
 

 

 
 

OPEN ACCESS | www.cell-stress.com 240 Cell Stress | AUGUST 2018 | Vol. 3 No. 8 

www.cell-stress.com 

Review 

ABSTRACT  Inflammatory processes underlie many diseases as-
sociated with injury of the heart muscle, including conditions 
without an obvious inflammatory pathogenic component such as 
hypertensive and diabetic cardiomyopathy. Persistence of cardi-
ac inflammation can cause irreversible structural and functional 
deficits. Some are induced by direct damage of the heart muscle 
by cellular and soluble mediators but also by metabolic adapta-
tions sustained by the inflammatory microenvironment. It is well 
established that both cardiomyocytes and immune cells undergo 
metabolic reprogramming in the site of inflammation, which 
allow them to deal with decreased availability of nutrients and 
oxygen. However, like in cancer, competition for nutrients and 
increased production of signalling metabolites such as lactate 
initiate a metabolic cross-talk between immune cells and cardi-
omyocytes which, we propose, might tip the balance between 
resolution of the inflammation versus adverse cardiac remodel-
ing. Here we review our current understanding of the metabolic 
reprogramming of both heart tissue and immune cells during 
inflammation, and we discuss potential key mechanisms by 
which these metabolic responses intersect and influence each 
other and ultimately define the prognosis of the inflammatory 
process in the heart. 
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INTRODUCTION 
Metabolic reprogramming of immune cells during tissue 
inflammation has been intensely investigated as reviewed 
elsewhere [1-5]. Notably, three key concepts have 
emerged from these studies. First, the effector functions of 

immune cells depend on metabolic reprogramming in re-
sponse to activation. For example, resting immune cells 
utilize energetically efficient processes such as the Kreb’s 
cycle linked to the generation of adenosine triphosphate 
(ATP) via oxidative phosphorylation (OXPHOS) [2] and shift 
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Abbreviatons: 
AMPK – AMP-activated protein kinase, ATP – 
adenosine triphosphate, CAD – coronary artery 
disease, CK – creatine kinase, CMR – cardiac 
magnetic resonance, CRP – C-reactive protein, DAG – 
diacylglycerol, DC – dendritic cell, DCM – dilated 
cardiomyopathy, ERR – estrogen-related receptor, 
ETC – electron transport chain, FA – fatty acid, FFA – 
free FA, GC – germinal center, HFpEF – HF with 
preserved ejection fraction, HIF – hypoxia¬inducible 
factor, IL – interleukin, LDH – lactate dehydrogenase, 
LV – left ventricular, LPS – lipopolysaccharide, MCT – 
monocarboxylate transporter, MI – myocardial 
infarction, MIF – migration inhibitory factor, mTOR – 
mammalian target of rapamycin, NK – natural killer, 
OXPHOS – oxidative phosphorylation, PARP – poly-
(ADP-ribose)-polymerase, PCr – phosphocreatine, 
PDH – pyruvate dehydrogenase, PFK – 
phosphofructokinase, PKC – protein kinase C, PPAR – 
peroxisome proliferator¬activated receptor, ROS – 
reactive oxygen species, T1D – type 1 diabetes, T2D – 
type 2 diabetes, TAG –  triacylglycerol, TCR – T cell 
receptor, TNF – tumor necrosis factor, Treg – 
regulatory T cell, TTA – tetradecythioacetic acid. 
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to aerobic glycolysis in response to inflammatory stimuli 
[6]. Second, the metabolic status of the whole body has 
been shown to affect functional and metabolic responses 
of both immune cells and organs. For example, the micro-
biome and metabolites produced by commensal bacteria 
are known to affect immune cells as well as organ homeo-
stasis [7] and systemic metabolic diseases such as diabetes 
and obesity can adversely impact immunity and the func-
tion of a variety of organs [7]. Finally, the metabolic adap-
tation of immune cells is strongly affected by the microen-
vironment of the inflammatory site, in terms of nutrient 
availability, oxygen tension and the production of signalling 
metabolites by the diseased tissue itself. Cancer is para-
digmatic of this effect, whereby aberrant metabolic re-
sponses by immune cells in response to the tumour micro-
environment result in the induction of immune paralysis 
and cancer survival and expansion [8]. Similar observations 
have been made in the context of chronic inflammation [9]. 

While much is known about the metabolic configura-
tion of immune cells in homeostasis and inflammation as 
well as the effects of systemic metabolism on immune cell 
function, the metabolic cross-talk between immune cells 
and organ parenchymal cells has been a challenging issue 
to address. This is mainly due to the complexity of defining 
the relative contribution of different cellular components 
to the metabolic microenvironment on effector immunity 
and vice versa. Unravelling the influence of the tissue mi-
croenvironment on the cross-talk between immune and 
parenchymal cells during inflammation leading to tissue 
damage and organ failure is vital to identify prognostic 
biomarkers and novel targets for therapeutic intervention. 
A vast amount of reported observations has associated 
metabolic syndrome – a heart-extrinsic factor - with heart 
functional impairment as well as systemic sub-clinical 
chronic inflammation, pointing to metabolic dysfunction as 
a key determinant of inflammatory heart disease.  

In this review, we summarize key concepts in metabolic 
adaptation in the heart and immune cells in steady-state 
and inflammation. We highlight cardiac inflammation as a 
condition in which well-defined systemic and cellular com-
ponents and metabolic pathways can provide a new para-
digm to understand the reciprocal regulation of immune 
cell and tissue metabolism in inflammatory diseases. 
 

CAVEATS AND DEFINITIONS: WHAT IS INFLAMMATORY 
DISEASE OF THE HEART MUSCLE?  
An enormous amount of data is available on the link be-
tween metabolic syndrome, inflammation and atheroscle-
rosis, including coronary artery disease (CAD). A number of 
clinical trials has examined the effects of anti-inflammatory 
therapy on these conditions, with mixed outcomes as their 
interpretation is hugely varying [10-12]. This topic has been 
extensively reviewed elsewhere [10-12]. While CAD can 
indirectly affect cardiac function and metabolism, this re-
view focuses on the direct effects of systemic inflammation 
on heart muscle inflammation (myocarditis), function and 
metabolism. Atherosclerosis is an inflammatory disease of 
the vasculature which impacts both cardiac function and 

energetics, which is however distinct from inflammation of 
the heart muscle itself. Myocardium inflammation is com-
monly associated with an acute viral infection of the heart 
which normally resolves but can sometimes persist as an 
autoimmune condition, leading to heart muscle dysfunc-
tion and ultimately, heart failure (HF). Myocarditis is noto-
riously difficult to diagnose, and its viral aetiology appears 
to account for only a fraction of clinically diagnosed heart 
inflammation. A key concept recently pioneered by Hey-
mans and colleagues is that besides direct inflammatory 
responses in the heart, such as those detected in viral my-
ocarditis, genetic predisposition in association with envi-
ronmental factors can initiate and sustain cardiac inflam-
mation leading to heart failure [13]. About 40% of acute HF 
is diagnosed as idiopathic/inflammatory dilated cardiomy-
opathy (iDMC). This alternative definition is not necessarily 
based on histological evidence, as endomyocardial biopsy 
has limited sensitivity [14]. Overall, persisting cardiac in-
flammation appears to be a feature of a large proportion of 
heart conditions beyond viral acute myocarditis. Typical 
examples include ischemic cardiomyopathy and HF with 
preserved ejection fraction (HFpEF) and, more recently 
fulminant myocarditis as a serious adverse reaction of can-
cer therapies that enhance T cell responses [15]. Although 
treatment has dramatically improved survival post-
myocardial infarction (MI), more than 20% of patients sub-
sequently develop cardiomyopathy and HF. Ischemia-
induced cardiomyocyte death activates an inflammatory 
response that serves to clear the injured myocardium from 
dead cells, and stimulates repair.  

However, cardiomyocyte necrosis is also a powerful ini-
tiator of autoimmune inflammation of the heart leading to 
HF (reviewed in [16]). Interleukin-1(IL-1) α and RNA re-
leased by necrotic cardiomyocytes are key danger signals 
that trigger the inflammatory response following MI (re-
viewed in [17]). IL-1 induces a proinflammatory phenotype 
in leukocytes and fibroblasts, and delays myofibroblast 
transdifferentiation. Anti-inflammatory regulatory T cells 
(Tregs) exert negative regulation of the inflammatory re-
sponse post-MI by modulating macrophage and fibroblast 
phenotype. Cardiac macrophages exhibit significant heter-
ogeneity and phenotypic plasticity and may orchestrate the 
reparative response following infarction [17]. The persis-
tence of inflammation can cause immune-mediated tissue 
damage [16] and progressive structural changes such as 
left ventricular (LV) remodeling and functional impairment 
[18-20]. Collectively, these studies reveal a complex cross-
talk between cells of the immune system and the myocar-
dial parenchyma, which likely determines the fate of the 
inflammatory process. Similarly, systemic inflammation, 
and in particular that induced by metabolic syndrome, can 
drive disease of the myocardium. For example, there is 
rising consensus that HFpEF is primarily driven by inflam-
mation induced by ageing and related comorbidities, in-
cluding obesity and diabetes [21, 22]. In line, therapeutic 
interventions with anti-inflammatory properties have been 
also shown to protect from experimental HFpEF [23]. A link 
between systemic inflammation and cardiac has also been 
reported by studies correlating systemic inflammation 
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markers (ie. cytokines) with well-known cardiac arrhythmi-
as including atrial fibrillation and ventricular tachycardia 
[24]. Despite this evidence, diagnostic and prognostic bi-
omarkers of cardiac inflammation and, importantly, mech-
anistic studies are missing. We propose that disturbances 
in the metabolic configuration of the heart muscle, with its 
lifetime of varying workload and energy demand, are in-
duced by direct and indirect cross-talk with inflammatory 
immune cells via both nutrient and oxygen competition as 
well as direct signals by cytokines and metabolites. If cor-
rect, this hypothesis would justify therapeutic immune 
targeting in heart inflammatory disease, a much controver-
sial approach.  

