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Andriko von Kügelgen,1,2 Haiping Tang,3 Gail G. Hardy,4 Danguole Kureisaite-Ciziene,5 Yves V. Brun,4,6

Phillip J. Stansfeld,7 Carol V. Robinson,3 and Tanmay A.M. Bharat1,2,8,*
1Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
2Central Oxford Structural Microscopy and Imaging Centre, South Parks Road, Oxford OX1 3RE, United Kingdom
3Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom
4Department of Biology, Indiana University, Bloomington, IN 47405, USA
5Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
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SUMMARY

Most bacterial and all archaeal cells are encapsulated
by a paracrystalline, protective, and cell-shape-deter-
mining proteinaceous surface layer (S-layer). On
Gram-negative bacteria, S-layers are anchored to
cells via lipopolysaccharide. Here, we report an elec-
tron cryomicroscopy structure of the Caulobacter
crescentus S-layer bound to the O-antigen of lipo-
polysaccharide. Using native mass spectrometry
and molecular dynamics simulations, we deduce the
length of the O-antigen on cells and show how lipo-
polysaccharide binding and S-layer assembly is regu-
lated by calcium. Finally, we present a near-atomic
resolution in situ structure of the complete S-layer
using cellular electron cryotomography, showing
S-layer arrangement at the tip of the O-antigen. A
complete atomic structure of the S-layer shows the
power of cellular tomography for in situ structural
biology and sheds light on a very abundant class of
self-assembling molecules with important roles in
prokaryotic physiology with marked potential for syn-
thetic biology and surface-display applications.

INTRODUCTION

Most bacterial and all archaeal cells are encapsulated by a para-

crystalline, sheet-like, proteinaceous sheath known as a surface

layer (or S-layer) (Sára and Sleytr, 2000). S-layers are made up of

two-dimensional lattices built by repeated interactions between

a special class of proteins called S-layer proteins (Sleytr et al.,

2014). Due to high-copy numbers of S-layer proteins in prokary-

otic cells, it is estimated that S-layer proteins are the most abun-

dant class of proteins on earth (Pum et al., 2013). S-layers play

critical roles in prokaryotic physiology, ranging from cell-shape
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determination to protection from predators and phages (Sleytr

et al., 2014). Since the first observation of S-layers over half a

century ago (Houwink, 1953), structural biology information on

S-layers has been scarce because of the inherent difficulty in

studying these flexible two-dimensional arrays using the

available structural biology techniques. Pioneering electron

microscopy investigations have revealed the low-resolution or-

ganization of S-layer lattices (Lupas et al., 1994; Smit et al.,

1992; Sumper et al., 1990); however, only a few atomic struc-

tures of purified S-layer domains have been reported thus far

(Arbing et al., 2012; Baranova et al., 2012; Bharat et al., 2017).

Even less is known at the atomic level about how S-layers are

anchored and assembled on cells. In archaeal cells, S-layers are

often directly bound to the cell membrane (Albers and Meyer,

2011), and Gram-positive bacterial S-layers are buried in the

cell wall (Fagan and Fairweather, 2014; Sára and Sleytr, 2000).

In Gram-negative bacteria such as Caulobacter crescentus or

Campylobacter fetus, S-layers are retained on cells by lipopoly-

saccharide (LPS) or endotoxin molecules present in the outer

membrane (OM) (Fagan and Fairweather, 2014; Sára and Sleytr,

2000). LPS of Gram-negative bacteria is an abundant glycolipid

responsible for bacterial recognition by foreign agents such as

the human immune system or bacteriophages. LPS consists of

lipid A, core oligosaccharides (OSs), and a repetitive O-antigen

polysaccharide (PS) (Cabeen et al., 2010). Recent structural

studies on the LPS have focused onO-antigen secretion through

the inner membrane (Bi et al., 2018; Caffalette et al., 2019), LPS

transport across the periplasm (Li et al., 2019; Owens et al.,

2019), and its subsequent secretion through the OM (Dong

et al., 2014; Qiao et al., 2014). However, there is limited informa-

tion on O-antigen structure (Steinbacher et al., 1996); therefore,

its native arrangement and conformation on cells remains

enigmatic.

To study the structure, anchoring, and assembly of S-layers on

LPS molecules in the OM of Gram-negative bacteria, we turned

toC. crescentus, a well-studiedmodel bacteriumwith a complex

life cycle (Poindexter, 1964). The S-layer of C. crescentus is
shed by Elsevier Inc.
commons.org/licenses/by/4.0/).
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composed of a single, 1026-amino-acid-residue, multi-domain,

S-layer protein called RsaA (Smit et al., 1992). We have recently

reported the X-ray structure of the C-terminal domain of RsaA

(RsaACTD), consisting of residues 250–1026, which form the

highly interconnected outer S-layer lattice (Bharat et al., 2017).

However, the structure of the N-terminal domain of RsaA

(RsaANTD), consisting of residues 1–249, which is a putative

LPS-binding domain directly proximal to the OM (Bharat et al.,

2017; Ford et al., 2007), is as yet unreported. Therefore, how

RsaA is tethered to cells via LPS molecules and the native struc-

ture and conformation of LPS on cells beneath the S-layer are all

unknown.

Here in this study, we have solved the missing structure of the

RsaANTD bound to the O-antigen of the LPS using single-particle

electron cryomicroscopy (cryo-EM). Using native mass

spectrometry (MS), we studied the calcium (Ca2+) dependence

and stoichiometry of sugar binding to RsaA, allowing us to esti-

mate the length of the native O-antigen and understand the ar-

chitecture of the cellular LPS. Next, molecular dynamics (MDs)

simulations combined with electron cryotomography (cryo-ET)

allowed us to probe the assembly mechanism of the S-layer

on cells. Finally, we used advanced subtomogram averaging

techniques to resolve a near-atomic resolution structure of

the cellular S-layer, providing unprecedented insights into the

S-layer and LPS structure at the C. crescentus cell surface. In

summary, we report an atomic-level structure of the complete

cellular S-layer bound to LPS andmultiple Ca2+ ions as it is found

on the surface of bacterial cells, providing detailed information

on S-layer organization and assembly on LPS.

RESULTS

Biochemical Reconstitution and Cryo-EM Analysis of
RsaA Binding to LPS
To investigate cellular anchoring of RsaA on LPS, we

reconstituted RsaA binding to LPS in vitro and studied the

assembled complex using single-particle cryo-EM. A mutant

C. crescentus strain that carried a tobacco etch virus (TEV)

cleavage site between RsaANTD and RsaACTD after position

250 was used to purify RsaANTD (STAR Methods). Purified

RsaANTD was primarily monomeric in solution and appeared as

small particles on cryo-EM grids (Figures S1A and S1D). Next,

we purified the C. crescentus LPS from a mutant strain that

lacked rsaA and added it to RsaANTD. Large oligomers of

RsaANTD were formed around aggregates of crude LPS (Figures

S1B, S1D, and S1E). To separate RsaANTD bound to LPS aggre-

gates into homogeneous single particles, we pretreated the pu-

rified crude LPSwith acetic acid to cleave off lipid A (Jones et al.,

2015), yielding partially cleaved PS. On addition of this PS to

RsaANTD, an oligomeric complex of approximately 650 kDa

was obtained, which appeared as separated single particles on

cryo-EM grids (Figures S1C, S1D, and S1F). Different views of

the complex were observed, and top views of the complex

were reminiscent of the inner domain of the C. crescentus

S-layer on cells (Figure 1A) (Bharat et al., 2017; Smit et al., 1992).

We resolved a density map of the RsaANTD:PS complex at

3.7 Å resolution using single-particle cryo-EM techniques

(Scheres, 2012). All secondary structure elements and amino
acid side chains were unambiguously assigned, and no signifi-

cant resolution anisotropy was observed within each RsaANTD

monomer in the cryo-EM map (Figure S2). We used the cryo-

EM map to build an atomic model of RsaANTD along with the

bound PS (Figures 1B, 1C, and S2; Video S1; Table S1). In the

complex, several copies of RsaANTD are arranged in a spiral,

which is held together along its length by seven chains of PS.

