
A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/130681

Copyright and reuse:
This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

Mixed Integer Programming
on Transputers

Submitted by Peter Connard

in fulfilment of the requirements of the degree of PhD

School of Industrial and Business Studies

University of Warwick

December 1992

Summary

Mixed Integer Programming (MIP) problems occur in many
industries and their practical solution can be challenging
in terms of both time and effort. Although faster computer
hardware has allowed the solution of more MIP problems in
reasonable times, there will come a point when the hardware
cannot be speeded up any more. One way of improving the
solution times of MIP problems without further speeding up
the hardware is to improve the effectiveness of the
solution algorithm used.
The advent of accessible parallel processing technology and
techniques provides the opportunity to exploit any
parallelism within MIP solving algorithms in order to
accelerate the solution of MIP problems. Many of the MIP
problem solving algorithms in the literature contain a
degree of exploitable parallelism. Several algorithms were
considered as candidates for parallelisation within the
constraints imposed by the currently available parallel
hardware and techniques.
A parallel Branch and Bound algorithm was designed for and
implemented on an array of transputers hosted by a PC. The
parallel algorithm was designed to operate as a process
farm, with a master passing work to various slave
processors. A message-passing harness was developed to
allow full control of the slaves and the work sent to them.
The effects of using various node selection techniques were
studied and a default node selection strategy decided upon
for the parallel algorithm. The parallel algorithm was also
designed to take full advantage of the structure of MIP
problems formulated using global entities such as general
integers and special ordered sets. The presence of parallel
processors makes practicable the idea of performing more
than two branches on an unsatisfied global entity.
Experiments were carried out using multiway branching
strategies and a default branching strategy decided upon
for appropriate types of MIP problem.

Acknowledgments

I would firstly like to acknowledge the support and guidance I
received from my supervisor. Dr. Robert Ashford of the University
of Warwick. His talent for keeping me on track when I began to stray
from the point was especially appreciated, particularly during the
writing of this thesis, which would have been even longer without
his advice.

Many thanks are also due to my 'step-supervisor", Professor Bob
Daniel of the University of Buckingham, who invested numerous hours
of his valuable time in various discussions with me. Much of the
work for the thesis was carried out at the University of Buckingham,
and the use of the facilities there was greatly appreciated.

Both Robert and Bob should also be acknowledged collectively under
their 'corporate identities' as Directors of Dash Associates Ltd.
Dash provided me with the source programs for an early version of
their commercial Branch and Bound code, without which the research
would have been impossible.

The first two years of the research were funded by the Science and
Engineering Research Council, after which Dash Associates provided
me with consultancy work. I am grateful to all my paymasters for
helping to keep body and soul together.

Lastly, and perhaps most importantly, I would like to thank my
parents for not pressuring me too much to get a "proper job".

Tmblrn of Confnti

1. Introduction 1

1.1. Background to Mixed Integer Programming 1

1.2. Computational Complexity of MIP Problems 7
1.3. Discussion of the Rest of the Thesis 21

2. Methods of Solution for Mixed Integer Programming
Problems 24
2.1. Cutting Plane Methods 25

2.1.1. Background 2 5
2.1.2. The Gomory Fractional Cutting Plane

Algorithm 27
2.2. Partitioning Algorithms 3 1

2.2.1. Benders' Decomposition 31
2.2.2. Lagrangian Relaxation 34

2.3. Group Theoretic Algorithms 38
2.4. Enumerativo Techniques 43

2.4.1. Branch and Bound Enumeration 44
2.4.2. Direct Search Enumeration 53

2.5. Current Implementation of MIP-solving
Algorithms 60

3. Introduction to Parallel Computing 61
3.1. Background 61
3.2. Classifications of Parallel Computer

Architecture 62
3.2.1. The Vector/Array Paradigm 66

3.2.2. The SIMD Paradigm 68

3.2.3. The Systolic Paradigm 72

(i)

3.2.4. The MIMD Paradigm 73

3.2.4.1. Pipelined MIMD 7 5

3.2.4.2. Switched MIMD 7 5

3.2.4.3. Network MIMD 79

3.2.5. The Reduction Paradigm 82
3.3. Parallel Problem Decomposition Algorithms 86

3.3.1. The Algorithmic Approach 86

3.3.2. The Geometric Approach 89
3.3.3. The Process Farming Approach 91
3.3.4. Hybrid Methods 93

3.4. Review of the Literature on Parallel
Algorithms used to Solve IP Problems 94

4. Initial Experiments with Parallelisation 103
4.1. Choice of the Parallel Algorithm and

Hardware 103
4.2. Parallel Algorithm Design Considerations 117
4.3. Description of the Initial Algorithm

Developed 1 1 9

4.4. Implementation of a Parallel Algorithm on
Transputers 1 2 5

4.5. Discussion of Initial Results 128
5. Development of the n-transputer Parallel

Algorithm 13 4

5.1. The Message-Passing Harness 135
5.1.1. The Topology-Mapping System 136
5.1.2. The Clear Path Method for Message-

Passing 140
5.1.2.1. Establishing a Clear Path 142

(ii)

5.1.2.2. Avoiding Deadlock Problems 144
5.2. The n-transputer Parallel Algorithm

Developed 146
5.2.1. The Master Algorithm 146
5.2.2. The Slave Algorithm 150

5.2.2.1. The Look Process 151
5.2.2.2. The Calculation Process 154

5.3. Computational Results 1 5 5

6. Comparison of Different Node Selection
Strategies 18 5

6.1. Traditional Node Selection Criteria 186
6.2. The Node Selection Strategies used for

Experiments 188
6.3. Computational Results 1 9 1

7. Parallel Branch and Bound Strategies 213
7.1. Further Parallelisation of the Algorithm 213
7.2. Multiway Branching on General Integers 218

7.2.1. Three-Way Branching on General
Integers 222

7.2.2. Four-Way Branching on General
Integers 224

7.2.3. Computational Results for Multiway
Branching on General Integers 225

7.3. Multiway Branching on Special Ordered Sets 232
7.3.1. Calculations of Estimated

Degradations for Branching on
Special Ordered Sets 236

(iii)

7.3.2. Conventional Branching Strategies
for Special Ordered Sets 244

7.3.3. Separation Schemes for Multiway
Branching on Special Ordered Sets 249

7.3.3.1. Multiway Branching Separation
Method One: Based on Set Member
Choice of Beale and Forrest 249

7.3.3.2. Multiway Branching Separation
Method Two: Based on a Fixed
Set Member Choice 256

7.3.4. Computational Results of Tests with
Multiway Branching 259

8 . Conclusions and Recommendations 281

References
Bibliography

Appendix 1: Further Details relating to the MIP-Solving
Algorithms Discussed in Chapter Two
Appendix 2: Test Results for Code Discussed in Chapter
Five
Appendix 3: Test Results for Code Discussed in Chapter
Six
Appendix 4: Test Results for Code Discussed in Chapter
Seven

(iv)

Ll>t of Illustration»
Fig. 1 . 1 The relationship between P and NP. 17
Fig. 1 . 2 The relationship between P, NP

and NP-complete. 19
Fig. 2 . 1 Two variable PIP problem. 26
Fig. 2 . 2 Two variable PIP problem with cuts added. 27
Fig. 2.3 The case where the Dual (3) is unbounded. 33
Fig. 2.4 Branching upon a variable. 46
Fig. 2.5 Solution tree for a PIP problem. 51
Fig. 2 . 6 Forward and backwards steps. 54
Fig. 2.7 An example of Direct Search Enumeration. 56
Fig. 3.1 Pipeline Example. 67
Fig. 3.2 Typical processor array architecture. 70
Fig. 3.3 Systolic architecture. 72
Fig. 3.4 Shared-memory MIMD architecture. 76
Fig. 3.5 Distributed-memory MIMD architecture. 78
Fia. 3.6 The T800 transputer. 80
Fig. 3.7 Sieve of Eratosthenes. 88

Fig. 3.8 Geometric decomposition applied to the
simulation of thermal conduction. 90

Fig. 3.9 Process farming approach to problem
decomposition. 91

Fig. 4.1 Topology used for initial tests. 1 2 1

Fig. 4.2 Network of communicating parallel
126

Fig. 4.3 Physical network of transputers. 128
Fig. 4.4 The first five test problems. 131
Fig. 4.5 The second five test problems. 132

(v)

Fig. 5.2 The LINK and CHART arrays used to traverse
the topology shown in Fig. 5.1. 138

Fig. 5.3 Worst possible case for message-passing. 142
Fig. 5.4 A possible deadlock situation. 145
Fig. 5.5 Topology used to test the n-transputer

algorithm. 157
Fig. 5.6 Speedups for Small Combinatorial Problems. 161
Fig. 5.7 Speedups for Medium Combinatorial Problems. 161
Fig. 5.8 Speedups for Large Combinatorial Problems. 162
Fig. 5.9 Speedups for Small MIP problems. 162
Fig. 5.10 Speedups for Medium MIP problems. 163
Fig. 5.11 Speedups for Large MIP problems. 163
Fig. 5.12 Speedups for Small Combinatorial Problems. 180
Fig. 5.13 Speedups for Medium Combinatorial Problems. 180
Fig. 5.14 Speedups for Large Combinatorial Problems. 181
Fig. 5.15 Speedups for Small MIP problems. 181
Fig. 5.16 Speedups for Medium MIP problems. 182
Fig. 5.17 Speedups for Large MIP problems. 182
Fig. 6.1 Solution times for Problem AZA. 191
Fig. 6.2 Solution times for Problem AZB. 192
Fig. 6.3 Solution times for Problem AZC. 192
Fig. 6.4 Solution times for Problem HPW15. 193
Fig. 6.5 Solution times for Problem INOT274. 193
Fig. 6 . 6 Solution times for Problem MRX. 194
Fig. 6.7 Solution times for Problem MR1. 194
Fig. 6 . 8 Solution times for Problem CHAL. 195
Fig. 6.9 Solution times for Problem GY. 195

Fig. 5.1 A simple connection topology. 137

(vi)

Fig. 6 . 1 0 Solution times for %2:u0. INGT1345. 196
Fig. 6 . 1 1 Solution times for Problem DAAC. 196
Fig. 6 . 1 2 Solution times for Problem G31. 197
Fig. 6.13 Solution times for Problem G32. 197
Fig. 6.14 Solution times for Problem OK. 198
Fig. 6.15 Solution times for Problem SETX. 198
Fig. 6.16 Solution times for Problem BAG882. 199
Fig. 6.17 Solution times for Problem TAXI. 199
Fig. 6.18 Solution times for Problem TAX2 . 200

Fig. 6.19 Solution times for Problem CRAC. 200

Fig. 6 . 2 0 Solution times for Problem D O M . 2 0 1

Fig. 6 . 2 1 Solution times for Problem MCA. 2 0 1

Fig. 6 . 2 2 Solution times for Problem MO0788. 202

Fig. 7.1 An example of binary branching. 215
Fig. 7.2 An example of multiway branching. 216
Fig. 7.3 Binary branching on variable x. 220

Fig. 7.4 Multiway branching on variable x. 2 2 1

Fig. 7.5 Situation where only three integer values
are possible. 222

Fig. 7.6 When an initial branch is at the upper
bound. 223

Fig. 7.7 When an initial branch is at the lower
bound. 223

Fig. 7.8 Situation where four branches are possible. 224
Fig. 7.9 Multiway branching on HPW15. 227
Fig. 7.10 Multiway branching on INGT274. 228
Fig. 7.11 Multiway branching on OY. 228
Fig. 7.12 Multiway branching on XNQT1345. 229

(vii)

Fig. 7.14 Multiway branching on G32. 230
Fig. 7.15 Multiway branching on MO0788. 230
Fig. 7.16 Finding the average reference row value

and the straddle points for an SI set. 237
Fig. 7.17 Example of branching on an S2 set. 243
Fig. 7.18 The binary branching strategy as applied to

51 sets. 246
Fig. 7.19 The binary branching strategy as applied to

52 sets. 248
Fig. 7.20 Situations where two branches are made on

an SI set using Separation Method One. 250
Fig. 7.21 Situations where three branches are made on

an SI set using Separation Method One. 251
Fig. 7.22 Situations where two branches are made on

an S2 set using Separation Method One. 253
Fig. 7.23 Situations where three branches are made on

an S2 set using Separation Method One. 253
Fig. 7.24 Situations where four branches are made on

an S2 set using Separation Method One. 254
Fig. 7.25 Creation of an artificial variable to

estimate the degradation caused by making
Branch (1). 255

Fig. 7.26 Multiway branches made on SI sets under
Separation Method Two. 257

Fig. 7.27 Multiway branches made on S2 sets under
Separation Method Two. 258

Fig. 7.28 Multiway branching on SETXsnode selection

(vUI)

Fig. 7.13 Multiway branching on G31. 229

263strategy 1 .
Fig. 7.29 Multiway branching on SETX:node selection

strategy 2 . 263
Fig. 7.30 Multiway branching on SETX:node selection

strategy 3. 264
Fig. 7.31 Multiway branching on SETXmode selection

strategy 4. 264
Fig. 7.32 Multiway branching on MINE1:node selection

strategy 1 . 265
Fig. 7.33 Multiway branching on MINElrnode selection

strategy 2 . 265
Fig. 7.34 Multiway branching on MINElmode selection

strategy 3. 266
Fig. 7.35 Multiway branching on MINEl:node selection

strategy 4. 266
Fig. 7.36 Multiway branching on MINE2:node selection

strategy 1. 267
Fig. 7.37 Multiway branching on MINE2:node selection

strategy 2. 267
Fig. 7.38 Multiway branching on MINE2:node selection

strategy 3. 268
Fig. 7.39 Multiway branching on MINE2:node selection

strategy 4. 268
Fig. 7.40 Multiway branching on DOMl:node selection

strategy 1. 269
Fig. 7.41 Multiway branching on DOMl:node selection

strategy 2 . 269

O x)

Pig. 7.42 Multiway branching on DOM1inode selection
strategy 3. 270

Fig. 7.43 Multiway branching on DOMlinode selection
strategy 4. 270

Fig. 7.44 Multiway branching on MCAinode selection
strategy 1 . 271

Fig. 7.45 Multiway branching on MCAinode selection
strategy 2 . 271

Fig. 7.46 Multiway branching on MCA:node selection
strategy 3. 272

Fig. 7.47 Multiway branching on MCAinode selection
strategy 4. 272

00

Ll»t Of Tables
Table 1.1 Comparison of solution times for polynomial

and exponential algorithms. 12

Table 1.2 Relative effects on polynomial and
exponential algorithms of hardware speedups. 13

Table 4.1 Solving example LP problems. 116
Table 4.2 Test problem statistics. 129
Table 4.3 Results of using the initial parallel

algorithm. 130
Table 5.1 Extra test problem statistics. 156
Table 5.2 Transputer usage for small combinatorial

problems. 164
Table 5.3 Transputer usage for small MIP problems. 167
Table 5.4 Times for LP iterations. 172
Table 5.5 Disk-reading times in relation to Simplex

iterations. 174
Table 5.6 Maximum message-passing times for test

problems. 177
Table 6.1 Transputer usage for small combinatorial

problems. 203
Table 6.2 Transputer usage for small MIP problems. 207
Table 7.1 Test problems for multiway branching on

General Integers. 226
Table 7.2 Test problems for multiway branching on

Special Ordered Sets. 260

(xi)

1. Introduction

1.1. Background to Mixed Int«wr Prog r . »

Sine« World War II, problems from a wide range of
industries have been analyzed, attacked and solved using
Operational Research (O.R.) techniques. Such techniques
involve the creation and use of a model of the physical
situation.

The most widely used and commercially successful O.R.
techniques are those of NathesMitical Programming (MP) .
Mathematical Programming models make the assumption that
the controllable aspects of the physical situation are
quantifiable. The situation is then modelled using
mathematical deciaion variables which can take any value
between some lower and upper bound (usually zero and
infinity). The values of the decision variables in the
final solution to the problem will provide a guide to the
best course of action to take in the situation modelled.

A degree of simplification or an abstraction from reality
is necessary in the creation of any model, and this must of
course be reflected in the interpretation of the results
obtained from using Mathematical Programming models.

1

Linear Programming (LP) is the most popular Mathematical
Programming technique. LP models are concerned with the
efficient allocation of some form of scarce resource to
known activities in order to achieve a specified goal.

To this end, an LP model consists of:

decision variables used to reflect decisions made as
to the allocation of resources;

constraints on the allowable (feasible) decisions; and

some mechanism by which to measure the success of the
solution.

The constraints of an LP problem must be linear
(in)equations, consisting of a linear combination of
decision variables, an equality or inequality and a
constant term (possibly zero). Such an equation could be
used to model the availability of a scarce resource for
instance, with the linear combination of decision variables
reflecting the actual resources used, and this being less
than (or possibly equal to) a constant term which indicates
the maximum availability of the resource.

2

An LP model also contains an Objective Function which acts
as its measure of success. The objective function is a
linear combination of decision variables which gives the
actual quantified value of making the decision(s). This is
usually expressed in terms of a total cost or profit, but
any single objective may be used. Any allowed set of values
of the decision variables will give a value to this
objective function. The aim of using the LP model is
usually to find an optimum value of this objective function
(i.e. to maximise or minimise it), subject to satisfying
the constraints on the problem.

The standard method used to solve LP problems, the Simplex
Method (see [Dantzig, 1963]), essentially performs an
ordered, although usually not exhaustive search through the
possible combinations of decision variable values until the
optimal solution is found. The search proceeds around the
perimeter of the feasible region (which is imposed by the
constraints on the problem) until the optimal point is
found. This optimal point will always be at a vertex of the
perimeter of the feasible region.

3

To summarise, the standard form of an LP problem consisting
of m constraints and n variables is as follows:

Optimise dy
Subject to Ey = b
and y 2 0

where y ■ (y„,sj is a vector consisting of n
decision variables and m slack
variables;

E » (E.,1) is an m by (m+n) matrix
consisting of constraint
coefficients for the n variables
and an m x m identity matrix for
the slacks;

d ■ (d.,0) is a vector of the objective
function coefficients for the
variables; and

b is a vector of size m for the
right hand sides of the m
constraints.

LP models are used to solve problems from a great variety
of industries, from agriculture and mining, to
manufacturing and transportation, to chemical and
petrochemical.

4

In certain instances however, it becomes apparent that a
Linear Programming formulation of a problem is not
sufficient to properly reflect reality. Choosing to carry
out half each of two large projects needing capital
investment and giving a return on completion for instance,
would not maximise returns. Similarly, deciding to make two
and a half multi-million pound jet aircraft using the
facilities available would not be an acceptable solution.
In either of these cases, solving the problem as an LP and
then rounding off the numbers will not provide a provably
optimal solution.

Thus the standard LP concept must be extended by the
inclusion of 'discrete entities', i.e. variables (or sets
of variables) whose values in an optimal solution must be
ones taken from some discrete set. This extended problem is
known as an Integer Programing (IP) problem. An IP problem
may be further categorised as a Pure Integer Programing
(PIP) problem if all decision variables must take values
from a discrete set, or as a Nixed Integer Programing
(NIP) problem if some, but not all, decision variables must
take values from a discrete set.

Both the LP problem and the PIP problem can actually be
considered as special cases of the MIP problem.

5

Consider the standard mathematical formulation of a Mixed
Integer Programming problem, the category of problem on
which this thesis will focus:

Optimise cx + dy
Subject to Ax + Ey = b
and x £ 0 and integer, y £ 0

where x and y are vectors of decision variables and
slack variables;
c and d are vectors of objective function
coefficients;
A and E are matrices of constraint coefficients;
and
b is a vector of right hand side values for the
constraints.

An LP problem is simply the above formulation where the c
vector and the A matrix are empty.

A PIP problem is the above formulation where the d vector
and the E matrix are empty.

The mixture of discrete and non-discrete entities within a
problem can be used to determine the most effective method
of solution. For the purpose of this thesis, a MIP problem
is considered to be one where there are a relatively low
number of discrete entities within the decision variables.

6

Large hard MIPs are frequently encountered in real-world
applications where the integer components often represent
switching between radically different modes of operation.
This is in contrast with problems of a Combinatorial
nature, which contain a very high proportion of discrete
entities, and which often have an underlying structure
which may be exploited.

flty of HIP Probi—

The computational complexity of a problem gives an idea of
how difficult the problem might be to solve. MIP problems
have been shown to belong to a category of problems that
exhibit a high degree of computational complexity. This
means that MIP problems can be very difficult to solve in
a reasonable amount of time.

The remainder of Section 1.2 will present background
information relating to the theory of computational
complexity. Various degrees of problem difficulty will be
introduced, and an explanation given as to how problems are
classified. This theoretical information is not central to
an understanding of the rest of the thesis, but is
presented for the interested reader.

7

Probl. Efficiency

A problem can be said to consist of an infinite number of
instances which are achieved by assigning numerical data to
the problem parameters.

Since an LP or PIP problem is a special case of an MIP
problem, it can be said that any instance of an LP or PIP
is also an instance of an MIP. Thus, an algorithm which can
solve all instances of an MIP problem can be used to solve
all instances of the special case LP or PIP.

From this, we can conclude that MIP problems are at least
as hard to solve as LP or PIP problems.

In order to decide on just how hard to solve MIP problems
actually are, however, we must define some different
potential categories of difficulty.

Problem complexity is usually measured in terms of the time
taken to compute the result. Computation time is very often
related to problem size (i.e. the number of variables and
constraints of the problem) , although this is not always
the case (e.g. there are algorithms, such as the ellipsoid
method for LPs ((Khachiyan, 1979, Gacs and Lovasz, 1981]),
whose number of steps depend explicitly upon the magnitude
of the numerical data).

8

To properly explain the concepts of computational
complexity, the following definitions (from (Nemhauser and
Wolsey, pp 118-119}) will be used.

Let the size of a problem instance be defined as the amount
of information required to represent the instance.

An MIP is specified by data from the matrices c, d, A, E
and b. This numerical data may be represented in a form
close to the structure representing it when it is held on
the computer by using a binary (0 ,1) alphabet.

In such a model, a positive integer x, where

2n i X < 2n*1

is represented by the vector

........•„)

where

and

6i e (0 , l) for i- 0

9

This representation of the data assumes that the initial
data are integral or rational. Note that an extra digit is
required to represent the sign of x and that rational
numbers are represented by pairs of integers.

Let us now consider how to measure the computational time
taken to solve a problem instance. The measure of
computational time must be independent of the computer
used, and so a good measure to use is a summation of all
the basic operations carried out (e.g. addition,
multiplication, comparison etc.). We assume that each basic
operation is carried out in unit time.

A measure must also be found for the efficiency of the
algorithm used to solve the problem. Consider an
optimisation problem Z, consisting of an infinite number of
instances (s1# z3 , ...) where the data for instance zt is
given by a binary string of length lt » l(z,) .

Let Q be an algorithm that can solve every instance of Z in
finite time.

We assume that the running time of Q is specified by a
function

g0\ Z-R} .

where R.* is the set of non-negative real numbers.

10

We wish to express the running time of algorithm Q as a
function of the length of the problem instance to be
solved.

Two instances of a problem having the same length do not
necessarily have the same running time of course. We must
therefore use some statistic to aggregate the running times
for all instances of the same length.

A common way to do this is to use a worst case analysis.
Thus for all instances of size k, the running time is said
to be

f „ (k) - MAXigpiZj) |J (« j) - id

This approach gives an absolute upper bound on the running
time, but can be misleading in certain cases (e.g. where
only a small proportion of instances take a long time) .
Other measures requiring probability distributions of the
instances could be used, but these would be more difficult
to analyze and would require assumptions to be made about
the underlying probability distribution.

Let us define f (k) to be 0(g(k)) when there exists a
positive constant w and a positive integer k' such that
f(k) £ wg(k) for all integers k £ k'. This definition
allows us to approximate f from above by a simpler function
wg with w unspecified.

11

Using this definition, a polynomial

k i is 0(kp)

since * wkp for large integers k

Algorithm Q is said to be a Polynomial Time Algorithm for
problem Z if f0(k) is 0(k*) for some fixed p.

Any algorithm whose time complexity function cannot be
bounded polynomially is regarded as an Exponential Time
Algorithm.

The difference between these two types of algorithms can be
seen quite dramatically when considering the solution of
large problem instances (with large input length 1).
Examples of this difference are shown in Table 1.1 below
(adapted from (Garey and Johnson, page 7}).

Note that the first three algorithms shown in Table 1.1 are
polynomial, whereas the fourth and fifth algorithms are
exponential.

12

Problem Size (input length 1)
Algorithm 10 20 30 40 50
1 0 . 0 0 0 0 1 0 .0 0 0 0 2 0.00003 0.00004 0.00005
1 * 0.0001 0.0004 0.0009 0.0016 0.0025
1 » 0.001 0.008 0.027 0.064 0.125
2 1 0.001 1.0 17.9 m 12.7 d 35.7 y
3l 0.059 58 m 6.5 y 3855 c 2x 1 0* c
(Times are in seconds unless followed by m = minutes, d =
days, y = years, c = centuries).

Table 1.1: Comparison of Solution Times for Polynomial and
Exponential Algorithms.

The effects of improved technology on the different types
of algorithm are also of particular importance. Table 1.2
below (from {Garey and Johnson, page 8 }) shows the largest
problem that can be solved in one hour using the different
types of algorithm if the hardware is speeded up.

N.B. X = size of problem solvable in 1 hour using current
hardware.

13

Hardware Speeded up
Algorithm 10 0 times 1000 times
1 100X 1000X
la 10X 31.6X
1 » 4.64X 10X
2 1 X ♦ 6.64 X ♦ 9.97
31 X ♦ 4.19 X ♦ 6.29

Table 1.2: Relative Effects on Polynomial and Exponential
Algorithms of Hardware Speedups.

It can be seen from Tables 1.1 and 1.2 why polynomial time
algorithms are generally considered to be more desirable
than exponential time algorithms. Indeed, many problems are
not considered to have been "well-solved" unless a
polynomial time algorithm has been found to solve them.
Thus, for many theoretical purposes, a problem which cannot
be solved by a polynomial time algorithm may be classified
as intractable (although this is not a rigid rule in
practice since, for instance, the Simplex algorithm for LP
problems has been shown to have exponential time complexity
[Klee and Minty, 1972]).

For theoretically tractable problems though, the first of
the categories for problem complexity is defined as P,
which is the class of problems that can be solved in
polynomial time, (i.e. so that problem Z is in P only if
there is a polynomial time algorithm for solving Z).

14

In order to introduce the next category of problem
complexity, we shall now introduce the concepts of decision
problems and deterministic and nondeterministic algorithms.

A decision problem is one which when solved will give
either the answer "yes" or the answer "no".

A deterministic algorithm to solve an instance I of a
decision problem, if given an input structure S will
compute either the answer "yes" or the answer "no".

A nondeterministic algorithm to solve a decision problem
can be thought of a having two stages, a "guessing" stage
and a "checking" stage. Given a problem instance I, the
first stage guesses some structure S. The instance I and
the guessed structure S are then provided as inputs to the
checking stage, which uses a deterministic algorithm to
compute either the answer "yes" or the answer "no".

A nondeterministic algorithm is said to solve a decision
problem Z if the following two properties hold for all
instances I € D* (where D, is the set of all instances for
problem Z):

If I e Yt (the set of instances of problem Z that give the
answer "yes"), then there exists some structure S that,
when guessed for input I, will lead the checking stage to
respond "yes" for I and S.

15

If I « Yt then there exists no structure S that, when
guessed for input I, will lead the checking stage to
respond "yes" for I and S.

As an example, a nondeterministic algorithm for the
Travelling Salesman problem could be constructed using a
guessing stage that, when given the data for the problem
instance, gives an arbitrary sequence to the instance
destinations. The checking stage would input the data for
the instance and the guess, and verify whether the guess
provided the best solution (e.g. by trying all combinations
of routes).

A nondeterministic algorithm that solves a decision problem
is said to operate in polynomial time if, for every
instance I e Y, there is some guess S that leads the
deterministic checking stage to respond "yes" for I and S
within polynomial time.

We can now define a new category for problem complexity,
i.e. the class NP. A problem Z is said to belong to the
category IIP if there is a nondeterministic algorithm that
will solve it in polynomial time. By definition, all
nondeterministic algorithms that operate in polynomial time
will be members of P. Any deterministic algorithm that is
in P can be used as the checking stage of a
nondeterministic algorithm (although perhaps an entirely
artificially created one).

16

Thus, the relationship between P and NP is probably such
that P c NP as shown in Fig. 1.1 below.

Fig. 1.1: The relationship
between P and NP.

The class NP is especially important since those problems
that are members of NP but not of P (if any such problems
exist) are generally considered to be theoretically
intractable.

Further categories of problem complexity can be introduced
by considering the concept of problem reducibility. Two
problems can be proved to be related to each other by
"reducing" one problem to the other. This procedure
involves providing a transformation process that maps any
instance of the first problem into an equivalent instance
of the second. Such a transformation provides the means for
converting any algorithm that solves the second problem
into a corresponding algorithm for solving the first
problem.

17

As examples of such reductions, it may be shown that a
number of combinatorial optimisation problems may be
reduced to the general zero-one PIP problem ([Dantzig,
1960]), or that the Travelling Salesman problem may be
reduced to the shortest path problem with negative edge
lengths allowed ([Dantzig et al., 1966]).

Cook showed the importance of "polynomial time
reducibility", i.e. a reduction for which the
transformation is carried out in polynomial time ([Cook,
1971]) . If the transformation process can be carried out in
polynomial time, it can be proved that any polynomial
algorithm to solve the second problem can be converted into
a corresponding polynomial algorithm to solve the first.

In the same paper, Cook introduced a problem known as the
"satisfiability" problem, which he proved has the property
that every other problem in NP can be polynomially reduced
to it.

Thus, if the satisfiability problem can be solved with a
polynomial time algorithm, then so can every problem in NP,
and if any problem in NP is intractable, then the
satisfiability problem must also be intractable. He thus
stated that the satisfiability problem is the "hardest"
problem in NP, although other as yet undiscovered problems
in HP might share this property.

18

Karp presented a collection of different combinatorial
problems, including the Travelling Salesman problem, which
when represented as decision problems were as "hard" as the
satisfiability problem ([Karp, 1972]).

A class of problems consisting of the "hardest" problems in
NP was thus created, and named NP-complete.

The relationship between the categories P, NP and NP-
complete is shown in Fig. 1.2 below.

Fig. 1.2: The relationship
between P, NP and NP-complete.

Note that any decision problem (whether it is a member of
NP or not) to which we can transform an NP-cooplete problem
will have the property that it cannot be solved in
polynomial time unless P=NP.

19

There are of course, many problems which do not belong to
NP at all. A further category of problem complexity may be
considered to include such problems. The same techniques
that are used to prove that a problem inside NP is NP-
completo may be used to prove that a problem outside of NP
is equally as hard.

Let NP-hard be the class of problems that are at least as
hard as any member of NP since there is an NP-coaplete
problem that can be polynomially reduced to it.

Having defined the different categories of problem
according to computational complexity, we must now decide
into which category MIP problems should be placed.

General and zero-one PIP problems have been proved to be
NP-complete ([Garey and Johnson, 1979, Karp, 1972, Borosh
and Treybig, 1976]). As stated previously, MIP problems are
at least as hard to solve as PIP and LP problems. Thus it
can be said that MIP problems are also NP-complete. Since
MIP problems are NP-complete, the fact that solutions are
being found in an acceptable time is as much due to luck in
some cases as to a good algorithm. The algorithm commonly
used to solve MIP problems (i.e. the Branch and Bound
algorithm, [Land and Doig, I960]) will, however, always
eventually find the optimal solution, (although not
necessarily in an acceptable time), since it enumerates all
possible solutions.

20

1̂ 3. Plgcuf■ion of thf

Faster computer hardware has allowed the solution of more
MIP problems in reasonable times, but there will come a
point where the hardware cannot be speeded up any more. One
way of improving the solution times of MIP problems without
further speeding up the hardware is to improve the
effectiveness of the solution algorithm used.

The arrival of accessible parallel processing facilities
provides an opportunity to exploit any parallelism within
the solution algorithm in order to provide an increase in
solution speed for most MIP problems.