A major obstacle to resolve controversy is the lack of 
clear markers of heart inflammation. Endomyocardial biop-
sy (EMB), the gold standard for myocarditis diagnosis, in-
cludes risks of severe complications (1.5%) and has notori-
ously poor diagnostic sensitivity (as low as 18% for single, 
43% for five biopsies). Cardiac magnetic resonance (CMR) 
is a powerful tool for detection of acute cardiac inflamma-
tion but has limited diagnostic accuracy for chronic in-
flammatory disease. Critically, CMR cannot identify cause 
or type of inflammatory infiltrate, features predicting 
prognosis.  

C-reactive protein (CRP) measurement can certainly in-
dicate the presence of an inflammatory process but gives 
little insight on its location, pathogenesis and stage. Until a 
breakthrough in the pathophysiology of cardiac inflamma-
tion diagnosis is achieved, CRP remains the only, albeit not 
ideal pathologic cue.  

Is it possible that metabolic parameters might reveal 
more to the clinician than conventional inflammation cues? 
Reviews of recent trials targeting inflammation in CAD 
have argued that immunometabolic correction with statins 
is superior and less prone to severe side effects attached to 
direct immunomodulation [12]. We have also proposed 
that modulation of systemic and cellular metabolism might 
provide an optimal strategy to reduce organ inflammatory 
disease [7]. To this aim, a systematic analysis of the im-
munometabolic cross-talk between parenchymal cells and 
immune cells is paramount to design effective therapeutic 
approaches.  

Here, we summarize the physiological metabolism of 
heart muscle and provide example of its alteration in para-
digmatic heart diseases with a known metabol-
ic/inflammatory pathogenesis. In parallel, we will review 
key concepts in inflammatory immunometabolism and its 
potential impact on tissue metabolic steady state and ad-
aptation.   

 

METABOLIC FLEXIBILITY OF THE HEALTHY HEART 
The heart is predominantly an aerobic organ and relies on 
the oxidation of exogenous substrates, such as free fatty 
acids (FFA), glucose, lactate, ketone bodies, and some ami-
no acids, to generate ATP, the major source of energy. The 
process of metabolic substrate selection is dynamic and 
depends largely on substrate availability, O2 concentration, 
and myocardial workload [25, 26]. The heart has an enor-

mous ATP demand— with 2% of its total ATP reserves con-
sumed per beat, it turns over its total ATP pool in less than 
one min and utilizes six kg of ATP daily [27-29]. Fine control 
of mitochondrial and cytosolic ATP-generating pathways is 
critical to meet the energy demands of cardiac muscle [25]. 
Supply must be matched to demand as failure to provide 
an adequate amount of ATP causes a decrease in cellular 
free energy leading to functional decline. Under normal 
physiological conditions, more than 90% of ATP is generat-
ed in mitochondria [29]. Enormous myocardial ATP de-
mand is primarily related to energy-dependent processes 
driving excitation-contraction (EC) coupling [30] (Figure 1). 
About 70–75% of total intracellular ATP is used for force 
generation powering work output, with the remaining  
25–30% used for basal metabolism [25].   

To synthesize the ATP required to support normal func-
tion, the adult heart converts chemical energy primarily 
stored in FFAs (60–90%) and pyruvate (derived from glu-
cose and lactate 10–40%) into mechanical energy for con-
traction [31]. There are three principal stages of myocardi-
al ATP supply. The first stage includes metabolic substrate 
delivery, their selection, uptake and oxidation to generate 
acetyl-CoA for Kreb’s cycle entry. The second stage, 
OXPHOS, consists of electron shuttling from cytosolic to 
mitochondrial reducing equivalents (primarily via the mal-
ate-aspartate shuttle), transfer of energy by electrons from 
reducing equivalents to O2 [via electron transport chain 

(ETC) complexes], and generation of an electrochemical 
proton gradient within the mitochondrial intermembrane 
space (by complexes I, III, and IV). The release of this gradi-
ent is coupled to the synthesis of ATP from ADP by F0F1-

ATPase (complex V), accounting for 95% of ATP synthesis 
under aerobic conditions (Figure 1). The third stage is 
phosphotransfer referring to the delivery of ATP from mi-
tochondria to sites of use (Figure 1) [29]. Phosphotransfer 
involves ADP-ATP exchange across the inner mitochondrial 
membrane by the adenine nucleotide transporter (ANT) 
and propagation of local ATP/ADP disequilibria by the crea-
tine kinase shuttle, and to lesser extent by adenylate ki-
nase [32] (Figure 1). However, cardiac workload varies con-
stantly, including several-fold increase in cardiac output 
during exercise, thus requiring rapid and continuous 
matching of ATP supply to demand. This renders the heart 
a metabolic omnivore, giving it a high degree of substrate 
flexibility to rapidly switch substrate preference and utiliza-
tion [31].This is also reflected in the high proportion 
(>30%) of cardiomyocyte volume occupied by mitochon-
dria and mandated by the low stored ATP content, suffi-
cient  to power only ten cardiac cycles, and including phos-
photransfer buffer systems, a further 20 cardiac cycles [33]. 

In order to avoid energetic inefficiency and “waste”, 
myocardial ATP supply is optimized via the Randle (glu-
cose–fatty acid) cycle which regulates the opposing rela-
tionship between carbohydrate and FFA metabolism [34]. 
FFA enter the cytosol via metabolic transporters, such as 
FA translocase/CD36 (FAT/CD36), plasma membrane FA 
binding protein (FABPpm), and FA transport proteins 
(FATP1 and 6) [35] (Figure 1). In response to stimuli, such 
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as increased insulin or activation of AMP-activated protein 
kinase (AMPK), FAT/CD36 translocates from intracellular 
vesicles to the sarcolemma to increase the uptake of FFA 
[36]. Upon entry into the cytosol, the non-esterified FA are 
esterified to fatty acyl-CoA. Depending on myocardial de-
mand, fatty acyl-CoA is either stored in the myocardial lipid 
pool or enters the mitochondria for β-oxidation via the 
carnitine shuttle carnitine palmitoyl transferase-1 (CPT-1), 
the rate-limiting enzyme for mitochondrial uptake of FA 
[35] (Figure 1).  

 

FFA oxidation triggers an increase in mitochondrial ra-
tios of [acetyl-CoA]/[CoA] and [NADH]/[NAD+], both of 
which inhibit the activity of pyruvate dehydrogenase (PDH) 
complex. Ketone bodies, metabolic products of FFA oxida-
tion in the liver, can also be metabolised to acetyl-CoA for 
entry into Kreb’s cycle [37] (Figure 1).  

Myocardial glucose uptake is facilitated by metabolic 
transporters, principally by the glucose transporter 1 
(GLUT1, insulin-independent) and insulin-dependent 
GLUT4 [38]. Similar to FAT/CD36, in response to stimuli 
glucose transporters also ‘shuttle’ between intracellular 

FIGURE 1: Interplay between ATP supply and excitation-contraction coupling in the healthy heart. The delivery of metabolic substrates, 
their selection and uptake are followed by OXPHOS. It involves electron shuttling from cytosolic to mitochondrial reducing equivalents, 
transfer of energy by electrons from reducing equivalents to ETC complexes and generation of electrochemical proton (H+) gradient 
within the mitochondrial intermembrane space (respiratory complexes I, II, II, III, IV). The release of H+ gradient is coupled to the synthe-
sis of ATP from ADP + Pi by F0,F1-ATPase (complex V), contributing >95% of ATP synthesis under aerobic conditions. The final stage of 
myocardial ATP supply (phosphotransfer) involves delivery of ATP from mitochondria to sites of use. This involves ADP–ATP exchange 
across the inner mitochondrial membrane by the adenine nucleotide transporter (ANT) and propagation of local ATP/ADP disequilibria 
primarily by the creatine kinase (CK) [25]. TAG, triacylglycerol; PCr, phosphocreatine; ANT, adenine nucleotide transporter; GLUT, glucose 
transporter; CD36, fatty acid transporter; PPP, pentose phosphate pathway; LDH, lactate dehydrogenase; PDH, pyruvate dehydrogenase; 
CPT, carnitine palmitoyltransferase; CACT, carnitine–acylcarnitine translocase; MCU, mitochondrial calcium uniporter; α-KDH, α-
ketoglutarate dehydrogenase; IDH, isocitrate dehydrogenase; mitoCK, mitochondrial creatine kinase; IMM, inner mitochondrial memb-
rane; OMM, outer mitochondrial membrane; Q, quinone pool; c, cytochrome c; MPC, mitochondrial pyruvate carrier; e−, electrons; 
*Mitochondrial calcium-sensitive dehydrogenases (pyruvate dehydrogenase, isocitrate dehydrogenase and α-ketoglutarate dehydro-
genase) RYR0 ryanodine receptor, SERCA- sarcoendoplasmic reticulum Ca2+ ATPase. 
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vesicles and the sarcolemma. Intracellular glucose is im-
mediately phosphorylated by hexokinase to glucose-6-
phosphate, which enters glycolysis, glycogenesis, the pen-
tose phosphate pathway, or the hexosamine biosynthetic 
pathway (Figure 1). Glycolysis generates a small amount of 
ATP independent of O2 availability, and is regulated mainly 
by phosphofructokinase, which is inhibited by cytosolic 
citrate from the Kreb’s cycle. Cytosolic citrate is also the 
major precursor of malonyl-CoA, which inhibits CPT-1 [39]. 
In normoxia, the end product of glycolysis is pyruvate, 
which enters mitochondria for oxidation. In hypoxia, py-
ruvate is reduced to lactate in the cytosol. Mitochondrial 
PDH is the key enzyme governing the oxidative decarboxy-
lation of pyruvate to acetyl-CoA (Figure 1). Lactate, readily 
extracted from the bloodstream, can be converted to py-
ruvate in the cytosol and further metabolized to acetyl-CoA 
for ATP generation [37]. Arising as the common end prod-
uct from the oxidation of a variety of substrates, acetyl-
CoA enters the Kreb’s cycle to produce NADH and FADH2, 
which donate electrons to the ETC thereby creating the 
proton electrochemical gradient needed to generate ATP. 
FFA oxidation generates more ATP compared to glucose, 
but at the expense of greater O2 consumption. Therefore, 
low O2 availability drives more metabolically efficient glu-
cose oxidation [31]. 