Density for the main PS chain of the O-antigen is well resolved

(Figure 1D) and agrees with the sequence and linkages reported

for C. crescentus LPS (Jones et al., 2015). The O-antigen

repeating unit is tightly bound to RsaANTDwith several interacting

amino acid residues along the length of the protein (Figure 1E).

The O-antigen binding pocket is stabilized by functional Ca2+

ions that are tightly coordinated to aspartic acid residues in

RsaANTD (Figure 1F), suggesting that Ca2+ ions are important

for RsaANTD:PS complex assembly.

RsaANTD:PS Binding Is Critically Dependent on Ca2+ Ions
To further explore whether Ca2+ ions influenced the assembly of

the RsaANTD:PS complex, we performed a desalting step to re-

move Ca2+ ions. Native MS (Gault et al., 2016) of the resulting

sample showed that the RsaANTD:PS complex dissociated into

monomers, dimers, and tetramers of RsaANTD upon Ca2+

removal (Figures 2 and S3). Complex dissociation was revers-

ible, and addition of Ca2+ resulted in complex reassembly

(Figure S3B). This process of complex disassembly and reas-

sembly could be repeated multiple times (Figure S3C). In the

case of the original, assembled RsaANTD:PS complex, native

MS showed a series of peaks corresponding to RsaANTD mono-

mers and dimers, both associated with LPS (Figure 2A), as well

as a series of peaks at m/z �12,000, which were difficult to

assign (Figure 2A). TandemMS indicated that this complex con-

sisted of two oligomeric states, predominantly a RsaANTD

21-mer, together with a 20-mer. Both oligomers bound preferen-

tially to one unit of PS and six units of full LPS (Figure 2A; Table 1).

Although we cannot rule out other PS or LPS stoichiometries,

this species predominates and is validated by the cryo-EM

reconstruction of the complex that showed seven sugar chains

bound to 20 or 21 copies of RsaANTD. In line with the strong ten-

dency to oligomerize observed in native MS, the cryo-EM struc-

ture additionally shows an extensive RsaANTD:RsaANTD oligo-

merization interface in the complex. This interface is formed by

salt bridges between adjoining RsaANTD subunits. This binding

interface is repeated around the spiral (Figures S3D–S3F), likely

stabilizing the oligomeric complex.

RsaANTD Binds to the O-Antigen of LPS in Two
Distinct Ways
Next, we examined the biochemical basis for the O-antigen and

RsaANTD interaction observed in our cryo-EM structure. The

repeating unit of the C. crescentusO-antigen contains six hexose

moieties in the main PS chain: N-acetyl perosamine(PerNac)-Per-

Nac-mannose(Man)-PerNac-PerNac-Man, with a branching 3-O-

methyl glucose (Glc) on every sixth position (Jones et al., 2015).

While the main PS chain was easily traceable in our map, the

position of the branching Glc moiety bound to every sixth

Man moiety was not immediately obvious. To help assign the po-

sition of the branching Glc in our cryo-EM map, we subjected
Cell 180, 348–358, January 23, 2020 349
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Figure 1. Cryo-EM Reconstruction of the

RsaANTD:PS Complex at 3.7 Å Resolution

(A) Cryo-EM image of the purified complex. Inset:

class averages with the spiral-like nature of the

complex highlighted (see Figure S1).

(B) Density map of the complex (contour level on

the lower left of panel). Different subunits are shown

in different shades of gray, and density corre-

sponding to the O-antigen of the LPS is orange (see

Video S1).

(C) Regions of the map along with the built atomic

model showing resolved secondary structure ele-

ments and side-chain fits. Due to the a-helical

nature of the RsaANTD, the fit of the model to the

cryo-EM map is exceptional (see Figure S2).

(D) The refined atomic model of a single RsaANTD

subunit from the complex shown as a ribbon dia-

gram. A stick representation of the main chain of

the O-antigen is shown within the cryo-EM density.

O-antigen chain is continuous along the spiral,

denoted by asterisks (*).

(E) Surface representation of a single RsaANTD

subunit showing O-antigen binding residues in

magenta.

(F) Close up of two Ca2+ ion binding sites in relation

to the O-antigen binding pocket.
monomeric RsaANTDwith two repeats of theO-antigen resolved in

our structure to MD simulations. Simulations in the absence of

branching Glc moieties showed large root mean square fluctua-

tions (RMSFs) for both the sugar and the protein atoms (Figures

3A, 3D, and S4). On the inclusion of the Glc moiety in positions

3 and 9, these fluctuations were dramatically reduced and

showed the core of the repeating sugar locked to its binding

pocket within the RsaANTD fold (Figures 3B and 3E). Surprisingly,
350 Cell 180, 348–358, January 23, 2020
a parallel simulation with Glc in positions 6

and 12 showed the same result (Figures 3C

and 3F), suggesting that theremight be two

distinctways that theO-antigen can bind to

RsaANTD (Video S2). To verify this predic-

tion from simulations with orthogonal evi-

dence, we reinspected our cryo-EM map

at lower isosurface contour levels (Figures

3G–3I), where we observed density for

Glc at every third position, confirming that

both states are present in our cryo-EM

data and that the structure we resolved

likely contains an average of both states,

with seven PS chains bound in different

registers to the RsaANTD spiral.

Another noteworthy observation from

the MD simulations was that all three

Ca2+ ions in the structure remain tightly

and stably bound to RsaANTD throughout

the simulations, consistent with our

biochemical and nativeMS data (Figure 2).

In fact, the entire Ca2+-binding loop

consisting of RsaA amino acid residues

77–100 were significantly stabilized when
the branching Glc moieties of the O-antigen were included in

the simulations (Figures S4J–S4L), suggesting that Ca2+ and

LPS binding are linked with each other (Figure S4M) and

augment complex assembly in a cooperative manner.

RsaA Binds the Entire Length of the O-Antigen on Cells
Next, we tested whether our in vitro results could be replicated

on cells. A density for both RsaANTD as well as RsaACTD is
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Figure 2. Deducing Protein:Sugar Stoichi-
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(A) Native mass spectrum of purified RsaANTD:PS

complexes show populations of monomer and

dimer, both associated with LPS (average mass

10313 Da) and oligomers (20-mer and 21-mer)

bound to one unit of PS and six units of LPS. Inset:

High energy MS/MS of the oligomeric RsaANTD

performed by isolating the peak at ~12404m/z and

dissociating at a voltage of 220V applied to the

higher-energy collisional dissociation (HCD) cell.

The inset spectrum (blue background) shows

stripped oligomers generated by loss of single

subunits from the parent complex (21-mer/20-

mer/19-mer) and (20-mer/19-mer/18-mer)

allowing us to conclude that the original oligomer

consists predominantly of a 21-mer and a 20-mer

with one unit of PS and six units of LPS each (see

Table 1), although other LPS or PS hydrolysis

products may also be present.

(B) Mass spectrum of the RsaANTD:PS sample

after Ca2+ removal shows presence of RsaANTD

monomers, dimers, and tetramers only (see also

Figure S3).
seen in raw electron cryotomograms of C. crescentus cell stalks

(Figure 4A) and also in subtomogram averages produced from

the surface of these stalks (Figure 4B). Density layers for RsaA

domains are absent in a DrsaA mutant, which does not possess

an S-layer (Figures 4C and 4D). To test whether RsaANTD would

also bind to cellular LPS, we added purified RsaANTD to DrsaA

cells. Instead of forming a single layer of density outside the
Table 1. Expected and Measured Masses of RsaANTD Detected in Native MS

Subunit/Complex Expected Mass (Da) Measured Mass (Da) Ma

Monomera 25261 25260 ± 2 1

Dimer 50522 50520 ± 2 2

Monomer + LPS

(Jones et al., 2015; Smit et al., 2008)

