
 

 

Intelligence Graphs for Threat Intelligence                     

and Security Policy Validation of Cyber Systems 

Vassil Vassilev1, Viktor Sowinski-Mydlarz1, Pawel Gasiorowski1,                            

Karim Ouazzane2 and Anthony Phipps2 

1 London Metropolitan University – Cyber Security Research Centre, London, UK 
2 London Metropolitan University – School of Computing and Digital Media, London, UK 

v.vassilev,w.sowinskimydlarz,p.gasiorowski,k.ouazzane,tsaphip1@londonmet.ac.uk 

 

Abstract. While the recent advances in Data Science and Machine Learning attract lots of atten-

tion in Cyber Security because of their promise for effective security analytics, Vulnerability 

Analysis, Risk Assessment and Security Policy Validation remain slightly aside. This is mainly 

due to the relatively slow progress in the theoretical formulation and the technological foundation 

of the cyber security concepts such as logical vulnerability, threats and risks. In this article we 

are proposing a framework for logical analysis, threat intelligence and validation of security pol-

icies in cyber systems. It is based on multi-level model, consisting of ontology of situations and 

actions under security threats, security policies governing the security-related activities, and 

graph of the transactions. The framework is validated using a set of scenarios describing the most 

common security threats in digital banking and a prototype of an event-driven engine for navi-

gation through the intelligence graphs has been implemented. Although the framework was de-

veloped specifically for application in digital banking, the authors believe that it has much wider 

applicability to security policy analysis, threat intelligence and security by design of cyber sys-

tems for financial, commercial and business operations. 

 
Keywords: Knowledge Graphs, Ontologies, Threat Intelligence, Security Policies, Security An-

alytics 

1 Logical Vulnerability, Threats and Risks in Cyber Security 

Most organizations, including the banks, typically use fragmented security proce-
dures, which do not cover all possible security threats and attack vectors. Where they 
pay attention they concentrate mainly on direct technical threats and simple fraud as 
opposed to sophisticated social engineering fraud, which takes advantage of the loop-
holes in the security policies. The security policies are typically not shared between the 
branches and the headquarters and are not integrated into one coherent system. The 
organizations lack standardized, unified and established methodology to analyze them. 
Therefore, banks are at high risk from security breaches, fraud and other malicious ac-
tivities. They are vulnerable and their security policy is ineffective [1]. 

In a second place, the growing use of cloud services and IoT devices is an industry 
trend resulting in threats specific to these technologies. Small and medium-sized enter-
prises without resources to maintain their operations depend on third parties for tech-
nical maintenance, servicing and provision. However, the security risks are also high 
because external services increase the communications and introduce complex access 
control. The banks are reluctant to employ the cloud technology also due to the in-
creased risks for protection of the financial data [2]. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by London Met Repository

https://core.ac.uk/display/266993535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

The problem with logical vulnerability largely stems from the fragmentation, high 
distribution and difficulty in integration of the policy rules due to the lack of standards 
and tools for automation [3,4]. Top players in cyber security (CISCO, Symantec, Palo 
Alto, Juniper) deliver predominantly physical level tools. Logical vulnerability analysis 
is in an early stage of development [5,6,7]. The risks associated with the new technol-
ogies complicate the picture even further. Employing Internet-of-Things increases the 
vulnerability, but although it has been analysed in some critical applications, such as 
medical and transport systems, it is far from solved in general. Risk assessment is even 
more difficult despite the recent push in industry for automation [8-11], it is subjective 
and requires contracting consultants, which charge at a very high rate. Tools for devel-
opment, testing, analysis and control of the security policies are very rare. They are 
needed not only for large corporations, financial institutions and service providers but 
also for SMEs which outsource services offshore and to third parties. Such software 
would have a great impact for improvement of their security policies and reducing their 
security risks. The small number of available tools are mainly product of significant 
investments from large corporate companies [12,13]. They serve the purpose to a vari-
ous degree, but practically suffer from the lack of solid theoretical foundation and lim-
ited potential for use outside of the designated domain.  