By controlling intracellular concentrations of ADP and 
creatine, the creatine kinase (CK)-mediated phosphotrans-
fer system stimulates both phosphotransfer and OXPHOS 
flux. This mechanism becomes particularly important at 
high workloads. Limitations in CK capacity would therefore 
be expected to limit myocardial contractile reserve at high 
workloads, assuming O2 supply is not limiting. Unlike skele-
tal muscle, the heart demonstrates stable time-averaged 
NADH/NAD+ as well as concentrations of phosphocreatine 
and ATP over a wide range of workloads.[40]. A study in 
the reperfused heart has shown that return of contractile 
function correlates with ATP turnover, not with [ATP] [41]. 
 
Regulation of cardiac metabolism  
Long-term metabolic substrate utilization is governed by 
the activity of transcription factors that increase or sup-
press the expression of the key metabolic enzymes. In this 
context, a pivotal role is played by the peroxisome prolifer-
atoractivated receptors (PPARs), a superfamily of nuclear 
receptors [42] (Figure 1). PPARα is the member of this fam-
ily that is most abundantly expressed in the myocardium, 
where it upregulates the transcription of genes related to 
FA uptake and oxidation. Similarly, estrogen-related recep-
torα (ERRα; also known as ESRRA) and ERRγ (also known as 
ESRRG) target a wide set of genes related to the uptake of 
metabolic substrates, ATP translocation across mitochon-
drial membranes, and calcium handling [43] (Figure 1). 
PPAR activation requires coactivation with PPARγ co-
activator 1α (PGC1α) or PGC1β, essential regulators of mi-
tochondrial biogenesis [44], and the binding of PPARs to 
intermediates of lipid metabolism [45]. Lipid ligands induc-
ing PPARα–PGC1α activation mainly derive from lipolysis of 
the intracellular triacylglycerol (TAG) pool [46].  
 

ATP sensing in the heart  
AMPK is a stress-activated kinase that functions as a cellu-
lar fuel gauge and a critical metabolic regulator. The activi-
ty of AMPK is primarily determined by the cellular energy 
state, reflected in the ratio of AMP (and ADP) to ATP. Acti-
vation of AMPK requires the phosphorylation of its α subu-
nit at Thr172 by two upstream kinases, liver Kinase B1 
(LKB1) and Ca2+/calmodulin-dependent kinase kinase 
(CaMKK)-β [47]. Once activated, AMPK inhibits various 
anabolic pathways, including protein synthesis via its 
action on both mTOR/p70S6K and eEF2 pathways and 
enhances catabolic pathways, to restore energetic bal-
ance required for cell survival [48]. Myocardial AMPK 
regulates genes related to mitochondrial energy metabo-
lism, including medium chain acyl-CoA dehydrogenase 
(MCAD), CPT-1, cytochrome C, and uncoupling protein 
(UCP)-3 [49]. These transcriptional effects are mediated 
partly by activation of ERRα transcription factor [49]. Fur-
thermore, AMPK regulates peroxisome proliferator acti-
vated receptor gamma co-activator (PGC)-1α, a critical 
modulator of cardiac gene expression and mitochondrial 
biogenesis. Activated AMPK increases the expression of 
PGC-1α in hypoxic cardiomyocytes [50]. AMPK phosphory-
lation of acetyl-CoA carboxylase (ACC2) inhibits its activity 
and the synthesis of malonyl-CoA, a potent inhibitor of 
carnitine palmitoyltransferase-1 (CPT-1). The decrease in 
malonyl-CoA levels, relieves the inhibition of CPT-1, the 
rate-limiting step for heart fatty acid oxidation [51].  

AMPK also stimulates glucose transport and glycolysis. 
It increases GLUT4 translocation to the sarcolemma by 
phosphorylating Rab GTPase-activating proteins (GAP) that 
regulate Rab10, modulators of docking and fusion of 
GLUT4 vesicles with the plasma membrane [52]. Further-
more, AMPK decreases the endocytosis of GLUT4 leading 
to increased sarcolemma GLUT4 content and glucose up-
take [53]. AMPK acts downstream to glucose transport, by 
indirectly increasing the activity of phosphofructokinase 
(PFK)-1, the rate-limiting enzyme in glycolysis. Activated 
AMPK directly phosphorylates and stimulates PFK-2 to syn-
thesize fructose 2,6-bisphosphate, which in turn allosteri-
cally activates PFK-1 [54]. These increases in myocardial 
glucose transport and glycolysis are important components 
of the metabolic response to ischemia or hypoxia [55]. 

 

MYOCARDIAL METABOLIC ADAPTION TO STRESS 
Myocardial inflammation has emerged as a pathophysio-
logic process contributing to cardiac hypertrophy, fibrosis 
and dysfunction in context of heart disease [18, 56, 57]. 
Accumulating evidence also suggests that myocardial in-
flammation is also implicated in the development of dia-
betic cardiomyopathy [58, 59] Several pathological insults 
can trigger myocardial inflammation which initially repre-
sents an adaptive mechanism against stress [18, 56, 57] but 
becomes maladaptive if stress stimulus persists. Various 
pathological stressors directly induce the secretion of cyto-
kines, chemokines [interleukin (IL8), monocyte chemoat-
tractant protein-1 (MCP-1)] and adhesion molecules (vas-
cular adhesion molecule 1, intracellular adhesion molecule-
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1 (ICAM-1)] in cardiomyocytes, fibroblasts and endothelial 
cells that promote myocardial recruitment of monocytes 
and lymphocytes [18, 56-58]. However, clear distinction 
exists between chronic myocardial inflammation and the 
myocardial inflammation associated with viral myocarditis. 
Systemic inflammation is subclinical and contributes to the 
development of cardiac abnormalities in the long term. In 
contrast, cardiac metabolism can be affected by local in-
flammatory processes – such as in myocarditis and MI 
leading to adverse remodeling and HF in rapid manner. 
Here we summarize two paradigmatic examples of cardiac 
metabolic adaptation in common conditions of systemic 
inflammation.  

 
Metabolism of the failing heart 
HF imposes an enormous, worldwide clinical and economic 
burden, with its increasing prevalence due to progressive 
ageing of the general population. First identified in the 
early 20th century, and now a well-established energy star-
vation hypothesis, it is proposed that maladaptive meta-
bolic remodelling precedes, initiates and maintains adverse 
contractile dysfunction in hypertrophy and HF [29, 30]. 
Advances in analytical technologies have improved our 
insights into the “engine out of fuel” metabolic HF phe-
nomenon and helped to classify metabolic alterations lead-
ing to myocardial energy starvation. HF is accompanied by 
derangements of all three fundamental steps of energy 
metabolism: substrate uptake and utilization, OXPHOS, and 
energetics [29]. Using in vivio 31P nuclear magnetic reso-
nance (NMR), Neubauer and colleagues [29] found that the 
myocardial phosphocreatine-to-ATP ratio (PCr:ATP) can be 
used as a reliable prognostic indicator of dilated cardiomy-
opathy (DCM) where 44% of DCM patients with a PCr:ATP 
of <1.6 died of cardiovascular causes vs. 5% with a PCr:ATP 
of >1.6. There have also been numerous preclinical studies 
as well as clinical data inferring mitochondrial respiratory 
impairment (complex activities and/or altered expression 
of the ETC complexes, ATP synthase and adenine nucleo-
tide translocase) in hypertrophy and HF [60-62]. 

The size and number of mitochondria are altered in the 
failing myocardium. There is evidence of mitochondrial 
misalignment, disorganized cristae, reduced density, mem-
brane disruption and aggregation [63]. Reactive oxygen 
species (ROS) production from dysfunctional mitochondrial 
electron transport chain ETC/ATP synthesis intensifies oxi-
dative damage of proteins, lipids and DNA, in a vicious am-
plifying cycle of mitochondrial dysfunction and ROS pro-
duction, leading to cardiomyocyte loss [63]. Many studies 
have explored the relationship between decompensated 
cardiac remodelling and cardiac substrate utilization. 
Whereas the question of whether FFA utilization is de-
creased [64-67]

 
or unchanged [68, 69] during compensated 

hypertrophy remains subject to debate, the majority of 
studies reported that the development of overt cardiac 
dysfunction is accompanied by reduced FFA oxidation [70, 
71] (Figure 2A). This metabolic shift was confirmed in mul-
tiple animal models of HF, including ischaemic [72] and 
pacing-induced [73]

 
HF, and was supported by clinical stud-

ies reporting a reduced FFA oxidative capacity in HF [74, 
75].  

Reduced FFA oxidation might be explained at least in 
part by suppression of PPARα signaling [76, 77] and possi-
bly activation of the hypoxiainducible factor 1α (HIF1α)–
PPARγ signalling axis [78], which impairs mitochondrial FFA 
transport and downregulates the expression of enzymes 
for FFA oxidation [79] (Figure 2A). However, a metabolic 
switch away from FFA oxidation is not accompanied by a 
decrease in myocardial FFA uptake (Figure 2A). Paradoxi-
cally, FFA plasma levels are increased in the advanced 
stages of HF, potentially due to sympathetic activation and 
consequent increased delivery of FFA to cardiac myocytes 
[80]. The mismatch between FFA uptake and oxidation 
leads to intracellular accumulation of lipids [78, 81], which 
are partly stored as TAGs (Figure 2A), but are also cha-
nelled into non-catabolic pathways, generating toxic lipids, 
such as ceramide and diacylglycerol (DAG; Figure 2A). This 
lipotoxicity leads to mitochondrial dysfunction and apopto-
sis and might contribute to the progression of HF [82, 83]. 
Furthermore, intracellular accumulation of FFAs contrib-
utes to the development of insulin resistance by inducing 
posttranslational modifications of several components of 
the insulin signalling cascade [84, 85]. In patients with de-
compensated HF, mechanical unloading by LV assist device 
implantation reduced lipid levels and restored myocardial 
insulin signaling [86]. Thus, collectively there is enough 
evidence to indicate that oversupply of substrates contrib-
utes to the progression of cardiac dysfunction, and insulin 
resistance has been proposed as the beneficial myocardial 
mechanism protecting it from the detrimental effects of 
fuel overload [87].  