35644.51 35549 ± 519 95

Dimer + LPS 60905.51 60857 ± 918 48

Singly stripped 20-mer + 1 PS + 6 LPS 577382.22b 577492 ± 414 10

Singly stripped 19-mer + 1 PS + 6 LPS 552055.22b 552599 ± 400 54

Doubly stripped 19-mer + 1 PS + 6 LPS 552055.22b 552317 ± 190 26

Doubly stripped 18-mer + 1 PS + 6 LPS 526728.22b 527661 ± 442 93
aResidues 2–250 and the amino acids Glu-Asn of the genetically engineered TEV protease site.
bSalt adducts (Na+/Ca2+) were observed bound to each monomer (average mass of 66 Da per monom

lated the expectedmass of the stripped oligomers. The expectedmass of LPS is 10383.51 Da and the

the structure of LPS of C. crescentus reported in a previous study (Jones, 2015).
OM like the native S-layer, we observed

three density layers proximal to the OM

(Figures 4E and 4F). These density layers

had the same appearance and spacing

as those seen in side views of our cryo-

EM structure of the RsaANTD:PS complex

(Figure 4F, inset). This showed that not

only can RsaANTD bind to cellular LPS

but also that binding occurs all along
the LPS O-antigen due to its repeating nature. Similar results

were obtained on the addition of full-length RsaA, where three

density layers were observed on top of a RsaACTD layer (Fig-

ure S5). Also consistent with our biochemical data, when Ca2+

ions were depleted from the reaction by the addition of EGTA

(ethylene glycol-bis(b-aminoethyl ether)-N,N,N0,N0-tetraacetic
acid) and RsaANTD was added to DrsaA cells (Figure S5H), no
ss Difference (Da) Mass Difference (%)

0.003958671

0.003958671

.51 0.267951502

.51 0.079647966

9.78 0.019013402

3.78 0.098501016

1.78 0.047419169

2.78 0.17708943

er) and were therefore included when we calcu-

expectedmass of PS is 8541.16 Da according to
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Figure 3. Probing RsaANTD Binding to the O-

Antigen of LPS Using MD Simulations

(A) MD simulation of RsaANTD bound to the O-an-

tigen with no branching sugar moieties.

(B) Simulation of RsaANTD bound to the O-antigen

with 3-O-methyl-glucose (Glc) moieties at positions

3 and 9.

(C) Simulation of RsaANTD bound to the O-antigen

with Glc moieties at positions 6 and 12.

(D) Plot of RMSF of the O-antigen atoms in the MD

simulation presented in (A).

(E) Plot of RMSF of the O-antigen atoms in the MD

simulation presented in (B).

(F) Plot of RMSF of the O-antigen atoms in the MD

simulation presented in (C).

(G–I) Cryo-EM density at different isosurface con-

tour levels showing density for the branching sugar

moieties at every third position (see Figure S4)
S-layer assembly or decoration of the cellular LPS in the OMwas

observed, in line with the desalting experiments conducted in

native MS.

In light of these in situ results, together with the stoichiometry

of the RsaANTD:PS complex observed in cryo-EM and confirmed

by native MS in which 20 or 21 monomers of RsaANTD were

observed in the complex bound to seven O-antigen molecules,

we predict using the total mass of the complex that the full

RsaANTD spiral would bind on average 294 hexose moieties,

which allows us to calculate that there are 42 hexose moieties

in the cellular O-antigen of the native C. crescentus. This calcu-

lation is also consistent with the distances measured between

the OMand the S-layer in our cryo-ET data (Figure 4), accounting

for the size of the core OS proximal to the OM.

Near-Atomic Resolution In Situ Structure of the
C. crescentus S-Layer
To obtain a more detailed view of the cellular S-layer, we

used recently described subtomogram averaging algorithms

(Turo�nová et al., 2017) to obtain a 4.8 Å resolution structure
352 Cell 180, 348–358, January 23, 2020
of the S-layer lattice directly on the sur-

face of cell stalks (Figure S6). The subto-

mogram averaging map shows large

anisotropy in resolution, with the resolu-

tion highest in RsaANTD, close to the 6-

fold symmetrization axis (Figure S6B).

Both the RsaANTD cryo-EM structure as

well as the RsaACTD X-ray structure

(Bharat et al., 2017) could be docked

into the cryo-ET density unambiguously

as rigid bodies (Figures 5A and 5B; Video

S3). All a helices of RsaANTD are resolved

in the cryo-ET map (Figure 5C), and large

side chains are resolved, which fit the

density well without any further refine-

ment (Figure 5D). Satisfyingly, a clear

density for the O-antigen of the LPS is

observed in the same relative location

as in the single-particle cryo-EM map of
the RsaANTD:PS complex (Figure 5E). It is worth mentioning

that the RsaANTD:RsaANTD interface is almost unchanged

from the interaction observed in the RsaANTD:PS spiral complex

(Figures 1 and S3D–S3F). This observation suggests that the

planar hexameric arrangement of RsaANTD in the native S-layer

is at least partially imposed by the hexagonal symmetry of the

RsaACTD outer lattice.

There are very few contact sites observed between RsaANTD

and RsaACTD (Video S4), showing why the two domains can oli-

gomerize independently. The two domains are connected by a

short linker region, which appears as a smeared density in the

cryo-ET map, suggesting some flexibility ( Figures S6D–S6F;

Video S4). The density for the LPS O-antigen is clearly resolved

near the RsaANTD domain, and this density ends within the

RsaANTD layer and does not extend outward to the RsaACTD

(Figure 5G). This indicates that upon secretion and assembly

into an S-layer, RsaA proteins localize at the very tip of the O-an-

tigen. These observations are consistent with the fact that anti-

bodies against the O-antigen are unable to stain the O-antigen

when the S-layer is present (Walker et al., 1994).
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Side view of the RsaANTD:PS cryo-EM structure also

shows three layers of protein bound to theO-antigen

PS with the same spacing (see Figure S5).
In the other direction toward the cell, at low contour levels, the

O-antigen density extends down toward the OM and is probably

formed of flexible and fluctuating O-antigen repeats connected

to the core OS (Figure 5F; Video S5). The relative distance be-

tween the S-layer and the OM remains constant over the cell

body and stalks (Figure S7), showing that the length of the LPS

O-antigen is the same all around the cell. Furthermore, the S-

layer arrangement including the near-hexagonal symmetry is

also seen over the cell body (Figure S7). Therefore, the near-

atomic resolution in situ structure of theC. crescentus S-layer al-

lows positioning of not only the two RsaA domains but also the

O-antigen of LPS relative to the OM of the bacterial cell (Fig-

ure 5H), providing an atomic resolution snapshot of the outer-

most layer of C. crescentus bacteria made up of protein and

polysaccharide.

DISCUSSION

One of the outstanding goals of structural biology is to resolve

atomic resolution cellular structures and to study cellular

processes in atomic detail in situ. To this end on the technical

side, this study demonstrates how cryo-ET and subtomogram

averaging (4.8 Å cellular S-layer) is closing the gap to single-

particle cryo-EM (3.7 Å RsaANTD:PS complex) and X-ray crys-

tallography (2.7 Å RsaACTD). Modern cryo-ET imaging can

provide molecular resolution insights into the architecture

and organization of cells (Chang et al., 2016; Mahamid et al.,

2016). Here we used cryo-ET combined with subtomogram

averaging to reveal a repeated cellular structure at near-

atomic resolution, allowing the fundamental biological process

of S-layer assembly to be studied directly in its cellular context

(Figure 5H).

Our structure of the complete C. crescentus S-layer, together

with the O-antigen of the LPS, is a potential target for synthetic
biology applications, in which tagged S-

layers could be used to link genotype to

protein displayed at high copy numbers

on surfaces. The first such technical appli-
cation, developed using the X-ray structure of RsaACTD has been

recently reported (Charrier et al., 2019).