Effective algorithms for solving IP, and in particular MIP
problems, can contain a considerable degree of exploitable
parallelism. This has been demonstrated by the
implementation of software used to solve pure integer
programming (PIP) problems on a network of workstations
((Cannon and Hoffman, 1989]). The workstations used were
loosely connected via Ethernet, but good performance was
still achieved.

The practical solution of commercial MIPs can be
challenging and expensive in terms of both time and effort.
The development of a fast, inexpensive parallelised MIP-
solving system would thus be of great benefit to many
commercial users. To that end, a parallel algorithm has

21

been developed, tested and implemented on a PC. This thesis
discusses issues raised in the development and
implementation of the algorithm, and reports computational
results obtained from the solution of real IP problems.

The standard commercial codes for MIP (e.g. [IBM, 1988])
use a Branch and Bound approach ([Land and Doig, I960]),
although there are many different algorithms that can be
used to solve MIP problems. Chapter Two introduces the
different IP-solving algorithms that were considered for
parallelisation and discusses their pros and cons when used
on large MIP problems.

Before deciding on an algorithm to parallelise, it is
necessary to consider the benefits and limitations of
parallelisation. Chapter Three thus provides background on
the development of parallel processing theory, algorithms
and hardware. Different ways of exploiting the benefits of
parallelism using appropriate parallel hardware are
considered.

Chapter Four discusses the choice of MIP solving algorithm
to be parallelised and the hardware chosen to implement the
parallel algorithm. A full description is given of the
initial parallelisation of the algorithm and of the process
of its implementation using a small number of parallel
processors. Computational results are reported for a number
of test problems.

22

Chapter Five discusses the changes necessary to implement
the parallel algorithm on a larger number of processors and
reports computational results from a larger set of test
problems.

Chapter Six reports computational results obtained by using
the parallel algorithm to solve a set of test problems
whilst using several different node selection strategies.

Chapter Seven discusses several theoretical extensions to
the algorithm which are made to more fully exploit the
parallel processing power available when attacking problems
formulated using general integer variables or special
ordered sets. Computational results are given using an
appropriate set of test problems.

Chapter Eight draws conclusions from the results generated
during previous chapters and makes several recommendations
for future extensions to the research, including outlines
of theoretical and implementational extensions to the
present parallel algorithm for use on a very large number
of parallel processors.

23

2j Si fglutlgn tor Mlxxl Inf gor i
Problems

There are several different types of technique that can be
used to solve MIP problems. These are categorised as:

(i) Cutting Plane Methods;
(ii) Partitioning Algorithms;
(iii) Group Theoretic Algorithms; and
(iv) Enumerativo Methods.

This chapter will introduce various algorithms taken from
these categories. The merits of each algorithm as a method
for solving large MIP problems will be discussed.

It is worth noting that although several of the algorithms
discussed in this chapter seem at first sight to be good
candidates for parallelisation, this may not be the case in
practice. Chapter Three thus considers the different
parallel methods and hardware available for the
implementation of a parallel algorithm, and Chapter Four
discusses the final choice of algorithm and the method of
parallelisation to be used.

24

2,1. Cutting Plan» Methods

2.1.1. Background

The first cutting plane method for general use on any PIP
was developed in 1958 ([Gomory, 1960]), although the idea
had previously been proposed in 1954 for use in solving the
Travelling Salesman category of PIP problem ([Dantzig et
al., 1954]). Beale generalised the technique later in 1958
so that it could be applied to MIP problems ([Beale,
1958]) .

The cutting plane concept is that the integrality
constraints on the decision variables are removed, and
additional linear constraints are generated and added to
this LP relaxation. Each additional constraint added 'cuts
off' part of the solution space of the LP, until eventually
a solution can be found to the LP relaxation wherein all
the decision variables that should take integer values do
so.

As an example of this, in Fig. 2.1 below, we see the LP
relaxation of a simple, two variable PIP problem. The
optimal LP solution is such that one of the decision
variables takes a continuous value (i.e. at point C, where
Xt-3, Xj - 2 . 5) .

25

Fifl. 2.1: Two variable PIP
problem.

The solution space, at present shown by ABCDE, needs to
have a section 'cut off' so that this answer is no longer
feasible. The viable all-integer solution points of the LP
are shown as dots. In order to produce an all-integer
solution, one of these dots must become a vertex of the new
solution space (since all optimum solutions to LP problems
occur at a vertex of the solution space).

As can be seen in Fig. 2.2, by adding two new constraints
to this LP, the feasible region can be reduced to the
points AFGHE, so that the optimum LP solution is achieved
by giving integer values to the decision variables (i.e. at
point G where Xj-2, X2=2) .

26

1 2 3 4
XI

rig. 2.2: Two variable PIP
problem with cuts added.

It is important that the additional constraints, or 'cuts'
do not remove any integer feasible solutions from the
solution space.

The Gomory Fractional Cutting-Plane Algorithm (FCPA) makes
use of Gomory cuts to reduce the solution space of IP
problems without removing any integer feasible solutions.
Appendix 1A shows that Gomory cuts are appropriate for this
purpose.

A Gomory cut is of the form

a»!»?* Thf Fractional Cutting Plane Algorlth»

(6)

27

where, in the tableau for the optimal solution: R is the
set of non-basic variables; Xj are the non-basic variables;
f4J is the fractional part of the coefficient of Xj in row
i; flj is the fractional part of the right hand side value of
row i; and s is a positive slack variable for the new
constraint.

The cut formula can be applied to any row of the LP
solution to generate a new constraint row. It is only
meaningful to apply the formula to a row which contains a
basic variable not satisfying integrality.

The FCPA algorithm for solving a PIP is thus:

(1) Solve the LP relaxation of the PIP problem. If the
solution is infeasible or all-integer, stop.
Otherwise, go to (2).

(2) Choose a row from which to generate a new cut.
Deduce a new cut and add it to the LP tableau, making
the tableau infeasible. Go to (3).

(3) Reoptimise using the Dual Simplex method (tLemke,
1954, Beale, 1954]). If the new solution is
infeasible, the PIP has no solution - stop. If the new
solution is integer feasible - stop. Otherwise go to
(2) .

28

This algorithm is finite as long as the first row with a
non-integer constant component is used to generate cuts
every finite number of iterations (see {Salkin p. 62)). The
algorithm may be generalised for use with MIP problems,
with the only change being that a more complicated cut
formula must be used.

The tightest Gomory Mixed Integer Cut for MIP problems is
of the form

E c x
j c r ; “ 1

. E «Mi - « V * , . E 0 ..
U - g,) jotl >,Y‘

. E gieij>v *
JeR, (1 - g,) J 9‘

where
Rj {j|j indexes the non-basics that are integers);
Rj {j| j indexes the non-basics that are continuous);
X» basic variable for row i;

XJ non-basic integer variables;

Yi non-basic continuous variables;

•»* « coefficient of integer variable in row i;

•ii » coefficient of continuous variable y} in row i;
b4 = right hand side constant for row i;
gi fractional part of bt;

fu fractional part of atJ;
Ri* {j|j is a member of set Rl# .1 S a,);
Ri- ■ {j|j is a member of set , *11 > Bi)<
Ra* - {j|j is a member of set Ra , e4J > 0) ; and
Ra* - {j|j is a member of set Ra , oV•

Appendix IB contains the derivation of this cut.

29

Various implementations of the FCPA algorithm are
differentiated by the criteria they use when choosing a row
on which a new cut will be based. Examples of popular
criteria are the row containing the largest fractional
variable, the row containing the first fractional variable,
and a method where several different cuts are added and the
Dual Simplex method is used to choose which cuts to keep
and which to discard (see {Salkin} p. 58).

The FCPA algorithm has two main disadvantages when applied
to MIP problems. Firstly, the FCPA algorithm cannot be
proved to be finitely convergent unless the objective
function only takes integer values (see (Nemhauser and
Wolsey) p.374), which is by no means a obligatory feature
of an MIP problem. The only way to ensure finite
convergence is to scale the problem so that the objective
function does only take integer values. This strategy is
most unsatisfactory for computational purposes since either
very large objective function coefficients will be
required, unbalancing the matrix, or repeated scaling of
the problem may be necessary.

Secondly, no feasible integer solution is obtained by the
FCPA algorithm until the optimal solution is determined.
There is no concept of a "reasonably good" solution
associated with this algorithm. The Primal Cutting-Plane
Algorithm (Ben-Israel and Charnes, 1962, Young 1965]) was
designed to get around this problem. Unfortunately, due to

30

the extremely large number of cuts necessary to solve a
problem, only a few problems have ever been attacked using
this method (e.g. [Padberg and Hong, 1980]).

2.2. Partitioning Algorithms

Another class of algorithms for solving IP problems is that
of the partitioning algorithms. Such algorithms partition
the variables or constraints of a problem into two or more
categories and exploit the differences between the
categories in order to solve the problem.

In 1962, Benders proposed an algorithm for use on any
Mathematical Programming problem whose variables can be
partitioned into two sets, so that if the variables in one
set are given numerical values the overall problem reduces
to an LP ([Benders, 1962]). One obvious usage of this is
the MIP problem, where some variables may take continuous
values but others must take integer values.

Benders' algorithm takes advantage of the fact that it can
be shown, using duality theory, that any MIP problem can be
rewritten as a PIP problem. The algorithm thus makes use of
information from a reformulation of the MIP problem and
from the dual of an LP relaxation of the MIP problem.

31

The MIP problem

x0* = MAX x0 = cx + dy
Ax ♦ Ey S b (1)
x £ 0 and Integer, y £ 0

can be relaxed, for any non-negative value, x,„,
integer vector x, to give the LP:

Xq* (Xyai) = cxvil + MAX dy
Ey s b ■ Ax,., (2)
y 2 0

The dual of LP (2) is:

Uo'fXv.,) = cx,., + MIN u(b - Ax,.,)
uE £ d (3)
u 2 0

The MIP (1) can also be rewritten as
MAX Z
Z £ cx ♦ u*(b - Ax) for every u* e T
0 £ v"(b - Ax) for every v* e Q (4)
x 2 0 and integer

where T ■ {u'lu* is an extreme point of dual LP (3)
Q ■ {v^ju* + Ov**, 0 2 0 is an extreme ray for some i

of the

}; and
i‘ € T)

32

This is Benders' reformulation of the original MIP problem
(1). The derivation of this reformulation is discussed in
Appendix 1C. Figure 2.3 below shows the extreme points and
extreme rays of the dual LP (3).

Fig. 2.3: The case where the
Dual LP (3) is unbounded.

An apparent disadvantage of Benders' reformulation is that
it generates a large number of constraints on the new PIP,
since a constraint is generated for every extreme point and
extreme ray of the problem. Benders' algorithm gets around
this disadvantage by reformulating the MIP as a PIP and
then solving the PIP using only a subset of the PIP
constraints generated.

For any fixed non-negative value of x, x*., say, the dual LP
(3) can be solved. Since (3) is more restricted than (1) (x
being fixed) , the value of its minimum solution can be used
as a lower bound on the optimal solution of MIP (1) . (If
the dual LP (3) is unbounded, its value can be thought of
as negative infinity) . When dual LP (3) is solved, it

33

provides an extreme point or ray, and thus an inequality
for use in PIP (4) (the Benders' reformulation). If PIP (4)
is solved using this single constraint, then its optimal
solution is an upper bound on the best solution to the MIP
(1). Solving PIP (4) also provides a new non-negative value
for Xyal which can be used to solve dual LP (3) again.

Thus, the dual LP problem (3) and the Benders'
reformulation (4) can be repeatedly solved, providing
better and better lower and upper bounds on the optimal
solution to the MIP (1) . When the lower bound on the MIP is
equal to the upper bound on the MIP, the process
terminates. The values of x are known, but to find the
values of v, the LP problem (2) is solved with x taking
their optimal values.

Benders' decomposition algorithm has been used successfully
on MIPS ([Balinski and Wolfe, 1963], Childress, 1969,
Geoffrion and Graves, 1974, Manne, 1971]).

2.2.2. Laqrangian Relaxation

Another useful partitioning algorithm is the Lagrangian
relaxation method ((Everett, 1963]), which is again a
method for obtaining bounds. The constraints of the
problem are classified as either simple or complicated. The
set of simple constraints is chosen so that it can easily
be solved.

34

The complicated constraints are moved to the objective
function (i.e. the complicated constraints are essentially
dropped from the calculation process).

The Lagrangian relaxation method allows the solution of a
PIP by enforcing only the non-negativity and integrality
requirements on the variables.

Consider the PIP:

MAX CX
Subject to Ax £ b
and x 2 0 and integer

This may be rewritten as

MAX CX
Subject to A*x £ b" (simple constraints)

Acx £ bc (complicated constraints)
and x £ 0 and integer

Let X be a column of non-negative "multipliers".

35

Then if x=x° solves

* c x ♦ X (b c - A cx)

Subject to A*x S b*
x 2 0 and integer

it also solves the PIP with bc replaced by Acx°. Thus, if X

is chosen so that the optimal solution x° gives bc = Acx° ,
the original PIP has been solved.

The proof of this, (which is also applicable to MIP
problems), adapted from {Salkin, pp 416-419} is as follows:

As x° gives the maximum value to the objective function, we
can say that

cx + X.(bc - Acx) £ cx° + X,(bc - Acx°)

Therefore, for all x £ 0 and integer,

cx ♦ X (Aex° - Acx) £ cx°

So for all non-negative integer solutions to Acx S Acx°, the
previous inequality is true. Thus, since Acx° - Acx 2 0 and
X £ 0, this implies that cx S cx°.

36

Hence x° solves the PIP

MAX CX
Subject to Acx S Acx°

A“x £ b*
and x ^ 0 and integer

Thus, if the multipliers (i.e. the X), are chosen such that
bc = Acx°, the IP can be solved without the inequality
constraints. The difficulty obviously comes in finding X

such that bc = Acx°.

The overall Lagrangian Relaxation Algorithm works as
follows:

(1) Select X and find x° and hence Acx°.
(2) If Aex° is close enough to bc, stop. Else, go to (1) .

Many different methods have appeared in the literature for
choosing the X values (e.g. [Brooks and Geoffrion, 1966,

Fox and Landi, 1970, Nemhauser and Widhelm, 1971,

Geoffrion, 1 9 7 2]) .

Lagrangian relaxation has been a successful way of solving
combinatorial and MIP problems, including the Travelling
Salesman Problem ([Christofides, 1970, Held and Karp, 1970 ,

1 9 7 1]) , vehicle routing problems ([Stewart and Golden,
1984]) and plant location problems ([Sridharan, 1 9 9 1]) .

37

2.3. Group Th«or«tle HgnrUh.j

Gomory, as well as developing the fractional cutting plane
algorithm, also proposed the use of Group Theoretical
Algorithms to solve IPs ([Gomory, 1965, 1967, 1969]). He
showed that by relaxing the non-negativity (but not
integrality) constraints on certain variables, any PIP can
be represented by a minimisation problem defined on a
group.

Appendix ID shows that the PIP problem

Maximise cx
subject to Ax = b
and x 2 0 and integer

may be rewritten as

nMinimise ^ o,*,,,,

subject to £ *j*j w • *o (modi)

and Xj(JI 2 0 and integer (j»l,.... n)

where xJ(j(is the jth (1 5 j £ n) non-basic variable, a } 2
0 are the costs and each column At, (j«0,1, . . .,n) satisfies
0 £ ft, < 71 (where n is a column of ones) .

38

This is referred to as the Group Minimisation Problem. By
solving this problem, we may also be able to solve the
original PIP problem.

Several algorithms have appeared in the literature for use
in solving the Group Minimisation Problem (GMP). These
algorithms include a dynamic programming algorithm, an
enumeration method and a shortest route algorithm used for
attacking the problem as a network.

These algorithms have a common basic structure. The GMP
problem is solved and the minimum value for the objective
function is found. If the basic variables happen to take
non-negative values then the original PIP problem has also
been solved. If one or more of the basic variables take
negative values, the GMP has to be solved again to find the
solution which gives the smallest value of the objective
function whilst the basic variables take non-zero values.

The Dynamic Programming approach to this situation is to
describe a set of recursive relationships to find the rth
best solution to the Group Minimisation Problem (see
(White, 1966)). By proceeding through these solutions, it
is hoped that eventually a solution will be found which
will solve the original PIP problem. The recursion
expressions are very complicated however, and difficult to
implement.

39

The enumerative approach to the situation is to explicitly
or implicitly examine all possible integer solutions to the
Group Minimisation Problem ([Shapiro, 1968]). This is
achieved by successively adding bounds of the form Xj(J, £ K
(j*l,...,n), where K starts at zero and is incremented by
one until it reaches any upper bound on the variable Xj(J,.
This process will eventually generate all possible integer
solutions to the Group Minimisation Problem, some of which
it is hoped will contain non-zero basic variables and thus
satisfy the original PIP problem. In order to find the
optimum solution to the original PIP, it is necessary to
enumerate all the possible integer solutions of the GMP so
that the allowable solution to the GMP with the minimum
objective function value can be found. It is hoped that
much of this enumeration will be done implicitly once an
allowable solution has been found. Each allowable solution
found can be used to place a bound on any future candidate
solutions, thus allowing the implicit enumeration of
certain situations which cannot possibly give a solution to
better the present best.

This enumeration method is very similar to the Branch and
Bound enumeration algorithm described in section 2.4.1.,
although its search process is less well directed since
there is no guide as to whether the individual GMP
situations examined will or will not give solutions with
non-zero basic variables.

4 0

The shortest path approach makes use of the enumerative
algorithm previously mentioned along with the fact that the
GMP may be represented as a shortest route problem.
{Salkin, pp 364-368} discusses this representation as
follows:

Let the set of vectors generated by additions (modulo 1) of
the n fys in the Group Minimisation Problem be denoted by
Q(&) .

Each element in the group G(&) corresponds to a distinct
node. Let a directed arc (which may only be traversed in
the direction it indicates) (i,k) join two nodes
representing group elements gt and gk whenever g„ - g4 (mod
1) is equal to some fit, (j 2 1) .

Traversing an arc from node i to node k therefore
corresponds to incrementing Xj(J, by one, and so the cost o,
is assigned to arc (i,k).

The Group Minimisation Problem may be reduced to the
problem of finding the cheapest (or shortest) route from
the node representing the zero element of the group
(denoted by g0) to the one representing the right hand side,

fto.

41

A route is a sequence of directed arcs originating from g0,
and if an arc (i,k) is used in the route it means that Xj(J,
is increased by one, where ■ gk - gt (mod 1). Initially
(at node g0) all xJ(J) are 0) .

Thus, since it can be shown that the GMP can be represented
as a shortest route problem, each of the separate GMPs
constructed by adding bounds of the form Xj(J) 2: K
(j=l,...,n) can be solved using a shortest route algorithm
(e.g. [Dijkstra, 1959]).

All of the above methods may be extended to the MIP case by
only considering the solutions to the GMP that give integer
values to the discrete variables.

None of these Group Theoretic methods however is
particularly efficient in solving MIP or PIP problems,
since the required search through the many different Group
Minimisation Problems is either conducted by complex and
computationally difficult recursion relations or by a semi­
blind search through all the possible problems.

42

2,4. «numerativa Technlgu+s

Enumeration algorithms for solving IP problems attempt to
enumerate, either explicitly or implicitly, all the
possible solutions to the IP problem. The optimal solution
is defined as the feasible solution from the list of
possible solutions found that maximises or minimises the
objective function.

All enumeration algorithms consist of a method of keeping
track of the solutions considered so far and of "point
criteria" which indicate situations where certain related
integer points cannot yield better solutions than the
present best (incumbent) solution. Such point criteria make
use of the integrality and constraint requirements of the
IP problem to implicitly enumerate large numbers of points
at once. The efficiency of an enumerativo algorithm will
depend very heavily upon the effectiveness of its point
criteria.

The two major categories of enumerative algorithm are those
of Branch and Bound Enumeration and Direct Search
Enumeration.

43

»ranch

The most commonly used algorithm for solving IP problems is
the Branch and Bound Enumeration Algorithm ([Land and Doig,
1960, Dakin, 1965]). The enumeration process is directed by
criteria for separation, relaxation and fathoming.

The integrality constraints on the decision variables are
initially ignored (i.e. they are relaxed) and the IP
problem is solved as an LP (usually by using the Simplex
Method (Dantzig, 1951]). The LP relaxation may prove to be
infeasible or unbounded, in which case the original IP
problem is also infeasible or unbounded respectively.
Otherwise, if there is an optimal, (and therefore feasible)
solution to the LP relaxation, a check is made to see if
the supposedly-integer decision variables in this solution
all take integer values. If so, then the optimal solution
has also been found to the IP problem. If one or more of
the supposedly-integer decision variables take fractional
values in the optimal LP solution, then further work (in
the form of separation and fathoming) must be done to find
the optimal IP solution.

44

Ti>* Branching Proc*»«

The first step is to separate one of the supposedly-integer
decision variables that is taking a continuous value, and
by doing so effectively divide the original IP problem's
solution space into a number of sections (thus creating
several new IP problems to be solved).

The process of separating a variable is called branching
upon that variable.

As an example of this, shown in Fig 2.4, if the solution
given to an LP relaxation of an IP problem is such that a
supposedly-integer decision variable, Xi say, takes a
continuous value C, then the integer feasible answer must
lie in the solution space of one of two LPs where in the
first, the simple bound
xx 2 |C| ♦ 1

is placed on decision variable xXi and in the second the
bound
x, S |C|
is placed on decision variable x,.

The solution space removed (i.e. where |c| <xx < |C| +1)
would not have produced an integer feasible answer anyway.

45

XI

Fig. 2.4: Branching upon a
variable.

The next step in the algorithm is to add the two new IPs
created by the separation to a list of candidates for
solution. A choice is then made from the candidate list,
and the appropriate LP relaxation of the original IP (with
the new bounds indicated by the separation) is solved. The
solution to this LP relaxation will indicate the next step
of the algorithm. Either the separation of a different
variable (i.e. further enumeration of the original IP
solution space) will be indicated, or the LP relaxation
will be said to be fathomed. A fathomed LP relaxation will
either provide an integer feasible solution, or will be
infeasible, or will provide a solution that can be shown to
be worse than the overall'optimum).

46

The Branch and Bound algorithm is convergent, as it will
(eventually) fathom all the IP problem's solution space.
This is because, in the process of separating variables,
(and thus further enumerating the original solution space
of the IP problem), more and more useless parts of the
solution space are removed. The unenumerated areas that
remain will be further and further constrained by bounds on
the variables as the search continues (and more and more
LPs with more and more bounds on their decision variables
are generated). Thus, as the algorithm leaves smaller and
smaller areas of the solution space unenumerated, a
particular area must eventually yield either an integer
feasible answer or indicate that this part of the solution
space is invalid (i.e. there are no feasible answers to be
found within it that are better than the current best
feasible answer). In either of these cases, that part of
the solution space is said to be fathomed, since we no
longer need to consider it or any further enumeration of
it.

Of course, if several decision variables are taking
continuous values in an optimal LP solution that has just
been obtained, an intelligent choice of branching variable
must be made.

47

Branching Varlmbl« Selection

Good branching variable selection (i.e. effective IP
problem solution space partitioning) is important if the
search through the solution space is to be carried out
efficiently.

A common way of choosing branching variables in practice is
to use user-specified priorities, i.e. to order the
variables as part of the input to the algorithm. This
method can be very powerful in practice, especially in
cases where the IP problem is highly structured. For
example, a variable indicating whether or not a project is
to be done or not should obviously be branched upon before
variables reflecting details of the project if it is
undertaken.

Other methods for choosing the branching variable make use
of estimated degradations which are calculated when an LP
relaxation has just been solved and further branching is
indicated. An estimate is made of the degradation to the LP
solution caused by making branches on each of the integer-
constrained variables that are taking continuous values.
The choice of branching variable is then made based on a
comparison of the degradations the various branches will
cause to the LP solution.

48

If a supposedly-integer decision variable xt takes a
continuous value C1# then two branches are usually
considered whereby either a lower bound of the form
Xi 2 |c , | ♦ 1

or an upper bound of the form
xt S |Ct|
will be placed on decision variable xt.

Let imposing a new lower bound of |C4| ♦ 1 on xi decrease
the objective function by the "up penalty" of pt for every
unit increase from the current value of xt. (This is an "up
penalty" since the variable value must be moved up to the
new lower bound).

Similarly, let the "down penalty" incurred by placing an
upper bound of |cj on xl be pt* for every unit decrease from
the current value of x4.

If we define
Ci ■ |C,| ♦ f4
then an estimated decrease ofDi* - p / f i
would be expected if an upper bound was imposed and a
decrease of
Di* ■ Pr(l-fi)
expected if a lower bound was imposed.

49

Forrest, Hirst and Tomlin give a method for estimating
penalties p4_ and p4\ but state that this method is only
useful for attacking small problems (see [Forrest et al.,
1974]). A more useful method, as used by the commercial
optimiser XPRESS-MP ([Dash Associates, 1989]), is
summarised in Appendix 1G.

Once the estimated degradations Dt' and Dt* have been
calculated for all the candidate variables, a choice must
be made as to which one to branch upon based upon the
degradation values.

The most common way of choosing the branching variable is
to use the maximum integer infeasibility criteria

ffi1 IDj.Dj)

where N‘ is the set of all the candidate variables for
branching, xt.

The idea behind this method is that a variable whose
smallest degradation is the largest degradation overall is
the most important for achieving integrality (i.e. it is
the variable whose value has the most drastic effect).

50

Nod« Selection

A selection must also be made at each iteration of the
algorithm from the growing list of candidate LPs with
appropriate bounds on the decision variables. Such a
candidate LP problem may be represented as a node on a
solution tree (see Fig 2.5).

Fig. 2.5: Solution tree for a PIP problem.

If the algorithm is to proceed efficiently. Node Selection
(i.e. the selection of which part of the solution space to
consider next) must also be considered very carefully.

51

There are two options for node selection: either the
strategy is worked out before the problem is attacked
(using a set of a priori rules) ; or an adaptive strategy is
used which decides at each iteration using the current
information.

A commonly used a priori rule is depth-first search plus
backtracking (also known as Last In, First Out (LIFO)).
This involves keeping track of which node was considered at
the last iteration. If that node was not fathomed (i.e. cut
off), then one of its two descendants is considered at this
iteration. When a node is fathomed, the algorithm
backtracks along the solution tree towards the root until
it finds the first node (if any) that has a descendant that
can be considered.

Another example of an a priori rule is the breadth-firet
search, which considers all the nodes at a particular level
of the tree before considering any from lower levels.

The Bounding Procass

The Branch and Bound algorithm continues the branching
process until an integer feasible solution is found. At
this stage, the point criteria of the Branch and Bound
algorithm may be used to implicitly enumerate some of the
possible solutions, i.e. the bounding part of the algorithm
can take place.

52

The bounding process uses the objective function value as
a point criterion to discard some of the present list of
candidate LP relaxations. Placing upper or lower bounds on
the allowable values of a decision variable of an LP
reduces the number of values the variable can possibly
take. The optimal solution value of the LP which has extra
bounds can only at moat be as good as the solution value of
the same LP without the extra bounds. In fact, the new
objective function value is likely to be worse than that of
the LP without the extra bounds on the variable.

Thus, any LP relaxation that at present gives an objective
function value of worse than the best integer feasible
solution so far is not worth considering further (since the
objective function value will only worsen when extra bounds
are placed on its variable values).

The direct search enumeration method (also known as the
additive algorithm) was first proposed in 1963 as a scheme
for solving zero-one PIP problems ((Balas, 1963, 1965]).
The method was subsequently elaborated upon, allowing the
solution of zero-one MIP problems ([Glover, 1965, Lemke and
Spielberg, 1967]) and finally extended to the solution of
general MIP problems ([Driebeek, 1966]).

53

The basic algorithm proposed by Balas, for use on zero-one
PIP problems can be shown by a tree composed of nodes and
branches. Two nodes joined by a branch differ only in the
state of one variable (the three possible states being set
to one, set to zero or free) . A new node on the tree is
created by fixing a chosen free variable to one (known as
taking a forward atap). A node is revisited (i.e. a
backwards step is taken) by fixing the previously free
variable to zero (as seen in Fig. 2.6 below).

Forward Slep

(node crealed)

Backward Slep

(node revisited)

XI =1 XI : i
X2 =0 () X2 = 0
X3 =free y) X3 =free
X4 =Iree y X4 =

T
0

XI = 1 f
L 1

\ XI =1
X2 = 0 (1 X2 =0
X3 =Iree \) X3 ==f tee
X4 = I X4 = 1

Fig. 2.6: Forward and Backwards Steps.

54

A depth-first search of the tree is commonly followed until
there are no free variables in its last node. One or more
backwards steps are then taken until a forward step may be
taken to create a new node or until all free variables have
been fixed to zero.

Defining the level of a node by the number of variables
fixed to one, and the point xl as the node with 1 variables
fixed at one, the basic approach is as follows (as adapted
from {Salkin, pp 211-218)):

1) Fix a free variable xk from x1 (initially xl = x°) at
value one.

2) Solve the subproblems in the remaining free variables.
3) Fix xk at value zero (also known as cancelling xk at

level 1).
4) Solve the subproblem in the remaining free variables

with xk fixed at zero.

At any stage in the search for the solution to a problem in
n variables, a node will contain 1 variables fixed at one,
c variables cancelled at zero, and there will be a
subproblem in f»n-(l+c) free variables to solve.
Corresponding to the f currently free variables, there are
f permissable branches from xl, as shown in Fig. 2.7.

55

rifl. 2.7: An exemple of Direct
Search Enumeration.

The process will eventually enumerate all (2n) possible
zero-one vectors, x, but for efficiency, it is obviously
desirable to implicitly enumerate as much as possible.

Appendix IE describes some of the implicit enumeration
criteria appearing in the literature.

A good point algorithm which indicates which node to branch
upon is also very important to any enumeration algorithm.

One good point algorithm for the direct search enumeration
algorithm is the Balas Test, as follows:

56

The subproblem at point x 1 is problem P

Minimise z = cxl
Subject to Ax1 £ b
and 0 £ xl £ it
where x} * 0 or 1 for j*l,..,n and it is a column of ones.

If the c variables that are fixed at zero are dropped and
the 1 columns whose variables are fixed at one are
subtracted from the right hand side vector b, then P can be
rewritten as

Minimise z - zl ■ cfxf
Subject to A fxf £ b1
and 0 S xf £ e
where xs = 0 or 1 for j e F.

x* ■ (Xj) is the vector corresponding to free variables, F
is the corresponding set of indices in xf, cf and A f ■ (A,)
are costs and columns of A, b1 is the updated right hand
side, and z1 is the sum of the costs of the 1 variables
fixed to one.

If a free variable x} is set to one, the constant term b4l
in each constraint i becomes bt* - atJ.

When bt* - au 2 0, constraint i is satisfied.

57

Thus, a measure of the total "constraint infeasibility" ii
given by

j?«, (bj-a^)

where = {i| (bi1 - a„) < 0, i=l,...,m)
and by Vj = 0 if M, is empty.

To reach or return to a zero-one solution, it is reasonable
to branch on the variable which maximises Vj.

The extension of the direct search enumeration algorithm to
zero-one MIP problems, as proposed by Lemke and Spielberg,
is as follows:

A search enumeration is carried out over the integer
variables. Each time a node is explicitly examined, an LP
in only the continuous variables is solved (i.e. prior to
the Simplex iterations, the free variables are fixed to
zero). Thus, a feasible LP always produces a mixed integer
feasible solution.

This suggests that 2" LPs must be solved, and that the
algorithm could not possibly be efficient unless only a
small number of integer entities are present.

There is a way around this problem however. It is possible
to derive constraints, using only the zero-one variables,

5 8

that will be valid at any node. An IP point algorithm could
be applied to these constraints, possibly resulting in many
cancellations or free variables being set to one (i.e. lots
of implicit enumeration) . This method is discussed in
Appendix IF.

The extensions of the Lemke and Spielberg method to general
MIP problems is reasonably obvious, involving only a more
complicated method of fixing and keeping track of variable
values.

Having said this, both the Lemke and Spielberg algorithm
for MIPs and the Driebeek algorithm for general MIP
problems, which is based on it, are only useful if the
integer decision variables can only take a narrow range of
values. In the case of the Lemke and Spielberg algorithm,
this is because the usefulness of many of the implicit
enumeration criteria is reduced by the addition of
continuous variables (see {Salkin p. 229} for example). In
the case of the Driebeek algorithm, which builds on the
previous work based around zero-one variables, problems
occur because general integers are represented by a set of
zero-one variables.