HF is characterized by a perturbed glucose metabolism: 
an increase in glucose uptake and glycolytic rates is not 
accompanied by a concomitant increase in glucose oxida-
tion [71, 88, 89] (Figure 2A). This mismatch between in-
creased glycolytic activity has been observed in the exper-
imental models of cardiac pressure overload [65, 69] and a 
study in patients with end stage HF [90]. It could be caused 
by multiple factors: increased activity of the ratelimiting 
glycolytic enzyme ATPdependent 6phosphofructokinase 
(PFK1) [91], unchanged or decreased pyruvate oxidation in 
mitochondria [92], impaired glucose and lactate oxidation 
related to defective mitochondrial oxidative metabolism 
[93, 94] and myocardial insulin resistance [93, 95] (Figure 
2A). Therefore, although the relative contribution of glu-
cose oxidation to ATP production increases in HF, the abso-
lute substrate flux through glucose oxidative pathways 
actually decreases. Furthermore, in the late stages of HF 
cardiac glucose uptake is impaired as a consequence of 
decreased insulin sensitivity of the myocardium, thereby 
further reducing the availability of glucose for ATP synthe-
sis [96].  

Although a shift towards glucose oxidation in end stage 
HF could be beneficial given its higher metabolic efficiency 
than FFA oxidation, it is unlikely to compensate fully for the 
decrease in FFA utilization. An additional compensatory 
mechanism in cardiac hypertrophy is anaplerosis — the use 
of alternative oxidative pathways to generate Krebs cycle 
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intermediates independent of acetyl-CoA [89]. Carboxyla-
tion of pyruvate to malate is a major anaplerotic reaction, 
which might partly account for the mismatch between 
glycolytic flux and glucose oxidation in mitochondria [89, 
97]. However, anaplerotic reactions are energetically less 
efficient than pyruvate oxidation because they bypass oxi-
dative decarboxylation and other ATP-producing stages of 
the Kreb’s cycle [70].  

Two reports have shown an upregulation of enzymes 
and metabolic intermediates involved in ketone body oxi-
dation in animal models [98] and patients with end stage 
HF [74], indicating that ketone bodies might become a 
more relevant energy source in this setting (Figure 2A). 
Ketone bodies are not readily available from food, but pro-
duced in the liver by incomplete oxidation of FFA released 
from adipose tissue in response to fasting. Because the ATP 
production:oxygen consumption (P:O) ratio of the ketone 
body β-hydroxybutyrate (2.50) is higher than that of FFA 
palmitate (2.33), βhydroxybutyrate was proposed as the 
‘super fuel’ [99] and that stimulating ketone body over FFA 
oxidation might be an adaptation to increase myocardial 
metabolic efficiency. However, this hypothesis is the sub-
ject to the same caveat affecting the general myocardial 
energy starvation model — it assumes that an increase in 
ATP production efficiency would ameliorate cardiac dys-
function [42]. Consequently, the question of whether an 
increased utilization of ketone bodies is an adaptive or 
maladaptive response remains unanswered.  

ATP produced by OXPHOS needs to be transmitted to 
cellular regions of high ATP demand. Inside mitochondria, 
the phosphate bond of ATP is transferred to creatine by 
the mitochondrial creatine kinase (mitoCK) to form phos-
phocreatine (PCr), which rapidly diffuses to the cytosol, 
where the phosphoryl group is transferred back to ADP by 
the cytosolic CK (Figure 2A) [32]. Thus, the CR-mediated 
shuttle operates as ATP buffer, preventing an increase in 
cytosolic ADP by promptly regenerating ATP. These opti-
mized control mechanisms maintain stable levels of high 
energy phosphates even during haemodynamic challenges 

to the heart [29]. Many studies using 
31

P-MRS have report-
ed reduced PCr:ATP ratios in patients with HF [100], pre-
dicting LV dysfunction and poor outcomes [100]. Strong 
evidence from the literature indicates that HF is associated 
with severe impairment of the CK system (Figure 2A), 
which affects the ATP delivery to the contractile apparatus 
and ion pumps. However, the results from the mouse 
models of creatine/CK deficiency challenge the idea that 
PCr is essential to sustain cardiac function in response to 
pathological stressors [101]. Thus, the causative role of the 
CK-mediated phosphotransfer defect in the pathogenesis 
of HF is still subject to debate. 

A number of intracellular signalling pathways have 
been implicated in the aetiology and regulation of cardiac 
hypertrophy and HF (reviewed in [102]) including the 
AMPK-mediated pathway. In chronic pressure overload-
induced cardiac hypertrophy, the AMPK activity was shown 
to increase [103], suggesting that AMPK activation could be 
necessary compensatory consequence of pressure-

overload. This increase in AMPK activity has been suggest-
ed to be a major contributor to enhanced glucose uptake 
in hypertrophy [103], which may be a beneficial metabolic 
adaptation for an energy-starved heart. However, in con-
trast, increased AMPK activity in the hypertrophic heart 
may also contribute to the loss of metabolic flexibility and 
progression to failure by accelerating FFA oxidation at the 
expense of glucose oxidation. This would uncouple glycoly-
sis from glucose oxidation, resulting in increased proton 
production. Increase in proton production is detrimental to 
the metabolically stressed heart. It leads to accelerated 
Ca2+ overload due to increased Na+/H+ and Na+/Ca2+ ex-
change activities. Subsequently, coupled with alterations in 
Ca2+ handling, larger amounts of ATP are required for the 
maintenance of intracellular ion gradients thus rendering 
hypertrophied heart more inefficient by depriving it of 
valuable ATP needed for the restoration of mechanical 
function. This may explain why the hypertrophied hearts 
are more susceptible to ischaemia–reperfusion injury [104, 
105]. However, the most recent evidence suggests that 
AMPK activation counteracts cardiac hypertrophy by re-
ducing O-GlcNAcylation of proteins such as troponin T 
[48]. 

 
Inflammation and metabolic insufficiency in heart fail-
ure - the missing link  
In most patients with chronic HF, circulating cytokines are 
elevated and their levels correlate with the severity of HF 
and prognosis [106, 107]. Experimental models of HF sug-
gest that pro-inflammatory mediators play an important 
role in the development and progression of HF [63, 108]. 
However, many trials of anti-inflammatory therapy for 
patients with HF have shown neutral or negative effects on 
outcomes [108]. 

Impact of cytokines on cardiac function and remodel-
ling in failing heart has been well documented (reviewed in 
[57, 109]), however, there are very few studies examining 
the impact on cardiac metabolism. The link between HF 
and inflammation was first recognized in by Levine et al. 
[110] who reported elevated levels of tumour necrosis 
factor (TNF) in HF patients with a reduced ejection fraction 
(EF). Sustained increases in TNF-α have been related to 
ischaemic myocardial injury, cardiac hypertrophy, and 
chronic HF. Spontaneously hypertensive rats show in-
creased myocardial TNF-α production, which contributes to 
remodelling, decreased cardiac function, and faster pro-
gression to HF [111]. Likewise, the failing human heart 
produces large amounts of TNF-α [112], while it has been 
proposed that persistent intra-cardiac expression of TNF-α 
contributes to the development of cardiac allograft hyper-
trophy [113]. Ubiquitous inducible factor named nuclear 
factor-κB (NF-κB) controls activation of NF-κB itself is in-
volved in various cardiovascular diseases, such as cardiac 
hypertrophy and HF [113]. Increased TNF-α levels reduce 
PGC-1α and pyruvate dehydrogenase kinase (PDK4) ex-
pression in human cardiac AC16 cells in vitro as well as in 
heart of TNF1.6 mice, a murine model of cardiac-specific 
TNF-α overexpression and cytokine-induced cardiomyopa-
thy [112, 114]. A recent in vitro study has shown that the 
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p65 subunit of NF-κB directly represses PGC-1α activity in 
cultured cardiac cells, thereby leading to a reduction in 
PDK4 expression and the subsequent increase in glucose 
oxidation observed during the proinflammatory states such 
as chronic ischaemia, cardiac hypertrophy, and HF [115].  
 
Metabolic remodeling in diabetic cardiomyopathy 
Diabetes is a risk factor for cardiovascular mortality and 
cardiac remodeling with specific changes to myocardial 
metabolism, energetics, structure, and function. Diabetic 
cardiomyopathy is a distinct cardiomyopathy, independent 
of ischaemia or hypertension, describing the direct effects 

of systemic diabetes-linked metabolic alterations on myo-
cardial function [116]. Metabolically, diabetes is character-
ized by rapid defective (type 1 diabetes, T1D) or gradual 
impairment (type 2 diabetes, T2D) of insulin secretion, 
leading to increased extracellular glucose and greater reli-
ance on fatty acid oxidation. In both T1D and T2D, failure 
of insulin to suppress hormone sensitive lipase in adipose 
tissue and very low-density lipoprotein secretion in the 
liver increases circulating FFAs [35]. This, in turn, activates 
PPARα, a transcription factor that upregulates FFA metabo-
lism while decreasing GLUT4, resulting in systemic hyper-
glycaemia [117]. Early in T2D, the primary problem, the 

FIGURE 2: Myocardial metabolic adaptation to stress: failing heart (A) and diabetic heart (B). Abbreviations: TAG - triacylglycerol, CPT - 
carnitine palmitoyl transferase, G6P- glucose 6 phosphate, ETC - electron transport chain, CK - creatine kinase, CD36- fatty acid trans-
porter, Glucosamine 6P - glucosamine 6-phosphate, PPP - pentose phosphate pathway, GLUT - glucose transporter, MCT - monocarbox-

ylate transporter, PDH - pyruvate dehydrogenase, TCA - Kreb’s cycle, OX - beta oxidation, PCr - phosphocreatine, Cr - creatine, NFAT - 
Nuclear factor of activated T-cells, PPAR - Peroxisome proliferator-activated receptor, ROS - reactive oxygen species, polyol p-polyol 
pathway. Hypertrophy genes: Class II HDACs, GATA, NFAT, MEF 
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lack of response to insulin in peripheral organs, is over-
compensated by increased insulin secretion, resulting in 
hyperinsulinaemia [118]. Hyperinsulinaemia may be pro-
longed and may cause a gradual loss of pancreatic function, 
resulting in hypoinsulinaemia and hyperglycaemia [37]. 
There is a long-standing idea that insulin resistance and 
systemic adiposity increase the risk of cardiovascular (CV) 
events, however a new school of thought is emerging that 
defines myocardial insulin resistance as a defense against 
glucotoxicity and oxidative stress [87, 119].   

