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Abstract. We present new scale-free quantitative unique continuation principles
for Schrödinger operators. They apply to linear combinations of eigenfunctions corre-
sponding to eigenvalues below a prescribed energy, and can be formulated as an un-
certainty principle for spectral projectors. This extends recent results of Rojas-Molina
& Veselić [15], and Klein [10]. We apply the scale-free unique continuation principle
to obtain a Wegner estimate for a random Schrödinger operator of breather type. It
holds for arbitrarily high energies. Schrödinger operators with random breather po-
tentials have a non-linear dependence on random variables. We explain the challenges
arising from this non-linear dependence.

Resumé. Nous présentons de nouveaux principes de continuation unique indépen-
dants de l’échelle pour des opérateurs de Schrödinger. Nos résultats concernent des
combinaisons linéaires de fonctions propres correspondant aux valeurs propres au-
dessous d’une énergie prescrite et ils peuvent être formulés en terme de principes
d’incertitude pour des projecteurs spectraux. Ceci généralise des résultats récents de
Rojas-Molina & Veselić [15], et Klein [10]. Nous utilisons des estimations de contin-
uation unique indépendantes de l’échelle et obtenons ainsi une estimation de Wegner
pour un opérateur de Schrödinger aléatoire de type “breather”. De tels opérateurs
dépendent des variables aléatoires d’une façon non-linéaire et nous expliquons les
difficultés liées à cette non-linéarité.

1. Introduction

A Wegner estimate is an upper bound on the expected number of eigenvalues in a
prescribed energy interval of a finite box Schrödinger operator. The expectation here
refers to the potential which is random. The most studied example in this situation
is the so-called alloy-type potential, sometimes also called continuum Anderson model,
cf. Remark 2.9 below. A particular feature of this model is that randomness enters
the model via a countable number of random variables, and these random variables
influence the potential in a linear way. In the random breather model we study here, this
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dependence is no longer linear but becomes non-linear. What remains is the monotone
dependence of the potential on the random variables. The topic of the present note is to
explain how to effectively use this monotonicity in order to derive a Wegner estimate.
This only works if it is possible to cast the monotonicity in a quantitative form.

In order to achieve this, we use a scale-free uncertainty relation or unique continuation
principle for spectral projectors of Schrödinger operators, presented in Theorem 2.1. A
proof of Theorem 2.1 will be given in the forthcoming paper [14]. It answers positively
a question raised in [15]. A partial answer (for small energy intervals) had been given
shortly after in [10]. Previously, there has been in the literature on random operators
a plethora of related results, applicable in specialised situations, see e.g. [15] for a dis-
cussion. However, the lack of a result like Theorem 2.1 was a bottleneck for further
progress.

Estimates as in Theorem 2.1 have been developed and applied in a different area of
mathematics, namely control theory for partial differential equations, starting with the
seminal paper [12]. In this context they are called spectral inequalities. In fact, our proof
of Theorem 2.1 highlights how ideas from the theory of random Schrödinger operators
and control theory complement each other in an efficient way.

2. Results

Let d ∈ N∗ = {1, 2, 3, . . .}, δ > 0, L ∈ N∗ and V : Rd → R measurable and bounded.
Denote by ΛL = (−L/2, L/2)d a cube in Rd, by

SL,δ = ΛL ∩
( ⋃
j∈Zd

B(zj , δ)
)

the union of δ-balls centered at the points zj and contained in the corresponding unit
cubes Λ1 + j, and by HL one of the self-adjoint restrictions of the Schrödinger operator
−∆ + V to ΛL with either Dirichlet, Neumann, or periodic boundary conditions. We
formulate a scale-free quantitative unique continuation property for the operator HL.