As an example of this, a general integer variable xl with a
lower bound of zero and an upper bound of n would be
represented as follows:

59

n

Thus, the Driebeek algorithm becomes impractical for use on
large MIP problems with more than a few integer variables,
especially if the integer variables have large upper
bounds.

Cyrr.nt of KIP Solution Algorithm.

With the exception of the OSL package mentioned below, all
commercial optimisation packages (e.g. XPRESS-MP, SCICONIC,
etc.) use the Branch and Bound Enumeration Algorithm to
solve IP problems.

The Optimisation Subroutine Library (OSL) available from
IBM ([IBM, 1990]) optionally allows the use of Cutting
Plane routines to create a Branch and Cut algorithm,
although only for zero-one MIP problems. The Branch and
Bound search is carried out as normal, except that the user
can specify occasions on which cuts are generated and added
to the LP relaxations attacked, hopefully providing better
solutions.

60

3_. Introducelpn to Parallel Coagmtlng

Now that various MIP-solving algorithms have been
introduced, it is necessary to consider how they might be
parallelised and on what hardware a parallel algorithm
might best be implemented.

The notion of exploiting some form of parallelism in
computer design is nearly as old as the idea of the
computer itself. One early reference to parallelism in
computer design for instance, dates from October 1842,
contained in "Sketch of the Analytical Engine Invented by
Charles Babbage" by L.F. Menabrea ([Kuck, 1977]).

Different breakthroughs in technology over the years have
actually led to both the implementation and removal of
various parallelised processes within computer hardware.
For instance, before the advent of electronic components in
computers in the 1940s, the bit by bit addition of 32-bit
numbers was carried out in parallel. Babbage actually
rejected serial addition for his difference engine because
of the long execution time involved ([Morrison and
Morrison, 1964]). The introduction of electronic components
allowed such a great improvement in performance that serial
addition became a possibility. The increase in performance
was, in fact, so dramatic (somewhere between 1000 to 10000

61

times), that serial addition became the norm in order to
exploit the benefits of using less equipment by only
processing one digit at a time.

Despite some such occasional "setbacks", more and more
parallelism has been gradually introduced into computer
design since the 1970s.

The introduction of the microprocessor at the end of the
1970s and of very large scale integration (VLSI) technology
(i.e. technology allowing the production of a chip
containing from ten thousand to a million microprocessors)
in the 1980s have allowed the implementation of many
(though not all) parallel architectures that had previously
only been theoretically possible.

C U » » m c » U W -Of Cotrnfr Archlfctur«

An initial classification of computer architecture may be
achieved by using Flynn's Taxonomy ([Flynn, 1966)), which
is based on the concepts of instruction stream and data
stream.

An Instruction stream is a series of instructions performed
by a computer. A data stream is a sequence of data used to
execute an instruction stream.

62

Flynn categorizes a computer architecture by "the maximum
possible number of simultaneous instructions or data being
in the same phase of execution at the most constrained
component of the organization".

There are four classifications of computer architecture
arising from Flynn's categorizations, each of which has
yielded actual hardware. Flynn's classifications are:

Single Instruction stream. Single Data stream (SISD)
architecture;
Single Instruction stream. Multiple Data stream (SIMD)
architecture;
Multiple Instruction stream. Single Data stream (MISD)
architecture; and
Multiple Instruction stream. Multiple Data stream (MIMD)
architecture.

Serial computers may easily be classified using Flynn's
categorisations. Most serial computers fall into the SISD
category. Indeed, true parallelism is not possible using
SISD architecture, although fast SISD machines may give the
appearance of parallelism by supporting multitasking (i.e.
by switching back and forth between two jobs very quickly) .

The small number of serial computers that do not fall into
the SISD category have been specially designed to implement
image processing systems. They operate in such a way that

63

they fall into the MISD category since different elements
of a single data stream are in effect simultaneously being
acted upon by multiple operations or instructions. The
Genesis 2000 system ([Sternberg, 1985]) is such a system
currently on the market.

Unfortunately, Flynn's taxonomy is not sufficient on its
own to properly classify the various types of parallel
hardware available. Although different types of parallel
hardware have been developed that do fall into the SIMD and
MIMD categories, other categories are necessary to fully
reflect the variety of parallel computer designs in use.

The many different types of parallel architecture have
arisen in response to the additional problems which occur
when implementing parallel algorithms. Implementing a
parallel algorithm typically involves at least as much work
as implementing a serial algorithm plus further work in
controlling and coordinating the tasks to be performed in
parallel.

The major aim when developing any algorithm, be it parallel
or serial, is to obtain the correct result. If an algorithm
does not give the correct result, then there is obviously
no point worrying about lesser issues such as algorithm
efficiency or speed.

64

In the case of parallel algorithms, special care must be
taken, especially when calculations are being carried out
in parallel using the same data.

Consider a bank system performing daily updates to current
account balances. Deductions made as a result of standing
orders could be performed by one processor while another
processor was dealing with deductions made as a result of
withdrawals made via automatic cash machines. If both
processors were allowed access to a particular current
account record simultaneously, an error in the final
calculation would result, with the result of only one of
the calculations being reflected, and not the combined
result of both calculations.

The coordination of such parallel tasks within a parallel
algorithm is usually achieved by parallel hardware making
use of synchronous or asynchronous organisation techniques.

Synchronous coordination involves forcing all operations to
be performed simultaneously and in a manner that removes
the dependency of one task on another. For instance, a lock
could be placed on the current account record by any task
using its data for calculations. Thus, any other task
requiring the data would have to wait until the record was
released from the lock.

65

Asynchronous coordination is a looser form of control where
processors operate freely on tasks without regard for
global synchronisation. Asynchronous algorithms contain
explicit flow control in order to coordinate parallel
processes. For instance, all standing order calculations
could be carried out at night at a time when the automatic
cash machines are not operational.

Parallel algorithm design categories are primarily
classified by their use of synchronous or asynchronous
coordination techniques. The major categories of parallel
algorithm design at present are as follows:

Sypsturgngug Asynchronous
Vector/array MIMD
SIMD Reduction
Systolic

1*3» 1» The vectpy/Arr»y p»r»<Ugp

This synchronous approach maintains algorithm integrity
whilst improving algorithm performance by breaking down the
overall task into subtasks which must be performed in a
given order. In effect, a pipeline is created for these
subtasks in that the output data from one subtask in the
pipeline becomes the input data for the next subtask (see
Pig 3.1).

66

inpul

processor processor processor processor
one two three tour

riff. 3.1: Pipeline example.

The key to improving performance with this method is to
keep the pipeline full (i.e. keep all the processors busy) .
Although the individual subtasks take as long to perform,
several pieces of input data may be fully processed through
the pipeline in the time it would have taken for a single
processor to perform all subtasks on one piece of input
data. A certain amount of communication overhead will occur
when using this method, which will reduce the overall
performance somewhat, but modern communication technology
ensures that this overhead will be minimised.

The first vector machines were invented in the 1970s (i.e.
the CDC STAR-100 [Hintz and Tate, 1972] and the TI ASC
[Watson, 1972]). The pipelining technique has been used
since then to attack numerical problems such as matrix and

67

vector calculations. Thus, the pipeline approach is often
known as vector/array processing. The more successful
implementations of pipelined computers have been the CDC
CYBER 205 ([CDC, 1983]), the ETA-10 ([Fazio, 1987]), the
CRAY series of supercomputers ([Cray 1976, 1985 Chen, 1984,
Russell, 1978]), the Floating Point Systems 164/MAX
([Charlesworth and Gustafson, 1986]) and the IBM 3090
Vector Facility ([Moore et al., 1987]). The FUJITSU VP
100/200 ([Motegi et al. , 1984]), HITACHI S-810/10
([Nagashima et al., 1984]) and the NEC SX1/SX2/SX3
([Watanabe, 1984, 1987]) vector computers have further
developed the ideas behind the CYBER 205 and CRAY
architectures. A new market for vector computers was
discovered in the late 1980s when graphics supercomputers
were marketed by Stellar ([Sporer et al. , 1988]) and Ardent
([Miranker et al., 1988]). More general references
concerning vector/array processing and supercomputing are
([te Riele et al., 1987]), ([Hwang and Briggs, 1984]) and
([Dongarra, 1987]).

3.2.?. Th+ 8IHP paradlfl»

The next synchronous approach is that of the SIMD paradigm,
where all processors perform the same task simultaneously
on different data, or else remain idle. The efficiency of
the SIMD paradigm depends on how well the data for the
overall problem can be partitioned across the available

68

parallel processors. Having to process drastically
different amounts of data at different stages of an
algorithm would make the SIMD approach very inefficient.
Since all the available processors must act in a
synchronised manner, processing a large number of data
items at one stage of the algorithm implies that a large
number of processors will be needed to process them. If the
algorithm involves the processing of a small number of data
items during other phases, many processors will be left
idle.

The SIMD paradigm is at its most effective when the number
of data items to be processed is a good match for the
number of available parallel processors.

Processor Arrays

The processor array is a class of hardware which was
specifically developed to implement the SIMD paradigm. It
is thus a collection of synchronised processing elements
capable of simultaneously performing a single operation on
different data (see Fig 3.2). Each processor in the array
has a small amount of local memory where the distributed
data reside while being processed in parallel.

69

Some of the first pieces of parallel processing hardware to
be implemented were processor arrays which arose from the
design of the SOLOMON computer ([Slotnick et al., 1962]).
Although the SOLOMON computer was probably never actually
built, the elements of its design led to many successfully
implemented processor arrays, including the ILLIAC IV
([Barnes et al. , 1968]) and PEPE ([Berg et al. , 1972])
floating-point arrays, as well as the Goodyear Aerospace
STARAN ([Batcher, 1974]) and ICL DAP ([Reddaway, 1973,
Hunt, 1981]) arrays of one-bit processors.

Fig. 3.2: Typical processor array
architecture.

70

As implementations of the SIMD paradigm, processor arrays
are most effective in practice when the data upon which
they operate matches the dimensional structure of the
processor array itself. The two major application areas
where this matching occurs are image processing and
mathematical modelling (usually of physical processes).

A relatively large number of processors (i.e. a fine grain
system) are needed to accurately process images or model
physical processes. Two of the most commercially successful
fine grain processor array systems are the Goodyear
Massively Parallel Processor (MPP) ([Batcher, 1980]) and
the Connection Machine (CM) ([Hillis, 1985]). The Goodyear
MPP is a descendant of the Goodyear STARAN and the ICL DAP
and contains an array of 16384 one-bit processors,
arranged as a 128x128 square. The Connection Machine has an
array of 65536 processors, arranged as a 256x256 square.

Examples of medium grain processor array systems are the
previously mentioned 4096 processor ICL DAP, the 4096
processor Mosaic ([Dornheim, 1985]) and the 512 processor
GF-11 ([Beetern et al., 1985]). Most modern processor array
systems are fine or medium grain systems, although some
large grain systems do exist for use in less prevalent
application areas such as economic modelling e.g. the 16
processor Columbia University Parallel Computer ([Christ
and Terrano, 1986]).

71

3.2.3. The gytolic Paradlg»

The systolic synchronous parallel paradigm incorporates
features of both the vector/array and the SIMD paradigms.

A systolic parallel computer is a pipelined multiprocessor
in which data are distributed and pulsed from memory to an
array of processors before returning to memory. The name
systolic comes from the analogy with the systolic, or
pumping, action of the heart ([Rung, 1979J). A simple
example of such a computer may be thought to consist of a
two dimensional array of processors with memory at the
boundary of the array (see Fig 3.3).
P = processor

rig. 3.3: Systolic architecture.

72

The systolic paradigm is efficient in theory because it
avoids input/output bottlenecks by circulating data among
the processors as much as possible before returning it to
memory. The systolic system is at its best when operating
on large amounts of data and performing fine-grain
calculations since processing small batches of data
inevitably leave processors idle and the maximum speed up
is to be achieved by pipelining data through many detailed
operations.

Systolic computers are presently only built for specific
applications where the systolic paradigm can operate
efficiently, although work is being done to develop
programmable systolic-array elements to allow more
flexibility. Application areas have included signal
processing ([McCanny and McWhirter, 1982]) and mathematical
transformation calculations ([Kung, 1984, Chakrabarti and
J&J&, 1990]). More general references are ([Moore et al.,
1987]) and ([Quinton, 1987]).

3;2,4; The WIMP Paradlg»

The first asynchronous coordination method to be considered
is the MIMD paradigm, which allows many processors to
simultaneously execute different instructions on different
data. The MIMD paradigm coordinates tasks and processors by
using some form of synchronisation mechanism. One obvious
synchronisation mechanism is to only allow one processor at

73

a time to access a piece of data at one moment in time. Any
other processors must wait until the data item is released.
Another mechanism is to only allow one processor at a time
to change a piece of data, whilst letting other processors
read it (i.e. to have, in effect, a shared memory system).
It is the responsibility of the parallel algorithm designer
to make use of such synchronisation mechanisms to ensure
the integrity of the algorithm.

The MIMD approach is most efficient when dealing with fine
detailed problems where individual processors have much
work to do on the data they receive. This will keep the
individual processors busy for relatively long periods of
time, thus helping to reduce the overhead involved in
passing around data and control statements from processor
to processor.

Numerous different types of hardware have been developed
that may be categorised as MIMD machines, i.e. which
consist of a number of processing units, each capable of
executing different operations on different data. These
different types of hardware may be further classified by
the methods they use to enable MIMD processing (which
include making use of previously mentioned SIMD and
pipelining hardware).

The different categories are: Pipelined MIMD, Switched MIMD
and Network MIMD.

74

3±2?4.1. Pipelined MIND

Pipelined MIMD machines process multiple instruction
streams by time-sharing a single sophisticated pipelined
instruction processing unit. An example of using pipelined
MIMD within a machine was the Denelcor Heterogeneous
Element Processor (HEP), which was discontinued in 1985
((Smith, 1978, Allan and Oldehoeft, 1985)).

3,2.4.2. Switched MIMD

Another method of processing multiple instruction streams
is to provide separate instruction processing hardware for
each stream. One way of implementing this is to provide a
switch via which all connections between the processors
must be made.

Switched MIMD machines may be further classified by how
they utilise memory.

Shared-memory MIMD machines are organised so that memory is
a shared resource of all the processors that is accessed
via the switch (see Fig 3.4). Examples of such machines are
MIDAS ((Maples et al., 1981]), early versions of the New
York University Ultracomputer ([Schwartz, 1980, Elder et
al., 1985]), the University of Illinois Cedar ([Qajski et
al., 1983]) and the IBM RP3 ([Pfister et al., 1985]).

75

P = processor

M = memory

P P p

SWITCH

M M M

Fig. 3.4: Shared-memory MIMD architecture.

Ijultijroctffprs

Some of the later categories of multiprocessor hardware
(e.g. the Encore Multimax ([Wilson, 1987]) and the Sequent
Symmetry ([Lovett and Thakkar, 1988])) were designed as
shared-memory MIMD machines ([Desrochers, 1987]). Although
the first large-scale multiprocessor design occurred in
1959 ([Holland, 1959]), up until 1980, such designs were
mainly methods for connecting together several independent
serial computers (e.g. the Carnegie-Mellon C.mmp computer
linking together 16 DEC PDP-11 minicomputers ([Wulf and
Bell, 1972, Wulf et al., 1981])).

76

The arrival of the cheap microprocessor (circa 1975)
allowed the subsequent development of systems using linked
microprocessors which cooperated to solve a single problem,
i.e. true multiprocessors ([Pease, 1977, Bustos et al. ,
1979)).

Many early multiprocessor systems failed to live up to
their full potential when more than a few microprocessors
were joined together. The major problem incurred when
scaling up such systems was caused by the slowness of the
switch which gave access to the memory. The switch could
not cope properly with the demands of more than a few
processors and was thus the cause of delays and queuing.
This problem gave a major push to the further development
of distributed memory and network MIMD hardware.

Distributed-memory MIMD machines (often described as
»ulticomputers) distribute memory amongst the processors as
local memory and the processors communicate via the switch
(see Fig 3.5). Examples of such machines are CHoPP
([Sullivan et al. , 1977)), and the BBN Butterfly
([Crowther et al., 1985)). A more general reference is
([Seitz, 1988]).

77

P = processor

M = memory

SWITCH

P P P

I I I
M M M

Fig. 3.5: Distributed-memory MIMD architecture.

Again, the speed of the switch in practice limits the
amount of parallelism possible, since it limits the amount
of communication possible between processors. The balance
between communication and calculation is thus a very
important consideration when making use of distributed-
memory MIMD machines. Too much dependency on message­
passing for instruction or to pass data can incur large
communications overheads. On the other hand, having too
many instructions embedded within a processor's algorithm
limits the flexibility of the overall algorithm as well as
limiting the amount of data that can be stored locally.

7 8

An alternative way of providing separate instruction
processing hardware for different instruction streams is to
devise a network of processors. Individual processors may
only communicate directly with their neighbours in the
network, and long-range communication across the network
requires a routing algorithm. The removal of the switch
from this design removes the limitations on memory access
or communications that accompanied the shared-memory and
distributed-memory MIMD designs previously mentioned. Each
network MIMD processor has access to some local memory and
has a number of links for connection to neighbouring
processors.

Examples of network MIMD machines (which again are often
classified as multicomputers due to their lack of global
shared memory) are the CDC Cyber Plus, the NASA Finite
Element Machine ([Jordan, 1978]), the Carnegie-Mellon
University Cm* ([Swan et al. , 1977, Gehringer et al. ,
1987]) and many of the various implementations of hypercube
architecture (e.g. the Cosmic Cube ([Seitz, 1985]), the
Intel iPSC ([Pase and Larrabee, 1988]), the Floating Point
Systems T series ([Miller et al., 1988]), the NCUBE/10
([Hayes et a l . , 1986]), the generalised hypercube (Bhuyan
and Agrawal, 1984]), the twisted cube ([Efe, 1989]) and the
cube connected cycles architectures ([Preparata and
Vuillemin, 1981])).

79

Thm Ixmom Trtniwf r

Especially useful for network MIMD systems is the
transputer, a single-chip microprocessor developed by INMOS
Ltd and first marketed in 1985 ([INMOS, 1985, Whitby-
Strevens, 1985]). It is intended to be the equivalent of a
TRANSistor for multicomPUTER architectures, i.e. to be the
lowest level component that needs to be considered when
designing a multiprocessor computer.

The T800 transputer (see Fig. 3.6), which appeared in 1987,
consists of a powerful processor with 4Kbytes of on-chip
RAM, four bidirectional serial lines intended for
connections between transputers in an array, a 32-bit port
which can be used to program the device or expand the local
memory, and very importantly, a 64-bit floating point unit.

Pig. 3.6: The T800 transputer.

80

As with distributed-memory MIMD architectures, it is
important to consider the balance between communication and
calculation when building transputer-based networks, but at
least the problem of delays caused by the switch has been
removed from the equation.

Transputer-based systems were specifically designed to be
used with the Occam parallel processing language, but they
also support the use of programs written in more common
programming languages (e.g. FORTRAN, PASCAL, C).
Transputers are available singly or on boards (usually
housing four, nine or sixteen at a time) and as such, make
ideal building blocks for parallel systems. A major
drawback to the use of transputers when they first became
available however, was the lack of a debugging facility.
Only one transputer per network could be connected directly
to a host computer, and thus only one transputer could be
used to output debugging messages. Such messages would
first have to be passed to the host machine along a
predetermined route of transputers. More recently however,
a debugging facility has been introduced to ease the
process of program creation.

Transputer-based systems have found many application areas,
including optical character recognition ([Patry et al.
1987]), image processing ([Harp et al. , 1987]) and robot
control ((Pham et al., 1990])

81

3.2.5 The Reduction Paradigm

The reduction asynchronous coordination paradigm is so
called because it is based on a mathematical graph
reduction model. Most reduction problems involve flows of
data, which are shown as graphs. For instance, consider the
problem of finding the average of two numbers, a and b. The
graph for this problem would be

a
♦ / 2

b

The computation algorithm simplifies the graph, stage by
stage, until the graph is reduced to a single node. The
graph is simplified (and the remaining computation that is
necessary “reduced"), by performing the calculations for
which there is hard data. For instance, if, for the problem
stated above, a=3 and b=5, the first reduction is to reduce
the generic problem to the particular instance, as follows:

The next reduction is carried out by performing the one
calculation for which there is hard data (i.e. 3+5), giving
the resulting graph

82

/ 2

The last reduction is carried out by again performing the
calculation for which there is hard data (i.e. 8/2), thus
giving the final graph (reduced to one node), which is the
answer 4.

The reduction paradigm achieves parallelism by using a
method called demand-driven data flow. This method states
that a task may only begin execution when its results are
required for use by another already executing task, i.e.
when its results are demanded. A reduction program consists
of reducible expressions which are replaced by their
computed values as the computation progresses through time.
Most of the time, the reductions may be done in parallel.
Nothing prevents parallel reductions except the
availability of data from previous reductions.

As an example of this, consider the quadratic equation,

axJ + bx + c ■ 0.

A reduction program to compute the largest possible value
for x that satisfies the equation, given values for a, b
and c would be as follows (this example adapted from (Lewis
and El-Rewini, pl6)t

83

graph 1: graph of x=(-b ♦ SQRT(b*b-4ac))/(2a)

4

b

b
SQRT ■f - b

/

2 a

graph 2: (for input a=l,b=2,c=-3) reduced by a*c,-b,b*b,2*a
(i.e. four possible parallel operations)

-3 * - 4 SQRT + -2
4 /

2

graph 3: reduced by -3*4

-12 - 4 SQRT + -2

/
2

graph 4: reduced by -(-12), then 4+12

16 SQRT + -2

/
2

graph 5: reduced by SQRT(16)

4 ♦ -2
/
2

84

graph 6: reduced by -2 + 4

2
/
2

graph 7: reduced by 2/2

1

Note that there are nine operations to be carried out in
the formula
x « -b ♦ SQRT(b*b - 4ac))/(2a)
but that the reduction algorithm only took seven reductions
to compute the final graph.

Only a few applications have arisen from this
classification of parallel algorithm design so far, due to
the very high overheads involved in processing graphs.
These applications have been centred around the
implementation of functional languages ([Darlington and
Reeve, 1981, Peyton-Jones, 1987]).

Of all the major classes of parallel design paradigm
mentioned above, only the vector/array, SIMD and MIMD
classes have yielded hardware that is of use in general.
This will remain the case until technological advances are
made or new application areas
discovered.

85

There are three major approaches to the decomposition of a
problem so that it may be attacked using a parallel
algorithm implemented on one of the different pieces of
hardware mentioned above. These are the algorithmic,
geometric and process farming approaches to parallel
computation. Hybrid methods also occur in practice, which
combine two or three of the approaches.

3.3.1, The Algorithmic Approach

The algorithmic approach, also known as data flow
decomposition, involves breaking up the problem solution
algorithm into separate, independent subtasks. Each subtask
can then be executed in parallel, with data flowing between
the subtasks if necessary. Each subtask will perform some
computation with the data it receives and then pass data
onto any further necessary subtasks.

In cases where algorithmic subtasks must be carried out in
a particular order, the algorithmic approach is often used
with vector/array (i.e. pipelined) computers, with each
processor in the pipeline contributing by executing a
section of the overall algorithm.

3.3. Parallel Problem Decomposition Alaorlth..

As an example of the pipeline implementation of the
algorithmic approach, consider the following, adapted from
{de Carlini and Villano}:

The Sieve of Eratosthenes is a method for finding the prime
numbers below a given integer N. The algorithm removes from
the set of odd numbers less than N, all the multiples pka,
Pk(Pk+2), Pk(Pk+4). etc. of the kth prime pk.

An algorithmic decomposition of the sieve algorithm has
been implemented (see (Hoare, 1978]). One processor is used
as a "source" that generates and sends out a stream of odd
numbers less than N. The remaining processors act as a
series of sieves. A stream of odd numbers is input into
each of the sieve processors. The first odd number is saved
(as it is a prime), and any multiples of it are removed
from the stream. The remaining numbers are then passed on
to the next sieve.

As an example, in Fig. 3.7, where N=19, the source
processor outputs the odd numbers 3,5,7,...,17 to the first
sieve. The first sieve takes 3 to be a prime and thus
filters out any multiples of 3 (i.e. 9 and 15). The
remaining numbers are sent to the next sieve and the
process continues until the output stream from the last
sieve are primes, and each of the sieve processors holds
one prime number.

87

STORES 5
SENDS OUT
7.11.13.17

STORES 7
SENDS OUT
11.13.17

STORES 11
SENDS OUT
13.17

STORES 13
SENDS OUT
17

rig. 3.7: Sieve of Eratosthenes.

Another example of the pipeline implementation of the
algorithmic approach is in Fast Fourier Transformation
computation ([Villano, 1990]).

The pipeline is of course not the only way to implement the
algorithmic approach to problem decomposition. If a
pipeline implementation is chosen however, the benefits of
parallelism will only be realised if the pipeline is kept
full. It is thus important when decomposing the overall
algorithm that the subtasks are chosen prudently.
Obviously, the throughput of data through the pipeline is
limited by the speed of the slowest subtask. If one subtask
in the pipe takes considerably longer to perform than the
others, a bottleneck will soon occur and the benefits of
parallelising the algorithm will be lost.

88

3,3.2. The Qeo— trie Approach

The geometric approach to problem decomposition involves
designing processes that match the spatial geometry or
structure of the problem (and is thus also known as data
structure decomposition). The spatial geometry of some
problems may be divided so that the separate divisions of
the problem space interact and communicate with each other.

Processors may be allocated to each of these areas. Each
processor is then considered to be a semi-independent
entity, responsible for the data in its own spatial region.
In cases where geometric decomposition is used, the
computations performed by each processor are usually
identical, with the results usually being summed to give
some overall effect. The subdivision of the problem« is
usually carried out so that short range interactions
between neighbouring units take place to give a more
realistic end solution.

An example of the geometric approach (from {Galletly, page
198-210)) is its use in the simulation of thermal
conduction in a two-dimensional rectangular metal plate
which is being heated by a heat source at a certain point
(see Fig 3.8). Simulation of thermal conduction over the
whole plate is difficult, so to simplify the problem, the
geometry of the situation is utilised and the plate is
subdivided into a number of rectangular areas.

89

The heat conduction (i.e. temperature) of each of these
areas may be estimated by a processor and summed to give
an approximate effect for the heat conduction over the
whole plate. The temperature of each area will depend on
that of its surroundings i.e. the neighbouring areas. It is
assumed that one of the areas contains the heat source.

\k 1 ,/
heal
applied

/ ' 1 '\
Fig. 3.8: Geometric
decomposition applied to
the simulation of thermal
conduction.

Not all geometrically decomposable problems can be properly
attacked on the hardware currently available. Some systems
do not allow the reconfiguration of their processor
network, whilst others (e.g. the transputer) only have a
certain number of links available with which to create
connection topologies.

Once a topology has been satisfactorily set up, it is
important that the amount of communication between
neighbouring processors is carefully considered. The
communications overhead between neighbouring processes can

90

become quite appreciable and thus slow down the overall
algorithm if communication is not properly balanced against
calculation.

3.3.3. The Process Farming Approach

Finally, there is the process farming approach to problem
decomposition, which involves making one processor a
"master" and the rest anonymous "slaves" (see Fig 3.9).
Each of the slave processors is used to perform exactly the
same task, albeit on different data. The master processor
is in charge of sending out data to the different slaves
(in whatever order it sees fit to do so) and of making use
of the results as they are returned from the slaves.

Fig. 3.9: Process farming
a p p r o a c h t o p r o b l e m
decomposition.

The process farm approach is applicable to many problems
whose solution involves many independent but identical sub­
calculations being carried out on different sets of data.
As the sub-calculations are independent of each other, each
may be executed in parallel and the effect summed to give

91

a solution to the whole problem.

A famous example of the process farming approach to problem
decomposition is the graphical representation of the
Mandelbrot Set of complex numbers. The screen is used to
represent a particular portion of the complex plane, with
the constituent pixels of the screen representing the
individual complex numbers in this portion.

A simple iterative calculation can be carried out to
determine whether or not each particular complex number is
a member of the Mandelbrot Set. Each slave processor is
given a copy of the iterative algorithm and set to wait for
input. On receiving input data about a particular complex
number, the processor determines whether the number is a
member of the Mandelbrot Set or not, and also notes how
many iterations were necessary to determine this. These two
pieces of information are then sent back to the master
processor and the slave waits for more input.

The master processor sends out the information on
particular complex numbers to slaves and coordinates the
returning information. If the complex number is not a
member of the Mandelbrot Set, the pixel representing it is
given the colour black. If the number is a member, the
pixel representing it is given a colour depending on how
many iterations it took to determine. The end result is a
colour pattern on the screen representing the Mandelbrot

92

Set members for the particular portion of the complex plane
chosen.

Process farms may be set up with many different processor
connection topologies, limited only by the capabilities of
the available hardware, but as with geometric
decomposition, a careful balance must be maintained between
calculation and communication. The process farm approach is
usually most successful when the slave processors are kept
busy for a relatively long period of time once they have
received some input data, thus minimising the proportion of
communication.

3 r3 ?4 . Hybrid M+thpds

It is not uncommon for parallel algorithms to be developed
which make use of more than one of the three approaches to
problem decomposition. One example of this is a combination
of farming and algorithmic decomposition used to produce a
system for printed character optical recognition
([d'Acierno, 1990]).

In the vast majority of cases however, the needs of
specific applications seem to point to the use of one of
the methods more than the others. Although in such cases
hybrid methods may sometimes be used to increase the
efficiency of part of the overall algorithm, the benefit
achieved is often not worth the effort involved.

93

pg L i t m t u w on Parallel AlaorUh,. used to
g9iY* IP Probl w

B&gjsfljrgvnfl

As with most innovations in computer hardware, the
development of parallel processing facilities was motivated
by a wish to solve a range of previously intractable (i.e.
NP-complete or NP-hard) problems in a reasonable (i.e.
polynomial) time as well as by the need to solve already
tractable problems more quickly.

Unfortunately, the architecture of early parallel hardware
(i.e. vector/array machines such as the CRAY-1 and CDC
Cyber 205), and the high cost of construction, strictly
limited the number and range of early implementations of
parallel algorithms. Schnabel states that much of the early
work done using parallel hardware was thus concerned with
the solution of partial differential equations and
associated areas such as numerical linear algebra
((Schnabel, 1984]). Researchers in other application areas
had to resort to constructing their own parallel
architectures or to the use of simulation techniques for
modelling parallelism on a single-processor machine.

Researchers within the field of Mathematical Programming
began to exploit the potential benefits of parallelism by
producing parallel algorithms to attack many different

94

categories of combinatorial problem (see [Kindervater and
Lenstra, 1986J for a survey). These parallel algorithms
were based on the generalised Branch and Bound algorithm,
special cases of which have been used to produce several
popular search strategies for combinatorial problems ([Nau,
Kumar and Kanal, 1984]).

Existing P ara l le l Aiggritfrng

Roucairol reports that different types of work have been
carried out in the field of combinatorial optimisation
using parallel hardware ([Roucairol, 1989]):
"firstly, those proposing parallel Branch and Bound without
any effective implementation or using a simulated
parallelism on a sequential machine; secondly, the
implementation on experimental machines (i.e. machines
built in research laboratories with exotic architectures);
and lastly, later experiments conducted on commercial
supercomputers".

The first category includes simulations of various parallel
Branch and Bound algorithms for many different
combinatorial problems ([Imai, Fukumura and Yoshida, 1979,
Li and Wah, 1984,1986, Wah and Ma, 1984, Lai and Sahni,
1984, Mohan, 1983, deBruin, Rinnooy Kan and Trienekens,
1988, Boehning, Butler and Gillett, 1988]).

95

The second category includes algorithms implemented on
specially designed machines such as the Manchester Dataflow
Machine ([Kindervater and Trienekens, 1985)), the Carnegie-
Mellon Cm* ([Mohan, 1982]), and the Boulder DPU
([Trienekens, 1986)).

