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Summary

Mixed Integer Programming (MIP) problems occur in many 
industries and their practical solution can be challenging 
in terms of both time and effort. Although faster computer 
hardware has allowed the solution of more MIP problems in 
reasonable times, there will come a point when the hardware 
cannot be speeded up any more. One way of improving the 
solution times of MIP problems without further speeding up 
the hardware is to improve the effectiveness of the 
solution algorithm used.
The advent of accessible parallel processing technology and 
techniques provides the opportunity to exploit any 
parallelism within MIP solving algorithms in order to 
accelerate the solution of MIP problems. Many of the MIP 
problem solving algorithms in the literature contain a 
degree of exploitable parallelism. Several algorithms were 
considered as candidates for parallelisation within the 
constraints imposed by the currently available parallel 
hardware and techniques.
A parallel Branch and Bound algorithm was designed for and 
implemented on an array of transputers hosted by a PC. The 
parallel algorithm was designed to operate as a process 
farm, with a master passing work to various slave 
processors. A message-passing harness was developed to 
allow full control of the slaves and the work sent to them.
The effects of using various node selection techniques were 
studied and a default node selection strategy decided upon 
for the parallel algorithm. The parallel algorithm was also 
designed to take full advantage of the structure of MIP 
problems formulated using global entities such as general 
integers and special ordered sets. The presence of parallel 
processors makes practicable the idea of performing more 
than two branches on an unsatisfied global entity. 
Experiments were carried out using multiway branching 
strategies and a default branching strategy decided upon 
for appropriate types of MIP problem.
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1. Introduction

1.1. Background to Mixed Int«wr Prog r . »

Sine« World War II, problems from a wide range of 
industries have been analyzed, attacked and solved using 
Operational Research (O.R.) techniques. Such techniques 
involve the creation and use of a model of the physical 
situation.

The most widely used and commercially successful O.R. 
techniques are those of NathesMitical Programming (MP) .
Mathematical Programming models make the assumption that 
the controllable aspects of the physical situation are 
quantifiable. The situation is then modelled using 
mathematical deciaion variables which can take any value 
between some lower and upper bound (usually zero and 
infinity). The values of the decision variables in the 
final solution to the problem will provide a guide to the 
best course of action to take in the situation modelled.

A degree of simplification or an abstraction from reality 
is necessary in the creation of any model, and this must of 
course be reflected in the interpretation of the results 
obtained from using Mathematical Programming models.
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Linear Programming (LP) is the most popular Mathematical 
Programming technique. LP models are concerned with the 
efficient allocation of some form of scarce resource to 
known activities in order to achieve a specified goal.

To this end, an LP model consists of:

decision variables used to reflect decisions made as 
to the allocation of resources;

constraints on the allowable (feasible) decisions; and

some mechanism by which to measure the success of the 
solution.

The constraints of an LP problem must be linear 
(in)equations, consisting of a linear combination of 
decision variables, an equality or inequality and a 
constant term (possibly zero). Such an equation could be 
used to model the availability of a scarce resource for 
instance, with the linear combination of decision variables 
reflecting the actual resources used, and this being less 
than (or possibly equal to) a constant term which indicates 
the maximum availability of the resource.
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An LP model also contains an Objective Function which acts 
as its measure of success. The objective function is a 
linear combination of decision variables which gives the 
actual quantified value of making the decision(s). This is 
usually expressed in terms of a total cost or profit, but 
any single objective may be used. Any allowed set of values 
of the decision variables will give a value to this 
objective function. The aim of using the LP model is 
usually to find an optimum value of this objective function 
(i.e. to maximise or minimise it), subject to satisfying 
the constraints on the problem.

The standard method used to solve LP problems, the Simplex 
Method (see [Dantzig, 1963]), essentially performs an 
ordered, although usually not exhaustive search through the 
possible combinations of decision variable values until the 
optimal solution is found. The search proceeds around the 
perimeter of the feasible region (which is imposed by the 
constraints on the problem) until the optimal point is 
found. This optimal point will always be at a vertex of the 
perimeter of the feasible region.
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To summarise, the standard form of an LP problem consisting 
of m constraints and n variables is as follows:

Optimise dy
Subject to Ey = b
and y 2 0

where y ■ (y„,sj is a vector consisting of n
decision variables and m slack 
variables;

E » (E.,1 ) is an m by (m+n) matrix
consisting of constraint 
coefficients for the n variables 
and an m x m identity matrix for 
the slacks;

d ■ (d.,0 ) is a vector of the objective
function coefficients for the 
variables; and

b is a vector of size m for the
right hand sides of the m
constraints.

LP models are used to solve problems from a great variety 
of industries, from agriculture and mining, to 
manufacturing and transportation, to chemical and 
petrochemical.
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In certain instances however, it becomes apparent that a 
Linear Programming formulation of a problem is not 
sufficient to properly reflect reality. Choosing to carry 
out half each of two large projects needing capital 
investment and giving a return on completion for instance, 
would not maximise returns. Similarly, deciding to make two 
and a half multi-million pound jet aircraft using the 
facilities available would not be an acceptable solution. 
In either of these cases, solving the problem as an LP and 
then rounding off the numbers will not provide a provably 
optimal solution.

Thus the standard LP concept must be extended by the 
inclusion of 'discrete entities', i.e. variables (or sets 
of variables) whose values in an optimal solution must be 
ones taken from some discrete set. This extended problem is 
known as an Integer Programing (IP) problem. An IP problem 
may be further categorised as a Pure Integer Programing 
(PIP) problem if all decision variables must take values 
from a discrete set, or as a Nixed Integer Programing 
(NIP) problem if some, but not all, decision variables must 
take values from a discrete set.

Both the LP problem and the PIP problem can actually be 
considered as special cases of the MIP problem.

5



Consider the standard mathematical formulation of a Mixed 
Integer Programming problem, the category of problem on 
which this thesis will focus:

Optimise cx + dy
Subject to Ax + Ey = b
and x £ 0 and integer, y £ 0

where x and y are vectors of decision variables and 
slack variables;
c and d are vectors of objective function 
coefficients;
A and E are matrices of constraint coefficients; 
and
b is a vector of right hand side values for the 
constraints.

An LP problem is simply the above formulation where the c 
vector and the A matrix are empty.

A PIP problem is the above formulation where the d vector 
and the E matrix are empty.

The mixture of discrete and non-discrete entities within a 
problem can be used to determine the most effective method 
of solution. For the purpose of this thesis, a MIP problem 
is considered to be one where there are a relatively low 
number of discrete entities within the decision variables.

6



Large hard MIPs are frequently encountered in real-world 
applications where the integer components often represent 
switching between radically different modes of operation. 
This is in contrast with problems of a Combinatorial 
nature, which contain a very high proportion of discrete 
entities, and which often have an underlying structure 
which may be exploited.

flty of HIP Probi—

The computational complexity of a problem gives an idea of 
how difficult the problem might be to solve. MIP problems 
have been shown to belong to a category of problems that 
exhibit a high degree of computational complexity. This 
means that MIP problems can be very difficult to solve in 
a reasonable amount of time.

The remainder of Section 1.2 will present background 
information relating to the theory of computational 
complexity. Various degrees of problem difficulty will be 
introduced, and an explanation given as to how problems are 
classified. This theoretical information is not central to 
an understanding of the rest of the thesis, but is 
presented for the interested reader.

7



Probl. Efficiency

A problem can be said to consist of an infinite number of 
instances which are achieved by assigning numerical data to 
the problem parameters.

Since an LP or PIP problem is a special case of an MIP 
problem, it can be said that any instance of an LP or PIP 
is also an instance of an MIP. Thus, an algorithm which can 
solve all instances of an MIP problem can be used to solve 
all instances of the special case LP or PIP.

From this, we can conclude that MIP problems are at least 
as hard to solve as LP or PIP problems.

In order to decide on just how hard to solve MIP problems 
actually are, however, we must define some different 
potential categories of difficulty.

Problem complexity is usually measured in terms of the time 
taken to compute the result. Computation time is very often 
related to problem size (i.e. the number of variables and 
constraints of the problem) , although this is not always 
the case (e.g. there are algorithms, such as the ellipsoid 
method for LPs ((Khachiyan, 1979, Gacs and Lovasz, 1981]), 
whose number of steps depend explicitly upon the magnitude 
of the numerical data).
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To properly explain the concepts of computational 
complexity, the following definitions (from (Nemhauser and 
Wolsey, pp 118-119}) will be used.

Let the size of a problem instance be defined as the amount 
of information required to represent the instance.

An MIP is specified by data from the matrices c, d, A, E 
and b. This numerical data may be represented in a form 
close to the structure representing it when it is held on 
the computer by using a binary (0 ,1 ) alphabet.

In such a model, a positive integer x, where

2n i X  < 2n*1

is represented by the vector

........•„)

where

and

6i e (0 , l) for i- 0 ..... .
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This representation of the data assumes that the initial 
data are integral or rational. Note that an extra digit is 
required to represent the sign of x and that rational 
numbers are represented by pairs of integers.

Let us now consider how to measure the computational time 
taken to solve a problem instance. The measure of 
computational time must be independent of the computer 
used, and so a good measure to use is a summation of all 
the basic operations carried out (e.g. addition, 
multiplication, comparison etc.). We assume that each basic 
operation is carried out in unit time.

A measure must also be found for the efficiency of the 
algorithm used to solve the problem. Consider an 
optimisation problem Z, consisting of an infinite number of 
instances (s1# z3 , ... ) where the data for instance zt is 
given by a binary string of length lt » l(z,) .

Let Q be an algorithm that can solve every instance of Z in 
finite time.

We assume that the running time of Q is specified by a 
function

g0\ Z-R} .

where R.* is the set of non-negative real numbers.

10



We wish to express the running time of algorithm Q as a 
function of the length of the problem instance to be 
solved.

Two instances of a problem having the same length do not 
necessarily have the same running time of course. We must 
therefore use some statistic to aggregate the running times 
for all instances of the same length.

A common way to do this is to use a worst case analysis. 
Thus for all instances of size k, the running time is said 
to be

f „ (k )  -  MAXigpiZj) |J ( « j )  -  id

This approach gives an absolute upper bound on the running 
time, but can be misleading in certain cases (e.g. where 
only a small proportion of instances take a long time) . 
Other measures requiring probability distributions of the 
instances could be used, but these would be more difficult 
to analyze and would require assumptions to be made about 
the underlying probability distribution.

Let us define f (k) to be 0(g(k)) when there exists a 
positive constant w and a positive integer k' such that 
f(k) £ wg(k) for all integers k £ k'. This definition 
allows us to approximate f from above by a simpler function 
wg with w unspecified.

11



Using this definition, a polynomial

k i is 0(kp)

since * wkp for large integers k

Algorithm Q is said to be a Polynomial Time Algorithm for 
problem Z if f0(k) is 0(k*) for some fixed p.

Any algorithm whose time complexity function cannot be 
bounded polynomially is regarded as an Exponential Time 
Algorithm.

The difference between these two types of algorithms can be 
seen quite dramatically when considering the solution of 
large problem instances (with large input length 1 ). 
Examples of this difference are shown in Table 1.1 below 
(adapted from (Garey and Johnson, page 7}).

Note that the first three algorithms shown in Table 1.1 are 
polynomial, whereas the fourth and fifth algorithms are 
exponential.

12



Problem Size (input length 1)
Algorithm 10 20 30 40 50
1 0 . 0 0 0 0 1 0 .0 0 0 0 2 0.00003 0.00004 0.00005
1 * 0.0001 0.0004 0.0009 0.0016 0.0025
1 » 0.001 0.008 0.027 0.064 0.125
2 1 0.001 1.0 17.9 m 12.7 d 35.7 y
3l 0.059 58 m 6.5 y 3855 c 2x 1 0* c
(Times are in seconds unless followed by m = minutes, d = 
days, y = years, c = centuries).

Table 1.1: Comparison of Solution Times for Polynomial and 
Exponential Algorithms.

The effects of improved technology on the different types 
of algorithm are also of particular importance. Table 1.2 
below (from {Garey and Johnson, page 8 }) shows the largest 
problem that can be solved in one hour using the different 
types of algorithm if the hardware is speeded up.

N.B. X = size of problem solvable in 1 hour using current 
hardware.

13



Hardware Speeded up
Algorithm 10 0 times 1000 times
1 100X 1000X
la 10X 31.6X
1 » 4.64X 10X
2 1 X ♦ 6.64 X ♦ 9.97
31 X ♦ 4.19 X ♦ 6.29

Table 1.2: Relative Effects on Polynomial and Exponential 
Algorithms of Hardware Speedups.

It can be seen from Tables 1.1 and 1.2 why polynomial time 
algorithms are generally considered to be more desirable 
than exponential time algorithms. Indeed, many problems are 
not considered to have been "well-solved" unless a 
polynomial time algorithm has been found to solve them. 
Thus, for many theoretical purposes, a problem which cannot 
be solved by a polynomial time algorithm may be classified 
as intractable (although this is not a rigid rule in 
practice since, for instance, the Simplex algorithm for LP 
problems has been shown to have exponential time complexity 
[Klee and Minty, 1972]).

For theoretically tractable problems though, the first of 
the categories for problem complexity is defined as P, 
which is the class of problems that can be solved in 
polynomial time, (i.e. so that problem Z is in P only if 
there is a polynomial time algorithm for solving Z).
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In order to introduce the next category of problem 
complexity, we shall now introduce the concepts of decision 
problems and deterministic and nondeterministic algorithms.

A decision problem is one which when solved will give 
either the answer "yes" or the answer "no".

A deterministic algorithm to solve an instance I of a 
decision problem, if given an input structure S will 
compute either the answer "yes" or the answer "no".

A nondeterministic algorithm to solve a decision problem 
can be thought of a having two stages, a "guessing" stage 
and a "checking" stage. Given a problem instance I, the 
first stage guesses some structure S. The instance I and 
the guessed structure S are then provided as inputs to the 
checking stage, which uses a deterministic algorithm to 
compute either the answer "yes" or the answer "no".

A nondeterministic algorithm is said to solve a decision 
problem Z if the following two properties hold for all 
instances I € D* (where D, is the set of all instances for 
problem Z):

If I e Yt (the set of instances of problem Z that give the 
answer "yes"), then there exists some structure S that, 
when guessed for input I, will lead the checking stage to 
respond "yes" for I and S.
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If I « Yt then there exists no structure S that, when 
guessed for input I, will lead the checking stage to 
respond "yes" for I and S.

As an example, a nondeterministic algorithm for the 
Travelling Salesman problem could be constructed using a 
guessing stage that, when given the data for the problem 
instance, gives an arbitrary sequence to the instance 
destinations. The checking stage would input the data for 
the instance and the guess, and verify whether the guess 
provided the best solution (e.g. by trying all combinations 
of routes).

A nondeterministic algorithm that solves a decision problem 
is said to operate in polynomial time if, for every 
instance I e Y, there is some guess S that leads the 
deterministic checking stage to respond "yes" for I and S 
within polynomial time.

We can now define a new category for problem complexity, 
i.e. the class NP. A problem Z is said to belong to the 
category IIP if there is a nondeterministic algorithm that 
will solve it in polynomial time. By definition, all 
nondeterministic algorithms that operate in polynomial time 
will be members of P. Any deterministic algorithm that is 
in P can be used as the checking stage of a 
nondeterministic algorithm (although perhaps an entirely 
artificially created one).
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Thus, the relationship between P and NP is probably such 
that P c NP as shown in Fig. 1.1 below.

Fig. 1.1: The relationship
between P and NP.

The class NP is especially important since those problems 
that are members of NP but not of P (if any such problems 
exist) are generally considered to be theoretically 
intractable.

Further categories of problem complexity can be introduced 
by considering the concept of problem reducibility. Two 
problems can be proved to be related to each other by 
"reducing" one problem to the other. This procedure 
involves providing a transformation process that maps any 
instance of the first problem into an equivalent instance 
of the second. Such a transformation provides the means for 
converting any algorithm that solves the second problem 
into a corresponding algorithm for solving the first 
problem.
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As examples of such reductions, it may be shown that a 
number of combinatorial optimisation problems may be 
reduced to the general zero-one PIP problem ([Dantzig, 
1960]), or that the Travelling Salesman problem may be 
reduced to the shortest path problem with negative edge 
lengths allowed ([Dantzig et al., 1966]).

Cook showed the importance of "polynomial time 
reducibility", i.e. a reduction for which the 
transformation is carried out in polynomial time ([Cook, 
1971]) . If the transformation process can be carried out in 
polynomial time, it can be proved that any polynomial 
algorithm to solve the second problem can be converted into 
a corresponding polynomial algorithm to solve the first.

In the same paper, Cook introduced a problem known as the 
"satisfiability" problem, which he proved has the property 
that every other problem in NP can be polynomially reduced 
to it.

Thus, if the satisfiability problem can be solved with a 
polynomial time algorithm, then so can every problem in NP, 
and if any problem in NP is intractable, then the 
satisfiability problem must also be intractable. He thus 
stated that the satisfiability problem is the "hardest" 
problem in NP, although other as yet undiscovered problems 
in HP might share this property.
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Karp presented a collection of different combinatorial 
problems, including the Travelling Salesman problem, which 
when represented as decision problems were as "hard" as the 
satisfiability problem ([Karp, 1972]).

A class of problems consisting of the "hardest" problems in 
NP was thus created, and named NP-complete.

The relationship between the categories P, NP and NP- 
complete is shown in Fig. 1.2 below.

Fig. 1.2: The relationship
between P, NP and NP-complete.

Note that any decision problem (whether it is a member of 
NP or not) to which we can transform an NP-cooplete problem 
will have the property that it cannot be solved in 
polynomial time unless P=NP.
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There are of course, many problems which do not belong to 
NP at all. A further category of problem complexity may be 
considered to include such problems. The same techniques 
that are used to prove that a problem inside NP is NP- 
completo may be used to prove that a problem outside of NP 
is equally as hard.

Let NP-hard be the class of problems that are at least as 
hard as any member of NP since there is an NP-coaplete 
problem that can be polynomially reduced to it.

Having defined the different categories of problem 
according to computational complexity, we must now decide 
into which category MIP problems should be placed.

General and zero-one PIP problems have been proved to be 
NP-complete ([Garey and Johnson, 1979, Karp, 1972, Borosh 
and Treybig, 1976]). As stated previously, MIP problems are 
at least as hard to solve as PIP and LP problems. Thus it 
can be said that MIP problems are also NP-complete. Since 
MIP problems are NP-complete, the fact that solutions are 
being found in an acceptable time is as much due to luck in 
some cases as to a good algorithm. The algorithm commonly 
used to solve MIP problems (i.e. the Branch and Bound 
algorithm, [Land and Doig, I960]) will, however, always 
eventually find the optimal solution, (although not 
necessarily in an acceptable time), since it enumerates all 
possible solutions.
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1̂ 3. Plgcuf■ion of thf

Faster computer hardware has allowed the solution of more 
MIP problems in reasonable times, but there will come a 
point where the hardware cannot be speeded up any more. One 
way of improving the solution times of MIP problems without 
further speeding up the hardware is to improve the 
effectiveness of the solution algorithm used.

The arrival of accessible parallel processing facilities 
provides an opportunity to exploit any parallelism within 
the solution algorithm in order to provide an increase in 
solution speed for most MIP problems.

Effective algorithms for solving IP, and in particular MIP 
problems, can contain a considerable degree of exploitable 
parallelism. This has been demonstrated by the 
implementation of software used to solve pure integer 
programming (PIP) problems on a network of workstations 
((Cannon and Hoffman, 1989]). The workstations used were 
loosely connected via Ethernet, but good performance was 
still achieved.

The practical solution of commercial MIPs can be 
challenging and expensive in terms of both time and effort. 
The development of a fast, inexpensive parallelised MIP- 
solving system would thus be of great benefit to many 
commercial users. To that end, a parallel algorithm has
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been developed, tested and implemented on a PC. This thesis 
discusses issues raised in the development and 
implementation of the algorithm, and reports computational 
results obtained from the solution of real IP problems.

The standard commercial codes for MIP (e.g. [IBM, 1988]) 
use a Branch and Bound approach ([Land and Doig, I960]), 
although there are many different algorithms that can be 
used to solve MIP problems. Chapter Two introduces the 
different IP-solving algorithms that were considered for 
parallelisation and discusses their pros and cons when used 
on large MIP problems.

Before deciding on an algorithm to parallelise, it is 
necessary to consider the benefits and limitations of 
parallelisation. Chapter Three thus provides background on 
the development of parallel processing theory, algorithms 
and hardware. Different ways of exploiting the benefits of 
parallelism using appropriate parallel hardware are 
considered.

Chapter Four discusses the choice of MIP solving algorithm 
to be parallelised and the hardware chosen to implement the 
parallel algorithm. A full description is given of the 
initial parallelisation of the algorithm and of the process 
of its implementation using a small number of parallel 
processors. Computational results are reported for a number 
of test problems.
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Chapter Five discusses the changes necessary to implement 
the parallel algorithm on a larger number of processors and 
reports computational results from a larger set of test 
problems.

Chapter Six reports computational results obtained by using 
the parallel algorithm to solve a set of test problems 
whilst using several different node selection strategies.

Chapter Seven discusses several theoretical extensions to 
the algorithm which are made to more fully exploit the 
parallel processing power available when attacking problems 
formulated using general integer variables or special 
ordered sets. Computational results are given using an 
appropriate set of test problems.

Chapter Eight draws conclusions from the results generated 
during previous chapters and makes several recommendations 
for future extensions to the research, including outlines 
of theoretical and implementational extensions to the 
present parallel algorithm for use on a very large number 
of parallel processors.
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2j  Si fglutlgn tor Mlxxl Inf gor i
Problems

There are several different types of technique that can be 
used to solve MIP problems. These are categorised as:

(i) Cutting Plane Methods;
(ii) Partitioning Algorithms;
(iii) Group Theoretic Algorithms; and
(iv) Enumerativo Methods.

This chapter will introduce various algorithms taken from 
these categories. The merits of each algorithm as a method 
for solving large MIP problems will be discussed.

It is worth noting that although several of the algorithms 
discussed in this chapter seem at first sight to be good 
candidates for parallelisation, this may not be the case in 
practice. Chapter Three thus considers the different 
parallel methods and hardware available for the 
implementation of a parallel algorithm, and Chapter Four 
discusses the final choice of algorithm and the method of 
parallelisation to be used.
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2,1. Cutting Plan» Methods

2.1.1. Background

The first cutting plane method for general use on any PIP 
was developed in 1958 ([Gomory, 1960]), although the idea 
had previously been proposed in 1954 for use in solving the 
Travelling Salesman category of PIP problem ([Dantzig et 
al., 1954]). Beale generalised the technique later in 1958 
so that it could be applied to MIP problems ([Beale, 
1958] ) .

The cutting plane concept is that the integrality 
constraints on the decision variables are removed, and 
additional linear constraints are generated and added to 
this LP relaxation. Each additional constraint added 'cuts 
off' part of the solution space of the LP, until eventually 
a solution can be found to the LP relaxation wherein all 
the decision variables that should take integer values do 
so.

As an example of this, in Fig. 2.1 below, we see the LP 
relaxation of a simple, two variable PIP problem. The 
optimal LP solution is such that one of the decision 
variables takes a continuous value (i.e. at point C, where 
Xt-3,  Xj - 2 . 5) .
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Fifl. 2.1: Two variable PIP 
problem.

The solution space, at present shown by ABCDE, needs to 
have a section 'cut off' so that this answer is no longer 
feasible. The viable all-integer solution points of the LP 
are shown as dots. In order to produce an all-integer 
solution, one of these dots must become a vertex of the new 
solution space (since all optimum solutions to LP problems 
occur at a vertex of the solution space).

As can be seen in Fig. 2.2, by adding two new constraints 
to this LP, the feasible region can be reduced to the 
points AFGHE, so that the optimum LP solution is achieved 
by giving integer values to the decision variables (i.e. at 
point G where Xj-2, X2=2) .
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XI

rig. 2.2: Two variable PIP 
problem with cuts added.

It is important that the additional constraints, or 'cuts' 
do not remove any integer feasible solutions from the 
solution space.

The Gomory Fractional Cutting-Plane Algorithm (FCPA) makes 
use of Gomory cuts to reduce the solution space of IP 
problems without removing any integer feasible solutions. 
Appendix 1A shows that Gomory cuts are appropriate for this 
purpose.

A Gomory cut is of the form

a»!»?* Thf Fractional Cutting Plane Algorlth»

(6 )
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where, in the tableau for the optimal solution: R is the 
set of non-basic variables; Xj are the non-basic variables; 
f4J is the fractional part of the coefficient of Xj in row 
i; flj is the fractional part of the right hand side value of 
row i; and s is a positive slack variable for the new 
constraint.

The cut formula can be applied to any row of the LP 
solution to generate a new constraint row. It is only 
meaningful to apply the formula to a row which contains a 
basic variable not satisfying integrality.

The FCPA algorithm for solving a PIP is thus:

(1) Solve the LP relaxation of the PIP problem. If the 
solution is infeasible or all-integer, stop. 
Otherwise, go to (2).

(2) Choose a row from which to generate a new cut.
Deduce a new cut and add it to the LP tableau, making 
the tableau infeasible. Go to (3).

(3) Reoptimise using the Dual Simplex method (tLemke, 
1954, Beale, 1954]). If the new solution is 
infeasible, the PIP has no solution - stop. If the new 
solution is integer feasible - stop. Otherwise go to 
(2 ) .
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This algorithm is finite as long as the first row with a 
non-integer constant component is used to generate cuts 
every finite number of iterations (see {Salkin p. 62)). The 
algorithm may be generalised for use with MIP problems, 
with the only change being that a more complicated cut 
formula must be used.

The tightest Gomory Mixed Integer Cut for MIP problems is 
of the form

E c x
j c r ; “ 1

. E «Mi - « V * ,  . E 0 ..
U  - g,) jotl >,Y‘

. E gieij>v *
JeR, (1 - g,) J 9‘

where
Rj {j|j indexes the non-basics that are integers);
Rj {j| j indexes the non-basics that are continuous);
X» basic variable for row i;

XJ non-basic integer variables;

Yi non-basic continuous variables;

•»* « coefficient of integer variable in row i;

•ii » coefficient of continuous variable y} in row i;
b4 = right hand side constant for row i;
gi fractional part of bt;

fu fractional part of atJ;
Ri* {j|j is a member of set Rl# .1 S a,);
Ri- ■ {j|j is a member of set , *11 > Bi )<
Ra* - {j|j is a member of set Ra , e4J > 0 ) ; and
Ra* - {j|j is a member of set Ra , oV•

Appendix IB contains the derivation of this cut.
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Various implementations of the FCPA algorithm are 
differentiated by the criteria they use when choosing a row 
on which a new cut will be based. Examples of popular 
criteria are the row containing the largest fractional 
variable, the row containing the first fractional variable, 
and a method where several different cuts are added and the 
Dual Simplex method is used to choose which cuts to keep 
and which to discard (see {Salkin} p. 58).

The FCPA algorithm has two main disadvantages when applied 
to MIP problems. Firstly, the FCPA algorithm cannot be 
proved to be finitely convergent unless the objective 
function only takes integer values (see (Nemhauser and 
Wolsey) p.374), which is by no means a obligatory feature 
of an MIP problem. The only way to ensure finite 
convergence is to scale the problem so that the objective 
function does only take integer values. This strategy is 
most unsatisfactory for computational purposes since either 
very large objective function coefficients will be 
required, unbalancing the matrix, or repeated scaling of 
the problem may be necessary.

Secondly, no feasible integer solution is obtained by the 
FCPA algorithm until the optimal solution is determined. 
There is no concept of a "reasonably good" solution 
associated with this algorithm. The Primal Cutting-Plane 
Algorithm (Ben-Israel and Charnes, 1962, Young 1965]) was 
designed to get around this problem. Unfortunately, due to
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the extremely large number of cuts necessary to solve a 
problem, only a few problems have ever been attacked using 
this method (e.g. [Padberg and Hong, 1980]).

2.2. Partitioning Algorithms

Another class of algorithms for solving IP problems is that 
of the partitioning algorithms. Such algorithms partition 
the variables or constraints of a problem into two or more 
categories and exploit the differences between the 
categories in order to solve the problem.

In 1962, Benders proposed an algorithm for use on any 
Mathematical Programming problem whose variables can be 
partitioned into two sets, so that if the variables in one 
set are given numerical values the overall problem reduces 
to an LP ([Benders, 1962]). One obvious usage of this is 
the MIP problem, where some variables may take continuous 
values but others must take integer values.

Benders' algorithm takes advantage of the fact that it can 
be shown, using duality theory, that any MIP problem can be 
rewritten as a PIP problem. The algorithm thus makes use of 
information from a reformulation of the MIP problem and 
from the dual of an LP relaxation of the MIP problem.
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The MIP problem

x0* = MAX x0 = cx + dy
Ax ♦ Ey S b (1)
x £ 0 and Integer, y £ 0

can be relaxed, for any non-negative value, x,„, 
integer vector x, to give the LP:

Xq* (Xyai) = cxvil + MAX dy
Ey s b ■ Ax,., (2)
y 2 0

The dual of LP (2) is:

Uo'fXv.,) = cx,., + MIN u(b - Ax,.,)
uE £ d (3)
u 2 0

The MIP (1) can also be rewritten as 
MAX Z
Z £ cx ♦ u*(b - Ax) for every u* e T 
0 £ v"(b - Ax) for every v* e Q (4)
x 2 0 and integer

where T ■ {u'lu* is an extreme point of dual LP (3) 
Q ■ {v^ju* + Ov**, 0 2 0 is an extreme ray for some i

of the

}; and 
i‘ € T)
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This is Benders' reformulation of the original MIP problem 
(1). The derivation of this reformulation is discussed in 
Appendix 1C. Figure 2.3 below shows the extreme points and 
extreme rays of the dual LP (3).

Fig. 2.3: The case where the 
Dual LP (3) is unbounded.

An apparent disadvantage of Benders' reformulation is that 
it generates a large number of constraints on the new PIP, 
since a constraint is generated for every extreme point and 
extreme ray of the problem. Benders' algorithm gets around 
this disadvantage by reformulating the MIP as a PIP and 
then solving the PIP using only a subset of the PIP 
constraints generated.

For any fixed non-negative value of x, x*., say, the dual LP 
(3) can be solved. Since (3) is more restricted than (1) (x 
being fixed) , the value of its minimum solution can be used 
as a lower bound on the optimal solution of MIP (1) . (If 
the dual LP (3) is unbounded, its value can be thought of 
as negative infinity) . When dual LP (3) is solved, it
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provides an extreme point or ray, and thus an inequality 
for use in PIP (4) (the Benders' reformulation). If PIP (4) 
is solved using this single constraint, then its optimal 
solution is an upper bound on the best solution to the MIP 
(1). Solving PIP (4) also provides a new non-negative value 
for Xyal which can be used to solve dual LP (3) again.

Thus, the dual LP problem (3) and the Benders' 
reformulation (4) can be repeatedly solved, providing 
better and better lower and upper bounds on the optimal 
solution to the MIP (1) . When the lower bound on the MIP is 
equal to the upper bound on the MIP, the process 
terminates. The values of x are known, but to find the 
values of v, the LP problem (2) is solved with x taking 
their optimal values.

Benders' decomposition algorithm has been used successfully 
on MIPS ([Balinski and Wolfe, 1963], Childress, 1969, 
Geoffrion and Graves, 1974, Manne, 1971]).

2.2.2. Laqrangian Relaxation

Another useful partitioning algorithm is the Lagrangian 
relaxation method ((Everett, 1963]), which is again a 
method for obtaining bounds. The constraints of the 
problem are classified as either simple or complicated. The 
set of simple constraints is chosen so that it can easily 
be solved.
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The complicated constraints are moved to the objective 
function (i.e. the complicated constraints are essentially 
dropped from the calculation process).

The Lagrangian relaxation method allows the solution of a 
PIP by enforcing only the non-negativity and integrality 
requirements on the variables.

Consider the PIP:

MAX CX
Subject to Ax £ b
and x 2 0 and integer

This may be rewritten as

MAX CX
Subject to A*x £ b" (simple constraints)

Acx £ bc (complicated constraints)
and x £ 0 and integer

Let X be a column of non-negative "multipliers".
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Then if x=x° solves

* c x ♦ X (b c - A cx)

Subject to A*x S b*
x 2 0 and integer

it also solves the PIP with bc replaced by Acx°. Thus, if X

is chosen so that the optimal solution x° gives bc = Acx° , 
the original PIP has been solved.

The proof of this, (which is also applicable to MIP 
problems), adapted from {Salkin, pp 416-419} is as follows:

As x° gives the maximum value to the objective function, we 
can say that

cx + X.(bc - Acx) £ cx° + X,(bc - Acx°)

Therefore, for all x £ 0 and integer, 

cx ♦ X (Aex° - Acx) £ cx°

So for all non-negative integer solutions to Acx S Acx°, the 
previous inequality is true. Thus, since Acx° - Acx 2 0 and 
X £ 0, this implies that cx S cx°.
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Hence x° solves the PIP

MAX CX
Subject to Acx S Acx°

A“x £ b*
and x ^ 0 and integer

Thus, if the multipliers (i.e. the X), are chosen such that 
bc = Acx°, the IP can be solved without the inequality 
constraints. The difficulty obviously comes in finding X 

such that bc = Acx°.

The overall Lagrangian Relaxation Algorithm works as 
follows:

(1) Select X and find x° and hence Acx°.
(2) If Aex° is close enough to bc, stop. Else, go to (1) .

Many different methods have appeared in the literature for 
choosing the X values (e.g. [Brooks and Geoffrion, 1966, 

Fox and Landi, 1970, Nemhauser and Widhelm, 1971,

Geoffrion, 1 9 7 2 ] ) .

Lagrangian relaxation has been a successful way of solving 
combinatorial and MIP problems, including the Travelling 
Salesman Problem ([Christofides, 1970, Held and Karp, 1970 , 

1 9 7 1 ] ) ,  vehicle routing problems ([Stewart and Golden, 
1984])  and plant location problems ([Sridharan, 1 9 9 1 ] ) .
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2.3. Group Th«or«tle HgnrUh.j

Gomory, as well as developing the fractional cutting plane 
algorithm, also proposed the use of Group Theoretical 
Algorithms to solve IPs ([Gomory, 1965, 1967, 1969]). He 
showed that by relaxing the non-negativity (but not 
integrality) constraints on certain variables, any PIP can 
be represented by a minimisation problem defined on a 
group.

Appendix ID shows that the PIP problem

Maximise cx
subject to Ax = b
and x 2 0 and integer

may be rewritten as 

nMinimise ^  o,*,,,,

subject to £  *j*j w  • *o (modi)

and Xj(JI 2 0 and integer (j»l,.... n)

where xJ(j( is the jth (1 5 j £ n) non-basic variable, a } 2 
0 are the costs and each column At, (j«0,1, . . .,n) satisfies 
0 £ ft, < 71 (where n is a column of ones) .
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This is referred to as the Group Minimisation Problem. By
solving this problem, we may also be able to solve the 
original PIP problem.

Several algorithms have appeared in the literature for use 
in solving the Group Minimisation Problem (GMP). These 
algorithms include a dynamic programming algorithm, an 
enumeration method and a shortest route algorithm used for 
attacking the problem as a network.

These algorithms have a common basic structure. The GMP 
problem is solved and the minimum value for the objective 
function is found. If the basic variables happen to take 
non-negative values then the original PIP problem has also 
been solved. If one or more of the basic variables take 
negative values, the GMP has to be solved again to find the 
solution which gives the smallest value of the objective 
function whilst the basic variables take non-zero values.

The Dynamic Programming approach to this situation is to 
describe a set of recursive relationships to find the rth 
best solution to the Group Minimisation Problem (see 
(White, 1966)). By proceeding through these solutions, it 
is hoped that eventually a solution will be found which 
will solve the original PIP problem. The recursion 
expressions are very complicated however, and difficult to 
implement.
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The enumerative approach to the situation is to explicitly 
or implicitly examine all possible integer solutions to the 
Group Minimisation Problem ([Shapiro, 1968]). This is 
achieved by successively adding bounds of the form Xj(J, £ K 
(j*l,...,n), where K starts at zero and is incremented by 
one until it reaches any upper bound on the variable Xj(J,. 
This process will eventually generate all possible integer 
solutions to the Group Minimisation Problem, some of which 
it is hoped will contain non-zero basic variables and thus 
satisfy the original PIP problem. In order to find the 
optimum solution to the original PIP, it is necessary to 
enumerate all the possible integer solutions of the GMP so 
that the allowable solution to the GMP with the minimum 
objective function value can be found. It is hoped that 
much of this enumeration will be done implicitly once an 
allowable solution has been found. Each allowable solution 
found can be used to place a bound on any future candidate 
solutions, thus allowing the implicit enumeration of 
certain situations which cannot possibly give a solution to 
better the present best.