Theorem 2.1. There is K0 = K0(d) such that for all δ ∈ (0, 1/2), all E ∈ R, all
measurable and bounded V : Rd → R, all L ∈ N∗, all sequences (zj)j∈Zd ⊂ Rd such that
∀j ∈ Zd : B(zj , δ) ⊂ Λ1 + j and all linear combinations of eigenfunctions

ψ =
∑

n∈N∗ : En≤E
αnψn

(where ψn ∈ W 2,2(ΛL;R) form an orthonormal basis and satisfy HLψk = Enψn and
(αn)n∈N∗ is a sequence in C) we have∫

SL,δ

|ψ|2 ≥ Csfuc

∫
ΛL

|ψ|2, where Csfuc = δK0

(
1+‖V ‖2/3∞ +|E|1/2

)
.

The constant Csfuc is called an observability constant or a scale-free unique continu-
ation constant. We can reformulate this statement as an uncertainty principle. For this
purpose, denote by χI(HL) the spectral projector of HL onto an interval I and by WL,δ

the characteristic function of the set SL,δ.

Corollary. Under the same assumptions as in the above Theorem we have

χ(−∞,E](HL) WL,δ χ(−∞,E](HL) ≥ δK0(1+‖V ‖2/3∞ +|E|1/2)χ(−∞,E](HL). (1)

Inequality (1) is to be understood in the sense of quadratic forms.
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Remark 2.2. For our purposes, the explicit quantitative dependence of the constant
Csfuc = Csfuc(δ, ‖V ‖∞, E) is essential. In particular, Csfuc does not depend on the scale
L ∈ N∗. It depends on the radius δ in a polynomial way, and on ‖V ‖∞ and |E| in an
exponential way. Note also that the constant is unaffected by a translation of a ball
B(zj , δ) as long as it stays in the corresponding unit cube. For any KV ≥ 0, the bound
is uniform in the ensemble of potentials {V : Rd → [−KV ,KV ] measurable}. This is
important, because we want to apply the theorem to random Schrödinger operators.
There the constant must not depend on the particular configuration of randomness.
Since the operator is lower bounded, we have χ(−∞,E](HL) = χ[−‖V ‖∞,E](HL).

To put this into context let us cite similar results from [12, 11, 2]. First we cite a
special case of [12, Corollary 2] and [11, Theorem 5.4].

Theorem 2.3 ([12]). Let Ω ⊂ Rd be bounded, open and connected, T > 0 and ω ⊂
Ω× [0, T ] open and non-empty with ω ⊂ (0, T )× Ω̊. Then there is C = C(T,Ω, ω) > 0
such that

∀ψ ∈ L2(Ω) : ‖eT∆ψ‖2L2(Ω) ≤ C
∫∫

ω
|et∆ψ|2.

While this result applies to parabolic equations, the next one is an adaptation to the
elliptic setting.

Theorem 2.4 ([11]). Let Ω ⊂ Rd be bounded, open and connected, and ω ⊂ Ω open
and non-empty with ω 6= Ω. Then there is K = K(ω,Ω) > 0 such that for all sequences
(αj)j∈N∗ ⊂ C and all E > 0 we have∥∥∥ ∑

n∈N∗ : En≤E
αnψn

∥∥∥2

L2(Ω)
≤ KeK

√
E
∥∥∥ ∑
n∈N∗ : En≤E

αnψn

∥∥∥2

L2(ω)
.

Here, En, n ∈ N∗, denote the ordered eigenvalues of −∆ on Ω with Dirichlet boundary
conditions with corresponding eigenfunctions ψn, n ∈ N∗.

In contrast to Theorem 2.1 the dependence of the observability constant in Theo-
rems 2.3 and 2.4 on the geometry of Ω and ω is not known. Next we cite [2, Theorem
3.4], where a quantitative dependence on the observability constant similar to Theo-
rem 2.1 is obtained. It applies to approximate solutions of the stationary Schrödinger
equation. A common feature of Theorems 2.5 and 2.1 is the appearance of the term
K2/3 and ‖V ‖2/3∞ , respectively in the exponent. This is due to the use of Carleman
estimates.