In this article, we are presenting a new framework for performing analysis of the 
logical vulnerability, for threat modelling and validation of the security policies in 
cyber systems. It is based on a four-layer model which, unlike most of the tools sup-
porting threat intelligence [14,15] is strictly formal [16]. The lowest layer of the frame-
work, the ontological layer models situations, threats and activities, formalized in de-
scription logic using the standard languages of the Semantic Web - RDF/RFS and 
OWL. The second layer, the heuristic layer contains security policies, formalized in 
clausal logic using the standard rule language of Semantic Web – SWRL. The third 
layer, the workflow layer formalizes the transactions under threats by navigating 
through the nodes of a directed graph, formed by the situations and governed by the 
security policies.  The top process layer performs various analytics for assessing the 
vulnerabilities, estimating the risks and various security analytics. Although the frame-
work was developed specifically for validation of security policies in banking, we be-
lieve that it has much wider applicability in financial, commercial and business systems. 

 

2 Ontologies, Knowledge Graphs and Process Workflows 

Ontological engineering is an outcome of the research program for Semantic Web [17]. 
Core of the software architecture of an ontology-enabled system is the domain ontol-
ogy, which fulfills two different roles: it defines the terminology in the problem domain 
and simultaneously provides the base for intelligent system analysis, design, operation 
and control. Standard modeling language for ontologies is OWL [18]. It has strict for-
mal semantics given by Description Logic. The expert knowledge in an ontology-ena-
bled intelligent system can be modelled within the paradigm of Semantic Web using 
rules in SWRL [19]. The main problem faced in this approach is that if the ontology 
requires explicit representation of both synchronous and asynchronous activities, the 
logical level becomes too complex to be practically useful due to the infamous frame 
problem in AI. A typical case is the area of cyber security, where the unauthorized 
intrusions, information leaks, frauds and damages are achieved through malicious ac-



3 

 

tivities, which are asynchronous, while the protection is achieved by applying preven-
tative or correcting countermeasures, which are synchronous. Because of this, the se-
mantic technologies have been used mainly for formal specification and standardization 
of the security ontology [20]. An excellent overview of the security ontologies is given 
in [21]. We avoid these problems by using carefully constructed ontological theory of 
situations and actions [16] which allows to make the formal approach more practical. 

Our framework is multi-layered and operates on four levels: a) the ontological 
level, on which the ontology is modelled using RDF/RDFS/OWL, b) the heuristic level, 
on which the security policies are modelled as rules in SWRL, c) the workflow level, 
on which the analytics according to the underlying logics form directed graphs, and d) 
process level, on which the analytics are executed against the representation and/or ex-
ternal data (analytics on demand). The workflow level is the base for introducing a large 
number of important security concepts, such as accessibility, vulnerability, risks and 
mitigation, as well as the algorithms for analyzing them in a formal manner. This way, 
it bridges the knowledge-based approach to AI, based on symbolic logic, and the data 
analytics approach, based on machine learning. As a result, we come to the richer con-
cept of intelligence graphs as a vehicle for orchestrating the security analytics. Unlike 
the approach of knowledge graphs [22], which only combines data analytics with expert 
heuristics, our approach integrates the modeling and the data analytics adding the pos-
sibility to make logical inferences, based on the results of data analytics, and to apply 
machine learning to the logical inferences themselves.  

3 Ontology of Transactions under Security Threats 

3. 1   Logical Foundations of the Ontological Modeling 

We formalized the security ontology within a logical theory of situations and actions 
with terminological vocabulary of classes and relationships in standard DL (or concepts 
and properties in OWL) as shown in Table 1 [16].  

Table 1. Predefined terminology on ontological level 

Term OWL   DL Meaning 

Situation concept unary predicate Static reference to the world in time 

Item concept unary predicate Qualitative description of situations, events, 
threats and items or quantitative valuation 

Threat concept unary predicate Malicious entity which appears in situations 
and may lead to transitions 

Event concept unary predicate Asynchronous activity which happens  in 
situations and may lead to transitions 

Action role binary predicate Synchronous transition between situations  

occurs-in role binary predicate Events happening in situations 

tampers-with role binary predicate Threats interfering with situations 

present-at role binary predicate Attribution of items to situations 

appears-in role binary predicate Attribution of items to events 

controlled-by role binary predicate Attribution of items to threats 

has/ 
value 

role binary predicate Pairing two items in associative link or 
quantitative valuation of items 

follows role binary predicate Pairing two situations in temporal order 

causes role binary predicate Pairing two events in causal dependence 



4 

 