This enumeration method is very similar to the Branch and 
Bound enumeration algorithm described in section 2.4.1., 
although its search process is less well directed since 
there is no guide as to whether the individual GMP 
situations examined will or will not give solutions with 
non-zero basic variables.
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The shortest path approach makes use of the enumerative 
algorithm previously mentioned along with the fact that the 
GMP may be represented as a shortest route problem. 
{Salkin, pp 364-368} discusses this representation as 
follows:

Let the set of vectors generated by additions (modulo 1) of 
the n fys in the Group Minimisation Problem be denoted by 
Q(& ) .

Each element in the group G(&) corresponds to a distinct 
node. Let a directed arc (which may only be traversed in 
the direction it indicates) (i,k) join two nodes 
representing group elements gt and gk whenever g„ - g4 (mod 
1) is equal to some fit, (j 2 1) .

Traversing an arc from node i to node k therefore 
corresponds to incrementing Xj(J, by one, and so the cost o, 
is assigned to arc (i,k).

The Group Minimisation Problem may be reduced to the 
problem of finding the cheapest (or shortest) route from 
the node representing the zero element of the group 
(denoted by g0) to the one representing the right hand side, 

fto.
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A route is a sequence of directed arcs originating from g0, 
and if an arc (i,k) is used in the route it means that Xj(J, 
is increased by one, where ■ gk - gt (mod 1). Initially 
(at node g0) all xJ(J) are 0) .

Thus, since it can be shown that the GMP can be represented 
as a shortest route problem, each of the separate GMPs 
constructed by adding bounds of the form Xj(J) 2: K 
(j=l,...,n) can be solved using a shortest route algorithm 
(e.g. [Dijkstra, 1959]).

All of the above methods may be extended to the MIP case by 
only considering the solutions to the GMP that give integer 
values to the discrete variables.

None of these Group Theoretic methods however is 
particularly efficient in solving MIP or PIP problems, 
since the required search through the many different Group 
Minimisation Problems is either conducted by complex and 
computationally difficult recursion relations or by a semi­
blind search through all the possible problems.
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2,4. «numerativa Technlgu+s

Enumeration algorithms for solving IP problems attempt to 
enumerate, either explicitly or implicitly, all the 
possible solutions to the IP problem. The optimal solution 
is defined as the feasible solution from the list of 
possible solutions found that maximises or minimises the 
objective function.

All enumeration algorithms consist of a method of keeping 
track of the solutions considered so far and of "point 
criteria" which indicate situations where certain related 
integer points cannot yield better solutions than the 
present best (incumbent) solution. Such point criteria make 
use of the integrality and constraint requirements of the 
IP problem to implicitly enumerate large numbers of points 
at once. The efficiency of an enumerativo algorithm will 
depend very heavily upon the effectiveness of its point 
criteria.

The two major categories of enumerative algorithm are those 
of Branch and Bound Enumeration and Direct Search 
Enumeration.
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»ranch

The most commonly used algorithm for solving IP problems is 
the Branch and Bound Enumeration Algorithm ([Land and Doig, 
1960, Dakin, 1965]). The enumeration process is directed by 
criteria for separation, relaxation and fathoming.

The integrality constraints on the decision variables are 
initially ignored (i.e. they are relaxed) and the IP 
problem is solved as an LP (usually by using the Simplex 
Method (Dantzig, 1951]). The LP relaxation may prove to be 
infeasible or unbounded, in which case the original IP 
problem is also infeasible or unbounded respectively. 
Otherwise, if there is an optimal, (and therefore feasible) 
solution to the LP relaxation, a check is made to see if 
the supposedly-integer decision variables in this solution 
all take integer values. If so, then the optimal solution 
has also been found to the IP problem. If one or more of 
the supposedly-integer decision variables take fractional 
values in the optimal LP solution, then further work (in 
the form of separation and fathoming) must be done to find 
the optimal IP solution.
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Ti>* Branching Proc*»«

The first step is to separate one of the supposedly-integer 
decision variables that is taking a continuous value, and 
by doing so effectively divide the original IP problem's 
solution space into a number of sections (thus creating 
several new IP problems to be solved).

The process of separating a variable is called branching 
upon that variable.

As an example of this, shown in Fig 2.4, if the solution 
given to an LP relaxation of an IP problem is such that a 
supposedly-integer decision variable, Xi say, takes a 
continuous value C, then the integer feasible answer must 
lie in the solution space of one of two LPs where in the 
first, the simple bound 
xx 2 |C| ♦ 1

is placed on decision variable xXi and in the second the
bound
x, S |C|
is placed on decision variable x,.

The solution space removed (i.e. where |c| <xx < |C| +1) 
would not have produced an integer feasible answer anyway.
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XI

Fig. 2.4: Branching upon a 
variable.

The next step in the algorithm is to add the two new IPs 
created by the separation to a list of candidates for 
solution. A choice is then made from the candidate list, 
and the appropriate LP relaxation of the original IP (with 
the new bounds indicated by the separation) is solved. The 
solution to this LP relaxation will indicate the next step 
of the algorithm. Either the separation of a different 
variable (i.e. further enumeration of the original IP 
solution space) will be indicated, or the LP relaxation 
will be said to be fathomed. A fathomed LP relaxation will 
either provide an integer feasible solution, or will be 
infeasible, or will provide a solution that can be shown to 
be worse than the overall'optimum).
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The Branch and Bound algorithm is convergent, as it will 
(eventually) fathom all the IP problem's solution space. 
This is because, in the process of separating variables, 
(and thus further enumerating the original solution space 
of the IP problem), more and more useless parts of the 
solution space are removed. The unenumerated areas that 
remain will be further and further constrained by bounds on 
the variables as the search continues (and more and more 
LPs with more and more bounds on their decision variables 
are generated). Thus, as the algorithm leaves smaller and 
smaller areas of the solution space unenumerated, a 
particular area must eventually yield either an integer 
feasible answer or indicate that this part of the solution 
space is invalid (i.e. there are no feasible answers to be 
found within it that are better than the current best 
feasible answer). In either of these cases, that part of 
the solution space is said to be fathomed, since we no 
longer need to consider it or any further enumeration of 
it.

Of course, if several decision variables are taking 
continuous values in an optimal LP solution that has just 
been obtained, an intelligent choice of branching variable 
must be made.
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Branching Varlmbl« Selection

Good branching variable selection (i.e. effective IP 
problem solution space partitioning) is important if the 
search through the solution space is to be carried out 
efficiently.

A common way of choosing branching variables in practice is 
to use user-specified priorities, i.e. to order the 
variables as part of the input to the algorithm. This 
method can be very powerful in practice, especially in 
cases where the IP problem is highly structured. For 
example, a variable indicating whether or not a project is 
to be done or not should obviously be branched upon before 
variables reflecting details of the project if it is 
undertaken.

Other methods for choosing the branching variable make use 
of estimated degradations which are calculated when an LP 
relaxation has just been solved and further branching is 
indicated. An estimate is made of the degradation to the LP 
solution caused by making branches on each of the integer- 
constrained variables that are taking continuous values. 
The choice of branching variable is then made based on a 
comparison of the degradations the various branches will 
cause to the LP solution.
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If a supposedly-integer decision variable xt takes a 
continuous value C1# then two branches are usually 
considered whereby either a lower bound of the form 
Xi 2 |c , |  ♦ 1

or an upper bound of the form 
xt S |Ct|
will be placed on decision variable xt.

Let imposing a new lower bound of |C4| ♦ 1 on xi decrease 
the objective function by the "up penalty" of pt for every 
unit increase from the current value of xt. (This is an "up 
penalty" since the variable value must be moved up to the 
new lower bound).

Similarly, let the "down penalty" incurred by placing an 
upper bound of |cj on xl be pt* for every unit decrease from 
the current value of x4.

If we define 
Ci ■ |C,| ♦ f4
then an estimated decrease ofDi* -  p / f i
would be expected if an upper bound was imposed and a 
decrease of
Di* ■ Pr(l-fi)
expected if a lower bound was imposed.
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Forrest, Hirst and Tomlin give a method for estimating 
penalties p4_ and p4\  but state that this method is only 
useful for attacking small problems (see [Forrest et al., 
1974]). A more useful method, as used by the commercial 
optimiser XPRESS-MP ([Dash Associates, 1989]), is 
summarised in Appendix 1G.

Once the estimated degradations Dt' and Dt* have been 
calculated for all the candidate variables, a choice must 
be made as to which one to branch upon based upon the 
degradation values.

The most common way of choosing the branching variable is 
to use the maximum integer infeasibility criteria

ffi1 IDj.Dj)

where N‘ is the set of all the candidate variables for 
branching, xt.

The idea behind this method is that a variable whose 
smallest degradation is the largest degradation overall is 
the most important for achieving integrality (i.e. it is 
the variable whose value has the most drastic effect).
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Nod« Selection

A selection must also be made at each iteration of the 
algorithm from the growing list of candidate LPs with 
appropriate bounds on the decision variables. Such a 
candidate LP problem may be represented as a node on a 
solution tree (see Fig 2.5).

Fig. 2.5: Solution tree for a PIP problem.

If the algorithm is to proceed efficiently. Node Selection 
(i.e. the selection of which part of the solution space to 
consider next) must also be considered very carefully.
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There are two options for node selection: either the 
strategy is worked out before the problem is attacked 
(using a set of a priori rules) ; or an adaptive strategy is
used which decides at each iteration using the current 
information.

A commonly used a priori rule is depth-first search plus 
backtracking (also known as Last In, First Out (LIFO)). 
This involves keeping track of which node was considered at 
the last iteration. If that node was not fathomed (i.e. cut 
off), then one of its two descendants is considered at this 
iteration. When a node is fathomed, the algorithm 
backtracks along the solution tree towards the root until 
it finds the first node (if any) that has a descendant that 
can be considered.

Another example of an a priori rule is the breadth-firet 
search, which considers all the nodes at a particular level 
of the tree before considering any from lower levels.

The Bounding Procass

The Branch and Bound algorithm continues the branching 
process until an integer feasible solution is found. At 
this stage, the point criteria of the Branch and Bound 
algorithm may be used to implicitly enumerate some of the 
possible solutions, i.e. the bounding part of the algorithm 
can take place.
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The bounding process uses the objective function value as 
a point criterion to discard some of the present list of 
candidate LP relaxations. Placing upper or lower bounds on 
the allowable values of a decision variable of an LP 
reduces the number of values the variable can possibly 
take. The optimal solution value of the LP which has extra 
bounds can only at moat be as good as the solution value of 
the same LP without the extra bounds. In fact, the new 
objective function value is likely to be worse than that of 
the LP without the extra bounds on the variable.

Thus, any LP relaxation that at present gives an objective 
function value of worse than the best integer feasible 
solution so far is not worth considering further (since the 
objective function value will only worsen when extra bounds 
are placed on its variable values).

The direct search enumeration method (also known as the 
additive algorithm) was first proposed in 1963 as a scheme 
for solving zero-one PIP problems ((Balas, 1963, 1965]). 
The method was subsequently elaborated upon, allowing the 
solution of zero-one MIP problems ([Glover, 1965, Lemke and 
Spielberg, 1967]) and finally extended to the solution of 
general MIP problems ([Driebeek, 1966]).
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The basic algorithm proposed by Balas, for use on zero-one 
PIP problems can be shown by a tree composed of nodes and 
branches. Two nodes joined by a branch differ only in the 
state of one variable (the three possible states being set 
to one, set to zero or free) . A new node on the tree is 
created by fixing a chosen free variable to one (known as 
taking a forward atap). A node is revisited (i.e. a 
backwards step is taken) by fixing the previously free 
variable to zero (as seen in Fig. 2.6 below).

Forward Slep 

(node crealed)

Backward Slep 

(node revisited)

XI =1 XI : i
X2 =0 ( ) X2 = 0
X3 =free y )  X3 =free
X4 =Iree y  X4 =

T
0

XI = 1 f
L 1

\  XI =1
X2 = 0 ( 1 X2 =0
X3 =Iree \ )  X3 ==f tee
X4 = I X4 = 1

Fig. 2.6: Forward and Backwards Steps.
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A depth-first search of the tree is commonly followed until 
there are no free variables in its last node. One or more 
backwards steps are then taken until a forward step may be 
taken to create a new node or until all free variables have 
been fixed to zero.

Defining the level of a node by the number of variables 
fixed to one, and the point xl as the node with 1 variables 
fixed at one, the basic approach is as follows (as adapted 
from {Salkin, pp 211-218)):

1) Fix a free variable xk from x1 (initially xl = x°) at 
value one.

2) Solve the subproblems in the remaining free variables.
3) Fix xk at value zero (also known as cancelling xk at 

level 1).
4) Solve the subproblem in the remaining free variables 

with xk fixed at zero.

At any stage in the search for the solution to a problem in 
n variables, a node will contain 1 variables fixed at one, 
c variables cancelled at zero, and there will be a 
subproblem in f»n-(l+c) free variables to solve.
Corresponding to the f currently free variables, there are 
f permissable branches from xl, as shown in Fig. 2.7.
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rifl. 2.7: An exemple of Direct 
Search Enumeration.

The process will eventually enumerate all (2n) possible 
zero-one vectors, x, but for efficiency, it is obviously 
desirable to implicitly enumerate as much as possible.

Appendix IE describes some of the implicit enumeration 
criteria appearing in the literature.

A good point algorithm which indicates which node to branch 
upon is also very important to any enumeration algorithm.

One good point algorithm for the direct search enumeration 
algorithm is the Balas Test, as follows:
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The subproblem at point x 1 is problem P

Minimise z = cxl
Subject to Ax1 £ b
and 0 £ xl £ it
where x} * 0 or 1 for j*l,..,n and it is a column of ones.

If the c variables that are fixed at zero are dropped and 
the 1 columns whose variables are fixed at one are 
subtracted from the right hand side vector b, then P can be 
rewritten as

Minimise z - zl ■ cfxf
Subject to A fxf £ b1
and 0 S xf £ e
where xs = 0 or 1 for j e F.

x* ■ (Xj) is the vector corresponding to free variables, F 
is the corresponding set of indices in xf, cf and A f ■ (A,) 
are costs and columns of A, b1 is the updated right hand 
side, and z1 is the sum of the costs of the 1 variables 
fixed to one.

If a free variable x} is set to one, the constant term b4l 
in each constraint i becomes bt* - atJ.

When bt* - au 2 0, constraint i is satisfied.
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Thus, a measure of the total "constraint infeasibility" ii 
given by

j?«, (bj-a^)

where = {i| (bi1 - a„) < 0, i=l,...,m) 
and by Vj = 0 if M, is empty.

To reach or return to a zero-one solution, it is reasonable 
to branch on the variable which maximises Vj.

The extension of the direct search enumeration algorithm to 
zero-one MIP problems, as proposed by Lemke and Spielberg, 
is as follows:

A search enumeration is carried out over the integer 
variables. Each time a node is explicitly examined, an LP 
in only the continuous variables is solved (i.e. prior to 
the Simplex iterations, the free variables are fixed to 
zero). Thus, a feasible LP always produces a mixed integer 
feasible solution.

This suggests that 2" LPs must be solved, and that the 
algorithm could not possibly be efficient unless only a 
small number of integer entities are present.

There is a way around this problem however. It is possible 
to derive constraints, using only the zero-one variables,
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that will be valid at any node. An IP point algorithm could 
be applied to these constraints, possibly resulting in many 
cancellations or free variables being set to one (i.e. lots 
of implicit enumeration) . This method is discussed in 
Appendix IF.

The extensions of the Lemke and Spielberg method to general 
MIP problems is reasonably obvious, involving only a more 
complicated method of fixing and keeping track of variable 
values.

Having said this, both the Lemke and Spielberg algorithm 
for MIPs and the Driebeek algorithm for general MIP 
problems, which is based on it, are only useful if the 
integer decision variables can only take a narrow range of 
values. In the case of the Lemke and Spielberg algorithm, 
this is because the usefulness of many of the implicit 
enumeration criteria is reduced by the addition of 
continuous variables (see {Salkin p. 229} for example). In 
the case of the Driebeek algorithm, which builds on the 
previous work based around zero-one variables, problems 
occur because general integers are represented by a set of 
zero-one variables.

As an example of this, a general integer variable xl with a 
lower bound of zero and an upper bound of n would be 
represented as follows:
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n

Thus, the Driebeek algorithm becomes impractical for use on 
large MIP problems with more than a few integer variables, 
especially if the integer variables have large upper 
bounds.

Cyrr.nt of KIP Solution Algorithm.

With the exception of the OSL package mentioned below, all 
commercial optimisation packages (e.g. XPRESS-MP, SCICONIC, 
etc.) use the Branch and Bound Enumeration Algorithm to 
solve IP problems.

The Optimisation Subroutine Library (OSL) available from 
IBM ([IBM, 1990]) optionally allows the use of Cutting 
Plane routines to create a Branch and Cut algorithm, 
although only for zero-one MIP problems. The Branch and 
Bound search is carried out as normal, except that the user 
can specify occasions on which cuts are generated and added 
to the LP relaxations attacked, hopefully providing better 
solutions.
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3_. Introducelpn to Parallel Coagmtlng

Now that various MIP-solving algorithms have been 
introduced, it is necessary to consider how they might be 
parallelised and on what hardware a parallel algorithm 
might best be implemented.

The notion of exploiting some form of parallelism in 
computer design is nearly as old as the idea of the 
computer itself. One early reference to parallelism in 
computer design for instance, dates from October 1842, 
contained in "Sketch of the Analytical Engine Invented by 
Charles Babbage" by L.F. Menabrea ([Kuck, 1977]).

Different breakthroughs in technology over the years have 
actually led to both the implementation and removal of 
various parallelised processes within computer hardware. 
For instance, before the advent of electronic components in 
computers in the 1940s, the bit by bit addition of 32-bit 
numbers was carried out in parallel. Babbage actually 
rejected serial addition for his difference engine because 
of the long execution time involved ( [Morrison and 
Morrison, 1964]). The introduction of electronic components 
allowed such a great improvement in performance that serial 
addition became a possibility. The increase in performance 
was, in fact, so dramatic (somewhere between 1000 to 10000
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times), that serial addition became the norm in order to 
exploit the benefits of using less equipment by only 
processing one digit at a time.

Despite some such occasional "setbacks", more and more 
parallelism has been gradually introduced into computer 
design since the 1970s.

The introduction of the microprocessor at the end of the 
1970s and of very large scale integration (VLSI) technology 
(i.e. technology allowing the production of a chip 
containing from ten thousand to a million microprocessors) 
in the 1980s have allowed the implementation of many 
(though not all) parallel architectures that had previously 
only been theoretically possible.

C U » » m c » U W -Of Cotrnfr Archlfctur«

An initial classification of computer architecture may be 
achieved by using Flynn's Taxonomy ([Flynn, 1966)), which 
is based on the concepts of instruction stream and data 
stream.

An Instruction stream is a series of instructions performed 
by a computer. A data stream is a sequence of data used to 
execute an instruction stream.
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Flynn categorizes a computer architecture by "the maximum 
possible number of simultaneous instructions or data being 
in the same phase of execution at the most constrained 
component of the organization".

There are four classifications of computer architecture 
arising from Flynn's categorizations, each of which has 
yielded actual hardware. Flynn's classifications are:

Single Instruction stream. Single Data stream (SISD)
architecture;
Single Instruction stream. Multiple Data stream (SIMD)
architecture;
Multiple Instruction stream. Single Data stream (MISD)
architecture; and
Multiple Instruction stream. Multiple Data stream (MIMD)
architecture.

Serial computers may easily be classified using Flynn's 
categorisations. Most serial computers fall into the SISD 
category. Indeed, true parallelism is not possible using 
SISD architecture, although fast SISD machines may give the 
appearance of parallelism by supporting multitasking (i.e. 
by switching back and forth between two jobs very quickly) .

The small number of serial computers that do not fall into 
the SISD category have been specially designed to implement 
image processing systems. They operate in such a way that
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they fall into the MISD category since different elements 
of a single data stream are in effect simultaneously being 
acted upon by multiple operations or instructions. The 
Genesis 2000 system ([Sternberg, 1985]) is such a system 
currently on the market.

Unfortunately, Flynn's taxonomy is not sufficient on its 
own to properly classify the various types of parallel 
hardware available. Although different types of parallel 
hardware have been developed that do fall into the SIMD and 
MIMD categories, other categories are necessary to fully 
reflect the variety of parallel computer designs in use.

The many different types of parallel architecture have 
arisen in response to the additional problems which occur 
when implementing parallel algorithms. Implementing a 
parallel algorithm typically involves at least as much work 
as implementing a serial algorithm plus further work in 
controlling and coordinating the tasks to be performed in 
parallel.

The major aim when developing any algorithm, be it parallel 
or serial, is to obtain the correct result. If an algorithm 
does not give the correct result, then there is obviously 
no point worrying about lesser issues such as algorithm 
efficiency or speed.
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In the case of parallel algorithms, special care must be 
taken, especially when calculations are being carried out 
in parallel using the same data.

Consider a bank system performing daily updates to current 
account balances. Deductions made as a result of standing 
orders could be performed by one processor while another 
processor was dealing with deductions made as a result of 
withdrawals made via automatic cash machines. If both 
processors were allowed access to a particular current 
account record simultaneously, an error in the final 
calculation would result, with the result of only one of 
the calculations being reflected, and not the combined 
result of both calculations.

The coordination of such parallel tasks within a parallel 
algorithm is usually achieved by parallel hardware making 
use of synchronous or asynchronous organisation techniques.

Synchronous coordination involves forcing all operations to 
be performed simultaneously and in a manner that removes 
the dependency of one task on another. For instance, a lock 
could be placed on the current account record by any task 
using its data for calculations. Thus, any other task 
requiring the data would have to wait until the record was 
released from the lock.
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Asynchronous coordination is a looser form of control where 
processors operate freely on tasks without regard for 
global synchronisation. Asynchronous algorithms contain 
explicit flow control in order to coordinate parallel 
processes. For instance, all standing order calculations 
could be carried out at night at a time when the automatic 
cash machines are not operational.

Parallel algorithm design categories are primarily 
classified by their use of synchronous or asynchronous 
coordination techniques. The major categories of parallel 
algorithm design at present are as follows:

Sypsturgngug Asynchronous
Vector/array MIMD
SIMD Reduction
Systolic

1*3» 1» The vectpy/Arr»y p»r»<Ugp

This synchronous approach maintains algorithm integrity 
whilst improving algorithm performance by breaking down the 
overall task into subtasks which must be performed in a 
given order. In effect, a pipeline is created for these 
subtasks in that the output data from one subtask in the 
pipeline becomes the input data for the next subtask (see 
Pig 3.1).
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processor processor processor processor
one two three tour

riff. 3.1: Pipeline example.

The key to improving performance with this method is to 
keep the pipeline full (i.e. keep all the processors busy) . 
Although the individual subtasks take as long to perform, 
several pieces of input data may be fully processed through 
the pipeline in the time it would have taken for a single 
processor to perform all subtasks on one piece of input 
data. A certain amount of communication overhead will occur 
when using this method, which will reduce the overall 
performance somewhat, but modern communication technology 
ensures that this overhead will be minimised.

The first vector machines were invented in the 1970s (i.e. 
the CDC STAR-100 [Hintz and Tate, 1972] and the TI ASC 
[Watson, 1972]). The pipelining technique has been used 
since then to attack numerical problems such as matrix and
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vector calculations. Thus, the pipeline approach is often 
known as vector/array processing. The more successful 
implementations of pipelined computers have been the CDC 
CYBER 205 ([CDC, 1983]), the ETA-10 ([Fazio, 1987]), the 
CRAY series of supercomputers ([Cray 1976, 1985 Chen, 1984, 
Russell, 1978]), the Floating Point Systems 164/MAX 
( [Charlesworth and Gustafson, 1986]) and the IBM 3090 
Vector Facility ([Moore et al., 1987]). The FUJITSU VP 
100/200 ([Motegi et al. , 1984]), HITACHI S-810/10 
([Nagashima et al., 1984]) and the NEC SX1/SX2/SX3 
([Watanabe, 1984, 1987]) vector computers have further 
developed the ideas behind the CYBER 205 and CRAY 
architectures. A new market for vector computers was 
discovered in the late 1980s when graphics supercomputers 
were marketed by Stellar ([Sporer et al. , 1988]) and Ardent 
([Miranker et al., 1988]). More general references 
concerning vector/array processing and supercomputing are 
([te Riele et al., 1987]), ([Hwang and Briggs, 1984]) and 
([Dongarra, 1987]).

3.2.?. Th+ 8IHP paradlfl»

The next synchronous approach is that of the SIMD paradigm, 
where all processors perform the same task simultaneously 
on different data, or else remain idle. The efficiency of 
the SIMD paradigm depends on how well the data for the 
overall problem can be partitioned across the available
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parallel processors. Having to process drastically 
different amounts of data at different stages of an 
algorithm would make the SIMD approach very inefficient. 
Since all the available processors must act in a 
synchronised manner, processing a large number of data 
items at one stage of the algorithm implies that a large 
number of processors will be needed to process them. If the 
algorithm involves the processing of a small number of data 
items during other phases, many processors will be left 
idle.

The SIMD paradigm is at its most effective when the number 
of data items to be processed is a good match for the 
number of available parallel processors.

Processor Arrays

The processor array is a class of hardware which was 
specifically developed to implement the SIMD paradigm. It 
is thus a collection of synchronised processing elements 
capable of simultaneously performing a single operation on 
different data (see Fig 3.2). Each processor in the array 
has a small amount of local memory where the distributed 
data reside while being processed in parallel.
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Some of the first pieces of parallel processing hardware to 
be implemented were processor arrays which arose from the 
design of the SOLOMON computer ([Slotnick et al., 1962]). 
Although the SOLOMON computer was probably never actually 
built, the elements of its design led to many successfully 
implemented processor arrays, including the ILLIAC IV 
([Barnes et al. , 1968]) and PEPE ([Berg et al. , 1972]) 
floating-point arrays, as well as the Goodyear Aerospace 
STARAN ([Batcher, 1974]) and ICL DAP ([Reddaway, 1973, 
Hunt, 1981]) arrays of one-bit processors.

Fig. 3.2: Typical processor array
architecture.
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As implementations of the SIMD paradigm, processor arrays 
are most effective in practice when the data upon which 
they operate matches the dimensional structure of the 
processor array itself. The two major application areas 
where this matching occurs are image processing and 
mathematical modelling (usually of physical processes).

A relatively large number of processors (i.e. a fine grain 
system) are needed to accurately process images or model 
physical processes. Two of the most commercially successful 
fine grain processor array systems are the Goodyear 
Massively Parallel Processor (MPP) ([Batcher, 1980]) and 
the Connection Machine (CM) ([Hillis, 1985]). The Goodyear 
MPP is a descendant of the Goodyear STARAN and the ICL DAP 
and contains an array of 16384 one-bit processors, 
arranged as a 128x128 square. The Connection Machine has an 
array of 65536 processors, arranged as a 256x256 square.

Examples of medium grain processor array systems are the 
previously mentioned 4096 processor ICL DAP, the 4096 
processor Mosaic ([Dornheim, 1985]) and the 512 processor 
GF-11 ([Beetern et al., 1985]). Most modern processor array 
systems are fine or medium grain systems, although some 
large grain systems do exist for use in less prevalent 
application areas such as economic modelling e.g. the 16 
processor Columbia University Parallel Computer ([Christ 
and Terrano, 1986]).
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3.2.3. The gytolic Paradlg»

The systolic synchronous parallel paradigm incorporates 
features of both the vector/array and the SIMD paradigms.

A systolic parallel computer is a pipelined multiprocessor 
in which data are distributed and pulsed from memory to an 
array of processors before returning to memory. The name 
systolic comes from the analogy with the systolic, or 
pumping, action of the heart ([Rung, 1979J). A simple 
example of such a computer may be thought to consist of a 
two dimensional array of processors with memory at the 
boundary of the array (see Fig 3.3).
P = processor

rig. 3.3: Systolic architecture.
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The systolic paradigm is efficient in theory because it 
avoids input/output bottlenecks by circulating data among 
the processors as much as possible before returning it to 
memory. The systolic system is at its best when operating 
on large amounts of data and performing fine-grain 
calculations since processing small batches of data 
inevitably leave processors idle and the maximum speed up 
is to be achieved by pipelining data through many detailed 
operations.

Systolic computers are presently only built for specific 
applications where the systolic paradigm can operate 
efficiently, although work is being done to develop 
programmable systolic-array elements to allow more 
flexibility. Application areas have included signal 
processing ([McCanny and McWhirter, 1982]) and mathematical 
transformation calculations ([Kung, 1984, Chakrabarti and 
J&J&, 1990]). More general references are ([Moore et al., 
1987]) and ([Quinton, 1987]).

3;2,4; The WIMP Paradlg»

The first asynchronous coordination method to be considered 
is the MIMD paradigm, which allows many processors to 
simultaneously execute different instructions on different 
data. The MIMD paradigm coordinates tasks and processors by 
using some form of synchronisation mechanism. One obvious 
synchronisation mechanism is to only allow one processor at
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a time to access a piece of data at one moment in time. Any 
other processors must wait until the data item is released. 
Another mechanism is to only allow one processor at a time 
to change a piece of data, whilst letting other processors 
read it (i.e. to have, in effect, a shared memory system). 
It is the responsibility of the parallel algorithm designer 
to make use of such synchronisation mechanisms to ensure 
the integrity of the algorithm.

The MIMD approach is most efficient when dealing with fine 
detailed problems where individual processors have much 
work to do on the data they receive. This will keep the 
individual processors busy for relatively long periods of 
time, thus helping to reduce the overhead involved in 
passing around data and control statements from processor 
to processor.

Numerous different types of hardware have been developed 
that may be categorised as MIMD machines, i.e. which 
consist of a number of processing units, each capable of 
executing different operations on different data. These 
different types of hardware may be further classified by 
the methods they use to enable MIMD processing (which 
include making use of previously mentioned SIMD and 
pipelining hardware).

The different categories are: Pipelined MIMD, Switched MIMD 
and Network MIMD.
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3±2?4.1. Pipelined MIND

Pipelined MIMD machines process multiple instruction 
streams by time-sharing a single sophisticated pipelined 
instruction processing unit. An example of using pipelined 
MIMD within a machine was the Denelcor Heterogeneous 
Element Processor (HEP), which was discontinued in 1985 
((Smith, 1978, Allan and Oldehoeft, 1985)).

3,2.4.2. Switched MIMD

Another method of processing multiple instruction streams 
is to provide separate instruction processing hardware for 
each stream. One way of implementing this is to provide a 
switch via which all connections between the processors 
must be made.

Switched MIMD machines may be further classified by how 
they utilise memory.

Shared-memory MIMD machines are organised so that memory is 
a shared resource of all the processors that is accessed 
via the switch (see Fig 3.4). Examples of such machines are 
MIDAS ((Maples et al., 1981]), early versions of the New 
York University Ultracomputer ([Schwartz, 1980, Elder et 
al., 1985]), the University of Illinois Cedar ([Qajski et 
al., 1983]) and the IBM RP3 ([Pfister et al., 1985]).
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P = processor

M = memory

P P p

SWITCH

M M M

Fig. 3.4: Shared-memory MIMD architecture.

Ijultijroctffprs

Some of the later categories of multiprocessor hardware 
(e.g. the Encore Multimax ([Wilson, 1987]) and the Sequent 
Symmetry ([Lovett and Thakkar, 1988])) were designed as 
shared-memory MIMD machines ([Desrochers, 1987]). Although 
the first large-scale multiprocessor design occurred in 
1959 ([Holland, 1959]), up until 1980, such designs were 
mainly methods for connecting together several independent 
serial computers (e.g. the Carnegie-Mellon C.mmp computer 
linking together 16 DEC PDP-11 minicomputers ([Wulf and 
Bell, 1972, Wulf et al., 1981])).
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The arrival of the cheap microprocessor (circa 1975) 
allowed the subsequent development of systems using linked 
microprocessors which cooperated to solve a single problem, 
i.e. true multiprocessors ([Pease, 1977, Bustos et al. , 
1979)).

Many early multiprocessor systems failed to live up to 
their full potential when more than a few microprocessors 
were joined together. The major problem incurred when 
scaling up such systems was caused by the slowness of the 
switch which gave access to the memory. The switch could 
not cope properly with the demands of more than a few 
processors and was thus the cause of delays and queuing. 
This problem gave a major push to the further development 
of distributed memory and network MIMD hardware.

Distributed-memory MIMD machines (often described as 
»ulticomputers) distribute memory amongst the processors as 
local memory and the processors communicate via the switch 
(see Fig 3.5). Examples of such machines are CHoPP 
([Sullivan et al. , 1977)), and the BBN Butterfly 
([Crowther et al., 1985)). A more general reference is 
([Seitz, 1988]).
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P = processor

M = memory

SWITCH

P P P

I I I
M M M

Fig. 3.5: Distributed-memory MIMD architecture.

Again, the speed of the switch in practice limits the 
amount of parallelism possible, since it limits the amount 
of communication possible between processors. The balance 
between communication and calculation is thus a very 
important consideration when making use of distributed- 
memory MIMD machines. Too much dependency on message­
passing for instruction or to pass data can incur large 
communications overheads. On the other hand, having too 
many instructions embedded within a processor's algorithm 
limits the flexibility of the overall algorithm as well as 
limiting the amount of data that can be stored locally.
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An alternative way of providing separate instruction 
processing hardware for different instruction streams is to 
devise a network of processors. Individual processors may 
only communicate directly with their neighbours in the 
network, and long-range communication across the network 
requires a routing algorithm. The removal of the switch 
from this design removes the limitations on memory access 
or communications that accompanied the shared-memory and 
distributed-memory MIMD designs previously mentioned. Each 
network MIMD processor has access to some local memory and 
has a number of links for connection to neighbouring 
processors.

Examples of network MIMD machines (which again are often 
classified as multicomputers due to their lack of global 
shared memory) are the CDC Cyber Plus, the NASA Finite 
Element Machine ([Jordan, 1978]), the Carnegie-Mellon 
University Cm* ([Swan et al. , 1977, Gehringer et al. , 
1987]) and many of the various implementations of hypercube 
architecture (e.g. the Cosmic Cube ([Seitz, 1985]), the 
Intel iPSC ( [Pase and Larrabee, 1988]), the Floating Point 
Systems T series ([Miller et al., 1988]), the NCUBE/10 
([Hayes et a l . , 1986]), the generalised hypercube (Bhuyan 
and Agrawal, 1984]), the twisted cube ([Efe, 1989]) and the 
cube connected cycles architectures ([Preparata and 
Vuillemin, 1981])).
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Especially useful for network MIMD systems is the 
transputer, a single-chip microprocessor developed by INMOS 
Ltd and first marketed in 1985 ([INMOS, 1985, Whitby- 
Strevens, 1985]). It is intended to be the equivalent of a 
TRANSistor for multicomPUTER architectures, i.e. to be the 
lowest level component that needs to be considered when 
designing a multiprocessor computer.

The T800 transputer (see Fig. 3.6), which appeared in 1987, 
consists of a powerful processor with 4Kbytes of on-chip 
RAM, four bidirectional serial lines intended for 
connections between transputers in an array, a 32-bit port 
which can be used to program the device or expand the local 
memory, and very importantly, a 64-bit floating point unit.

Pig. 3.6: The T800 transputer.
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As with distributed-memory MIMD architectures, it is 
important to consider the balance between communication and 
calculation when building transputer-based networks, but at 
least the problem of delays caused by the switch has been 
removed from the equation.

Transputer-based systems were specifically designed to be 
used with the Occam parallel processing language, but they 
also support the use of programs written in more common 
programming languages (e.g. FORTRAN, PASCAL, C). 
Transputers are available singly or on boards (usually 
housing four, nine or sixteen at a time) and as such, make 
ideal building blocks for parallel systems. A major 
drawback to the use of transputers when they first became 
available however, was the lack of a debugging facility. 
Only one transputer per network could be connected directly 
to a host computer, and thus only one transputer could be 
used to output debugging messages. Such messages would 
first have to be passed to the host machine along a 
predetermined route of transputers. More recently however, 
a debugging facility has been introduced to ease the 
process of program creation.

Transputer-based systems have found many application areas, 
including optical character recognition ([Patry et al. 
1987]), image processing ([Harp et al. , 1987]) and robot 
control ((Pham et al., 1990])

81



3.2.5 The Reduction Paradigm

The reduction asynchronous coordination paradigm is so 
called because it is based on a mathematical graph 
reduction model. Most reduction problems involve flows of 
data, which are shown as graphs. For instance, consider the 
problem of finding the average of two numbers, a and b. The 
graph for this problem would be

a
♦ / 2 

b

The computation algorithm simplifies the graph, stage by 
stage, until the graph is reduced to a single node. The 
graph is simplified (and the remaining computation that is 
necessary “reduced"), by performing the calculations for 
which there is hard data. For instance, if, for the problem 
stated above, a=3 and b=5, the first reduction is to reduce 
the generic problem to the particular instance, as follows:

The next reduction is carried out by performing the one 
calculation for which there is hard data (i.e. 3+5), giving 
the resulting graph
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The last reduction is carried out by again performing the 
calculation for which there is hard data (i.e. 8/2), thus 
giving the final graph (reduced to one node), which is the 
answer 4.