The systemic gradual impairment of insulin production 
and signalling in diabetes is associated with increased my-
ocardial FFA uptake whilst mitochondrial FFA uptake and 
oxidation is reduced (Figure 2B). This leads to cytosolic 
accumulation of TAG, DAG and ceramide (Figure 2B) [120]. 
Such intermediates are pro-apoptotic as they compromise 
ATP production via the activation of several stress kinases, 
including protein kinase C (PKC) [121]. PKC inhibits the 
metabolic action of insulin by phosphorylating the ser-
ine/threonine residues on the insulin receptor and/or its 
substrates [122], disrupting insulin signalling, and inhibiting 
insulin-stimulated translocation of GLUT4 (Figure 2B). PKC 
activation triggers apoptosis and leads to lower basal ex-

pression of HIF1 and vascular endothelial growth factor 
[121]. Pharmacological PKC inhibition was shown to ame-
liorate FFA-mediated inhibition of basal and insulin-
stimulated glucose oxidation. It normalized diastolic func-
tion in the STZ-treated T1D heart without altering the cir-
culating metabolites [123]. 

In several clinical studies, proton (1H)-MRS has revealed 
that diabetic patients have between 1.5- and 2.3-fold high-
er myocardial TAG levels compared to non-diabetic con-
trols, the levels predicting concentric LV remodeling and 
subclinical, asymptomatic contractile dysfunction [124-
126]. Increased availability of plasma FFA increases the flux 
through myocardial FFA oxidation via activation of the 
PPARα transcription factor [120, 127]. This leads to the 
upregulation of enzymes involved in FFA oxidation, includ-
ing acyl-CoA dehydrogenases (Figure 2B). This metabolic 
shift is the principal driver of the energetic inefficiency of 
the diabetic heart. Specifically, unlike glucose oxidation, 
FFA oxidation requires 11% more O2 per carbon. Further-
more, FFA induce expression of mitochondrial uncoupling 

protein (UCP)-3 through PPAR-, driving the dissipation of 
the mitochondrial proton gradient (Figure 2B).  

This deteriorates efficiency of ATP production as more 
O2 is required for ATP synthesis, a process defined as mito-
chondrial uncoupling [128]. A similar concept emerged for 
UCP2 and UCP3 in HF [98]. In patients undergoing coronary 
bypass surgery, upregulation of cardiac UCP-3 correlated 
positively with plasma concentrations of FFA [129] (Figure 
2B). The db/db mice have increased myocardial UCP-3 that 
increased mitochondrial inefficiency following ischaemia 
[130].  

In mice, elevation of UCP-3 expression is mediated via 
increased FFA stimulation of nuclear transcription factor, 
PPARα [120] (Figure 2B). Activation of the metabolic-
sensing ‘master switch’ AMPK by metformin was shown to 

promote both cellular uptake of glucose and -oxidation of 
FFAs, attenuating remodeling and HF in diabetes [35]. 
AMPK also promotes autophagy, providing important nu-
trients from the breakdown of macromolecules and orga-
nelles [131]. In a diabetic mouse HF model, autophagy is 
impaired and metformin treatment enhances autophagic 
activity leading to the preservation of cardiac function 
through an AMPK-dependent mechanism [47]. Neverthe-
less, animal experiments involving pharmacological activa-
tion of PPAR in diabetic hearts remain inconclusive [35], 
possibly due to the agent specificity for the various PPAR 
isoforms. Apart for tetradecythioacetic acid (TTA), a PPARα 
agonist with potent antioxidant properties [132], all other 
agonists demonstrated reduction in circulating FFA and 
increased glucose oxidation. Thus, overall cardiac effects 
were inconsistent: studies employing a PPARγ agonist 
rosiglitazone and TTA demonstrated improved ischaemic 
tolerance [131], whereas others using BM17.0744 or 2-(2-
(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid 
(PPARα and PPARγ agonists, respectively) showed no dif-
ference [134, 135]. 

Acetoacetate and β-hydroxybutyrate (β-OHB) are ke-
tone bodies generated by the liver from non-esterified FAs 
in response to hypoinsulinaemia and hypoglycaemia. Ke-
tone bodies are oxidized by most body tissues to form ace-
tyl-CoA. Due to its association with life-threatening acidosis 
in diabetic patients, ketosis has always been a feared sta-
tus. However, increased ketone metabolism in the diabetic 
heart has been recently reported [136]. Furthermore, a 
recent study showed that ketosis may potentially be pro-
tective in T2D [128]. In patients with T2D, ketone bodies 
are more efficient fuel sources than glucose since insulin 
is not required for their utilization. Therefore, ketogene-
sis in acute hyperglycaemic crisis may be lifesaving, be-
cause it supplies the myocardium with a sufficient 
amount of ATP [128]. Given that exogenous d-β-
hydroxybutyrate, consumed as a ketone ester drink, was 
metabolized by exercising skeletal muscle to increase en-
durance performance in athletes and healthy rats [137, 
138], it may be that increased ketone metabolism in the 
diabetic heart is compensating for defects in mitochondrial 
energy transduction associated with acute insulin deficien-
cy [139].  

 
Inflammatory signalling promotes metabolic derange-
ment in diabetic cardiomyopathy 
Development of myocardial inflammation in diabetes may 
involve several molecular mechanisms. In principal, these 
mechanisms converge towards the activation of the NF-κB 
pathway which is highly active in the diabetic heart and 
vasculature contributing to damage by promoting the up-
regulation of cytokines (IL-1β, IL-6, IL-18, TNF-α, TGF-β1), 
chemokines and adhesion molecules [140-142]. Cardiomy-
ocyte-specific overexpression of IκB-α protein, which sup-
presses the canonical NF-κB signalling pathway, was ob-
served to prevent streptozotocin-induced diabetic cardio-
myopathy through the inhibition of the renin-angiotensin 
system [143]. Other work also showed that pharmacologi-
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cal inhibition of NF-κB mitigates cardiac oxidative stress 
induced by T2D and reduces mitochondrial abnormalities 
[144]. Chronic myocardial inflammation may contribute to 
cardiac dysfunction by inducing metabolic perturbations 
that can impair energetics, particularly in response to met-
abolic stress. Infusion of IL-6 was found to impair cardiac 
glucose metabolism through a SOCS3-dependent inhibition 
of IRS-1 [58]. In contrast, genetic disruption of IL-6 gene 
reduced inflammation and reversed glucose metabolism 
defects induced by high fat diet, which was paralleled by 
SOCS3 inhibition and IRS-1 reactivation [145]. Furthermore, 
cardiac expression of PGC-1α, a master regulator of mito-
chondrial function and biogenesis [142], was found to be 
inhibited by a chronic inflammatory process, through a 
mechanism dependent on NF-κB activation. Exposure of 
AC16 cells to TNF-α reduced the levels of PGC-1α through 
the activation of NF-κB [114]. This may be due to p65 bind-
ing and sequestering PGC-1α, thereby leading to its inhibi-
tion and downregulation [115]. PGC-1α inhibition in re-
sponse to NF-κB activation was found to cause increased 
glucose utilization through the downregulation of PDK4 
[115]. 

Hyperglycaemia in T2D also induces cellular damage via 
four major pathways: activation of the PKC pathway via 
DAG, increased hexosamine pathway flux, increased ad-
vanced glycation end products, and increased polyol path-
way flux [146, 147]. All pathways increased ROS production 
and activated nuclear poly-(ADP-ribose)-polymerase 
(PARP), which cleaves NAD+ into nicotinamide and ADP-
ribose [146] (Figure 2B). Overactivation of PARP in hyper-
glycaemia forces the cell to synthesize NAD+ via the salvage 
pathway which consumes ATP [148]. The process leads to 
the ribosylation and inactivation of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), which in turn increas-
es glycolytic intermediates and activates the proinflamma-
tory transcription factor NF-κB [146] (Figure 2B). Multiple 
studies link diabetes to inflammation and it is associated 
with increased levels of CRP and IL-6 [149]. Other pro-
posed mechanisms for increased inflammation in diabetic 
cardiomyopathy include oxidative stress via a Ras-related 
C3 botulinum toxin substrate 1 (RAC1)-mediated activa-
tion of NADPH oxidase and endoplasmic reticulum (ER) 
stress [150].  

Many interventions have demonstrated beneficial ef-
fects in diabetic cardiomyopathy, attributable in part to 
reduced cardiac inflammation. These interventions in-
clude angiotensin 1 (AT-1) receptor antagonism, activa-
tion of the kallikrein–kinin system, inhibition of p38 mito-
gen-activated protein kinase (MAPK) signalling, gene de-
letion of kinin receptor b1, inhibition of interleukin con-
verting enzyme, atorvastatin treatment, anti-TNF-α 
treatment, inactivation of GSK-3β, and cannabidiol 
treatment ( reviewed in [151]).  
 