The last category includes work done on the ICL DAP and CDC
Cyber 205 ([Kindervater and Trienekens, 1985)), the CRAY-2
([Roucairol, 1986)), the CRAY-XMP ([Laval«e and Roucairol,
1985, Pardalos and Rodgers, 1990]), the Denelcor HEP,
Sequent Balance and Encore Multimax ([Boehning, Butler and
Gillett, 1988]), the Intel iPSC hypercube ([Mraz and
Seward, 1987]) and the Inmos transputer ([Vornberger, 1988,
McKeown et al, 1990, Gendron and Crainic, 1992]).

The important features of the parallel Branch and Bound
algorithms mentioned above are:

the coordination and utilisation of the parallel
processors;
the hardware used for implementation; and
the search strategy used.

The coordination of the parallel processors obviously has
a direct effect on the utilisation of the processors (as
well as on the complexity of any necessary communications) .
This can be shown by comparing algorithms that are
synchronously and asynchronously coordinated (see [Mohan,

96

1982,1983, Trienekens, 1986]). It can be seen that an
asynchronously coordinated algorithm allows much better
utilisation of the parallel processors. This is because it
is quite possible that different nodes will take different
amounts of time to attack. Thus, a synchronously
coordinated algorithm would often have several processors
waiting idly for the hardest-working processor to finish.
It is thus not surprising that all the algorithms
implemented use an asynchronous coordination of processors
(except for one of several algorithms discussed in [McKeown
et al, 1990]). The different algorithms do still of course
exhibit different processor utilizations because of the
influences of the hardware and search strategies used.

The search strategies used were of three general types:
depth-first search; breadth-first search; and best-first
search.

Depth-first search, where a descendant of the previous node
is always explored next (if possible) was very popular in
the earlier algorithms (e.g. [Imai, Fukumura and Yoshida,
1979, El-Dessouki and Huen, 1980, DeWitt, Finkel and
Solomon, 1984, Finkel and Manber, 1985]) because the
necessary data structures were small, as was the memory on
the available hardware. Each of these algorithms showed
that a good speedup of the solution times could be achieved
when several processors were used. Pruul showed that if a
depth-first approach is used, attacking nodes in parallel

97

yields better solutions earlier, thus allowing better
pruning of the search tree and a good reduction in the
number of nodes examined ([Pruul, Nemhauser and Rushmeier,
1988]). This is reflected by the use of depth-first
searches in more recent algorithms ([McKeown et al, 1990,
Gendron and Crainic, 1992]).

Breadth-first search, where all nodes at a level of the
search tree must be attacked before any of their
descendants, was also used by some early algorithm
designers. Li and Wah showed that good speedups of solution
times were possible if a breadth-first search was used ([Li
and Wah, 1984,1986]). This is probably only because of the
raw processing power available when two or more processors
are used however, and not due to any cleverness of the
algorithm.

A best-first search, where (for minimisation problems) the
node with the smallest lower bound is chosen, was used by
several of the algorithms (e.g. [Wah and Ma, 1982,1984,
Wah, Li and Yu, 1985, Quinn, 1986, Felton, 1988]). Lai and
Sahni claimed that a near linear speedup of th^ solution
times could only be achieved by a parallel Branch and Bound
algorithm using a best-first search strategy for a small
number of processors (i.e. less than sixteen). This was
challenged by Li and Wah however, who showed theoretically
that a near linear speedup was possible for a large number
of processors (i.e. one to two thousand) ([Li and Wah,

98

1984]). Quinn and Deo state an upper bound on the speedup
available if the best-first search is used as just below
linear until the Amdahl Effect occurs (i.e. until there is
not enough work for the available processors)([Quinn and
Deo, 1986]). They also state however, that superlinear
speedup could be achieved if a different search is carried
out by another run of the algorithm. This is highly likely
for most of the algorithms since they are asynchronously
coordinated and thus non-deterministic in nature.

Finally, let us consider the issues relating to the
hardware used to implement the parallel Branch and Bound
algorithms. The hardware used can be categorised as either
having or not having global shared memory.

Only a small proportion of the algorithms used global
shared memory (e.g. [Roucairol, 1987, Imai, Fukumura and
Yoshida, 1979, Boehning, Butler and Gillett, 1988]). The
remaining algorithms were all implemented on machines that
had no shared memory facilities (i.e. distributed memory
machines).

Abdelrahman and Mudge characterised the parallel Branch and
Bound algorithms implemented on distributed memory systems
as either Central List (CL) or Distributed List (DL)
algorithms ((Abdelrahman and Mudge, 1988]). Central list
algorithms maintain a list of active nodes on one processor
and perform the calculations on chosen nodes on the other

99

processors (i.e. the farming approach to parallel Branch
and Bound). Such algorithms have the advantage that when a
node is chosen, the decision is made with full knowledge of
the search so far. The major disadvantages of such
algorithms are that a lot of memory is needed to hold the
centralised list (some of which may have to be written to
disk) and that there is the potential for a message-passing
bottleneck at the processor containing the list since all
the other processors will interrogate it for work.

Distributed list algorithms place a separate pool of active
nodes and an incumbent solution on each processor. Such
algorithms thus do not suffer from the bottlenecking
problems common to central list algorithms, but have the
disadvantage that node selection decisions made by
processors are only based on local knowledge of the search
and may thus lead to unproductive work. Li and Wah state
that the performances of distributed list algorithms are
usually worse than those of central list algorithms ([Li
and Wah, 1984]). Abdelrahman and Mudge reported results for
both types of algorithm as implemented on a NCUBE/six
multiprocessor ([Abdelrahman and Mudge, 1988]). The central
list algorithm exhibited a good speedup of solution times
for the problems attacked, but only for a small number of
processors. The distributed list algorithm did not at first
produce good results at all (seemingly reflecting the
conclusions of Li and Wah) , but this was changed by the
introduction of a load-balancing scheme.

1 0 0

Load-balancing is a very important issue for all parallel
algorithms, since idle or underutilised processors will not
help an algorithm to achieve the benefits of parallelism.
Ma et al developed a load-balancing mechanism for the
hypercube ([Ma et al. 1988]). This mechanism involved idle
processors interrogating their neighbours for work and was
similar to the load-balancing scheme used by Abdelrahman
and Mudge. Felton suggested another load-balancing scheme
for use with distributed list algorithms on the NCUBE
([Felton, 1988]). In his scheme, new nodes generated by a
processor are added to the local pool of a different
processor at random, in order to achieve a good spread of
useful nodes to attack over the whole system. Vornberger
suggested a method whereby problems are "sent without
request" to other neighbouring processors on the off chance
that they might provide useful information ([Vornberger,
1988]). He achieved a superlinear speedup of some problem
solution times using this method.

101

Conclusions

Based on a study of the already implemented parallel
algorithms used to solve combinatorial problems, an
asynchronously-controlled Branch and Bound algorithm making
use of either a depth-first or best-first search would seem
appropriate for initial testing of a parallel algorithm on
MIP problems. If a small number of processors is to be used
then a central list algorithm would be appropriate. If
larger numbers of processors are to be used, a distributed
list algorithm using some form of load-balancing system
would be appropriate.

1 02

4^_Jnltl«l Ixptrlwnti with P.r«ll«ll.,tlon

Cholc« of th« P.r.11.1 Algorithm H«rdw«r.

Each of the MIP-solving algorithms introduced in Chapter
Two will now be considered for parallelisation. The major
criteria for a good choice of algorithm to be parallelised
are that:

the algorithm chosen must exhibit a useful amount of
exploitable parallelism (i.e. it must be decomposable by
the algorithmic, geometric or process farming approaches to
parallelism) ;

the parallelised algorithm must be implementable on
currently available hardware; and

the implemented algorithm must be flexible enough to deal
with different types of MIP problem.

The algorithmic and geometric decomposition approaches
cannot be usefully applied to the FCPA algorithm, but a
process farm provides a natural way of exploiting the
parallelism contained in the algorithm. Each slave
processor can be used independently to generate a cut and
then send it back to the master processor for application
to the LP relaxation.

103

The main problem with using the farming approach is that it
is only useful to solve the new LP when the cuts have been
returned and applied to the problem. The use of a farming
algorithm will thus result in some (or all) of the slave
processors being idle at certain points in the algorithm.

If we assume that the number of new cuts that the algorithm
indicates can be generated is less than the number of slave
processors, then obviously some of the slaves will not be
sent work and will remain idle. Even if there are more
potentially useful cuts than there are slave processors to
generate them, both the master and slave processors will
always be idle some of the time.

The actual amount of time that the master and slaves are
idle depends on whether the algorithm is designed to send
data back and forth in a synchronous or asynchronous
manner.

If a synchronous control mechanism is used, the master will
remain idle until all the busy slaves indicate that they
have finished generating cuts, at which point all the new
cuts are returned and applied, and the new LP is solved.
Obviously, while the new LP is being solved, all the slave
processors are idle.

104

If an asynchronous control mechanism is used, a
prioritisation of the potential cuts to be generated would
be useful. The cut data most likely to be useful could be
sent out to the slaves first, with any lower priority cuts
being generated only if time permits and there are enough
free slaves. Once enough of the high priority cuts have
been generated and returned, the LP can be resolved while
the less important cuts are still being generated. Thus,
not all of the slave processors will be idle whilst the
master processor is solving the new LP. It is not obvious,
however, how many of the high priority cuts should be
applied before the new LP is solved

Both the synchronous and asynchronous approaches share the
minor problem of ensuring that the cuts generated in
parallel are distinct, so that the potential benefits of
parallelism are not wasted.

The major feature of this algorithm to note as far as its
implementation is concerned is that the LP problem grows
with every distinct cut added. Thus, a greater amount of
memory is needed on the master processor to contain the
details of each successive LP to be solved. Since the FCPA
algorithm cannot be proven to be convergent unless the MIP
problem's objective function always takes integer values,
there is no guide to how many iterations the problem will
take to solve, and thus how big the final LP problem for
solution will be. Since the FCPA algorithm does not yield

105

any feasible solution until the algorithm terminates, it is
thus possible that difficult MIP problems could not be
solved unless the master processor has access to large
amounts of memory.

If such hardware is available however, the parallel FCPA
algorithm would be flexible enough to attack many different
types of MIP problem, using the different types of cuts
mentioned in section 2.1.2 for use with different problems.

Benders' Decomposition algorithm involves repeating the
process of solving a dual LP problem and a reformulation of
the initial MIP problem. This process provides better and
better lower and upper bounds on the optimal solution of
the initial MIP problem until, when the lower bound on the
optimal solution is the same as the upper bound, the
optimal solution has been found.

There is no parallelism to be exploited from this algorithm
since the dual LP to be solved at each iteration is
dependent on the Benders' reformulation solved at the last
iteration and the Benders' reformulation solved at each
iteration is dependent on the solution of the dual LP at
the last iteration. Hence, there is a strict order in which
the calculations must be performed.

106

The Lagrangian Relaxation partitioning method, however,
does exhibit some exploitable parallelism. The initial MIP
problem is partitioned to create a new problem which only
contains constraints that are easy to satisfy. The
objective function of the new problem includes a construct
made up of the complicated constraints of the original MIP
multiplied by a vector X. If the solution vector of the new
(easy to solve) problem is close enough to a given set of
values, then the original MIP has been solved. If not,
another vector X must be chosen and another instance of the
partitioned problem solved. The best way to parallelise the
algorithm would be to implement a process farm. Different
sets of multipliers (Xs) could be chosen by the master
processor and sent to slaves which would solve an instance
of the partitioned problem and compare the solution vector
with the appropriate values. A process farm implementation
of this algorithm would keep the slave processors busy as
long as the process of farming out the X vectors can be
performed quickly enough to avoid a bottleneck occurring at
the master processor. The busy slaves will only be
performing useful work, however, if distinct and effective
sets of X values can be generated by the master processor.
To make an effective choice of Xs, the master processor
algorithm must note the results of previously solved
instances of the partitioned problem.

107

Since the partitioned problem is designed to be easy to
solve, the parallel algorithm should be implementable on
any type of parallel hardware currently available, as long
as enough memory is available for the master processor to
keep track of the calculations performed.

A restriction to the usefulness of the parallel algorithm
is imposed by its limited flexibility. There are many
different categories of MIP problems in existence and real
MIP problems can often be formulated in several different
ways. It is therefore difficult to write a set of all-
encompassing rules to indicate which constraints of a
problem are simple and which are complicated. It has also
been shown that there are problems for which no Xs exist to
supply an optimal solution ([Everett, 1963]). A reasonably
close solution would thus have to be acceptable in certain
instances.

group Theoretic Algorithms

As mentioned in section 2.3, MIP problems that have been
reformulated as PIP Group Minimisation Problems can be
solved by using a dynamic programming algorithm, an
enumeration algorithm, or a shortest route algorithm. The
basic structure of all three algorithms is the same, in
that slightly different GMPs are solved until a solution is
found where the basic variables all take positive integer
values.

108

The dynamic programming approach is to define a set of
recursion relations to find the rth best solution to the
GMP and then to perform recursions until a suitable
solution is found. Since each step of the recursion process
depends on the results of the previous step, there is no
exploitable parallelism in this approach.

The enumeration approach is to add a lower bound to one of
the variables and resolve the GMP. The value of the lower
bound is increased unit by unit until it reaches its
highest allowable level (and the GMP is resolved with each
unit increase) . If performed on each of the variables in
turn, this process will obviously eventually explicitly
enumerate all the possible solutions to the GMP (which is
a PIP) . The optimal MIP solution will be given by the
member of the set of GMP solutions where all the basic
variables take positive values which has the minimum
objective function value.

The shortest route approach to solving the GMP is very
similar to the enumeration approach previously mentioned in
that the different GMPs are constructed by adding lower
bounds to the variables and the same enumerative search is
carried out. The difference lies in the method of actually
solving the different GMPs. The shortest route approach
makes use of a specialised shortest route algorithm to
solve the GMPs.

109

A process farm would be the best way to implement either of
the enumeration or shortest path algorithms. GMPs with
different lower bounds imposed on variables could be solved
independently by slaves, with the master checking results
to see if any solutions to the MIP had been found. The
slave processors would be kept busy as long as the process
of farming out work can be performed quickly enough to
avoid a bottleneck occurring at the master processor.

Either of the algorithms would be implementable on
currently available parallel hardware, as long as enough
memory is available for the master processor to implement
a book-keeping scheme to record the search.

The Group Theoretic algorithms can be used to attack many
different types of MIP once the necessary transformation to
GMP problems have been carried out.

numeration Algorithms

Both the Driebeek Direct Search algorithm for MIP problems
and the Lemke and Spielberg algorithm on which it is based
could be parallelised by using a process farm, as the
search processes are quite similar to the methods used by
the Group Theoretic algorithms mentioned above.

1 1 0

The master processor could choose where to take forward and
backwards steps (i.e. set the value of a variable) and farm
out the appropriate subproblems to be solved by slaves.

Both the direct search algorithms, however, cause problems
when implemented for use on problems containing integer
variables which can take a wide range of values.

In the case of the Driebeek algorithm, which represents
integer variables by a set of binary variables, it is
difficult to assess the amount of memory that should be set
aside for the use of the processors. A large amount of
memory will need to be set aside on both the master and
slave processors to allow the possible representation of
integers which can take a large range of values.

It should also be noted that the process of transforming a
problem in integer variables into a problem in only binary
variables is not unlike transforming the MIP into a
combinatorial problem, in that the transformed problem will
contain a much larger proportion of discrete variables if
the bounds on the original integer variables were not close
together. The subproblems to be solved during the search
will thus have the characteristics of combinatorial
problems. Ill

Ill

In the case of both the Direct Search algorithms, which are
based on an algorithm for solving PIP problems, the
extensions to the PIP algorithm that enable general MIP
problems to be solved subtract from the power of the
algorithm in that there is so much more enumeration to be
done if variables are allowed to take several different
values. The implicit enumeration criteria used as part of
the MIP algorithm are also inefficient, some of the
criteria being weakened by the presence of continuous
variables. The result is a poor relation to the Branch and
Bound algorithm, discussed below.

The Branch and Bound enumeration algorithm is a much better
candidate for parallelisation (as is reflected by the
number of parallel Branch and Bound algorithms appearing in
the literature). The algorithm basically involves solving
many different LPs so as to either explicitly, or hopefully
implicitly, enumerate all the possible solutions. Since
none of these LPs are dependent on each other, they can be
solved independently, again by implementing a process farm.
A master processor may make choices of active candidate LPs
and the slaves merely solve LPs when the appropriate data
is received. The Branch and Bound search is also much
better directed than that of the Direct Search algorithm,
since the Branch and Bound search criteria work equally as
well on MIP problems as on PIP problems.

1 1 2

The enumerative processes carried out by the Group
Theoretic algorithms and by Direct Search Enumeration are
very similar to those of the Branch and Bound algorithm,
although the search carried out by the Branch and Bound
algorithm is not so blind. The Group Theoretic algorithms
and the Direct Search Enumeration algorithm will therefore
not be considered for parallelisation.

This leaves the Fractional Cutting Plane, Lagrangian
Relaxation and Branch and Bound algorithms as the only real
contenders for parallelisation. The Branch and Bound has
the following advantages over the other two algorithms:

the LP problems to be solved as part of the Branch and
Bound algorithm are of a constant size so that the required
memory of each processor can be properly estimated;

the Branch and Bound algorithm can be proved to be
convergent for MIP problems;

intermediate feasible solutions may be found while the
algorithm works, thus a "nearly-optimal" solution may be
found if required; and, probably most importantly

the Branch and Bound algorithm is the sole base for nearly
all the commercially successful IP-solving codes on the
market. There are thus many ad hoc methods involving
tolerances and parameters that have been developed for use

113

with the Branch and Bound algorithm which can be used to
aid the solution of real problems.

When considering the choice of algorithm it must also be
remembered that MIPs have previously been defined for our
purposes as having a large LP component and relatively few
integer entities (e.g. binary variables, general integers
or special ordered sets). For this class of problem, serial
implementations of the Branch and Bound algorithm expend
much more effort in solving the LP relaxations than in
choosing the LP relaxations and performing the input/output
work of passing problem data and solutions back and forth.
Solving the LP relaxation at each node often involves many
hundreds of (dual) Simplex iterations. This indicates that
a relatively small processor farm arrangement should be
able to keep many of its slave processors occupied for much
of the time if running a parallel Branch and Bound
algorithm, thus achieving much of the possible benefits of
parallelism. So, it was decided to parallelise the Branch
and Bound algorithm using a process farm arrangement.

Having decided to use the farming approach to parallelism,
the Inmos T800 transputer provided a natural platform for
experiments. When the research was begun, the T800 had one
of the fastest floating point units of the microprocessors
on the market, enabling quick LP solutions by the slave
processors of the farm.

114

A well developed FORTRAN compiler was also available for
use with a number of transputers installed as part of a PC
environment. As well as dealing with standard FORTRAN code,
this compiler had many extensions for the message-passing
and synchronisation routines necessary to implement a
farming application. Additional software was available to
enable the electronic reconfiguration of the transputers
into many different physical topologies.

There were also, however, disadvantages to using a
transputer board within the PC environment. Although the PC
environment is relatively cheap, it does limit the amount
of communication possible between transputers and the host
since only one transputer (the root) can communicate
directly with the PC. If another transputer wishes to
communicate, either to the screen or to a disk, it has to
do this via the root transputer. A transputer only has four
links (high speed communication channels) which are not
easily reconfigurable when a program is running, thus
placing a limit on the number of connection topologies that
are possible.

The raw performance of the T800 transputer on floating
point work was quite impressive when the research began. To
illustrate this we give in Table 4.1 below the results of
solving some LP problems on a 16MHz transputer with a
floating point processor and 1Mbyte of private memory (from
(Ashford, Connard and Daniel, 1992J). These results are

115

compared with times obtained on a 20 MHz IBM PS/2 Model 70
with 20 MHz 80387 co-processor, which at the time the tests
were conducted was quite a powerful machine, although it is
slow by more recent standards.

Problems SC205, GFRD-PNC, BORE3D, ISRAEL, ETAMACRO and
BRANDY are from the NETLIB test set ([Gay, 1985]), WILLETT
is from Golden et al. ([Golden et al., 1988]).

Problem NROWS NCOLS NONZ NDP TPTR XPR1.51
B0RE3D 234 549 1759 2 1 . 2 0 8.41 13.57
BRANDY 2 2 1 470 2371 53.88 24.60 33.95
GFRD-PNC 617 1092 3467 107.93 62.43 95.57
ETAMACRO 401 1089 2890 52.56 27.35 41.97
ISRAEL 175 317 2533 35.04 19.23 16.53
SC205 206 409 758 16.70 9.29 11.26
WILLETT 185 679 2532 130.00 71.35 96.39

Table 4.1: Solving example LP problems

NROWS is the number of constraints, NCOLS the number of
structural columns, and NONZ the number of non-zero
elements in the matrix. Times are in elapsed seconds.
Identical FORTRAN code was compiled for the NDP and TPTR
columns. NDP refers to the Microway NDP FORTRAN compiler
V1.4VM ([Microway, 1988]). 3L Ltd's Parallel FORTRAN ([3L
Ltd., 1988]) was used for TPTR. XPR1.51 refer to version
1.51 of Dash Associates' XPRESS-MP ([Dash Associates,
1989]) optimiser which uses FORTRAN and assembler.

116

4.2. Parali»! Algori

The major objective of the research was to implement a
fast, sophisticated parallel MIP code within the PC
environment. Dash Associates' XPRESS-MP optimiser [Dash
Associates, 1989]) was chosen as the basis for the parallel
code since the source was available. A board containing
nine 16MHz T800 transputers (each of which had 1Mbyte of
personal memory) was chosen as a platform for experiments.

The serial (i.e. non-parallelised) version of XPRESS-MP
uses a Branch and Bound strategy to solve IP problems, as
do the vast majority of commercial codes. XPRESS-MP also
makes use of a few ad hoc methods necessary for the
effective solution of real IP problems. All commercial MIP-
solving codes make use of a system of switches, tolerances
and strategies that have been developed over time and found
to work on a wide variety of real problems. Without such a
system, many solvable problems remain intractable for the
serial Branch and Bound algorithm. It was decided that the
parallel algorithm to be developed would also make use of
such switches and tolerances in order to continue to attack
real, hard problems.

The first major design feature of the serial code is that
it makes good use of the available memory to hold the
sizable data structures necessary to hold large IP
problems.

117

The data can be classified as 'short node' data that is
useful in making decisions for node selection as part of
the Branch and Bound process and 'long node' data that is
necessary to carry out calculations once a decision has
been made.

For each node in the search tree, XPRESS-MP holds the
'short node' information in memory. This consists of the
optimum objective function value of the LP relaxation at
the node, an estimate of the best integer solution that can
be obtained from branching at that node, and pointers to
enable the tree structure to be traversed. The 'long node'
information consisting of the basis and the current lower
and upper bounds for each integer entity is held on disk
and only retrieved when necessary for calculations.

Since the process farming algorithm was to be implemented
on transputers which only had 1MByte of private memory,
this long and short node data structure was retained in
order to ensure that the (often large) data structures
necessary to make decisions as part of the Branch and Bound
enumeration of real MIP problems would fit onto the master
processor.

The next design feature of the serial code is the amount of
effort the algorithm spends at each node to get accurate
estimates of the effects of branching on each non-satisfied
variable. The estimates are made when the LP relaxation at

118

the node has just been solved and optimal values (both
primal and dual) are available.

It has been shown that it is usually beneficial when
solving large MIP problems to devote significant effort at
each node to obtaining good estimates ((Beale, 1977]) and
so the estimation process was preserved for the parallel
code.

4,3, D+egriptign pf the Initial Algorithm Developed

The initial algorithm developed was loosely based on an
algorithm previously implemented by Daniel on a board
containing only four 16MHz T800 transputers ([Ashford,
Connard and Daniel, 1992]). The Daniel algorithm is a good,
if limited, example of a simple process farm, making use of
three anonymous slaves. Unfortunately, the Daniel algorithm
cannot be extended to use more than three slave processors,
as it is only designed to send data to the slaves that are
directly connected to the master. The Daniel algorithm was
thus only used as a starting point for our initial
algorithm.

Like the Daniel algorithm, the slaves of our redesigned
algorithm use the same solution, branching variable
selection and estimation code as the serial version of
XPRESS-MP. In order to allow data to be passed to and from
the master from many different slaves, a formal message

119

passing technique had to be used rather than relying on the
FORTRAN COMMON variables of the serial XPRESS-MP code or
the direct connections of the Daniel algorithm.

Our initial algorithm featured node selection routines that
were based on a parallel version of depth-first search, as
indicated by the conclusions of section 3.4. Both immediate
descendants of a node were tackled simultaneously if two
slaves were free, otherwise the more attractive was started
and no special attempt made to use a slave becoming free on
the less favourable branch. If both descendants of a node
were fathomed, a search of all active nodes was carried
out, using best-first criteria for comparison if no integer
feasible solution had yet been found. Once an integer
feasible solution had been found, any comparisons made were
based on the criteria suggested by Forrest, Hirst and
Tomlin ([Forrest et al. , 1974]), also described as 'quick
improvement' ([Nemhauser and Wolsey, 1988]).

The FORTRAN-coded implementation of the initial algorithm
was designed to be more efficient than the Daniel
algorithm, and to allow a proper analysis of the results.
The size of the messages passed to slaves was reduced in
order to reduce the message-passing overheads incurred. To
allow a better analysis of the results, routines were added
to count the number of different types of nodes considered
(i.e. number of solution nodes found, number of infeasible
nodes, number of cut off nodes etc.). This included a count

120

of nodes that were cut off when returned because the cutoff
value had been tightened since their LP relaxations were
sent out. The maximum and average number of transputers
used was also noted for each test run.

For initial tests, the topology featuring three anonymous
slaves was retained. The root transputer, which was
connected directly to the host PC. was assigned to be the
master and was thus also directly connected to three
neighbouring transputers (the slaves). Each slave was
connected only to the master and could not communicate with
the other slaves. Thus the topology adopted, as seen in
Fig. 4.1 was a simple star, with the root at the centre.

Fig. 4.1: Topology used for
initial tests.

121

The algorithm placed on the slaves was as follows:
Step 1:

Step 2:

Step 3 :

Step 4:

Step 5:

Step 6:

Step 7:

Wait for a message from the master. If a message
is received, go to Step 2.
Receive the initial data structure for the LP
relaxation of the original MIP problem. Go to
Step 3.
Wait for a message from the master. If a message
is received, go to Step 4.
Receive and apply bounds and a starting basis for
solving an LP relaxation. Receive the value of
the best integer solution found so far, to act as
a cut-off. Also receive a tolerance which
indicates how much better than the cut-off a new
solution must be to be useful. Go to Step 5.
Perform iterations of the Simplex algorithm to
solve the LP. If the LP relaxation is infeasible,
unbounded, or worse than the cut-off, go to Step
7. Otherwise, if the problem is solved, go to
Step 6 .
If the solution is integer feasible, go to Step
7. Otherwise, estimate the effect on the
objective function value of branching on each
unsatisfied variable. Decide which of these
variables is the best to branch upon and create
data for a new node on the search tree that would
be created by branching. Go to Step 7.
Return information for both the long and short
node data structures to the master. Go to Step 3.

122

The algorithm on the master processor acted as a taskmaster
and coordinator as follows:
Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Read in the problem data and initialise the long
and short node data structures. Initialise data
structures to keep track of which transputers are
in use. Go to Step 2.
Supply data structures for the initial LP
relaxation of the MIP problem to each of the
three slaves. Go to Step 3.
Send details of the initial LP relaxation to
slave number one for solution. Indicate that
slave one is now busy. Go to Step 4.
Wait for a message from any of the slaves. If a
message is received, go to Step 5.
Receive the solution of the LP relaxation. Note
which slave the message came from and indicate
that it is now free for more work. If this was
the first iteration and the result is that of the
initial LP relaxation of the MIP, go to Step 6 .
Otherwise, go to Step 7.
If the initial LP relaxation was unbounded,
infeasible or worse than the initial cut-off
supplied, then stop. If an integer solution was
returned, stop, as this is the optimal solution.
Otherwise, go to Step 10.
If the LP problem was infeasible or worse than
the cut-off supplied, go to Step 11. Otherwise,
go to Step 8 .

123

Step 8:

Step 9:

Step 11:

Step 12:

Step 13:

If the solution was integer feasible, go to Step
9. Otherwise, go to Step 10.
Update the cut-off and incumbent solution for the
MIP problem. Remove candidates from the list of
nodes to be branched on that would yield worse
solutions than the present best. Go to Step 11.
Create long and short node data structures for
the new node indicated by the incoming message
from the slave. Add the node created to the list
of possible nodes to branch on. Go to Step 11.
Check the size of the list of candidate nodes for
branching. If the list is empty, go to Step 13,
otherwise go to Step 12.
See if there are any idle slaves. If not, go to
Step 4. Otherwise, choose an idle slave, choose
a node to be branched upon from the candidate
list and recover the long node information from
the disk. Combine the long and short node
information and farm this to the chosen slave.
Set this slave as busy and go to Step 11.
If there are no transputers busy, stop. If no
integer feasible solution has been found, then
one does not exist. If one or more integer
feasible solutions have been found, the incumbent
solution is the optimal. If one or more
transputers are busy, go to Step 4.

124

4.4. ;«pl«m.nt.tlQn pf « P,r«ll»l Algorithm on

In order to implement any parallel algorithm on one or more
transputers, there are several stages that must be
followed.

The first step after having designed the overall parallel
algorithm is to design the necessary communicating parallel
processes that will be used to implement it, e.g. the
master and slave algorithms mentioned above.

The second step is to decide exactly how each parallel
process communicates with other parallel processes and then
construct a network of communications channels to do so. As
an example, using the simple star topology shown above, the
master algorithm sends messages to and receives messages
from each of the slaves. It is thus necessary for the
master to have four channels for sending messages and four
channels for receiving messages (remembering that
transputers send messages via unidirectional links). Each
of the slaves needs only one channel to send messages and
one to receive messages since it is only connected to the
master, and does not communicate with other slaves.

The communication network would thus be as in Fig. 4.2:

125

Fig. 4.2 : Network of communicating
parallel processes.

The third step is to ensure that a physical network of
transputers can be constructed that is capable of
implementing the communication network already developed.
Software available with the Quintek Fast-9 transputer board
allows the electronic configuration of the transputers on
the board into any physical topology possible using the
four links per transputer, although, by default, a pipeline
connecting certain links of the transputers is always set
up. The software must be used to set up a physical
communication network between the transputers that are to
be used. This physical network must include explicit
details of which of the four links on each transputer are
to be connected to which links on other transputers. It
should be noted that all transputers present in the system
must be present in the physical network, whether they are
to be used by the parallel algorithm or not. This is
because of the default pipeline always set up by the
software. Fig. 4.3 below shows an example of a physical

126

network that could be used to implement the parallel
processes shown in Fig. 4.2.

The network of communicating processes originally designed
must be correctly placed onto the physical network of
transputers or the transputers will jeun up and the program
will hang. The correct parallel communicating processes
must be placed onto the correct transputer so that the
designed communications between processes can take place.

Once this has been successfully accomplished, the parallel
algorithm can be used to solve problems. It should be noted
however that the physical network of transputers must
always be set up correctly before the parallel algorithm
can be used. When the PC is turned on, the default physical
connections of the transputers form a pipeline. If any
other connection topology is desired, software must first
be used to reconfigure the transputer connections.

Communication between transputers must occur via one of the
four links by which they may be connected.

127

N.B. The numbers in Fig. 4.3 refer to the physical
communication links of the transputers. Each transputer has
four such links, numbered 0, 1, 2 and 3, although only the
numbers of the links actually used by this topology are
given in Fig. 4.3.

rig. 4.3: Physical network of transputers.

4,5. Pltcvwlon of initial »»»ult.

The initial code, using the star topology shown in Fig.
4.1, was tested on a variety of available MIP and
combinatorial problems which are described in Table 4.2
below.

1 2 8

The AZx problems are different instances of a contract
allocation problem. BAG882 is a chemical processing
problem. HPW15 is the 15th example from Williams
([Williams, 1978]). INGT274 and INGT1345 are ingot casting
problems. MO0788 is a power generation model. TAXI and TAX2
are models of capital investment under different taxation
regimes.