In our theory the static descriptions of the world, the situations, are modelled 
in an object-oriented manner using a hierarchy of classes. The security treats form an-
other hierarchy. We distinguish the asynchronous activities (events) and synchronous 
activities (actions) by using two different logical constructs – the events, which happen 
in situations without changing them are modelled as classes, while the actions, which 
change them are modelled as relations. The parameters of the actions are not repre-
sented explicitly but are bound contextually by the situation parameters. Our approach 
solves the infamous frame problem about what needs to be changed and what needs to 
be preserved during transitions: while the actions bind their input parameters in the 
current situation they affect the environment only through their output parameters. 

Principle of preservation: Any description of the situations within the domain of the 

action in terms of input parameters remains unchanged in the situations within its 

range. This retains the items describing the situations after execution exactly as before. 

Principle of propagation: Any descriptions of the situations within the domain of the 

actions which involve their output parameters should be deleted from the situations 

within their range before the transition is completed. This updates the situations along 

the execution path. 

These principles are valid because the situations are logical terms themselves, so they 
can be described using items which serve the role of event and action parameters. Com-
putationally, this reduces the complexity of the logical inference needed to calculate 
the necessary changes because it allows to use templates in the symbolic representation 
and to perform indexing of both facts and rules based solely on their structure. 

3. 2   Situations, events, threats and items 

The main classes of our ontology are organized in four separate taxonomies: 

Items: represent the material and conceptual entities of importance (Account, Credentials, 
ATM, VoiceApp, etc.). They provide information related to other entities within the domain 
of interest and form a well-established taxonomy of classes, not necessarily related to 
security, but included also some classes related to the security policies, such as channel, 
connection, session, credentials, profiles, permissions, threats, etc. 

Situations: model partial state of the world from security point of view (i.e., s_User_Logged, 

s_Account_Locked, etc.). From security point of view some of the situations will be vul-
nerable, while some others will be safe, but this classification depends on both the ontol-
ogy and the security policies and since the vulnerability as a concept cannot be defined on 
ontological level, we cannot distinguish the situations from vulnerability point of view. 

Events: model the activities which cannot be predicted and controlled (i.e., e_Credentials_Ac-
cepted, e_Card_Refused, etc.). The events by their nature are asynchronous, they can 
happen in any situation but they do not change the situations – they can only initiate the 
changes, which actually happen only after executing the corresponding actions. 

Threats: model the security threats which may interfere with the normal execution of the trans-
actions (i.e., t_ManInTheMiddle). We have identified and modelled 39 different threats 
of importance in banking domain and their taxonomy is given in Fig. 1 as an example.  

All classes in our ontology are modelled in OWL as concepts. The modeling is a pre-
liminary phase of the work in our framework, which is completely independent from 
its subsequent use for simulation and analysis. It is an interactive process which can be 
fully automated using ontological editors such as Protégé. 



5 

 

 

Fig. 1 Taxonomy of Threats in Cyber Security 

3. 3   Actions 

The actions are synchronous activities which lead to changes of situations. Formally 
they specify relations between the situations and are modelled as properties of the OWL 
classes. Since they can be executed under different initiatives – the user, the system or 
the threats, it is possible to classify them. We have user-initiated actions (they do not 
need countermeasures), actions triggered by system errors or external interventions 
(controlled by the system via countermeasures) and actions, which potentially lead the 
system to a situation which is unwanted (out of control). Based on this understanding, 
the actions in the ontology have been classified into three separate hierarchies: 

Normal: Actions, which are planned as parts of the user journeys in accordance with the en-
dorsed security policies (example: a_Login). 

Abnormal: Actions, which are result of malfunctioning, unauthorized intrusions, or malicious 
activities of potential security threats; such actions can lead the system to a vulnerable 
state (example: a_Cancel). 

Correcting: Actions, undertaken after abnormal actions or in response to unwanted event which 
can put the system back on track. 

This classification will play an important role in the analysis - the abnormal actions will 
increase the vulnerability and the risks for completing the user journeys, while the cor-
recting actions will reduce them in accordance with the security policies. 