METABOLIC ADAPTION OF IMMUNE CELLS IN 
INFLAMMATORY MICROENVIRONMENTS 
Aerobic glycolysis, i.e. glucose metabolism to lactate in the 
presence of abundant oxygen, is the preferential pathway 

adopted by activated and effector immune cells to meet 
the demands for ATP required for proliferation and the 
synthesis of inflammatory mediators. As discussed above, 
although less efficient than oxidative phosphorylation, 
aerobic glycolysis offers the advantage of a quick release of 
ATP and a carbon source feeding a range of biosynthetic 
pathways. Proliferation and differentiation of antigen-
activated T lymphocytes is accompanied by metabolic re-
programming towards aerobic glycolysis, anabolic growth 
and biomass accumulation [152]. Similarly, activated pro-
inflammatory myeloid cells mainly utilize glycolysis with 
minimal oxidative phosphorylation [153-159]. In these cells, 
interruption of the Kreb’s cycle allows the generation of 
molecules that are important for pro-inflammatory func-
tions [153, 159]. For example, pro-inflammatory macro-
phages generate high levels of the metabolite succinate, 

which promotes HIF1 activity and IL-1 production [153]. 
Increased levels of citrate promote the generation of the 
antimicrobial metabolite itaconic acid [160, 161]. Dendritic 
cell (DC) activation leads to a metabolic switch from fatty 
acid-oxidation and OXPHOS to glycolysis [159], crucial for 
their antigen-presenting functions [162, 163]. Neutrophils 
also rely on glycolysis for their effector functions [154, 155, 
164], including the formation of neutrophil extracellular 
traps, which are activated via an mTORC1 signaling path-
way [154, 155, 164-166]. Finally, B lymphocytes and natu-
ral killer (NK) cells also increase rates of glycolysis in re-
sponse to various activation stimuli [167-170]. A key mo-
lecular mediator of activation-induced glycolysis in most 
leukocytes is the mammalian target of rapamycin (mTOR) 
[4, 171]. For example, mTOR complex 1 (mTORC1) activity 
is essential for induction and maintenance of glycolysis in T 
cells [4, 172] as well as for cytokine-induced glycolysis in 
NK cells [167]. Key transcription factors involved in the 
metabolic reprogramming of immune cells towards glycol-

ysis include HIF1 and c-Myc [172-174]. HIF1 and c-Myc 
directly induce transcription of genes encoding glycolytic 
enzymes and glucose transporters. 

The development of inflammation leads to dramatic 
changes in tissue microenvironment, with oxygen and nu-
trient availability becoming a constraining factor for im-
mune cell function. Albeit this event has not yet been in-
vestigated in the context of cardiac inflammation, it is well 
known that cancerous cells in solid tumours deplete glu-
cose from the microenvironment, thus dampening the 
ability of adaptive immune cells to utilize glycolysis for 
their effector functions and promoting the development of 
an immune-suppressive milieu [8, 175]. Similarly, bacterial 
infection can lead to local nutrient deprivation due to ele-
vated levels of oxygen and glucose consumption by the 
invading bacteria [176]. Virus-infected human hepatocytes, 
fibroblasts and epithelial cells can be reprogrammed to 
upregulate glycolysis to allow viral replication [177-179]. In 
parallel to nutrient depletion, inflammation-associated 
hypoxia arises as the result of multiple factors, including 
the accumulation of metabolically active leukocytes using 
aerobic glycolysis, the generation of interstitial oedema 
leading to an increase in the inter-capillary distance and 
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inflammation-associated fever, which increases oxygen 
consumption. All of these factors contribute to the devel-
opment of a hypoxic environment at the inflammatory site, 
which can in turn modulate the responses of infiltrating 
immune cells as well as parenchymal cells. Immune cells 
are able to adapt to oxygen- and nutrient-depleted envi-

ronment by engaging the HIF1 and AMPK pathways, re-
spectively.  

 
Immune cell adaptation to hypoxia 
HIF1α is a basic helix-loop-helix transcription factor that is 
strongly induced by hypoxia. In hypoxic conditions, HIF1α 

binds the constitutively expressed HIF1 (also known as 
Arnt, the aryl hydrocarbon receptor nuclear transporter), 
which prevents its degradation and allows its translocation 
to the nucleus. Here, it binds to hypoxia response elements 
located in the promoters of a number of genes [180, 181], 
including glycolytic enzymes and glucose transporters, 
VEGF, and the chemokine receptor CXCR4.  

In addition to hypoxia, HIF1α-mediated transcription 
can be induced by circumstances associated with patholog-
ical stress including cancer, inflammatory mediators, and 
bacterial infection. HIF1α is expressed by most immune cell 
populations including macrophages, neutrophils, DCs, as 
well in T and B lymphocytes and innate lymphoid cells 
[182]. By regulating immune cell metabolic adaptation to 
hypoxia, HIF1α plays a key role in modulating their effector 
functions [183-185]. In physiologically hypoxic environ-
ments (i.e. lymph nodes), HIF1α contributes to innate and 
adaptive immune cell homeostasis, whereas in pathological 
hypoxia, HIF1α signalling can promote immune cell dys-
function and tissue damage [186].  

HIF1α has been implicated in the regulation T-cell de-
velopment, proliferation, survival, and cytokine production 
(e.g., IFN-γ), and lack of HIF1α expression has been associ-
ated with overproduction of proinflammatory cytokines 
[187-191]. HIF1α protein stabilization and nuclear translo-
cation can occur in multiple contexts in T cells. While hy-
poxic exposure of T cells results in modest HIF1α stabiliza-
tion [192], T cell receptor (TCR) stimulation results in ro-
bust HIF1α protein expression, which is further enhanced 
in hypoxic conditions [192, 193]. TCR-induced HIF1α ex-
pression relies upon the PI3 kinase/mTOR pathway [193]. 
In addition, the pro-inflammatory cytokine IL-6 can induce 
HIF1α expression in T cells via the STAT3 transcription fac-
tor in vitro [194]. Of note, HIF1α is not required for the 
initiation of aerobic glycolysis in activated T cells; instead, 
c-Myc is uniquely mediating this metabolic shift [172]. 
However, HIF1α is instrumental in promoting sustained 
glycolytic responses in Th17 cell differentiation [174]. Th17 
cells are induced by IL-6 and TGF-β in a HIF1α-dependent 
manner [195, 196], while the key transcription factor that 
drives Th17 differentiation is the retinoic acid-related or-
phan receptor γt (RORγt) [197]. It has been suggested that 
the mTOR-HIF1α axis controls Th17 differentiation through 
transcriptional activation of RORγt and sustained glycolysis 
[198]. 

In addition to its role in the development of Th17 re-
sponses, HIF1α can also promote the development of anti-
inflammatory Tregs thus controlling the homeostatic bal-
ance between these T cell subsets with opposite biological 
effects [174, 190, 191, 194, 199]. Ambient hypoxia (1% 
oxygen) was shown to induce selective, robust induction of 
FoxP3, a key transcriptional regulator for Tregs, likely via 
HIF1α regulation of the FoxP3 promoter. The same study 
showed that Treg-intrinsic HIF1α is required for optimal 
Treg function in vitro and in vivo [200].  

Hypoxia and HIF1α stabilization play an important role 
in B cell development and function. Lack of HIF1α expres-
sion in lymphoid tissues of chimeric mice causes abnormal 
B cell development and autoimmunity [201], due to the 
impairment of hypoxia-induced cell cycle arrest in B cells 
[202]. More recently, HIF1α was shown to control the ex-
pression of the TASK-2 potassium channels in B cells, which 
are required for B cell proliferation, survival or cytokine 
production [203]. HIF1α induces glycolytic metabolism in 
germinal center (GC) B cells, thus regulating the GC reac-
tion and antibody production [204].  

Macrophages are key effectors of innate immunity and 
– based on their phenotypic and functional features - have 
been classified into M1 (classic) and M2 (regulatory) mac-
rophages. Classically activated macrophages (M1) play a 
key role in the innate defense against bacterial infections 
via the production of large amounts of nitric oxide (NO) by 
inducible nitric oxide synthase (iNOS) [205]. Alternatively 
activated (M2) macrophage differentiation is induced by IL-
4 and IL-13. These exert anti-inflammatory and pro-
angiogenic functions, thus promoting wound healing, tis-
sue repair and regeneration [206, 207]. Macrophage-
specific loss of HIF1α expression decreases ATP production, 
which in turn adversely affects survival, invasion, motility, 
aggregation and bactericidal activity of murine and human 
macrophages [208-210]. In addition, mice with myeloid 
cell-specific deletion of HIF-1α are resistant to lipopolysac-
charide (LPS)-induced death [211], suggesting a key role for 
HIF-1α in classical macrophage polarization [212]. Indeed, 
LPS-mediated activation and pro-inflammatory (M1) polar-
ization in macrophages perturbs the Krebs cycle, leading to 
the accumulation of the intermediates fumarate and suc-
cinate. These in turn increase HIF1α expression and stabili-
zation, which activates a glycolytic reprogramming promot-
ing the acquisition of a pro-inflammatory phenotype [153, 
213-215]. In contrast, alternatively activated (M2) macro-
phages engage oxidative phosphorylation to meet energy 
demands [212].  

HIF1α stabilization is known to regulate several DC 
functions, such as survival, differentiation, migration, mat-
uration and antigen presentation. In addition, HIF1α regu-
lates interferon-γ (IFN-γ), IL-22 and IL-10 production in 
human and murine DCs [216-219]. As in other immune 
cells HIF1α is involved in metabolic reprogramming of DCs 
following activation. For example, LPS-induced DC activa-
tion under normoxia induces HIF1α expression to greater 
levels than those induced by hypoxia [220]. HIF1α-induced 
glycolysis is required for DC maturation [220]. 
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The HIF signaling pathway also increases survival, β2 in-
tegrin expression, generation of antimicrobial peptides and 
glycolytic responses in murine and human neutrophils [208, 
209, 221-223]. 

 
Immune cell adaptation to nutrient depletion 
Immune cells also have a degree of metabolic plasticity in 
response to limiting glucose availability. For instance, when 
glucose levels are low, effector T cells have the ability to 
adapt and increase glutamine uptake and glutaminolysis to 
support cellular metabolism [224]. However, in conditions 
of severe cellular ATP depletion, the nutrient-sensor AMPK 
becomes activated and induces a catabolic program to 
preserve survival of immune cells. AMPK is an evolutionari-
ly conserved serine/threonine kinase integrator of energy-
sensing signals in the immune system function, which spe-
cializes in modulating the cellular responses to an energy 
challenge [225]. Once activated by stimuli like nutrient 
deprivation, hypoxia, or excessive ROS production, AMPK 
activates ATP-producing catabolic pathways while inhibit-
ing ATP-consuming anabolic pathways to restore energy 
homeostasis. Indeed, AMPK activation is induced by a high 
cellular AMP / ATP ratio and by upstream kinases [226, 
227]. In tumor cells, cardiomyocytes and macrophag-
es/monocytes, AMPK activation boosts the glycolysis rate 
by increasing glucose uptake and through by phosphoryla-
tion and activation of 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase 2/3, which produces fructose-2,6-
bisphosphate, an allosteric activator of glycolytic enzyme 
phosphofructokinase-1 [228, 229].  