The reduction paradigm achieves parallelism by using a 
method called demand-driven data flow. This method states 
that a task may only begin execution when its results are 
required for use by another already executing task, i.e. 
when its results are demanded. A reduction program consists 
of reducible expressions which are replaced by their 
computed values as the computation progresses through time. 
Most of the time, the reductions may be done in parallel. 
Nothing prevents parallel reductions except the 
availability of data from previous reductions.

As an example of this, consider the quadratic equation,

axJ + bx + c ■ 0.

A reduction program to compute the largest possible value 
for x that satisfies the equation, given values for a, b 
and c would be as follows (this example adapted from (Lewis 
and El-Rewini, pl6)t

83



graph 1: graph of x=(-b ♦ SQRT(b*b-4ac))/(2a)

4

b

b
SQRT ■f - b

/

2 a

graph 2: (for input a=l,b=2,c=-3) reduced by a*c,-b,b*b,2*a 
(i.e. four possible parallel operations)

-3 * - 4 SQRT + -2
4 /

2

graph 3: reduced by -3*4

-12 - 4 SQRT + -2

/
2

graph 4: reduced by -(-12), then 4+12

16 SQRT + -2

/
2

graph 5: reduced by SQRT(16)

4 ♦ -2
/
2
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graph 6: reduced by -2 + 4

2
/
2

graph 7: reduced by 2/2 

1

Note that there are nine operations to be carried out in 
the formula
x « -b ♦ SQRT(b*b - 4ac))/(2a)
but that the reduction algorithm only took seven reductions 
to compute the final graph.

Only a few applications have arisen from this 
classification of parallel algorithm design so far, due to 
the very high overheads involved in processing graphs. 
These applications have been centred around the 
implementation of functional languages ([Darlington and 
Reeve, 1981, Peyton-Jones, 1987]).

Of all the major classes of parallel design paradigm 
mentioned above, only the vector/array, SIMD and MIMD 
classes have yielded hardware that is of use in general. 
This will remain the case until technological advances are 
made or new application areas 
discovered.
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There are three major approaches to the decomposition of a 
problem so that it may be attacked using a parallel 
algorithm implemented on one of the different pieces of 
hardware mentioned above. These are the algorithmic, 
geometric and process farming approaches to parallel 
computation. Hybrid methods also occur in practice, which 
combine two or three of the approaches.

3.3.1, The Algorithmic Approach

The algorithmic approach, also known as data flow
decomposition, involves breaking up the problem solution 
algorithm into separate, independent subtasks. Each subtask 
can then be executed in parallel, with data flowing between 
the subtasks if necessary. Each subtask will perform some 
computation with the data it receives and then pass data 
onto any further necessary subtasks.

In cases where algorithmic subtasks must be carried out in 
a particular order, the algorithmic approach is often used 
with vector/array (i.e. pipelined) computers, with each 
processor in the pipeline contributing by executing a 
section of the overall algorithm.

3.3. Parallel Problem Decomposition Alaorlth..



As an example of the pipeline implementation of the 
algorithmic approach, consider the following, adapted from 
{de Carlini and Villano}:

The Sieve of Eratosthenes is a method for finding the prime 
numbers below a given integer N. The algorithm removes from 
the set of odd numbers less than N, all the multiples pka, 
Pk(Pk+2), Pk(Pk+4). etc. of the kth prime pk.

An algorithmic decomposition of the sieve algorithm has 
been implemented (see (Hoare, 1978]). One processor is used 
as a "source" that generates and sends out a stream of odd 
numbers less than N. The remaining processors act as a 
series of sieves. A stream of odd numbers is input into 
each of the sieve processors. The first odd number is saved 
(as it is a prime), and any multiples of it are removed 
from the stream. The remaining numbers are then passed on 
to the next sieve.

As an example, in Fig. 3.7, where N=19, the source 
processor outputs the odd numbers 3,5,7,...,17 to the first 
sieve. The first sieve takes 3 to be a prime and thus 
filters out any multiples of 3 (i.e. 9 and 15). The 
remaining numbers are sent to the next sieve and the 
process continues until the output stream from the last 
sieve are primes, and each of the sieve processors holds 
one prime number.
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STORES 5 
SENDS OUT
7.11.13.17

STORES 7 
SENDS OUT
11.13.17

STORES 11 
SENDS OUT
13.17

STORES 13 
SENDS OUT 
17

rig. 3.7: Sieve of Eratosthenes.

Another example of the pipeline implementation of the 
algorithmic approach is in Fast Fourier Transformation 
computation ([Villano, 1990]).

The pipeline is of course not the only way to implement the 
algorithmic approach to problem decomposition. If a 
pipeline implementation is chosen however, the benefits of 
parallelism will only be realised if the pipeline is kept 
full. It is thus important when decomposing the overall 
algorithm that the subtasks are chosen prudently. 
Obviously, the throughput of data through the pipeline is 
limited by the speed of the slowest subtask. If one subtask 
in the pipe takes considerably longer to perform than the 
others, a bottleneck will soon occur and the benefits of 
parallelising the algorithm will be lost.
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3,3.2. The Qeo— trie Approach

The geometric approach to problem decomposition involves 
designing processes that match the spatial geometry or 
structure of the problem (and is thus also known as data 
structure decomposition). The spatial geometry of some 
problems may be divided so that the separate divisions of 
the problem space interact and communicate with each other.

Processors may be allocated to each of these areas. Each 
processor is then considered to be a semi-independent 
entity, responsible for the data in its own spatial region. 
In cases where geometric decomposition is used, the 
computations performed by each processor are usually 
identical, with the results usually being summed to give 
some overall effect. The subdivision of the problem« is 
usually carried out so that short range interactions 
between neighbouring units take place to give a more 
realistic end solution.

An example of the geometric approach (from {Galletly, page 
198-210)) is its use in the simulation of thermal 
conduction in a two-dimensional rectangular metal plate 
which is being heated by a heat source at a certain point 
(see Fig 3.8). Simulation of thermal conduction over the 
whole plate is difficult, so to simplify the problem, the 
geometry of the situation is utilised and the plate is 
subdivided into a number of rectangular areas.
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The heat conduction (i.e. temperature) of each of these 
areas may be estimated by a processor and summed to give 
an approximate effect for the heat conduction over the 
whole plate. The temperature of each area will depend on 
that of its surroundings i.e. the neighbouring areas. It is 
assumed that one of the areas contains the heat source.

\k 1 ,/
heal
applied

/ ' 1 '\
Fig. 3.8: Geometric 
decomposition applied to 
the simulation of thermal 
conduction.

Not all geometrically decomposable problems can be properly 
attacked on the hardware currently available. Some systems 
do not allow the reconfiguration of their processor 
network, whilst others (e.g. the transputer) only have a 
certain number of links available with which to create 
connection topologies.

Once a topology has been satisfactorily set up, it is 
important that the amount of communication between 
neighbouring processors is carefully considered. The 
communications overhead between neighbouring processes can
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become quite appreciable and thus slow down the overall 
algorithm if communication is not properly balanced against 
calculation.

3.3.3. The Process Farming Approach

Finally, there is the process farming approach to problem 
decomposition, which involves making one processor a 
"master" and the rest anonymous "slaves" (see Fig 3.9). 
Each of the slave processors is used to perform exactly the 
same task, albeit on different data. The master processor 
is in charge of sending out data to the different slaves 
(in whatever order it sees fit to do so) and of making use 
of the results as they are returned from the slaves.

Fig. 3.9: Process farming 
a p p r o a c h  t o  p r o b l e m  
decomposition.

The process farm approach is applicable to many problems 
whose solution involves many independent but identical sub­
calculations being carried out on different sets of data. 
As the sub-calculations are independent of each other, each 
may be executed in parallel and the effect summed to give
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a solution to the whole problem.

A famous example of the process farming approach to problem 
decomposition is the graphical representation of the 
Mandelbrot Set of complex numbers. The screen is used to 
represent a particular portion of the complex plane, with 
the constituent pixels of the screen representing the 
individual complex numbers in this portion.

A simple iterative calculation can be carried out to 
determine whether or not each particular complex number is 
a member of the Mandelbrot Set. Each slave processor is 
given a copy of the iterative algorithm and set to wait for 
input. On receiving input data about a particular complex 
number, the processor determines whether the number is a 
member of the Mandelbrot Set or not, and also notes how 
many iterations were necessary to determine this. These two 
pieces of information are then sent back to the master 
processor and the slave waits for more input.

The master processor sends out the information on 
particular complex numbers to slaves and coordinates the 
returning information. If the complex number is not a 
member of the Mandelbrot Set, the pixel representing it is 
given the colour black. If the number is a member, the 
pixel representing it is given a colour depending on how 
many iterations it took to determine. The end result is a 
colour pattern on the screen representing the Mandelbrot
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Set members for the particular portion of the complex plane 
chosen.

Process farms may be set up with many different processor 
connection topologies, limited only by the capabilities of 
the available hardware, but as with geometric 
decomposition, a careful balance must be maintained between 
calculation and communication. The process farm approach is 
usually most successful when the slave processors are kept 
busy for a relatively long period of time once they have 
received some input data, thus minimising the proportion of 
communication.

3 r3 ?4 . Hybrid M+thpds

It is not uncommon for parallel algorithms to be developed 
which make use of more than one of the three approaches to 
problem decomposition. One example of this is a combination 
of farming and algorithmic decomposition used to produce a 
system for printed character optical recognition 
([d'Acierno, 1990]).

In the vast majority of cases however, the needs of 
specific applications seem to point to the use of one of 
the methods more than the others. Although in such cases 
hybrid methods may sometimes be used to increase the 
efficiency of part of the overall algorithm, the benefit 
achieved is often not worth the effort involved.
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As with most innovations in computer hardware, the 
development of parallel processing facilities was motivated 
by a wish to solve a range of previously intractable (i.e. 
NP-complete or NP-hard) problems in a reasonable (i.e. 
polynomial) time as well as by the need to solve already 
tractable problems more quickly.

Unfortunately, the architecture of early parallel hardware 
(i.e. vector/array machines such as the CRAY-1 and CDC 
Cyber 205), and the high cost of construction, strictly 
limited the number and range of early implementations of 
parallel algorithms. Schnabel states that much of the early 
work done using parallel hardware was thus concerned with 
the solution of partial differential equations and 
associated areas such as numerical linear algebra 
((Schnabel, 1984]). Researchers in other application areas 
had to resort to constructing their own parallel 
architectures or to the use of simulation techniques for 
modelling parallelism on a single-processor machine.

Researchers within the field of Mathematical Programming 
began to exploit the potential benefits of parallelism by 
producing parallel algorithms to attack many different
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categories of combinatorial problem (see [Kindervater and 
Lenstra, 1986J for a survey). These parallel algorithms 
were based on the generalised Branch and Bound algorithm, 
special cases of which have been used to produce several 
popular search strategies for combinatorial problems ([Nau, 
Kumar and Kanal, 1984]).

Existing P ara l le l  Aiggritfrng

Roucairol reports that different types of work have been 
carried out in the field of combinatorial optimisation 
using parallel hardware ([Roucairol, 1989]):
"firstly, those proposing parallel Branch and Bound without 
any effective implementation or using a simulated 
parallelism on a sequential machine; secondly, the 
implementation on experimental machines (i.e. machines 
built in research laboratories with exotic architectures); 
and lastly, later experiments conducted on commercial 
supercomputers".

The first category includes simulations of various parallel 
Branch and Bound algorithms for many different 
combinatorial problems ([Imai, Fukumura and Yoshida, 1979, 
Li and Wah, 1984,1986, Wah and Ma, 1984, Lai and Sahni, 
1984, Mohan, 1983, deBruin, Rinnooy Kan and Trienekens, 
1988, Boehning, Butler and Gillett, 1988]).
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The second category includes algorithms implemented on 
specially designed machines such as the Manchester Dataflow 
Machine ([Kindervater and Trienekens, 1985)), the Carnegie- 
Mellon Cm* ([Mohan, 1982]), and the Boulder DPU 
([Trienekens, 1986)).

The last category includes work done on the ICL DAP and CDC 
Cyber 205 ([Kindervater and Trienekens, 1985)), the CRAY-2 
([Roucairol, 1986)), the CRAY-XMP ([Laval«e and Roucairol, 
1985, Pardalos and Rodgers, 1990]), the Denelcor HEP, 
Sequent Balance and Encore Multimax ([Boehning, Butler and 
Gillett, 1988]), the Intel iPSC hypercube ([Mraz and
Seward, 1987]) and the Inmos transputer ([Vornberger, 1988, 
McKeown et al, 1990, Gendron and Crainic, 1992]).

The important features of the parallel Branch and Bound 
algorithms mentioned above are:

the coordination and utilisation of the parallel 
processors;
the hardware used for implementation; and 
the search strategy used.

The coordination of the parallel processors obviously has 
a direct effect on the utilisation of the processors (as 
well as on the complexity of any necessary communications) . 
This can be shown by comparing algorithms that are 
synchronously and asynchronously coordinated (see [Mohan,
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1982,1983, Trienekens, 1986]). It can be seen that an 
asynchronously coordinated algorithm allows much better 
utilisation of the parallel processors. This is because it 
is quite possible that different nodes will take different 
amounts of time to attack. Thus, a synchronously 
coordinated algorithm would often have several processors 
waiting idly for the hardest-working processor to finish. 
It is thus not surprising that all the algorithms 
implemented use an asynchronous coordination of processors 
(except for one of several algorithms discussed in [McKeown 
et al, 1990]). The different algorithms do still of course 
exhibit different processor utilizations because of the 
influences of the hardware and search strategies used.

The search strategies used were of three general types: 
depth-first search; breadth-first search; and best-first 
search.

Depth-first search, where a descendant of the previous node 
is always explored next (if possible) was very popular in 
the earlier algorithms (e.g. [Imai, Fukumura and Yoshida, 
1979, El-Dessouki and Huen, 1980, DeWitt, Finkel and 
Solomon, 1984, Finkel and Manber, 1985]) because the 
necessary data structures were small, as was the memory on 
the available hardware. Each of these algorithms showed 
that a good speedup of the solution times could be achieved 
when several processors were used. Pruul showed that if a 
depth-first approach is used, attacking nodes in parallel
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yields better solutions earlier, thus allowing better 
pruning of the search tree and a good reduction in the 
number of nodes examined ([Pruul, Nemhauser and Rushmeier, 
1988]). This is reflected by the use of depth-first 
searches in more recent algorithms ([McKeown et al, 1990, 
Gendron and Crainic, 1992]).

Breadth-first search, where all nodes at a level of the 
search tree must be attacked before any of their 
descendants, was also used by some early algorithm 
designers. Li and Wah showed that good speedups of solution 
times were possible if a breadth-first search was used ([Li 
and Wah, 1984,1986]). This is probably only because of the 
raw processing power available when two or more processors 
are used however, and not due to any cleverness of the 
algorithm.

A best-first search, where (for minimisation problems) the 
node with the smallest lower bound is chosen, was used by 
several of the algorithms (e.g. [Wah and Ma, 1982,1984, 
Wah, Li and Yu, 1985, Quinn, 1986, Felton, 1988]). Lai and 
Sahni claimed that a near linear speedup of th^ solution 
times could only be achieved by a parallel Branch and Bound 
algorithm using a best-first search strategy for a small 
number of processors (i.e. less than sixteen). This was 
challenged by Li and Wah however, who showed theoretically 
that a near linear speedup was possible for a large number 
of processors (i.e. one to two thousand) ([Li and Wah,
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1984]). Quinn and Deo state an upper bound on the speedup 
available if the best-first search is used as just below 
linear until the Amdahl Effect occurs (i.e. until there is 
not enough work for the available processors)([Quinn and 
Deo, 1986]). They also state however, that superlinear 
speedup could be achieved if a different search is carried 
out by another run of the algorithm. This is highly likely 
for most of the algorithms since they are asynchronously 
coordinated and thus non-deterministic in nature.

Finally, let us consider the issues relating to the 
hardware used to implement the parallel Branch and Bound 
algorithms. The hardware used can be categorised as either 
having or not having global shared memory.

Only a small proportion of the algorithms used global 
shared memory (e.g. [Roucairol, 1987, Imai, Fukumura and 
Yoshida, 1979, Boehning, Butler and Gillett, 1988]). The 
remaining algorithms were all implemented on machines that 
had no shared memory facilities (i.e. distributed memory 
machines).

Abdelrahman and Mudge characterised the parallel Branch and 
Bound algorithms implemented on distributed memory systems 
as either Central List (CL) or Distributed List (DL) 
algorithms ((Abdelrahman and Mudge, 1988]). Central list 
algorithms maintain a list of active nodes on one processor 
and perform the calculations on chosen nodes on the other
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processors (i.e. the farming approach to parallel Branch 
and Bound). Such algorithms have the advantage that when a 
node is chosen, the decision is made with full knowledge of 
the search so far. The major disadvantages of such 
algorithms are that a lot of memory is needed to hold the 
centralised list (some of which may have to be written to 
disk) and that there is the potential for a message-passing 
bottleneck at the processor containing the list since all 
the other processors will interrogate it for work.

Distributed list algorithms place a separate pool of active 
nodes and an incumbent solution on each processor. Such 
algorithms thus do not suffer from the bottlenecking 
problems common to central list algorithms, but have the 
disadvantage that node selection decisions made by 
processors are only based on local knowledge of the search 
and may thus lead to unproductive work. Li and Wah state 
that the performances of distributed list algorithms are 
usually worse than those of central list algorithms ([Li 
and Wah, 1984]). Abdelrahman and Mudge reported results for 
both types of algorithm as implemented on a NCUBE/six 
multiprocessor ([Abdelrahman and Mudge, 1988]). The central 
list algorithm exhibited a good speedup of solution times 
for the problems attacked, but only for a small number of 
processors. The distributed list algorithm did not at first 
produce good results at all (seemingly reflecting the 
conclusions of Li and Wah) , but this was changed by the 
introduction of a load-balancing scheme.
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Load-balancing is a very important issue for all parallel 
algorithms, since idle or underutilised processors will not 
help an algorithm to achieve the benefits of parallelism. 
Ma et al developed a load-balancing mechanism for the 
hypercube ([Ma et al. 1988]). This mechanism involved idle 
processors interrogating their neighbours for work and was 
similar to the load-balancing scheme used by Abdelrahman 
and Mudge. Felton suggested another load-balancing scheme 
for use with distributed list algorithms on the NCUBE 
([Felton, 1988]). In his scheme, new nodes generated by a 
processor are added to the local pool of a different 
processor at random, in order to achieve a good spread of 
useful nodes to attack over the whole system. Vornberger 
suggested a method whereby problems are "sent without 
request" to other neighbouring processors on the off chance 
that they might provide useful information ([Vornberger, 
1988]). He achieved a superlinear speedup of some problem 
solution times using this method.
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Conclusions

Based on a study of the already implemented parallel 
algorithms used to solve combinatorial problems, an 
asynchronously-controlled Branch and Bound algorithm making 
use of either a depth-first or best-first search would seem 
appropriate for initial testing of a parallel algorithm on 
MIP problems. If a small number of processors is to be used 
then a central list algorithm would be appropriate. If 
larger numbers of processors are to be used, a distributed 
list algorithm using some form of load-balancing system 
would be appropriate.
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4^_Jnltl«l Ixptrlwnti with P.r«ll«ll.,tlon

Cholc« of th« P.r.11.1 Algorithm H«rdw«r.

Each of the MIP-solving algorithms introduced in Chapter 
Two will now be considered for parallelisation. The major 
criteria for a good choice of algorithm to be parallelised 
are that:

the algorithm chosen must exhibit a useful amount of 
exploitable parallelism (i.e. it must be decomposable by 
the algorithmic, geometric or process farming approaches to 
parallelism) ;

the parallelised algorithm must be implementable on 
currently available hardware; and

the implemented algorithm must be flexible enough to deal 
with different types of MIP problem.

The algorithmic and geometric decomposition approaches 
cannot be usefully applied to the FCPA algorithm, but a 
process farm provides a natural way of exploiting the 
parallelism contained in the algorithm. Each slave 
processor can be used independently to generate a cut and 
then send it back to the master processor for application 
to the LP relaxation.
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The main problem with using the farming approach is that it 
is only useful to solve the new LP when the cuts have been 
returned and applied to the problem. The use of a farming 
algorithm will thus result in some (or all) of the slave 
processors being idle at certain points in the algorithm.

If we assume that the number of new cuts that the algorithm 
indicates can be generated is less than the number of slave 
processors, then obviously some of the slaves will not be 
sent work and will remain idle. Even if there are more 
potentially useful cuts than there are slave processors to 
generate them, both the master and slave processors will 
always be idle some of the time.

The actual amount of time that the master and slaves are 
idle depends on whether the algorithm is designed to send 
data back and forth in a synchronous or asynchronous 
manner.

If a synchronous control mechanism is used, the master will 
remain idle until all the busy slaves indicate that they 
have finished generating cuts, at which point all the new 
cuts are returned and applied, and the new LP is solved. 
Obviously, while the new LP is being solved, all the slave 
processors are idle.
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If an asynchronous control mechanism is used, a 
prioritisation of the potential cuts to be generated would 
be useful. The cut data most likely to be useful could be 
sent out to the slaves first, with any lower priority cuts 
being generated only if time permits and there are enough 
free slaves. Once enough of the high priority cuts have 
been generated and returned, the LP can be resolved while 
the less important cuts are still being generated. Thus, 
not all of the slave processors will be idle whilst the 
master processor is solving the new LP. It is not obvious, 
however, how many of the high priority cuts should be 
applied before the new LP is solved

Both the synchronous and asynchronous approaches share the 
minor problem of ensuring that the cuts generated in 
parallel are distinct, so that the potential benefits of 
parallelism are not wasted.

The major feature of this algorithm to note as far as its 
implementation is concerned is that the LP problem grows 
with every distinct cut added. Thus, a greater amount of 
memory is needed on the master processor to contain the 
details of each successive LP to be solved. Since the FCPA 
algorithm cannot be proven to be convergent unless the MIP 
problem's objective function always takes integer values, 
there is no guide to how many iterations the problem will 
take to solve, and thus how big the final LP problem for 
solution will be. Since the FCPA algorithm does not yield
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any feasible solution until the algorithm terminates, it is 
thus possible that difficult MIP problems could not be 
solved unless the master processor has access to large 
amounts of memory.

If such hardware is available however, the parallel FCPA 
algorithm would be flexible enough to attack many different 
types of MIP problem, using the different types of cuts 
mentioned in section 2.1.2 for use with different problems.

Benders' Decomposition algorithm involves repeating the 
process of solving a dual LP problem and a reformulation of 
the initial MIP problem. This process provides better and 
better lower and upper bounds on the optimal solution of 
the initial MIP problem until, when the lower bound on the 
optimal solution is the same as the upper bound, the 
optimal solution has been found.

There is no parallelism to be exploited from this algorithm 
since the dual LP to be solved at each iteration is 
dependent on the Benders' reformulation solved at the last 
iteration and the Benders' reformulation solved at each 
iteration is dependent on the solution of the dual LP at 
the last iteration. Hence, there is a strict order in which 
the calculations must be performed.
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The Lagrangian Relaxation partitioning method, however, 
does exhibit some exploitable parallelism. The initial MIP 
problem is partitioned to create a new problem which only 
contains constraints that are easy to satisfy. The 
objective function of the new problem includes a construct 
made up of the complicated constraints of the original MIP 
multiplied by a vector X. If the solution vector of the new 
(easy to solve) problem is close enough to a given set of 
values, then the original MIP has been solved. If not, 
another vector X must be chosen and another instance of the 
partitioned problem solved. The best way to parallelise the 
algorithm would be to implement a process farm. Different 
sets of multipliers (Xs) could be chosen by the master 
processor and sent to slaves which would solve an instance 
of the partitioned problem and compare the solution vector 
with the appropriate values. A process farm implementation 
of this algorithm would keep the slave processors busy as 
long as the process of farming out the X vectors can be 
performed quickly enough to avoid a bottleneck occurring at 
the master processor. The busy slaves will only be 
performing useful work, however, if distinct and effective 
sets of X values can be generated by the master processor. 
To make an effective choice of Xs, the master processor 
algorithm must note the results of previously solved 
instances of the partitioned problem.
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Since the partitioned problem is designed to be easy to 
solve, the parallel algorithm should be implementable on 
any type of parallel hardware currently available, as long 
as enough memory is available for the master processor to 
keep track of the calculations performed.

A restriction to the usefulness of the parallel algorithm 
is imposed by its limited flexibility. There are many 
different categories of MIP problems in existence and real 
MIP problems can often be formulated in several different 
ways. It is therefore difficult to write a set of all- 
encompassing rules to indicate which constraints of a 
problem are simple and which are complicated. It has also 
been shown that there are problems for which no Xs exist to 
supply an optimal solution ([Everett, 1963]). A reasonably 
close solution would thus have to be acceptable in certain 
instances.

group Theoretic Algorithms

As mentioned in section 2.3, MIP problems that have been 
reformulated as PIP Group Minimisation Problems can be 
solved by using a dynamic programming algorithm, an 
enumeration algorithm, or a shortest route algorithm. The 
basic structure of all three algorithms is the same, in 
that slightly different GMPs are solved until a solution is 
found where the basic variables all take positive integer 
values.
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The dynamic programming approach is to define a set of 
recursion relations to find the rth best solution to the 
GMP and then to perform recursions until a suitable 
solution is found. Since each step of the recursion process 
depends on the results of the previous step, there is no 
exploitable parallelism in this approach.

The enumeration approach is to add a lower bound to one of 
the variables and resolve the GMP. The value of the lower 
bound is increased unit by unit until it reaches its 
highest allowable level (and the GMP is resolved with each 
unit increase) . If performed on each of the variables in 
turn, this process will obviously eventually explicitly 
enumerate all the possible solutions to the GMP (which is 
a PIP) . The optimal MIP solution will be given by the 
member of the set of GMP solutions where all the basic 
variables take positive values which has the minimum 
objective function value.

The shortest route approach to solving the GMP is very 
similar to the enumeration approach previously mentioned in 
that the different GMPs are constructed by adding lower 
bounds to the variables and the same enumerative search is 
carried out. The difference lies in the method of actually 
solving the different GMPs. The shortest route approach 
makes use of a specialised shortest route algorithm to 
solve the GMPs.

109



A process farm would be the best way to implement either of 
the enumeration or shortest path algorithms. GMPs with 
different lower bounds imposed on variables could be solved 
independently by slaves, with the master checking results 
to see if any solutions to the MIP had been found. The 
slave processors would be kept busy as long as the process 
of farming out work can be performed quickly enough to 
avoid a bottleneck occurring at the master processor.

Either of the algorithms would be implementable on 
currently available parallel hardware, as long as enough 
memory is available for the master processor to implement 
a book-keeping scheme to record the search.

The Group Theoretic algorithms can be used to attack many 
different types of MIP once the necessary transformation to 
GMP problems have been carried out.

numeration Algorithms

Both the Driebeek Direct Search algorithm for MIP problems 
and the Lemke and Spielberg algorithm on which it is based 
could be parallelised by using a process farm, as the 
search processes are quite similar to the methods used by 
the Group Theoretic algorithms mentioned above.
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The master processor could choose where to take forward and 
backwards steps (i.e. set the value of a variable) and farm 
out the appropriate subproblems to be solved by slaves.

Both the direct search algorithms, however, cause problems 
when implemented for use on problems containing integer 
variables which can take a wide range of values.

In the case of the Driebeek algorithm, which represents 
integer variables by a set of binary variables, it is 
difficult to assess the amount of memory that should be set 
aside for the use of the processors. A large amount of 
memory will need to be set aside on both the master and 
slave processors to allow the possible representation of 
integers which can take a large range of values.

It should also be noted that the process of transforming a 
problem in integer variables into a problem in only binary 
variables is not unlike transforming the MIP into a 
combinatorial problem, in that the transformed problem will 
contain a much larger proportion of discrete variables if 
the bounds on the original integer variables were not close 
together. The subproblems to be solved during the search 
will thus have the characteristics of combinatorial 
problems. Ill
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In the case of both the Direct Search algorithms, which are 
based on an algorithm for solving PIP problems, the 
extensions to the PIP algorithm that enable general MIP 
problems to be solved subtract from the power of the 
algorithm in that there is so much more enumeration to be 
done if variables are allowed to take several different 
values. The implicit enumeration criteria used as part of 
the MIP algorithm are also inefficient, some of the 
criteria being weakened by the presence of continuous 
variables. The result is a poor relation to the Branch and 
Bound algorithm, discussed below.

The Branch and Bound enumeration algorithm is a much better 
candidate for parallelisation (as is reflected by the 
number of parallel Branch and Bound algorithms appearing in 
the literature). The algorithm basically involves solving 
many different LPs so as to either explicitly, or hopefully 
implicitly, enumerate all the possible solutions. Since 
none of these LPs are dependent on each other, they can be 
solved independently, again by implementing a process farm. 
A master processor may make choices of active candidate LPs 
and the slaves merely solve LPs when the appropriate data 
is received. The Branch and Bound search is also much 
better directed than that of the Direct Search algorithm, 
since the Branch and Bound search criteria work equally as 
well on MIP problems as on PIP problems.
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The enumerative processes carried out by the Group 
Theoretic algorithms and by Direct Search Enumeration are 
very similar to those of the Branch and Bound algorithm, 
although the search carried out by the Branch and Bound 
algorithm is not so blind. The Group Theoretic algorithms 
and the Direct Search Enumeration algorithm will therefore 
not be considered for parallelisation.

This leaves the Fractional Cutting Plane, Lagrangian 
Relaxation and Branch and Bound algorithms as the only real 
contenders for parallelisation. The Branch and Bound has 
the following advantages over the other two algorithms:

the LP problems to be solved as part of the Branch and 
Bound algorithm are of a constant size so that the required 
memory of each processor can be properly estimated;

the Branch and Bound algorithm can be proved to be 
convergent for MIP problems;

intermediate feasible solutions may be found while the 
algorithm works, thus a "nearly-optimal" solution may be 
found if required; and, probably most importantly

the Branch and Bound algorithm is the sole base for nearly 
all the commercially successful IP-solving codes on the 
market. There are thus many ad hoc methods involving 
tolerances and parameters that have been developed for use
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with the Branch and Bound algorithm which can be used to 
aid the solution of real problems.

When considering the choice of algorithm it must also be 
remembered that MIPs have previously been defined for our 
purposes as having a large LP component and relatively few 
integer entities (e.g. binary variables, general integers 
or special ordered sets). For this class of problem, serial 
implementations of the Branch and Bound algorithm expend 
much more effort in solving the LP relaxations than in 
choosing the LP relaxations and performing the input/output 
work of passing problem data and solutions back and forth. 
Solving the LP relaxation at each node often involves many 
hundreds of (dual) Simplex iterations. This indicates that 
a relatively small processor farm arrangement should be 
able to keep many of its slave processors occupied for much 
of the time if running a parallel Branch and Bound 
algorithm, thus achieving much of the possible benefits of 
parallelism. So, it was decided to parallelise the Branch 
and Bound algorithm using a process farm arrangement.

Having decided to use the farming approach to parallelism, 
the Inmos T800 transputer provided a natural platform for 
experiments. When the research was begun, the T800 had one 
of the fastest floating point units of the microprocessors 
on the market, enabling quick LP solutions by the slave 
processors of the farm.
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A well developed FORTRAN compiler was also available for 
use with a number of transputers installed as part of a PC 
environment. As well as dealing with standard FORTRAN code, 
this compiler had many extensions for the message-passing 
and synchronisation routines necessary to implement a 
farming application. Additional software was available to 
enable the electronic reconfiguration of the transputers 
into many different physical topologies.

There were also, however, disadvantages to using a 
transputer board within the PC environment. Although the PC 
environment is relatively cheap, it does limit the amount 
of communication possible between transputers and the host 
since only one transputer (the root) can communicate 
directly with the PC. If another transputer wishes to 
communicate, either to the screen or to a disk, it has to 
do this via the root transputer. A transputer only has four 
links (high speed communication channels) which are not 
easily reconfigurable when a program is running, thus 
placing a limit on the number of connection topologies that 
are possible.

The raw performance of the T800 transputer on floating 
point work was quite impressive when the research began. To 
illustrate this we give in Table 4.1 below the results of 
solving some LP problems on a 16MHz transputer with a 
floating point processor and 1Mbyte of private memory (from 
(Ashford, Connard and Daniel, 1992J). These results are
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compared with times obtained on a 20 MHz IBM PS/2 Model 70 
with 20 MHz 80387 co-processor, which at the time the tests 
were conducted was quite a powerful machine, although it is 
slow by more recent standards.

Problems SC205, GFRD-PNC, BORE3D, ISRAEL, ETAMACRO and 
BRANDY are from the NETLIB test set ([Gay, 1985]), WILLETT 
is from Golden et al. ([Golden et al., 1988]).

Problem NROWS NCOLS NONZ NDP TPTR XPR1.51
B0RE3D 234 549 1759 2 1 . 2 0 8.41 13.57
BRANDY 2 2 1 470 2371 53.88 24.60 33.95
GFRD-PNC 617 1092 3467 107.93 62.43 95.57
ETAMACRO 401 1089 2890 52.56 27.35 41.97
ISRAEL 175 317 2533 35.04 19.23 16.53
SC205 206 409 758 16.70 9.29 11.26
WILLETT 185 679 2532 130.00 71.35 96.39

Table 4.1: Solving example LP problems

NROWS is the number of constraints, NCOLS the number of 
structural columns, and NONZ the number of non-zero 
elements in the matrix. Times are in elapsed seconds. 
Identical FORTRAN code was compiled for the NDP and TPTR 
columns. NDP refers to the Microway NDP FORTRAN compiler 
V1.4VM ([Microway, 1988]). 3L Ltd's Parallel FORTRAN ([3L 
Ltd., 1988]) was used for TPTR. XPR1.51 refer to version 
1.51 of Dash Associates' XPRESS-MP ([Dash Associates, 
1989]) optimiser which uses FORTRAN and assembler.
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4.2. Parali»! Algori

The major objective of the research was to implement a 
fast, sophisticated parallel MIP code within the PC 
environment. Dash Associates' XPRESS-MP optimiser [Dash 
Associates, 1989]) was chosen as the basis for the parallel 
code since the source was available. A board containing 
nine 16MHz T800 transputers (each of which had 1Mbyte of 
personal memory) was chosen as a platform for experiments.

The serial (i.e. non-parallelised) version of XPRESS-MP 
uses a Branch and Bound strategy to solve IP problems, as 
do the vast majority of commercial codes. XPRESS-MP also 
makes use of a few ad hoc methods necessary for the 
effective solution of real IP problems. All commercial MIP- 
solving codes make use of a system of switches, tolerances 
and strategies that have been developed over time and found 
to work on a wide variety of real problems. Without such a 
system, many solvable problems remain intractable for the 
serial Branch and Bound algorithm. It was decided that the 
parallel algorithm to be developed would also make use of 
such switches and tolerances in order to continue to attack 
real, hard problems.

The first major design feature of the serial code is that 
it makes good use of the available memory to hold the 
sizable data structures necessary to hold large IP 
problems.
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The data can be classified as 'short node' data that is 
useful in making decisions for node selection as part of 
the Branch and Bound process and 'long node' data that is 
necessary to carry out calculations once a decision has 
been made.

For each node in the search tree, XPRESS-MP holds the 
'short node' information in memory. This consists of the 
optimum objective function value of the LP relaxation at 
the node, an estimate of the best integer solution that can 
be obtained from branching at that node, and pointers to 
enable the tree structure to be traversed. The 'long node' 
information consisting of the basis and the current lower 
and upper bounds for each integer entity is held on disk 
and only retrieved when necessary for calculations.

Since the process farming algorithm was to be implemented 
on transputers which only had 1MByte of private memory, 
this long and short node data structure was retained in 
order to ensure that the (often large) data structures 
necessary to make decisions as part of the Branch and Bound 
enumeration of real MIP problems would fit onto the master 
processor.

The next design feature of the serial code is the amount of 
effort the algorithm spends at each node to get accurate 
estimates of the effects of branching on each non-satisfied 
variable. The estimates are made when the LP relaxation at
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the node has just been solved and optimal values (both 
primal and dual) are available.

It has been shown that it is usually beneficial when 
solving large MIP problems to devote significant effort at 
each node to obtaining good estimates ((Beale, 1977]) and 
so the estimation process was preserved for the parallel 
code.

4,3, D+egriptign pf the Initial Algorithm Developed

The initial algorithm developed was loosely based on an 
algorithm previously implemented by Daniel on a board 
containing only four 16MHz T800 transputers ([Ashford, 
Connard and Daniel, 1992]). The Daniel algorithm is a good, 
if limited, example of a simple process farm, making use of 
three anonymous slaves. Unfortunately, the Daniel algorithm 
cannot be extended to use more than three slave processors, 
as it is only designed to send data to the slaves that are 
directly connected to the master. The Daniel algorithm was 
thus only used as a starting point for our initial 
algorithm.