Theorem 2.5 ([2]). Let Ω ⊂ Rd be an open subset of Rd and consider a real measurable
function V on Ω with ‖V ‖∞ ≤ K <∞. Let ψ ∈ W 2,2(Ω) be real-valued and ξ ∈ L2(Ω)
be defined by −∆ψ + V ψ = ξ almost everywhere on Ω. Let Θ ⊂ Ω be a bounded and
measurable set where ‖ψ‖L2(Θ) > 0. Set

Q(x,Θ) := sup
y∈Θ
|y − x| for x ∈ Ω.

Consider x0 ∈ Ω \ Θ such that Q = Q(x0,Θ) ≥ 1 and B(x0, 6Q + 2) ⊂ Ω. Then given
0 < δ ≤ min{dist(x0,Θ), 1/24}, we have(

δ

Q

)m(1+K2/3)(Q4/3+log
‖ψ‖

L2(Ω)
‖ψ‖

L2(Θ)
)

‖ψ‖2L2(Θ) ≤ ‖ψ‖
2
L2(B(x0,δ))

+ δ2‖ξ‖2L2(Ω),

where m > 0 is a constant depending only on d.
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Now we discuss an application of Theorem 2.1 to random breather models, a class
of random Schrödinger operators where the randomness enters the potential in a non-
linear way. Consider a sequence ω = (ωj)j∈Zd of (almost surely) positive, bounded,
independent and identically distributed random variables with distribution measure µ,
as well as a compactly supported, measurable function u : Rd → R. The random breather
potential is the function

Vω(x) :=
∑
j∈Zd

u
(x− j

ωj

)
,

while the family (Hω)ω with Hω := −∆ + Vω is called random breather model.
Random breather potentials have been introduced in [4], and studied in [5] and [9].

However, all these papers assumed unnatural regularity conditions, excluding the most
basic and standard type of single site potential, where u equals the characteristic function
of a ball or a cube. This was not a coincidence but a consequence of the linearization
method used in the proofs. Our proof does not rely on linearization, but merely on
monotonicity. While we have results for a broad class of random breather models, we
restrict ourselves in this note for the purpose of clarity to the two mentioned cases, i.e.

u = χB1 , thus Vω(x) =
∑
j∈Zd

χBωj (x− j), (2a)

u = χΛ2 , thus Vω(x) =
∑
j∈Zd

χΛ2ωj
(x− j) (2b)

In fact, since our proofs are based on the analysis of level sets of random potentials, they
work also for other types of stochastic fields with non-linear, monotone randomness, not
just for random breather potentials. Specifically, the function ωj 7→ 〈φ, Vωφ〉 merely
needs to be polynomially increasing.

Note also that the random potential is uniformly bounded and non-negative, and thus
the operator Hω is self-adjoint.

Theorem 2.6 (Wegner estimate for the random breather model). Let Hω be as in (2).
Assume that µ has a bounded density ν supported in [ω−, ω+] with 0 ≤ ω− < ω+ < 1/2.
Fix E0 ∈ R. Then there are C = C(d,E0) and εmax = εmax(d,E0, ω+) ∈ (0,∞) such
that for all ε ∈ (0, εmax] and E ≥ 0 with [E − ε, E + ε] ⊂ (−∞, E0], we have

E
[
Tr
[
χ[E−ε,E+ε](Hω,L)

]]
≤ C‖ν‖∞ε[K0(2+|E0+1|1/2)]−1 |ln ε|d Ld.

The constant εmax can be chosen as

εmax =
1

4

(
1/2− ω+

2

)K0(2+|E0+1|1/2)

,

where K0 is the constant from Theorem 2.1.