Problem Category NROWS NCOLS NGLOB
AZA 1 115 88 44
AZB 1 105 88 44
AZC 1 105 88 44
BAG882 5 304 304 23
HPW15 1 56 45 30
INGT274 2 13 274 274
INGT1345 3 19 1345 1345
MO0788 6 1123 926 24
TAXI 5 301 314 74
TAX2 5 181 194 34

Table 4.2: Test Problem Statistics.
The NROWS column gives the number of constraints, NCOLS the
number of structural columns and NGLOB the number of
discrete entities.

The possible categories of problem are: (1) Small
Combinatorial Problems; (2) Medium Combinatorial Problems;
(3) Large Combinatorial Problems; (4) Small MIP Problems;
(5) Medium MIP problems; and (6) Large MIP problems.

The parallel code was parameterised so that it could be run
with one, two or three slave processors. When the parallel
code is run using only one slave processor, the same
problem solution is obtained as when the serial code is run

129

(and the same number of nodes is considered before
optimality is proven). The times taken to solve the problem
are different however. The parallel algorithm is such that
the master processor is idle when it has farmed out an LP
relaxation to a slave and the slave is idle once it has
solved the LP (until it receives a new LP to solve). Thus,
the only real difference between the time taken to solve a
problem using the serial code and that taken using the one-
slave parallel code should be caused by the message-passing
overheads incurred. These overheads are small enough that
the solution times obtained when using the one-slave
parallel code are of the same order as those obtained when
using the serial code, although the serial code is faster.

Problem TO T1 T2 T3
AZA 3.79 (7) 3.08 (ID 3.18 (13)
AZB 455.67 (1901) 268.48 (1927) 233.71 (1919)
AZC 55.36 (145) 28.51 (141) 21.04 (143)
BAG882 389.48 (237) 127.10 (171) 121.55 (249)
HPW15 2.03 (15) 1.76 (23) 1.65 (25)
INGT1345 61.03 (59) 80.03 (115) 82.00 (123)
INGT274 28.23 (99) 23.46 (157) 24.94 (165)
MO0788 55103.12 (3917) 27567.43 (3961) 18147.60 (3959)
TAXI 3215.56 (1649) 1626.83 (1649) 1101.04 (1655)
TAX2 119.47 (165) 23.84 (41) 22.46 (51)
Table 4.3: Results of Using the Initial Parallel Algorithm.

130

The entries in Table 4.3 give the time and the number of
nodes (in parentheses) taken to solve the problem with 1 ,
2 or 3 transputers acting as slaves. Times are in elapsed
seconds.

To demonstrate more clearly the success of using the
implemented parallel algorithm on the test problems, we
shall measure the speedup achieved by adding additional
transputers.

The speedup is defined as Tj/Tn where T„ is the time taken
to solve a problem using x slave transputers. The speedups
achieved for the different test problems are shown in Figs.
4.4 and 4.5 below.

Speedups fo r F irs t Five Problems3.5

A ZA AZB AZC9AMS 2 -M- HPW15 UCAR
Fig. 4.4: The First Five Test Problems.

131

Speedups for Second Five Problems

1 2 3
Nmnber of Stove Traneputere

NGT1343 -» -W G T 2 7 4 -« -M 0 0 7 B 8
TAXI - M - TAX2 - A - LNEAR

Fig. 4.5: The Second Five Test Problems.

In all the tests, all the available slave transputers were
utilised at least once and the average slave transputer
usage figures were very high indeed, never falling to
eighty per cent, and settling in the high ninety percent
range in most cases.

The test problems that benefit the most from the use of
additional slave transputers are those in the categories of
medium and large MIPs (i.e. the problems which the parallel
algorithm was developed to attack). The medium sized MIP
problem BAG882 gives a notably superlinear speedup with two
and three slaves, as does the large MIP TAX2. The medium
MIP TAXI and the large MIP MO0788 both achieve almost
exactly linear speedup with two and three slaves.

5.5

5

4.5

2
1.5

0.5

132

In comparison, the combinatorial problems tested do not
fare well when additional slaves are added. The small
combinatorial problems AZA and HPW15, the medium
combinatorial problem INGT274 and the large combinatorial
problem INGT1345 never really achieve a speedup much over
one.

This indicates that a large message-passing overhead is
being incurred in these cases so that the benefits of the
extra processing power are being wasted. This is due to the
LP relaxations being solved very quickly and the results
being returned to the master processor before it has had a
chance to farm out much more work to other slaves.

The small combinatorial test problems AZB and AZC fare
better than the other combinatorial problems, with AZB
achieving a speedup of just under two and AZC a speedup of
two and a half. In these cases, the proportion of message­
passing is not so high, indicating that the LP relaxations
are not so easy to solve, thus allowing the master more
time to properly farm out work.

Solving ten test problems cannot give enough empirical
evidence on which to base conclusions about the performance
of the parallel algorithm. It does however appear, at least
in the case of the larger MIP problems for which the
algorithm was developed, that the benefits of parallelising
the algorithm are being exploited.

133

S^-DgvftlQB^nt of the n-transput«r Parallel A1

As mentioned in the previous chapter, at most three slave
transputers may be directly connected to the root (or
master) transputer whilst implementing the farming
algorithm. One of the root transputer's links must be
connected to the PC to enable input/output operations such
as reading from and writing to the screen or disk.

To progress beyond the Daniel four-transputer algorithm and
produce a parallel algorithm for use on n transputers, some
form of message-passing system would have to be used, to
enable slaves not directly connected to the master to
communicate with it indirectly.

The Parallel Fortran compiler purchased from 3L Ltd ((3L
Ltd., 1988]) for use in the previous experiments, also
provides a flood-fill configurer whose function is to ease
the construction and administration of larger farming
applications. It creates an arbitrary network of anonymous
transputers for the farm, keeps constant track of the
availability of slave processors, and handles all
message-passing to and from the slaves.

When trying to implement an eight-slave farm using the
flood-fill configurer however, problems arose when the
broadcast of the initial LP relaxation of the MIP to all
the slaves was attempted. The flood-fill configurer system

134

provides the user with no information as to which slave
transputer a message is destined for or being returned
from, i.e. the slaves used are anonymous. It was thus
impossible to guarantee that every slave transputer had
received the required information packet. Indeed, the use
of the basic debugging facilities possible indicated that
only a subset of the eight slave transputers were receiving
the required broadcast. The flood-fill configurer therefore
had to be abandoned, and a complete message-passing harness
and administrative system designed to replace it.

5.1. Th« | M — M m l M H«rnfM

The decision to develop the message-passing harness was
also influenced by a desire to have more control over the
destination of individual LP problems than the flood-fill
configurer would have provided. When considering the
implementation of the parallel algorithm on a large number
of transputers for instance, it might be useful to consider
sending descendent LP relaxations to the same slave that
had previously solved the parent LP relaxation. Most of the
data held on the slave would still be valid, with the
exception of the bounds on the variable being branched on
and certain book-keeping data structures. This information
would be all that needs to be passed to the slave (possibly
along with a new cutoff value if this has changed since the
last LP was sent).

135

5.1.1. The Topology

In order to implement a message-passing system, the
anonymity of the slaves was removed, and the master and
slaves were given explicit knowledge of the experimental
topology in use. This provided for the possible
implementation at a later stage of an adaptive transputer
selection strategy. It might, for instance, be desirable to
keep a transputer free if the next LP to be solved on it is
a descendent of the one last solved by it, so that almost
all of the data on the slave is still valid.

The message-passing system developed involves placing a map
of the current topology onto each transputer. Each
transputer is allocated a number, and messages to be passed
around the system contain a header indicating to which
transputer they should be passed. On receiving a message,
a transputer either makes use of the data or passes it on.
If the transputer is to pass on data, it reads its map to
find the next destination of the data.

The map consists of two arrays, a link array, (indicating
which transputer is connected to each of this transputer's
four communication links), and a chart array (indicating
which transputer the message should next be passed to in
order to finally arrive at its destination) . This chart
array is fixed (for simplicity), but a further step perhaps
necessary on a system with hundreds of slaves would be to

136

provide an adaptive chart that would choose alternative
routes depending on the present traffic flow.

As an example of the use of the map, Fig. 5.2 shows the
link and chart arrays used to traverse the simple
connection topology displayed in Fig. 5.1.

Fig. 5.1: A simple connection
topology.

137

actual link 0 1 2 3
Transputer 0 link array H 1 2 3

chart array 0 1 2 3
destination
of message

0 1 2 3 4

actual link 0 1 2 3
Transputer 1 link array R 2 0 0

chart array R 0 2 R R 1
destination
of message

0 1 2 3 4

actual link 0 1 2 3
Transputer 2 link array R 0 1 0

chart array R 1 0 R R |
destination
of message

0 1 2 3 4

actual link 0 1 2 3
Transputer 3 link array R 0 4 0

chart array R R R 0 4 1
destination
of message

0 1 2 3 4

actual link 0 1 2 3
Transputer 4 link array 3 0 0 0

chart array 3 3 3 3 3 |
destination 0 1 2 3 4
of message

rig. 5.2: The LINK and CHART arrays used to traverse the
topology shown in Fig. 5.1.

138

The four elements of each of the link arrays shown in Fig.
5.2 give information as to what each of the links of the
transputer is connected to. A letter H indicates a direct
connection to the PC host (obviously from the root
transputer only), an R indicates a direct connection to the
root transputer. The number 0 indicates that no direct
connection is made via that link, and any other number
indicates that the link is directly connected to the
transputer with that number.

The chart arrays shown in Fig. 5.2 are designed for use
with an n-transputer system where the root transputer is
numbered as zero and there are (n-1) slaves, numbered 1 to
(n-1) . Each of the n members of a chart array give
information as to where to next pass a message in order to
reach the transputer numbered n. The letter R indicates
that the message should next be passed to the root
transputer. The number 0 indicates that no message will
ever be passed to that particular destination next (i.e. it
is to be used when referring to the transputer on which the
map resides, since no message is ever passed from a
transputer to itself). Any other number indicates that the
message is next to be passed to the transputer with that
number in order to get to its final destination.

Consider, as an example, the process involved in passing a
message from transputer 4 to the root.

139

The four elements of each of the link arrays shown in Fig.
5.2 give information as to what each of the links of the
transputer is connected to. A letter H indicates a direct
connection to the PC host (obviously from the root
transputer only), an R indicates a direct connection to the
root transputer. The number 0 indicates that no direct
connection is made via that link, and any other number
indicates that the link is directly connected to the
transputer with that number.

The chart arrays shown in Fig. 5.2 are designed for use
with an n-transputer system where the root transputer is
numbered as zero and there are (n-1) slaves, numbered 1 to
(n-1) . Each of the n members of a chart array give
information as to where to next pass a message in order to
reach the transputer numbered n. The letter R indicates
that the message should next be passed to the root
transputer. The number 0 indicates that no message will
ever be passed to that particular destination next (i.e. it
is to be used when referring to the transputer on which the
map resides, since no message is ever passed from a
transputer to itself). Any other number indicates that the
message is next to be passed to the transputer with that
number in order to get to its final destination.

Consider, as an example, the process involved in passing a
message from transputer 4 to the root.

139

The chart array on transputer 4 indicates that in order to
get to the root, the next destination is transputer 3

(since CHART(0)*3). Searching the link array indicates that
link 0 of transputer 4 is directly connected to transputer
3 (since LINK(0)>3). Thus, the message is passed through
link 0 of transputer 4 and next arrives at transputer 3.

The chart array on transputer 3 indicates that in order to
get to the root, the next destination is the root itself
(since CHART(0)=R). Searching the link array indicates that
link 0 of transputer 3 is directly connected to the root
(since LINK(0)=R). Thus, the message is passed through link
0 of transputer 3 and next arrives at its final
destination, the root.

Tb* cinr m h

The transputers that were available to us had access to
only 1 Mbyte of personal memory. Since the application was
designed to attack large scale MIP problems (whose data
structures can take up much space) , the effective use of
transputer memory both on master and slave is essential.
The master transputer has access to the PC as well as its
own personal memory and so can save data on disk if
necessary, but the slave transputers have no such backup.

140

The message-passing routines to be placed on the slaves
were thus designed to input only one (or in certain
infrequent circumstances two) four-byte words of
information at a time onto a slave before passing them on
to their next destination. The harness thus allows the
slave transputer to solve large LP problems and provide
message-passing facilities whilst still only accessing its
1 Mbyte of personal memory.

This method is described as the clear path method since it
is necessary for the whole message to reach its destination
before it can be acted upon. Thus, since the message is
only partly stored by each transputer that it passes
through, a clear path (possibly across a number of
transputers) is necessary to get the message to its
destination.

The use of the clear path method by the harness removes the
need for a transputer to hold all of the data structures
representing an LP relaxation at once during message­
passing. Without the Clear Path Method, in the worst
possible case, as seen in Fig. 5.3, enough space would be
needed to hold three different sets of details on a slave.

An LP relaxation is held in an outward bound buffer of the
look process (i.e. being passed away from the master), an
LP solution is being held in an inward bound buffer of the
look process (i.e. being passed towards the master) and the

141

details of an LP relaxation (and possibly of its solution)
are being held as part of the calculation process.

Slave Processes

message
passing
process

calculation
process

Fig. 5.3: Worst possible case
for message passing.

The two main problems faced when implementing the clear
path method are that a clear path must be established for
each communication and that steps must be taken to avoid
deadlocking the message-passing algorithms.

5?l,3q. Establishing a Clear Path

Since all of a message must reach its destination before it
can be acted upon, it is essential that a clear path
through the network of transputers be available to the
destination in question each time a message is sent.

142

A system allocating priorities to different types of
messages passing through the slaves has been designed to
help achieve a clear path for each message, although this
does slow down the overall message-passing process somewhat
due to the overheads involved. Full details of the priority
system are given in section 5.2.2.

Unfortunately, the clear path method of message-passing
will not be very valuable for use with large numbers of
transputers. It was designed to work with the small number
of transputers available, but the difficulty of obtaining
a clear path will obviously increase when more slaves are
added to the topology. A message-passing harness has thus
been designed to replace the clear path harness when more
processors become available for experimentation (or if more
personal memory can be acquired for each transputer). Basic
details of this new design are contained in Chapter Eight.

For the present experiments using the nine-transputer board
however, a choice of connection topology minimising the
average distance of slave transputers from the master (and
thus minimising the average necessary length of a clear
path) is used to increase the likelihood of getting a clear
path and to combat the delays caused by communication
overheads.

143

5.1,2.2 . Avoiding Deadlock Probi—

Deadlock problems occur when two separate parallel
processes come to a point in their algorithms where they
try to communicate with each other, but for some reason
they cannot.

Consider the case where task A is at the point in its
algorithm where it must send a message to task B and then
act upon the details of a return message. If task B is at
a similar point in its algorithm in that it is attempting
to send a message to task A and then receive a return
message, then neither task A nor task B can proceed since
there is no way of breaking the communications deadlock.

When all the slaves were directly connected to the master
there was no risk of the master attempting to send a
message to a slave but finding that the slave is already
occupied trying to send a message to the master (as shown
in Fig. 5.4 below) .

This situation can now occur if a solution is being passed
back to the master via the slave to which the master is
trying to send a new LP relaxation. Unless precautions are
taken to avoid such deadlocking, the algorithm will seize
up.

144

trying to send trying to send
LP relaxation LP solution

rig. 5.4: A possible deadlock situation.
Timed processes have been placed on the master and slave
transputers in order to avoid deadlocking. When the master
processor is sending out an LP relaxation, each 4 byte word
of data sent is timed. Since the only thing to stop an
outgoing message would be a block to the path, if a word
takes too long to send, the sending process is abandoned
and the node for the LP relaxation is returned to the list
of candidates as though it had not yet been selected. The
time allowed for sending a word of data may be specified by
the user, but a minimum time must be allowed, based on a
communication speed of 1.8 Mbytes per second in one
direction for the T800 transputer links ([Inmos Ltd.,
1988]) .

The message-passing routines on the slave processors time
the arrival and departure of LP relaxation messages (using
the communication speed set by the user). If part of an LP
relaxation cannot be sent during the allotted time, the
sending process is abandoned, and the message-passing
process on the slave is reset, after a short delay, to look
for other messages. This resetting process will filter back
all the way to the slaves directly connected to the master.

145

Full details of the timed processes on the master and slave
transputers are given in sections 5.2.1. and 5.2.2.
respectively.

5.j. Th« B-tfW W t tr P.r.11.1 Algorithm P.T.lor^d

Both the master and slave algorithms were adapted from the
previous 4-transputer algorithms in order to implement the
clear path method of message-passing without incurring
problems with deadlocking.

5.2.1. The Master Algorithm

The algorithm on the master processor has been expanded
since it is to send messages to slaves not directly
connected to the root transputer.

In order to avoid the potential deadlock problems mentioned
previously, the algorithm on the master processor has been
adapted to include a timed process for sending out LP
relaxations to slaves. A time interval is set, during which
one word (i.e. 4 bytes) of the LP relaxation data must be
sent. If the sending routine cannot transmit the word of
data during its allotted time, the master algorithm gives
up on sending the whole LP relaxation and waits for an
incoming message from a slave. The only time when this
should occur is when the LP relaxation data has not been
able to follow a clear path all the way to its destination.

146

The process of timing each individual word of data sent is
sufficient to ensure that the message has time to reach its
destination since the messages are many words in length and
the path from master to the furthest slave is short.

The time needed to transmit a 4 byte word of data is either
set by the user or calculated using the assumption of a
message-passing speed of 1.8 Mbytes per second for the T800
transputer links.

The master algorithm also includes processes which ensure
that data structures are not corrupted if the last LP
relaxation chosen from the list of candidates cannot be
sent after all. These consist of saving the original values
of certain data structures and thus being able to reset any
values that were changed by the node selection or disk
reading processes if the node chosen cannot subsequently be
sent to a slave.

After reading in the IP problem information and
initialising its data structures, the new master algorithm
goes through the following steps: 1

1 Send out initial broadcast to each of the slaves.
Step 2 Send out a first LP relaxation of the

MIP problem arrived at by relaxing all
integrality constraints.

147

Step 3

Step 4

Step 5

Step 6

Step 7

Get results of first LP relaxation. Stop if the
problem is unbounded or infeasible or if the
solution is worse than the cut-off value
initially set up. Otherwise, create a node and
add it to the candidate list.
Look for a free transputer. If there are none,
wait until a result is returned and then go to
Step 11.
Attempt to choose a node to branch on from the
candidate list. If the candidate list is empty,
look to see if any transputers are busy. If so,
wait for a result to be returned and go to Step
11. If not, STOP. If an integer feasible solution
has been found, take it as the final result. If
no integer feasible solution has been found so
far, none exists.
Check for incoming results. If there are none,
save the values of variables that will be updated
when the LP is sent out, and go to Step 7; If
results are being returned, go to Step 11.
Read the long node information about the node
from disk. Save the values of any further
variables that will be updated when the LP is
sent out. (The cycle is such that there are
several stages at which it can be interrupted by
an incoming result, thus necessitating the
retrieval of some previous variable values.
Variables are thus updated, and their previous

148

values saved, only if there are no incoming
results. This minimises the overall amount of
retrieval of variable values). Apply the new
bounds to the variable to branch on.

Step 8 Check for incoming results. If there are some,
restore any changes made to the data structures
and go to Step 11. If not, go to Step 9.

Step 9 Attempt to send out the modification to the base
case LP to the slave chosen and update the status
indicator for that transputer and the data
structures. If the LP has not been sent out after
a given amount of time (as set by the user) then
restore any changes made to the data structures
and go to Step 11. (This will only happen if a
directly connected slave tries to send back a
result after the master is already committed to
sending out an LP problem).

Step 10 Look for incoming results. If there are some, go
to Step 11. If not, go to Step 4.

Step 11 Get in an LP solution. If the LP solution is
worse than the present cut-off or is infeasible,
go to Step 4. If the LP solution is feasible but
contains a number of integer infeasibilities,
then create a new node to hold the details. Enter
this node into the candidate list and go to Step
4. If the LP solution is feasible and contains no
integer infeasibilities (i.e. if it is a solution
to the IP) , then write this solution to disk.

149

update the cut off, remove any nodes from the
candidate list that will not produce better
integer feasible solutions and go to Step 4.

5_.2^2? The Slave Algorithm

In order to implement the n-transputer parallel algorithm,
each slave processor runs two concurrently executing
processes. The first is the message-passing (or look)
process, and the second is the LP-solving (or calculation)
process. When such concurrent processes are run on a
transputer, the programmer is allowed to give priorities to
the processes. A high priority process will run until it
has finished, whereas a low priority process will only run
for a given amount of time, or until it finishes or is
interrupted by the need to start up a high priority
process. In order to properly implement the clear path
method of message-passing, it was necessary to give a high
priority to the look process, so that messages would be
passed on properly without the look process being
interrupted. The calculation process must not attempt to
interrupt the message-passing and thus was given a low
priority.

150

S.2.2,1, The Look Process

The look process polls the four external communication
links of the slave transputer and an internal communication
channel with the calculation process until an incoming
message is detected.

If the message is to come from the calculation process (and
hence can only be an LP solution), then the look process
repolls the external channels to ensure that no messages
are incoming before giving the go ahead to send out the LP
result. This gives a higher priority to messages from other
transputers than to newly generated LP solution messages.
The external channels on each slave are polled in a
specific order (provided in addition to the map information
on each slave). The inward facing channels (i.e. those
connected to the master or to a slave closer to the master)
are polled before the outward facing channels. This is in
order to ensure that priority is given to LP solution
messages returning to the master.

If the message to be input originates from another
transputer, then the look process must first read the
header to determine what type of message is to follow and
for which transputer the message is intended.

151

Messages from other transputers can take the form of:

initial broadcast messages of the initial LP relaxation of
the MIP problem which are bound for other transputers;

the initial broadcast message intended for this transputer;

LP relaxations to be passed on to other slaves;

an LP relaxation to be solved on this transputer; or

LP solutions to be passed back to the master.

Once the look process has ascertained the destination and
type of an incoming message it simply inputs the message
one word at a time and then attempts to pass the word input
through the appropriate link or internal channel (after
referring to the map).

The broadcast message is of particular importance to the
look process, as it contains the basic data for the MIP
problem (e.g. the number of rows and columns etc.) . Many of
these general details are used to define the size of data
structures that are passed around the system as later parts
of the general broadcast or subsequently as part of the LP
problem and/or solution information. Thus, once a slave
transputer has received its broadcast of general
information, it should know the sizes of all the arrays to

152

be passed around and used later.

LP relaxation messages are also of special importance to
the look process, since they must be dealt with in a
particular way to avoid deadlocking the message-passing
harness.

If the message to be input is an LP relaxation message, the
look process allows each 4-byte word of the message a
certain amount of time to arrive. If a word arrives
successfully, the look process attempts to pass it on to
its next destination. If the look process of the next
transputer on the path cannot receive the word because it
is already occupied trying to send a message inward, a
delay is caused. This delay will filter back down the path
to the master, so that the message being passed is halted.
Since the master process sending out the LP relaxation is
also timed, it will be abandoned once the blockage has been
detected. The master algorithm will then be reset to look
for incoming messages, thus allowing the inward bound
message that caused the blockage to return to the master
successfully.

153

5.2.3.2. The Calculation Process

The calculation process is very similar to the initial
four-transputer slave algorithm in that it waits for an LP
relaxation to be sent to it (albeit this time via the look
process) and then reacts accordingly. It either reads in
the MIP data if a broadcast has just been received, and
then waits for another message, or it reads in the
modifications to its base case LP if it is to perform a
calculation. In the latter case, it proceeds to perform
iterations of the Simplex algorithm until it has solved the
LP or has ascertained that the LP is infeasible or
unbounded. If a solution is found to the LP, the
calculation process determines whether its value is better
or worse than the present best solution. If the solution
found is better than the present best, the calculation
process checks to see if the solution is integer feasible.
If the solution is integer feasible (and has already proved
to be better than the present best solution), it is
considered a contender for the new best solution. If the
solution is not integer feasible, the calculation process
performs the work to estimate the solutions to be arrived
at by branching again on the unsatisfied variables.
The results of attacking the LP relaxation are returned to
the look process as soon as it will accept them and then
forwarded to the master. The calculation process then waits
for another LP problem to arrive from the look process.

154

5.3. Computational R»»ulf

The node selection strategy used for the initial testing of
the nine-transputer algorithm was identical to that used
for the four-transputer algorithm.

Problems of various sizes and complexities were used to
test the n-transputer parallel algorithm. In addition to
those problems used to test the four-transputer algorithm,
the problems shown in Table 5.1 were attacked. CHAL is a
local heating load and distribution planning model. CRAC is
an oil refinery planning model. DAAC and OK are farm
planning problems. DOM1 is a ship scheduling model. GY is
a medium term energy planning model. G31 and G32 are
petrochemical plant models. MCA, MRX and MR1 are political
districting problems. SETX is a project evaluation model.
Note that Table 5.1 also gives the time (in seconds) and
the number of nodes taken to solve the problems using a
serial version of the optimiser code.

155

Problem Category NROWS NCOLS NGLOB NSETS NSOSM
CHAL 3 985 1320 552
CRAC 6 294 785 6

DAAC 4 80 149 31
DOM1 6 796 585 1 1 11 41
GY 3 913 888 528
031 4 159 146 9
032 4 162 148 9
MCA 6 412 648 22 3 15
MRX 2 166 192 143
MR1 2 166 192 143
OK 4 80 149 31
SETX 4 13 2 1 3 3 18

Table 5.1: Extra Test Problem Statistics.
The NROWS column gives the number of constraints, NCOLS the
number of structural columns, NGLOB the number of discrete
entities, NSETS the number of Special Ordered Sets, and
NSOSM the number of Special Ordered Set Members.
The problem categories are the same as those for the
previous test problems: (1) Small Combinatorial Problems;
(2) Medium Combinatorial Problems; (3) Large Combinatorial
Problems; (4) Small MIP Problems; (5) Medium MIP Problems;
and (6) Large MIP problems.

The code was again parameterised to allow testing with from
one to eight slave transputers in order to see how useful
the number of extra nodes generated by using more
processors were in each case.

156

The topology shown in Fig. 5.5 below was used to produce
the results. The topology was chosen to provide a good
likelihood of a clear path for most messages, in that the
paths from the master to those slaves not directly
connected to it are as short as possible.

Fig. 5.5: Topology used to test
the n-transputer algorithm.

157

Reproducibility of Results

Before discussing the computational results obtained, it
must be pointed out that the implementation of our parallel
algorithm is non-deterministic. Hence, the algorithm will
not necessarily enumerate exactly the same solutions each
time a problem is attacked. If the same solutions are
enumerated, they will not necessarily be considered in the
same order. Thus, although the same final solution will
always be obtained, it may take a different amount of time
and/or a different number of nodes to arrive at.

The non-determinism of the algorithm is caused by the
asynchronous coordination of the slaves. The specific
effects of non-determinism exhibited when the algorithm is
implemented are due to the hardware used.

The major causes of the non-determinism of the
implementation of our algorithm are the disk-reading and
disk-writing operations carried out by the master. Each
time a record of long node data is to be written to the
temporary file held on the hard disk, the operating system
of the PC must decide where on the disk the new record is
to be stored. Different runs of the program will result in
different parts of the disk being decided upon by the
operating system. Obviously, deciding upon and writing to
different places on the disk will take different amounts of
time. The time taken to write records to the disk has an

158

effect on the number of new LP relaxations that can be
farmed out by the master before it is interrupted by
incoming LP solutions. Obviously, if more than one slave is
busy, the longer it takes the master to write the results
of an incoming solution to disk, the less time is left to
farm out new LP relaxations to idle slaves before another
solution is returned.

Similarly, once the master has chosen a new node to be
branched upon, the amount of time taken to find and read
the appropriate long node record from the disk partially
determines whether there will be enough time to send out
the LP relaxation before an LP solution is returned, thus
interrupting the process.

So, the disk-reading and disk-writing operations of the
implementation of our algorithm can lead to different
patterns of transputer usage and different numbers of
messages being passed around the system. This latter effect
itself leads to a variation in the amount of time taken for
some slaves to solve their LP relaxations.

Since the calculation process on each slave is a low
priority process, it operates in a certain way. Once it has
received an LP relaxation, it will attempt to begin its
calculations. It will only be able to do so, however, if
the high priority look process does not have any more
messages to pass. Once work has begun on the LP relaxation,

159

the performance of the calculation process will be partly
determined by the number of messages being passed around by
the slave. Each time a message must be passed by the high
priority look process on the slave, the low priority
calculation process is interrupted. The calculation process
is stopped as soon as it is safe to do so, i.e. so that no
calculation results are corrupted. Where the calculation
process stops depends entirely on the exact moment it is
interrupted by the look process. Thus, different numbers of
messages being passed around the system also leads to LP
relaxations taking different amounts of time to solve.

The overall effect of the non-determinism is that the
computational results discussed below cannot definitely be
reproduced time after time. Any conclusions reached from
the results are thus reached with this point in mind.

In the discussion of these results we shall again use the
concept of speedup. (Speedup is defined as Tj/Tn where T„ (x
* l,...,n) is the time taken for the parallel algorithm to
solve the MIP problem when using x slave transputers).

The computational results of the initial tests are listed
in Appendix 2A, and the speedups achieved are shown in Figs
5.6 to 5.11 below.

160

]

rig. s

I
o

ria. 5.

Speedups for
Category 1 P rob lem s

HPW15 -A -U N EAR

.6 : Speedups for Small Combinatorial Problems.

Speedups fo r
Category 2 Problems

7 : Speedups for Medium Combinatorial Problems.

161

Speedups for
Category 3 P rob lem s

rig. 5

I

rig. s.

8 : Speedups for Large Combinatorial Problems.

Speedups for
Category 4 Problems

OK -* * - SETX -A- UNEAR

9: Speedups for Small MIP Problems.

162

Speedups for
Category 5 Problem»

9

BAC882 TAXI TAX2 - A - l INI AR

rig. 5.10: Speedups for Medium MIP Problems.

0

Speedups for
Category 6 Problem»

MOO 788 -e r- LNEAR

rig. 5.11: Speedups for Large MIP Problems.

163

Since the n-transputer parallel Branch and Bound algorithm
was designed to attack medium to large scale MIP problems,
we would anticipate that attacking such problems would
produce good results, with less impressive results being
obtained when attacking problems from the other categories.

We shall now discuss the results obtained from attacking
the different categories of problem.

As can be seen from Fig. 5.6, the problems from this
category never achieved a speedup of greater than about
two, no matter how many slave transputers were used. The
reason for this, in all the cases, is that only a small
number of the available slave transputers were actually
used, as can be seen from Table 5.2. The point after which
no more transputers are used, no matter how many are
available, is referred to as Saturation Point.

Problem Maximum No. of Slave Average Transputer Usage
Transputers Used after Saturation Point

AZA 4 2.5
AZB 4 1 . 8

AZC 5 2 . 6

HPW15 3 1.7
Table 5..2: Transputer Usage for Small Combinatorial
Problems.

164

Problwn Cat»gory 2i storiai Probi»

Fig. 5.7 shows that problems MRX and MR1 produce a
reasonable, although sublinear speedup curve, whilst
problem INGT274 performs similarly to the smaller
combinatorial problems previously mentioned.

The reason that problems MRX and MR1 give moderately good
results is probably that the available slave transputers
are highly utilised. All the available slave transputers
are used in each case, with the overall usage falling from
one hundred percent (when one slave transputer is used) by
only two to four percent with the addition of each further
slave. For both problems, when all eight slave transputers
are available, roughly eighty percent of their processing
power is utilised, with the remainder being lost due to
message-passing and other overheads. There is, at most, a
twenty three percent increase over the single-slave case in
the amount of the search tree considered for problem MRX
and only a six percent increase for problem MR1. These
increases in the amount of calculation are adequately
absorbed by the extra processing power available.

The poor speedup curve for problem INGT274 is due to the
fact that at most three slave transputers are used, and on
average only one and a half are used when three or more are
available.

165

Problem C«t«oorv 3i L.ra. Co»blp.tor1.1 FrnMm

The speedup curves shown in Fig. 5.8 for problems CHAL, GY
and INGT1345 are again poor, especially in the case of
INGT1345 which never achieves a speedup of one.

