any obstacle that is exactly in

front of it. The way we have implemented it approximates the

human perceptions, accounting the rules of peripheral vision

so that it is possible to deduce agent’s focus at a specific time.

However, this imposes certain limitations on the way the

information about the nearby environment is being gathered

since all “sight” rays are being casted towards similar

directions, covering a limited front area of the agent only as

illustrated in Fig. 6.

Fig. 6. The sight sense in a form of several rays casted in a

viewing direction is insufficient to detect side objects

To eliminate the above limitation, we have to log additional

information obtained from other source of probing. In our

implementation we have attached special “ghosts” not only to

the agents, but also to any object which has been recognized

on the visual scene. The difference between the two types of

ghosts is that unlike the agent’s ghosts, the object ghosts do

not cast rays relative to the direction of movement but

“reflect” rays along their surface. This allows the agents to

move within close proximity without “touching” the objects.

3.4 Establishing relations between agents and
the surrounding using ray casting

The main reason for the introduction of ray casting in the

simulation is to capture the physical placement of the objects

in relation to agent's location by collecting data on entities that

come into contact with rays. Through knowing the actor's

forward viewing vector, it is possible to calculate its left and

right directions, cast rays and gather information on the static

entities that are on a side as shown in Fig. 7.

Fig. 7. Rays being casted on each of the agent’s sides allow to

detect any previously recognized static objects

This simple procedure executed at specific time intervals

allows us to store the data in a data structure, sample it

separately and potentially report it in the log. By developing

this idea further, it becomes possible to recognize when an

autonomous entity finds itself “on top of” or “below” a static

object. In this case, instead of casting the rays along one axis

only, we have to do this along two axes as depicted in Fig.8.

Fig. 8. Casting rays along axes relative to viewing direction to

detect changing altitude

We have implemented a number of different single and multi-

ray casting algorithms as part of the simulator [14]. At a later

stage we plan to analyse the dependence of the rays density

from the complexity of the scene in order to estimate the

computational power required for the simulation.

4 Social life of the agents

An essential advantage of the agent-based simulation is that it

allows analyzing the group behavior using the same

mechanisms used to analyze the individual behavior. Our

simulator is capable of capturing the agent’s “social life”,

which opens an unlimited opportunity for digging further into

the group behavior analysis.

4.1 “Attraction” between agents and coupling

Using the simple concepts of coupling and grouping of the

agents it is possible to develop a sound foundation for

analyzing group dynamics in a purely object-oriented manner

using efficient algorithms. The fundamental mechanism for

simulating group behavior is based on the concept of

“attraction” between agents. When two agents detect each

other they may become “attracted” and form a pair (Fig. 9).

Fig. 9. The moment of “attraction” between agents

This can be used to analyze the group behavior. The main

problem is to formulate computationally tractable criteria of

attraction. In the current version of our framework we are

considering the distance between the agents only – the

attraction is maximal if the agent’s capsules intersect and

decreases with the distance between them, which can be easily

detected by the agent’s ghosts (Fig. 10). In future research we

intend to account more complex criteria of “attraction” which

include other factors of interest such as direction of

movement, as well as non-dynamic factors, such as behavioral

attitude.

Fig. 10. Detecting coupling through ghost interaction

4.2 Group formation

Our approach to group formation is based on measuring the

distances between agents to establish if they are in close

proximity. For this purpose, we are calculating a median point

out of the physical locations. The reference point allows

treating the group as a single entity and by superposition of the

individual behavior it is possible to establish a group behavior.

It is important to stress that tracking group behavior does not

stop tracking the individual activity so it continues to be

possible to identify the individual activities in parallel.

4.3 Joining and leaving the crowd

The agents may join or leave already established groups (Fig.

11) which can be formed by gathering individual agents, by

merging pairs or by joining a pair of agents by an individual

agent. In the current version of the simulator the grouping

override the coupling, i.e, the couples are treated as separate

individuals within the group and they leave the groups

individually, not pairwise. The current version of the simulator

assumes that for an agent to join a group, he must first find

himself within proximity to a member of an existing group. If,

while coupling it is realized that the other agent already

belongs to a group, the first agent joins them, but if he himself

belongs to a group, the two groups merge, forming a "crowd".

Analogically, to state that an agent is leaving the group, the

distance from the other members of the group needs to cross

certain threshold which is a parameter of the simulation.

Fig. 11. Joining and leaving a group by individual agents

In our model the groups consist of 3 or more agents and can

be formed by gathering of individual agents, by merging pairs

or by joining a pair by an individual agent. In the current

version of the simulator the grouping override the coupling,

i.e, the couples are treated as separate individuals within the

group and they leave the groups individually, not pairwise.

5 Implementation

The 3D simulator is written entirely in Java and uses the open

source engine jMonkey [14]. This software is widely used in

game programming and has been chosen for implementing the

platform because it allows modeling of the physical

constraints of the micro-world such as gravity and supports

additional control mechanisms. We have utilized it for

detecting obstacles of the agent’s path, collision prevention

and navigation control.