Here E denotes the expectation w.r.t. the random variables ωj , j ∈ Zd, and Hω,L

the restriction of Hω to the cube ΛL with Dirichlet boundary conditions. Theorem 2.6
implies local Hölder continuity of the integrated density of states (IDS) and is sufficient
for the multiscale-analysis proof of spectral localization. This will be elaborated in detail
elsewhere.

Remark 2.7. The proof of Theorem 2.1 relies on Carleman estimates with and without
boundary term, see e.g. [12] and [6, 1], on interpolation inequalities and an auxiliary
Cauchy problem in d+ 1 dimensions as discussed in [12, 13, 8], and finally on geometric
covering arguments developed in the theory of random Schrödinger operators, e.g. [15].
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B(zj , δ/2)

Vω+δ − Vω

Figure 1. Illustration of the support of the increments Vω+δ−Vω (left)
and the choice of the balls B(zj , δ/2) (right). (Illustration des support
des incréments Vω+δ − Vω et du choix des boules B(zj , δ/2))

The proof of Theorem 2.6 relies on the method outlined in [7] and [15]. It can be traced
back to Wegner’s original work [17]. Additional steps are necessary, since the breather
model has a non-linear dependence on the random variables, unlike the well-studied
Anderson model. We also do not have the differentiability of the map ωj 7→ 〈φ,Hωφ〉
in the usual sense. Thus, for instance the proofs of [3, 10] do not apply. However, the
strategy of [7, 15] is quite versatile and can be adapted to our setting. The key idea is not
to rely on differentiability of quadratic forms but rather directly on the Courant-Hilbert
variational principle for eigenvalues.

In particular, the following lemma is crucial for the proof of Theorem 2.6. It relies
on the quantitative version of the uncertainty principle from Theorem 2.1. Denote the
eigenvalues of Hω,L by {En(ω)}n∈N∗ , enumerated increasingly and counting multiplici-
ties. For δ ∈ R we define ω + δ by (ω + δ)j := ωj + δ for all j ∈ Zd.

Lemma 2.8. Let Hω,L be as above and assume that ω ∈ [ω−, ω+]Z
d , δ ≤ 1/2 − ω+.

Then, for all n ∈ N∗ with En(ω) ∈ (−∞, E0] we have

En(ω + δ) ≥ En(ω) +

(
δ

2

)[K0

(
2+|E0+1|1/2

)]
,

where K0 is the constant from Theorem 2.1.

Thus, we obtain a lifting estimate on the eigenvalues which is independent on the
length scale. Details of the proof of Theorem 2.6 can be found in [16].

Remark 2.9 (Challenges due to non-linearity). The challenges are best understood by
comparing the breather model with the alloy-type potential Vω(x) =

∑
j∈Zd ωju(x −

j) (for simplicity consider u = χB(r)). The latter depends in a linear way on the
random coupling constants constituting the configuration ω = (ωj)j . In particular, the
derivatives of eigenvalues En(ω) (of finite box restrictions on −∆+Vω) w.r.t. each ωj are
easily calculated via the Hellman-Feynman formula. In contrast, for the breather model
the derivatives ∂

∂ωj
En(ω) are only defined in distributional sense. Thus, one is lead to

implement eigenvalue perturbation theory using increments Vω+δ − Vω, with positive δ.
Note that in the case of the alloy-type model, for any fixed δ, the increment Vω+δ − Vω
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is independent of the configuration ω and a Zd-periodic function. Therefore, it is not
needed to know the explicit dependence of Csfuc on δ. For the breather model this is not
the case. In particular, Vω+δ − Vω is a non-periodic function and its support depends
both on δ and ω. Specifically, it is a union of annuli of width δ and ω-dependent radii,
cf. Fig. 1. Technically, one has to estimate the mass of the square of an eigenfunction
in this support set as a function of ω and δ. For the application of Theorem 2.1 one has
to chose balls B(zj , δ/2) lying inside the annuli, see Fig. 1. To obtain Hölder continuity
of the IDS one has to control the behaviour of Csfuc as δ ↘ 0.
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