3. 4   Parametrization 

Our approach to modeling the actions as relations between situations brings an inter-
esting possibility: the parameters can be defined in terms of properties of the situations 
they transform. We consider action parameters to be those characteristics of the situa-



6 

 

tions (items) in which the actions apply, which are common for all of them. This pro-
poses a natural distinction between input and output parameters – the input parameters 
are the items which describe the situations in which we execute the actions, while the 
output parameters are the items which describe the situations after execution. For ex-
ample, the action a_Login, which represents the transformation from a state in which 
we are not logged in to a state in which we are logged, has as an input parameter the 
item credentials needed for authentication, while its output parameter is session 
which can be used for further execution of the operations included in the transaction. 
The same applies to other dynamic entities, like events and threats - their parameters 
are the items which characterize all situations in which the events happen (or the threats 
occur, respectively). Unlike the actions, however, which can have a side effect through 
their output parameters, the events and threats have only input parameters, determined 
contextually by the situations in which they happen or occur. 

4 Heuristic Level and Security Policies 

The ontological level provides reference objects needed for the logical vulnerability 
analysis, risk assessment and neutralization of potential treats. The heuristic level will 
model the security policies governing the execution of the transactions under threat. 

4.1 Security Policies as Heuristics 

The security policies in our framework form the heuristic level. They refer to the classes 
and properties as defined on ontological level, but their syntax and semantics are not 
given by the underlying DL logic. For representing the security policy rules we have 
adopted SWRL, a rule language which binds the concepts and properties of OWL on-
tology in antecedents/consequents pairs in a similar way to the infamous Horn-clause 
Predicate Logic (HPL). The policies can be formulation interactively within the same 
editor which specifies the OWL ontology (in our case, Protégé), which greatly simpli-
fies the process of modeling. An example of a rule in this format is the following: 

     s_Account_Active (?aa) ∧ e_Card_Declined (?cd) ∧  
              a_Cancel (?aa,?tc) -> s_Transaction_Cancelled(?tc) 

The intended meaning of the rule is that if an account is active in a given situation, but 
the system declines the card the policy prescribes execution of an action which cancels 
the operation and after executing this action the system will be in a new situation in 
which the transaction is cancelled. 

4.2 Types of Heuristics 

The heuristic rules in our framework can be classified into different types depending 
on the structural patterns of the antecedent and the consequents. The antecedents com-
bine conditions on situations, in which the rules are applicable, on events, which can 
fire them whenever happen and on threats, which need to be neutralized. The conse-
quents combine static expressions, valid within the same situation as the antecedents, 
and dynamic expressions, involving situations resulting from the execution of actions. 
In accordance with this we can distinguish the following types of heuristic rules: 

Description Rules: allow inferring additional information about the current based on purely 
static descriptions. 

Detection Rules: allow detection of the presence of threats based on observations. 
Identification Rules: used for recognition of known threats. 
Classification Rules: used for classification of unknown threats into known categories. 



7 

 

Prediction Rules: used to analyze the potential effect of the actions executed under the influence 
of the threats. 

Correction Rules: recommend actions in response to events and/or detected threats. 

The rule classification plays an important role on workflow level of the framework, 
where it guides the navigation through the intelligence graphs. 

4.3 Examples of Heuristic Rules 

Let’s consider an example of purely logical predictive analytics. The starting situation 
is “user not logged in”. In this situation the following rule applies: 

s_Not_Logged_In(?nli) ∧ e_Logging_In(?l) ∧ a_Login(?nli, ?li) ->             

         s_Logged_In(?li) 

When the event “logging in” happens in this situation, it triggers “login action” which 
results in a situation “user logged in”. Considering that this situation is characterized 
by property “session” we can derive the new session as an effect. In the next leg of the 
journey we can proceed with crediting the account using the following rule 

e_Crediting_Account(?ac) ∧ s_Pay_In_Cash(?pic) ∧  

         a_PayIntoAccount(?pic, ?bic) -> s_Balance_In_Credit(?bic) 

Now the triggering event is “crediting account” and the initial situation is “paying in 
by cash” with parameter “account”. The action which follows is “paying into account”. 
The account can be paid in via the property “amount” of the initial situation and the 
new situation is “balance in credit”. However, in some situations there is a possibility 
of “declining transaction”.  

s_Account_In_Overdraft(?ao) ∧ e_Card_Refused(?td) ∧  
         a_Decline_Transaction(?ao,?cr)->s_Transaction_Cancelled(?cr) 

The initial situation is “account in overdraft” which has property “overdraft fee”. The 
abnormal situation “transaction cancelled” can happen as a result of obstructive events, 
in this case executing action “decline transaction”. The irregular event which fires the 
rule is “card refused”. The cause for the event is probably that the overdraft is not payed.  