5.1 Agents

The model of a humanoid agent was developed using Blender

open source modeler [15]. Each agent has an associated

“ghost” with it which is equipped with ray casting algorithm

for probing the space in order to detect obstacles, navigate

through the space and interact with the environment and other

agents. Although the agent model allows the use of the full

body armature, in the current version of the simulator the

gestures are not accounted. However, this will be exploited

further in the next version of the simulator.

5.2 Movements

The physical movements of the agents within the visual scene

are modelled using methods of standard vector algebra with

the addition of quaternions theory to model rotations and

movements along curved trajectories. Currently, the

movements are calculated on the basis of the position, the

direction of movement and the velocity. Although this method

is approximate, due to the frequent recalculations, the

deviation from the actual trajectories is insignificant for the

purpose of the pattern matching and does not affect the quality

of the analysis. This allows the analysis to be performed in

real-time using entirely simulated data rather than using actual

data from the video stream.

5.3 Simulator loop

The event logger works in a loop. At the beginning of each

iteration, it updates the current state of the visual scene and

then logs all events generated by the individual observers

during the simulation. The loop is initialized when a new

configuration is introduced as a result of an internal or

external asynchronous event in the visual scene.

5.4 Scene changes

At each update the simulator records potential collisions

caused by ghosts overlapping or rays piercing physical

geometries of the objects. Some of the calculations that are

needed for this update can be appropriately timed to reduce

the potential frame rate drops and to ensure the data is not

coming in too fast to be synchronized. During the experiments

it was observed that the delay is not causing any major frame

rate drops, but with the increase of the number of objects and

“overcrowding” of the scene more substantial computational

power may be required to keep the frame drop rate low.

5.5 Event logging

The major role of the simulation is to generate an informative

log of the events occurring within the visual scene so that they

can be analysed further by pattern matching techniques. In its

current version, the simulator generates a log file with time-

stamped entries describing each captured event:

...

09:39:41 :: Agent ID0 LeftLowArm touches Stairs ID1

09:39:41 :: Agent ID0 LeftHand touches Stairs ID1

09:39:41 :: Agent ID0 RightFoot touches Stairs ID1

09:39:41 :: Agent ID0 LeftFoot touches Stairs ID1

09:39:51 :: Agent ID2 moves towards Bookshelf ID2

09:39:53 :: Agent ID2 moves towards Bookshelf ID2

09:39:56 :: Agent ID2 moves along Bookshelf ID2 on left

09:39:56 :: Agent ID2 moves away from Bookshelf ID2

09:39:57 :: Agent ID2 moves towards Bookshelf ID2

09:39:59 :: Agent ID2 moves along Bookshelf ID2 on right

09:40:41 :: Agent ID2 climbs Stairs ID1 up

...

The event logger is implemented with architecture of an

"observer", attaching a separate individual logger to each

object within the visual scene. The individual observers log all

events related to the observed. This allows further extension of

the logging module without changing the existing code of the

simulator. In the next version of our simulator we plan to

incorporate fine grained event logging which account not only

for the body motion of the agents but also for their gestures.

5.6 Pattern classification and beyond

The simulator log is parsed for recognizing and classification

of the behaviour patterns according to the grammar of its

language [22]. After the simulator the behaviour analysis can

be continued solely based on the logs, while the original video

data can be used to increase the precision of approximation.

This approach gives the opportunity to incorporate purely

symbolic techniques for behaviour analysis. In a forthcoming

article we will report the visual dynamics ontology developed

for this purpose. It forms another part of our research program

which will be based entirely on semantic technologies.

6 Conclusion

This article introduces a new framework for real-time video

data processing for the purpose of individual and group

dynamic behaviour analysis based on 3D simulation and

dynamic pattern classification. Our approach combines

methods from games programming and robotics. The main

advantage of this approach is that it allows the analysis of both

individual and group dynamics in a single unified manner at

different level of granularity depending on the needs.

Although the framework is still under development, its core

component - the simulator - is already completed and the

experimental tests with simulated data in real time look very

promising. The pattern classifier, which processes the event

log generated during the simulation, for further analysis of the

visual scene, is currently under development and will be

reported separately in a forthcoming publication. It performs

real time parsing according to the grammar of the event

logging language and its input is the basis for the development

of a suitable notification mechanisms. We plan to extend the

language in order to represent more fine grained patterns of

behaviour which go beyond the dynamics of pure body motion

and include gestures as well.

The work reported here is conducted as part of the PhD

research of the first author at London Metropolitan University

and is sponsored by The Vinyl Factory of London, UK.

References

[1] S. Gong, T. Xiang, Visual analysis of behaviour from pixels to
semantics. London: Springer, 2011.

[2] C. Hu, S. Wo, An efficient method of human behavior recognition in
smart environments, in: Int. Conf. on Computer Application and System
Modeling (ICCASM), Vol. 12, pp. 690–693, 2010.

[3] K. Yordanova, Modelling Human Behaviour Using Partial Order
Planning Based on Atomic Action Templates, in: 7th Int. Conf. on
Intelligent Environments (IE), pp. 338–341, 2011.