The particularly poor showing of problem INGT1345 is
probably due (similarly to many of the smaller
combinatorial problems) to the fact that it only makes use
of a fraction of the available slave transputers. At most
four slaves are used, with an average of 1 . 8 being used
after three or more are available. The poor speedup figures
are also due to the fact that the single-slave run finds
the optimal solution in relatively few nodes and is thus
hard to better.

Problems CHAL and GY only make use of three to four slave
transputers on average, and thus cannot achieve speedups of
more than three or four respectively.

PTPbl— C«tpgory «1 >»»11 HIP Probl— »

The small MIP problems shown in Fig. 5.9 suffer from the
same problems as the small combinatorial problems
previously discussed.

166

As can be seen from Table 5.3, only a fraction of the
available slave transputers are used on average. Again, the
point after which no more transputers are used, no matter
how many are available, is referred to as Saturation Point.

Problem Maximum No. of Slave Average Transputer Usage
Transputers Used after Saturation Point

DAAC 3 1.7
G31 2 1.3
G32 3 1 . 8

OK 4 1 . 8

SETX 4 1.9
Table 5.3: Transputer Usage for Small MIP Problems.

Problems G31, G32 and SETX are all solved very quickly
indeed in all cases (e.g. in three, six and two seconds at
most respectively), and thus speedup is hard to achieve.
This is probably due to the very small number of integer
variables in these problems. Problems DAAC and OK, although
making poor use of the processing power available, do
manage to drastically decrease the number of intermediate
integer solutions found before the optimum.

167

groblgp Category 5» tfdium u p Probl*

Fig. 5.10 shows that superlinear speedup is achieved for
problems BAG882 and TAX2 when using between two and six
slave transputers, although the speedups become more or
less constant after this point. Problem TAXI achieves a
reasonable, if not linear speedup.

BAG882 performs particularly well, such that at its best,
the problem is being solved in fifteen percent of the
single-slave time. The available slave transputers are only
moderately well utilised, with the average usage never
exceeding five. The number of intermediate integer
solutions and the overall number of nodes searched are
notably reduced, however, from the single-slave case.

TAX2 shares the characteristics of BAG882 in that it too
achieves a notable reduction in the number of intermediate
integer feasible solutions found and nodes searched whilst
only using at most four transputers on average.

TAXI searches more or less the same number of nodes in each
case, although the process is faster with more slave
transputers allowing a speedup of up to four and a half
(with eight slave transputers available).

168

Fggbl— C»t«H°ry «1 Lara. HIP Frobl.

As can be seen in Fig. 5.11, problem MO0788 exhibits
super linear speedup when from two to eight slave
transputers are used and problem MCA exhibits superlinear
speedup when between two and four slaves are used. Problem
D0M1 fares worse however, although it manages a reasonable,
if sub-linear speedup. Problem CRAC consistently shows a
speedup of about one and a half, no matter how many slaves
are used.

The results for problem MO0788 seem to be caused by the
extremely high average usage of the slave transputers,
which never falls to the ninety percent mark. In the best
case, (i.e. when using eight slaves) this allows the
reduction of the solution time to only eleven percent of
the single-slave time. Fewer nodes are consistently
searched overall when using two or more slaves than in the
single-slave case.

MCA also searches fewer nodes than the single-slave case
when two to four slaves are used (i.e. when the superlinear
speedup is achieved). In the three and four slave cases,
just under half the nodes are searched. Again, the usage of
the slave transputers is high (i.e. between eighty six and
ninety three percent) in the cases where superlinear
speedup is achieved. Unfortunately, an average usage of
just over five transputers is the best that can be managed

169

overall, so speedup is limited to about five or six when
five or more slaves are used.

DOM1 searches more or less the same number of nodes in each
case, although the process is faster with more slave
transputers since the average usage of the available slaves
never falls below seventy percent. This allows a speedup of
up to five (with eight slave transputers available).

CRAC searches twice as many nodes in half the time of the
single-slave case when using three to eight slaves. No more
than two and a half slaves are used on average however,
thus limiting the overall speedup achievable to a stable
one and a half.

Most of the poor results seem to have occurred because the
potential benefits of the parallel Branch and Bound
algorithm have been squandered. Only a fraction of the
available processing power has been used to attack most of
the small problems and some of the larger problems. This is
due to several factors, any one of which can cause a
bottleneck at the master processor, so that only a small
number of LP relaxations can be farmed out to idle slaves.

170

The first such factor is the ease of solution of the LP
relaxations of a problem. Obviously, if a subproblem can be
solved very quickly, it is possible to return the resulting
information to the master processor before it has had time
to farm out many more subproblems. Thus, if many of the
subproblems are easy to solve, it is likely that some of
the available slave processors will remain idle.

In order to determine how hard the LP relaxations of the
test problems are to solve, the single-slave code was used
to measure the average number of Simplex iterations
performed per LP relaxation and the average time taken to
solve an LP relaxation for each test problem.

The single-slave code was used by the timing process, so
that the exact path of all messages is known and there will
be no interruption of the decision-making process due to
returning LP solutions. The single-slave algorithm is also
deterministic since no asynchronous control of multiple
processors is actually carried out.

These two values are used to calculate the average time per
Simplex iteration for each test problem, which is used as
an indicator of how hard the LP relaxations are to solve.

171

Problem Average Number
of LP iterations
per relaxation

Average Time
per LP relaxation

(ms)
Average Time

per LP
iteration

(ms)

AZA 13.57 452.86 33.37
AZB 5.77 138.42 23.99
AZC 3.13 288.37 92.20
HPW15 8 .0 0 70.67 8.83
INGT274 8.49 192.54 22.67
MRX 47.41 2482.39 52.36
MR1 46.80 2495.04 53.32
CHAL 18.28 5518.75 301.83
GY 11.61 2817.02 242.70
INGT1345 9.00 806.13 89.57
DAAC 5.57 130.39 23.40
G31 16.67 986.67 59.20
G32 15.60 1 0 0 0 . 0 0 64.10
OK 4.94 136.92 27.74
SETX 3.41 36.90 10.81
BAG882 11.28 1875.49 166.31
TAXI 18.98 1709.12 90.07
TAX2 12.75 584.29 45.82
CRAC 25.00 1572.50 62.90
DOM1 48.38 6716.21 138.82
MCA 33.55 2988.46 89.08
MO0788 65.36 15687.84 240.03

Tabi« 5.4: Times for LP iterations.

172

It can be seen from Table 5.4 that the really hard problems
to solve are the large combinatorial problems CHAL and GY
and the large MIP problem MO0788. These are followed by the
medium-sized MIP problem BAG882 and the large MIP problem
D0M1, which will be categorised as reasonably hard. Of
these five hard problems, the MIP problems achieve much
better speedups than the combinatorial problems. The MIP
problems BAG882 and MO0788, both of which exhibit
superlinear speedup, search fewer nodes when two or more
slaves are used than in the single-slave case, indicating
that the single-slave search was relatively poor. The
combinatorial problems CHAL and GY search at least the same
number of nodes if not more when more than one slave is
used. The MIP problem DOM1 attacks roughly the same number
of nodes no matter how many slaves are used, but this is
probably due to the extremely small proportion of integer
variables (i.e. eleven of five hundred and eighty five
variables) in this case, which does not allow much
variation in the search.

A second factor in the creation of bottlenecks at the
master processor is the time spent reading the long node
information from the disk once a node has been chosen. The
disk-accessing process accounts for a large proportion of
the total master algorithm time. As can be seen from Table
5.5, the disk-reading time is also large when compared with
the average time needed to solve an LP relaxation for many
of the test problems.

173

Problem Time to Read Long Node Ratio of Average Time
Information TLN (ms) per LP relaxation to

AZA 38.08
AZB 41.14
AZC 40.66
HPW15 34.93
INGT274 67.12
MRX 58.00
MR1 58.00
CHAL 190.06
GY 163.70
INGT1345 220.87
DAAC 41.14
G31 42.67
G32 42.91
OK 41.14
SETX 29.15
BAG882 58.48
TAXI 63.68
TAX2 48.40
CRAC 79.35
DO Ml 94.25
MCA 79.97
MO0788 127.40
Table 5. S : Disk reading t
iterations.

TLN
12:1

3:1
7:1
2:1
3:1

43:1
43:1
29:1
17:1
4:1
3:1

23:1
23:1
3:1
1:1

32:1
27:1
12:1
20:1

71:1
37:1

123:1
imes in relation to Simplex

174

The times shown above are calculated assuming an average
access time of 26ms and a data transfer rate of 83.75
Kbytes per second on the PC.

The bad results for the small test problems are partially
explained by the large amount of time taken to read the
disk relative to the time taken to solve an LP relaxation.
The number of slaves used on average on the small problems
is low, indicating that there was not enough time to farm
out many LP relaxations before results were returned.

On the other hand. Table 5.5 shows that for each of the
test problems which achieved a near-linear or superlinear
speedup, the ratio of the average time per LP relaxation to
the disk reading time is high. Similarly, the relatively
good results for combinatorial problems MRX and MR1 are
explained by a combination of the ease with which their LP
relaxations are solved and the relatively short time taken
to read the long node information from the disk. It is
possible to search the tree very quickly in these cases.

A final factor relating to bottlenecks on the master
processor is the accumulation of message-passing overheads.
The more time that the master processor spends sending
messages, the less time it has to choose a new subproblem
to be farmed out before an LP solution is returned,
demanding its attention. In the case of a slave processor,
the longer messages take to reach it and to be read by it,

175

the longer it remains idle. It is thus desirable to reduce
the message-passing times as much as possible. It can be
seen from Table 5.6 however, that the message-passing
overheads are nearly negligible in the experiments, since
when using the topology stated it only takes 17.36 ms to
pass the longest message back to the master from the
furthest slave (assuming that there is a clear path), and
this is far above the average time of 4.41 ms.

The times given in Table 5.6 below are calculated assuming
a message-passing speed of 1.8 Mbytes per second for the
T800 transputer links and a maximum journey of two
transputer links.

176

Problem Maximum Message
Passing Time

from master to slave
(ms)

Maximum Message
Passing Time

from slave to master
(ms)

AZA 1.30 1.42
AZB 1.26 1.36
AZC 1.26 1.36
HPW15 0.74 0 . 8 6

INGT274 3.60 3.72
MRX 2.80 2.90
MR1 2.80 2.90
CHAL 14.52 14.62
OY 12.18 12.28
INGT1345 17.24 17.36
DAAC 1.30 1.42
G31 1.44 1.54
032 1.46 1.56
OK 1.30 1.42
SETX 0.24 0.34
BAG882 2.84 2.94
TAXI 3.30 3.42
TAX2 1.94 2.06
CRAC 4.68 4.80
DOM1 6 . 0 2 6 . 1 2

MCA 4.74 4.86
MO0788 8.96 9.06

Tabl* 5.6: Maximum message-passing times for test
problems.

177

goncluslonf

The factor« relating to the possibility of a bottleneck on
the master processor are:

the ease of solution of the LP relaxations;
the time taken to read the long node information from
the disk; and
the message-passing time.

Although nothing can be done to alter the ease of solution
of LP relaxations without drastically altering the code,
the test results indicate that large MIP problems (for
which the algorithm was designed) suffer less from
bottlenecking caused by this factor than other problems.

The latter two factors, however, were dealt with so as to
improve the performance of the algorithm.

The time taken to read the long node information for an LP
relaxation disk depends on the size of the problem and the
number of integer entities it contains. The only way that
the disk-reading process can be speeded up is to alter the
data structures. Some of the long node information was thus
held on disk in a packed form, to enable a quicker disk­
reading operation.

178

The message-passing times, which also depend upon the size
of the problem being solved and the number of integer
entities it contains, were improved by passing some of the
LP relaxation data to slaves in packed form. The slaves
unpacked the data, acted upon it and returned some of the
LP solution information in packed form, thus reducing the
overall message-passing overheads.

Once the changes to the code had been implemented, the test
problems were attacked again to see what improvement in
performance had been generated. The computational results
of this second series of tests are given in Appendix 2B.

As can be seen from Figs. 5.12 to 5.17, most of the
speedups for the test problems are at least as good as
before, with small MIP problem DAAC actually now achieving
a superlinear speedup using two slaves, and medium MIP
problems BAG882 and TAXI achieving better speedups for
longer.

179

Speedups for
Category 1 P rob lem s

-B-W>W15 LINEAR

Fiff* 5.12: Speedups for Small Combinatorial Problems

Speedups for
Category 2 Problems

rig. 5.13: Speedups for Medium Combinatorial Problems

1 8 0

Speedups for
Category 3 P rob lem s

Number of Slav« 'ron^xjtari

CHAL - * - G Y W0T134S -A -L * « A R

rig. 5.14: Speedups for Large Combinatorial Problems.

Speedups for
Category 4 Problems

OK SETX - A - LWCAH

Fig. 5.15: Speedups for Small MIP Problems.

Speedups for
Ca teg o ry 5 P rob lem s

Fig. 5.16: Speedups for Medium MIP Problems.

Speedups for
Category 6 Problems

CRAC DOMI -H*- MCA
- MOO 788 LINEAR

Fig. 5.17: Speedups for Large MIP Problems.

182

Tests were also carried out to determine how large an
overhead was being amassed by sending messages one word at
a time. Appendix 2C contains graphs comparing the solution
times achieved for each problem on the first and second
test runs with those achieved by using the packed data
structures mentioned above, but by sending messages of
different lengths.

Although the times for the single-slave tests will
obviously be improved when the packed data structures are
used (since the same search is being carried out in a
slightly shorter time because the disk-reading operation is
quicker), it is interesting to note that in all three test
runs using the code with packed data structures, the
algorithm generally performs much better than the original
code, no matter how many slaves are used.

It is also worth noticing that the effects of passing
messages in different ways so as to accumulate different
amounts of overhead are hardly noticeable (once the packed
data structures have been implemented), except in the case
of the smaller problems where there are some improvements.

Since the solution times of the larger problems (for which
the code was designed) show little change when different
length messages are passed, it was decided to keep the
messages at one word in length, as this requires only a
simple FORTRAN code.

183

It must, of course, be taken into account that due to the
non-determinacy of the algorithm (when more than one slave
is used and asynchronous coordination is employed), the
algorithm may well have carried out different searches for
the four runs.

184

6̂ . Cgsgarlfon of Different Node Selection S t r i f o l «

Introduction

The computational results given in Chapter Five show that
it is possible to increase performance when using more than
one slave transputer to attack certain categories of
problem. These favourable results are partly due to the
structure of the problems attacked, with problems
performing well if they achieve a good balance of
computation to message-passing. It can also be seen that
the test problems which achieved the best increases in
performance also searched a similar, or lesser number of
nodes when more than one slave was used. Thus, the node
selection strategy used by the algorithm responded well to
the presence of more than one slave transputer when used to
attack the test problems.

Unlike problem structure, the node selection strategy used
by the parallel algorithm is very much under the control of
the algorithm designer. A comparison of different node
selection strategies was thus carried out to determine if
particular categories of problem react well to certain
strategies.

185

^•lection Crlfrl«

{Nemhauser and Wolsey, page 359} suggest possible criteria
for choosing which active node to branch on:

Node Selection Method One

Choose the node that is most likely to lead to an optimal
IP solution. Once an optimal IP solution has been found,
even if it cannot immediately be proved to be optimal, the
best possible value of the cutoff has been found. This can
have a marked effect on subsequent fathoming of nodes. The
*>•■£ estimate rule provides appropriate node selection
criteria for this method. As mentioned in Section 2.4.1,
nodes are created by deciding which unsatisfied variable to
branch upon. The degradations to the LP relaxation solution
caused by branching up or down on each variable is
calculated and stored as D/ and D3' respectively (using the
penalty calculations described in Appendix 1G) . These
values can be used to estimate the degradation to the IP
solution that will result if a node is chosen for
branching.

As an example, for maximisation problems, the degradation
to the present incumbent IP solution that will occur if a
node is chosen such that variable x, is branched upon can be
estimated as follows (for the case where D,* i D/) i

186

If the variable xj has a new upper bound imposed upon it,
the estimate of the new IP solution is

where zLP is the current LP solution, N is the set of
unsatisfied global entities and j # k.

If the branch is made the other way, such that variable x5

has a new lower bound imposed upon it,

1 ■ - D) - J t N) MTr*J3 , ,D ’)

The best estimate rule chooses the node which appears to
degrade the IP solution the least.

Node Selection Method Two

Try to find a node that will quickly lead to a feasible
solution to the IP. The quick improvement method of
Forrest, Hirst and Tomlin provides appropriate criteria for
this method ([Forrest et al., 1974]).

The node chosen is that which gives the maximum value (for
maximisation problems) to

18 7

where zLP is the current LP objective function value, ¿,p is
the present cutoff value, and 2 is the estimate of the new
IP solution.

Note that in order to maximise the above fraction, nodes
where 2 > £,P will be preferred to nodes where 2 ^ i,P.
Preference will also be given to nodes where zLP - 2 is
small.

6.2. The Node gel action Strategies Used for Kxperi— n f

Four different node selection strategies were devised,
based on the two node selection methods mentioned above.
These node selection strategies were then used to attack
the set of test problems, and the results compared with
those obtained by using the node selection strategy
discussed in previous chapters (which is recapped below).

Strategy One involves making a choice from all candidate
nodes each time a new LP relaxation is required. The
criterion used for comparison of the nodes is provided by
the best estimate method. The process of comparing all
candidate nodes each time, using the best estimate
criterion should produce good IP solutions, although they
will not be produced very quickly. Once solutions have been
found however, they will tend to provide good cutoff
values, so that many of the remaining nodes on the search
tree can be fathomed quickly.

1 8 8

Strategy Two again involves a choice from all candidate
nodes. In this case however, the best estimate criterion is
only adhered to until an integer feasible solution has been
found. Thereafter, the Forrest-Hirst-Tomlin criterion is
used. The efficiency and speed of this method will depend
on the quality of the initial IP solution found using the
best estimate criterion. If the initial IP solution is
good, the remaining search should be quick, since the
Forrest-Hirst-Tomlin criterion used thereafter usually
chooses nodes close to the incumbent. If the initial IP
solution found is far from the optimum however, the
remaining search may take a long time, as nodes will be
generated near the incumbent instead of in more promising
areas.

Strategy Three involves a parallel version of the depth
first search. The most promising son (if any exist) of the
last node solved will be chosen next unless it seems more
profitable to branch again on the parent. If both sons of
a node have been generated and there are free slave
transputers so that another node can be branched upon, a
choice is made from all the remaining eligible candidate
nodes. The criterion for choosing from all candidate nodes
and for comparing parent and son is the same as in strategy
two, in that the best estimate criterion is used until a
feasible IP solution has been found, after which the
Forrest-Hirst-Tomlin criterion is used. (Nemhauser and
Wolsey, page 358) state that one of the principle

189

advantages of a depth first search is that feasible IP
solutions are more likely to be found deep in the tree than
in nodes near the root. The initial aim of this node
selection strategy is to make use of both the depth first
criterion and the best estimate criterion during the search
for an initial IP solution. It is hoped that the
combination of the two criteria should lead to a good IP
solution quickly. Once the initial IP solution has been
found, the Forrest-Hirst-Tomlin criterion is used to search
the surrounding area. If the initial solution was good (as
we hoped) then the rest of the nodes on the tree can be
fathomed quickly.

Strategy Four involves a similar process to strategy three,
except that any comparisons of or choices from the
candidate nodes are based only on the best estimate
criterion. This strategy is not so dependent on getting a
good initial IP solution, since the best estimate criterion
do not tend to choose nodes close to the incumbent as often
as the Forrest-Hirst-Tomlin criterion.

The Original Strategy used in previous chapters for node
selection is also similar to strategy three. A parallel
version of the depth first search is carried out, whereby
both immediate descendants of the last node solved are
tackled simultaneously if two slaves are free. If only one
slave is free, the more attractive descendant is attacked
next and no special effort made to consider the other, less

190

favourable branch. If both descendants of a node are
fathomed, a search of all active candidate nodes is carried
out, using the best estimate criterion for comparison if no
integer feasible solution has been found, and the Forrest-
Hirst-Tomlin criterion thereafter.

6.3. Computational Results

The four node selection strategies were tested on the set
of IP problems used in Chapter Five. Figs. 6.1 to 6.22
below show the resulting solution times achieved, and a
comparison is made with the results obtained using the
original node selection strategy.

Category One - Small Combinatorial Prohl—

Comparison of Solution Times
Prob lem AZA

•»foltgr ono otrologr loo itralapy ttraa
rtroiagy W original «»raloBK

rig. 6.1: Solution Times for Problem AZA.

191

Comparison of Solution Times
P rob lem AZB

1100

«trat»oy on« strategy two «tratogy »hr«*
«»ratogy lotM original strategy

Fig. 6.2: Solution Times for Problem AZB.

Com parison o f Solution Times
Problem AZC

* strategy on« strategy two strotegy Ihr •#

■ ♦ rotogy lota orlgind llra logy

Fig. 6.3, Solution Times for Problem AZC.

192

Comparison of Solution Times
Problem HPW15

on* strategy two -m - strolegy three
-® - strategy four -*•- original strategy

rio. 6.4: Solution Times for Problem HPW15.

Ctt.gotY Two - M.dlu. Co.blo.torl.1 Probl—

Comparison of Solution Times
Probtam NGT27«

80

tienber of Slav* Transputer*

~m~ *trot*gy one — elrategy two strategy three
efrotegy four -**- original »trategy

Pig. 6.5: S o l u t i o n T im e s f o r P r o b l e m IN Q T 2 7 4 .

1 93

>,rotW ona alralogy two itrotogy Ihr*«
«tratogy low -»*- original tlra logy

Fig. 6 .6 : Solution Times for Problem MRX.

«tratogy on» alralogy (wo atrategy Ihroa
«trotogy four original alralogy

Fig. 6.7: S o l u t i o n T im e s f o r P r o b l e m M R I.

194

ç.t.gory Thr». - L«rg. Co»bln«torl«l Probli

Comparison of Solution Times
Problem CHAL

«frot«or one —4— strategy two -m - strategy three
- B - strategy four -•* - original etrategy

rig. 6.8: Solution Times for Problem CHAL.

Comparison of Solution Times
Problem GY

600

900

-2-400

T oo
I 200

100

0
1 2 3 4 5 6 7 8

Number of Stove Transputer.

strategy one strategy two strategy ttree
- B - strategy four -ee- original strategy

rig. 6.9: S o l u t i o n T im e s f o r P r o b l e m GY.

195

Comparison o f Solution Times
Problem N G T 1345

450

»frat«gy on« — atrat«gy two *trol«gy t*r««
- s - strategy four -**- original a+rat«gy

rig. 6.10: Solution Times for Problem INGT1345.

Ç«tfflorY Four - g»*ll HIP Probien«

«lrat«gy on« — a’ ratagy two ilrnlagy Itr««
«frot«gy four -•* - orlglnol afrat«gy

Fig. 6.11: S o l u t i o n T im e s f o r P r o b le m DAAC.

196

Comparison of Solution Times
P rob lem G31

Fig. 6.12: Solution Times for Problem G31.

Com parison of Solution Times
Problem G32

itrategy on« strategy two strategy three
strategy tow -*•“ original strategy

Fig. 6.13: S o l u t i o n T im e s f o r P r o b l e m G 3 2 .

1 9 7

Fig. 6.14: Solution Times for Problem OK.

«trotogy on* atrotogy two atratogy thro*
atratagy four -* •- origfnd atratagy

Fig. 6.15: S o l u t i o n T im e s f o r P r o b l e m SETX .

198

C.t.aory r l v - M«dlu» MIP Probi.

Comparison of Solution Times
Probtam BAC882

~m~ strategy one — strategy two strategy three
-® - strategy four -♦ *- ortgtnol strategy

Fio. 6.16: Solution Times for Problem BAG882.

Comparison of Solution Times
Probt«m TAX1

3500

strategy fo u r -**- original strategy

Fig. 6.17: S o l u t i o n T im e s f o r P r o b le m T A X I.

199

Comparison of Solution Times
Prob lem TAX2

250

»trot«gy on« —•— atratagy two -m - atrotagy ttr m
afrotagy four -**- orlglnol atrotagy

Fig. 6.18: Solution Times for Problem TAX2.

w w n »tu - L«rgf Mfp Prçbi

Comparison of Solution Times
Probi.™ CRAC

«1ro*«fly one —*— atratagy two atratagy ttvee
atrotagy four origino! »trot«gy

rig. 6.19: Solution Times for Problem CRAC.

2 0 0

Comparison of Solution Times
P rob lem D0M1

I
I

Number of Slave Transputer*

strategy on* — strategy two strategy thro*

rategy low -- original strategy

Fig. 6.20: Solution Times for Problem DOMI.

Com parison of Solution Times
Problem MCA

350

300

_ 2 5 0

l 200
£ ISO
^ 100

50

0
1 2 3 4 5 B 7 8

Number of Slav* Transput«*

~m~ strategy one strategy two strotegy three
strategy four ortgind strategy

rig. 6.21: Solution Times for Problem MCA.

2 0 1

«tralagy on» — i l ratagy two «trotogy Ihr*«

-® - itrotagy (o*x -**- original ilra logy

Piff. 6.22: Solution Times for Problem MO0788.

Discussion of Results

We shall now discuss the results obtained from attacking
the different categories of problem using the various node
selection strategies. Appendix 3 lists the computational
results in full.

As can be seen from Figs. 6.1 to 6.4, the solution times of
the problems from this category are quite similar, no
matter which of the node selection strategies is used. This
is because the average usage of slave transputers is still
fairly low (as can be seen in Table 6.1 below).

20 2

Note that the point after which no more transputers are
used, no matter how many are available, is referred to as
Saturation Point.

Problem Maximum No. of Slave Average Transputer Usage
Transputers Used after Saturation Point

SI S2 S3 S4 S5 SI S2 S3 S4 S5
AZA 6 6 6 6 6 3.0 3.0 3.0 3.0 2 . 6

AZB 7 7 6 6 6 2 . 6 2 . 6 2.7 2 . 6 2 . 6

AZC 8 8 8 8 8 3.9 4.0 4.0 4.1 4.0
HPW15 4 4 5 5 5 2 . 1 2 . 1 2.4 2.4 2.4
Table 6.1: Transputer Usage for Small Combinatorial
Problems.

When attacking problems AZA and AZB (which contain only
binary variables as their discrete component) using node
selection strategies one or two, only one solution node was
found during any of the runs. Problem AZC (which contains
only semi-continuous variables as its discrete component),
performs in an identical manner. In the case of problem
HPW15 (whose discrete component is made up of general
integers with upper bounds of five, ten and twelve), the
single slave runs using strategies one or two find two
solution nodes during the search, whereas the multi-slave
runs find only one solution node.

When using strategies three to five to attack any of the
test problems in this category, the number of solution

203

nodes vary (from one to twenty six in the case of AZB)
depending on the number of slaves used.

This indicates that, for these problems at least,
strategies one and two are performing as intended by
choosing nodes that lead to the optimal solution.

Figs 6.5 to 6.7 show again a difference between the test
problems that contain only binary variables and those which
contain general integers.

Problems MRX and MRl (which contain only binary variables)
give almost identical solution times, no matter which node
selection strategy is used. The average transputer usage is
very high for these problems, and the vast majority of
nodes that are generated are attacked twice, indicating
that the LP relaxations are very easy to solve.

Problem INGT274, which contains only general integers with
upper bounds of nine, performs differently with each node
selection strategy, although on average only one and a half
slave transputers are used in each case. Strategy one seems
to be the best for this problem, closely followed by
strategy three. The number of nodes generated using either
of these strategies is much lower than the number generated
using the other strategies.

204

It is imagined that strategy two resulted in a bad first
solution, since it performs the worst overall. The number
of nodes added to the candidate list but never attacked is
very large in comparison with the number when strategy one
is used. This indicates how dependent strategy two can be
on finding a good solution quickly.

Prgbly Category 3? Large Combinatorial Probi —

The solution times shown in Fig. 6 . 8 to 6.10 for problems
CHAL, GY and INGT1345 are again varied.

Problem CHAL (which contains only binary variables as its
discrete component) responds well to strategies one and
two, which tend to find fewer (and better) solution nodes.
The other strategies generate and attack many more
candidate nodes and thus take longer to solve the problem.
The average transputer usage is quite high in all cases
however, so the other strategies still solve the problems
fairly quickly.

Problem GY (which contains binary variables and general
integers with upper bounds of two, three, four and five)
displays the opposite results, with strategies one and two
performing worse than the others. This is because, although
strategies one and two usually produce fewer solution
nodes, they take a long time to do so. On the other hand,
the other strategies quickly find feasible IP solutions (as

205

many as eighteen in the case of strategy four), one of
which is optimal. The average transputer usage is also a
little higher for strategies three, four and five.

The solution times for problem INGT1345 (which contains
general integers with upper bounds of nine) are quite
similar when three or more slaves are used. This is because
the average number of slaves used does not rise much above
two. Strategies four and five perform the best overall.
They seem to find good solutions fairly late in the search
(as indicated by a large number of nodes being removed from
the candidate list when a solution has been found) . This
suggests that the optimal solution is deep in the tree in
this problem.

4» Small HIP Probi.

The small MIP problems shown in Figs. 6.11 to 6.15 on the
whole show similar results regardless of the node selection
strategy used. This is because of the relatively low
transputer usage on average (see Table 6.2 below).

206

Problem Maximum No. of Slave Average Transputer Usage
Transputers Used after Saturation Point

SI S2 S3 S4 S5 SI S2 S3 S4 S5
DAAC 6 6 7 7 7 3.0 3.0 2.7 2 . 8 2 . 8

G31 2 2 2 2 2 1.3 1.3 1.3 1.3 1.3
G32 3 3 3 3 3 1 . 8 1 . 8 1 . 8 1 . 8 1 . 8

OK 6 6 6 6 7 2.7 2.7 2.7 2 . 8 2.7
SETX 4 4 5 5 5 2.3 2.3 2.3 2.3 2.5

Table 6.2: Transputer Usage for Small MIP Problems.

Problems G31, G32 and SETX produce similar results no
matter which strategy is used. This is because they are all
solved very quickly indeed in all cases (e.g. in three,
five and one and a half seconds at most respectively) due
to the very small number of discrete variables in these
problems. Problems G31 and G32 contain binary variables and
general integers with upper bounds of one and seven.
Problem SETX contains special ordered sets of type one.

Problem DAAC, which only contains binary variables as its
discrete component, performs quite similarly in all cases,
although strategies one and two give the best solution
times. This is because they consistently find the optimal
solution node fairly quickly . Thus, the number of nodes
generated and attacked is fewer than when other strategies
are used, and the solution times are reduced accordingly.

207

Problem OK, which also only contains binary variables as
its discrete component, performs quite a lot better when
strategies one and two are used. This is for the same
reasons as given for problem DAAC. The only difference is
the number of poor solutions generated by using strategies
three, four and five. In the case of problem OK, more poor
solutions are generated, and thus the search takes longer.

Probl^s Category 5i Medio« h i p >rnhi —

Figs. 6.16 to 6.18 show the solution times achieved for
problems BAG882, TAXI and TAX2, all of which contain only
binary variables as their discrete components.

Problem BAG882 is solved in similar times when four or more
slaves are used. When one to three slaves are used however,
strategy one performs much better than the others. Strategy
two performs quite poorly when one to three slaves are
used, indicating that a relatively poor first solution is
found. Strategies three, four and five find very large
numbers of solution nodes when one to three slaves are
used, and hence tend to waste time considering lots of
useless nodes.

Problems TAXI and TAX2 seem to show opposite results. TAXI
responds well to strategies two, three and four and poorly
to strategies one and five, whereas TAX2 responds in
exactly the opposite way. The key to these results is the

208

number of infeasible nodes generated. In the case of TAXI,
strategies one and five only tend to find one or two
solution nodes, but generate many infeasible nodes whilst
doing so. In the case of TAX2, strategies one and five
again only tend to generate one or two solution nodes, but
generate very few infeasible nodes in the process.
Strategies two, three and four tend to find more solution
nodes and generate a fairly large (but consistent) number
of infeasible nodes whilst doing so.

Probl— Category 6, Large M T P P r a h l —

As can be seen in Figs. 6.19 to 6.22, different types of
large MIP problem react differently to the node selection
strategies used.

Problem CRAC, which contains binary variables, produces
very similar solution times, no matter which strategy is
used. This is probably due to the low average usage of
transputers (which is never much above three).