The heuristic rules allow us to specify the security policies by adding threats in 
the conditions of the rules and prescribing corrective actions. The conditions on situa-
tions, events and threats in the rules refer to their attributes within the ontology, while 
the action parameters will be determined by the properties of their domains and ranges. 

5 Workflow Level and Intelligence Graphs 

5.1 Transaction Flow as a Graph 

On workflow level the framework works as a graph traversal. The intelligence graph is 
built using situations, events and threats as nodes and actions and rioles as edges. The 
traversal is performed within the simulation loop as a navigation from an initial towards 
the final situation. Along the path happen asynchronous events, which do not change 
the situations, and synchronous actions, which change them. As an illustration Fig. 2 
shows the intelligence graph of one particular scenario, Logging under threat. 

5.2 Framework Validation 

The framework described above has been validated by modeling a number of scenarios 
for executing banking transactions under security threats. Table 2 contains brief de-
scription of the most typical scenarios used for validation of the framework. 



8 

 

 
S

ce
n

a
ri

o
 

S
ta

rt
in

g
 S

it
u

a
ti

o
n

 
T

h
re

a
t(

s)
 

T
h

re
a

t 
P

re
se

n
t 

In
 

F
in

a
l 

S
it

u
a

ti
o

n
 

P
o

te
n

ti
a

l 
D

ea
d

lo
ck

  

U
p

d
a
te

 A
n

ti
v
ir

u
s 

w
it

h
 S

p
y
w

a
re

 

S
0
_
A
n
t
i
v
i
r
u
s
_
N
o
t
_
 

U
p
d
a
t
e
d
 

S
p

y
w

ar
e 

B
ai

ti
n

g
 

S
2
_
I
n
f
e
c
t
e
d
_
A
t
t
a
c
h
m
e
n
t
 

S
2
3
_
I
n
f
e
c
t
e
d
_
S
o
f
t
w
a
r
e
 

S
5
_
N
o
r
m
a
l
_
S
t
a
t
e
 

 

L
o
g

in
 w

it
h

 S
p

y
-

w
a
re

 

S
0
_
B
r
o
w
s
e
r
_
S
t
a
r
t
e
d
 

S
p

y
w

ar
e
 

S
0
_
B
r
o
w
s
e
r
_
S
t
a
r
t
e
d
 

 
S
5
_
U
s
e
r
_
L
o
g
g
e
d
_
I
n
 

S
6
_
L
o
g
i
n
_
R
e
f
u
s
e
d
 

S
4
5
_
C
r
e
d
e
n
t
i
a
l
s
_
S
t
o
-

l
e
n
 

M
o
n

ey
 T

ra
n

sf
er

 
w

it
h

 S
p

y
w

a
re

 

S
0
_
B
r
o
w
s
e
r
_
S
t
a
r
t
e
d
 

S
p

y
w

ar
e
 

S
1
3
_
I
n
f
e
c
t
e
d
_
W
i
t
h
_
M
a
l
-

w
a
r
e
 

S
1
0
_
U
s
e
r
_
L
o
g
g
e
d
_
O
u
t
 

S
1
7
_
S
i
t
e
_
M
a
i
n
t
e
n
a
n
c
e
 

S
1
8
_
D
i
s
c
o
n
n
e
c
t
e
d
 

…
 

B
a
la

n
ce

 w
it

h
 

D
D

o
S

 

S
0
_
U
s
e
r
_
L
o
g
g
e
d
_
I
n
 

D
D

o
S

  
  
  

A
tt

ac
k

 

S
0
_
U
s
e
r
_
L
o
g
g
e
d
_
I
n
 

S
4
_
U
s
e
r
_
L
o
g
g
e
d
_
O
u
t
 

S
1
0
_
O
p
e
r
a
t
i
o
n
_
C
a
n
-

c
e
l
l
e
d
 

V
ie

w
 B

a
la

n
ce

 w
it

h
 

Q
u

id
 P

ro
 Q

u
o

 