Like the Daniel algorithm, the slaves of our redesigned 
algorithm use the same solution, branching variable 
selection and estimation code as the serial version of 
XPRESS-MP. In order to allow data to be passed to and from 
the master from many different slaves, a formal message
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passing technique had to be used rather than relying on the 
FORTRAN COMMON variables of the serial XPRESS-MP code or 
the direct connections of the Daniel algorithm.

Our initial algorithm featured node selection routines that 
were based on a parallel version of depth-first search, as 
indicated by the conclusions of section 3.4. Both immediate 
descendants of a node were tackled simultaneously if two 
slaves were free, otherwise the more attractive was started 
and no special attempt made to use a slave becoming free on 
the less favourable branch. If both descendants of a node 
were fathomed, a search of all active nodes was carried 
out, using best-first criteria for comparison if no integer 
feasible solution had yet been found. Once an integer 
feasible solution had been found, any comparisons made were 
based on the criteria suggested by Forrest, Hirst and 
Tomlin ([Forrest et al. , 1974]), also described as 'quick 
improvement' ([Nemhauser and Wolsey, 1988]).

The FORTRAN-coded implementation of the initial algorithm 
was designed to be more efficient than the Daniel 
algorithm, and to allow a proper analysis of the results. 
The size of the messages passed to slaves was reduced in 
order to reduce the message-passing overheads incurred. To 
allow a better analysis of the results, routines were added 
to count the number of different types of nodes considered 
(i.e. number of solution nodes found, number of infeasible 
nodes, number of cut off nodes etc.). This included a count
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of nodes that were cut off when returned because the cutoff 
value had been tightened since their LP relaxations were 
sent out. The maximum and average number of transputers 
used was also noted for each test run.

For initial tests, the topology featuring three anonymous 
slaves was retained. The root transputer, which was 
connected directly to the host PC. was assigned to be the 
master and was thus also directly connected to three 
neighbouring transputers (the slaves). Each slave was 
connected only to the master and could not communicate with 
the other slaves. Thus the topology adopted, as seen in 
Fig. 4.1 was a simple star, with the root at the centre.

Fig. 4.1: Topology used for 
initial tests.
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The algorithm placed on the slaves was as follows:
Step 1: 

Step 2:

Step 3 : 

Step 4:

Step 5:

Step 6:

Step 7:

Wait for a message from the master. If a message 
is received, go to Step 2.
Receive the initial data structure for the LP 
relaxation of the original MIP problem. Go to 
Step 3.
Wait for a message from the master. If a message 
is received, go to Step 4.
Receive and apply bounds and a starting basis for 
solving an LP relaxation. Receive the value of 
the best integer solution found so far, to act as 
a cut-off. Also receive a tolerance which 
indicates how much better than the cut-off a new 
solution must be to be useful. Go to Step 5. 
Perform iterations of the Simplex algorithm to 
solve the LP. If the LP relaxation is infeasible, 
unbounded, or worse than the cut-off, go to Step 
7. Otherwise, if the problem is solved, go to 
Step 6 .
If the solution is integer feasible, go to Step 
7. Otherwise, estimate the effect on the 
objective function value of branching on each 
unsatisfied variable. Decide which of these 
variables is the best to branch upon and create 
data for a new node on the search tree that would 
be created by branching. Go to Step 7.
Return information for both the long and short 
node data structures to the master. Go to Step 3.
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The algorithm on the master processor acted as a taskmaster 
and coordinator as follows:
Step 1:

Step 2:

Step 3:

Step 4: 

Step 5:

Step 6:

Step 7:

Read in the problem data and initialise the long 
and short node data structures. Initialise data 
structures to keep track of which transputers are 
in use. Go to Step 2.
Supply data structures for the initial LP 
relaxation of the MIP problem to each of the 
three slaves. Go to Step 3.
Send details of the initial LP relaxation to 
slave number one for solution. Indicate that 
slave one is now busy. Go to Step 4.
Wait for a message from any of the slaves. If a 
message is received, go to Step 5.
Receive the solution of the LP relaxation. Note 
which slave the message came from and indicate 
that it is now free for more work. If this was 
the first iteration and the result is that of the 
initial LP relaxation of the MIP, go to Step 6 . 
Otherwise, go to Step 7.
If the initial LP relaxation was unbounded, 
infeasible or worse than the initial cut-off 
supplied, then stop. If an integer solution was 
returned, stop, as this is the optimal solution. 
Otherwise, go to Step 10.
If the LP problem was infeasible or worse than 
the cut-off supplied, go to Step 11. Otherwise, 
go to Step 8 .
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Step 8: 

Step 9:

Step 11:

Step 12:

Step 13:

If the solution was integer feasible, go to Step 
9. Otherwise, go to Step 10.
Update the cut-off and incumbent solution for the 
MIP problem. Remove candidates from the list of 
nodes to be branched on that would yield worse 
solutions than the present best. Go to Step 11. 
Create long and short node data structures for 
the new node indicated by the incoming message 
from the slave. Add the node created to the list 
of possible nodes to branch on. Go to Step 11. 
Check the size of the list of candidate nodes for 
branching. If the list is empty, go to Step 13, 
otherwise go to Step 12.
See if there are any idle slaves. If not, go to 
Step 4. Otherwise, choose an idle slave, choose 
a node to be branched upon from the candidate 
list and recover the long node information from 
the disk. Combine the long and short node 
information and farm this to the chosen slave. 
Set this slave as busy and go to Step 11.
If there are no transputers busy, stop. If no 
integer feasible solution has been found, then 
one does not exist. If one or more integer 
feasible solutions have been found, the incumbent 
solution is the optimal. If one or more 
transputers are busy, go to Step 4.
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4.4. ;«pl«m.nt.tlQn pf « P,r«ll»l Algorithm on

In order to implement any parallel algorithm on one or more 
transputers, there are several stages that must be 
followed.

The first step after having designed the overall parallel 
algorithm is to design the necessary communicating parallel 
processes that will be used to implement it, e.g. the 
master and slave algorithms mentioned above.

The second step is to decide exactly how each parallel 
process communicates with other parallel processes and then 
construct a network of communications channels to do so. As 
an example, using the simple star topology shown above, the 
master algorithm sends messages to and receives messages 
from each of the slaves. It is thus necessary for the 
master to have four channels for sending messages and four 
channels for receiving messages (remembering that 
transputers send messages via unidirectional links). Each 
of the slaves needs only one channel to send messages and 
one to receive messages since it is only connected to the 
master, and does not communicate with other slaves.

The communication network would thus be as in Fig. 4.2:
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Fig. 4.2 : Network of communicating 
parallel processes.

The third step is to ensure that a physical network of 
transputers can be constructed that is capable of 
implementing the communication network already developed. 
Software available with the Quintek Fast-9 transputer board 
allows the electronic configuration of the transputers on 
the board into any physical topology possible using the 
four links per transputer, although, by default, a pipeline 
connecting certain links of the transputers is always set 
up. The software must be used to set up a physical 
communication network between the transputers that are to 
be used. This physical network must include explicit 
details of which of the four links on each transputer are 
to be connected to which links on other transputers. It 
should be noted that all transputers present in the system 
must be present in the physical network, whether they are 
to be used by the parallel algorithm or not. This is 
because of the default pipeline always set up by the 
software. Fig. 4.3 below shows an example of a physical
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network that could be used to implement the parallel 
processes shown in Fig. 4.2.

The network of communicating processes originally designed 
must be correctly placed onto the physical network of 
transputers or the transputers will jeun up and the program 
will hang. The correct parallel communicating processes 
must be placed onto the correct transputer so that the 
designed communications between processes can take place.

Once this has been successfully accomplished, the parallel 
algorithm can be used to solve problems. It should be noted 
however that the physical network of transputers must 
always be set up correctly before the parallel algorithm 
can be used. When the PC is turned on, the default physical 
connections of the transputers form a pipeline. If any 
other connection topology is desired, software must first 
be used to reconfigure the transputer connections.

Communication between transputers must occur via one of the 
four links by which they may be connected.
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N.B. The numbers in Fig. 4.3 refer to the physical 
communication links of the transputers. Each transputer has 
four such links, numbered 0, 1, 2 and 3, although only the 
numbers of the links actually used by this topology are 
given in Fig. 4.3.

rig. 4.3: Physical network of transputers.

4,5. Pltcvwlon of initial »»»ult.

The initial code, using the star topology shown in Fig.
4.1, was tested on a variety of available MIP and 
combinatorial problems which are described in Table 4.2 
below.
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The AZx problems are different instances of a contract 
allocation problem. BAG882 is a chemical processing 
problem. HPW15 is the 15th example from Williams 
([Williams, 1978]). INGT274 and INGT1345 are ingot casting 
problems. MO0788 is a power generation model. TAXI and TAX2 
are models of capital investment under different taxation 
regimes.

Problem Category NROWS NCOLS NGLOB
AZA 1 115 88 44
AZB 1 105 88 44
AZC 1 105 88 44
BAG882 5 304 304 23
HPW15 1 56 45 30
INGT274 2 13 274 274
INGT1345 3 19 1345 1345
MO0788 6 1123 926 24
TAXI 5 301 314 74
TAX2 5 181 194 34

Table 4.2: Test Problem Statistics.
The NROWS column gives the number of constraints, NCOLS the 
number of structural columns and NGLOB the number of 
discrete entities.

The possible categories of problem are: (1) Small 
Combinatorial Problems; (2) Medium Combinatorial Problems; 
(3) Large Combinatorial Problems; (4) Small MIP Problems; 
(5) Medium MIP problems; and (6 ) Large MIP problems.

The parallel code was parameterised so that it could be run 
with one, two or three slave processors. When the parallel 
code is run using only one slave processor, the same 
problem solution is obtained as when the serial code is run

129



(and the same number of nodes is considered before 
optimality is proven). The times taken to solve the problem 
are different however. The parallel algorithm is such that 
the master processor is idle when it has farmed out an LP 
relaxation to a slave and the slave is idle once it has 
solved the LP (until it receives a new LP to solve). Thus, 
the only real difference between the time taken to solve a 
problem using the serial code and that taken using the one- 
slave parallel code should be caused by the message-passing 
overheads incurred. These overheads are small enough that 
the solution times obtained when using the one-slave 
parallel code are of the same order as those obtained when 
using the serial code, although the serial code is faster.

Problem TO T1 T2 T3
AZA 3.79 (7) 3.08 (ID 3.18 (13)
AZB 455.67 (1901) 268.48 (1927) 233.71 (1919)
AZC 55.36 (145) 28.51 (141) 21.04 (143)
BAG882 389.48 (237) 127.10 (171) 121.55 (249)
HPW15 2.03 (15) 1.76 (23) 1.65 (25)
INGT1345 61.03 (59) 80.03 (115) 82.00 (123)
INGT274 28.23 (99) 23.46 (157) 24.94 (165)
MO0788 55103.12 (3917) 27567.43 (3961) 18147.60 (3959)
TAXI 3215.56 (1649) 1626.83 (1649) 1101.04 (1655)
TAX2 119.47 (165) 23.84 (41) 22.46 (51)
Table 4.3: Results of Using the Initial Parallel Algorithm.
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The entries in Table 4.3 give the time and the number of 
nodes (in parentheses) taken to solve the problem with 1 , 
2 or 3 transputers acting as slaves. Times are in elapsed 
seconds.

To demonstrate more clearly the success of using the 
implemented parallel algorithm on the test problems, we 
shall measure the speedup achieved by adding additional 
transputers.

The speedup is defined as Tj/Tn where T„ is the time taken 
to solve a problem using x slave transputers. The speedups 
achieved for the different test problems are shown in Figs. 
4.4 and 4.5 below.

Speedups fo r F irs t Five Problems3.5

A ZA AZB AZC9AMS 2 -M- HPW15 UCAR
Fig. 4.4: The First Five Test Problems.
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Speedups for Second Five Problems

1 2 3
Nmnber of Stove Traneputere

NGT1343 -» -W G T 2 7 4  -« -M 0 0 7 B 8  
TAXI - M -  TAX2 - A -  LNEAR

Fig. 4.5: The Second Five Test Problems.

In all the tests, all the available slave transputers were 
utilised at least once and the average slave transputer 
usage figures were very high indeed, never falling to 
eighty per cent, and settling in the high ninety percent 
range in most cases.

The test problems that benefit the most from the use of 
additional slave transputers are those in the categories of 
medium and large MIPs (i.e. the problems which the parallel 
algorithm was developed to attack). The medium sized MIP 
problem BAG882 gives a notably superlinear speedup with two 
and three slaves, as does the large MIP TAX2. The medium 
MIP TAXI and the large MIP MO0788 both achieve almost 
exactly linear speedup with two and three slaves.

5.5 

5

4.5

2
1.5

0.5
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In comparison, the combinatorial problems tested do not 
fare well when additional slaves are added. The small 
combinatorial problems AZA and HPW15, the medium 
combinatorial problem INGT274 and the large combinatorial 
problem INGT1345 never really achieve a speedup much over 
one.

This indicates that a large message-passing overhead is 
being incurred in these cases so that the benefits of the 
extra processing power are being wasted. This is due to the 
LP relaxations being solved very quickly and the results 
being returned to the master processor before it has had a 
chance to farm out much more work to other slaves.

The small combinatorial test problems AZB and AZC fare 
better than the other combinatorial problems, with AZB 
achieving a speedup of just under two and AZC a speedup of 
two and a half. In these cases, the proportion of message­
passing is not so high, indicating that the LP relaxations 
are not so easy to solve, thus allowing the master more 
time to properly farm out work.

Solving ten test problems cannot give enough empirical 
evidence on which to base conclusions about the performance 
of the parallel algorithm. It does however appear, at least 
in the case of the larger MIP problems for which the 
algorithm was developed, that the benefits of parallelising 
the algorithm are being exploited.
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S^-DgvftlQB^nt of the n-transput«r Parallel A1

As mentioned in the previous chapter, at most three slave 
transputers may be directly connected to the root (or 
master) transputer whilst implementing the farming 
algorithm. One of the root transputer's links must be 
connected to the PC to enable input/output operations such 
as reading from and writing to the screen or disk.

To progress beyond the Daniel four-transputer algorithm and 
produce a parallel algorithm for use on n transputers, some 
form of message-passing system would have to be used, to 
enable slaves not directly connected to the master to 
communicate with it indirectly.

The Parallel Fortran compiler purchased from 3L Ltd ( (3L 
Ltd., 1988]) for use in the previous experiments, also 
provides a flood-fill configurer whose function is to ease 
the construction and administration of larger farming 
applications. It creates an arbitrary network of anonymous 
transputers for the farm, keeps constant track of the 
availability of slave processors, and handles all 
message-passing to and from the slaves.

When trying to implement an eight-slave farm using the 
flood-fill configurer however, problems arose when the 
broadcast of the initial LP relaxation of the MIP to all 
the slaves was attempted. The flood-fill configurer system
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provides the user with no information as to which slave 
transputer a message is destined for or being returned 
from, i.e. the slaves used are anonymous. It was thus 
impossible to guarantee that every slave transputer had 
received the required information packet. Indeed, the use 
of the basic debugging facilities possible indicated that 
only a subset of the eight slave transputers were receiving 
the required broadcast. The flood-fill configurer therefore 
had to be abandoned, and a complete message-passing harness 
and administrative system designed to replace it.

5.1. Th« | M — M m l M  H«rnfM

The decision to develop the message-passing harness was 
also influenced by a desire to have more control over the 
destination of individual LP problems than the flood-fill 
configurer would have provided. When considering the 
implementation of the parallel algorithm on a large number 
of transputers for instance, it might be useful to consider 
sending descendent LP relaxations to the same slave that 
had previously solved the parent LP relaxation. Most of the 
data held on the slave would still be valid, with the 
exception of the bounds on the variable being branched on 
and certain book-keeping data structures. This information 
would be all that needs to be passed to the slave (possibly 
along with a new cutoff value if this has changed since the 
last LP was sent).
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5.1.1. The Topology

In order to implement a message-passing system, the 
anonymity of the slaves was removed, and the master and 
slaves were given explicit knowledge of the experimental 
topology in use. This provided for the possible 
implementation at a later stage of an adaptive transputer 
selection strategy. It might, for instance, be desirable to 
keep a transputer free if the next LP to be solved on it is 
a descendent of the one last solved by it, so that almost 
all of the data on the slave is still valid.

The message-passing system developed involves placing a map 
of the current topology onto each transputer. Each 
transputer is allocated a number, and messages to be passed 
around the system contain a header indicating to which 
transputer they should be passed. On receiving a message, 
a transputer either makes use of the data or passes it on. 
If the transputer is to pass on data, it reads its map to 
find the next destination of the data.

The map consists of two arrays, a link array, (indicating 
which transputer is connected to each of this transputer's 
four communication links), and a chart array (indicating 
which transputer the message should next be passed to in 
order to finally arrive at its destination) . This chart 
array is fixed (for simplicity), but a further step perhaps 
necessary on a system with hundreds of slaves would be to
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provide an adaptive chart that would choose alternative 
routes depending on the present traffic flow.

As an example of the use of the map, Fig. 5.2 shows the 
link and chart arrays used to traverse the simple 
connection topology displayed in Fig. 5.1.

Fig. 5.1: A simple connection 
topology.
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actual link 0 1 2 3
Transputer 0 link array H 1 2 3

chart array 0 1 2 3
destination 
of message

0 1 2 3 4

actual link 0 1 2 3
Transputer 1 link array R 2 0 0

chart array R 0 2 R R 1
destination 
of message

0 1 2 3 4

actual link 0 1 2 3
Transputer 2 link array R 0 1 0

chart array R 1 0 R R |
destination 
of message

0 1 2 3 4

actual link 0 1 2 3
Transputer 3 link array R 0 4 0

chart array R R R 0 4 1
destination 
of message

0 1 2 3 4

actual link 0 1 2 3
Transputer 4 link array 3 0 0 0

chart array 3 3 3 3 3 |
destination 0 1 2 3 4
of message

rig. 5.2: The LINK and CHART arrays used to traverse the 
topology shown in Fig. 5.1.
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The four elements of each of the link arrays shown in Fig. 
5.2 give information as to what each of the links of the 
transputer is connected to. A letter H indicates a direct 
connection to the PC host (obviously from the root 
transputer only), an R indicates a direct connection to the 
root transputer. The number 0 indicates that no direct 
connection is made via that link, and any other number 
indicates that the link is directly connected to the 
transputer with that number.

The chart arrays shown in Fig. 5.2 are designed for use 
with an n-transputer system where the root transputer is 
numbered as zero and there are (n-1 ) slaves, numbered 1 to 
(n-1) . Each of the n members of a chart array give 
information as to where to next pass a message in order to 
reach the transputer numbered n. The letter R indicates 
that the message should next be passed to the root 
transputer. The number 0 indicates that no message will 
ever be passed to that particular destination next (i.e. it 
is to be used when referring to the transputer on which the 
map resides, since no message is ever passed from a 
transputer to itself). Any other number indicates that the 
message is next to be passed to the transputer with that 
number in order to get to its final destination.

Consider, as an example, the process involved in passing a 
message from transputer 4 to the root.
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The four elements of each of the link arrays shown in Fig. 
5.2 give information as to what each of the links of the 
transputer is connected to. A letter H indicates a direct 
connection to the PC host (obviously from the root 
transputer only), an R indicates a direct connection to the 
root transputer. The number 0 indicates that no direct 
connection is made via that link, and any other number 
indicates that the link is directly connected to the 
transputer with that number.

The chart arrays shown in Fig. 5.2 are designed for use 
with an n-transputer system where the root transputer is 
numbered as zero and there are (n-1 ) slaves, numbered 1 to 
(n-1) . Each of the n members of a chart array give 
information as to where to next pass a message in order to 
reach the transputer numbered n. The letter R indicates 
that the message should next be passed to the root 
transputer. The number 0 indicates that no message will 
ever be passed to that particular destination next (i.e. it 
is to be used when referring to the transputer on which the 
map resides, since no message is ever passed from a 
transputer to itself). Any other number indicates that the 
message is next to be passed to the transputer with that 
number in order to get to its final destination.

Consider, as an example, the process involved in passing a 
message from transputer 4 to the root.
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The chart array on transputer 4 indicates that in order to 
get to the root, the next destination is transputer 3 

(since CHART(0)*3). Searching the link array indicates that 
link 0 of transputer 4 is directly connected to transputer 
3 (since LINK(0)>3). Thus, the message is passed through 
link 0 of transputer 4 and next arrives at transputer 3.

The chart array on transputer 3 indicates that in order to 
get to the root, the next destination is the root itself 
(since CHART(0)=R). Searching the link array indicates that 
link 0 of transputer 3 is directly connected to the root 
(since LINK(0)=R). Thus, the message is passed through link 
0 of transputer 3 and next arrives at its final 
destination, the root.

Tb* cinr m h

The transputers that were available to us had access to 
only 1 Mbyte of personal memory. Since the application was 
designed to attack large scale MIP problems (whose data 
structures can take up much space) , the effective use of 
transputer memory both on master and slave is essential. 
The master transputer has access to the PC as well as its 
own personal memory and so can save data on disk if 
necessary, but the slave transputers have no such backup.
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The message-passing routines to be placed on the slaves 
were thus designed to input only one (or in certain 
infrequent circumstances two) four-byte words of 
information at a time onto a slave before passing them on 
to their next destination. The harness thus allows the 
slave transputer to solve large LP problems and provide 
message-passing facilities whilst still only accessing its 
1 Mbyte of personal memory.

This method is described as the clear path method since it 
is necessary for the whole message to reach its destination 
before it can be acted upon. Thus, since the message is 
only partly stored by each transputer that it passes 
through, a clear path (possibly across a number of 
transputers) is necessary to get the message to its 
destination.

The use of the clear path method by the harness removes the 
need for a transputer to hold all of the data structures 
representing an LP relaxation at once during message­
passing. Without the Clear Path Method, in the worst 
possible case, as seen in Fig. 5.3, enough space would be 
needed to hold three different sets of details on a slave.

An LP relaxation is held in an outward bound buffer of the 
look process (i.e. being passed away from the master), an 
LP solution is being held in an inward bound buffer of the 
look process (i.e. being passed towards the master) and the
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details of an LP relaxation (and possibly of its solution) 
are being held as part of the calculation process.

Slave Processes

message
passing
process

calculation
process

Fig. 5.3: Worst possible case 
for message passing.

The two main problems faced when implementing the clear 
path method are that a clear path must be established for 
each communication and that steps must be taken to avoid 
deadlocking the message-passing algorithms.

5?l,3q. Establishing a Clear Path

Since all of a message must reach its destination before it 
can be acted upon, it is essential that a clear path 
through the network of transputers be available to the 
destination in question each time a message is sent.
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A system allocating priorities to different types of 
messages passing through the slaves has been designed to 
help achieve a clear path for each message, although this 
does slow down the overall message-passing process somewhat 
due to the overheads involved. Full details of the priority 
system are given in section 5.2.2.

Unfortunately, the clear path method of message-passing 
will not be very valuable for use with large numbers of 
transputers. It was designed to work with the small number 
of transputers available, but the difficulty of obtaining 
a clear path will obviously increase when more slaves are 
added to the topology. A message-passing harness has thus 
been designed to replace the clear path harness when more 
processors become available for experimentation (or if more 
personal memory can be acquired for each transputer). Basic 
details of this new design are contained in Chapter Eight.

For the present experiments using the nine-transputer board 
however, a choice of connection topology minimising the 
average distance of slave transputers from the master (and 
thus minimising the average necessary length of a clear 
path) is used to increase the likelihood of getting a clear 
path and to combat the delays caused by communication 
overheads.
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5.1,2.2 . Avoiding Deadlock Probi—

Deadlock problems occur when two separate parallel 
processes come to a point in their algorithms where they 
try to communicate with each other, but for some reason 
they cannot.

Consider the case where task A is at the point in its 
algorithm where it must send a message to task B and then 
act upon the details of a return message. If task B is at 
a similar point in its algorithm in that it is attempting 
to send a message to task A and then receive a return 
message, then neither task A nor task B can proceed since 
there is no way of breaking the communications deadlock.

When all the slaves were directly connected to the master 
there was no risk of the master attempting to send a 
message to a slave but finding that the slave is already 
occupied trying to send a message to the master (as shown 
in Fig. 5.4 below) .

This situation can now occur if a solution is being passed 
back to the master via the slave to which the master is 
trying to send a new LP relaxation. Unless precautions are 
taken to avoid such deadlocking, the algorithm will seize 
up.
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trying to send trying to send
LP relaxation LP solution

rig. 5.4: A possible deadlock situation.
Timed processes have been placed on the master and slave 
transputers in order to avoid deadlocking. When the master 
processor is sending out an LP relaxation, each 4 byte word 
of data sent is timed. Since the only thing to stop an 
outgoing message would be a block to the path, if a word 
takes too long to send, the sending process is abandoned 
and the node for the LP relaxation is returned to the list 
of candidates as though it had not yet been selected. The 
time allowed for sending a word of data may be specified by 
the user, but a minimum time must be allowed, based on a 
communication speed of 1.8 Mbytes per second in one 
direction for the T800 transputer links ([Inmos Ltd., 
1988]) .

The message-passing routines on the slave processors time 
the arrival and departure of LP relaxation messages (using 
the communication speed set by the user). If part of an LP 
relaxation cannot be sent during the allotted time, the 
sending process is abandoned, and the message-passing 
process on the slave is reset, after a short delay, to look 
for other messages. This resetting process will filter back 
all the way to the slaves directly connected to the master.
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Full details of the timed processes on the master and slave 
transputers are given in sections 5.2.1. and 5.2.2. 
respectively.

5.j. Th« B-tfW W t tr P.r.11.1 Algorithm P.T.lor^d

Both the master and slave algorithms were adapted from the 
previous 4-transputer algorithms in order to implement the 
clear path method of message-passing without incurring 
problems with deadlocking.

5.2.1. The Master Algorithm

The algorithm on the master processor has been expanded 
since it is to send messages to slaves not directly 
connected to the root transputer.

In order to avoid the potential deadlock problems mentioned 
previously, the algorithm on the master processor has been 
adapted to include a timed process for sending out LP 
relaxations to slaves. A time interval is set, during which 
one word (i.e. 4 bytes) of the LP relaxation data must be 
sent. If the sending routine cannot transmit the word of 
data during its allotted time, the master algorithm gives 
up on sending the whole LP relaxation and waits for an 
incoming message from a slave. The only time when this 
should occur is when the LP relaxation data has not been 
able to follow a clear path all the way to its destination.
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The process of timing each individual word of data sent is 
sufficient to ensure that the message has time to reach its 
destination since the messages are many words in length and 
the path from master to the furthest slave is short.

The time needed to transmit a 4 byte word of data is either 
set by the user or calculated using the assumption of a 
message-passing speed of 1.8 Mbytes per second for the T800 
transputer links.

The master algorithm also includes processes which ensure 
that data structures are not corrupted if the last LP 
relaxation chosen from the list of candidates cannot be 
sent after all. These consist of saving the original values 
of certain data structures and thus being able to reset any 
values that were changed by the node selection or disk 
reading processes if the node chosen cannot subsequently be 
sent to a slave.

After reading in the IP problem information and 
initialising its data structures, the new master algorithm 
goes through the following steps: 1

1 Send out initial broadcast to each of the slaves.
Step 2 Send out a first LP relaxation of the

MIP problem arrived at by relaxing all 
integrality constraints.
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Step 3

Step 4

Step 5

Step 6

Step 7

Get results of first LP relaxation. Stop if the 
problem is unbounded or infeasible or if the 
solution is worse than the cut-off value 
initially set up. Otherwise, create a node and 
add it to the candidate list.
Look for a free transputer. If there are none, 
wait until a result is returned and then go to 
Step 11.
Attempt to choose a node to branch on from the 
candidate list. If the candidate list is empty, 
look to see if any transputers are busy. If so, 
wait for a result to be returned and go to Step 
11. If not, STOP. If an integer feasible solution 
has been found, take it as the final result. If 
no integer feasible solution has been found so 
far, none exists.
Check for incoming results. If there are none, 
save the values of variables that will be updated 
when the LP is sent out, and go to Step 7; If 
results are being returned, go to Step 11.
Read the long node information about the node 
from disk. Save the values of any further 
variables that will be updated when the LP is 
sent out. (The cycle is such that there are 
several stages at which it can be interrupted by 
an incoming result, thus necessitating the 
retrieval of some previous variable values. 
Variables are thus updated, and their previous
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values saved, only if there are no incoming 
results. This minimises the overall amount of 
retrieval of variable values). Apply the new 
bounds to the variable to branch on.

Step 8 Check for incoming results. If there are some, 
restore any changes made to the data structures 
and go to Step 11. If not, go to Step 9.

Step 9 Attempt to send out the modification to the base 
case LP to the slave chosen and update the status 
indicator for that transputer and the data 
structures. If the LP has not been sent out after 
a given amount of time (as set by the user) then 
restore any changes made to the data structures 
and go to Step 11. (This will only happen if a 
directly connected slave tries to send back a 
result after the master is already committed to 
sending out an LP problem).

Step 10 Look for incoming results. If there are some, go 
to Step 11. If not, go to Step 4.

Step 11 Get in an LP solution. If the LP solution is 
worse than the present cut-off or is infeasible, 
go to Step 4. If the LP solution is feasible but 
contains a number of integer infeasibilities, 
then create a new node to hold the details. Enter 
this node into the candidate list and go to Step 
4. If the LP solution is feasible and contains no 
integer infeasibilities (i.e. if it is a solution 
to the IP) , then write this solution to disk.
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update the cut off, remove any nodes from the 
candidate list that will not produce better 
integer feasible solutions and go to Step 4.

5_.2^2? The Slave Algorithm

In order to implement the n-transputer parallel algorithm, 
each slave processor runs two concurrently executing 
processes. The first is the message-passing (or look) 
process, and the second is the LP-solving (or calculation) 
process. When such concurrent processes are run on a 
transputer, the programmer is allowed to give priorities to 
the processes. A high priority process will run until it 
has finished, whereas a low priority process will only run 
for a given amount of time, or until it finishes or is 
interrupted by the need to start up a high priority 
process. In order to properly implement the clear path 
method of message-passing, it was necessary to give a high 
priority to the look process, so that messages would be 
passed on properly without the look process being 
interrupted. The calculation process must not attempt to 
interrupt the message-passing and thus was given a low 
priority.
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S.2.2,1, The Look Process

The look process polls the four external communication 
links of the slave transputer and an internal communication 
channel with the calculation process until an incoming 
message is detected.

If the message is to come from the calculation process (and 
hence can only be an LP solution), then the look process 
repolls the external channels to ensure that no messages 
are incoming before giving the go ahead to send out the LP 
result. This gives a higher priority to messages from other 
transputers than to newly generated LP solution messages. 
The external channels on each slave are polled in a 
specific order (provided in addition to the map information 
on each slave). The inward facing channels (i.e. those 
connected to the master or to a slave closer to the master) 
are polled before the outward facing channels. This is in 
order to ensure that priority is given to LP solution 
messages returning to the master.

If the message to be input originates from another 
transputer, then the look process must first read the 
header to determine what type of message is to follow and 
for which transputer the message is intended.
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Messages from other transputers can take the form of:

initial broadcast messages of the initial LP relaxation of 
the MIP problem which are bound for other transputers;

the initial broadcast message intended for this transputer;

LP relaxations to be passed on to other slaves;

an LP relaxation to be solved on this transputer; or

LP solutions to be passed back to the master.

Once the look process has ascertained the destination and 
type of an incoming message it simply inputs the message 
one word at a time and then attempts to pass the word input 
through the appropriate link or internal channel (after 
referring to the map).

The broadcast message is of particular importance to the 
look process, as it contains the basic data for the MIP 
problem (e.g. the number of rows and columns etc.) . Many of 
these general details are used to define the size of data 
structures that are passed around the system as later parts 
of the general broadcast or subsequently as part of the LP 
problem and/or solution information. Thus, once a slave 
transputer has received its broadcast of general 
information, it should know the sizes of all the arrays to
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be passed around and used later.

LP relaxation messages are also of special importance to 
the look process, since they must be dealt with in a 
particular way to avoid deadlocking the message-passing 
harness.

If the message to be input is an LP relaxation message, the 
look process allows each 4-byte word of the message a 
certain amount of time to arrive. If a word arrives 
successfully, the look process attempts to pass it on to 
its next destination. If the look process of the next 
transputer on the path cannot receive the word because it 
is already occupied trying to send a message inward, a 
delay is caused. This delay will filter back down the path 
to the master, so that the message being passed is halted. 
Since the master process sending out the LP relaxation is 
also timed, it will be abandoned once the blockage has been 
detected. The master algorithm will then be reset to look 
for incoming messages, thus allowing the inward bound 
message that caused the blockage to return to the master 
successfully.
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5.2.3.2. The Calculation Process

The calculation process is very similar to the initial 
four-transputer slave algorithm in that it waits for an LP 
relaxation to be sent to it (albeit this time via the look 
process) and then reacts accordingly. It either reads in 
the MIP data if a broadcast has just been received, and 
then waits for another message, or it reads in the 
modifications to its base case LP if it is to perform a 
calculation. In the latter case, it proceeds to perform 
iterations of the Simplex algorithm until it has solved the 
LP or has ascertained that the LP is infeasible or 
unbounded. If a solution is found to the LP, the 
calculation process determines whether its value is better 
or worse than the present best solution. If the solution 
found is better than the present best, the calculation 
process checks to see if the solution is integer feasible. 
If the solution is integer feasible (and has already proved 
to be better than the present best solution), it is 
considered a contender for the new best solution. If the 
solution is not integer feasible, the calculation process 
performs the work to estimate the solutions to be arrived 
at by branching again on the unsatisfied variables.
The results of attacking the LP relaxation are returned to 
the look process as soon as it will accept them and then 
forwarded to the master. The calculation process then waits 
for another LP problem to arrive from the look process.
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5.3. Computational R»»ulf

The node selection strategy used for the initial testing of 
the nine-transputer algorithm was identical to that used 
for the four-transputer algorithm.

Problems of various sizes and complexities were used to 
test the n-transputer parallel algorithm. In addition to 
those problems used to test the four-transputer algorithm, 
the problems shown in Table 5.1 were attacked. CHAL is a 
local heating load and distribution planning model. CRAC is 
an oil refinery planning model. DAAC and OK are farm 
planning problems. DOM1 is a ship scheduling model. GY is 
a medium term energy planning model. G31 and G32 are 
petrochemical plant models. MCA, MRX and MR1 are political 
districting problems. SETX is a project evaluation model. 
Note that Table 5.1 also gives the time (in seconds) and 
the number of nodes taken to solve the problems using a 
serial version of the optimiser code.
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Problem Category NROWS NCOLS NGLOB NSETS NSOSM
CHAL 3 985 1320 552
CRAC 6 294 785 6

DAAC 4 80 149 31
DOM1 6 796 585 1 1 11 41
GY 3 913 888 528
031 4 159 146 9
032 4 162 148 9
MCA 6 412 648 22 3 15
MRX 2 166 192 143
MR1 2 166 192 143
OK 4 80 149 31
SETX 4 13 2 1 3 3 18

Table 5.1: Extra Test Problem Statistics.
The NROWS column gives the number of constraints, NCOLS the 
number of structural columns, NGLOB the number of discrete 
entities, NSETS the number of Special Ordered Sets, and 
NSOSM the number of Special Ordered Set Members.
The problem categories are the same as those for the 
previous test problems: (1) Small Combinatorial Problems; 
(2) Medium Combinatorial Problems; (3) Large Combinatorial 
Problems; (4) Small MIP Problems; (5) Medium MIP Problems; 
and (6 ) Large MIP problems.

The code was again parameterised to allow testing with from 
one to eight slave transputers in order to see how useful 
the number of extra nodes generated by using more 
processors were in each case.
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The topology shown in Fig. 5.5 below was used to produce 
the results. The topology was chosen to provide a good 
likelihood of a clear path for most messages, in that the 
paths from the master to those slaves not directly 
connected to it are as short as possible.

Fig. 5.5: Topology used to test 
the n-transputer algorithm.

157



Reproducibility of Results

Before discussing the computational results obtained, it 
must be pointed out that the implementation of our parallel 
algorithm is non-deterministic. Hence, the algorithm will 
not necessarily enumerate exactly the same solutions each 
time a problem is attacked. If the same solutions are 
enumerated, they will not necessarily be considered in the 
same order. Thus, although the same final solution will 
always be obtained, it may take a different amount of time 
and/or a different number of nodes to arrive at.

The non-determinism of the algorithm is caused by the 
asynchronous coordination of the slaves. The specific 
effects of non-determinism exhibited when the algorithm is 
implemented are due to the hardware used.

The major causes of the non-determinism of the 
implementation of our algorithm are the disk-reading and 
disk-writing operations carried out by the master. Each 
time a record of long node data is to be written to the 
temporary file held on the hard disk, the operating system 
of the PC must decide where on the disk the new record is 
to be stored. Different runs of the program will result in 
different parts of the disk being decided upon by the 
operating system. Obviously, deciding upon and writing to 
different places on the disk will take different amounts of 
time. The time taken to write records to the disk has an
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effect on the number of new LP relaxations that can be 
farmed out by the master before it is interrupted by 
incoming LP solutions. Obviously, if more than one slave is 
busy, the longer it takes the master to write the results 
of an incoming solution to disk, the less time is left to 
farm out new LP relaxations to idle slaves before another 
solution is returned.