[4] C. Wang, F. Wang, A Knowledge-Based Strategy for Object
Recognition and Reconstruction, in: Int. Conf. on Information
Technology and Computer Science (ITCS), pp. 387–391, 2009.

[5] M. Attamimi, T. Nakamura, T. Nagai, Hierarchical multilevel object
recognition using Markov model, in: 21st Int. Conf. on Pattern
Recognition (ICPR), pp. 2963–2966, 2012.

[6] S. Wu, B. Moore, M. Shah, Chaotic invariants of Lagrangian particle
trajectories for anomaly detection in crowded scenes, in: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition CVPR2010, pp.
2054–2060, 2010.

[7] P. Saboia, S. Goldenstein, Crowd Simulation: Improving Pedestrians’
Dynamics by the Application of Lattice-Gas Concepts to the Social
Force Model, in: 24th SIBGRAPI Conf. on Graphics, Patterns and
Images (Sibgrapi), pp. 41–47, 2011.

[8] R. Guo, H. Huang, A mobile lattice gas model for simulating pedestrian
evacuation, in: Physica, Part A: Statistical Mechanics and its
Applications, Vol. 387, pp. 580–586, 2007.

[9] L. Hluchy, M. Kvassay, S. Dlugolinský, B. Schneider et al., Handling
internal complexity in highly realistic agent-based models of human
behaviour, in: 6th IEEE Int. Symp. on Applied Computational
Intelligence and Informatics (SACI), pp. 11–16, 2011.

[10] A. Varas, M. Cornejo, D. Mainemer, B., Toledo et al., Cellular
automaton model for evacuation process with obstacles, in: Physica A:
Statistical Mechanics and its Applications, Vol. 382, pp. 631–642,
2007.

[11] X. Ben, X. Huang, Z. Zhuang, R. Yan, S. Xu, Agent-based approach for
crowded pedestrian evacuation simulation, IET Intelligent Transport
Systems, Vol. 7, pp. 56–67, 2011.

[12] S. Sharma, S. Lohgaonkar, Simulation of agent behavior in a goal
finding application, in: IEEE Southeast Conf. (SECON), pp. 424–427,
2010.

[13] E. Lengyel, Mathematics for 3D Game Programming and Computer
Graphics, 2nd ed., Hingham, MA: Charles River Media, 2003.

[14] R. Eden, JMonkeyEngine 3.0 Cookbook, Birmingham: Packt Publ.,
2014.

[15] G. Fisher, Blender 3D Basics, 2nd ed., Birmingham: Packt Publ., 2014.

[16] A. Bogdanovych, M. Bauer, S. Simoff, Recognizing Customers’ Mood
in 3D Shopping Malls Based on the Trajectories of Their Avatars, in:
Filipe, J., Cordeiro, J. (Eds.), Enterprise Information Systems, LNBIP,
Berlin: Springer, pp. 745–757, 2009.

[17] M. Wang, H. Lu, Research on Algorithms of Intelligent 3D Path
Finding in Game Development, in: Int. Conf. on Industrial Control and
Electronics Engineering (ICICEE), pp. 1738–1742, 2012.

[18] T. Terzimehic, S. Silajdzic, V. Vajnberger et al., Path finding simulator
for mobile robot navigation, in: XXIII Int. Symp.on Information,
Communication and Automation Technologies (ICAT), pp. 1–6, 2011.

[19] A. Croitoru, A., Deriving Low-Level Steering Behaviors from
Trajectory Data, in: Proc. IEEE Int. Conf. on Data Mining Workshops
(ICDMW), pp. 583–590, 2009.

[20] B. Salomon, N. Govindaraju, A. Sud, R. Gayle, M. Lin, D. Manocha,
Accelerating Line of Sight Computations Using Graphics Processing
Units, in: Proc. 24th Army Science Conference, 2004.

[21] J. Beaudoin, J. Hughes Clarke, J. Bartlett, Application of Surface Sound
Speed Measurements in Post-Processing for Multi-Sector Multibeam
Echosounders, International Hydrographic Review, Vol. 5, No. 3, pp.
26-31, 2004.

[22] D. Grune, C. J. H. Jacobs, Parsing Techniques: A Practical Guide, 2nd
ed., NY: Springer, 2008.

[23] 3VRVideoIntelligence Platform [http://3vr.com/products/videoanalytics
last visited: 31-05-2016]

[24] savVi Real-Time Event Detection [http://www.agentvi.com/61-Products
-282-savVi_Real_Time_Event_Detection; last visited: 31-05-2016]

[25] PureTech Systems VideoAnalytics [http://www.puretechsystems.com/
video-analytics.html; last visited: 31-05-2016]

[26] Indigo Vision Control Center [https://www.indigovision.com/en-us/
products/management-software/control-center; last visited: 31-05-2016]

[27] IBM Intelligent Video Analytics [http://www.ibm-3.com/software/

products /en/intelligent-video-analytics; last visited: 31-05--05-2016]