Problem D0M1, which contains special ordered sets of type
one and two, performs well when strategies one and two are
used. The other strategies do not fare much worse when four
or more slaves are used, although strategies four and five
perform quite poorly when one and two slaves are used. The
key again seems to be that strategies one and two find
relatively few solution nodes and thus waste less time

209

exploring useless nodes. The times are not too varied
however, since the usage of transputers is slightly higher
for strategies three, four and five.

Problem MCA, (which contains special ordered sets of type
one and two, as well as binary variables and general
integers with upper bounds of two), produces fairly similar
results for all strategies except strategy three, which
performs relatively poorly. Strategy one performs the best
overall, as it tends to find the optimal solution quickly.
The transputer usage is high in all cases, although
slightly higher in the cases where more nodes are searched,
so the time differences are not large.

Problem MO0788, which contains general integers with upper
bounds of two, five and ten, performs similarly with four
or more transputers, although strategy two does seem to be
the most successful overall. This is because it finds the
optimal solution after a relatively small number of
solution nodes. Strategy one performs similarly, but takes
longer to find the optimal solution. Strategies three, four
and five find a large number of IP solution nodes and are
either lucky or unlucky when it comes to finding the
optimal solution. Strategy three tends to find the optimal
solution quickly enough to produce a lower solution time
than strategy one.

2 1 0

Cgnglusipng

Although it is difficult to draw conclusions from testing
the different node selection strategies using such a small
group of problems, the following opinions were formed.

Strategy One finds good solutions and thus produces strong
cutoff values which are very useful in the subsequent
fathoming of candidate nodes.

Strategy Two shares many of the positive attributes of
strategy one, but can be very inefficient if a good
solution is not found fairly quickly. If a good solution is
found however, the Forrest-Hirst-Tomlin criteria can help
to finish the search quickly.

Strategy Three tends to perform relatively badly,
especially if a fairly good solution is not found quite
quickly. If a good solution is not found quickly, more
nodes are invariably searched than by other strategies,
although if the transputer usage is high enough, this
doesn't slow down the search too much.

Strategy Four performs relatively well if enough of the
processors can be kept busy. Although a large number of
nodes are almost always searched using this strategy, in
some circumstances the optimal solution can be found
quickly by luck.

2 1 1

Strategy Five is very similar to Strategy Three, and tends
to perform in a very similar way.

Strategy one gives the best overall performance on the test
problems available, and copes well with the large MIP
problems. In the cases where strategy one performs
relatively poorly, the results are not much worse than
those of better strategies, especially when large numbers

transputers are used. In most circumstances however,
using strategy one leads to one of the best solution times
achieved for the problem, if not the best.

It is therefore deemed worthwhile to use strategy one,
(whereby all candidate nodes are considered for branching
on each occasion, and comparisons made using the best
estimate criteria), as the default node selection strategy
for the parallel algorithm.

2 1 2

The previous chapter demonstrated that variations in the
problem solution times may result when different node
selection strategies are used by the parallel Branch and Bound
algorithm. Node Selection Strategy One (i.e. comparing all
nodes each time, using the best estimate criteria), was chosen
as the default strategy for future use, as it produced good
problem solution times for most categories of problem on which
it was tested, including the large MIP problems. Although this
default strategy should allow most problems to be solved
quickly, it is possible to improve on its performance in
certain circumstances. The structures of certain types of
problem may be more efficiently exploited by further
parallelising part of the Branch and Bound algorithm.

Z-i rurthyr Par»ll»lig»tipn <?l the Alggrltha

The solution (within a reasonable time) of many real large MIP
problems has been shown to depend upon successful exploitation
of the modeller's knowledge of the problem structure. This
knowledge is especially useful when deciding which variables
to branch upon, and, when the branching priorities of the
variables have been decided, which branches to make.

7,-gir»lltl Branch and Bound 8trate dies

213

When deciding on the branching priorities of variables, for
instance, those variables whose values indicate whether or not
certain actions should be taken should obviously be branched
upon before any variables whose values reflect the effects of
the actions.

When a variable has been chosen, the branches made upon it and
the order in which they are made also have an effect on the
overall solution time. Much time can be wasted by exploring
unproductive areas of the search tree if a bad choice of
branch has been made. The process of choosing the number and
order of branches to be made may be adapted to make better use
of the parallel processing facilities available.

As mentioned in Section 2.4.1, once an integer-constrained
variable has been chosen to be branched upon, a binary branch
is usually made. For example, if a general integer variable x,
say, which has an upper bound of five and a lower bound of
zero, takes the value 2.4 in a feasible LP solution, then two
more LP problems are generated for later exploration. The
first such problem will contain an extra constraint of the
form x £ 2 and the second will contain an extra constraint of
the form x 2 3 (see Fig 7.1 below).

214

rig. 7.1 : An Example of Binary Branching.

The strength of the parallel algorithm discussed in the
previous chapters is that it attacks several such subproblems
in parallel, thus gaining much more information in the same
period of time.

When attacking certain types of problem, there is the
possibility of enhancing this effect so that even better use
is made use of the processing power available. In order to
perform this enhancement, multiway branching is performed on
the chosen variable. For example, instead of the two branches
made on the variable x in the previous example, several
branches (of the form shown in Fig 7.2 below) could have been
made.

215

X : 2.4

riff. 7.2 : An Example of Multiway Branching.

The binary branching strategy used by the serial Branch and
Bound algorithm (and hence implemented as part of the initial
parallel algorithm), was first implemented when processing
power was not great enough to consider more than two branches
in a reasonable time. There is nothing however, in the basic
Branch and Bound algorithm to prohibit the making of more than
two branches on an appropriate variable. The power of the
Branch and Bound algorithm may thus be increased in certain
circumstances, by making more than two branches and
considering them in parallel.

One way in which the multiway branching concept has the
potential to enhance the overall performance of the algorithm
is by keeping the slaves busier at the beginning of the
search. For example, when the first few nodes of an MIP
problem are considered by the algorithm, there is usually not

216

enough work to keep all the slaves busy. It is not until a
later stage of the search, when the list of candidate nodes is
longer, that all slaves can be kept busy (assuming that nodes
can be chosen from the list and farmed out quickly enough) . If
more branches are made on chosen variables, the candidate list
will grow to an appropriate size much more quickly. Since the
LP relaxations at the start of the search should be the
hardest to solve (if sensible priorities have been chosen),
the multiway branching strategy has the potential to lead to
quick solutions. There is, of course, the potential drawback
that attacking the problems created by the additional branches
may not provide any useful information, and might only be
creating work for idle hands.

Another way in which the multiway branching strategy may
potentially be used to enhance performance is by providing
stronger branches on certain types of variable. When branching
on an unsatisfied variable that can still take many different
integer values, branches can be made based on predictions of
the likely final value of the variable (i.e. in the optimal
solution). If the variable takes a value which is thought to
be close to its final value, branches can first be made that
fix the variable to the integer values on either side of its
present value. Subsequent branches could then be made, in
order to completely fathom the node.

2 1 7

Of course, multiway branching can only be usefully applied to
problems formulated using general integer variables or Special
Ordered Sets (which will be defined in section 7.2), as binary
or semi-continuous variables can only be branched upon at most
twice. Tests were carried out on problems formulated using
general integer variables and special ordered sets, in order
to see if it is worth adding multiway branching to the default
branching strategy of the algorithm for such problems.

When an unsatisfied general integer variable has been chosen
(by using the variable selection techniques discussed in
section 2.4.1), the number and order of the branches to be
made must be decided.

The branching strategy of the serial Branch and Bound
algorithm is as follows. Two branches are made on the chosen
general integer variable before the node is fathomed. In order
to determine the preferred branching direction, (i.e. to
decide which branch to perform first), estimates are made of
the degradation to the LP solution that will be incurred if
the branch is made. The default strategy is to branch first in
the direction which produces the minimum degradation to the LP
solution. This is because the node created by implementing
this branch might later be compared with other nodes during

218

the node »election process. Under the default node selection
strategy decided upon, the node which degrades the IP solution
the least will be chosen. As mentioned in che previous
chapter, the degradation to the IP solution incurred by
choosing a node is estimated as

z l, - ,Dj) -

where D3* and Dj are the degradations to the LP solution
incurred by making the branches up or down to the nearest
integer from the chosen variable xJf zLP is the LP solution, N
is the set of unsatisfied global entities, and j * k.

As mentioned in section 2.4.1., the degradations D,* and D/
caused by branching up and down to the nearest integer are
calculated as follows:

D,- - p, f,

DJ* " ij)

where p> and p,* are unit penalties incurred by branching down
and up respectively, and fj is the fractional part of the
value of the unsatisfied variable x5 (as seen in Fig. 7.3
below).

219

The per unit penalties for variable Xj are calculated using
the method described in Appendix 1G.

Note that the branches imposed are inequalities (as can be
seen in Fig. 7.3).

Branch (1): x <= 2
i

Branch (2): x >= 3
l x I H)

1

1 2 2 .4 3

1 >
X

4

Fig. 7.3: Binary branching on variable x.
The first step when extending the above techniques to multiway
branching is to calculate the estimated degradations to the LP
solution caused by fixing the value of the unsatisfied
variable to the nearest integer values above and below. These
degradations are calculated using the formulae for D,* and D/
shown above, although the corresponding branches imposed this
time are equalities (see Fig. 7.4 below). If circumstances
warrant it, as they do in this example, further branches are
then made on either side, to ensure the proper fathoming of
the node.

2 2 0

Branch |1): x = 2
Branch ¡2): x = 3
Branch ¡3): x c 1
Branch |4): x >= 4

13) (1) |2) (4)

1 * ¡ (1- 1*1

1

X

1 2 2.4 3 4

rig. 7.4: Multiway branching on variable x.

The method previously used to estimate degradations to the LP
solution is extended to provide estimates for the outer two
branches as follows:

Dj", the estimated degradation for branch (3) is calculated as
P, (l ♦ f,)
and D/*, the estimated degradation for branch (4) is
calculated as
Pj* (2 - f,)
where p,' and p}* are unit penalties incurred by branching down
and up respectively (calculated as in Appendix 10), and f, is
the fractional part of the value of the unsatisfied variable
x, (as seen in Fig. 7.4 above).

2 2 1

If more than two branches are to be made, the number of
further branches depends upon the circumstances.

?.2.1. Thrgf-Way Branching on general Integer«

If the general integer variable can only take three integer
values (as in Fig. 7.5), or if the branches already made are
at one end of the spread of possible integer values (as in
Figs. 7.6 and 7.7), then only one more branch should be made.

Branch (1): x = k ♦ 1 Lower Bound s LB
Branch (2): x = k Upper Bound = UB
Branch (3): x = k • 1

LB UB
l l
l l
l l
l l

I-----------1--------------- X -----1---------- > XI I
I I

k • 2 k • 1 k k 1

(3) (2) (1)

Fig. 7.5: Situation where only three integer values are
possible.

2 2 2

Branch II): x = k ♦ 1
Branch (2): x = k
Branch |3|: x <= k • 1

Lower Bound = LB
Upper Bound = UB

LB UB
1

1 01
1
1
1
1

w 1 ^
1
1-------------

i
• 2 k 1

— * 1 >

1
k ♦ 1

12) 01

rig. 7.6: When an initial branch is at the upper bound.

Branch (1): x : k - 1
Branch |2|: x = k 2
Branch |3): x > = k

Lower Bound = LB
Upper Bound = UB

LB UB

1
1

(3) 1

1 1

1
- 2 k 1

1
k ♦ 1

12) 0)

Fig. 7.7: When an initial branch is at the lower bound.

223

The three branches will be applied in ascending order of
estimated degradation to the LP solution.

7^2.2. Four-Way Branching on general Integer«

In other circumstances, a total of four branches can be made
(as in Fig. 7.8 below). Again, these branches will be applied
in ascending order of the estimated degradation to the LP
solution.

rig. 7.8: Situation where four branches are possible.

Branch
Branch
Branch
Branch (4):

1
(4): x <= k - 2

Lower Bound * LB
Upper Bound = UB

LB UB

(3)

r *
X

k - 3 k • 2 k • k ♦ 1 k1* 2 k ♦ 3

(2) (1)

224

. RMult» for Multiway Branching on Oeneral

Making the first two branches is simply a matter of setting
the appropriate variable to an integer value. It is hoped that
it will thus be possible to quickly determine that the new LP
is infeasible or to solve the new LP more quickly than its
parent.

In order to test the usefulness of multiway branching
techniques on general integers, the test problems detailed in
Table 7.1 were attacked. The problems were attacked using
multiway branching in conjunction with the four different node
selection strategies introduced in the previous chapter. This
should determine whether multiway branching on general integer
variables responds well to any of these strategies.

225

Problem Category NROW NCOL NGLENT Description
GY 3 913 888 528 240GI2,96GI3,48GI4,48GI5,

96BV
G31 4 159 146 9 5GX1.1GI7.3BV
G32 4 162 148 9 5011.1GI7,3BV
HPW15 1 56 45 30 10GI5,10GI10,10GI12
INGT274 2 13 274 274 274GI9
INGT1345 3 19 1345 1345 1345GI9
MO0788 6 1123 926 24 3GI2,18GI5,3GI10
Examples of the notation used above are:
5GI3 ■ 5 general integer variables with lower bounds of 0

and upper bounds of 3.
3BV = 3 binary variables.

Problem Categories: Small Combinatorial (1), Medium
Combinatorial (2); Large Combinatorial (3); Small MIP (4)- Large MIP (6).

Table 7.1: Test problems for multiway branching on general
integers.

226

The computational results were as shown in Figs. 7.9 to 7.15

Binary Branching: problem attacked using the conventional
binary branching approach and the default
node selection strategy decided upon in
the last chapter (i.e. node selection
strategy one as described in section 6 . 2
on page 188).

Multi-way Branch X: problem attacked using the multiway
branching approach and node selection
strategy X (as described in section 6.2
on pages 188-190)

Binary BrawNng Multi-Way Brooch 1 Mi4tl-Way Branch 2
MtJtl-Woy Branch 3 -*•— Mutll-Woy Branch 4

Fig. 7.9: Multiway branching on HPW15.

below.

E H

Category li

Comparison of Solution Times
Probier HPW15

0.3

Nimfccr of Slav* Trtritpulart

227

Category 3 i Mediu» Combinatorial Probl.

Comparison of Solution Times
Probbm INGT274

0

y Browning Mid-Way Brandi 1 -■»- MJtt Way »awn 2
Mid-Way Brandi 3 -**- Mid-Way Brandi 4

Fig. 7.10: Multiway branching on INGT274.

Category 3i Large Cotbinatorial Problem»

*W» »«wrung Milt-Way »awn 1 -m- Mitt Way »own 2
Milt-Way Brand 3 -«•- Mill-Way Brandi 4

Fig. 7.11: Multiway branching on GY.

228

g.fggry 3 1 L»rg. CcMt>ln»torl«l probli

I
I

Comparison of Solution Times
Problem WGT1345

r of Sb« Trcnputvi
Bloar, »andilng Mill-Way Brandi 1 -et- MUM Way *«*». 2
Min-Way Brandi J Milt-Way Brandi 4

Fig. 7.12: Multiway branching on INGT1345.
Cafaory 4i fl»all h i p >rbhi —

Comparison of Solution Times
Problem G31

V,

Fig. 7.13: Multiway branching on G31.

229

Catagory 4i Small h i p Prahl —

Comparison of Solution Times
Probtam G3?

T
l

Hirrtomr of Slav* Trowpu1«ri

mnrnt a«wNng !4J»t-Wo|r B-troh 1 IMH Way a rm * 2
IMB-Wo* Br<n* S -**“ I4ill-Wcy Bra«» 4

Fig. 7.14: Multiway branching on G32.

c a f o o r v 6 « L i r a . H I P P r n h] —

«na» a«wM0B MJr-Wor B'<ron 1 -m - kMN-Way *wwh 2
aai-Woy II'are* 5 -*•- *Jll-Woy 4

F i g . 7 . 1 5 : Multiway branching on MO0788.

230

Discussion of Results

Appendix 4A lists the computational results in full. As can be
seen from Figs. 7.9 to 7.15, multiway branching does not
increase the speed of solution of the problems in the test
set. In each case, the binary branching strategy under node
selection strategy one (i.e. the default approach) tends to
solve the problems more quickly. Although the slave
transputers are more heavily utilised under the multiway
branching scheme, the extra work does not provide much more
useful information. More nodes are actually generated and
attacked during the search, but the vast majority of these
extra nodes provide results that are infeasible or worse than
the cutoff. That is, the multiway branching scheme seems to be
making work for idle hands. Only part of the increase in
transputer utilisation is due to the increased number of nodes
attacked. When an LP relaxation has been solved, if a
feasible, but not integer-feasible solution has been found,
data must be produced for up to four branches, as opposed to
two branches under the binary branching scheme. Thus, the
increase in transputer usage is probably due to more LP
relaxations being solved and to certain nodes taking slightly
longer to finish the work at the slave. So, under the present
circumstances, multiway branching on general integer variables
does not appear to be a good way of exploiting the available
parallel processing facilities.

231

7,3, Multiway Branchl _»p«ci»l OrdTid Beta

More promising multiway branching possibilities occur tor
Special Ordered Sets UBeale and Tomlin, 19701).

A set of variables is said to form a Special Ordered Set of
Type 1 (or an 81 set), if at most one of the set members can
take a value that is greater than zero. In order for the SI
set to be of use as a modelling structure, the set members
must be such that they can be meaningfully ordered within the
set. The ordering of the set members is provided by the
Reference Row of the SI set, which is of the form

n

where 8,,Sa,...,SN are the members of the SI set, and X1(
X 2, . . ., XN are items of data that correspond to the set
members.

232

The N set members are ordered so that Xl < X2 < ... < XN. If
the Xt data items provide a meaningless or arbitrary order,
the SI set cannot be exploited efficiently by the solution
algorithm. If however, the Xt data items provide a meaningful
order, better branches can often be made on the set than would
otherwise be the case.

SI sets are often used in the modelling of a set of mutually
exclusive actions, one of which must be made. For instance,
the variables 81,8a,...,8N can be used to reflect N mutually
exclusive decisions. The N 8 variables are specified as
members of an SI set, and some output (e.g. a resulting cost
or profit) is associated with each of the decisions. These
outputs, the X4 data items, can provide the ordering of the
set members.

The N different 8 variables can be used in the objective
function with accompanying costs or profits, so that the
output may be optimised.

To properly model the mutual exclusivity of the N decisions,
it is also necessary to include a constraint of the form

233

N.

N

& * ' - 1

and to state that 8} £ 0 for j=l, 2

This latter constraint is known as the Convexity Row for the
SI set. Although it is not necessary to include the convexity
row in order to use a SI set, it is essential to include it if
the set members are meant to represent mutually exclusive
decisions. The following discussion will assume that some form
of convexity row is always present as part of an SI set,
although the more general form

N
£ * S. •

will be used, where sc is the non-negative slack variable, and
bc the right hand side, of convexity row c.

SI sets are commonly used within project evaluation models. If
a single project must be chosen from a list of N candidates,
the set of variables 8,, . . . , 8„ (which represent choosing or not
choosing the various projects), are specified as an SI set.
The definition of the SI set ensures that at most one of the
set members will take a non-zero value, whilst a convexity row

234

of the first form mentioned can be used to ensure that this
value will be unity. The expected revenues from the different
projects can be used to order the variables within the set
(i.e. to provide the Xt values for the reference row).

Another useful type of Special Ordered Set is the Special
Ordered Set of Type 2 (or S2 set).

A set of variables is said to form an S2 set if at most two of
the set members can take values greater than zero. If two of
the variables do take values greater than zero, the variables
must be adjacent set members. Again, the set members must be
usefully ordered by means of a reference row if the S2 set is
to be of any use. S2 sets are mainly used in the modelling of
nonlinear functions, where again, a convexity row of the first
form mentioned must be part of the model. It will be assumed
that a convexity row of some form is always present for an S2
set.

The use of special ordered sets has made many intractable
problems solvable by non-parallel Branch and Bound algorithms.
This is because attacking a problem formulated using special
ordered sets involves branching on groups of variables, and
thus setting the values of several variables at once. A
sensible branching strategy is of course necessary to ensure
that the most promising subproblems are attacked.

2 3 5

7_.3.1. Calculation« of K m t i m m t<d Degradations for Branching on
8p#cl>l OrdT»d 8»t»

As mentioned in section 2.4.1, when deciding on an unsatisfied
entity to branch upon after an LP relaxation has been solved,
the usual strategy is to choose the entity which causes the
most degradation to the LP solution. The estimated
degradations to the LP solution caused by branching on special
ordered sets are calculated as follows (adapted from [Beale
and Forrest, 1976]).

Let variables 8,, 52, ... , 8N form an SI or S2 set, and have
corresponding reference row values

X, < X, < ... < X*

and values in the optimal LP relaxation of

V,. V,...... ..

Calculate the average reference row entry

236

and determine which variables have corresponding reference row
values that fall on either side of it.
These variables are said to provide straddle points.
In Fig. 7.16 below, for instance, variables 8 3 and 8« are the
members of a Special Ordered Set of Type 1 (SI set) that
provide the straddle points. (Note that the branches indicated
are numbered arbitrarily here) .

*7

Branch (1) Branch 12)

d , d 2 d 3 d<

Branch (1): d = 0 (or j > 3

Branch|2): d(= 0 for | < d

X

d

d N

rig. 7.1«: Finding tha average reference row value and the
straddle points for an SI set.

The average reference row value is assumed to provide a good
guide as to which variable (for SI sets) or variables (for S2
sets) should be allowed to take non-zero values. In the best
possible solution to the problem, a single variable 8 , with

237

averagecorresponding reference row value X* (i.e. the
reference row value) , would have to exist and take a non-zero
value. Since the variable 8 does not exist however, we
attempt to make branches such that the variables that do exist
(and are members of the set) take values that produce an
identical average reference row value (and satisfy the set).
The degradations to the LP solution that result from making
such branches are used in the overall algorithm to determine
whether the set is chosen as the unsatisfied global entity to
branch upon next.

The task of estimating degradations caused by imposing the
branches must be approached differently for SI and S2 sets, as
follows.

Estimated Degradation caused bv branching on SI sets

In the case of SI sets, the effects of making a branch to the
left straddle point are first determined. Since this is an SI
set, it is assumed that only the left straddle point variable
will take a non-zero value once the branch has been made.
Assuming that there is a convexity row for the set, of the
form

238

+ 8e - be

then the value of 6L when the branch la made (i.e. vL) can thus
be calculated as (be - ■«••*), where ie"^ is the value of the
slack variable in the optimal LP solution.

A vector can therefore be constructed containing, for each row
i, the value of v,,C1L (where C1L is the coefficient in row i of
the left straddle point variable 6L) . This vector is said to
contain the "corrected" contributions of the variables to each
row of the problem. That is, these are the values that the
rows will take after the branch has been made and the values
of the set member variables are corrected so that they satisfy
the set.

Once the "corrected vector" has been constructed, an
"uncorrected vector" containing the present state of the rows
of the problem must be constructed for comparison.

The "uncorrected vector" contains, for each row i of the
problem,

239

where Ctj is the coefficient of variable in row i.

The difference between the elements of the uncorrected and
corrected vectors represents the changes that we assume will
be made in each row once the branch is imposed. In effect, the
difference between the elements represents a move from the
present solution, where several variables take non-zero
values, to a solution that satisfies the SI set as an integer
entity because only one variable takes a non-zero value.

The degradation to the LP solution incurred by changing each
of the rows is then calculated. For each row, the contribution
towards the total degradation is calculated by multiplying the
distance moved by a per unit degradation figure for the row.
The per unit degradation figure used for each row is
calculated in a heuristic way (similar to that for general
integer variables), as described in Appendix IQ.

The total estimated degradation to the LP solution that will
be incurred if a branch is made to the left straddle point is
finally calculated by summing the contributing degradations
from each row.

^ C U V1

240

The whole process is then repeated to determine the estimated
degradation caused by branching to the right straddle point.
The estimated degradation caused by branching on the set is
assigned to be the minimum of the two. Although no decision is
made as to where to branch until the set has been chosen as
the entity to branch upon, Fig. 7.16 above shows the binary
branches that are assumed as part of the process of
calculating the estimated degradation for the set.

Estimated degradation caused bv branching on S2 sets

The effects of branching on an S2 set must be estimated in a
different way, since the branch to be made may lead to one or
two variables taking non-zero values. If two variables do take
non-zero values however, we expect the variables to be
adjacent, a fact that we can use when preparing a corrected
vector to show the effects of branching.

As mentioned previously, the best solution for the unsatisfied
set would be achieved if there existed a single variable 6 ,
which took a non-zero value and which had a corresponding
reference row value X'

241

In order to create the corrected vector for branching on an S2
set, the effect of the artificial variable 8 is imitated. So
that the average reference row value for the variable will
still be X' (as shown in Fig. 7.17 below), the value, v", of
8’ in the LP solution, and the coefficients, Ct_, of 8 ' in the
different rows of the problem are interpolated from those of
the straddle point variables.

The value V, of the artificial variable 8, (which is assumed
to be the only variable to take a non-zero value after the
branch) , is calculated as (be - scopt) .

For each row i, the coefficient Ct. of variable 8 is
calculated as

weightL*C1L + weight„*ClR

where weightL and weight,, are measures of how near X* is to XL
and X* (see Fig. 7.17 below), and C1L and C1B are the
coefficients of the left and right straddle point variables 8L
and S„ in row i.

242

rig. 7.17: Example of branching on an S2 set.

The corrected vector is created, with each of the i elements
calculated as C^v', and thus representing the state of row i
if the branch is carried out.

The corrected vector represents the effects of branching in
such a way that only the straddle point variables can take
non-zero values (i.e. of producing the cheapest legal S2 set
with the same average reference row as the LP solution) .
Although, as mentioned above for SI sets, no decision is made
as to where to branch until the set has been chosen as the
entity to branch upon, this is the branch that is used as part
of the process of estimating the degradation to the set.

243

This degradation can now be calculated, as in the case of SI
sets, by totalling the "distance" moved by the per unit
degradation for each row (calculated in the same way as for SI
sets, as described in Appendix 10).

tret+gles tor Special Ordered
W

Once it has been decided to branch upon a special ordered set,
the conventional strategy used to make binary branches is as
follows (from (Beale and Forrest, 1976]).

Firstly, determine which variables are the first and last set
members to take non-zero values in the present LP solution,
and name those variables 0A and 0B. A vector of interpolated
coefficients can be created corresponding to any variable
between 0A and 0B by calculating , for each row i,

C4J - (1-0)0* ♦ 0CiB

where 0 is defined by the equation

Xj - (1-0) XA ♦ 0XB

244

The differences between the interpolated row coefficients and
the actual row coefficients of the problem act as a guide to
the extent to which the current LP solution misrepresents the
consequences of giving the variable 8, the reference row value
Xj in the optimal IP solution. Thus, a process similar to the
comparison of the corrected and uncorrected vectors is carried
out for each variable between and including 8A and 6B. The
difference between the real and interpolated coefficients for
each row i is weighted by the appropriate per unit movement
penalty for the row (as described in Appendix 1G), to give a
measure of the misrepresentation of the row. The sum of these
misrepresentations is calculated over all the rows, to give
the final total measure of misrepresentation for the variable.

The variable chosen for branching is the one which is being
misrepresented the most (i.e. whose total measure of
misrepresentation is the highest).

Branching <?n SI m s

Once the variable (5W) which suffers the worst
misrepresentation has been determined, the conventional
branching strategy for an SI set is to form two branches

245

(1) setting 8, = 0 if the corresponding Xj £ X*
(2) setting 8j = 0 if the corresponding X} > X*

as seen if Fig. 7.18 below.

Branch (1): d j = 0 lor | <= W

Branch |2): d, = □ for | > W

X
XAw Xn

Brunch (2)
Branch (1)

d
1 1 1

dw dN

Fig. 7.18: The binary branching strategy as applied to Si
sets.

The order in which these two branches are applied depends upon
the estimated degradation to the LP solution incurred by
making the branches. The branch which degrades the LP solution
the least will be made first.

For the purposes of calculating the estimated degradations it
is assumed that branch (1) (where 8, - 0 if the corresponding
Xj £ XJ produces the same degradation as if 8W., was the only
variable allowed to take a non-zero value, and branch (2)

246

(where 8j * 0 if the corresponding Xd > X*) produces the same
degradation as if 5W was the only variable to take a non-zero
value.

Corrected and uncorrected vectors are created and the effects
of the change summed over the rows of the problem.

Branching on S2 sets

In the case of S2 sets, once 8W has been determined, the
conventional branching strategy is to form two branches

(1) setting &) to zero if the corresponding Xj < X*
(2) setting 8S to zero if the corresponding X, > X*

as in Fig. 7.19 below. (N.B. The arrow-headed lines in the
figure describe the branches where the variables are set to
ZERO).

The order in which these two branches are made again depends
upon the size of the estimated degradations caused by
branching, with the branch that causes the least degradation
being made first.

2 4 7

Note that the effect of the branches in either circumstance is
that variable 8W is always allowed to be non-zero and one of
the variables adjacent to it is allowed (although not forced)
to take a non-zero value.

rig. 7.19: The binary branching strategy as applied to S2
sets.

The estimated degradations caused by making the branches on
the S2 set can again be calculated by making use of corrected
and uncorrected vectors.

Branch |1): d (= 0 for | < W

Branch (2): d . = 0 for | > W

X

Branch (2) Branch (1)

d

d w d N

248

ff*P*r«tlon gchaass for Multiway Branching on Social

Two different approaches to multiway branching will now be
considered. Method One assumes that the technique of Beale and
Forrest (described previously) for deciding which set member
to branch on first, is to be used. Method Two ignores the
Beale and Forrest technique for choosing the set member and
branches in a fixed way, determined by the average reference
row value.

The two methods may produce the same branches on a set if
there are only a few set members, but if there are more than
a few set members, the probability of different branches being
made increases.

7.3.3.1. MultiwftY »rW hin
Cfe9lg» of ■»•!» F 9 m 9%

Method One uses the technique described by Beale and Forrest
(see section 7.3.2) for determining where to branch upon a
set. Once a set member has been chosen, using the Beale and
Forrest "worst misrepresentation" method, the multiway
branches applied will be further determined by the type of
set, the number of set members and the current bounds on the
set.

249

Multiway branching on SI sets using separation Method on«

The number and position of the multiway branches made on an SI
set depend on the position of X., (the reference row entry for
the worst represented variable S„, chosen using the Beale and
Forrest criterion), with respect to the current upper and
lower bounds on the set.

In the case where there are only two set members to branch
upon, obviously only two branches can be made. If 8W is the
first or last member of a set within the current bounds of the
set, only two branches will be made (see Fig. 7.20 below).

Branch (I): d(■ 0 tor i > W

I mi in—

LB**

Branch (?): d (> 0 tor | « W

UB
Branch (I)- d(. 0 lor |

n ------ f
LB

Branch |?| d 0 lor | ». W

w n
-i------1—

«W

Fig 7.20: Situations where two branches are made on an SI set
using Separation Method One.

250

In all other circumstances, three branches can be made, as
long as there are at least three set members within the
current set bounds that can be branched to (e.g. as in Fig.
7.21) .

Branch (||: : 0 for | « W aid | » W
Branch (2): d (* 0 lor | >• W
Branch (3|: d (« 0 for | «• W

‘V/

rig. 7.21: The situation where three branches are made on an
SI set using Separation Method One.

Branch (1) is always made so that only 8W can take a non-zero
value. Branch (2) is always made so that only variables 8,
where j < W (if there are any within the current bounds on the
set) can take non-zero values. Branch (3) is made such that
only variables 8, where j > W (if there are any within the
current bounds on the set) can take non-zero values.

For the purposes of calculating the estimated degradations it
is assumed that branch (2) (if it can be made) produces the
same degradation as if 8W1 was the only variable allowed to
take a non-zero value, and branch (3) (if it can be made)
produces the same degradation as if 8*., was the only variable

251

to take a non-zero value. Corrected and uncorrected vectors
are created and the effects of the change summed over the rows
of the problem. The branches will as usual be applied in
ascending order of estimated degradation.

Multiway kranchinfl 90 S2 sets using separation Method One

The number and position of the multiway branches made on an S2
set also depend on the position of X« with respect to the
current upper and lower bounds on the set.