S
0
_
B
r
o
w
s
e
r
_
S
t
a
r
t
e
d
 

Q
u

id
 P

ro
 

Q
u

o
 

S
1
2
_
I
T
_
S
u
p
p
o
r
t
_
I
m
i
t
a
t
e
d
 

_
B
y
_
H
a
c
k
e
r
 

S
8
_
U
s
e
r
_
L
o
g
g
e
d
_
O
u
t
 

S
2
5
_
S
i
t
e
_
M
a
i
n
t
e
n
a
n
c
e
 

S
1
6
_
D
i
s
c
o
n
n
e
c
t
e
d
 

S
2
2
_
I
n
v
a
l
i
d
_
C
r
e
d
e
n
-

t
i
a
l
s
 

V
is

h
in

g
 &

 S
M

is
h

-
in

g
 

S
0
_
N
o
r
m
a
l
_
S
t
a
t
e
 

V
is

h
in

g
 

S
m

is
h

in
g
 

S
0
_
N
o
r
m
a
l
_
S
t
a
t
e
 

S
5
_
P
a
y
m
e
n
t
_
T
o
_
C
r
i
m
i
-

n
a
l
s
 

S
8
_
T
r
a
n
s
a
c
t
i
o
n
_
C
a
n
-

c
e
l
l
e
d
 

W
it

h
d

ra
w

a
l 

w
it

h
 

S
es

si
o
n

 H
ij

a
ck

in
g

 

S
0
_
C
a
r
d
_
I
n
s
e
r
t
e
d
 

S
es

si
o

n
 

H
ij

ac
k
in

g
 

S
2
_
U
s
e
r
_
A
u
t
h
e
n
t
i
c
a
t
e
d
 

S
5
_
C
a
r
d
_
R
e
m
o
v
e
d
 

 

S
en

d
in

g
 E

m
a
il

 
S

p
a

m
 

S
0
_
M
a
c
h
i
n
e
_
O
v
e
r
t
a
k
e
n
 

_
B
y
_
H
a
c
k
e
r
 

E
m

ai
l 

S
p

a
m

 
S
0
_
M
a
c
h
i
n
e
_
O
v
e
r
t
a
k
e
n
 

_
B
y
_
H
a
c
k
e
r
 

S
6
_
S
p
a
m
_
R
e
c
e
i
v
e
d
 

S
2
_
S
y
s
t
e
m
_
M
o
n
i
t
o
r
e
d
 

E
m

a
il

 S
p

a
m

 R
e-

ce
iv

ed
 

S
0
_
S
p
a
m
_
R
e
c
e
i
v
e
d
 

E
m

ai
l 

S
p

a
m

 
S
0
_
S
p
a
m
_
R
e
c
e
i
v
e
d
 

S
9
_
M
a
c
h
i
n
e
_
O
v
e
r
t
a
k
 

_
B
y
_
H
a
c
k
e
r
 

S
5
_
V
i
t
a
l
_
D
a
t
a
_
E
x
-

t
o
r
t
e
d
 

C
ro

ss
 C

h
a

n
n

el
 

w
it

h
 P

re
te

x
ti

n
g

 

S
0
_
I
T
_
S
u
p
p
o
r
t
_
 
I
m
i
-

t
a
t
e
d
_
B
y
_
H
a
c
k
e
r
 

P
re

te
x
ti

n
g
 

S
0
_
I
T
_
S
u
p
p
o
r
t
_
I
m
i
t
a
t
e
d
 

_
B
y
_
H
a
c
k
e
r
 

S
5
_
P
a
y
m
e
n
t
_
T
o
_
C
r
i
m
i
-

n
a
l
s
 

S
8
_
T
r
a
n
s
a
c
t
i
o
n
_
C
a
n
c
 

S
9
_
A
c
c
o
u
n
t
_
L
o
c
k
e
d
 

S
1
0
_
C
r
e
d
e
n
t
i
a
l
s
_
S
t
o
l
 

S
ca

re
w

a
re

 &
 

R
o
g

u
e 

S
0
_
N
o
r
m
a
l
_
S
t
a
t
e
 

S
ca

re
w

ar
e,

 