In parallel, FA synthesis is reduced via phosphorylation 
of acetyl-CoA carboxylase (ACC) [230, 231], which catalyzes 
the rate-limiting step in FA synthesis by converting acetyl-
coA to malonyl-coA, and (2) sterol regulatory element-
binding protein 1c (SREBP1c), a transcription factor that 
increases the expression of lipogenic enzymes, including 
ACC1 and FA synthase [232, 233]. In addition to reducing 
lipid anabolism, AMPK activates lipid catabolism and mito-
chondrial biogenesis [229]. Specifically, AMPK increases FA 
uptake by increasing translocation of the FA transporter 
CD36 to the plasma membrane [234]. Once inside cells, 
FAs are transported into the mitochondria for β-oxidation 
by carnitine palmitoyltransferase-1 (CPT-1). AMPK boosts 
CPT-1 activity and activates FAO by inducing the inhibitory 
phosphorylation of ACC2, which is localized to the outer 
membrane of the mitochondria near CPT-1 where it inhib-
its production of malonyl-CoA, a potent allosteric inhibitor 
of CPT-1[233]. 

AMPK also inhibits glycogen synthesis through inhibito-
ry phosphorylation of glycogen synthase (GS). Further-
more, AMPK also activates glycogen breakdown by phos-
phorylating and activating glycogen phosphorylase (GP). By 
indirectly inhibiting mTORC1 through the phosphorylation 
of TSC2 and raptor, AMPK also inhibits protein synthesis 
and cap-dependent translation during both initiation and 
elongation steps [235-237]. Autophagy is a lysosome-
dependent self-digestive process activated during nutrient 
deficiency to preserve cellular integrity. Autophagy is di-
rectly initiated by AMPK during severe energy challenges 

through activation of the Unc-51-like kinase (ULK)-1, a 
mammalian homolog of ATG1 which removes damaged 
mitochondria thus maintaining mitochondrial integrity 
during nutrient starvation [238, 239]. In addition, AMPK 
indirectly promotes autophagy by inhibiting mTORC1, 
which phosphorylates ULK1 to prevent interaction with 
AMPK. Further, AMPK phosphorylates and activates FOXO 
transcription factors, which in turn upregulate expression 
of several autophagy inducers, such as Bnip3, LC3 and 
ATG12 [240]. 

Although the AMPK and HIF pathways share funda-
mental functions in the maintenance of cellular metabolic 
homeostasis, they use different strategies to carry out 
these functions. Specifically, while HIF factors activate an-
abolic processes to generate energy, AMPK signalling pro-
motes catabolic mechanisms. In addition, they can control 
each other’s function in a context-dependent manner. For 
example, HIF1α activates aerobic glycolysis, an effect 
which is counteracted by AMPK activation [241] possibly 
via inhibition of protein synthesis [242]. HIF1α and AMPK 
also exert antagonistic effects in inflammatory microenvi-
ronments, e.g. in cancer. HIF-1α signalling has an essential 
role in the activation and function of immune cells [208, 
243]. In contrast, AMPK activation inhibits inflammatory 
responses by activating the survival factors SIRT1 and FoxO 
[5, 244]. In addition, the anti-inflammatory cytokines TGFβ 
and IL10 have been shown to activate AMPK in macro-
phages via an as yet unidentified mechanism [245]. 

Substantial evidence supports an indirect, reciprocal 
regulation between the AMPK and HIF-1α pathways via 
context-dependent and tissue-selective mediators. For 
example, AMPK signalling regulates HIF1α nuclear translo-
cation [246], a key step of the hypoxia response. In addi-
tion, AMPK is a potent activator of SIRT1, a member of 
NAD+-dependent sirtuin family, which can either inhibit or 
activate the signalling of HIF factors. In turn, SIRT1 can 
directly and indirectly inhibit HIF1α transcriptional activity 
in cultured cells [247].  

Macrophage migration inhibitory factor (MIF) is an 
evolutionarily conserved, multifunctional cytokine, which 
has been implicated in the pathogenesis of many cancers 
and inflammatory diseases [248, 249]. MIF is a secreted 
pro-inflammatory cytokine expressed not only in immune 
cells but also in many non-immune cells, such as endothe-
lial and epithelial cells. It is known that this pleiotropic 
factor transmits signals through a cell surface receptor 
composed of CD74/CD44 proteins, e.g. activating the 
ERK1/2, PI3K/Akt, and NF-κB pathways. Interestingly, sev-
eral studies have demonstrated that the MIF gene is a hy-
poxia-inducible, HIF1α-dependent gene [250-252]. MIF has 
been shown to activate AMPK signalling eliciting anti-
inflammatory effect such as protection from rat heart is-
chemia reperfusion injury [253], delay of cellular senes-
cence [250, 254] and prevention of liver fibrosis in mice 
[255]. However, the anti-inflammatory effects of the 
HIF1α-MIF-AMPK pathway can promote tumorigenesis, 
known to be induced by MIF [248].  
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METABOLIC CROSS TALK BETWEEN IMMUNE CELLS 
AND CARDIOMYOCYTES DURING INFLAMMATION 
Although the immune system has evolved to protect 
against external stressors including infection, its powerful 
effector mechanism has the potential to injure and impair 
function of healthy tissues. Organs with continuous func-
tion critical for survival such as eye, brain and the heart are 
readily impaired by the immune inflammatory responses. 
Thus, as discussed in section “CAVEATS AND DEFINITIONS: 
WHAT IS INFLAMMATORY DISEASE OF THE HEART MUS-
CLE?”, the role of inflammation in many cardiac diseases is 
now widely accepted [58]. There are very few T cells found 
in healthy cardiac muscle thus maintaining the relative 
state of immune quiescence which discourages T cell re-
cruitment, activation and presence of resident memory T 
cells [15]. However, there are significant numbers of resi-
dent myocardial macrophages and DCs. The extensive my-
ocardial microvascular network which ensures sufficient 
oxygen and metabolite supply for continuous cardiac work, 
provides ample opportunity for circulating T cells to mi-
grate into heart. While direct damage to the myocardium 
by infiltrating effector immune cells has been widely stud-
ied [14], the role of metabolic cross-talk between inflam-
matory cells and the cardiac parenchyma itself is less well 
understood. 

As discussed above, both cardiomyocytes and immune 
cells undergo metabolic adaptation in response to the in-
flammatory stimuli (cardiac and systemic). As a conse-
quence, these cells can influence each other via the pro-
duction of soluble mediators and metabolites that can 
function as signaling molecules (Figure 3).  
 

Tumor necrosis factor  (TNF) 

Chronic cardiomyocyte exposure to TNF directly inhibits 

and downregulates expression of PPAR- coactivator-1 

(PGC1) via NFkB (p65) activation [115]. A close relation-
ship exists among PGC-1 function, insulin sensitivity, and 
T2D with its expression downregulated in T2D subjects 

[256-258]. A common polymorphism of the PGC1 gene 

(Gly482Ser), expressing reduced PGC1 activity, increases 

a risk of T2D [259]. PGC1 is a master regulator of myocar-
dial FFA and glucose oxidative metabolism. It controls ex-
pression of transcription factors regulating FFA oxidation, 
glucose uptake and metabolism, mitochondrial function 

and biogenesis [259]. PGC1 has been reported to activate 
the expression of insulin-sensitive GLUT4 [260, 261]. These 
observations would suggest that reduced levels and com-

promised activity of PGC1 are driving the metabolic re-

modelling in cardiac pathologies. The rescue of PGC1 
expression by reducing proinflammatory cytokine load 
could both prevent and ameliorate metabolic remodelling 
in HF and diabetes: improve mitochondrial function and 
organisation, reduce insulin resistance by enhancing glu-
cose uptake (GLUT4) and metabolism (PDK4), reducing 

myocardial steatosis by promoting FFA -oxidation (due to 
relationship between myocardial triglyceride accumulation 
and insulin resistance) [258, 262]. Thus, by altering the 
nature of immune response we could prevent the origin of 

pathologic metabolic remodelling (myocardial glucose-FFA 
oxidation switch), reduced mitochondrial number and ac-
tivity, as well as rescue metabolic flexibility of hypertrophic 
heart. However, whether T-cell mediated systemic inflam-
mation significantly contributes to the energetic deficit of 
HF and diabetes and how the reduction of inflammation by 
reduction in pro-inflammatory T-cell migration/activation 
impacts cardiac metabolic (in)flexibility in HF and diabetes 
needs demonstrating. 
 
Interleukin-6 (IL-6) 
The pro-inflammatory cytokine IL-6 is known for its effect 
on systemic metabolism [263, 264]. For example, IL-6 pro-
motes FFA mobilization [265], suggesting that IL-6 contrib-
utes to shifting metabolic adaptation toward FAO rather 
than glycolysis. The increase of IL-6 plasma levels during 
exercise has been proposed to promote energy supply via 
mobilization of FFA. IL-6 can signal in cardiomyocytes inde-
pendently of the canonical STAT1/3 pathway, via Erk1/2 
and PI3K activation [266]. IL-6R receptors are expressed 
primarily in myocardial interstitial cells such as fibroblasts 
and monocytes [267], rather than cardiomyocytes, but are 
upregulated by cardiomyocytes in response to pro-
inflammatory signals as well as mechanical stretch [267, 
268]. Overall, IL-6 plays an important protective role in 
myocardial remodelling in a model of Angiotensin II-
dependent hypertension [269] and other IL-6 family cyto-
kines such as leukaemia inhibitory factor (LIF) and cardio-
trophin-1 (CT-1) can also promote cardiomyocyte survival 
and hypertrophy via LIFRβ signalling [270, 271]. However, 
chronic exposure to IL-6 has been shown to impair myo-
cardial glucose metabolism (via SOC3 inhibition and IRS 
activation) in diabetic cardiomyopathy in mice [58]. 
 