Similarly, once the master has chosen a new node to be 
branched upon, the amount of time taken to find and read 
the appropriate long node record from the disk partially 
determines whether there will be enough time to send out 
the LP relaxation before an LP solution is returned, thus 
interrupting the process.

So, the disk-reading and disk-writing operations of the 
implementation of our algorithm can lead to different 
patterns of transputer usage and different numbers of 
messages being passed around the system. This latter effect 
itself leads to a variation in the amount of time taken for 
some slaves to solve their LP relaxations.

Since the calculation process on each slave is a low 
priority process, it operates in a certain way. Once it has 
received an LP relaxation, it will attempt to begin its 
calculations. It will only be able to do so, however, if 
the high priority look process does not have any more 
messages to pass. Once work has begun on the LP relaxation,
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the performance of the calculation process will be partly 
determined by the number of messages being passed around by 
the slave. Each time a message must be passed by the high 
priority look process on the slave, the low priority 
calculation process is interrupted. The calculation process 
is stopped as soon as it is safe to do so, i.e. so that no 
calculation results are corrupted. Where the calculation 
process stops depends entirely on the exact moment it is 
interrupted by the look process. Thus, different numbers of 
messages being passed around the system also leads to LP 
relaxations taking different amounts of time to solve.

The overall effect of the non-determinism is that the 
computational results discussed below cannot definitely be 
reproduced time after time. Any conclusions reached from 
the results are thus reached with this point in mind.

In the discussion of these results we shall again use the 
concept of speedup. (Speedup is defined as Tj/Tn where T„ (x 
* l,...,n) is the time taken for the parallel algorithm to 
solve the MIP problem when using x slave transputers).

The computational results of the initial tests are listed 
in Appendix 2A, and the speedups achieved are shown in Figs 
5.6 to 5.11 below.
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Since the n-transputer parallel Branch and Bound algorithm 
was designed to attack medium to large scale MIP problems, 
we would anticipate that attacking such problems would 
produce good results, with less impressive results being 
obtained when attacking problems from the other categories.

We shall now discuss the results obtained from attacking 
the different categories of problem.

As can be seen from Fig. 5.6, the problems from this 
category never achieved a speedup of greater than about 
two, no matter how many slave transputers were used. The 
reason for this, in all the cases, is that only a small 
number of the available slave transputers were actually 
used, as can be seen from Table 5.2. The point after which 
no more transputers are used, no matter how many are 
available, is referred to as Saturation Point.

Problem Maximum No. of Slave Average Transputer Usage
Transputers Used after Saturation Point

AZA 4 2.5
AZB 4 1 . 8

AZC 5 2 . 6

HPW15 3 1.7
Table 5..2: Transputer Usage for Small Combinatorial
Problems.
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Problwn Cat»gory 2i storiai Probi»

Fig. 5.7 shows that problems MRX and MR1 produce a 
reasonable, although sublinear speedup curve, whilst 
problem INGT274 performs similarly to the smaller 
combinatorial problems previously mentioned.

The reason that problems MRX and MR1 give moderately good 
results is probably that the available slave transputers 
are highly utilised. All the available slave transputers 
are used in each case, with the overall usage falling from 
one hundred percent (when one slave transputer is used) by 
only two to four percent with the addition of each further 
slave. For both problems, when all eight slave transputers 
are available, roughly eighty percent of their processing 
power is utilised, with the remainder being lost due to 
message-passing and other overheads. There is, at most, a 
twenty three percent increase over the single-slave case in 
the amount of the search tree considered for problem MRX 
and only a six percent increase for problem MR1. These 
increases in the amount of calculation are adequately 
absorbed by the extra processing power available.

The poor speedup curve for problem INGT274 is due to the 
fact that at most three slave transputers are used, and on 
average only one and a half are used when three or more are 
available.
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The speedup curves shown in Fig. 5.8 for problems CHAL, GY 
and INGT1345 are again poor, especially in the case of 
INGT1345 which never achieves a speedup of one.

The particularly poor showing of problem INGT1345 is 
probably due (similarly to many of the smaller 
combinatorial problems) to the fact that it only makes use 
of a fraction of the available slave transputers. At most 
four slaves are used, with an average of 1 . 8  being used 
after three or more are available. The poor speedup figures 
are also due to the fact that the single-slave run finds 
the optimal solution in relatively few nodes and is thus 
hard to better.

Problems CHAL and GY only make use of three to four slave 
transputers on average, and thus cannot achieve speedups of 
more than three or four respectively.

PTPbl—  C«tpgory «1 >»»11 HIP Probl— »

The small MIP problems shown in Fig. 5.9 suffer from the 
same problems as the small combinatorial problems 
previously discussed.
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As can be seen from Table 5.3, only a fraction of the 
available slave transputers are used on average. Again, the 
point after which no more transputers are used, no matter 
how many are available, is referred to as Saturation Point.

Problem Maximum No. of Slave Average Transputer Usage
Transputers Used after Saturation Point

DAAC 3 1.7
G31 2 1.3
G32 3 1 . 8

OK 4 1 . 8

SETX 4 1.9
Table 5.3: Transputer Usage for Small MIP Problems.

Problems G31, G32 and SETX are all solved very quickly 
indeed in all cases (e.g. in three, six and two seconds at 
most respectively), and thus speedup is hard to achieve. 
This is probably due to the very small number of integer 
variables in these problems. Problems DAAC and OK, although 
making poor use of the processing power available, do 
manage to drastically decrease the number of intermediate 
integer solutions found before the optimum.
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Fig. 5.10 shows that superlinear speedup is achieved for 
problems BAG882 and TAX2 when using between two and six 
slave transputers, although the speedups become more or 
less constant after this point. Problem TAXI achieves a 
reasonable, if not linear speedup.

BAG882 performs particularly well, such that at its best, 
the problem is being solved in fifteen percent of the 
single-slave time. The available slave transputers are only 
moderately well utilised, with the average usage never 
exceeding five. The number of intermediate integer 
solutions and the overall number of nodes searched are 
notably reduced, however, from the single-slave case.

TAX2 shares the characteristics of BAG882 in that it too 
achieves a notable reduction in the number of intermediate 
integer feasible solutions found and nodes searched whilst 
only using at most four transputers on average.

TAXI searches more or less the same number of nodes in each 
case, although the process is faster with more slave 
transputers allowing a speedup of up to four and a half 
(with eight slave transputers available).
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As can be seen in Fig. 5.11, problem MO0788 exhibits 
super linear speedup when from two to eight slave 
transputers are used and problem MCA exhibits superlinear 
speedup when between two and four slaves are used. Problem 
D0M1 fares worse however, although it manages a reasonable, 
if sub-linear speedup. Problem CRAC consistently shows a 
speedup of about one and a half, no matter how many slaves 
are used.

The results for problem MO0788 seem to be caused by the 
extremely high average usage of the slave transputers, 
which never falls to the ninety percent mark. In the best 
case, (i.e. when using eight slaves) this allows the 
reduction of the solution time to only eleven percent of 
the single-slave time. Fewer nodes are consistently 
searched overall when using two or more slaves than in the 
single-slave case.

MCA also searches fewer nodes than the single-slave case 
when two to four slaves are used (i.e. when the superlinear 
speedup is achieved). In the three and four slave cases, 
just under half the nodes are searched. Again, the usage of 
the slave transputers is high (i.e. between eighty six and 
ninety three percent) in the cases where superlinear 
speedup is achieved. Unfortunately, an average usage of 
just over five transputers is the best that can be managed
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overall, so speedup is limited to about five or six when 
five or more slaves are used.

DOM1 searches more or less the same number of nodes in each 
case, although the process is faster with more slave 
transputers since the average usage of the available slaves 
never falls below seventy percent. This allows a speedup of 
up to five (with eight slave transputers available).

CRAC searches twice as many nodes in half the time of the 
single-slave case when using three to eight slaves. No more 
than two and a half slaves are used on average however, 
thus limiting the overall speedup achievable to a stable 
one and a half.

Most of the poor results seem to have occurred because the 
potential benefits of the parallel Branch and Bound 
algorithm have been squandered. Only a fraction of the 
available processing power has been used to attack most of 
the small problems and some of the larger problems. This is 
due to several factors, any one of which can cause a 
bottleneck at the master processor, so that only a small 
number of LP relaxations can be farmed out to idle slaves.
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The first such factor is the ease of solution of the LP 
relaxations of a problem. Obviously, if a subproblem can be 
solved very quickly, it is possible to return the resulting 
information to the master processor before it has had time 
to farm out many more subproblems. Thus, if many of the 
subproblems are easy to solve, it is likely that some of 
the available slave processors will remain idle.

In order to determine how hard the LP relaxations of the 
test problems are to solve, the single-slave code was used 
to measure the average number of Simplex iterations 
performed per LP relaxation and the average time taken to 
solve an LP relaxation for each test problem.

The single-slave code was used by the timing process, so 
that the exact path of all messages is known and there will 
be no interruption of the decision-making process due to 
returning LP solutions. The single-slave algorithm is also 
deterministic since no asynchronous control of multiple 
processors is actually carried out.

These two values are used to calculate the average time per 
Simplex iteration for each test problem, which is used as 
an indicator of how hard the LP relaxations are to solve.
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Problem Average Number 
of LP iterations 
per relaxation

Average Time 
per LP relaxation 

(ms)
Average Time 

per LP 
iteration 

(ms)

AZA 13.57 452.86 33.37
AZB 5.77 138.42 23.99
AZC 3.13 288.37 92.20
HPW15 8 .0 0 70.67 8.83
INGT274 8.49 192.54 22.67
MRX 47.41 2482.39 52.36
MR1 46.80 2495.04 53.32
CHAL 18.28 5518.75 301.83
GY 11.61 2817.02 242.70
INGT1345 9.00 806.13 89.57
DAAC 5.57 130.39 23.40
G31 16.67 986.67 59.20
G32 15.60 1 0 0 0 . 0 0 64.10
OK 4.94 136.92 27.74
SETX 3.41 36.90 10.81
BAG882 11.28 1875.49 166.31
TAXI 18.98 1709.12 90.07
TAX2 12.75 584.29 45.82
CRAC 25.00 1572.50 62.90
DOM1 48.38 6716.21 138.82
MCA 33.55 2988.46 89.08
MO0788 65.36 15687.84 240.03

Tabi« 5.4: Times for LP iterations.
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It can be seen from Table 5.4 that the really hard problems 
to solve are the large combinatorial problems CHAL and GY 
and the large MIP problem MO0788. These are followed by the 
medium-sized MIP problem BAG882 and the large MIP problem 
D0M1, which will be categorised as reasonably hard. Of 
these five hard problems, the MIP problems achieve much 
better speedups than the combinatorial problems. The MIP 
problems BAG882 and MO0788, both of which exhibit 
superlinear speedup, search fewer nodes when two or more 
slaves are used than in the single-slave case, indicating 
that the single-slave search was relatively poor. The 
combinatorial problems CHAL and GY search at least the same 
number of nodes if not more when more than one slave is 
used. The MIP problem DOM1 attacks roughly the same number 
of nodes no matter how many slaves are used, but this is 
probably due to the extremely small proportion of integer 
variables (i.e. eleven of five hundred and eighty five 
variables) in this case, which does not allow much 
variation in the search.

A second factor in the creation of bottlenecks at the 
master processor is the time spent reading the long node 
information from the disk once a node has been chosen. The 
disk-accessing process accounts for a large proportion of 
the total master algorithm time. As can be seen from Table 
5.5, the disk-reading time is also large when compared with 
the average time needed to solve an LP relaxation for many 
of the test problems.
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Problem Time to Read Long Node Ratio of Average Time
Information TLN (ms) per LP relaxation to

AZA 38.08
AZB 41.14
AZC 40.66
HPW15 34.93
INGT274 67.12
MRX 58.00
MR1 58.00
CHAL 190.06
GY 163.70
INGT1345 220.87
DAAC 41.14
G31 42.67
G32 42.91
OK 41.14
SETX 29.15
BAG882 58.48
TAXI 63.68
TAX2 48.40
CRAC 79.35
DO Ml 94.25
MCA 79.97
MO0788 127.40
Table 5. S : Disk reading t
iterations.

TLN
12:1

3:1
7:1
2:1
3:1

43:1
43:1
29:1
17:1
4:1
3:1

23:1
23:1
3:1
1:1

32:1
27:1
12:1
20:1

71:1
37:1

123:1
imes in relation to Simplex
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The times shown above are calculated assuming an average 
access time of 26ms and a data transfer rate of 83.75 
Kbytes per second on the PC.

The bad results for the small test problems are partially 
explained by the large amount of time taken to read the 
disk relative to the time taken to solve an LP relaxation. 
The number of slaves used on average on the small problems 
is low, indicating that there was not enough time to farm 
out many LP relaxations before results were returned.

On the other hand. Table 5.5 shows that for each of the 
test problems which achieved a near-linear or superlinear 
speedup, the ratio of the average time per LP relaxation to 
the disk reading time is high. Similarly, the relatively 
good results for combinatorial problems MRX and MR1 are 
explained by a combination of the ease with which their LP 
relaxations are solved and the relatively short time taken 
to read the long node information from the disk. It is 
possible to search the tree very quickly in these cases.

A final factor relating to bottlenecks on the master 
processor is the accumulation of message-passing overheads. 
The more time that the master processor spends sending 
messages, the less time it has to choose a new subproblem 
to be farmed out before an LP solution is returned, 
demanding its attention. In the case of a slave processor, 
the longer messages take to reach it and to be read by it,
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the longer it remains idle. It is thus desirable to reduce 
the message-passing times as much as possible. It can be 
seen from Table 5.6 however, that the message-passing 
overheads are nearly negligible in the experiments, since 
when using the topology stated it only takes 17.36 ms to 
pass the longest message back to the master from the 
furthest slave (assuming that there is a clear path), and 
this is far above the average time of 4.41 ms.

The times given in Table 5.6 below are calculated assuming 
a message-passing speed of 1.8 Mbytes per second for the 
T800 transputer links and a maximum journey of two 
transputer links.
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Problem Maximum Message 
Passing Time 

from master to slave 
(ms)

Maximum Message 
Passing Time 

from slave to master 
(ms)

AZA 1.30 1.42
AZB 1.26 1.36
AZC 1.26 1.36
HPW15 0.74 0 . 8 6

INGT274 3.60 3.72
MRX 2.80 2.90
MR1 2.80 2.90
CHAL 14.52 14.62
OY 12.18 12.28
INGT1345 17.24 17.36
DAAC 1.30 1.42
G31 1.44 1.54
032 1.46 1.56
OK 1.30 1.42
SETX 0.24 0.34
BAG882 2.84 2.94
TAXI 3.30 3.42
TAX2 1.94 2.06
CRAC 4.68 4.80
DOM1 6 . 0 2 6 . 1 2

MCA 4.74 4.86
MO0788 8.96 9.06

Tabl* 5.6: Maximum message-passing times for test
problems.
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goncluslonf

The factor« relating to the possibility of a bottleneck on 
the master processor are:

the ease of solution of the LP relaxations;
the time taken to read the long node information from
the disk; and
the message-passing time.

Although nothing can be done to alter the ease of solution 
of LP relaxations without drastically altering the code, 
the test results indicate that large MIP problems (for 
which the algorithm was designed) suffer less from 
bottlenecking caused by this factor than other problems.

The latter two factors, however, were dealt with so as to 
improve the performance of the algorithm.

The time taken to read the long node information for an LP 
relaxation disk depends on the size of the problem and the 
number of integer entities it contains. The only way that 
the disk-reading process can be speeded up is to alter the 
data structures. Some of the long node information was thus 
held on disk in a packed form, to enable a quicker disk­
reading operation.
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The message-passing times, which also depend upon the size 
of the problem being solved and the number of integer 
entities it contains, were improved by passing some of the 
LP relaxation data to slaves in packed form. The slaves 
unpacked the data, acted upon it and returned some of the 
LP solution information in packed form, thus reducing the 
overall message-passing overheads.

Once the changes to the code had been implemented, the test 
problems were attacked again to see what improvement in 
performance had been generated. The computational results 
of this second series of tests are given in Appendix 2B.

As can be seen from Figs. 5.12 to 5.17, most of the 
speedups for the test problems are at least as good as 
before, with small MIP problem DAAC actually now achieving 
a superlinear speedup using two slaves, and medium MIP 
problems BAG882 and TAXI achieving better speedups for 
longer.
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Tests were also carried out to determine how large an 
overhead was being amassed by sending messages one word at 
a time. Appendix 2C contains graphs comparing the solution 
times achieved for each problem on the first and second 
test runs with those achieved by using the packed data 
structures mentioned above, but by sending messages of 
different lengths.

Although the times for the single-slave tests will 
obviously be improved when the packed data structures are 
used (since the same search is being carried out in a 
slightly shorter time because the disk-reading operation is 
quicker), it is interesting to note that in all three test 
runs using the code with packed data structures, the 
algorithm generally performs much better than the original 
code, no matter how many slaves are used.

It is also worth noticing that the effects of passing 
messages in different ways so as to accumulate different 
amounts of overhead are hardly noticeable (once the packed 
data structures have been implemented), except in the case 
of the smaller problems where there are some improvements.

Since the solution times of the larger problems (for which 
the code was designed) show little change when different 
length messages are passed, it was decided to keep the 
messages at one word in length, as this requires only a 
simple FORTRAN code.
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It must, of course, be taken into account that due to the 
non-determinacy of the algorithm (when more than one slave 
is used and asynchronous coordination is employed), the 
algorithm may well have carried out different searches for 
the four runs.
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6̂ . Cgsgarlfon of Different Node Selection S t r i f o l «

Introduction

The computational results given in Chapter Five show that 
it is possible to increase performance when using more than 
one slave transputer to attack certain categories of 
problem. These favourable results are partly due to the 
structure of the problems attacked, with problems 
performing well if they achieve a good balance of 
computation to message-passing. It can also be seen that 
the test problems which achieved the best increases in 
performance also searched a similar, or lesser number of 
nodes when more than one slave was used. Thus, the node 
selection strategy used by the algorithm responded well to 
the presence of more than one slave transputer when used to 
attack the test problems.

Unlike problem structure, the node selection strategy used 
by the parallel algorithm is very much under the control of 
the algorithm designer. A comparison of different node 
selection strategies was thus carried out to determine if 
particular categories of problem react well to certain 
strategies.
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^•lection Crlfrl«

{Nemhauser and Wolsey, page 359} suggest possible criteria 
for choosing which active node to branch on:

Node Selection Method One

Choose the node that is most likely to lead to an optimal 
IP solution. Once an optimal IP solution has been found, 
even if it cannot immediately be proved to be optimal, the 
best possible value of the cutoff has been found. This can 
have a marked effect on subsequent fathoming of nodes. The 
*>•■£ estimate rule provides appropriate node selection 
criteria for this method. As mentioned in Section 2.4.1, 
nodes are created by deciding which unsatisfied variable to 
branch upon. The degradations to the LP relaxation solution 
caused by branching up or down on each variable is 
calculated and stored as D/ and D3' respectively (using the 
penalty calculations described in Appendix 1G) . These 
values can be used to estimate the degradation to the IP 
solution that will result if a node is chosen for 
branching.

As an example, for maximisation problems, the degradation 
to the present incumbent IP solution that will occur if a 
node is chosen such that variable x, is branched upon can be 
estimated as follows (for the case where D,* i D/) i
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If the variable xj has a new upper bound imposed upon it, 
the estimate of the new IP solution is

where zLP is the current LP solution, N is the set of 
unsatisfied global entities and j # k.

If the branch is made the other way, such that variable x5 

has a new lower bound imposed upon it,

1 ■ -  D) -  J t N ) MTr*J3 , ,D ’ )

The best estimate rule chooses the node which appears to 
degrade the IP solution the least.

Node Selection Method Two

Try to find a node that will quickly lead to a feasible 
solution to the IP. The quick improvement method of 
Forrest, Hirst and Tomlin provides appropriate criteria for 
this method ([Forrest et al., 1974]).

The node chosen is that which gives the maximum value (for 
maximisation problems) to
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where zLP is the current LP objective function value, ¿,p is 
the present cutoff value, and 2 is the estimate of the new 
IP solution.

Note that in order to maximise the above fraction, nodes 
where 2 > £,P will be preferred to nodes where 2 ^ i,P. 
Preference will also be given to nodes where zLP - 2 is 
small.

6.2. The Node gel action Strategies Used for Kxperi— n f

Four different node selection strategies were devised, 
based on the two node selection methods mentioned above. 
These node selection strategies were then used to attack 
the set of test problems, and the results compared with 
those obtained by using the node selection strategy 
discussed in previous chapters (which is recapped below).

Strategy One involves making a choice from all candidate 
nodes each time a new LP relaxation is required. The 
criterion used for comparison of the nodes is provided by 
the best estimate method. The process of comparing all 
candidate nodes each time, using the best estimate 
criterion should produce good IP solutions, although they 
will not be produced very quickly. Once solutions have been 
found however, they will tend to provide good cutoff 
values, so that many of the remaining nodes on the search 
tree can be fathomed quickly.
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Strategy Two again involves a choice from all candidate 
nodes. In this case however, the best estimate criterion is 
only adhered to until an integer feasible solution has been 
found. Thereafter, the Forrest-Hirst-Tomlin criterion is 
used. The efficiency and speed of this method will depend 
on the quality of the initial IP solution found using the 
best estimate criterion. If the initial IP solution is 
good, the remaining search should be quick, since the 
Forrest-Hirst-Tomlin criterion used thereafter usually 
chooses nodes close to the incumbent. If the initial IP 
solution found is far from the optimum however, the 
remaining search may take a long time, as nodes will be 
generated near the incumbent instead of in more promising 
areas.

Strategy Three involves a parallel version of the depth 
first search. The most promising son (if any exist) of the 
last node solved will be chosen next unless it seems more 
profitable to branch again on the parent. If both sons of 
a node have been generated and there are free slave 
transputers so that another node can be branched upon, a 
choice is made from all the remaining eligible candidate 
nodes. The criterion for choosing from all candidate nodes 
and for comparing parent and son is the same as in strategy 
two, in that the best estimate criterion is used until a 
feasible IP solution has been found, after which the 
Forrest-Hirst-Tomlin criterion is used. (Nemhauser and 
Wolsey, page 358) state that one of the principle
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advantages of a depth first search is that feasible IP 
solutions are more likely to be found deep in the tree than 
in nodes near the root. The initial aim of this node 
selection strategy is to make use of both the depth first 
criterion and the best estimate criterion during the search 
for an initial IP solution. It is hoped that the 
combination of the two criteria should lead to a good IP 
solution quickly. Once the initial IP solution has been 
found, the Forrest-Hirst-Tomlin criterion is used to search 
the surrounding area. If the initial solution was good (as 
we hoped) then the rest of the nodes on the tree can be 
fathomed quickly.

Strategy Four involves a similar process to strategy three, 
except that any comparisons of or choices from the 
candidate nodes are based only on the best estimate 
criterion. This strategy is not so dependent on getting a 
good initial IP solution, since the best estimate criterion 
do not tend to choose nodes close to the incumbent as often 
as the Forrest-Hirst-Tomlin criterion.

The Original Strategy used in previous chapters for node 
selection is also similar to strategy three. A parallel 
version of the depth first search is carried out, whereby 
both immediate descendants of the last node solved are 
tackled simultaneously if two slaves are free. If only one 
slave is free, the more attractive descendant is attacked 
next and no special effort made to consider the other, less
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favourable branch. If both descendants of a node are 
fathomed, a search of all active candidate nodes is carried 
out, using the best estimate criterion for comparison if no 
integer feasible solution has been found, and the Forrest- 
Hirst-Tomlin criterion thereafter.

6.3. Computational Results

The four node selection strategies were tested on the set 
of IP problems used in Chapter Five. Figs. 6.1 to 6.22 
below show the resulting solution times achieved, and a 
comparison is made with the results obtained using the 
original node selection strategy.

Category One - Small Combinatorial Prohl—

Comparison of Solution Times
Prob lem  AZA

•»foltgr ono otrologr loo itralapy ttraa
rtroiagy W  original «»raloBK

rig. 6.1: Solution Times for Problem AZA.
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Comparison of Solution Times
P rob lem  AZB

1100

«trat»oy on« strategy two «tratogy »hr«*
«»ratogy lotM original strategy

Fig. 6.2: Solution Times for Problem AZB.

Com parison o f Solution Times
Problem AZC

*  strategy on« strategy two strotegy Ihr •#

■ ♦ rotogy lota  orlgind llra logy

Fig. 6.3, Solution Times for Problem AZC.
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Comparison of Solution Times
Problem  HPW15

on* strategy two -m - strolegy three
-® - strategy four -*•- original strategy

rio. 6.4: Solution Times for Problem HPW15.

Ctt.gotY Two - M.dlu. Co.blo.torl.1 Probl—

Comparison of Solution Times
Probtam NGT27«

80

tienber of Slav* Transputer*

~m~ *trot*gy one — elrategy two strategy three
efrotegy four -**- original »trategy

Pig. 6.5: S o l u t i o n  T im e s  f o r  P r o b l e m  IN Q T 2 7 4 .

1 93



>,rotW  ona alralogy two itrotogy Ihr*«
«tratogy low -»*- original tlra logy

Fig. 6 .6 : Solution Times for Problem MRX.

«tratogy on» alralogy (wo atrategy Ihroa
«trotogy four original alralogy

Fig. 6.7: S o l u t i o n  T im e s  f o r  P r o b l e m  M R I.
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ç.t.gory Thr». - L«rg. Co»bln«torl«l Probli

Comparison of Solution Times
Problem CHAL

«frot«or one —4— strategy two -m - strategy three 
- B -  strategy four -•* - original etrategy

rig. 6.8: Solution Times for Problem CHAL.

Comparison of Solution Times
Problem GY
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strategy one strategy two strategy ttree
- B -  strategy four -ee- original strategy

rig. 6.9: S o l u t i o n  T im e s  f o r  P r o b l e m  GY.
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Comparison o f  Solution Times
Problem N G T 1345

450

»frat«gy on« — atrat«gy two *trol«gy t*r««
- s -  strategy four -**- original a+rat«gy

rig. 6.10: Solution Times for Problem INGT1345.

Ç«tfflorY Four - g»*ll HIP Probien«

«lrat«gy on« — a’ ratagy two ilrnlagy Itr««
«frot«gy four -•* - orlglnol afrat«gy

Fig. 6.11: S o l u t i o n  T im e s  f o r  P r o b le m  DAAC.
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Comparison of Solution Times
P rob lem  G31

Fig. 6.12: Solution Times for Problem G31.

Com parison of Solution Times
Problem G32

itrategy on« strategy two strategy three
strategy tow -*•“  original strategy

Fig. 6.13: S o l u t i o n  T im e s  f o r  P r o b l e m  G 3 2 .
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Fig. 6.14: Solution Times for Problem OK.

«trotogy on* atrotogy two atratogy thro*
atratagy four -* •- origfnd atratagy

Fig. 6.15: S o l u t i o n  T im e s  f o r  P r o b l e m  SETX .
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C.t.aory r l v  - M«dlu» MIP Probi.

Comparison of Solution Times
Probtam BAC882

~m~  strategy one — strategy two strategy three
-® - strategy four -♦ *- ortgtnol strategy

Fio. 6.16: Solution Times for Problem BAG882.

Comparison of Solution Times
Probt«m TAX1

3500

strategy fo u r -**- original strategy

Fig. 6.17: S o l u t i o n  T im e s  f o r  P r o b le m  T A X I.
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Comparison of Solution Times
Prob lem  TAX2

250

»trot«gy on« —•— atratagy two -m - atrotagy ttr m
afrotagy four -**- orlglnol atrotagy

Fig. 6.18: Solution Times for Problem TAX2.

w w n  »tu - L«rgf Mfp Prçbi

Comparison of Solution Times
Probi.™ CRAC

«1ro*«fly one —*— atratagy two atratagy ttvee
atrotagy four origino! »trot«gy

rig. 6.19: Solution Times for Problem CRAC.
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Comparison of Solution Times
P rob lem  D0M1

I
I

Number of Slave Transputer*

strategy on* — strategy two strategy thro*

**rategy low -**- original strategy

Fig. 6.20: Solution Times for Problem DOMI.

Com parison of Solution Times
Problem MCA
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rig. 6.21: Solution Times for Problem MCA.
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«tralagy on» — i l ratagy two «trotogy Ihr*«

-® - itrotagy (o*x -**- original ilra logy

Piff. 6.22: Solution Times for Problem MO0788.

Discussion of Results

We shall now discuss the results obtained from attacking 
the different categories of problem using the various node 
selection strategies. Appendix 3 lists the computational 
results in full.

As can be seen from Figs. 6.1 to 6.4, the solution times of 
the problems from this category are quite similar, no 
matter which of the node selection strategies is used. This 
is because the average usage of slave transputers is still 
fairly low (as can be seen in Table 6.1 below).
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Note that the point after which no more transputers are 
used, no matter how many are available, is referred to as 
Saturation Point.

Problem Maximum No. of Slave Average Transputer Usage 
Transputers Used after Saturation Point

SI S2 S3 S4 S5 SI S2 S3 S4 S5
AZA 6 6 6 6 6 3.0 3.0 3.0 3.0 2 . 6

AZB 7 7 6 6 6 2 . 6 2 . 6 2.7 2 . 6 2 . 6

AZC 8 8 8 8 8 3.9 4.0 4.0 4.1 4.0
HPW15 4 4 5 5 5 2 . 1 2 . 1 2.4 2.4 2.4
Table 6.1: Transputer Usage for Small Combinatorial 
Problems.

When attacking problems AZA and AZB (which contain only 
binary variables as their discrete component) using node 
selection strategies one or two, only one solution node was 
found during any of the runs. Problem AZC (which contains 
only semi-continuous variables as its discrete component), 
performs in an identical manner. In the case of problem 
HPW15 (whose discrete component is made up of general 
integers with upper bounds of five, ten and twelve), the 
single slave runs using strategies one or two find two 
solution nodes during the search, whereas the multi-slave 
runs find only one solution node.

When using strategies three to five to attack any of the 
test problems in this category, the number of solution
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nodes vary (from one to twenty six in the case of AZB) 
depending on the number of slaves used.

This indicates that, for these problems at least, 
strategies one and two are performing as intended by 
choosing nodes that lead to the optimal solution.

Figs 6.5 to 6.7 show again a difference between the test 
problems that contain only binary variables and those which 
contain general integers.

Problems MRX and MRl (which contain only binary variables) 
give almost identical solution times, no matter which node 
selection strategy is used. The average transputer usage is 
very high for these problems, and the vast majority of 
nodes that are generated are attacked twice, indicating 
that the LP relaxations are very easy to solve.

Problem INGT274, which contains only general integers with 
upper bounds of nine, performs differently with each node 
selection strategy, although on average only one and a half 
slave transputers are used in each case. Strategy one seems 
to be the best for this problem, closely followed by 
strategy three. The number of nodes generated using either 
of these strategies is much lower than the number generated 
using the other strategies.
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It is imagined that strategy two resulted in a bad first 
solution, since it performs the worst overall. The number 
of nodes added to the candidate list but never attacked is 
very large in comparison with the number when strategy one 
is used. This indicates how dependent strategy two can be 
on finding a good solution quickly.

Prgbly Category 3? Large Combinatorial Probi —

The solution times shown in Fig. 6 . 8  to 6.10 for problems 
CHAL, GY and INGT1345 are again varied.

Problem CHAL (which contains only binary variables as its 
discrete component) responds well to strategies one and 
two, which tend to find fewer (and better) solution nodes. 
The other strategies generate and attack many more 
candidate nodes and thus take longer to solve the problem. 
The average transputer usage is quite high in all cases 
however, so the other strategies still solve the problems 
fairly quickly.

Problem GY (which contains binary variables and general 
integers with upper bounds of two, three, four and five) 
displays the opposite results, with strategies one and two 
performing worse than the others. This is because, although 
strategies one and two usually produce fewer solution 
nodes, they take a long time to do so. On the other hand, 
the other strategies quickly find feasible IP solutions (as
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many as eighteen in the case of strategy four), one of 
which is optimal. The average transputer usage is also a 
little higher for strategies three, four and five.

The solution times for problem INGT1345 (which contains 
general integers with upper bounds of nine) are quite 
similar when three or more slaves are used. This is because 
the average number of slaves used does not rise much above 
two. Strategies four and five perform the best overall. 
They seem to find good solutions fairly late in the search 
(as indicated by a large number of nodes being removed from 
the candidate list when a solution has been found) . This 
suggests that the optimal solution is deep in the tree in 
this problem.

4» Small HIP Probi.

The small MIP problems shown in Figs. 6.11 to 6.15 on the 
whole show similar results regardless of the node selection 
strategy used. This is because of the relatively low 
transputer usage on average (see Table 6.2 below).
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Problem Maximum No. of Slave Average Transputer Usage 
Transputers Used after Saturation Point

SI S2 S3 S4 S5 SI S2 S3 S4 S5
DAAC 6 6 7 7 7 3.0 3.0 2.7 2 . 8 2 . 8

G31 2 2 2 2 2 1.3 1.3 1.3 1.3 1.3
G32 3 3 3 3 3 1 . 8 1 . 8 1 . 8 1 . 8 1 . 8

OK 6 6 6 6 7 2.7 2.7 2.7 2 . 8 2.7
SETX 4 4 5 5 5 2.3 2.3 2.3 2.3 2.5

Table 6.2: Transputer Usage for Small MIP Problems.

Problems G31, G32 and SETX produce similar results no 
matter which strategy is used. This is because they are all 
solved very quickly indeed in all cases (e.g. in three, 
five and one and a half seconds at most respectively) due 
to the very small number of discrete variables in these 
problems. Problems G31 and G32 contain binary variables and 
general integers with upper bounds of one and seven. 
Problem SETX contains special ordered sets of type one.

Problem DAAC, which only contains binary variables as its 
discrete component, performs quite similarly in all cases, 
although strategies one and two give the best solution 
times. This is because they consistently find the optimal 
solution node fairly quickly . Thus, the number of nodes 
generated and attacked is fewer than when other strategies 
are used, and the solution times are reduced accordingly.
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Problem OK, which also only contains binary variables as 
its discrete component, performs quite a lot better when 
strategies one and two are used. This is for the same 
reasons as given for problem DAAC. The only difference is 
the number of poor solutions generated by using strategies 
three, four and five. In the case of problem OK, more poor 
solutions are generated, and thus the search takes longer.

Probl^s Category 5i Medio« h i p >rnhi —

Figs. 6.16 to 6.18 show the solution times achieved for 
problems BAG882, TAXI and TAX2, all of which contain only 
binary variables as their discrete components.

Problem BAG882 is solved in similar times when four or more 
slaves are used. When one to three slaves are used however, 
strategy one performs much better than the others. Strategy 
two performs quite poorly when one to three slaves are 
used, indicating that a relatively poor first solution is 
found. Strategies three, four and five find very large 
numbers of solution nodes when one to three slaves are 
used, and hence tend to waste time considering lots of 
useless nodes.

Problems TAXI and TAX2 seem to show opposite results. TAXI 
responds well to strategies two, three and four and poorly 
to strategies one and five, whereas TAX2 responds in 
exactly the opposite way. The key to these results is the
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number of infeasible nodes generated. In the case of TAXI, 
strategies one and five only tend to find one or two 
solution nodes, but generate many infeasible nodes whilst 
doing so. In the case of TAX2, strategies one and five 
again only tend to generate one or two solution nodes, but 
generate very few infeasible nodes in the process. 
Strategies two, three and four tend to find more solution 
nodes and generate a fairly large (but consistent) number 
of infeasible nodes whilst doing so.

Probl—  Category 6, Large M T P  P r a h l  —

As can be seen in Figs. 6.19 to 6.22, different types of 
large MIP problem react differently to the node selection 
strategies used.

Problem CRAC, which contains binary variables, produces 
very similar solution times, no matter which strategy is 
used. This is probably due to the low average usage of 
transputers (which is never much above three).

Problem D0M1, which contains special ordered sets of type 
one and two, performs well when strategies one and two are 
used. The other strategies do not fare much worse when four 
or more slaves are used, although strategies four and five 
perform quite poorly when one and two slaves are used. The 
key again seems to be that strategies one and two find 
relatively few solution nodes and thus waste less time
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exploring useless nodes. The times are not too varied 
however, since the usage of transputers is slightly higher 
for strategies three, four and five.

Problem MCA, (which contains special ordered sets of type 
one and two, as well as binary variables and general 
integers with upper bounds of two), produces fairly similar 
results for all strategies except strategy three, which 
performs relatively poorly. Strategy one performs the best 
overall, as it tends to find the optimal solution quickly. 
The transputer usage is high in all cases, although 
slightly higher in the cases where more nodes are searched, 
so the time differences are not large.