Our structure of the RsaANTD:PS complex confirms previous

studies that showed that the N-terminal residues of RsaA are

critical for S-layer anchoring (Ford et al., 2007). A majority of

the mutations in RsaANTD, including amino acid exchanges or in-

sertions before position 225 in the amino acid sequence, lead to

complete loss of S-layer anchoring (Ford et al., 2007), consistent

with the extensive interaction observed between the O-antigen

and RsaANTD in our cryo-EM structure (Figures S4A–S4C). Our

integrated structural biology approach has technical implica-

tions to the future structural studies of LPS. LPS is nearly ubiqui-

tous in Gram-negative bacteria, and it is found in several impor-

tant human pathogens. LPS assembly and biogenesis has thus

rightly been the focus of several prominent structural biology ef-

forts in the recent past, for example Bi et al., 2018 and Caffalette

et al., 2019, to name a few. Here we show that by combining

cryo-EM and cryo-ET with nativeMS, it is possible to understand

not only the biochemistry but also the cellular architecture and

arrangement of LPS, revealing how LPS molecules are located

in the space directly outside Gram-negative C. crescentus cells.

Using a similar integrated approach of combining EM with MS,

LPSmolecules in other bacteria may be studied, allowingmolec-

ular details of this enigmatic molecule to be revealed.

In C. crescentus, future genetic and biochemical studies that

mutate and perturb the LPS O-antigen might shed light onto

how LPS biogenesis and secretion is coupled with S-layer as-

sembly. Only density for the LPS O-antigen bound to RsaANTD

was resolved in our cryo-EM map; therefore it is still not

completely clear how the core oligosaccharide and lipid A of

the LPS is arranged on cells. Further structural and cell biology

studies in the C. crescentus system will be required to under-

stand how the LPS is anchored at the other end, away from

the S-layer by the bacterial OM.
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structure (blue ribbon) are docked into the density (contour level shown on lower left of each panel, see Figure S6).

(B) Top View of a Single Hexameric Unit

(C) Six subunits of the cryo-EM structure of RsaANTD docked into the cryo-ET map. LPS densities highlighted with asterisks (*).

(D) A closeup of a single RsaANTD a-helix showing some resolved bulky side chains in the cryo-ET map.

(E) A ribbon diagram of one RsaANTD subunit overlaid on a slice through the cryo-ET map. A clear density for the O-antigen is observed at the same relative

location as in the cryo-EM RsaANTD:PS structure.

(F) A side view of a single hexamer is shown relative to the OM of the cell. Densities of O-antigen bound to RsaA extend downward to the OM (black outline

density). Positions of RsaANTD:PS density layers as seen in Figure 4F are highlighted with blue arrows (see Video S3).

(G) A closeup view of the O-antigen binding pocket resolved in the cryo-ET map.

(H) Cellular structural biology from cells to atoms. Tomographic slice of aC. crescentus cell. Copies of the 4.8 Å cryo-ET structure are overlaid on the tomographic

slice at their refined cellular locations. Atomic structures determined by X-ray crystallography (RsaACTD 2.7 Å) and cryo-EM (RsaANTD 3.7 Å) are docked into the

cryo-ET map (see Video S5).
It is reasonable to expect that newly secreted RsaA proteins

might be guided toward the S-layer lattice along O-antigen

chains via binding to RsaANTD (Figure 6). O-antigen binding is

Ca2+ dependent (Video S4), and Ca2+ levels are higher in the

extracellular space (Baines et al., 2000; Jeziorski et al., 2008),
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enough to trigger spontaneous S-layer assembly (Herrmann

et al., 2017). RsaANTD can bind along the entire length of the

O-antigen of the cellular LPS (Figures 6B and S5), consistent

with the multiple binding modes observed in our cryo-EM struc-

ture and confirmed by MD simulations. When full-length RsaA
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(B) Subtomogram averaging of the sample with

exogenous added full-length RsaA to cells lacking

native S-layer (DrsaA) demonstrates that full-length

RsaA can bind along the entire length of the O-an-

tigen and can form a partly assembled outer lattice

(panel same as Figure S5G). We expect that only

RsaA molecules at the tip of the O-antigen are able

to partially assemble the outer lattice because of

steric hindrance by a mesh of LPS in the layers

below.

(C) Using a combined structural approach, X-ray

crystallography (RsaACTD, PDB: 5N8P, red), cryo-

EM (RsaANTD, blue), cryo-ET (subtomogramaverage,

gray), and nativeMS (O-antigen, orange), we report a

model of a full bacterial S-layer bound to LPS.

(D) Schematic model of C. crescentus S-layer as-

sembly. RsaA is secreted to the extracellular milieu,

where RsaA binds to Ca2+ and LPS. This binding

has been observed in our cryo-EM structure of the

RsaANTD:PS complex (Figure 1) and verified by native MS (Figure 2). Next, RsaA is guided on LPS molecules by binding to the O-antigen along multiple sites, as

observed in our cryo-EM structure (Figure 1), confirmed byMD simulations (Figures 3 and S4) as well as by in situ experiments showing binding of RsaA along the

entire length of the LPS O-antigen (Figure 4). RsaAmolecules are unable to assemble into an S-layer lattice near the OM (Figure S5), likely due to steric hindrance

by a meshwork of LPS molecules. At the tips of the LPS O-antigen, whose length we accurately estimated using native MS (Figure 2), RsaA molecules can bind

with a pre-existing S-layer to complete gaps in the lattice via oligomerization through RsaACTD (B and Bharat et al., 2017).
was added to aC. crescentus strain lacking an S-layer, formation

of an additional (fourth) density layer at the same distance from

the OM as the native RsaACTD layer was observed, suggesting

that RsaA molecules bound at the ends of the LPS had at least

partially assembled into an S-layer lattice. This indicates that lat-

tice assembly is only possible when RsaA is bound at the tip of

the O-antigen, implying that a meshwork of LPS and other mol-

ecules might sterically hinder premature S-layer formation.

RsaANTD domains in the assembled S-layer are attached to the

end of the LPS (Figure 6C), and RsaACTD domains oligomerise in a

Ca2+-dependent manner to form the outer S-layer lattice (Figures

6Cand 5H; VideoS5).Overall, bothRsaANTD andRsaACTD contain

several functionally important Ca2+ ions, which have roles in LPS

binding as well as lattice assembly. Consistent with this strong

Ca2+ dependence, cooperative assembly is observed in both

RsaA domains, allowing this remarkable two-dimensional array

to be assembled on the surface ofC. crescentus cells (Figure 6D).

It is interesting to note that Ca2+-dependence has been previously

described for other unrelated S-layers from Gram-positive bacte-

ria (Baranova et al., 2012) and archaea (Sumper et al., 1990),

perhaps suggesting similar mechanisms of assembly. However,

further work will be needed to verify this expectation. In the case

of the C. crescentus S-layer, it is remarkable how division of labor

between different RsaA domains, where RsaANTD mediates cell

anchoring and RsaACTD forms the lattice layer, allows this remark-

able polyprotein to perform multiple tasks on the cell surface to
form micron-scale, two-dimensional sheaths on membranes

with variable curvature.

Finally, fluorescently tagged S-layers derived fromour structure

will open the door to studying S-layer dynamics (Charrier et al.,

2019; Comerci et al., 2019) with respect to the cell cycle and cell

morphogenesis. A recent optical microscopy study on the same

system has shown that a new C. crescentus S-layer is inserted

at themid-cell or at the cell poles (Comerci et al., 2019). In the light

of this spatiotemporal regulation of S-layer morphogenesis, it

seems remarkable how molecular rearrangements within the cell

control biogenesis and assembly of a two-dimensional lattice

180 Å away from the OM, mediated by long rope-like LPS mole-

cules. Future structural and cell biology studies on this system

will reveal how S-layer morphogenesis is coupled with critical

cellular processes such as cell elongation, peptidoglycan synthe-

sis, LPS biogenesis, LPS secretion, and cell division, providing in-

sights into the mechanism of how spatial information is relayed

from the cytoplasm to the extracellular environment of the cell.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

ethylene glycol bis(2-aminoethyl ether)-

N,N,N0,N0-tetraacetic acid (EGTA)

SigmaAldrich Cat#E3889-100G

Fiducial gold (FG) 10 nm, 400 mL CMC Utrecht N/A

Critical Commercial Assays

Pro-Q Emerald 300 Lipopolysaccharide

Gel Stain Kit

Thermo Fisher Scientific Cat#P20495

Deposited Data

RsaANTD:PS structure This study PDB: 6T72

RsaANTD:PS cryo-EM map This study EMDB: EMD-10389

RsaA S-layer cryo-ET map This study EMDB: EMD-10388

Experimental Models: Organisms/Strains

Escherichia coli S17-1 (Simon et al., 1983) S 17-1

Escherichia coli Alpha-select� Bioline N/A

Caulobacter crescentus strain CB15N

(NA1000)