AMPK-regulating inflammatory cytokines 
The traditional paradigm of AMPK as an energy stress-
activated kinase has been expanded to include a diverse 
array of cytokines as AMPK-activators during inflammatory 
processes [54]. Short-term coronary infusions of pro-
inflammatory cytokines such as IL-6, appear to reduce 
AMPK α subunit content and activation [145]. Fat diet 
feeding in mice was shown to elevate plasma levels of IL-6, 
which may contribute to the downregulation of myocardial 
AMPK seen in this model [145]. MIF is a master-regulator 
of inflammatory cytokines, and is highly expressed in car-
diomyocytes. Hypoxia increases cardiac MIF expression, via 
a HIF1α-dependent mechanism [272], and ischemia trig-
gers MIF secretion. Endogenous cardiac MIF has an im-
portant autocrine-paracrine action to modulate AMPK acti-
vation during ischemia and hypoxia in the heart [253]. Ex-
tracellular MIF activates AMPK via its cell surface receptor 
CD74 with subsequent activation of the signal transducer 
CD44 [253]. MIF knockout mice have impaired heart AMPK 
activation and are more susceptible to ischemic injury 
[253]. 
 
Lactate 
Highly glycolytic, activated immune cells produce and se-
crete high amounts of the glycolysis end product lactate in 



F.M. Marelli-Berg and D. Aksentijevic (2019)  Impact of systemic inflammation on cardiac metabolism 

 
 

OPEN ACCESS | www.cell-stress.com 253 Cell Stress | AUGUST 2018 | Vol. 3 No. 8 

inflamed tissue, including rheumatoid arthritis and cancer 
[273]. Extracellular lactate can directly signal to immune 
cells themselves and tissue parenchymal cells via lactate 
receptors as well as by affecting metabolic pathways when 
enriched in the cytosol following uptake by lactate trans-
porters.  

In immune cells lactate mainly signals via the surface-
expressed G-protein-coupled receptor GPR81 [274]. 
GPR81-mediated signals are strong inhibitors of immune 
effector functions. For example, extracellular lactate re-
duces the LPS-induced IL-1β production by murine macro-
phages and human peripheral blood mononuclear cells 
(PBMCs) in vitro [274]. In vivo, high lactate concentrations 
in the tumour microenvironment contribute to the im-
mune-suppressed microenvironment by inhibiting cytokine 
production by- and migration of- monocytes and macro-
phages [275, 276]. Administration of sodium lactate has 
been shown to reduce the inflammatory response in hepa-
titis [274] and to prevent the development of inflammation 
in a colitis model [277]. The anti-inflammatory effects of 
lactate induced by GPR81 are mediated by inhibition of NF-
κB and inflammasome activation [274]. 

Lactate uptake by immune cells via monocarboxylate 
transporters (MCTs) can directly affect their cellular me-
tabolism and function independently of GPR8. Expression 
and modulation of MCTs can control immune cell function 
in T cells and macrophages [9, 278] by inhibiting the glyco-
lytic pathway [279, 280]. A key enzyme in lactate metabo-
lism is lactate dehydrogenase (LDH), which has a higher 
affinity for pyruvate compared with lactate. Thus, it con-
verts pyruvate into lactate and NAD+. LDH has been impli-
cated in IFNγ-production by T cells [281] and anti-tumour 
activity of macrophages [282]. Lactate also represents a 
source of energy for heart muscle by boosting mitochon-
drial energy metabolism. Lactate amounts to about 10 % of 
energy production in the healthy heart [283], and this frac-
tion can substantially increase during exercise or different 
pathophysiological conditions.  

In cardiomyocytes lactate production in the cytosol is 
balanced by oxidation in the mitochondria. Intracellular 
lactate is shuttled from the cytosol by MCT1 on the mito-
chondrial membrane [284, 285]. Under normal physiologi-
cal conditions, low levels of ROS upregulate MCT1 expres-
sion by transcriptional mechanisms, thus promoting the 
transport of lactate into the mitochondria for oxidative 
metabolism [286]. Not only physical activity but also differ-
ent pathological conditions could change the hearts’ pref-
erence from FAs to lactate as energy source [287, 288]. In a 
rat model of congestive heart failure, e.g., a significant 
increase in the expression of the lactate transporter MCT 1 
was observed [289]. Other studies on rats could demon-
strate that an increase in blood lactate level has positive 
effects on heart function during a hemorrhagic or septic 
shock [290, 291].  

However, excess of extracellular and cytosolic lactate 
as a result of protracted inflammation has been linked to 
cardiomyocyte apoptosis in several experimental models of 
cardiovascular diseases, including myocardial infarction 
[292], ischemia/reperfusion injury [293], dilated cardiomy-

opathy [294] and end-stage heart failure [295]. Cardiac 
MCTs can function as acid loaders or extruders, depending 
on the transport direction [296], hence the concentration 
of lactate in the cytosol is directly proportional to the 
amount of extracellular lactate.  

Mechanistically, under pathological conditions, high in-
tracellular lactate concentration promotes the excessive 
generation of ROS. High levels of ROS can cause oxidative 
stress and mitochondrial damage, which lead to the activa-
tion of mitochondrial-dependent apoptosis [297], a highly 
regulated program of cell death that can be activated in 
cardiomyocytes by multiple stressors including cytokines 
[298], oxidative stress [299] and DNA damage [300]. A sig-
nificant association has been identified between the lac-
tate signaling cascade and cardiovascular diseases, such as 
myocardial infarction [284], atrial fibrillation [285] and 
heart failure [286]. 

 
BREAKING THE VICIOUS CIRCLE: CAN TARGETING 
METABOLISM REDUCE CARDIAC INFLAMMATION? 
As previously discussed, although targeting inflammatory 
mediators and mechanism in heart disease is a rapidly de-
veloping and promising strategy, the lack of diagnostic 
knowledge of disease-specific mechanisms and stage of 
inflammation remains a major challenge. On the other 
hand, several drugs that are currently used in clinic for 
patients with diabetes, dyslipidemia and metabolic dys-
functions have been shown to impact immune cell function. 
Understanding the cross-talk between immune cells and 
myocardium might provide the basis for the repositioning 
of ‘old’ drugs as immunomodulators. Metformin (dime-
thylbiguanide) widely prescribed for T2D activates AMPK 
[301], and reduces redox shuttle enzyme mitochondrial 
glycerophosphate dehydrogenase [302]. Beyond its effects 
on glucose metabolism, metformin decreases inflammato-
ry markers in plasma, including soluble intercellular adhe-
sion molecule, vascular cell adhesion molecule-1, macro-
phage migration inhibitory factor, and CRP [303, 304]. The 
anti-inflammatory effects of metformin are likely related to 
its ability to inhibit mTOR through AMPK activation [305]. 

Statins, inhibitors of the enzyme 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reductase (which 
catalyzes the formation of mevalonate, the rate-limiting 
step for cholesterol synthesis), are the most efficient and 
widely used agents in treating cardiovascular diseases. 
Originally designed to target elevated lipids, the “tradition-
al” cause of atherosclerosis, statins might also confer car-
diovascular benefit by modulating inflammation [306-308]. 
These effects are independent of the HMG-CoA reductase 
inhibition [309, 310], while rely upon isoprenoid (and 
downstream prenylated proteins) biosynthesis from meva-
lonate [311, 312]. Through this pathway, statins can devi-
ate T-cell differentiation towards the generation of Tregs 
instead of pro-inflammatory Th17 cells via a mechanism 
dependent on protein geranylgeranylation [313, 314].  

Targeting the PPARs nuclear receptors agonists has also 
been effective in controlling inflammatory responses in 
metabolic diseases. In humans, activation of PPARα using 
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fenofibrate or bezafibrate has been shown to decrease 
plasma levels of several acute phase response proteins that 
are increased during inflammatory conditions and amelio-
rates endotoxemia [315]. PPAR𝛾 its pharmacological ago-
nists promotes the anti-inflammatory differentiation of 
macrophages [316, 317] and the function of Tregs in adi-
pose tissue (AT) [318]. Anti-inflammatory effects of PPAR 
agonists have been reported in a number of model diseas-
es, including inflammatory bowel disease, central nervous 
system inflammation, LPS-induced cardiac and pulmonary 
inflammation [319], although the beneficial effect of these 
drugs in diabetic heart disease remains unclear [35], as 
previously discussed.  

 

CONCLUDING REMARKS 
This overview of the metabolic plasticity of immune cells 
and cardiac tissue during inflammation highlights the com-
plexity of immunometabolic events which can determine 
either the resolution of the inflammatory process or ulti-
mately lead to loss of organ function. 

Overall, and perhaps in an over-simplified fashion, the 
metabolic adaptation of immune cells to the inflammatory 

microenvironment occurs in synchrony with the evolution 
of the inflammatory response. Thus, when immune cells 
localize in the inflammatory site, the hypoxia response 
mediated by HIF promotes a pro-inflammatory effector 
function sustained by glycolysis. With the progression of 
inflammation and increased nutrient consumption relative 
to supply, the metabolic adaptation mediated by AMPK 
and lactate favours the development of an anti-
inflammatory environment, thus possibly contributing to 
the resolution of inflammation. The tissue also adapts 
metabolically and functionally to the changing environ-
ment dictated by inflammation in order to cope with dam-
aging events. If this model (Figure 3) is correct, it is plausi-
ble that abnormal metabolic reprogramming by either im-
mune cells or cardiomyocytes might underlie the progres-
sion of inflammation and irreversible tissue damage. As a 
consequence, pharmacological modulation of abnormal 
metabolic adaptation may provide an effective approach to 
treat inflammation-associated heart disease. 

 
 
 

FIGURE 3: Immunometabolic cross-talk in the inflamed heart. During inflammation, inflammatory infiltrates and heart parenchymal 
cells (including cardiomyocytes, compete with oxygen and nutrients. This leads to the activation of the HIF and AMPK pathways and 
metabolic reprogramming of both cellular components (1). The production of cytokines (2) and signalling metabolites, such as lactate 
(3) can lead to further metabolic reprogramming and eventually, to cellular dysfunction (4). MO, macrophages, T, T-lymphocytes; B, B 
lymphocytes; DC, dendritic cells; NK, NK cells; GN, granulocytes; EOS, eosinophils; CMC, cardiomyocytes; SC, stromal cells; EC, endothe-
lial cells. 
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