Problem MO0788, which contains general integers with upper 
bounds of two, five and ten, performs similarly with four 
or more transputers, although strategy two does seem to be 
the most successful overall. This is because it finds the 
optimal solution after a relatively small number of 
solution nodes. Strategy one performs similarly, but takes 
longer to find the optimal solution. Strategies three, four 
and five find a large number of IP solution nodes and are 
either lucky or unlucky when it comes to finding the 
optimal solution. Strategy three tends to find the optimal 
solution quickly enough to produce a lower solution time 
than strategy one.
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Cgnglusipng

Although it is difficult to draw conclusions from testing 
the different node selection strategies using such a small 
group of problems, the following opinions were formed.

Strategy One finds good solutions and thus produces strong 
cutoff values which are very useful in the subsequent 
fathoming of candidate nodes.

Strategy Two shares many of the positive attributes of 
strategy one, but can be very inefficient if a good 
solution is not found fairly quickly. If a good solution is 
found however, the Forrest-Hirst-Tomlin criteria can help 
to finish the search quickly.

Strategy Three tends to perform relatively badly, 
especially if a fairly good solution is not found quite 
quickly. If a good solution is not found quickly, more 
nodes are invariably searched than by other strategies, 
although if the transputer usage is high enough, this 
doesn't slow down the search too much.

Strategy Four performs relatively well if enough of the 
processors can be kept busy. Although a large number of 
nodes are almost always searched using this strategy, in 
some circumstances the optimal solution can be found 
quickly by luck.
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Strategy Five is very similar to Strategy Three, and tends 
to perform in a very similar way.

Strategy one gives the best overall performance on the test 
problems available, and copes well with the large MIP 
problems. In the cases where strategy one performs 
relatively poorly, the results are not much worse than 
those of better strategies, especially when large numbers 

transputers are used. In most circumstances however, 
using strategy one leads to one of the best solution times 
achieved for the problem, if not the best.

It is therefore deemed worthwhile to use strategy one, 
(whereby all candidate nodes are considered for branching 
on each occasion, and comparisons made using the best 
estimate criteria), as the default node selection strategy 
for the parallel algorithm.
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The previous chapter demonstrated that variations in the 
problem solution times may result when different node 
selection strategies are used by the parallel Branch and Bound 
algorithm. Node Selection Strategy One (i.e. comparing all 
nodes each time, using the best estimate criteria), was chosen 
as the default strategy for future use, as it produced good 
problem solution times for most categories of problem on which 
it was tested, including the large MIP problems. Although this 
default strategy should allow most problems to be solved 
quickly, it is possible to improve on its performance in 
certain circumstances. The structures of certain types of 
problem may be more efficiently exploited by further 
parallelising part of the Branch and Bound algorithm.

Z-i rurthyr Par»ll»lig»tipn <?l the Alggrltha

The solution (within a reasonable time) of many real large MIP 
problems has been shown to depend upon successful exploitation 
of the modeller's knowledge of the problem structure. This 
knowledge is especially useful when deciding which variables 
to branch upon, and, when the branching priorities of the 
variables have been decided, which branches to make.

7,-gir»lltl Branch and Bound 8trate dies
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When deciding on the branching priorities of variables, for 
instance, those variables whose values indicate whether or not 
certain actions should be taken should obviously be branched 
upon before any variables whose values reflect the effects of 
the actions.

When a variable has been chosen, the branches made upon it and 
the order in which they are made also have an effect on the 
overall solution time. Much time can be wasted by exploring 
unproductive areas of the search tree if a bad choice of 
branch has been made. The process of choosing the number and 
order of branches to be made may be adapted to make better use 
of the parallel processing facilities available.

As mentioned in Section 2.4.1, once an integer-constrained 
variable has been chosen to be branched upon, a binary branch 
is usually made. For example, if a general integer variable x, 
say, which has an upper bound of five and a lower bound of 
zero, takes the value 2.4 in a feasible LP solution, then two 
more LP problems are generated for later exploration. The 
first such problem will contain an extra constraint of the 
form x £ 2 and the second will contain an extra constraint of 
the form x 2 3 (see Fig 7.1 below).
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rig. 7.1 : An Example of Binary Branching.

The strength of the parallel algorithm discussed in the 
previous chapters is that it attacks several such subproblems 
in parallel, thus gaining much more information in the same 
period of time.

When attacking certain types of problem, there is the 
possibility of enhancing this effect so that even better use 
is made use of the processing power available. In order to 
perform this enhancement, multiway branching is performed on 
the chosen variable. For example, instead of the two branches 
made on the variable x in the previous example, several 
branches (of the form shown in Fig 7.2 below) could have been 
made.
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X : 2.4

riff. 7.2 : An Example of Multiway Branching.

The binary branching strategy used by the serial Branch and 
Bound algorithm (and hence implemented as part of the initial 
parallel algorithm), was first implemented when processing 
power was not great enough to consider more than two branches 
in a reasonable time. There is nothing however, in the basic 
Branch and Bound algorithm to prohibit the making of more than 
two branches on an appropriate variable. The power of the 
Branch and Bound algorithm may thus be increased in certain 
circumstances, by making more than two branches and 
considering them in parallel.

One way in which the multiway branching concept has the 
potential to enhance the overall performance of the algorithm 
is by keeping the slaves busier at the beginning of the 
search. For example, when the first few nodes of an MIP 
problem are considered by the algorithm, there is usually not
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enough work to keep all the slaves busy. It is not until a 
later stage of the search, when the list of candidate nodes is 
longer, that all slaves can be kept busy (assuming that nodes 
can be chosen from the list and farmed out quickly enough) . If 
more branches are made on chosen variables, the candidate list 
will grow to an appropriate size much more quickly. Since the 
LP relaxations at the start of the search should be the 
hardest to solve (if sensible priorities have been chosen), 
the multiway branching strategy has the potential to lead to 
quick solutions. There is, of course, the potential drawback 
that attacking the problems created by the additional branches 
may not provide any useful information, and might only be 
creating work for idle hands.

Another way in which the multiway branching strategy may 
potentially be used to enhance performance is by providing 
stronger branches on certain types of variable. When branching 
on an unsatisfied variable that can still take many different 
integer values, branches can be made based on predictions of 
the likely final value of the variable (i.e. in the optimal 
solution). If the variable takes a value which is thought to 
be close to its final value, branches can first be made that 
fix the variable to the integer values on either side of its 
present value. Subsequent branches could then be made, in 
order to completely fathom the node.
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Of course, multiway branching can only be usefully applied to 
problems formulated using general integer variables or Special 
Ordered Sets (which will be defined in section 7.2), as binary 
or semi-continuous variables can only be branched upon at most 
twice. Tests were carried out on problems formulated using 
general integer variables and special ordered sets, in order 
to see if it is worth adding multiway branching to the default 
branching strategy of the algorithm for such problems.

When an unsatisfied general integer variable has been chosen 
(by using the variable selection techniques discussed in 
section 2.4.1), the number and order of the branches to be 
made must be decided.

The branching strategy of the serial Branch and Bound 
algorithm is as follows. Two branches are made on the chosen 
general integer variable before the node is fathomed. In order 
to determine the preferred branching direction, (i.e. to 
decide which branch to perform first), estimates are made of 
the degradation to the LP solution that will be incurred if 
the branch is made. The default strategy is to branch first in 
the direction which produces the minimum degradation to the LP 
solution. This is because the node created by implementing 
this branch might later be compared with other nodes during

218



the node »election process. Under the default node selection 
strategy decided upon, the node which degrades the IP solution 
the least will be chosen. As mentioned in che previous 
chapter, the degradation to the IP solution incurred by 
choosing a node is estimated as

z l, - ,Dj) -

where D3* and Dj are the degradations to the LP solution 
incurred by making the branches up or down to the nearest 
integer from the chosen variable xJf zLP is the LP solution, N 
is the set of unsatisfied global entities, and j * k.

As mentioned in section 2.4.1., the degradations D,* and D/ 
caused by branching up and down to the nearest integer are 
calculated as follows:

D,- - p, f,

DJ* " ij)

where p> and p,* are unit penalties incurred by branching down 
and up respectively, and fj is the fractional part of the 
value of the unsatisfied variable x5 (as seen in Fig. 7.3 
below).
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The per unit penalties for variable Xj are calculated using 
the method described in Appendix 1G.

Note that the branches imposed are inequalities (as can be 
seen in Fig. 7.3).

Branch (1): x <= 2
i

Branch (2): x >= 3
l x I H )

1

1 2 2 .4 3

1 >
X

4

Fig. 7.3: Binary branching on variable x.
The first step when extending the above techniques to multiway 
branching is to calculate the estimated degradations to the LP 
solution caused by fixing the value of the unsatisfied 
variable to the nearest integer values above and below. These 
degradations are calculated using the formulae for D,* and D/ 
shown above, although the corresponding branches imposed this 
time are equalities (see Fig. 7.4 below). If circumstances 
warrant it, as they do in this example, further branches are 
then made on either side, to ensure the proper fathoming of 
the node.
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Branch |1): x = 2 
Branch ¡2): x = 3 
Branch ¡3): x c 1 
Branch |4): x >= 4

13) (1) |2) (4)

1 * ¡ ( 1- 1*1 

1

X

1 2 2.4 3 4

rig. 7.4: Multiway branching on variable x.

The method previously used to estimate degradations to the LP 
solution is extended to provide estimates for the outer two 
branches as follows:

Dj", the estimated degradation for branch (3) is calculated as
P, (l ♦ f,)
and D/*, the estimated degradation for branch (4 ) is 
calculated as
Pj* (2 - f,)
where p,' and p}* are unit penalties incurred by branching down 
and up respectively (calculated as in Appendix 10), and f, is 
the fractional part of the value of the unsatisfied variable 
x, (as seen in Fig. 7.4 above).
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If more than two branches are to be made, the number of 
further branches depends upon the circumstances.

?.2.1. Thrgf-Way Branching on general Integer«

If the general integer variable can only take three integer 
values (as in Fig. 7.5), or if the branches already made are 
at one end of the spread of possible integer values (as in 
Figs. 7.6 and 7.7), then only one more branch should be made.

Branch (1): x = k ♦ 1 Lower Bound s LB
Branch (2): x = k Upper Bound = UB
Branch (3): x = k • 1

LB UB
l l
l l
l l
l l

I-----------1--------------- X -----1---------- >  XI I
I I

k • 2 k • 1 k k 1

(3) (2) (1)

Fig. 7.5: Situation where only three integer values are 
possible.
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Branch II): x = k ♦ 1 
Branch (2): x = k 
Branch |3|: x <= k • 1

Lower Bound = LB 
Upper Bound = UB

LB UB
1

1 01
1
1
1
1

w 1 ^
1
1-------------

i
• 2 k 1

— *  1 >

1
k ♦ 1

12) 01

rig. 7.6: When an initial branch is at the upper bound.

Branch (1): x : k - 1 
Branch |2|: x = k 2 
Branch |3): x > = k

Lower Bound = LB 
Upper Bound = UB

LB UB

1
1

(3) 1

1 1

1
- 2 k 1

1
k ♦ 1

12) 0)

Fig. 7.7: When an initial branch is at the lower bound.
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The three branches will be applied in ascending order of 
estimated degradation to the LP solution.

7^2.2. Four-Way Branching on general Integer«

In other circumstances, a total of four branches can be made 
(as in Fig. 7.8 below). Again, these branches will be applied 
in ascending order of the estimated degradation to the LP 
solution.

rig. 7.8: Situation where four branches are possible.

Branch 
Branch 
Branch 
Branch (4):

1
(4): x <= k - 2

Lower Bound * LB 
Upper Bound = UB

LB UB

(3)

r *
X

k - 3 k • 2 k • k ♦ 1 k1* 2 k ♦ 3

(2) (1)
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. RMult» for Multiway Branching on Oeneral

Making the first two branches is simply a matter of setting 
the appropriate variable to an integer value. It is hoped that 
it will thus be possible to quickly determine that the new LP 
is infeasible or to solve the new LP more quickly than its 
parent.

In order to test the usefulness of multiway branching 
techniques on general integers, the test problems detailed in 
Table 7.1 were attacked. The problems were attacked using 
multiway branching in conjunction with the four different node 
selection strategies introduced in the previous chapter. This 
should determine whether multiway branching on general integer 
variables responds well to any of these strategies.
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Problem Category NROW NCOL NGLENT Description
GY 3 913 888 528 240GI2,96GI3,48GI4,48GI5, 

96BV
G31 4 159 146 9 5GX1.1GI7.3BV
G32 4 162 148 9 5011.1GI7,3BV
HPW15 1 56 45 30 10GI5,10GI10,10GI12
INGT274 2 13 274 274 274GI9
INGT1345 3 19 1345 1345 1345GI9
MO0788 6 1123 926 24 3GI2,18GI5,3GI10
Examples of the notation used above are:
5GI3 ■ 5 general integer variables with lower bounds of 0

and upper bounds of 3.
3BV = 3 binary variables.

Problem Categories: Small Combinatorial (1), Medium
Combinatorial (2); Large Combinatorial (3); Small MIP (4 )- Large MIP (6 ).

Table 7.1: Test problems for multiway branching on general 
integers.
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The computational results were as shown in Figs. 7.9 to 7.15

Binary Branching: problem attacked using the conventional
binary branching approach and the default 
node selection strategy decided upon in 
the last chapter (i.e. node selection 
strategy one as described in section 6 . 2  
on page 188).

Multi-way Branch X: problem attacked using the multiway
branching approach and node selection 
strategy X (as described in section 6.2 
on pages 188-190)

Binary BrawNng Multi-Way Brooch 1 Mi4tl-Way Branch 2
MtJtl-Woy Branch 3 -*•— Mutll-Woy Branch 4

Fig. 7.9: Multiway branching on HPW15.

below.

E H

Category li

Comparison of Solution Times
Probier HPW15

0.3

Nimfccr of Slav* Trtritpulart
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Category 3 i Mediu» Combinatorial Probl.

Comparison of Solution Times
Probbm  INGT274

0

y Browning Mid-Way Brandi 1 -■»- MJtt Way »awn 2
Mid-Way Brandi 3 -**- Mid-Way Brandi 4

Fig. 7.10: Multiway branching on INGT274.

Category 3i Large Cotbinatorial Problem»

*W» »«wrung Milt-Way »awn 1 -m- Mitt Way »own 2
Milt-Way Brand 3 -«•- Mill-Way Brandi 4

Fig. 7.11: Multiway branching on GY.
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g.fggry 3 1 L»rg. CcMt>ln»torl«l probli

I
I

Comparison of Solution Times
Problem WGT1345

r of Sb« Trcnputvi
Bloar, »andilng Mill-Way Brandi 1 -et- MUM Way *«*». 2
Min-Way Brandi J Milt-Way Brandi 4

Fig. 7.12: Multiway branching on INGT1345. 
Cafaory 4i fl»all h i p >rbhi —

Comparison of Solution Times
Problem G31

V,

Fig. 7.13: Multiway branching on G31.

229



Catagory 4i Small h i p Prahl —

Comparison of Solution Times
Probtam G3?

T
l

Hirrtomr of Slav* Trowpu1«ri

mnrnt a«wNng !4J»t-Wo|r B-troh 1 IMH Way a rm *  2
IMB-Wo* Br<n* S -**“  I4ill-Wcy Bra«» 4

Fig. 7.14: Multiway branching on G32. 

c a f o o r v  6 «  L i r a .  H I P  P r n h ]  —

«na» a«wM0B MJr-Wor B'<ron 1 -m - kMN-Way *wwh 2
aai-Woy II'are* 5 -*•- *Jll-Woy 4

F i g .  7 . 1 5 :  Multiway branching on MO0788.
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Discussion of Results

Appendix 4A lists the computational results in full. As can be 
seen from Figs. 7.9 to 7.15, multiway branching does not 
increase the speed of solution of the problems in the test 
set. In each case, the binary branching strategy under node 
selection strategy one (i.e. the default approach) tends to 
solve the problems more quickly. Although the slave 
transputers are more heavily utilised under the multiway 
branching scheme, the extra work does not provide much more 
useful information. More nodes are actually generated and 
attacked during the search, but the vast majority of these 
extra nodes provide results that are infeasible or worse than 
the cutoff. That is, the multiway branching scheme seems to be 
making work for idle hands. Only part of the increase in 
transputer utilisation is due to the increased number of nodes 
attacked. When an LP relaxation has been solved, if a 
feasible, but not integer-feasible solution has been found, 
data must be produced for up to four branches, as opposed to 
two branches under the binary branching scheme. Thus, the 
increase in transputer usage is probably due to more LP 
relaxations being solved and to certain nodes taking slightly 
longer to finish the work at the slave. So, under the present 
circumstances, multiway branching on general integer variables 
does not appear to be a good way of exploiting the available 
parallel processing facilities.
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7,3, Multiway Branchl _»p«ci»l OrdTid Beta

More promising multiway branching possibilities occur tor 
Special Ordered Sets UBeale and Tomlin, 19701).

A set of variables is said to form a Special Ordered Set of 
Type 1 (or an 81 set), if at most one of the set members can 
take a value that is greater than zero. In order for the SI 
set to be of use as a modelling structure, the set members 
must be such that they can be meaningfully ordered within the 
set. The ordering of the set members is provided by the 
Reference Row of the SI set, which is of the form

n

where 8,,Sa,...,SN are the members of the SI set, and X1( 
X 2, . . ., XN are items of data that correspond to the set 
members.
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The N set members are ordered so that Xl < X2 < ... < XN. If 
the Xt data items provide a meaningless or arbitrary order, 
the SI set cannot be exploited efficiently by the solution 
algorithm. If however, the Xt data items provide a meaningful 
order, better branches can often be made on the set than would 
otherwise be the case.

SI sets are often used in the modelling of a set of mutually 
exclusive actions, one of which must be made. For instance, 
the variables 81,8a,...,8N can be used to reflect N mutually 
exclusive decisions. The N 8 variables are specified as 
members of an SI set, and some output (e.g. a resulting cost 
or profit) is associated with each of the decisions. These 
outputs, the X4 data items, can provide the ordering of the 
set members.

The N different 8 variables can be used in the objective 
function with accompanying costs or profits, so that the 
output may be optimised.

To properly model the mutual exclusivity of the N decisions, 
it is also necessary to include a constraint of the form
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N.

N

& * ' - 1

and to state that 8} £ 0 for j=l, 2

This latter constraint is known as the Convexity Row for the 
SI set. Although it is not necessary to include the convexity 
row in order to use a SI set, it is essential to include it if 
the set members are meant to represent mutually exclusive 
decisions. The following discussion will assume that some form 
of convexity row is always present as part of an SI set, 
although the more general form

N
£  * S. •

will be used, where sc is the non-negative slack variable, and 
bc the right hand side, of convexity row c.

SI sets are commonly used within project evaluation models. If 
a single project must be chosen from a list of N candidates, 
the set of variables 8,, . . . , 8„ (which represent choosing or not 
choosing the various projects), are specified as an SI set. 
The definition of the SI set ensures that at most one of the 
set members will take a non-zero value, whilst a convexity row
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of the first form mentioned can be used to ensure that this 
value will be unity. The expected revenues from the different 
projects can be used to order the variables within the set 
(i.e. to provide the Xt values for the reference row).

Another useful type of Special Ordered Set is the Special 
Ordered Set of Type 2 (or S2 set).

A set of variables is said to form an S2 set if at most two of 
the set members can take values greater than zero. If two of 
the variables do take values greater than zero, the variables 
must be adjacent set members. Again, the set members must be 
usefully ordered by means of a reference row if the S2 set is 
to be of any use. S2 sets are mainly used in the modelling of 
nonlinear functions, where again, a convexity row of the first 
form mentioned must be part of the model. It will be assumed 
that a convexity row of some form is always present for an S2 
set.

The use of special ordered sets has made many intractable 
problems solvable by non-parallel Branch and Bound algorithms. 
This is because attacking a problem formulated using special 
ordered sets involves branching on groups of variables, and 
thus setting the values of several variables at once. A 
sensible branching strategy is of course necessary to ensure 
that the most promising subproblems are attacked.
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7_.3.1. Calculation« of K m t i m m t<d Degradations for Branching on 
8p#cl>l OrdT»d 8»t»

As mentioned in section 2.4.1, when deciding on an unsatisfied 
entity to branch upon after an LP relaxation has been solved, 
the usual strategy is to choose the entity which causes the 
most degradation to the LP solution. The estimated 
degradations to the LP solution caused by branching on special 
ordered sets are calculated as follows (adapted from [Beale 
and Forrest, 1976]).

Let variables 8,, 52, ... , 8N form an SI or S2 set, and have 
corresponding reference row values

X, < X, < ... < X*

and values in the optimal LP relaxation of

V,. V,...... ..

Calculate the average reference row entry
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and determine which variables have corresponding reference row 
values that fall on either side of it.
These variables are said to provide straddle points.
In Fig. 7.16 below, for instance, variables 8 3 and 8« are the 
members of a Special Ordered Set of Type 1 (SI set) that 
provide the straddle points. (Note that the branches indicated 
are numbered arbitrarily here) .

*7

Branch (1) Branch 12)

d ,  d 2 d 3 d< 

Branch (1): d  = 0 (or j > 3 

Branch|2): d( = 0 for | < d

X

d

d N

rig. 7.1«: Finding tha average reference row value and the 
straddle points for an SI set.

The average reference row value is assumed to provide a good 
guide as to which variable (for SI sets) or variables (for S2 
sets) should be allowed to take non-zero values. In the best 
possible solution to the problem, a single variable 8 , with
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averagecorresponding reference row value X* (i.e. the 
reference row value) , would have to exist and take a non-zero 
value. Since the variable 8 does not exist however, we 
attempt to make branches such that the variables that do exist 
(and are members of the set) take values that produce an 
identical average reference row value (and satisfy the set). 
The degradations to the LP solution that result from making 
such branches are used in the overall algorithm to determine 
whether the set is chosen as the unsatisfied global entity to 
branch upon next.

The task of estimating degradations caused by imposing the 
branches must be approached differently for SI and S2 sets, as 
follows.

Estimated Degradation caused bv branching on SI sets

In the case of SI sets, the effects of making a branch to the 
left straddle point are first determined. Since this is an SI 
set, it is assumed that only the left straddle point variable 
will take a non-zero value once the branch has been made. 
Assuming that there is a convexity row for the set, of the 
form
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+ 8e -  be

then the value of 6L when the branch la made (i.e. vL) can thus 
be calculated as (be - ■«••*), where ie"^ is the value of the 
slack variable in the optimal LP solution.

A vector can therefore be constructed containing, for each row 
i, the value of v,,C1L (where C1L is the coefficient in row i of 
the left straddle point variable 6L) . This vector is said to 
contain the "corrected" contributions of the variables to each 
row of the problem. That is, these are the values that the 
rows will take after the branch has been made and the values 
of the set member variables are corrected so that they satisfy 
the set.

Once the "corrected vector" has been constructed, an 
"uncorrected vector" containing the present state of the rows 
of the problem must be constructed for comparison.

The "uncorrected vector" contains, for each row i of the 
problem,
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where Ctj is the coefficient of variable in row i.

The difference between the elements of the uncorrected and 
corrected vectors represents the changes that we assume will 
be made in each row once the branch is imposed. In effect, the 
difference between the elements represents a move from the 
present solution, where several variables take non-zero 
values, to a solution that satisfies the SI set as an integer 
entity because only one variable takes a non-zero value.

The degradation to the LP solution incurred by changing each 
of the rows is then calculated. For each row, the contribution 
towards the total degradation is calculated by multiplying the 
distance moved by a per unit degradation figure for the row. 
The per unit degradation figure used for each row is 
calculated in a heuristic way (similar to that for general 
integer variables), as described in Appendix IQ.

The total estimated degradation to the LP solution that will 
be incurred if a branch is made to the left straddle point is 
finally calculated by summing the contributing degradations 
from each row.

^ C U V1
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The whole process is then repeated to determine the estimated 
degradation caused by branching to the right straddle point. 
The estimated degradation caused by branching on the set is 
assigned to be the minimum of the two. Although no decision is 
made as to where to branch until the set has been chosen as 
the entity to branch upon, Fig. 7.16 above shows the binary 
branches that are assumed as part of the process of 
calculating the estimated degradation for the set.

Estimated degradation caused bv branching on S2 sets

The effects of branching on an S2 set must be estimated in a 
different way, since the branch to be made may lead to one or 
two variables taking non-zero values. If two variables do take 
non-zero values however, we expect the variables to be 
adjacent, a fact that we can use when preparing a corrected 
vector to show the effects of branching.

As mentioned previously, the best solution for the unsatisfied 
set would be achieved if there existed a single variable 6 , 
which took a non-zero value and which had a corresponding 
reference row value X'
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In order to create the corrected vector for branching on an S2 
set, the effect of the artificial variable 8 is imitated. So 
that the average reference row value for the variable will 
still be X' (as shown in Fig. 7.17 below), the value, v", of 
8’ in the LP solution, and the coefficients, Ct_, of 8 ' in the 
different rows of the problem are interpolated from those of 
the straddle point variables.

The value V, of the artificial variable 8, (which is assumed 
to be the only variable to take a non-zero value after the 
branch) , is calculated as (be - scopt) .

For each row i, the coefficient Ct. of variable 8 is 
calculated as

weightL*C1L + weight„*ClR

where weightL and weight,, are measures of how near X* is to XL 
and X* (see Fig. 7.17 below), and C1L and C1B are the 
coefficients of the left and right straddle point variables 8L 
and S„ in row i.
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rig. 7.17: Example of branching on an S2 set.

The corrected vector is created, with each of the i elements 
calculated as C^v', and thus representing the state of row i 
if the branch is carried out.

The corrected vector represents the effects of branching in 
such a way that only the straddle point variables can take 
non-zero values (i.e. of producing the cheapest legal S2 set 
with the same average reference row as the LP solution) . 
Although, as mentioned above for SI sets, no decision is made 
as to where to branch until the set has been chosen as the 
entity to branch upon, this is the branch that is used as part 
of the process of estimating the degradation to the set.
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This degradation can now be calculated, as in the case of SI 
sets, by totalling the "distance" moved by the per unit 
degradation for each row (calculated in the same way as for SI 
sets, as described in Appendix 10).

tret+gles tor Special Ordered
W

Once it has been decided to branch upon a special ordered set, 
the conventional strategy used to make binary branches is as 
follows (from (Beale and Forrest, 1976]).

Firstly, determine which variables are the first and last set 
members to take non-zero values in the present LP solution, 
and name those variables 0A and 0B. A vector of interpolated 
coefficients can be created corresponding to any variable 
between 0A and 0B by calculating , for each row i,

C4J - (1-0)0* ♦ 0CiB

where 0 is defined by the equation

Xj - (1-0) XA ♦ 0XB
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The differences between the interpolated row coefficients and 
the actual row coefficients of the problem act as a guide to 
the extent to which the current LP solution misrepresents the 
consequences of giving the variable 8, the reference row value 
Xj in the optimal IP solution. Thus, a process similar to the 
comparison of the corrected and uncorrected vectors is carried 
out for each variable between and including 8A and 6B. The 
difference between the real and interpolated coefficients for 
each row i is weighted by the appropriate per unit movement 
penalty for the row (as described in Appendix 1G), to give a 
measure of the misrepresentation of the row. The sum of these 
misrepresentations is calculated over all the rows, to give 
the final total measure of misrepresentation for the variable.

The variable chosen for branching is the one which is being 
misrepresented the most (i.e. whose total measure of 
misrepresentation is the highest).

Branching <?n SI m s

Once the variable (5W) which suffers the worst 
misrepresentation has been determined, the conventional 
branching strategy for an SI set is to form two branches
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(1) setting 8, = 0 if the corresponding Xj £ X*
(2 ) setting 8j = 0 if the corresponding X} > X* 

as seen if Fig. 7.18 below.

Branch (1): d j = 0 lor | <= W 

Branch |2): d, = □ for | > W

X
XAw Xn

Brunch (2)
Branch (1)

d
1 1 1

dw dN

Fig. 7.18: The binary branching strategy as applied to Si 
sets.

The order in which these two branches are applied depends upon 
the estimated degradation to the LP solution incurred by 
making the branches. The branch which degrades the LP solution 
the least will be made first.

For the purposes of calculating the estimated degradations it 
is assumed that branch (1 ) (where 8, - 0 if the corresponding 
Xj £ XJ produces the same degradation as if 8W., was the only 
variable allowed to take a non-zero value, and branch (2 )
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(where 8j * 0 if the corresponding Xd > X*) produces the same 
degradation as if 5W was the only variable to take a non-zero 
value.

Corrected and uncorrected vectors are created and the effects 
of the change summed over the rows of the problem.

Branching on S2 sets

In the case of S2 sets, once 8W has been determined, the 
conventional branching strategy is to form two branches

(1) setting &) to zero if the corresponding Xj < X*
(2 ) setting 8S to zero if the corresponding X, > X*

as in Fig. 7.19 below. (N.B. The arrow-headed lines in the 
figure describe the branches where the variables are set to 
ZERO).

The order in which these two branches are made again depends 
upon the size of the estimated degradations caused by 
branching, with the branch that causes the least degradation 
being made first.
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Note that the effect of the branches in either circumstance is 
that variable 8W is always allowed to be non-zero and one of 
the variables adjacent to it is allowed (although not forced) 
to take a non-zero value.

rig. 7.19: The binary branching strategy as applied to S2 
sets.

The estimated degradations caused by making the branches on 
the S2 set can again be calculated by making use of corrected 
and uncorrected vectors.

Branch |1): d (= 0 for | < W  

Branch (2): d . = 0 for | > W

X

Branch (2) Branch (1)

d

d w d N
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ff*P*r«tlon gchaass for Multiway Branching on Social

Two different approaches to multiway branching will now be 
considered. Method One assumes that the technique of Beale and 
Forrest (described previously) for deciding which set member 
to branch on first, is to be used. Method Two ignores the 
Beale and Forrest technique for choosing the set member and 
branches in a fixed way, determined by the average reference 
row value.

The two methods may produce the same branches on a set if 
there are only a few set members, but if there are more than 
a few set members, the probability of different branches being 
made increases.

7.3.3.1. MultiwftY »rW hin 
Cfe9lg» of ■»•!» F 9 m  9%

Method One uses the technique described by Beale and Forrest 
(see section 7.3.2) for determining where to branch upon a 
set. Once a set member has been chosen, using the Beale and 
Forrest "worst misrepresentation" method, the multiway 
branches applied will be further determined by the type of 
set, the number of set members and the current bounds on the 
set.
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Multiway branching on SI sets using separation Method on«

The number and position of the multiway branches made on an SI 
set depend on the position of X., (the reference row entry for 
the worst represented variable S„, chosen using the Beale and 
Forrest criterion), with respect to the current upper and 
lower bounds on the set.

In the case where there are only two set members to branch 
upon, obviously only two branches can be made. If 8W is the 
first or last member of a set within the current bounds of the 
set, only two branches will be made (see Fig. 7.20 below).

Branch (I): d( ■ 0 tor i > W

I mi in—

LB**

Branch (?): d (> 0 tor | «  W

UB
Branch (I)- d( . 0 lor |

n ------ f
LB

Branch |?| d 0 lor | ». W

w  n
-i------1—

«W

Fig 7.20: Situations where two branches are made on an SI set 
using Separation Method One.
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In all other circumstances, three branches can be made, as 
long as there are at least three set members within the 
current set bounds that can be branched to (e.g. as in Fig. 
7.21) .

Branch (||: : 0 for | « W  aid | » W
Branch (2): d (* 0 lor | >• W  
Branch (3|: d (« 0 for | «• W

‘V/

rig. 7.21: The situation where three branches are made on an 
SI set using Separation Method One.

Branch (1) is always made so that only 8W can take a non-zero 
value. Branch (2) is always made so that only variables 8, 
where j < W (if there are any within the current bounds on the 
set) can take non-zero values. Branch (3) is made such that 
only variables 8, where j > W (if there are any within the 
current bounds on the set) can take non-zero values.

For the purposes of calculating the estimated degradations it 
is assumed that branch (2 ) (if it can be made) produces the 
same degradation as if 8W1 was the only variable allowed to 
take a non-zero value, and branch (3) (if it can be made) 
produces the same degradation as if 8*., was the only variable
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to take a non-zero value. Corrected and uncorrected vectors 
are created and the effects of the change summed over the rows 
of the problem. The branches will as usual be applied in 
ascending order of estimated degradation.

Multiway kranchinfl 90 S2 sets using separation Method One

The number and position of the multiway branches made on an S2 
set also depend on the position of X« with respect to the 
current upper and lower bounds on the set.

In the case where there are only three set members to branch 
upon, obviously only two branches can be made. If 8W is the 
first or last member within the bounds of a set with four or 
more members, two branches will be made (see Fig. 7.22 below) . 
If 8W is the second or second to last member within the bounds 
of a set with four or more members, three branches will be 
made (see Fig. 7.23 below). In all other circumstances, four 
branches can be made, as long as there are at least five set 
members that can be branched to (e.g. as in Fig. 7.24).
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Branch (2): d (= 0 for i > W*l Branch (4): d (= 0 for | « W

T

Branch (1): d( = 0 for | < W-l 

------(3)

t----------- r

Branch (3): d

- J - > d
UB

0 for I >: W

Fig. 7.22: The situation where two branches are made on an S2 
set using Separation Method One.

Bruch (f): d, : 0 for | > W .1 Branch (4|: d s 0 for | « w
Branch (2): d .= 0 lor | < W and | > W4|

----- 11)' |4)—

LB 1W UB
Bfiicfl (l|: 4 s 0 lor | < W 'l an< | > w

Bruch (2): 0  ̂ 0 lor | < W Bruch |3| » .

_ ^ > l  121—
0 lor | >i W

- - > d
UB

rig. 7.23: The situation where three branches are made on an 
S2 set using Separation Method One.
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Branch (1): d( = 0 for i < W-1 and j » W 

Branch (2): d ̂  0 for | < W  and i > W*1 

Branch (3): d ̂  0 for j >= W 

Branch (4): d ^ 0 lor | <= W

rig. 7.24: The situation where four branches are made on an S2 
set using Separation Method One.

Branch (1) is made so that only 5W and 8*^ can take non-zero
values (if both are within the current bounds of the set).
Branch (2) is made so that only 5W and 8„., can take non-zero
values (if both are within the current bounds of the set).
Branch (3) is made so that only variables 8J# such that j < W 
can take non-zero values (if there are any such variables 
within the bounds on the set). Branch (4) is made so that only 
variables 8J# such that j > W can take non-zero values (if 
there are any such variables within the bounds on the set).

For the purposes of calculating the estimated degradations it 
is assumed that branch (3) (if it can be made) produces the
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same degradation as if 5W1 was the only variable allowed to 
take a non-zero value, and branch (4) (if it can be made) 
produces the same degradation as if 5*., was the only variable 
to take a non-zero value. The estimated degradations for 
branches (1 ) and (2 ) are calculated in a similar way to the 
way that the estimated degradation is calculated as part of 
the process of choosing the set as the entity to branch upon. 
That is, an artificial variable is created between two of the 
set members and used to represent the effects of branching to 
them. The artificial variable created to estimate the 
degradation caused by making branch (1) is shown in Fig. 7.25 
below. Note that the artificial variable is created midway 
between 6W and

<r

rig. 7.25: Creation of an artificial variable to estimate the 
degradation caused by making Branch (1).
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Corrected and uncorrected vector« are created for each branch 
made and the effects summed over the rows of the problem. The 
branches will as usual be applied in ascending order of 
estimated degradation.

Multiway Branching gW r«tlon wthod Two, B«..d on . * 1
Jl**^ “T-^T-

Separation Method Two creates branches on SI and S2 sets based 
on the assumption that the average reference row value 
provides a good guide as to where to branch.

UUltiWflY ¿ranching gn SI sets using Separation Method Two

If multiway branching is considered on an SI set, an obvious 
separation under Method Two is to branch as follows. First 
find the average reference row value X' and the straddle 
points. Let 5l and 8* be the left and right straddle point 
variables, with corresponding reference row entries XL and X*.

Up to four branches can be formed
(1) setting 8, = 0 for j*L....N
(2) setting 8, ■ 0 for j-1....L-l and j-R..... N
(3) setting 8 3 ■ 0 for and j-R+1.... N
(4) setting 8 3 * 0 for j»l.... R

as in Fig 7.26 below
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Branch |1): d( * 0 lor | >« L 
Branch |2): d (» 0 for | « l  and | »  R 
Branch |3): d (> 0 lor | <> L aid | > R 

Branch |4): d ,* 0 for | «. R

— HI 1*1 I 01 Ml—  <j

Fig. 7.26: Multiway Branches made on SI sets under Separation 
Method Two.

It is hoped that either branch (2) or branch (3) will yield 
the optimal solution. Note that some of the branches might not 
always be necessary e.g. if 8L or 6, are the first or last 
members of the set respectively that are within the current 
set bounds.