(Evinger and Agabian, 1977) N/A

Caulobacter crescentus strain YB5754 E. Quardokus, personal communication YB5754

Caulobacter crescentus strain YB1001 This study YB1001

Recombinant DNA

pNPTS138 Brun lab collection N/A

pNPTS138::rsaATEV250 This study N/A

pNPTS138DrsaA (Hardy et al., 2010) N/A

Oligonucleotides

Primers for generation of rsaATEV250 strain

(see Table S2 for details)

This study N/A

Primers for sequencing of mutant

rsaATEV250 strain (see Table S2 for details)

This study N/A

Primers for PCR and sequencing of mutant

DrsaA strain (see Table S2 for details)

This study N/A

Primers for sequencing mutant plasmid

vectors (see Table S2 for details)

This study N/A

Software and Algorithms

CCP-EM (Burnley et al., 2017) http://www.ccpem.ac.uk/

Coot (Emsley et al., 2010) https://www2.mrc-lmb.cam.ac.uk/

personal/pemsley/coot/

CTFFIND (Rohou and Grigorieff, 2015) https://grigoriefflab.janelia.org/ctf

EPU Thermo Fisher Scientific https://www.fei.com/software/epu/

Fiji (Schindelin et al., 2012) https://fiji.sc/

Gromacs 2019 (Abraham et al., 2015) http://www.gromacs.org/

IMOD (Kremer et al., 1996) http://bio3d.colorado.edu/imod/

MATLAB R2017b Mathworks https://uk.mathworks.com/

MotionCor2 (implemented in Relion 3.0) (Zheng et al., 2017) N/A

novaCTF (Turo�nová et al., 2017) https://github.com/turonova/novaCTF

PHENIX (Adams et al., 2010) https://www.phenix-online.org/

PRODRG (Schüttelkopf and van Aalten, 2004) http://www.gromacs.org/Downloads/

Related_Software/PRODRG

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

PyMOL (Schrödinger, 2017) https://pymol.org/2/

REFMAC5 (Murshudov et al., 2011) https://www2.mrc-lmb.cam.ac.uk/groups/

murshudov/content/refmac/refmac.html

RELION 3.0 (Zivanov et al., 2018), (Bharat et al., 2015) https://www2.mrc-lmb.cam.ac.uk/relion

Sequencher 5.4.6 Gene Codes Corporation https://www.genecodes.com/

SerialEM (Mastronarde, 2005) http://bio3d.colorado.edu/SerialEM/

UCSF Chimera (Pettersen et al., 2004) https://www.cgl.ucsf.edu/chimera/

Xcalibur 4.2 Thermo Fisher Scientific N/A

Other

R2/2 200 mesh Cu/Rh holey carbon grids Quantifoil https://www.quantifoil.com/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents may be directed to, and will be fulfilled by the Lead Contact, Tanmay A.M. Bharat

(tanmay.bharat@path.ox.ac.uk). Strains and reagents generated in this study will be made available on request, but we may require

a payment and/or a completed Materials Transfer Agreement if there is potential for commercial application.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

AllC. crescentus strains listed in this study are listed in the Key Resources table.C. crescentus strains were grown in peptone-yeast-

extract (PYE) medium (Poindexter, 1964) at 30�C, with antibiotic and carbon supplements at the following concentrations when

necessary: kanamycin (5 mg/mL (plate), 5 mg/mL (broth)), nalidixic acid (20 mg/mL (plate)). Escherichia coli strains were cultured at

37�C in Luria-Bertani (LB) medium. LB medium was supplemented with kanamycin (25 mg/mL or 25 mg/mL (plate)) when necessary.

Bacterial strains and plasmids used in this study are further listed in Table S2.

METHOD DETAILS

DNA manipulations and sequencing
All primers used in this study are listed in Table S2 and were purchased from Eurofins Genomics (Louisville, KY). PCR products were

generated using iProoF Hi-Fidelity DNA polymerase (Biorad, Hercules, CA) and purified using Qiaquick spin columns (QIAGEN, Va-

lencia, CA) following procedures recommended by the manufacturer. Chromosomal DNA was isolated using Promega Magic Mini-

Prep DNA purification system (Promega, Madison, WI) using the manufacturer’s instructions. DNA sequencing was performed by

Eurofins Genomics. Sequence data were analyzed using Sequencher 5.4.6 software (Gene Codes Corporation, Ann Arbor, MI).

Construction of rsaA mutants
The TEV protease mutants were generated by homologous recombination using upstream and downstream fragments of rsaA

cloned into a non-replicating plasmid pNPTS138, which carries a kanamycin resistance gene cassette (nptI), along with the sacB

cassette that confers sucrose sensitivity as previously described (Gonin et al., 2000). The TEV protease site (Glu-Asn-Leu-Tyr-

Phe-Gln-:-Gly) was engineered at amino acid 250 of RsaA. An upstream�2000 bp PCR fragment that contained 1000 bp of upstream

DNA and the first 749 bp (250 aa) of rsaA was generated using primers, 138rsaA1kbupF and rsaATEV250upR. The downstream

�2600 bp PCR product that contained the remainder of rsaA from 750 to 3080 bp (amino acid residues 251 to 1026) and an additional

500 bp of downstream DNA was created with primers, rsaATEV250dwnF and 138rsaA500dwnR. Gibson Assembly with NEBuilder

HiFi Assembly mix (New England Biolabs, Ipswitch, MA) was used to assemble the two PCR products and pNPTS138 digested with

EcoRV and treated with calf intestinal alkaline phosphatase (New England Biolabs). The Gibson Assembly reaction was transformed

into alpha select silver chemically competent cells (Bioline, Swedesboro, NJ) and selected on LB supplemented with kanamycin.

Transformants were screened by PCR using M13F, M13R and TEVprimerF and confirmed by sequencing. Plasmid (pNPTS138::

3rsaATEV250) was transformed into S17-1, mated into NA1000 DrsaA and selected on PYE with nalidixic acid and kanamycin.

The additional selection with sacB was not utilized here.
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The NA1000 DrsaA mutant was generated by mating pNPTS138DrsaA into NA1000, plating on PYE with kanamycin and nalidixic

acid to select for the primary integrants. The transconjugants were plated on PYE sucrose and the sacB gene was used to select for

the secondary recombination event and loss of the plasmid. The loss of rsaA was screen for by PCR and confirmed by sequencing.

Purification of RsaANTD protein
Cells from the C. crescentus rsaATEV250 strain, containing the genomic TEV-protease cleavage site, were grown in PYE medium

(Poindexter, 1964) for 24 hours at 20�C with shaking at 180 rpm. Six liters of the bacterial culture were centrifuged (5000 rcf, 4�C,
30 min). The pelleted cells were re-suspended in 50 mM HEPES/HCl buffer at pH 2.0 on ice for 10 min with vigorous shaking.

Next, the suspension was centrifuged (16000 rcf, 4�C, 30min). The pellet was discarded and the pH of the supernatant was adjusted

to 7.0 with 5 M NaOH. The resulting liquid was filtered and loaded onto a 5 mL HiTrap SP HP column (GE Healthcare). All purification

steps were performed using an ÄKTA pure 25 M system (GE Healthcare) operating at 4�C. The flow-through from the column was

collected and dialyzed against 10 mM Tris/HCl pH 8.0 for 3 hours at 4�C. The dialyzed solution was loaded onto a 5 mL HiTrap

Q HP column (GE Healthcare), washed with 20 mM Tris/HCl pH 8.0 and then eluted with the same buffer containing increasing con-

centrations of NaCl. Fractions containing pure RsaATEV250 were collected and cleaved overnight by addition of His6-TEV protease in a

ratio of 1:100 (wt:wt). His6-TEV protease was removed by loading the protein solution to a 5 mL HisTrap FF column (GE Healthcare).