R
o

g
u

e 

S
1
_
I
n
f
e
c
t
i
o
n
_
S
i
m
u
l
a
t
e
d
 

S
6
_
M
a
c
h
i
n
e
_
O
v
e
r
t
a
k
e
n
 

_
B
y
_
H
a
c
k
e
r
 

 

A
T

M
 I

n
fe

ct
ed

 
S
0
_
A
T
M
_
O
S
_
N
o
t
_
U
p
d
a
t
 

A
T

M
 I

n
-

fe
ct

ed
 

S
0
_
A
T
M
_
O
S
_
N
o
t
_
U
p
d
a
t
e
d
 

S
1
0
_
P
a
m
e
n
t
_
T
o
_
C
r
i
m
i
-

n
a
l
s
 

S
9
_
T
r
a
n
s
a
c
t
i
o
n
_
C
a
n
-

c
e
l
l
e
d
 

 

T
a
b

le
 1

 S
ce

n
ar

io
s 

fo
r 

V
al

id
at

io
n
 o

f 
T

ra
n

sa
ct

io
n

s 
u
n

d
er

 T
h

re
at

s 



9 

 

 

Fig. 2 Intelligence Graph for Transaction under Threat 

6 Process Level, Implementation and Future Work 

The general software architecture of the prototype implementation is shown on Fig. 3. 
The core of the system is written on C++ and operates through the DASHBOARD, which 
coordinates the work in all modes (Fig. 4). The SIMULATOR executes the simulation 
loop, which builds dynamically the graph from an initial situation, while two other 
components - DATA ANALYZER and LOGICAL ANALIZER - run machine learning and 
rule-based inference algorithms on demand. Currently the logical analysis executes 
Java programs locally, while the data analysis runs Python scripts within Docker con-
tainers on a private Kubernetes cloud remotely.  

 
Fig. 3 Software Architecture of the Implementation 

Initially we used DROOLS to process the policies encoded in SWRL rules [23], but the 
performance showed decline with the size of the repository. We implemented our own 
rule-based inference engine in Java, which makes use of the index structure created 
offline by running the indexing engine and it greatly improved the performance.  



10 

 

The other major components – VIZUALIZER, LOADER and LOGGER – provide interfaces 
for interaction with the user and the external repository, and for storing the graph tra-
versal. The VIZUALIZER can be used also as a rule editor as well.  

 

Fig. 4 Visual dashboard for simulation of the transactions under threats 

The framework can be used in several modes: modeling, indexing, validation, 
simulation and execution. In simulation mode the system runs through scenario of op-
eration under security threats, governed by the policy rules. The simulation begins from 
an initial situation and continues by emulating synchronous and asynchronous activities 
in a loop until it reaches a terminal situation. The events are triggered by external fac-
tors. The alternative actions are found by determining the applicable rules in each situ-
ation. Throughout the simulation the LOGGER produces a rich log of situations, events 
which occur, threats which are detected and actions executed upon firing applicable 
rules. Below is an abridged output of such a scenario which executes operation for 
crediting of an account after successful authentication: 

   Current situation is 's_Pay_In_Cash'  

   Action applicable to 's_Pay_In_Cash' is 'a_Cash_To_Be_Paid_In'  

   Rule applicable to 's_Pay_In_Cash' is rule 2 

 resulting_situation s_Balance_In_Credit 

   Rule applicable to 's_Pay_In_Cash' is rule 6 
 resulting_situation s_Balance_In_Credit  

   Event applicable to 's_Pay_In_Cash' is : e_Crediting_Account 

   Event applicable to 's_Pay_In_Cash' is : e_Logging_In_Unsuccessful 

   Rule applicable to event 'e_Crediting_Account' is rule 2 

 resulting_situation s_Balance_In_Credit  
   Rule applicable to event 'e_Crediting_Account' is rule 6 

The simulation can be used both for validating the policy rules as well as for obtain-
ing insight into the threats behavior and the effect they may have on the operations. 

Currently we are working on engines for analysis of network traffic, click-
stream data, event logs and transaction records. Later on we are planning to implement 
separate engines for all major cyber defense tasks - prevention, detection, prediction, 
countermeasures, as well as using learning from experience for analyzing the multiple 
logs from execution of the same scenario. 