The estimated degradations incurred by making branches (2) and 
(3) (i.e. by branching to the left and right straddle points 
respectively) have already been calculated as part of the 
process of choosing the set as the entity to be branched upon 
(see section 7.3.1). The estimates for branches (1) and (4) 
are calculated in exactly the same way. The branches are 
applied in ascending order of the estimated degradation that 
they will cause.
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Multiway branching on S2 sets using Method Two 
For S2 sets, up to three branches can be formed

(1) setting 8} = 0 for j=R,...,N
(2) setting 8, * 0 for j-1.... L-l and j»R+l.....n
(3) setting 6} = 0 for j«l,...,L 

as seen in Fig. 7.27 below.

These branches seem even more natural than the usual binary 
separation. It is hoped that branch (2), where the two 
straddle point vectors are allowed to take non-zero values, 
will yield the optimal solution. Note that again, some of the 
branches might not always be necessary e.g. if 8L or 8„ are the 
first or last members of the set respectively that are within 
the current set bounds.

Brined |l): dj ■  0 lor | »  R 
Brined |2|: d (> 0 for | < L md | » R 

Brined |3|: d (> 0 for | <> L

rig. 7.27: Multiway branches made on S2 sets under Separation
Strategy Two.
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The estimated degradations incurred by making the above 
branches are again calculated under the assumption that the 
average reference row value does provide a good guide to the 
best place in the set to branch. The estimated degradation 
caused by making branch (2 ) has already been calculated as 
part of the process of choosing the set as the entity to be 
branched upon (see section 7.3.1). The estimates for the other 
two branches are calculated in the same manner as the 
estimates for members of SI sets. That is, for the purposes of 
calculating the estimated degradations it is assumed that 
branch (1 ) (if it can be made) produces the same degradation 
as if 5l was the only variable allowed to take a non-zero 
value, and branch (3) (if it can be made) produces the same 
degradation as if 6„ was the only variable to take a non-zero 
value.

The branches are again applied in ascending order of the 
estimates of the degradation that they will cause.

7.J.4. »«»«U» pt with mutlw«y »ranching

It is important to test separation schemes such as those 
suggested above on real problems as there is a trade-off 
between exploring one entity in its entirety and a more depth 
first exploration of the tree. The various "depth-first" and 
"consider all" node selection strategies discussed in Chapter
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Six were thus used in conjunction with the multiway branching 
strategies previously discussed for special ordered sets. 
Tests were performed on the problems shown in Table 7.2 below.

Problem Category NROW NCOL NGLENT Description

DOM1 6 796 585 1 1 10S1(3),1S2(11)
MCA 6 412 648 22 1S1(5),1S1(6 ),1S2(4),

18BV,1012
MINE1 2 351 320 155 5S1(15).150BV
MINE2 2 359 338 168 8SK10) , 160BV
SETX 4 13 2 1 3 381(6)
Key:
2S1(3) - 2 SI sets, each with 3 au{E

5S2(6 ) - 5 S2 sets, each with 6 members.
3BV 3 binary variables
7GI4 - 7 general integers with lower bounds of 0 and upper

bounds of 4.
Problem Categories: Medium Combinatorial (2); Small MIP (4); 
Large MIP(6 ) .

Table 7.2: Test problems for multiway branching on special 
ordered sets.

The two new problems, MINE1 and MINE2 are strategic planning 
models concerning the closure of coal mines over a period of 
years.
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Branching variable priorities

Special ordered sets and binary variables are often used to 
represent very important features of a model, such as mutually 
exclusive decisions or different modes of operation. It is 
therefore likely that special ordered sets and relevant binary 
variables should be preferred for branching over other less 
important variables. For instance, there is no point in 
deciding what colour a factory will be painted if it is built 
before deciding whether or not to build it.

In order to establish the merits of using branching variable 
priorities with multiway branching techniques, the test 
problems were attacked using the following combinations of 
node selection and branching strategies.

BB:no priority Binary branching strategy, choosing where
to branch on the set using the Beale and 
Forrest criteria, no branching variable 
priorities defined.

MWB:B+F:no priority Multiway branching strategy, choosing 
where to branch on the set using the 
Beale and Forrest criteria (i.e. 
Separation Method 1 from section 7.3.3), 
no branching variable priorities defined.
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MWB:B+F:priority

MWB:Fix:no priority

MWB:Fix:priority

Strategy X:Problem

Multiway branching strategy, choosing 
where to branch on the set using the 
Beale and Forrest criteria (i.e. 
Separation Method 1 from section 7.3.3), 
special ordered sets given priority for 
branching over other variables.

Multiway branching strategy, choosing 
where to branch on the set using fixed 
branching criteria (i.e. Separation 
Method 2 from section 7.3.3), no 
branching variable priorities defined.

Multiway branching strategy, choosing 
where to branch on the set using fixed 
branching criteria (i.e. Separation 
Method 2 from section 7.3.3), special 
ordered sets given priority for branching 
over other variables.

Problem Y attacked using node 
selection strategy X (as defined in 
section 6.2 on pages 188-190).
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The computational results are shown in Figs. 7.28 to 7.47. 
Problem SKTX (Small MIPI

Comparison of Solution Times
Node Selection Strategy 1 problem SFTX

* »no priority -o- WWBStFmo priority or U*9*.i,y o-,.ytSarSno plolly -to 0001 rjrtrl'y

Pig. 7.2«i Multiway branching on SETXinode selection 
strategy 1 .

Comparison of Solution Times
Node Selection Strategy ? problem SFTX

Pig. 7.2»: Multiway branching on SETXinode selection
strategy 2.
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groblMt SST» (»»«IX mp)

Comparison of Solution Times
Nod« Selection Strategy 3:Probl«m SETX

Numb» of Save Trc

- *  Bftno priority — MWBS4F:no priority MWM tf¡priority 
MWB:Fbcno priority -•* - MWBf lx?rlarlty

Fig. 7.30: Multiway branching on SETX:node selection 
strategy 3.

Comparison of Solution Times
Node Selection Strategy 4¡Problem SETX

Fig. 7.31: Multiway branching on SETX:node selection

strategy 4.
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Probl» m i  IM.dlu» Co^lMtorl.ll

Comparison of Solution Times
Nod. Sektion Strategy 1 Problem MNF I

~ ~  « n o  priority MWHflft no priority -m - MWM+fpriorify
WWB Tb.no priority -*•- MWBf Inprlortty

Fig.7.32: Multiway branching on MINElinode selection 
strategy 1 .

T
I

Comparison of Solution Times
Node Selection Strategy 2:Problem MINF1

Nimbor of Slavo Trc

Bftno priority MWBStt no priority MW9* It priority
WWB Tb.no priority -*•- WtfBiTcprtarKy

Fig.7.33: Multiway branching on MINE1inode selection
strategy 2.
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Problwn l u l l  (M»dlvM Co«J>ln»torl«l)

Comparison of Solution Times
Nod« Selection Strategy 3:Problem MNF1

300 

250 

V  200 

1 , 0  

I  100

so

0 1 2 3 4 9 * 2  S
Numbor ol Slav* Tranoputoro

-• BBna priority MWHSti no priority -**- MWM+f priority
-m- MWBTb.no priority MWBflcprlarlty

riff.7.34: Multiway branching on MINEl:node selection 
strategy 3.

~~ Bfcno priority MWHflO :no priority MWM>+priorityMWBrb.no priority -*» MWBf I «priority

rig.7.35: Multiway branching on MINEl:node selection
strategy 4.
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Probl» NIW»3 (Mxllu» Co-bln.torl.il

Comparison of Solution Times
Node Selection Strategy 1.-Problem MINF?

2500

8ftno Priority MWB«4F:no priority MWM+f priorityMWB:Fbcno priority -#*- MWBiTcprlartty

rig.7.36: Multiway branching on MINE2:node selection 
strategy 1 .

Comparison of Solution Times
Node Selection Strategy 2.-Problerr MINF?

8ftno Priority MW8fl+F:no priority MWM+f*rlorltyMWB Fbcno priority -H- MWmcprlcrlty

Fig.7.37: Multiway branching on MINE2:node selection
strategy 2.
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Probl—  MXN»? (Media» Combinatorial)

Comparison of Solution Times
Node Selection Strategy 3:Problem MINF?

2500

— -  BSno priority MWH«tF no priority MWBStfpriority
-*»■  MWBFb.no priority -*•- MWBflcprlartty

Fig.7.38: Multiway branching on MINE2:node selection 
strategy 3.

Comparison of Solution Times
Node Selection Strategy 4:Problem MINF2

5000 

2500 

-S' 2000 

1500

I  1000

500 

0
1 2 3 4 5 S 7 8

Huirtow of Stovo Trmputori
Bftno priority MWHSU :no priority MWitt Apriority“• MWB Fb.no priority MWBf Apriority

Fig.7.39: Multiway branching on MINE2:node selection
strategy 4.
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Probi«» d o m i  ( L t r w  HIP!

Comparison of Solution Times
N o d «  S a la e t lo n  S t r a t e g y  1 f r o b t e m  DO M I

rie. 7.40: Multiway branching on DOMI : node selection 
strategy 1.

Comparison of Solution Times
Nod« Selection Strategy 2:Probl«m D0M1

rig.7.41: Multiway branching on DOMI¡node selection
strategy 2.
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P r o b i «  DONI IL.rg. n n

Comparison of Solution Times
Node Selection Strategy 3:Problem DOMI

Bftno priority — WWBStino priority MWM+f priority
WWB Tb.no priority -**- WWBfhcprlarlty

Fig.7.42: Multiway branching on DOMI : node selection 
strategy 3 .

Comparison of Solution Times
Node Selection Strategy 4:Problem D0M1

Bftno priority — WWHfl tfno priority MWftfltfpriority
WWB Fb.no priority -*•- WWBfliprlarHy

Fig.7.43: Multiway branching on DOMI:node selection
strategy 4 .
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Probi«» MCA IL.ni. m i

Comparison of Solution Times
N o d «  SdtocHoo Strategy I :P ro b  n m  M C A

B®no priority UWHfltt no priority MWftfltfpriority
MWB:Fbcno priority MWBf ftcprlartty

Fig.7.44: Multiway branching on MCA:node selection strategy
1 .

Comparison of Solution Times
Node Selection Strotegy 2 .-Problem MCA

B* "0 priority MWHfltt :no priority MWM+f priority
" • *  MW* rb.no priority MWeflcprlarity

Fig.7.45: Multiway branching on MCA:node selection strategy
2 .

271



Probi«» MCA (L.rg. HIP)

Comparison of Solution Times
Node Selection Strategy 3:Problem MCA

Fig.7.46: Multiway branching on MCArnode selection strategy 
3.

Comparison of Solution Times
Node Selection Strategy 4:Problem MCA

Bftno priority MWB«*F:no priority MWM+fpriority
MWB Tb.no priority -*0- MWBf teprlarlty

Fig.7.47: Multiway branching on MCA:node selection strategy 
4 .
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Discussion of Results

Appendix 4B lists the computational results in full. The 
test problems will be considered here in order of their 
different size categories.

Small Problems

It can be seen from Figs. 7.28 to 7.31 that, no matter 
which of the node selection strategies is used, the best 
results for solving the small MIP SETX come from using the 
fixed separation approach to branching. The fixed 
separation approach with no branching priorities gives the 
best overall results in all cases. As this problem only 
contains sets as integer-constrained global entities, the 
effects of the priorities can be ignored, as all sets were 
given equal priority. Any slight difference in results from 
runs where priorities were or were not used are probably 
caused by the nondeterminacy of the algorithm. Thus, the 
good solution times for this problem were due to the use of 
the fixed separation approach to branching on special 
ordered sets. It is worth noting that these solution times 
were usually better than those for the binary separation 
approach.

Since SETX is always solved very quickly (and the overall 
average transputer usage never exceeds three), most of the 
solution times are very similar and it is thus not possible
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to make much of a comparison between the various node 
selection strategies. It is noted however that the "compare 
all nodes" strategies (i.e. strategies 1 and 2 ) do tend to 
perform slightly better overall. They produce slightly 
faster solutions than the "depth first" strategies (i.e. 
strategies 3 and 4) when used in conjunction with the Beale 
and Forrest separation approach and solutions that are at 
least as good when used with the fixed separation approach. 
Within the "compare all" and "depth first" strategy classes 
there appears to be no benefit to using the Forrest-Hirst- 
Tomlin criterion to compare nodes as opposed to the best 
estimate criterion.

Medium-Si zed Problem?

The medium sized (combinatorial) problem MINE1 reacts as 
follows in the various tests (as shown in Figs. 7.32 to 
7.35). In this case, the fixed separation branching 
strategies produce solution times that are generally worse 
than those of the strategies based on the Beale and Forrest 
separation criterion, although the gap narrows as more 
transputers are used (and the average transputer usage 
settles down between three and four).

The use of branching priorities has a fairly large 
detrimental effect on the problem solution times, although 
the damage is smaller when the "depth first" node selection 
strategies are used, since the depth first searches tended
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to branch on the sets early in the search and proceed from 
there.

The binary branching strategy actually performs the best 
overall, but the multiway branching strategies produce 
comparable results when four or more slave transputers are 
used.

Again, the "consider all" node selection strategies produce 
better results than the "depth first" strategies 
(especially when only a small number of transputers are 
used), as less solutions are found and fewer nodes searched 
overall. The "depth first" strategies still produce 
reasonable results however, when four or more slave 
transputers are used. This is due to reasonably good 
solutions being found by the depth first search, allowing 
the fathoming of many nodes at once.

Within the "compare all" and "depth first" strategy classes 
there appears to be some benefit obtained by using the 
Forrest-Hirst-Tomlin criterion in conjunction with the best 
estimate criterion to compare nodes as opposed to using 
only the best estimate criterion.

The medium sized (combinatorial) problem MINE2 performs in 
a fairly similar way to MINE1 (as can be seen in Figs. 7.36 
to 7.39). The same effects are noted for both problems, 
although on different scales.
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Again the use of branching priorities has a detrimental 
effect on the problem solution times, although the effect 
is much more visible for this problem. When the problem is 
attacked without using branching priorities it is solved 
much more quickly. Indeed, the solution times obtained 
using multiway branching are at least as good as those 
obtained using binary branching if branching priorities are 
not given to the sets.

The fixed branching strategies still produce results 
slightly worse than those of the strategies based on the 
Beale and Forrest criterion, although if branching 
priorities are not used, the results are very similar 
indeed for this problem as the average transputer usage 
settles down to between four and five.

The "consider all" node selection strategies still tend to
provide slightly better results than the "depth first"
strategies. Within the "compare all" and "depth first-
strategy classes there again appears to be a benefit
obtained by using the Forrest-Hirst-Tomlin criterion in 
conjunction with the best estimate criterion to compare 
nodes as opposed to using only the best estimate criterion.
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Large P r i s i n g

The test results for the large (MIP) problem DOM1 can be 
seen in Figs. 7.40 to 7.43).

Firstly, it is encouraging to see that all of the multiway 
branching strategies produce better results than the binary 
branching strategy during most of the tests on this 
problem.

The fixed branching strategies again produce worse results 
than those of the strategies based on the Beale and Forrest 
criterion (although all strategies are again hindered by 
the use of branching priorities). Also, the "consider all" 
node selection strategies again tend to provide slightly 
faster solutions than the "depth first" strategies, 
especially when only a small number of transputers are 
used. Within the "consider all" and "depth first" 
categories, very little difference is observed between the 
effects of comparing nodes using the Beale and Forrest 
criterion and using the best estimate criterion for this 
problem.

The results for the final large (MIP) problem, MCA, are 
shown in Figs 7.44 to 7.47. Again, it is gratifying to see 
that it is possible to improve upon the solution time for 
the problem by making use of multiway branching as opposed 
to the conventional binary branching techniques.
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The solution times for this problem however are greatly 
affected by the use of branching priorities. When branching 
priorities are used, the fixed branching strategies produce 
solution times that are very similar to those of the 
strategies based on the Beale and Forrest criterion. Both 
of these methods produce better solution times than the 
binary separation method under these conditions.

However, when branching priorities are not used, the 
familiar pattern of the fixed separation method producing 
worse solution times than the Beale and Forrest method is 
observed. In these cases, the solution times depend upon 
the node selection strategy used. Using the "consider all" 
strategies produces solution times that are slightly worse 
than the binary separation method (although the difference 
is quite small when several transputers are used). Using 
the "depth first" strategies under these circumstances 
allows solution times that are very similar to or only 
slightly worse than those produced by the binary separation 
method.

Within the "consider all" category of the node selection 
strategies no advantage is gained by using the Forrest- 
Hirst-Tomlin criterion in conjunction with the best 
estimate criterion as a way of comparing nodes. Within the 
"depth first" category however, better results were usually 
obtained by using the best estimate as the only criterion 
when comparing nodes.
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Conclusions
When attacking the larger problems in the test set, the 
performance of our parallel Branch and Bound algorithm was 
improved by making more than two branches on special 
ordered sets. When attacking the smaller problems in the 
test set, multiway branching techniques were used to 
achieve a performance close to that obtained by binary 
branching, as long as a fairly large number of slaves were 
used.

The small number of test results obtained seem to indicate 
that multiway branching is best used in conjunction with a 
"consider all" node selection strategy (such as the default 
strategy decided upon previously), as this seems to produce 
the best results for medium to large problems. It may be 
worth considering changing the method of comparing nodes to 
allow the inclusion of the Forrest-Hirst-Tomlin criterion 
once an integer feasible solution has been found when 
dealing with problems containing special ordered sets.

No real preference can be given to either of the methods 
for multiway branching due to the small number of problems 
available, although it is noted that the Beale and Forrest 
separation criterion for branching on special ordered sets 
have given better or equivalent results for most of the 
test problems.
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Finally, giving branching preference to special ordered 
sets has been shown to be a two-edged sword when attacking 
our set of test problems. It has proved to be of great 
benefit to the solution of one of the test problems, but a 
hindrance to the solution of the others. It is worth noting 
that the benefits gained from using priorities were eroded 
as more slave transputers were used, perhaps an indication 
that priorities can be ignored if a large number of 
transputers are to be used.
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Itlone

Conclusions as to the value of the algorithms used and the 
way in which they were implemented can be reached by 
considering the results of the previous chapters.

One perhaps obvious conclusion can be drawn immediately 
referring to the implementation of the present parallel 
farming algorithm, as discussed in Chapter Five. When using 
network MIMD hardware such as the transputer, where the 
processors do not have access to a shared global memory, 
the farming algorithm used will eventually face the problem 
of a bottleneck at the master processor. The master 
processor performs a cycle wherein it chooses LPs to be 
solved, and sends them to idle slaves. The cycle is only 
interrupted by LP solutions being returned, or by the 
optimal solution to the problem being found. If the master 
processor cycle is frequently interrupted by the return of 
LP solution information via messages from the slave 
processors, there will not be much time to send out new LP 
relaxations to idle slaves.

This raises the issue of the required balance between 
calculation and message-passing on the processors. Chapter 
Five indicates that, for a small number of processors at 
least, the bottlenecking problem can be minimised by 
careful design of the algorithm and its implementation.
The master processor cycle was modified so that the choice
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of which LP to send next could be made as quickly as 
possible. The actual messages sent to and from the slave 
processors were also altered so that they could be sent 
more quickly. This allowed the master algorithm to send out 
more LP problems in a given amount of time, and allowed the 
slave algorithms to spend more time in solving the LPs and 
less time in passing messages.

However, when larger numbers of processors are used, the 
bottlenecking problem will again become an inhibiting 
factor on the performance of the algorithm. The results 
from the smaller test problems attacked in Chapter Five 
probably reflect what will happen with the larger problems 
when more slave processors are available. As more messages 
need to be sent to more slave processors, a limit will be 
reached on the average number of slave transputers that can 
be used to solve a problem. After a certain point, the 
master algorithm cannot send out enough LP problems to keep 
all the idle slaves busy, as it is interrupted too 
frequently by the return of LP results from busy slaves.

The answer to this problem would be to move from the 
centralised list farming algorithm presently in use, to a 
distributed list farming algorithm, if more slave 
processors are available. It is the fact that all the 
information concerning the enumeration of the search tree 
is placed on the master processor for decision making 
purposes (i.e. that there is a centralised list), that
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causes the bottleneck at the master processor, if the 
slaves were able to pass their results to different 
"masters" for use, the bottlenecking problem, although not 
removed, would be reduced (or perhaps more accurately, 
spread out).

An outline for a proposed distributed list (DL) farming 
algorithm for use with ten or more transputers is as 
follows.

The three transputers that are directly connected to the 
root (i.e. master) transputer could be designated sub­
masters. The search space of the problem to be attacked 
could be pre-partitioned based on user-defined priorities, 
and each of the sub-masters would be given an appropriate 
subset of the search space to work on. Each of the sub­
masters would also be allocated a number of slave 
processors (i.e. a "sub-slave" group) with which it could 
easily communicate (allowing for the limited number of 
processors that could be directly connected to each sub­
master) . The algorithm could then proceed in a similar way 
to the centralised list (CL) algorithm, with each sub­
master generating its own candidate list of nodes to be 
branched upon, choosing LP relaxations and sending them to 
its sub-slaves for solution. Any change in the cutoff 
information resulting from an integer-feasible solution 
being found would be broadcast to all the other processors 
by the appropriate sub-master.
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This concept of "sub-masters" and "sub-slave groups" could 
be extended dynamically when bottlenecking problems again 
became serious, so that each of the sub-masters could 
transform one or more of its sub-slaves into "sub-sub­
masters" as the need arose.

The pre-partitioning of the search space would also be a 
good step forward for the algorithm since for the altered 
algorithm to be truly useful a Dual Simplex algorithm would 
have to be placed on the slaves/sub-slaves, along with the 
existing Primal Simplex algorithm already in use. The Dual 
Simplex algorithm can be used to very quickly solve an LP 
problem if the information on the parent of the problem is 
available. Thus, if the sub-master chooses as the next node 
to be branched upon, the son of a node just solved, the 
slave processor containing the information on the parent 
would be chosen to solve the new LP. The only difference 
between the parent and son nodes would be the bounds on one 
of the integer-constrained entities. Thus, only these new 
bounds need be sent to the slave, which could then use the 
Dual Simplex algorithm to quickly find the new LP solution.

It is worthwhile at this point to note why the potentially 
useful combination of the Dual Simplex algorithm and the 
policy of solving an LP relaxation on the same slave as its 
parent was not used by our centralised list farming 
algorithm when testing the depth-first node selection 
strategies in Chapters Five and Six.
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Firstly, the version of the XPRESS-MP code on which our 
algorithm is based does not support a Dual Simplex 
algorithm. Although more recent versions of XPRESS-MP have 
added a Dual Simplex algorithm, in the process of doing so, 
many of the data structures used to hold LP information 
were changed. Thus, in order to make use of a Dual Simplex 
algorithm, either a large proportion of the coding of our 
present algorithm would have to be rewritten so as to 
enable the use of the new XPRESS-MP data structures, or a 
Dual Simplex algorithm would have to be written from 
scratch. Neither of these possibilities were considered, 
due to the time that would be involved.

Secondly, the transputers used did not have enough memory 
to make room for both a Dual and a Primal Simplex algorithm 
on each slave, as well as the necessary message-passing and 
node creation routines.

If the sub-master, sub-slave algorithm was to be 
implemented in the future, it would be worthwhile to change 
the data structures used by the LP-solver so that the Dual 
and Primal Simplex algorithms of the later versions of 
XPRESS-MP could be used. Although this would involve 
replacing the current hardware with a system where the 
transputers had access to a greater amount of personal 
memory, this would have to be done anyway in order to 
replace the current clear path message-passing system, 
which could not be used with a larger number of processors.
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The clear path system was devised so that only the minimum 
amount of the memory of slave processors had to be 
allocated to message-passing routines. Although a clear 
path system could conceivably still be implemented for the 
message-passing between members of sub-master, sub-slave 
clusters, it is thought that the total message-passing 
overheads amassed by a system containing many sub-master, 
sub-slave clusters would be large. This problem can 
forseeably be overcome in one of two ways.

Firstly, a fully buffered message-passing system could be 
developed, wherein the full LP relaxation or LP solution 
details being passed from transputer to transputer could be 
stored in data structures if enough memory was made 
available.

Secondly, a system could be devised to make use of the new 
Inmos T9000 transputer ([Inmos, 1991]). One of the claims 
that Inmos make for such a system is that any of the 
transputers therein would be able to communicate directly 
with any of the other transputers. This would obviously 
remove the need to save LP information on a slave 
transputer before passing it on to its final destination.

The introduction of hardware with more personal memory 
available on each transputer would have several advantages 
beyond the replacement of the clear path message-passing 
system. Additional memory available on the master processor
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(or the sub-master processors) would allow more (or all) of 
the long node information for the MIP problem to be stored 
in the personal memory, thus reducing (or removing) the 
delays caused by the disk-reading operation. Indeed, if the 
sub-master, sub-slave algorithm was to be introduced, this 
additional memory would be essential, since the sub­
masters, which are not connected directly to the PC, cannot 
read from or write to the hard disk of the PC.

Even when using the current centralised list farming 
algorithm, if the disk reading operation could be removed 
from the master algorithm, this would help greatly to 
reduce the non-determinism of the algorithm. If the long 
node information could always be retrieved from memory in 
the same amount of time, the same number of LPs should 
always be sent out to the slaves. Although it is not 
certain that the slaves would always be interrupted at the 
same point in their cycles, the likelihood is greatly 
increased.

Chapter Six shows that the node selection strategy used by 
the parallel algorithm can have a great effect on problem 
solution times. A strategy whereby all candidate nodes are 
considered for branching and are compared using the best 
estimate criteria has been chosen as the default node 
selection strategy for use with our parallel Branch and 
Bound algorithm. This strategy has performed well when used 
to attack the (admittedly small) selection of problems in
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our test set. Although not many test problems were 
available, they were of different types and sizes, i.e. 
combinatorial and MIP problems of different sizes, that 
have been formulated using assorted types of integer- 
constrained entity. Using this node selection strategy 
almost always produced one of the better solution times 
achieved for each of the test problems in Chapter Six. In 
the circumstances where using this strategy did not lead to 
the fastest solution times for a problem, the solution 
times it did achieve were not much worse, especially if a 
large number of slave transputers were used. These results 
are mainly due to the strategy successfully finding good 
integer-feasible solutions which are of great use in 
fathoming nodes and reducing the overall search space.

Chapter Seven shows that the use of multiway branching 
techniques can help to reduce the solution times for 
certain types of problem in our test set. The test problems 
formulated using general integers did not respond 
particularly well to the use of multiway branching 
techniques, as the extra branches made only served to make 
work for idle hands. In the case of the test problems 
formulated using special ordered sets however, some benefit 
was gained by making use of multiway branching techniques. 
Experiments were carried out to test the effects of using 
two different multiway branching strategies in conjunction 
with several different node selection strategies. The small 
set of test problems attacked contained small, medium and
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large IP problems formulated using both SI and S2 sets. The 
results show that, for the larger MIP test problems at 
least (i.e. the category in which we are interested), the 
use of multiway branching techniques can increase the 
performance of the parallel Branch and Bound algorithm 
beyond that achieved by making use of the conventional 
binary branching strategy. When the smaller problems were 
attacked, the solution times achieved were still similar 
to, though not as good as, those achieved under the binary 
branching scheme.

The best test results were achieved by making use of 
multiway branching techniques in conjunction with a 
"consider all nodes" node selection strategy similar to the 
default strategy decided upon above. The results indicated 
however, that it may be worthwhile to change the method of 
comparison of nodes to incorporate the use of the Forrest- 
Hirst-Tomlin criterion once an integer feasible solution 
has been found when dealing with problems formulated using 
special ordered sets.

The use of simple branching variable priorities in 
conjunction with multiway branching techniques was shown to 
be of varying value. In most of the experiments carried 
out, the presence of branching variable priorities actually 
hindered the search for the optimal solution, although in 
the case of one large problem, exactly the opposite effect 
was observed. It is thus thought that the default approach
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will be to not use such priorities, but to allow the user 
to define priorities for any problem if desired.

In conclusion, the small number of test results obtained 
indicate that the parallelism of the Branch and Bound 
algorithm can be exploited in order to reduce the solution 
times of certain categories of IP problem, especially the 
larger MIP problems in which we are interested. The 
structure of certain types of large problem (i.e. those 
formulated using special ordered sets) seems to be such 
that multiway branching techniques can be effective in 
their solution. Good results may be obtained for some 
problems even when using a relatively small number of 
parallel processors, as long as the algorithm and code are 
carefully designed.

Although the limits imposed by the hardware used have 
prohibited the solution of some extremely large problems, 
it is thought that these too would be soluble if these 
limits could be overcome. A larger number of parallel 
processors will be necessary to effectively solve very 
large MIP problems, and thus a more advanced parallel 
algorithm (such as the sub-master, sub-slave algorithm 
discussed above) will need to be implemented to overcome 
the bottlenecking problems foreseen. New technology, such 
as the Inmos T9000 transputer mentioned above, however, may 
reduce the effects of bottlenecking by allowing easier 
communication between all processors.
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It will thus be possible in the future to carry out further 
research into the design and implementation of parallel 
algorithms for the solution of very large MIP problems 
using transputer-based hardware. Judging by the results 
achieved with a small number of parallel processors, this 
should prove to be a fruitful area for years to come.
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J W B d l K  1A. Darivatlon of th. Oomory Cut for H t  Probl— a

To dolina a Oonory cut and show that it la appropriato for tha purpoaa of roducing tho 
aolution apaca of PIP problem, without ramoving any intagar faaaibla solutiona. conaidar 
tha following, adaptod from (Oarfinkol and Nomhauaar, pp 157-158):

Tha optimal tabloau for a PIP problom may bo roprosontad by tho formulation

Vi-0.1,2, ...» (1)
x, i 0 and inta<

R ■ aat of non-baaic variablea
x,, ■ baaic variablo for row i
x, ■ non-baaic variabloa
• i l  • coafficiant of variablo x„ in row i
b, a right hand aida conatant.

Sinca >„ 1 0 by dafinition.

' " ' I s 1'“ 1'' “ 1' <2>

C(a„| ia tha intagor part of a„).

Alao, ainca ail tha x variabloa muât ba intagora. tha laft hand aida of (3) 
intagor, tharaforo

*$ïR lav ]xJ * (3)
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(l)-(J) gives

Z( we now define

b, ■ (b,l ♦ o, and a„ » (a,,) ♦ f„ 

then (4) becomes

(5)

Thia can be written as

JgRf ‘) xl  ’ 9 a * •  <«>

where a 2 0 is a slack variable for the new constraint. 

Thia is the Gomory Cut.

Note that if fl, > 0 then (9) is violated, since x, ■ 0 if j is a member of set R. Thus the 
cut can be used to exclude solutions where g, > 0 (i.e. where basic variables take non- 
integer values). No integer feasible solution will be omitted by using the cut. since in 
its derivation, the integrality of the x variables la assumed.
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Thu», substituting in (•), sithsr

Si 1 a, <»>

or

£ - 1 ( 10)

Now, lot V  ■ (J|j Is s mambar of sot R, , e„ > 0 >) and
*< ■ (J|J is S member of sot Ra , S„ « 0 ).

Thon, if (9) is truo, so is

£ h /> ix, • £ R;eu yi 1 Or <“ >

Sines, by definition. f„ 2 0 for oil J in R,, if (10) is truo. so is

‘ O' - 1

and hones, so is

£ r ,9» y> ‘ Oi - 1 <“ >

Multiplying (12) by g,/(g,-l), which is nagativo, gives

_ E  Qi »»y,
J c r 2 (1 - gt) * 9i (13)

Sines (11) and (13) ars Mutually exclusive, a Joint condition con be expressed as 
follows)
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* & • « * «  ■ Ä l T ^ V  * « (14'

This ia tha Oomory Cut tor HIP problem«.

(14) can be Improved if there exiat membera j of the aet R,

Xf ao. let R,' ■ (J|J la a member of aet R,, f„ i g,); ar 
*i- ■ (ill I« • member of aet R, , f„ > g, ».

Subtracting

froai both aidea of equation (•) give«

XB1 E
Je*.’

E ([a l ) X j E

E £h°>jyj - t*i) »

* Ä (f“ ‘ 1)x> * * g‘

WH*»** * - l,J% * jS l* « *  * o>

■uch that f„

f ijXj

(15)

(16)

- 1 (17
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Sine« (f„ - 1) will «lwaya be negative for j in and •„ will always be negativ« for 
j in Rj", if (16) is tru«, so ia

E
J e«,

E
j e « ; e „y , »»< (18)

Similarly, if (17) is tru«, ao is

E
J e« ; J e« , ®i,Vj s - 1 (19)

Multiplying (19) by g,/(g,-l). which ia negativ«, gives

' (i ’-a,) (jF«,(r«  ' 1 ( * jf«, e« y>) 1 3‘ (20)

Thua, sine« (16) and (30) are mutually exclusiv«, a Joint condition can b« expressed as 
follows;

E
Je«,"

E gj(l - fglXi
j e « ;  ( i  - g,)

E
JE«,

. E
Jc r; (1 - gt) * 9i

Thla ia th« tightest Oomory Cut for NIP problems.
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Liofi_oi_

Bandars' algorithm allows tha solution of an HIP by rawritlng It as a PIP.

Conaidar tha following, adaptad from (Oarflnkal and Namhauaar. pp 135-143;

Considar tha NIP problam

x," ■ MAX x, ■ cx ♦ dy
Ax * By i b 111
x 2 0 and intagar, y 2 0

For any non-nagativa valua, x».,, of tha Intagar vactor x, tha NIP problam (1) raducas to 
tha LP (2)i

x,,(xv.,l - cx.., ♦ NAX dy

Looking at tha solution to tha dual LP (3) provides insights into tha choice of x., 
necessary to give an optimal solution to NIP problem (1). By LP duality theory, if NIP 
(1) is to hava an optimal solution, the dual LP (3) must not be infeasible or unbounded. 
Since tha dual constraints are completely independent of x..,, if tha dual LP <3) is 
infeasible, than tha NIP problam (1) is either infeasible or unbounded. If tha dual LP 
(3) is unbounded, this implies that its objective function is decreasing along soma 
extrema ray (sea Fig A1.1 below) . Thus, there exists an extrema point u*" and a direction 
v such that every point on tha extrema ray

u“1 ♦ 0v (6 2 0)
is feasible to the dual LF (3).

M b  - Ax..,
y 2 0

The dual of LP (2) is:

Ut'lx.,1 ■ cx.., NIN u I
uE 2 d
u 2 0
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rig. Al.l: The case where the 
Dual LP (3) is unbounded.

Thu«, when th« dual LP (3) 1« unbounded, It« objective (unction may be written in term« 
of the extreme ray

U, « (tt* ♦ ®v) (b - Ax..,)

where T ■ Cu'lu* 1« an extreme point of dual LP (3)) and where u, decreaaea with 8. 

Removing conatant term«, thia can be rewritten aa 

u, • 8v(b - Ax.., I , which decreaaea with 8.

Since 8 2 0, then v(b - Ax..,) < 0 and ao if 0 ia a aet of directiona auch that 

Q ■ {v*|u* ♦ 8v"\ 8 2 0 la an extreme ray for aome u' a T) 

it ia aufflcient to impoae the conatraint 

v*(b - Ax) 2 0  for every V  a Q

in order to rule out x^, candidatea which will cauae the dual LP (3) to become unbounded. 
Since thla is the only case that we are interested in, we may rewrite the dual LP (3) aa
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“o' <*v.i> - C X v ., Hun“ 'l* Ajc)

v*(b - Ax) i 0 for every v*€Q.

8lnc* x,* * MAX x«'(x) . x 2 0. integer and admiaaible, It can alao be written aa X,' • MAX 
u,*(x). x * 0, integer and admiaaible.

X0* - MAX {C X  ♦ * it ~ AX) )

v*(b - Ax) i0 for every v*€Q.

Introducing a variable

z -  C X  ♦  "tj-jU'lb -  Ax)

thia can be written aa 

MAX Z
Z i cx * u*(b - Ax) (or every u‘ • T 
0 i v*(b - Ax) for every v* a Q (4)
x 2 0 and integer

Thie  ia Bandera- reformulation of the original NIP problem (1).
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-i£i- kos ? '

Oomory showed that by relaxing tha non-negativity (bu not integrality) conatrainta on 
certain variables, any IP can be represented by a minimisation problem defined as a 
group.

Consider the following, adapted from (Salkin, pp 282-284):

Define the standard representation of a PIP problem as

Ax - b <1)
x A 0 and Integer

We shall rewrite thia problem as

Maximise c,x, ♦ c.x.
subject to Bx, ♦ Nx. ■ b (2)
and x, 2 0, x. 2 0 and integer

where B is a basis whose columne are from A, N are the remaining non-basic columns from 
A snd the terms are rearranged ao that x, are the basic variables associated with B and 
x. are the non-basic variables associated with N. The costa corresponding to the basic 
and non-baalc variables are c, and c, respectively.