The flow-through was collected, concentrated and loaded to a Superdex S200 16/600 (prep grade) column (GE Healthcare) equili-

brated with 25 mM HEPES/NaOH pH 7.5, 100 mM, 1 mM CaCl2. RsaANTD was eluted with the same buffer and fractions containing

RsaANTD were collected and concentrated upto 3.7 mg/mL protein concentration (Amicon 10 kDa MWCO). Aliquots were frozen in

liquid nitrogen and stored at �80�C.

Purification of full length RsaA
Wild-type RsaA protein was purified as described previously (Bharat et al., 2017) with modifications as follows:C. crescentusCB15N

(NA1000) cells were grown in PYE medium for 24 hours at 25�C with shaking. The resulting culture (4 L) was centrifuged (5000 rcf,

4�C, 30 min) and the pelleted cells were re-suspended in 50 mMHEPES/HCl buffer at pH 2.0 on ice for 10 min with vigorous shaking.

Next, the suspension was centrifuged (16000 rcf, 4�C, 30 min) and the cell pellet was discarded. The pH of the supernatant was

adjusted to 7.0 with 5 M NaOH, filtered and loaded onto a 5 mL HiTrap SP HP column (GE Healthcare). The flow-through from

the column was collected and dialyzed against 10 mM Tris/HCl pH 8.0 overnight at 4�C. The dialyzed protein solution was loaded

onto a 5 mL HiTrap Q HP column (GE Healthcare), washed with 20 mM Tris/HCl pH 8.0 and then eluted with the same buffer con-

taining increasing concentrations of NaCl. Fractions containing pure RsaA were collected and dialyzed against 20 mM Tricine/NaOH

pH 8.0 and then concentrated to �25 mg/mL. Aliquots were flash frozen in liquid nitrogen and stored at �80�C.

Purification of crude LPS from C. crescentus

Crude LPSwas purified as described previously (Jones et al., 2015), with a fewmodifications as follows. Crude LPSwas purified from

aC. crescentusDrsaA strain, cells were grown in PYEmedium for 24 hours at 30�Cwith shaking at 180 rpm. Two liters of the bacterial

culture were centrifuged (5000 rcf, 4�C, 30 min). The pelleted cells were washed once with 1x phosphate buffered saline (PBS) and

recentrifuged (16000 rcf, 4�C, 30 min). Pelleted cells were resuspended in 60 mL of PBS supplemented with 35 mM EDTA to extract

LPS from the cell surface under gentle agitation. Cells were removed by two consecutive centrifugation steps (16000 rcf, 4�C, 30min)

and resulting supernatant was treated with 50 mg/mL DNaseI and 1 U/mL benzonase (Sigma Aldrich) and dialysed against 5 mM

MgCl2 for 4 hours at 25�C. Proteinase K was added to the dialysed solution to a final concentration of 0.01 mg/mL and incubated

at 50�C overnight. The proteinase K treated sample was clarified by two centrifugation steps (50000 rcf, 4�C, 1 hour and 200000

rcf, 4�C, 3 hours). Aliquots of the resulting supernatant and pellet fractions were analyzed by sodium dodecyl sulphate-polyacryl-

amide gel electrophoresis (SDS-PAGE) and stained with Pro-Q Emerald 300 Lipopolysaccharide Gel Stain Kit (ThermoFisher). While

aminor fraction of the isolated LPSwas lost in the pellet, themajority was found in the supernatant whichwas concentrated 120 times

(Amicon 3.5 kDa MWCO) and loaded onto a Superose 6 10/300 GL column (GE Healthcare) equilibrated with 200 mM NaCl. Crude

LPSwas eluted with the same buffer andmonitored at a wavelength of 215 nm. Fractions containing high absorbance were collected

and analyzed by SDS-PAGE and Pro-Q Emerald 300 staining and Coomassie brilliant blue G-250. Aliquots containing crude LPS

were flash frozen in liquid nitrogen and stored at �80�C.

Reconstitution of the RsaANTD:PS complex
PSwas partially released frompurified, crude LPS by hydrolysis with acetic acid (1% (v/v), 95�C, 2 hours). The samplewas clarified by

centrifugation (16000 rcf, 4�C, 30min) and adjusted to pH 7.0 by addition of 1MHEPES/NaOH pH 7.0. An excess of purified RsaANTD

was mixed with hydrolysed PS and the mixture was dialyzed against 25 mMHEPES/NaOH pH 7.5, 100 mMNaCl, 1mMMgCl2, 1mM

CaCl2 overnight at 4
�C. The sample was loaded to a Superose 6 10/300GL column (GEHealthcare) equilibrated with the same buffer.

Peak fractions containing oligomeric RsaANTD were collected, concentrated (Amicon 30 kDa MWCO) and flash frozen in liquid nitro-

gen and stored at �80�C.
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Preparation of samples for cellular cryo-ET
For cellular cryo-ET (Figure 4), CB15N C. crescentus cells or cells with genomic deletion of rsaA (DrsaA strain), were grown in PYE

medium to late log phase at 30�Cwith vigorous shaking and directly used for grid preparations. For probing binding of RsaA to cellular

LPS,DrsaA cells weremixedwith purified RsaANTD (�1mg/mL final concentration) or with RsaA (full-length) protein (�2.5mg/mL final

concentration). Cells were incubated with vigorous shaking for 15 min at room temperature before vitrification. Ca2+ dependence of

RsaANTD binding to the cell surfaces was tested by centrifuging 5 mL of late log phase DrsaA cells (16000 rcf, 25�C, 10 min) and

resuspending the pellet in the 5 mL of liquid containing 10 mM HEPES pH 7.5, 5 mM ethylene glycol bis(2-aminoethyl ether)-

N,N,N0,N0-tetraacetic acid (EGTA). This process was repeated three times, and the sample was mixed with purified RsaANTD

(�1 mg/mL final concentration) and incubated at room temperature with vigorous shaking for 15 min before vitrification.

Cryo-EM and cryo-ET sample preparation
For cryo-EM grid preparation 2.5 mL of purified RsaANTD or RsaANTD:PS complex (2.5 mg/mL) was applied to a freshly glow dis-

charged Quantifoil R2/2 Cu/Rh 200 mesh grid, adsorbed for 10 s, blotted for 3 s and plunge-frozen into liquid ethane in a Vitrobot

Mark IV (ThermoFisher), while the blotting chamber was maintained at 100% humidity at 10�C. For cryo-ET sample preparation, pu-

rified or cellular samples were mixed with 10 nm protein-A gold (CMC Utrecht) before application to the cryo-EM grid.

Cryo-EM and cryo-ET data collection
Single-particle cryo-EM data was collected on a Titan Krios G3microscope (ThermoFisher) operating at 300 kV fittedwith a Quantum

energy filter (slit width 20 eV) and a K2 direct electron detector (Gatan) with a sampling pixel size of 1.08 Å running in counting mode.

In total 2422movies were collectedwith a dose rate of 6.3 e-/pixel/s on the camera level. The sample was subjected to 8 s of exposure

where a total dose of 43 e-/Å2 was applied, and 20 frames were recorded per movie. Data collection for initial model generation using

sub-tomogramwas performed on the same Titan Kriosmicroscope using theQuantumenergy filter (slit width 30 eV) and the K2 direct

electron detector running in counting mode with a dose rate of 5.5 e-/pixel/s (Gatan). Tilt series (6 in total) with a defocus range of�3

to �6 mm were collected between ± 60� in two directions from 0� at 2� tilt increment. A total dose of 100 e-/Å2 was applied over the

entire series, and image data was sampled at a calibrated pixel size of 2.238 Å. For cellular samples, tilt series (wt: 10 tilt series;DrsaA:

13 tilt series;DrsaA +RsaANTD: 7 tilt series;DrsaA +RsaA: 2 tilt series) were collected at a dose rate of 11.3 e-/pixel/s, with a total dose

over the series of 81 e-/Å2. Data was sampled at a calibrated pixel size of 5.571 Å using the K2 direct electron detector running in

counting mode (slit width 20 eV). For high-resolution in situ structure determination of the S-layer, a pipeline for high-throughput

data collection was adopted (Wan et al., 2017). Briefly, a Titan Krios microscope was used to collect tilt series data with a dose sym-

metric tilting scheme (Hagen et al., 2017). Tilt series were collected at a pixel size of 1.3 Å, with a total dose of 140 e-/Å2 was applied

over entire series collected between ± 60� with 3� tilt increments (Bharat et al., 2017).