11 

 

Acknowledgements 

The work on the framework has been carried out at the Cyber Security Research Centre of Lon-

don Metropolitan University. It was initiated in collaboration with Lloyds Bank and won a grant 

from UK DCMS. The examples in the paper are solely for the purpose of illustration and do not 

use any internal data from the bank. Any concepts, ideas and opinions formulated by the authors 

in this article are not associated with the current security practices of Lloyds Banking Group. 

References 

[1] Nearly, J.: 75% of banks were unprepared for cyber attacks in 2018 (2019), 

https://www.teiss.co.uk/threats/banks-cyber-threat-2018/, last accessed 2019/10/27. 

[2] Marous, J.: Technology Giants Pose Major Threat to Banking Industry. The Financial 

Brand (2019), last accessed 2019/10/27. 

[3] Acunetix: Logical and Technical Vulnerabilities – What they are and how can they be de-

tected? (2019), https://www.acunetix.com, last accessed: 2019/10/27. 

[4] Netsparker: Understanding the Differences Between Technical and Logical Web Applica-

tion Vulnerabilities (2019), https://www.netsparker.com/blog/web-security/logical-vs-tech-

nical-web-application-vulnerabilities/, last accessed: 2019/10/27. 

[5] Intruder Systems, A proactive vulnerability scanner, for your external infrastructure, 2019, 

https://intruder.io, last accessed: 2019/06/30.  

[6] Greenbone Networks, OpenVAS - Open Vulnerability Assessment System, 2019, 

http://www.openvas.org/, last accessed: 2019/07/01. 

[7] Rapid7, Nexpose. Your on-prem vulnerability scanner, 2019, https://www.rapid7.com, last 

accessed: 2019/07/01.  

[8] InfoSight, Network & Cyber Security Services, 2016, https://www.infosightinc.com/solu-

tions/it-security-services/network-security.php, last accessed: 2019/06/29. 

[9] Kenna Security, 2018, https://www.kennasecurity.com, last accessed: 2019/06/29.  

[10] Coalfire, Cyber Risk Services, https://www.coalfire.com, last accessed 2019/04/26. 

[11] Vigilant Software: vsRisk Cloud – Cyber risk assessments made simple (2019), 

https://www.vigilantsoftware.co.uk/topic/vs-risk, last accessed: 2019/10/27. 

[12] ABB: System 800xA Cyber Security - Maximizing cyber security in process automation, 

https://new.abb.com/control-systems; last accessed: 2019/10/27. 

[13] Google: CSP Evaluator, https://csp-evaluator.withgoogle.com/, last accessed: 2019/10/27. 

[14] Threatmodeler: The Evolution of Threat Modeling (2016), https://threatmodeler.com/evo-

lution-of-threat-modeling/, last accessed: 2019/10/27. 

[15] Blokdyk, G.: Threat modelling, 2nd ed., 5STARCooks (2018); ISBN: 0655196072. 
[16] Bataityte, K., Vassilev, V. and Gill, O.: Ontological Considerations of Situations and Ac-

tions in Description Logic as a Basis for Vulnerability Analysis (2019), to appear. 

[17] Allemang, D., Hendler, J., Semantic Web for the Working Ontologist, MK (2011). 

[18] McGuinness, D. and Van Harmelen, F. (eds.): OWL Web Ontology Language (2004), 

https://www.w3.org/OWL/, last accessed 2019/04/23. 

[19] Horrocks, I., Patel-Schneider, P. et al. (eds.): SWRL - A Semantic Web Rule Language 

(2004), https://www.w3.org/Submission/SWRL/; last accessed 2019/04/23. 

[20] Herzog, A., Shahmehri, N. and Duma, C.: An Ontology of Information Security. Int. J. Inf. 

Security and Privacy 1/4 (2007), pp. 1-23. 

[21] Souag, A., Salinesi, C. and Wattiau, I.: Ontologies for Security Requirements, In: Proc. Int. 

Conf. on Advanced Information Systems Engineering CAISE2010 (2010), pp. 61-69. 

[22] Iannacone, M., Bohn, S., Nakamura, G. et. al.: Developing an Ontology for Cyber Security 

Knowledge Graphs. Proc. ACM CISR'15 (2015), pp. 12:1-12:4. 

[23] Red Hat, Inc., Drools (overview), https://www.drools.org/; last accessed 2019/03/11. 