Since B is a basis, it has an inverse, and thus we may solve the constraints for (2) to 
get

Maximise
Subject to

x. ■ B ‘b - B ‘Nx. (3)

Thus, problem (2) may be rewritten as

Maximise c,B‘b - (c.B 'N - c.)x.
Subject to x. ■ B *b - B ‘Nx. (4)
and x. 2 0 and integer,

x. 2 0 and integer

Since the term c,B ‘b is a constant, it may be dropped from the objective function. Also, 
conatrelning x, to be an Integer is equivalent to stating that x. e 0 modulo 1. Thus, from
<41
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Let B 'b be denoted by the coli a,, then the congruence reletionehip becomes

* «0 ( 8 )

Since two vectors ere congruent (modulo 1) if end only if the corresponding elements sre 
congruent (modulo 1 ). there sre ectuslly m congruence relstions in (8). we may add or 
subtract multiples of Xj,j, e 0 (mod 1 ) to each equation without destroying the congruence 
relstionship so that every column a, has non-negative entries less than one. Similarly, 
the elements in a, may be reduced to non-negative fractions by adding or subtracting 
multiples of 0 a 1 (mod 1 ) to each component.

Let the columns that have the fractional parts be denoted as ft, (j«0,l....n) .

Thus, the problem may again be rewritten as

n
M inim is»

s u b je c t to • *o (modi) (9)

and Xj„, 2 0 and integer (J»l....,n)

where a, 2 0 are the costs and each column ft, (J-0,1....n) satisfies 0 i t, < i (where
S is a column of ones).

Problem (9) is referred to as the group Minimisation Problw
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CrltfH f f?r jhm Plry M i

Bafora discuasing soma of tha implicit anumaration eritarla appaaring in tha litaratura 
on Diract Saarch Enumaration. soma furthar tarma must ba da finad in addition to thosa 
dafinad in saction 2.4.2.

Tha subproblam at point x* 1 ls problam p

Subjact to Ax1 S b
and 0 S x‘ S x
whara x, - 0 or 1 for J-l,..,n and l i s i  column oí onaa.

If tha c variablas sat at taro ara droppad and tha 1 columna whosa variablaa ara fixad 
at ona ara subtractad (rom tha right hand sida vactor b. than P can ba rawrittan aa

Minimi«« a - a* « c'x*
Subjact to A'x1 i b‘
and 0 i x* S a
whara x, ■ 0 or 1 for J a r .

x' ■ (x,) la tha vactor corraaponding to fraa variablas. P la tha corraaponding aat of 
indicas in x*. c' and A* ■ (A,) ara costa and columna of A, b‘ la tha updatad right hand 
sida, and a1 la tha Bum of tha costa of tha 1 variablaa fixad to ona.

Thia subproblam la ñamad P‘. Tha associatad LP problam la ñamad LP‘ and ita opti mal 
aolution ls t (which includaa tha conatant a'I . Tha prasant basi intagar solution la a\

Soma of tha inpllcit anumaration eritaria of tha diract saarch algorithm ara as follows:

iling Ttt^f

Tha objactlva function valúa at noda x1 la a1. Thia valúa can ba dacraasad by at moat tha 
sum (ovar tha fraa variablaa) of tha nagativa costa. Thua, an improvad intagar aolution 
(ainca wa ara daaling with mininisation probi «mal found f rom noda x* ia only possibla if

Minimisa

( 1 )

whara r ■ {J l r | e, < 0).
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Thi» mean» that a fraa variable with a poaitiva coat ahould not ba aat to ona if it 
incraaaaa s' ao that (1) cannot ba aatiafiad. Thua, cancel, at level 1, any j  a r for 
which

cj * ♦ jpr -ct 1 *' (2)

Infoaslblllty Teat

Tha conatralnta of the aubproblam ara of the form
o' ■ b' - A V  2 0 ())

where s' ■ (a,) ara non-negative slack variables.

Since «, i 1, tha largest possible value for slack s, is

p i • •>/ - u >

whara P_ ■ (j * P | a„ < 0).

Therefore, for a zaro-ona solution P, 2 0 for i»l....m (S)
Prom (4>, p, 2 b,‘ and thus for b,‘ 2 0, (S) is automatically satisfied. Using (4), wa can 
find a P, for each conatralnt which has b,' « 0. If any of those P, values is negative, a 
backwards stop is justified.

SgP9THPU9,n TlH
If a free variable has a large positive coefficient in some row, then setting this 
variable to one reduces b,' and may result in a P, < 0. Therefore, if, for any J a P,

pi ' < 0 for i (1 ilim) (6)

Note that if (6) indicates a cancellation, a column a, is omitted from A' and so the 
values of P, (as defined by (4)1 may be changed, and (»1 and (•) retested.
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g a n g a  u n i o n  o n .  T e a t

If ona of tha negativa coe( fidente of (raa variablas waa omitted when computing p, (i.a. 
a (raa variatola waa temporari ly aat to aaro), thia could raault in P, « 0. Z( thia 
happena, than (or a saro-ona aolution to ba poaaibla, tha oaiittad variatola muat taka tha 
valua ona.

Tharafora if, (or any j a P,

P i  * a i } <0a i j  < 0 f o r  so m B  1 (7)

than x, muat hava valua ona In any caro-ona aolution producad from noda x*. If anothar
taat raaulta in cancelling x,. a backward» atap la juatlflad.

If to,' 2 0, obaarva that P, ♦ a„ 2 to,' 2 0 (or any a„ < 0, or (7) would never Indicate that
a variable muat hava valua ona.

Linear Programming Teata

Obvloua point» relating to tha LP relaxation o( tha aubproblem are:

(1) If any LP aolution LP1 la Integer (In tha free x variable»), thia aolution la 
optimal (or P‘).

(2) If LP1 haa no (aaaibla aolution, thara la no taro-ona aolution to P1.
(3) tha optimum valua of the objective (unction t (or the LP‘ la a lower bound on tha 

valua z (or any zero-one aolution to tha aubproblam (l.a. t i z) .
(4) If, at any dual almplex Iteration, tha valua of tha LP objective (unction z 

exceed» the currant beat integer aolution »*, a backward» »tap la allowed.
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«BBfadiK in  Derivation of Constraint* for the 
Algorithm for Uro-Oi.. MjP_.Probl— *

Th« Lemke and Spielberg Dir«ct Search Algorithm for xero-one NIPs derive* conatrainta 
that ar« valid at any node using only tha sero-one variable*.

Consider tha NIP problem

Minimisa s ■ cx * dy
Subject to Ax • By S b (1)
and 0 i  x S 1 and integer, y 2 0

For any fixed saro-ona vector x, the NIP problem (1) reduce* to tha LP (3) i 

Minimise s - cx ■ dy
Subject to By S b - Ax (21

Xf (x,y) is to give an improved NIP solution, then cx ♦ dy < s‘ and Ax * By S b. 
Multiplying the first equation by a non-negative vector u and adding it to the first 
yields

At each node that is explicitly enumerated, an LP of form P is solved. The Siirplex 
computations generate extreme points of the polyhedron U, where U ■ (u|uE ♦ d 2 0, u 2 
0). (Xf U is empty then the NIP problem has no solution).

Therefore, whenever an LP of form P is solved, it yields dual extreme points u and 
constraints of typ« (S) in only the x variables. Since U is independent of x, these 
inequalities are valid at any node.

y 2 0

The dual of LP (2) is the dual LP (3)i

Minimise
Subject to uB ♦ d 2 0

u 2 0

(s' ♦ ub) -<uB • d)y -<uA » c)x * 0 (4)

Since this that uB ♦ d 2 0, for
(c ♦ uA)x < s'
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Sine« it la possible to have a larga number of dual extreme pointe and thus generate a 
large number of constraints at each node, a good rule of thumb is to generate only the 
constraint coming from the optimal dual extreme point.

A necessary and sufficient condition on x to admit feasible solutions y to the HIP is 
that

v(b - Ax) * 0 (6)

where v is a direction of a ray in U.

This constraint is derived in a similar way to the constraint mentioned in the derivation 
of Bandera' decompoaition algorithm, as previously mentioned in section 2.2.1.
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11» IQ. Derivation of the
Share to branch

If, when using the Branch and Bound method to solve a MIP problem, the 
solution to an LP relaxation indicates that branching is called for, a choice 
will usually have to be made as to which variable to branch upon. Beale 
describes the following method for choosing the branching variable ([Beale, 
1979J) .

An estimate of the degradation to the LP solution value caused by making each 
branch is made. The calculation of an estimated degradation is based on 
finding the amount by which the variable value will change and multiplying 
this by a per unit movement penalty.

If a supposedly-integer variable x, take a continuous value C,, where Ct ■ |C,| 
+ ft, let imposing a new lower bound of |Cj 1 on x, decrease the objective 
function by the 'up penalty* of p, for every unit increase from the current 
value of x,. (This is an "up penalty* since the variable value must be moved 
up to the new lower bound). Similarly, let the -down penalty* incurred by 
placing an upper bound of |Ct| on x, be p,‘ for every unit decrease from the 
current value of xt.

An estimated decrease to the LP solution of 
D,‘ ■ P,’fi
would occur if an upper bound was imposed and a decrease of
D, - p, (1-f,)
would occur if a lower bound was imposed.

The values of p, and pt' are calculated as follows.
Write the problem constraints in terms of the variable that is to be branched 
upon, x t, i.e. let the problem be formulated as
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MAX +2.aojxj m b0 - a0ixj

where
x, = decision variables
ak) = coefficient of variable x, in row k
b, ■ right hand side constant for row k
If the value of x, is increased by (1-f,), there is no effect on the objective 
function value or on any of the other variables if the value of each bn is 
simultaneously decreased in each row k by j, ■ akl<l-f,). Similarly, if the 
value of x, is decreased by f|( there is no effect as long as each b* is 
simultaneously decreased by z„ « -aklf4.

Thus, to estimate the degradation to the LP solution imposed by changing the 
value of the variable x,, we can hold the value of xt constant and decrease 
b* by z„ for all rows k.

Let Kk be the shadow price for the row k. Thus, if the movements z, are small, 
the degradation to the LP solution imposed by branching could be estimated by

i.e., p, and p,’ are calculated by making use of the row coefficients for the
variable x, and the shadow prices X,, on the rows k.

It would be unwise, however, to simply use equation (1) to calculate the per
unit degradation for the row, since the shadow price for a row only measures 
the cost of making very small changes and could thus greatly underestimate 
the costs of the larger changes that could occur. Equation (1) is thus only 
considered to give a lower bound on the value of the degradation. Indeed, if

( 1 )
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xt is a basic variable (the only situation where we would be considering 
branching), then the degradation will always be zero if equation (1) is used.

To get a more useful estimate of degradation, the XPRESS-MP optimiser ([Dash 
Associates, 1989]) adapts equation (1) to create the following heuristic 
method for estimating degradations to the LP solution.

Let the actual change made to the right hand side constant b, of a row k (in 
order to model the effects of branching on a variable x,) depend uponi 
the type of the row; and
the sign of the coefficient of the branching variable x, in that row.

Table Al.l shows how the heuristic method models the effects of changes to 
the value of x, for each row of the problem.

akl in row k: Positive Positive Negative Negative

Row k type: *S* row row ■S" row ■■• row

Increase x, 

by (1-f,)

Decrease b*

by akl* (1-f,)

Increase b* 

by a„*(l-f,)

Increase b, by 

(•».iMl-ft)

Decrease b*

by | a„,| 

•(1-f,)

Decrease x,

by f,

Increase b* 

by a„*f,

Decrease b*

by a*i*f|

Decrease b„ by 

1 *.!•«»
Increase b*

by |«ul*Ci

Table Al.l. Modelling the change in the value of x4.
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N.B. When a problem has been input to the XPRESS-MP optimiaer, any ■2* type 
rows are converted to *S* type row*. Thus, the only types of rows that we are 
concerned with are •£• or '■* type rows (along with the unconstrained 
objective function row).

Since, as mentioned above, the shadow price should only be used to measure 
the cost of making small changes to b», the XPRESS-MP optimiser heuristic also 
makes use of a ‘pseudo-shadow-price’ ps* for each row k in order to measure 
the cost of making the changes described in Table Al.l.

The shadow price and pseudo-shadow-price for a row are used to construct a 
function
cost,, ■ MIN{-ps„, Jij when atl is positive and x, is being increased

or when atl is negative and x, is being decreased;
■ MAX( psa,xk) when a*, is negative and x, is being increased

or when a., is positive and x, is being decreased.

The heuristic gives values to ps„ as follows in order to calculate appropriate 
values of cost,.

If the value of x, is to be increased in row k, ps, is set to a positive, 
user-specified tolerance tol* (default value 0.01) unless the row is 
unconstrained, in which case ps„ is set to zero (since changing the value of 
x, will have no effect on an unconstrained row) . If the value of x, is to be 
decreased in row k, then ps„ is set to zero unless the row is of type in
which case it is set to a positive, user defined tolerance tol, (default value0 . 0 1 ) .
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The heuristic uses these settings for ps, because the shadow prices for the 
■S’ type rows are allowed to be zero or positive, whilst the shadow prices 
for the type rows are allowed to be positive, zero or negative.

The overall effect, as can be seen from Table A1.2, is to force cost„ to be 
non-zero if possible.

akl in row ki Positive Positive Negative Negative

Row k type: IA *1 i ■■* row ■S * row *■* row

Unit Cost of 
increasing x, 
(COSTUP row)

MIN(-tolk,K„)
•akl

MIN{ -tol„, kk) 
* •» 1

MAX<tolk,xk>
* *kl

MAX (tolk, Xk) 
* a„,

Unit cost of 
decreasing x, 
(COSTDN row)

MAX (0, Kk)
*»i.i

MAX (tolk, Kk) 
*•».

MIN { 0 , Rk} 
* akl

MIN(-tolk,
M  *

Shadow price 
values

♦ve or zero -ve, zero, 
or ♦ve

♦ve or zero -ve, zero, 
or ♦ve

Table A1.2. Components of the per unit cost of changing the value of x,.

The heuristic calculates p, (the total per unit penalty for increasing x,) by 
calculating the sum of the COSTUP row in Table A1.2 and p,' (the total per 
unit penalty for decreasing x,) by calculating the sum of the COSTDN row of 
Table A1.2.

Note that the value of p, is calculated for use with the 'negative* distance 
ft and is hence always negative, whereas the value of p,' is calculated for use 
with the 'positive* distance (1-f,) and is hence always positive.
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Th« heuristic method used to calculate the per unit penalties for branching 
on an integer-conatrained variable is easily extended to calculating 
penalties for branching on Special Ordered Sets of Type One and Two (as 
defined in section 7.3).

When estimating the degradation to the LP solution caused by making a branch 
on a Special Ordered Set of Type One, a set member variable is chosen (as 
described in section 7.3.1) and its value altered when a branch is made on 
the set. This is a similar situation to that for branching on general 
integer variables and thus the same heuristic method can be used by the 
XPRESS-MP optimiser.

When estimating the degradation to the LP solution caused by making a branch 
on a Special Ordered Set of Type Two, two set member variables are chosen (as 
described in section 7.3.1) and their values altered when a branch is made on 
the set. Since the effects of changing the values of two variables can still 
be modelled by altering the right hand side of the constraints in which they 
occur, the situation is again similar to that faced when branching on general 
integers.

For both types of Special Ordered Set, the effects of altering the right hand 
side are modelled for each row. The component degradations caused by altering 
the individual rows are then summed to give the estimate of the total 
degradation incurred if the set is branched upon.

The degradation caused by altering an individual row depends (as when 
branching on general integers) upon the sign of the altered variable(s) in 
the row and the type of the row. The entries in the COSTUP and COSTDN rows of 
Table A1.2 above can thus be used to give an indication of what the per unit 
movement penalties should be for the different combinations of row type and 
coefficient sign that might occur.
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It should be noted however, that the row coefficients of the changed 
variable(s) are already used in the construction of the ‘corrected* and 
•uncorrected" vectors used to indicate the actual movement on the row for a 
Special Ordered Set (as described in section 7.3.1). The actual per unit 
movement penalties used for each row when dealing with Special Ordered Sets 
must thus be as in Table Al.3 below.

a,, in row k: Positive Positive Negative Negative

Row k type: *£* row ■ ■■ row •S ■ row *■* row

Per Unit Cost 
of increasing 
xt on row k

MIN{ -toll,, Xk) MIN{ -tol,, xt) MAX( tol,, X„) MAX ( tolk, X, )

Per Unit cost 
of decreasing 
x, on row k

MAX ( 0, Xk ) MAX ( tol,, x, ) MIN{ 0 , X, ) MIN
{ “ tol|,, X, )

Table Al.3. Per unit cost of changing the value of x, for row k.
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Structuras

Thia Appendix contains graphs showing tha solution timaa obtainad by attacking tha sat

RUN1 usas tha coda diacussad at tha baginning of Chaptar 5 (tha raaulta for which ara

RUN2 usas a similar coda to RUN1. axcapt that packad data atructuraa ara uaad to raduca

RUN3 «gain usas packad data structuras, but data is sant and racaivad Word by Word by tha 
appropriata procaaaas on transputars, but paasad batwaan transputars aa four massagas 
whosa langth dapands on tha aisa of tha problasi attackad and tha numbar of intagar 
antitlas it containa.

RUN4 alao usas packad data structuraa, but data la sant. paasad and racaivad as four 
massagas whosa langth dapands on tha sisa of tha problasi attackad and tha numbar of 
intagar antitlas lt contalns.

Tast runs thraa and four can ba usad to axamina tha ovarhaada accumulatad at tha slava 
and mastar procassora by sanding massagas of dit forant longths.

of tast probi« using four diffaront n-transputar codas.

hald in Appendix 2A) . This coda doaa not packad data structuras, and sands massagas

tha disk-roading and message-passing tii massagas ara still it one word at a
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Comparison of Problem Solution Times
P rob lem  A Z A

Number of Slave Transputers

WN 1

Fig. 2Ctl: Solution Time Comparisons for Problem AZA.

Com parison of Problem  Solution Times
Problem A ZB

550 

500 

450

IT400
I 350
J 300 

250 

200 

150 

100 1 2 3 4 5 6 7 8Number of Sieve Transputer»
-•-RUN 1 — RUN 2 RUN 3 -•- RUN 4

rig. 2Ci2: Solution Time Comparisons for Problem AZB.
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10
1 2 3 4 5 6 7 8

Number of Slava T rompu la r i 

- • -R U N  1 — RUN 2 —•••— RUN 3 -a -R U N  4

rig. 2C 13 : Solution Time Comparisons for Problem AZC.

Com parison of Problem  Solution Times
Problem HPW15

2.8

2.6

2.4

Ä 2.2

1.2
1

0.8
1 2 3  4 5 6 7 8

Numbar of Slava Iranaputara

RUN 1 RUN 2 RUN 3 -® - RUN 4

rig. 2C14 : Solution Time Comparisons for Problem HPW15.
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Comparison of Problem Solution Times
P rob lem  N G T 274

Fig. 2Ci5: Solution Time Comparisons for Problem 
INGT274.

Com parison of Problem  Solution Times
Problem MRX

Fig. 2 C 1 6 : Solution Time Comparisons for Problem MRX.
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Comparison of Problem Solution Times
Prob lem  MR1

Number of Slave T ranipuleri

RUN 1 RUN 2 RUN J  RUN 4

Fig. 2C»7: Solution Time Comparisons for Problem MR1

Com parison o f Problem Solution Times
Problem CHAL

700

Number of Slove Tronepulera

RUN 1 RUN 2 -•* - RUN 3 RUN 4

F i g .  2 C 1 8 : Solution Time Comparisons for Problem CHAL
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Comparison of Problem Solution Times
P rob lem  GY

500
450
400
1" °  f 300
Î250
P 200
150
100
50 1 2  3 4 5 6 7 8 Number of Stove Transputers

RUN 1 RUN 2 RUN 3 RUN 4

rig. 2 0  9 Solution Time Comparisons for Problem GY.

Com parison of Problem Solution Times
Problem INGT1345

400
350 _ A
300 A /\Î250

¿•200 /A\ / \ _1 150
100 V50 Ï — .r V  Z- L ̂
0 1 2 3 4 5 6 7 8 Number of Stove Transputers

RUN 1 RUN 2 RUN 3 -m- RUN 4

rig. 2C 110 : Solution Time Comparisons for Problem 
INGT1345.
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Comparison of Problem Solution Times
Prob lem  DAAC

25 

20

1”
I '°

5 

0
1 2 3 4 5 6 7 8

Number of Slava Tronipufar*

RUN 1 RUN 2 -**- RUN 3 RUN 4

Fig. 2Ctll: Solution Time Comparisons for Problem DAAC.

Com parison of Problem  Solution T imes
Problem C31

Fig. 2 C 1 12 : Solution Time Comparisons for Problem 031.
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Comparison of Problem Solution Times
P rob lem  G 32

Fig. 2Cil3: Solution Time Comparisons for Problem G32.

Com parison of Problem Solution Times
Problem OK

Fig. 2 0  14: Solution Time Comparisons for Problem OK.
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Comparison of Problem Solution Times
P rob lem  SETX

1.8

1.6

1.4

v: '
I0-* V  ------ -------

0.6 ?
0.4

0.2
11 2  3  4 5 6  7  8 

f*iT4)er ot Slav« Trarwputsrs

RUN 1 RUN 2 H * -  RUN 3 -m~ RUN 4

Tig. act 15: Solution Time Comparisons for Problem SETX.

Com parison of Problem  So lution Times
Problem BAG882
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rig. 2Csl6:
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Solution Time Comparisons for Problem
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Comparison of Problem Solution Times
Prob lem  TAX1

35 00 -

30 00

25 00

j j  20 00

£ 1500

1000 — -

500 ■  —

0
1 2 3 4 5 6 7 8 

Number of Slavs Transputer*

RUN 1 RUN 2 “ • * -  RUN 3 RUN 4

rig. 2C 1 17 : Solution Time Comparisons for Problem TAXI

Com parison of Problem Solution Times
Problem TAX2

140
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100 

1 80 
Ì *° \

40 V
20 -— — 1—  9 — 1— 1

0
1 2 3 4 5 6 7 8 

Number of Slave Tranepufere

RUN 1 RUN 2 - * * -  RUN 3 RUN 4

rig. 2 0  Iti Solution Time Comparisons for Problem TAX2.
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Comparison of Problem Solution Times
P rob lem  CRAC

Numb« of Slav! Transput««

RUN 1 RUN 2 ~m ~ RUN 3 RUN 4

Fig. 2C1 19: Solution Time Comparisons for Problem CRAC .

Com parison of Problem Solution Times
Problem D0M1

Numb« of Slav* Transput««

RUN 1 “ RUN 2 RUN 3 RUN 4

F i g .  2 C 1 2 0  : Solution Time Comparisons for Problem DOMI.
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Fig. 2Ci21: Solution Time Comparisons for Problem MCA.

Com parison o f Problem Solution Times
Problem MOO78 8

60

Fig. 2 0  22: Solution Time Comparisons for Problem 
MO0788.
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1 2 I 5 6 7
tiae 1372.2 nod«« SIS 
speedup 1.00
•ol 4
inf 234 
cutl 1 
cut2 19 
cutl 0 
cut4 0
cuts 0 
attack 2S7 
navar 0
twice 2S6 
maxtptr 1 
avtptr 1

14.14 489.99 179
537 517
1.89 2.80 1

6 7
246 246

0 0
268 268

0 0
1 0267 268
2 3

1.93 2.95 1

308.3 274.62 218.17 220.73 
543 579 575 575

4.45 5.00 5.76 6.22

5.49 6.41
Tabla 2i7J: Reaulta for m l  uaing Noda Selection Strategy 4

time 539.8 127.59 250.95 194
----  Ill 125 133

1.00 1.65 2.15

1.93 2.86

167.74 180.87 190.77 175.82 
147 197 209 215

1.22 2.98 2.83 3.07

5.8 6.54
Table 3.74 Reaulta for CHAL uaing Noda Selection Strategy 4.

time 294.57 111.86 230 347.89 151.74 149.06 112.17 182.94
421 551 271 263 657

0.82 0.81 1.91 2.15 0.74

Table 1.79 Reaulta for OY i
5.1 5.16

'tion Strategy 4
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tptra

aol 
inf 
c u d  
cut2 
cut 3 
cut 4 
cuts 
attack

1.45 1.83

Tabi* Ji7*: Raaulta for Q32 uaing Nod» salaction Strategy 4

127.27 84.2S 44.16 53.14 58.44
2.20 2.15 2.88

Inf 
cuti cut 2 
cut3 
cut4 
c u ts  
attack

avtptr 1 1.73 2.28 2.6 2.86
Tabi# 3180 Raaulta for OK uaing Nod# S#l#ctl

0.82 0.55 1.4» 0.5 0.5 0.44
25 25 25 25

1.61 2.40 2.40 2.69 2.64 2.64 3.00

1.73 2.12
Tabi* Siti: Raaulta for SETX uaing Nod# 8#l#ction Strategy 4
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Sol nodal 
Inf nodal 
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 5 
Attack
Max tptr
Av tptr 1.73 2.34 a .42 2.62 2.62 2.6

1.09 0.72 0.55 0.4» 0.44 0.49 0.4

Sol nodaa 
Inf nodaa 
Cut 1 
Cut 2 
Cut 3
Cut
Cut 5 
Attack 
Max tptr 
Av tptr 1.62 2.38 2.69 2.69 2.69 2.6
Tatola 4Bi6 Problem SETX;Branching prlorltiaa uaed.Flxed saparation atrategy.Node aalactlon atratagy 2 uaad.

Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut S 
Attack 
Max tptr 
Av tptr 1.62 2.23 2.6» 2.85 2.85 2.8

■ uaad;Pixad aaparatlon atratagy.Noda

0.66 0.55 0.5 0.55

Inf nodaa 
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 5 
Attack 
Max tptr 
Av tptr 1.58 2.23 2.73 2.63 2.63 2.63
Tabla 4a 18 Problem SETX;Branching prloritiea uaed;Plxed aaparatlon atrategy.Node aalactlon atratagy 4 uaad.
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0.6 0.5S

Inf nodes
Cue 1Cue 2 
Cue 1 cue 4 
cue s 
Attack 
Max tptr

2.59 2.5 2.6

0.5 0.55

2.96 2.96
Tabla 4B■ 9 Problem SETX.No branching priorities used.Beale and Porrest separation 
strategyiNode selection strategy 1 used.

0.94 0.66 0.55 0.44 0.49 0.5

Cut 1 
Cut 2 
cue 3 
Cut 4 
Cut 5

0.55 0.55

2.57 2.42 2.56 2.93 2.93
Table 4Bi 10 Problem SETX;No branching priorities used; Beale and rorreat separation 
strategyiNode selection strategy 2 used.

Inf nodes 
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 5 
Attack 
Max tptr 
Av tptr 1.62 2.03 2.39 2.64 2.6 2.69 2 69
Table 4Bi 11 Problem SETX.No branching priorities usedjBeale and Porrest separation 
atrategyiNode selection strategy 3 used.
Tptrs 1 2 3 4 5 6 7 8

Inf nod« 
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 5 
Attack
Max tptr 
Av tptr 1.62 2.03

382
15
7000113
4

2.32

36 38
2 3
13 19
9 20 10 00 01 1
12 13
5 4

2.71 2.79
Table 4Bi 12 Problem SBTXiNo branching priorities usediBeale and Porreat separation 
strategyiNode selection strategy 4 used.
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i a 7 a
Tim« 0.«7
Sol nodes 1
Inf nod«a 7
cut i a
cut a «
Cut 3 0
Cut 4 0
Cut 5 0
Attack 7
Max tptr 1
Av tptr 1

10 10

0.55 0.55
39 39
3 3

Tabl« «a I 13 Problem SETX;Branching prior It lea used;Beale and Porreat separat 
strategy.Nod« a«l«ction strategy 1 used
Tptra 5 6 7 8
Timm o.aa
Sol nod«a 1
Inf nod«a 7
Cut 1 3
Cut 2 4
Cut 3 0
Cut 4 0
Cut 5 0
Attack 7
Max tptr 1
Av tptr 1

o.ca
39

i i0 0
2

104
2.4

0.55 0.55 0.55
29 29 39
3 3 3
9 9 9
4 4 41 1 1  0 0 0
2 2 3

10 10 10
4 4 4

2.4 2.4 2.4
Tabl« 4Bt14 Problem SBTX;Branching priorities us*d;B«al« and Porreat aaparat 
strategy;Nod« selection strategy 2 used.

1 2 3 4 5 6 7 8

Sol nod«i 
Inf nod«i 
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 5 
Attack 
Max tptr 
Av tptr

TiiM 0.87 
Nodaa 21 
Sol nod«a 1 
Inf nod«a 7 
Cut 1 2 
Cut 2 4 
Cut 3 0 
Cut 4 0 
Cut 5 0 
Attack 7 
Max tptr 1 
Av tptr 1

0.55 0.49

2.5 2.62

0.55 0.55

2.62 2.48
Tabl« 4Bi16 Problem SBTX;Branching priorities uaed;Beale and Porraat aaparati 
strategy;Nod« selection strategy 4 used.
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62.

Inf nodes 
Cut 1 
Cut 2 
Cut 3 
Cut 6 
Cut 5 
Attack 
Max tptr 
Av tptr

Cut 1 
Cut 2 
Cut 3 
Cut « 
Cut 9

38.94 33.31 21.0

4.46 4.62
rlorities usad;Beala anc rreat separation

20.98 24.8 24.88 22.3

i used;Beale and Forrest separation

Sol node; 
Inf nodei 
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 5 
Attack 
Max tptr 
Av tptr

90.25 50.26 33.56 35.04 35.04

1.85 2.72 3.33

35.1 20.98

lies used,Beale and Forrest separation

72.43 44.27 36.52 35.03 33.04 35.03 20.92

3.29 3.93 4.39 3.26
Table 6Bi32 Problem DOMI ; Branching priorities used;Beale and Forrest separation 
strategy;Node selection strategy 4 used.
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81.9 36.09 11.3 33.39 33.46 39.4« 39.05 39.16

S.33 3.98
Table 4Bi37 Problem MCA.Branching prioriclea uaediPixed separation strategy;Node

Time 81.93 16.19 39.1 
Nodes 41 39 4 
to l  I

Cut 1 
Cut 3 
Cut 3 
Cut 4 
Cut 3 Attack 
Max tptr 
Av tptr

33.39 33.33 39.77 39.11 38.43

1.7 3.7« 3.63 4.31
itching priorities '

3.33 3.93
ition strategy;Node

183.68 64.54 33.15 40.81 38.31

1.89 3.73 3.54

30.7 31.

3.17 6.04
i uaed;Pixed separation strategy;»

«1.3 38.56 31.74 36.43 39.71 38.51 39.11

i used;Fixed separation strategy;Node
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•2.17 16.2 31.26 23.49 23.34 29.•! 29.22 28.94
Sol nodai
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 3 
Attack 
Max tptr 
Av tptr 1.7 2.73 3.68 4.23

•2.16 16.36 29.28 23.46 29.3

i uaadiBaala and Porraat i

29.91 29.11 29.11
Sol nodaa 
Inf nodaa 
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 3 
Attack 
Max tptr 
Av tptr 2.7 1.63 4.42

I uaadiBaala and Porrast i

Cut 1 
Cut 2 
Cut 1
Cut 3 
Attack 
Max tptr 
Av tptr

64.76 34.31 40.86 29.22 31.69 11.64 32.11

1.89 2.81 4.28 3.13
i uaadiBaala and Porrast

Tima 81.68 
Nodaa 26 
Sol nodaa 2 
Inf nodas 2
Cut 1 0 
Cut 2 11 
Cut 1 0 
Cut 4 0 
Cut 3 0 
Attack 11 
Max tptr 1 
Av tptr 1

41.23 28.67 11.73 24.11 29.66 10.92

1.92 2.74 4.14 3.17

29.44
341
6

10
9
400

22
•6.32

Tabla 4Si48 Problam MCA;Branching priorltiaa uaadiBaala and Porraat aaparation 
at ratagy; Nods aalaction atratsgy 4 usad.
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108.69 61.71 44.21 19.13 38.78 18.67 18.62 19.77

105.29 52.62 44.11 18.46 17.74 14.55 17.11

Inf nodai
Cut 1 
Cut 2 
Cut 1 
Cut 4 
Cut 5 
Attack 
Max tptr 
Av tptr 1.89 2.61 1.22 1.71 4.06 4.41 4.42

111.94 61.74 112.92 69.53 45.1 44.33 41.01 51.79

1.81 2.54 1.61 4.08 4.26 4.45
uaadirixad aapara

T l M  245.61 121.47 50.11 43.61 42.51 43.29 42.14 44.82

Inf nodai 
Cut 1 
Cut 2 
Cut 1 
Cut 4 
Cut 5 
Attack 
Max tptr 
Av tptr 1.85 2.42 1.11 1.77

uaadirixad aaparatlon
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96.23 56.7« 37.7« 35.65 34.11 36.1« 36.2 36.09

2.59 3.08

1.03 56.85 34.22 34.71 36.2 36.36

undiBul* and Porraat

1.32 83.1 49.87 «5.2 41.41 «3.9« 43.12

■!•» uaad.Baala and Porraat

59.82 35.32

1.85 2.64 3.83 4.18 3.78 4.41
tala and Porraat
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T i m  
Nod« a 
Sol nod«a 
Inf nodaa 
Cut 1 
cut a 
Cut 3 
Cut 4 
Cut S 
Attack 
Max tptr 
Av tptr
Tabla «■>
atratagy.-Nod« a«l«c

Tptra
140.67 69.75 49.48 44.21

2.69 3.38

40.86 41.31

4.26 4.25 4.35

rim 133.9 >.09 48.72 37.57 38.67 33.23 33.12 39.82

Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 5 
Attack 
Max tptr 
Av tptr 1.92 2.73 3.32 3.78

Inf nodaa
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 5 
Attack 
Max tptr 
Av tptr

80.25 55.3 38.72 52.45 50.59 41.14

3.86 4.03 4.17 4.52
llaa uaadiBaala and Format ■

42.68 54.87 48.56

1.86 2.68 3.9 4.08 4.34 4.42
tala and Format reparation

A p p  4  (XXIV)
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22W A  11®9,5 M«.0« 703.33 <98.48 694.2712 3667 3653 364821 716.84 716.552761 3707

1102 1130 1398
2 3 4

1.84 2.54 3.35
1288 1387

1.53 3.52

“ !:.r *” ■<» «« >.
Inf nod<
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 5 
Attack

2473 3365

1199 1145

n atrategyiNode

” 5 2 «  la$2oi 7,2;?i 722 J i  602 17 573 05 *48.83 596.76 2845 3008 2437 3566 34X1 2363 2584 2615

1376 1464 1180 1343

»175 Problem MINE2.Branching prlorltlaa uaed;Fixed separa on atratagy 3 uaed. t r a t agy; Node

l£. “»« “S5.J ”mJ5 »«•;!! «? « »’? »■2408 3393 2479 2306

1035 1358

1446 1448 1183 ISSO1 2  3 41 1 82 3.61 3.35
1140 1155 1196 1115

5 6 7 82.5 3.71 3.73 3.67
>aratlon strategy,h
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88«.57 «78.73 345.65 286.27 277.38 273.48 271.72 270.« 
1011 1023 1059 1069 1117 1139 1165 11«

Inf node« 
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 5 
Attack 
Max tptr 
Av tptr 1.86 2.63 3.36 3.83 4.03 4.1« 4.0C

!»i77 Problem MINE2,No branching prioritl«« used.Be« 
:lon strategy; Node selection strategy 1 used. a and Porraat

ima 612.48 314.34 227.56 211.84 184 183.95

ila and Porrast

729.9« 507.2« 282.65 252.82 186.26 208.28 188.84 191.75

Inf nodei 
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 5 
Attack 
Max tptr 
Av tptr 1.85 2.63 3.78 4.03

ilaa used;Beale and Porrast

973.4« 519.49 393.38 355.0« 267.43 260.89 339.11 314.78 
1059 1129 1183 1349 1153 1233 1481 1386

Inf nodea
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 5 
Attack 
Max tptr 
Av tptr
Table «8160 Problem MINE2;No branching priorities usedjBeala and Porraat 
separation strategy.Node aalaction strategy 4 used.
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“ Si! “ id! "ii8 i »•:»162« 1485
Ini nodai 
CuC 1 
Cut 2 
Cue 3 
Cue 4 
Cue 5 
Attack 
Max tptr 
Av tptr 3.6 3.66

Tptr«
Tim*Node«
Sol nodaa 
Inf nodaa 
Cut 1 
Cut 2 
cue 3 
cue 4 
Cut 5 
Attack 
Max tptr 
Av eper

” !i!i ” !>!! “ JiS **?;H " M i  >••:!’ >«•»«1388 1214 1348 1439

3.24 3.61 3.67 3.69

J i ^ : 2 i S S S t ^ ^ 47J55Tul-  — — -  -p-.eion

12i«2 "M ! 47?«2S
Inf nodai 
Cue l 
Cut 2 
Cut 3 
Cue 4
cue s
Attack 
Max tptr 
Av tptr 3.81 3.72

Tima 
Nodas 
Sol nodaa 
Inf nodas 
Cut 1 
Cut 2 
Cut 3 
Cut 4 
Cut 5 
Attack 
Max tptr 
Av tptr 3.78 3.83

App 4 (xxix)