Cryo-EM single-particle image processing
Initial model generation from cryo-ET data was performed using the Relion sub-tomogram averaging pipeline (Bharat et al., 2015;

Bharat and Scheres, 2016). An unambiguous 3D reference was generated and used in the single-particle EM pipeline as follows.

Movies were motion corrected and dose weighted with MotionCor2 (Zheng et al., 2017) implemented in Relion 3.0 (Zivanov et al.,

2018). Contrast transfer functions (CTFs) of the resulting motion corrected micrographs were estimated using CTFFIND4 (Rohou

and Grigorieff, 2015). Particles were extracted with a 300 pixel 3 300 pixel box and classified using reference-free 2D-classification

inside Relion 3.0. Particles from classes showing high-resolution featureswere subjected to 3D classification using the unbiased sub-

tomogram averaging reference structure described above. Particles from twomain 3D classes containing 21 or 20 RsaANTD subunits

were combined for a focused 3D auto refinement on the central 14 subunits using the output from the 3D classification as a starting

model. The final map was obtained from 115,776 particles and post-processed using a soft mask focused on the inner fourteen sub-

units yielding a sharpened map with a B-factor of �85.8 Å2 and a resolution of 3.68 Å according to the gold standard Fourier shell

correlation criterion of 0.143 (Scheres and Chen, 2012).

Sub-tomogram averaging
Tilt series alignment using gold fiducials and tomogram generation was carried out using IMOD (Kremer et al., 1996). Sub-tomogram

averaging processing was performed using custom scripts written in MATLAB, described in detail elsewhere (Bharat et al., 2011;

Wan et al., 2017). Cellular sub-tomogram averages (see Figures 4 and S5) were lowpass filtered to the same resolution of 40 Å for

comparison. For high-resolution cryo-ET structure determination, we adopted previously published methods (Bharat et al., 2017)

with the major difference being the use of a recently developed in 3D-CTF correction method for tomographic data (Turo�nová

et al., 2017). In addition, we used focused alignment on the RsaANTD part of the S-layer to improve this region of the map to observe

LPS binding. The final map was obtained from 51,866 hexameric units of the S-layer from 110 tomograms (Bharat et al., 2017). Post-

processing using a softened mask focused on the inner domain and pore region of RsaA yielded a sharpened map with a B-factor of

�224.953 Å2 applied and a resolution of 4.82 Å (Figure S6) according to the 0.143 criterion. The final map has not been explicitly sym-

metrized and local resolution differences were estimated in Relion 3.0. Figures were prepared using Fiji (Schindelin et al., 2012) and

MATLAB.
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Model building and refinement
The carbon backbone of the RsaANTD protein was manually traced through a single subunit of the cryo-EM density using Coot (Ems-

ley et al., 2010). Initially, side chains were assigned in regions with density corresponding to characteristic aromatic residues allowing

us to deduce the register of the amino acid sequence in the map. Side chains for residues 2-243 of RsaA were thus assigned unam-

biguously and the structure was refined and manually rebuilt using Refmac5 (Murshudov et al., 2011) inside the CCP-EM (Burnley

et al., 2017) software suite and Coot. Additional subunits around the spiral of the RsaANTD:PS complex were generated by rigid

body fitting the refinedmonomeric unit into the cryo-EM density. Areas of strong and continuous density connecting protein subunits

along the long axis of the spiral could not be explained by any amino acid residues in RsaANTD and were therefore assigned to the

O-antigen of the C. crescentus LPS, to which RsaANTD is known to bind (Bharat et al., 2017; Ford et al., 2007). The chemistry of the

heptameric repeating unit of theO-antigen has been described previously (Jones et al., 2015), andwas used to build themain chain of

the PS. Orientation of the PS was assigned by iterative rebuilding and refinement using restraints for N-Acetyl-perosamine (PerNac)

whichwere generated with PRODRG (Schüttelkopf and van Aalten, 2004) and existing restraints for mannose. Comprehensivemodel

validation of the final structure and map was performed in PHENIX (Adams et al., 2010) (see Table S1). The final refined cryo-EM

structure of RsaANTD and the X-ray structure of RsaACTD (PDB ID 5N8P) were rigid body docked into the 4.8 Å cryo-ET map and

were not refined further. Figures containing protein structures or cryo-EM/ET data were prepared using USCF Chimera (Pettersen

et al., 2004).

Native mass spectrometry
Samples were loaded into a gold coated needle prepared in-house and introduced into a Q-Exactive UHMR mass spectrometer

(ThermoFisher), as described previously (Gault et al., 2016). The following parameters were used: capillary voltage was set to

1.2-1.4 kV, resolution was set to 17500 at m/z 200, injection flatopole was set to 5 V, inter flatopole lens was at 4 V, and bent flatopole

at 2 V. Backing pressure was maintained at �3 3 10�9 mbar. Stripped oligomers were obtained by MS/MS analysis at a voltage

applied to the HCD cell of 220 V. ZebaTM micro spin desalting columns were used to remove the Ca2+ ions. Data was analyzed using

Xcalibur 4.2.

Molecular dynamics simulations
Atomistic simulations were run in triplicate for 100 ns using the CHARMM36m forcefield (Huang et al., 2017). Simulations were per-

formed at 310 K using the velocity-rescaling temperature coupling algorithm (Bussi et al., 2007), with a time constant of 0.1 ps and

Parrinello-Rahman isotropic pressure coupling of 1 bar with a time constant of 2 ps (Parrinello and Rahman, 1981). Electrostatics

were handled using the Particle-Mesh-Ewald method (Darden et al., 1993), and a force-switch modifier was applied to the Van

der Waals forces. Dispersion corrections were turned off. The parameters for the O-antigen were generated using the CHARMM-

GUI (Kim et al., 2017; Lee et al., 2016). All simulations were run using Gromacs 2019 (Abraham et al., 2015). Molecular simulation

images and Supplemental Movies of simulations were made in PyMOL (Schrödinger, 2017). Graphs were plotted using Python

and Matplotlib.

QUANTIFICATION AND STATISTICAL ANALYSIS

See METHOD DETAILS for further information on the statistical analyses including replicates for MD simulations and resolution es-

timates for cryo-EM maps.

DATA AND CODE AVAILABILITY

Data resources
The cryo-EM map of RsaANTD:PS complex together with the build atomic model have been deposited in the Electron Microscopy

Data Bank (EMDB) with the accession code EMD-10389 and the Protein Data Bank (PDB) with accession code 6T72 respectively.

The cryo-ET map of the native S-layer has been deposited with the EMDB accession code EMD-10388.

Software
All software used in this study has been extensively described in previous publications from our and other laboratories. See the

METHOD DETAILS section for citations to the original publications.
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Supplemental Figures
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Figure S1. Biochemical Reconstitution of the RsaANTD:PS Complex, Related to Figure 1

(A) Cryo-EM image of purified monomeric RsaANTD.

(B) Image of reconstituted oligomeric RsaANTD:crude LPS aggregate complex.

(C) Cryo-EM image of purified RsaANTD:PS complex.

(D) Gel-filtration profiles of monomeric RsaANTD (red), RsaANTD + crude LPS (green) and RsaANTD + PS (blue) corresponding to images in (A–C).

(E) SDS-PAGE of purified crude LPS stained with Pro-Q Emerald 300 (yellow) overlaid with the same gel stained with Coomassie brilliant blue G-250 (blue).

(F) SDS-PAGE analysis of purified and mass-spectrometry verified RsaANTD:PS sample stained with Coomassie brilliant blue G-250 (black).



Figure S2. Single-Particle Cryo-EM Reconstruction of the RsaANTD:PS Complex, Related to Figure 1

(A) Fourier shell correlation (FSC) curve of two random half sets of the final reconstructed RsaANTD:PS map shows better than 3.7 Å resolution according to the

gold standard criterion of 0.143.

(B) Local resolution differences plotted on the cryo-EM density of the RsaANTD:PS complex.

(C) Examples of the de novo built atomic model fitted into the density contoured at 6 s away from the mean.
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Figure S3. Investigation of the Effect of Ca2+ on RsaANTD Oligomerisation, Related to Figure 2

(A) Mass spectrum of the RsaANTD:PS sample after Ca2+ removal shows presence of RsaANTD monomers, dimers, and tetramers only. Panel same as Figure 2B,

shown here for clarity.

(B) Mass spectrum of the above sample following incubation with 1 mM calcium acetate indicates that Ca2+ ions stimulate the formation of oligomers

(RsaANTD:PS complex).

(legend continued on next page)



(C) After a second Ca2+ removal, the complex falls apart into RsaANTD monomers and dimers.

(D) Top view of the RsaANTD:RsaANTD interaction interface in the cryo-EM structure shown as ribbon diagram. A single a-helix of one RsaANTD subunit forms the

interaction interface with the next RsaANTD subunit. This interaction is duplicated around the spiral or in the native S-layer hexamer, likely giving large net sta-

bilization. (E) A 90� rotated side view of (D) along the axis of the RsaANTD:PS spiral is shown.

(F) Close-up view of (E) highlighting key residues at the RsaANTD:RsaANTD interaction interface. The interface is stabilized by an ionic interaction between Asp30 of

one RsaANTD monomer with Lys142 of another RsaANTD molecule.
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Figure S4. MD Simulations of RsaANTD Binding to O-antigen, Related to Figure 3

(A) Plot of amino acid residue and O-antigen (heavy-atom) interactions within 4 Å over the course of three 100 ns simulations. The protein-sugar interactions are

normalized to 1 (brown), where 0 (white) relates to no contacts.

(B) Interaction plot of protein residues and O-antigen with branching Glc moieties at the positions 3 and 9.

(C) Protein and O-antigen interactions with branching Glc moieties at the positions 6 and 12.

(D–F) Protein and O-antigen interactions from (A–C) are plotted on the ribbon diagram of the protein on a blue to red scale and on the O-antigen on a gray to

purple scale.

(legend continued on next page)



(G–I) Root mean square fluctuations (RMSF) of the O-antigen are displayed on the O-antigen stick diagram on a gray to red color scale (corresponding repre-

sentation to data in Figures 3D–3F).

(J–L) Plot of RMSF of the RsaANTD residues (see Figures 3A–3C), showing stabilization of the Ca2+ binding loop (residues 77–100) by the branching Glc moieties

over the course of three 100 ns simulations (a-helical residues in blue background).

(M) Interaction of protein residueswith Ca2+ ions duringMD simulations shown on a blue to red scale. All Ca2+ ions are stabilized by two aspartic acid residues and

backbone carbonyl oxygens in the simulations, as well as in our cryo-EM structure.



Figure S5. Probing RsaA Binding to Cellular LPS, Related to Figure 4

(A) Cryo-ET slice through a cellular stalk of C. crescentus.

(B) Slice through a cell stalk lacking RsaA (DrsaA).

(C) Slice through aDrsaA cell stalk with exogenous full-length RsaA added. Decoration of the LPS in three layers is observed (as in Figures 4E and 4F); however, an

additional fourth density layer is observed at the same distance from the OMas the native S-layer RsaACTD. This suggests that RsaAmolecules bound to the tip of

O-antigen form at least a partial outer S-layer lattice by oligomerization of RsaACTD.

(D) Normalized density profiles through subtomogram averages of (A–C) aligned to the OM showing that exogenous added full-length RsaA binds to the entire

length of the O-antigen, while forming a partial outer S-layer lattice.

(E–G) Corresponding sub-tomogram averages of (A–C) (Figures S5A and S5B; E–G are the same as Figures 4A–4D, shown here for clarity).

(H) Cryo-EM image of a DrsaA cell with exogenous RsaANTD added together with EGTA. Chelation of Ca2+ by EGTA prevents S-layer assembly at the cell surface.

(I) Cryo-ET slice through the top of a cell stalk of C. crescentus showing a normal, hexagonal S-layer.

(J) Slice though the top of a cell stalk lacking RsaA (DrsaA).

(K) Slice through the top of a DrsaA cell stalk with exogenous full-length RsaA added showing irregularly arranged spiral-like structures (black arrow).

(L) Slice through the top of aDrsaA cell stalk with exogenous RsaANTD added showing irregularly arranged spiral-like structures (arrow) with characteristics similar

to the RsaANTD:PS complex.



Figure S6. Structure of the Native C. crescentus S-Layer Determined by Subtomogram Averaging, Related to Figure 5

(A) Fourier shell correlation (FSC) curve of two half sets of the final reconstructed native RsaA S-layer at a 4.82 Å resolution according to the 0.143 criterion.

(B) Local resolution differences plotted on the cryo-ET density showing resolution anisotropy between RsaANTD and RsaACTD.

(C) Atomic models docked into the cryo-ET density (gray) (contour levels on lower left side of panel). The RsaACTD X-ray structure (PDB: ID 5N8P) fits the central

pore region exceptionally well.

(D) A side view cross-section of the isosurface (gray) is shown with the docked RsaACTD X-ray structure (red) and the RsaANTD cryo-EM structure (blue). RsaACTD

is connected to RsaANTD by a small linker region.

(E) A single monomer of the native RsaA S-layer is shown as top view as in Figure 5B.

(F) Close up view of the connecting region as shown in (D) highlights the exceptional model fit of both domains. The C terminus of the solved cryo-EM structure

(Pro243) is ~19 Å away from the N terminus (Gly249) of the X-ray structure (red). The linker region consisting of five residues is poorly resolved indicating flexibility.



Figure S7. Overall S-Layer Arrangement on the Flat Cell Body and Highly Curved Cell Stalk Is the Same, Related to Figure 6

(A) A cryo-ET slice through the side of a C. crescentus cell body (protein density black in all raw cryo-ET slices). The OM is clearly decorated with a S-layer made

up of RsaANTD and RsaACTD layers (marked).

(B) Cryo-ET slice through the tip of aC. crescentus cell stalk. The highly curved OM is covered by a S-layer, consisting of the same RsaANTD and RsaACTD layers,

with same ultrastructural morphology as the S-layer on the cell body.

(C) Cryo-ET slice through the top surface of aC. crescentus cell body. The near hexagonal planar arrangement of the S-layer with a hexamer:hexamer distance of

220 Å is seen, as shown previously (Bharat et al., 2017) and confirmed in this study.

(legend continued on next page)



(D) Cryo-ET slice through the top of aC. crescentus cell stalk. Although the S-layer lattice is highly curved around the stalk, the pseudo-hexagonal arrangement of

the S-layer with a hexamer:hexamer distance of 220 Å is observed, same as the cell body.

(E) Despite considerably increased specimen thickness, we performed subtomogram averaging of the outer surface of theC. crescentus cell body, which shows

clear densities for the OM, RsaANTD, and RsaACTD (protein density white in all averages). The distance between the OM and the RsaACTD layer is ~230 Å.

(F) Subtomogram averaging of the cell stalk (as shown in Figure 4B) shows a highly curved OM, surrounded by a S-layer. The distance between the OM and the

RsaACTD layer is ~230 Å, same as the cell body, indicating the length of the LPS underneath the S-layer is the same between the stalk and the cell body.

(G) The dimeric RsaACTD interface observed in the outer S-layer lattice in flat planar sheets, solved by X-ray crystallography (PDB: 5N8P).

(H) Two copies of RsaACTD were fitted separately into a subtomogram averaging map produced from curved cell stalks with a large box size to visualize the

hexamer:hexamer interfaces. The fit shows amismatch between the X-ray structure and the subtomogram averagingmap, suggesting rearrangement of residues

at the dimeric interface concurrent with lattice curvature.
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