In the case where there are only three set members to branch
upon, obviously only two branches can be made. If 8W is the
first or last member within the bounds of a set with four or
more members, two branches will be made (see Fig. 7.22 below) .
If 8W is the second or second to last member within the bounds
of a set with four or more members, three branches will be
made (see Fig. 7.23 below). In all other circumstances, four
branches can be made, as long as there are at least five set
members that can be branched to (e.g. as in Fig. 7.24).

252

Branch (2): d (= 0 for i > W*l Branch (4): d (= 0 for | « W

T

Branch (1): d(= 0 for | < W-l

------(3)

t----------- r

Branch (3): d

- J - > d
UB

0 for I >: W

Fig. 7.22: The situation where two branches are made on an S2
set using Separation Method One.

Bruch (f): d, : 0 for | > W .1 Branch (4|: d s 0 for | « w
Branch (2): d .= 0 lor | < W and | > W4|

----- 11)' |4)—

LB 1W UB
Bfiicfl (l|: 4 s 0 lor | < W 'l an< | > w

Bruch (2): 0 ̂ 0 lor | < W Bruch |3| » .

_ ^ > l 121—
0 lor | >i W

- - > d
UB

rig. 7.23: The situation where three branches are made on an
S2 set using Separation Method One.

253

Branch (1): d(= 0 for i < W-1 and j » W

Branch (2): d ̂ 0 for | < W and i > W*1

Branch (3): d ̂ 0 for j >= W

Branch (4): d ^ 0 lor | <= W

rig. 7.24: The situation where four branches are made on an S2
set using Separation Method One.

Branch (1) is made so that only 5W and 8*^ can take non-zero
values (if both are within the current bounds of the set).
Branch (2) is made so that only 5W and 8„., can take non-zero
values (if both are within the current bounds of the set).
Branch (3) is made so that only variables 8J# such that j < W
can take non-zero values (if there are any such variables
within the bounds on the set). Branch (4) is made so that only
variables 8J# such that j > W can take non-zero values (if
there are any such variables within the bounds on the set).

For the purposes of calculating the estimated degradations it
is assumed that branch (3) (if it can be made) produces the

254

same degradation as if 5W1 was the only variable allowed to
take a non-zero value, and branch (4) (if it can be made)
produces the same degradation as if 5*., was the only variable
to take a non-zero value. The estimated degradations for
branches (1) and (2) are calculated in a similar way to the
way that the estimated degradation is calculated as part of
the process of choosing the set as the entity to branch upon.
That is, an artificial variable is created between two of the
set members and used to represent the effects of branching to
them. The artificial variable created to estimate the
degradation caused by making branch (1) is shown in Fig. 7.25
below. Note that the artificial variable is created midway
between 6W and

<r

rig. 7.25: Creation of an artificial variable to estimate the
degradation caused by making Branch (1).

255

Corrected and uncorrected vector« are created for each branch
made and the effects summed over the rows of the problem. The
branches will as usual be applied in ascending order of
estimated degradation.

Multiway Branching gW r«tlon wthod Two, B«..d on . * 1
Jl**^ “T-^T-

Separation Method Two creates branches on SI and S2 sets based
on the assumption that the average reference row value
provides a good guide as to where to branch.

UUltiWflY ¿ranching gn SI sets using Separation Method Two

If multiway branching is considered on an SI set, an obvious
separation under Method Two is to branch as follows. First
find the average reference row value X' and the straddle
points. Let 5l and 8* be the left and right straddle point
variables, with corresponding reference row entries XL and X*.

Up to four branches can be formed
(1) setting 8, = 0 for j*L....N
(2) setting 8, ■ 0 for j-1....L-l and j-R..... N
(3) setting 8 3 ■ 0 for and j-R+1.... N
(4) setting 8 3 * 0 for j»l.... R

as in Fig 7.26 below

256

Branch |1): d(* 0 lor | >« L
Branch |2): d (» 0 for | « l and | » R
Branch |3): d (> 0 lor | <> L aid | > R

Branch |4): d ,* 0 for | «. R

— HI 1*1 I 01 Ml— <j

Fig. 7.26: Multiway Branches made on SI sets under Separation
Method Two.

It is hoped that either branch (2) or branch (3) will yield
the optimal solution. Note that some of the branches might not
always be necessary e.g. if 8L or 6, are the first or last
members of the set respectively that are within the current
set bounds.

The estimated degradations incurred by making branches (2) and
(3) (i.e. by branching to the left and right straddle points
respectively) have already been calculated as part of the
process of choosing the set as the entity to be branched upon
(see section 7.3.1). The estimates for branches (1) and (4)
are calculated in exactly the same way. The branches are
applied in ascending order of the estimated degradation that
they will cause.

257

Multiway branching on S2 sets using Method Two
For S2 sets, up to three branches can be formed

(1) setting 8} = 0 for j=R,...,N
(2) setting 8, * 0 for j-1.... L-l and j»R+l.....n
(3) setting 6} = 0 for j«l,...,L

as seen in Fig. 7.27 below.

These branches seem even more natural than the usual binary
separation. It is hoped that branch (2), where the two
straddle point vectors are allowed to take non-zero values,
will yield the optimal solution. Note that again, some of the
branches might not always be necessary e.g. if 8L or 8„ are the
first or last members of the set respectively that are within
the current set bounds.

Brined |l): dj ■ 0 lor | » R
Brined |2|: d (> 0 for | < L md | » R

Brined |3|: d (> 0 for | <> L

rig. 7.27: Multiway branches made on S2 sets under Separation
Strategy Two.

258

The estimated degradations incurred by making the above
branches are again calculated under the assumption that the
average reference row value does provide a good guide to the
best place in the set to branch. The estimated degradation
caused by making branch (2) has already been calculated as
part of the process of choosing the set as the entity to be
branched upon (see section 7.3.1). The estimates for the other
two branches are calculated in the same manner as the
estimates for members of SI sets. That is, for the purposes of
calculating the estimated degradations it is assumed that
branch (1) (if it can be made) produces the same degradation
as if 5l was the only variable allowed to take a non-zero
value, and branch (3) (if it can be made) produces the same
degradation as if 6„ was the only variable to take a non-zero
value.

The branches are again applied in ascending order of the
estimates of the degradation that they will cause.

7.J.4. »«»«U» pt with mutlw«y »ranching

It is important to test separation schemes such as those
suggested above on real problems as there is a trade-off
between exploring one entity in its entirety and a more depth
first exploration of the tree. The various "depth-first" and
"consider all" node selection strategies discussed in Chapter

259

Six were thus used in conjunction with the multiway branching
strategies previously discussed for special ordered sets.
Tests were performed on the problems shown in Table 7.2 below.

Problem Category NROW NCOL NGLENT Description

DOM1 6 796 585 1 1 10S1(3),1S2(11)
MCA 6 412 648 22 1S1(5),1S1(6),1S2(4),

18BV,1012
MINE1 2 351 320 155 5S1(15).150BV
MINE2 2 359 338 168 8SK10) , 160BV
SETX 4 13 2 1 3 381(6)
Key:
2S1(3) - 2 SI sets, each with 3 au{E

5S2(6) - 5 S2 sets, each with 6 members.
3BV 3 binary variables
7GI4 - 7 general integers with lower bounds of 0 and upper

bounds of 4.
Problem Categories: Medium Combinatorial (2); Small MIP (4);
Large MIP(6) .

Table 7.2: Test problems for multiway branching on special
ordered sets.

The two new problems, MINE1 and MINE2 are strategic planning
models concerning the closure of coal mines over a period of
years.

260

Branching variable priorities

Special ordered sets and binary variables are often used to
represent very important features of a model, such as mutually
exclusive decisions or different modes of operation. It is
therefore likely that special ordered sets and relevant binary
variables should be preferred for branching over other less
important variables. For instance, there is no point in
deciding what colour a factory will be painted if it is built
before deciding whether or not to build it.

In order to establish the merits of using branching variable
priorities with multiway branching techniques, the test
problems were attacked using the following combinations of
node selection and branching strategies.

BB:no priority Binary branching strategy, choosing where
to branch on the set using the Beale and
Forrest criteria, no branching variable
priorities defined.

MWB:B+F:no priority Multiway branching strategy, choosing
where to branch on the set using the
Beale and Forrest criteria (i.e.
Separation Method 1 from section 7.3.3),
no branching variable priorities defined.

261

MWB:B+F:priority

MWB:Fix:no priority

MWB:Fix:priority

Strategy X:Problem

Multiway branching strategy, choosing
where to branch on the set using the
Beale and Forrest criteria (i.e.
Separation Method 1 from section 7.3.3),
special ordered sets given priority for
branching over other variables.

Multiway branching strategy, choosing
where to branch on the set using fixed
branching criteria (i.e. Separation
Method 2 from section 7.3.3), no
branching variable priorities defined.

Multiway branching strategy, choosing
where to branch on the set using fixed
branching criteria (i.e. Separation
Method 2 from section 7.3.3), special
ordered sets given priority for branching
over other variables.

Problem Y attacked using node
selection strategy X (as defined in
section 6.2 on pages 188-190).

262

The computational results are shown in Figs. 7.28 to 7.47.
Problem SKTX (Small MIPI

Comparison of Solution Times
Node Selection Strategy 1 problem SFTX

* »no priority -o- WWBStFmo priority or U*9*.i,y o-,.ytSarSno plolly -to 0001 rjrtrl'y

Pig. 7.2«i Multiway branching on SETXinode selection
strategy 1 .

Comparison of Solution Times
Node Selection Strategy ? problem SFTX

Pig. 7.2»: Multiway branching on SETXinode selection
strategy 2.

263

groblMt SST» (»»«IX mp)

Comparison of Solution Times
Nod« Selection Strategy 3:Probl«m SETX

Numb» of Save Trc

- * Bftno priority — MWBS4F:no priority MWM tf¡priority
MWB:Fbcno priority -•* - MWBf lx?rlarlty

Fig. 7.30: Multiway branching on SETX:node selection
strategy 3.

Comparison of Solution Times
Node Selection Strategy 4¡Problem SETX

Fig. 7.31: Multiway branching on SETX:node selection

strategy 4.

2 6 4

Probl» m i IM.dlu» Co^lMtorl.ll

Comparison of Solution Times
Nod. Sektion Strategy 1 Problem MNF I

~ ~ « n o priority MWHflft no priority -m - MWM+fpriorify
WWB Tb.no priority -*•- MWBf Inprlortty

Fig.7.32: Multiway branching on MINElinode selection
strategy 1 .

T
I

Comparison of Solution Times
Node Selection Strategy 2:Problem MINF1

Nimbor of Slavo Trc

Bftno priority MWBStt no priority MW9* It priority
WWB Tb.no priority -*•- WtfBiTcprtarKy

Fig.7.33: Multiway branching on MINE1inode selection
strategy 2.

265

Problwn l u l l (M»dlvM Co«J>ln»torl«l)

Comparison of Solution Times
Nod« Selection Strategy 3:Problem MNF1

300

250

V 200

1 , 0

I 100

so

0 1 2 3 4 9 * 2 S
Numbor ol Slav* Tranoputoro

-• BBna priority MWHSti no priority -**- MWM+f priority
-m- MWBTb.no priority MWBflcprlarlty

riff.7.34: Multiway branching on MINEl:node selection
strategy 3.

~~ Bfcno priority MWHflO :no priority MWM>+priorityMWBrb.no priority -*» MWBf I «priority

rig.7.35: Multiway branching on MINEl:node selection
strategy 4.

2 6 6

Probl» NIW»3 (Mxllu» Co-bln.torl.il

Comparison of Solution Times
Node Selection Strategy 1.-Problem MINF?

2500

8ftno Priority MWB«4F:no priority MWM+f priorityMWB:Fbcno priority -#*- MWBiTcprlartty

rig.7.36: Multiway branching on MINE2:node selection
strategy 1 .

Comparison of Solution Times
Node Selection Strategy 2.-Problerr MINF?

8ftno Priority MW8fl+F:no priority MWM+f*rlorltyMWB Fbcno priority -H- MWmcprlcrlty

Fig.7.37: Multiway branching on MINE2:node selection
strategy 2.

2 6 7

Probl— MXN»? (Media» Combinatorial)

Comparison of Solution Times
Node Selection Strategy 3:Problem MINF?

2500

— - BSno priority MWH«tF no priority MWBStfpriority
-*»■ MWBFb.no priority -*•- MWBflcprlartty

Fig.7.38: Multiway branching on MINE2:node selection
strategy 3.

Comparison of Solution Times
Node Selection Strategy 4:Problem MINF2

5000

2500

-S' 2000

1500

I 1000

500

0
1 2 3 4 5 S 7 8

Huirtow of Stovo Trmputori
Bftno priority MWHSU :no priority MWitt Apriority“• MWB Fb.no priority MWBf Apriority

Fig.7.39: Multiway branching on MINE2:node selection
strategy 4.

2 6 8

Probi«» d o m i (L t r w HIP!

Comparison of Solution Times
N o d « S a la e t lo n S t r a t e g y 1 f r o b t e m DO M I

rie. 7.40: Multiway branching on DOMI : node selection
strategy 1.

Comparison of Solution Times
Nod« Selection Strategy 2:Probl«m D0M1

rig.7.41: Multiway branching on DOMI¡node selection
strategy 2.

2 6 9

P r o b i « DONI IL.rg. n n

Comparison of Solution Times
Node Selection Strategy 3:Problem DOMI

Bftno priority — WWBStino priority MWM+f priority
WWB Tb.no priority -**- WWBfhcprlarlty

Fig.7.42: Multiway branching on DOMI : node selection
strategy 3 .

Comparison of Solution Times
Node Selection Strategy 4:Problem D0M1

Bftno priority — WWHfl tfno priority MWftfltfpriority
WWB Fb.no priority -*•- WWBfliprlarHy

Fig.7.43: Multiway branching on DOMI:node selection
strategy 4 .

270

Probi«» MCA IL.ni. m i

Comparison of Solution Times
N o d « SdtocHoo Strategy I :P ro b n m M C A

B®no priority UWHfltt no priority MWftfltfpriority
MWB:Fbcno priority MWBf ftcprlartty

Fig.7.44: Multiway branching on MCA:node selection strategy
1 .

Comparison of Solution Times
Node Selection Strotegy 2 .-Problem MCA

B* "0 priority MWHfltt :no priority MWM+f priority
" • * MW* rb.no priority MWeflcprlarity

Fig.7.45: Multiway branching on MCA:node selection strategy
2 .

271

Probi«» MCA (L.rg. HIP)

Comparison of Solution Times
Node Selection Strategy 3:Problem MCA

Fig.7.46: Multiway branching on MCArnode selection strategy
3.

Comparison of Solution Times
Node Selection Strategy 4:Problem MCA

Bftno priority MWB«*F:no priority MWM+fpriority
MWB Tb.no priority -*0- MWBf teprlarlty

Fig.7.47: Multiway branching on MCA:node selection strategy
4 .

272

Discussion of Results

Appendix 4B lists the computational results in full. The
test problems will be considered here in order of their
different size categories.

Small Problems

It can be seen from Figs. 7.28 to 7.31 that, no matter
which of the node selection strategies is used, the best
results for solving the small MIP SETX come from using the
fixed separation approach to branching. The fixed
separation approach with no branching priorities gives the
best overall results in all cases. As this problem only
contains sets as integer-constrained global entities, the
effects of the priorities can be ignored, as all sets were
given equal priority. Any slight difference in results from
runs where priorities were or were not used are probably
caused by the nondeterminacy of the algorithm. Thus, the
good solution times for this problem were due to the use of
the fixed separation approach to branching on special
ordered sets. It is worth noting that these solution times
were usually better than those for the binary separation
approach.

Since SETX is always solved very quickly (and the overall
average transputer usage never exceeds three), most of the
solution times are very similar and it is thus not possible

273

to make much of a comparison between the various node
selection strategies. It is noted however that the "compare
all nodes" strategies (i.e. strategies 1 and 2) do tend to
perform slightly better overall. They produce slightly
faster solutions than the "depth first" strategies (i.e.
strategies 3 and 4) when used in conjunction with the Beale
and Forrest separation approach and solutions that are at
least as good when used with the fixed separation approach.
Within the "compare all" and "depth first" strategy classes
there appears to be no benefit to using the Forrest-Hirst-
Tomlin criterion to compare nodes as opposed to the best
estimate criterion.

Medium-Si zed Problem?

The medium sized (combinatorial) problem MINE1 reacts as
follows in the various tests (as shown in Figs. 7.32 to
7.35). In this case, the fixed separation branching
strategies produce solution times that are generally worse
than those of the strategies based on the Beale and Forrest
separation criterion, although the gap narrows as more
transputers are used (and the average transputer usage
settles down between three and four).

The use of branching priorities has a fairly large
detrimental effect on the problem solution times, although
the damage is smaller when the "depth first" node selection
strategies are used, since the depth first searches tended

274

to branch on the sets early in the search and proceed from
there.

The binary branching strategy actually performs the best
overall, but the multiway branching strategies produce
comparable results when four or more slave transputers are
used.

Again, the "consider all" node selection strategies produce
better results than the "depth first" strategies
(especially when only a small number of transputers are
used), as less solutions are found and fewer nodes searched
overall. The "depth first" strategies still produce
reasonable results however, when four or more slave
transputers are used. This is due to reasonably good
solutions being found by the depth first search, allowing
the fathoming of many nodes at once.

Within the "compare all" and "depth first" strategy classes
there appears to be some benefit obtained by using the
Forrest-Hirst-Tomlin criterion in conjunction with the best
estimate criterion to compare nodes as opposed to using
only the best estimate criterion.

The medium sized (combinatorial) problem MINE2 performs in
a fairly similar way to MINE1 (as can be seen in Figs. 7.36
to 7.39). The same effects are noted for both problems,
although on different scales.

275

Again the use of branching priorities has a detrimental
effect on the problem solution times, although the effect
is much more visible for this problem. When the problem is
attacked without using branching priorities it is solved
much more quickly. Indeed, the solution times obtained
using multiway branching are at least as good as those
obtained using binary branching if branching priorities are
not given to the sets.

The fixed branching strategies still produce results
slightly worse than those of the strategies based on the
Beale and Forrest criterion, although if branching
priorities are not used, the results are very similar
indeed for this problem as the average transputer usage
settles down to between four and five.

The "consider all" node selection strategies still tend to
provide slightly better results than the "depth first"
strategies. Within the "compare all" and "depth first-
strategy classes there again appears to be a benefit
obtained by using the Forrest-Hirst-Tomlin criterion in
conjunction with the best estimate criterion to compare
nodes as opposed to using only the best estimate criterion.

276

Large P r i s i n g

The test results for the large (MIP) problem DOM1 can be
seen in Figs. 7.40 to 7.43).

Firstly, it is encouraging to see that all of the multiway
branching strategies produce better results than the binary
branching strategy during most of the tests on this
problem.

The fixed branching strategies again produce worse results
than those of the strategies based on the Beale and Forrest
criterion (although all strategies are again hindered by
the use of branching priorities). Also, the "consider all"
node selection strategies again tend to provide slightly
faster solutions than the "depth first" strategies,
especially when only a small number of transputers are
used. Within the "consider all" and "depth first"
categories, very little difference is observed between the
effects of comparing nodes using the Beale and Forrest
criterion and using the best estimate criterion for this
problem.

The results for the final large (MIP) problem, MCA, are
shown in Figs 7.44 to 7.47. Again, it is gratifying to see
that it is possible to improve upon the solution time for
the problem by making use of multiway branching as opposed
to the conventional binary branching techniques.

277

The solution times for this problem however are greatly
affected by the use of branching priorities. When branching
priorities are used, the fixed branching strategies produce
solution times that are very similar to those of the
strategies based on the Beale and Forrest criterion. Both
of these methods produce better solution times than the
binary separation method under these conditions.

However, when branching priorities are not used, the
familiar pattern of the fixed separation method producing
worse solution times than the Beale and Forrest method is
observed. In these cases, the solution times depend upon
the node selection strategy used. Using the "consider all"
strategies produces solution times that are slightly worse
than the binary separation method (although the difference
is quite small when several transputers are used). Using
the "depth first" strategies under these circumstances
allows solution times that are very similar to or only
slightly worse than those produced by the binary separation
method.

Within the "consider all" category of the node selection
strategies no advantage is gained by using the Forrest-
Hirst-Tomlin criterion in conjunction with the best
estimate criterion as a way of comparing nodes. Within the
"depth first" category however, better results were usually
obtained by using the best estimate as the only criterion
when comparing nodes.

278

Conclusions
When attacking the larger problems in the test set, the
performance of our parallel Branch and Bound algorithm was
improved by making more than two branches on special
ordered sets. When attacking the smaller problems in the
test set, multiway branching techniques were used to
achieve a performance close to that obtained by binary
branching, as long as a fairly large number of slaves were
used.

The small number of test results obtained seem to indicate
that multiway branching is best used in conjunction with a
"consider all" node selection strategy (such as the default
strategy decided upon previously), as this seems to produce
the best results for medium to large problems. It may be
worth considering changing the method of comparing nodes to
allow the inclusion of the Forrest-Hirst-Tomlin criterion
once an integer feasible solution has been found when
dealing with problems containing special ordered sets.

No real preference can be given to either of the methods
for multiway branching due to the small number of problems
available, although it is noted that the Beale and Forrest
separation criterion for branching on special ordered sets
have given better or equivalent results for most of the
test problems.

279

Finally, giving branching preference to special ordered
sets has been shown to be a two-edged sword when attacking
our set of test problems. It has proved to be of great
benefit to the solution of one of the test problems, but a
hindrance to the solution of the others. It is worth noting
that the benefits gained from using priorities were eroded
as more slave transputers were used, perhaps an indication
that priorities can be ignored if a large number of
transputers are to be used.

280

Itlone

Conclusions as to the value of the algorithms used and the
way in which they were implemented can be reached by
considering the results of the previous chapters.

One perhaps obvious conclusion can be drawn immediately
referring to the implementation of the present parallel
farming algorithm, as discussed in Chapter Five. When using
network MIMD hardware such as the transputer, where the
processors do not have access to a shared global memory,
the farming algorithm used will eventually face the problem
of a bottleneck at the master processor. The master
processor performs a cycle wherein it chooses LPs to be
solved, and sends them to idle slaves. The cycle is only
interrupted by LP solutions being returned, or by the
optimal solution to the problem being found. If the master
processor cycle is frequently interrupted by the return of
LP solution information via messages from the slave
processors, there will not be much time to send out new LP
relaxations to idle slaves.

This raises the issue of the required balance between
calculation and message-passing on the processors. Chapter
Five indicates that, for a small number of processors at
least, the bottlenecking problem can be minimised by
careful design of the algorithm and its implementation.
The master processor cycle was modified so that the choice

281

of which LP to send next could be made as quickly as
possible. The actual messages sent to and from the slave
processors were also altered so that they could be sent
more quickly. This allowed the master algorithm to send out
more LP problems in a given amount of time, and allowed the
slave algorithms to spend more time in solving the LPs and
less time in passing messages.

However, when larger numbers of processors are used, the
bottlenecking problem will again become an inhibiting
factor on the performance of the algorithm. The results
from the smaller test problems attacked in Chapter Five
probably reflect what will happen with the larger problems
when more slave processors are available. As more messages
need to be sent to more slave processors, a limit will be
reached on the average number of slave transputers that can
be used to solve a problem. After a certain point, the
master algorithm cannot send out enough LP problems to keep
all the idle slaves busy, as it is interrupted too
frequently by the return of LP results from busy slaves.

The answer to this problem would be to move from the
centralised list farming algorithm presently in use, to a
distributed list farming algorithm, if more slave
processors are available. It is the fact that all the
information concerning the enumeration of the search tree
is placed on the master processor for decision making
purposes (i.e. that there is a centralised list), that

282

causes the bottleneck at the master processor, if the
slaves were able to pass their results to different
"masters" for use, the bottlenecking problem, although not
removed, would be reduced (or perhaps more accurately,
spread out).

An outline for a proposed distributed list (DL) farming
algorithm for use with ten or more transputers is as
follows.

The three transputers that are directly connected to the
root (i.e. master) transputer could be designated sub­
masters. The search space of the problem to be attacked
could be pre-partitioned based on user-defined priorities,
and each of the sub-masters would be given an appropriate
subset of the search space to work on. Each of the sub­
masters would also be allocated a number of slave
processors (i.e. a "sub-slave" group) with which it could
easily communicate (allowing for the limited number of
processors that could be directly connected to each sub­
master) . The algorithm could then proceed in a similar way
to the centralised list (CL) algorithm, with each sub­
master generating its own candidate list of nodes to be
branched upon, choosing LP relaxations and sending them to
its sub-slaves for solution. Any change in the cutoff
information resulting from an integer-feasible solution
being found would be broadcast to all the other processors
by the appropriate sub-master.

2 83

This concept of "sub-masters" and "sub-slave groups" could
be extended dynamically when bottlenecking problems again
became serious, so that each of the sub-masters could
transform one or more of its sub-slaves into "sub-sub­
masters" as the need arose.

The pre-partitioning of the search space would also be a
good step forward for the algorithm since for the altered
algorithm to be truly useful a Dual Simplex algorithm would
have to be placed on the slaves/sub-slaves, along with the
existing Primal Simplex algorithm already in use. The Dual
Simplex algorithm can be used to very quickly solve an LP
problem if the information on the parent of the problem is
available. Thus, if the sub-master chooses as the next node
to be branched upon, the son of a node just solved, the
slave processor containing the information on the parent
would be chosen to solve the new LP. The only difference
between the parent and son nodes would be the bounds on one
of the integer-constrained entities. Thus, only these new
bounds need be sent to the slave, which could then use the
Dual Simplex algorithm to quickly find the new LP solution.

It is worthwhile at this point to note why the potentially
useful combination of the Dual Simplex algorithm and the
policy of solving an LP relaxation on the same slave as its
parent was not used by our centralised list farming
algorithm when testing the depth-first node selection
strategies in Chapters Five and Six.

284

Firstly, the version of the XPRESS-MP code on which our
algorithm is based does not support a Dual Simplex
algorithm. Although more recent versions of XPRESS-MP have
added a Dual Simplex algorithm, in the process of doing so,
many of the data structures used to hold LP information
were changed. Thus, in order to make use of a Dual Simplex
algorithm, either a large proportion of the coding of our
present algorithm would have to be rewritten so as to
enable the use of the new XPRESS-MP data structures, or a
Dual Simplex algorithm would have to be written from
scratch. Neither of these possibilities were considered,
due to the time that would be involved.

Secondly, the transputers used did not have enough memory
to make room for both a Dual and a Primal Simplex algorithm
on each slave, as well as the necessary message-passing and
node creation routines.

If the sub-master, sub-slave algorithm was to be
implemented in the future, it would be worthwhile to change
the data structures used by the LP-solver so that the Dual
and Primal Simplex algorithms of the later versions of
XPRESS-MP could be used. Although this would involve
replacing the current hardware with a system where the
transputers had access to a greater amount of personal
memory, this would have to be done anyway in order to
replace the current clear path message-passing system,
which could not be used with a larger number of processors.

285

The clear path system was devised so that only the minimum
amount of the memory of slave processors had to be
allocated to message-passing routines. Although a clear
path system could conceivably still be implemented for the
message-passing between members of sub-master, sub-slave
clusters, it is thought that the total message-passing
overheads amassed by a system containing many sub-master,
sub-slave clusters would be large. This problem can
forseeably be overcome in one of two ways.

Firstly, a fully buffered message-passing system could be
developed, wherein the full LP relaxation or LP solution
details being passed from transputer to transputer could be
stored in data structures if enough memory was made
available.

Secondly, a system could be devised to make use of the new
Inmos T9000 transputer ([Inmos, 1991]). One of the claims
that Inmos make for such a system is that any of the
transputers therein would be able to communicate directly
with any of the other transputers. This would obviously
remove the need to save LP information on a slave
transputer before passing it on to its final destination.

The introduction of hardware with more personal memory
available on each transputer would have several advantages
beyond the replacement of the clear path message-passing
system. Additional memory available on the master processor

286

(or the sub-master processors) would allow more (or all) of
the long node information for the MIP problem to be stored
in the personal memory, thus reducing (or removing) the
delays caused by the disk-reading operation. Indeed, if the
sub-master, sub-slave algorithm was to be introduced, this
additional memory would be essential, since the sub­
masters, which are not connected directly to the PC, cannot
read from or write to the hard disk of the PC.

Even when using the current centralised list farming
algorithm, if the disk reading operation could be removed
from the master algorithm, this would help greatly to
reduce the non-determinism of the algorithm. If the long
node information could always be retrieved from memory in
the same amount of time, the same number of LPs should
always be sent out to the slaves. Although it is not
certain that the slaves would always be interrupted at the
same point in their cycles, the likelihood is greatly
increased.

Chapter Six shows that the node selection strategy used by
the parallel algorithm can have a great effect on problem
solution times. A strategy whereby all candidate nodes are
considered for branching and are compared using the best
estimate criteria has been chosen as the default node
selection strategy for use with our parallel Branch and
Bound algorithm. This strategy has performed well when used
to attack the (admittedly small) selection of problems in

287

our test set. Although not many test problems were
available, they were of different types and sizes, i.e.
combinatorial and MIP problems of different sizes, that
have been formulated using assorted types of integer-
constrained entity. Using this node selection strategy
almost always produced one of the better solution times
achieved for each of the test problems in Chapter Six. In
the circumstances where using this strategy did not lead to
the fastest solution times for a problem, the solution
times it did achieve were not much worse, especially if a
large number of slave transputers were used. These results
are mainly due to the strategy successfully finding good
integer-feasible solutions which are of great use in
fathoming nodes and reducing the overall search space.

Chapter Seven shows that the use of multiway branching
techniques can help to reduce the solution times for
certain types of problem in our test set. The test problems
formulated using general integers did not respond
particularly well to the use of multiway branching
techniques, as the extra branches made only served to make
work for idle hands. In the case of the test problems
formulated using special ordered sets however, some benefit
was gained by making use of multiway branching techniques.
Experiments were carried out to test the effects of using
two different multiway branching strategies in conjunction
with several different node selection strategies. The small
set of test problems attacked contained small, medium and

288

large IP problems formulated using both SI and S2 sets. The
results show that, for the larger MIP test problems at
least (i.e. the category in which we are interested), the
use of multiway branching techniques can increase the
performance of the parallel Branch and Bound algorithm
beyond that achieved by making use of the conventional
binary branching strategy. When the smaller problems were
attacked, the solution times achieved were still similar
to, though not as good as, those achieved under the binary
branching scheme.

The best test results were achieved by making use of
multiway branching techniques in conjunction with a
"consider all nodes" node selection strategy similar to the
default strategy decided upon above. The results indicated
however, that it may be worthwhile to change the method of
comparison of nodes to incorporate the use of the Forrest-
Hirst-Tomlin criterion once an integer feasible solution
has been found when dealing with problems formulated using
special ordered sets.

The use of simple branching variable priorities in
conjunction with multiway branching techniques was shown to
be of varying value. In most of the experiments carried
out, the presence of branching variable priorities actually
hindered the search for the optimal solution, although in
the case of one large problem, exactly the opposite effect
was observed. It is thus thought that the default approach

289

will be to not use such priorities, but to allow the user
to define priorities for any problem if desired.

In conclusion, the small number of test results obtained
indicate that the parallelism of the Branch and Bound
algorithm can be exploited in order to reduce the solution
times of certain categories of IP problem, especially the
larger MIP problems in which we are interested. The
structure of certain types of large problem (i.e. those
formulated using special ordered sets) seems to be such
that multiway branching techniques can be effective in
their solution. Good results may be obtained for some
problems even when using a relatively small number of
parallel processors, as long as the algorithm and code are
carefully designed.

Although the limits imposed by the hardware used have
prohibited the solution of some extremely large problems,
it is thought that these too would be soluble if these
limits could be overcome. A larger number of parallel
processors will be necessary to effectively solve very
large MIP problems, and thus a more advanced parallel
algorithm (such as the sub-master, sub-slave algorithm
discussed above) will need to be implemented to overcome
the bottlenecking problems foreseen. New technology, such
as the Inmos T9000 transputer mentioned above, however, may
reduce the effects of bottlenecking by allowing easier
communication between all processors.

290

It will thus be possible in the future to carry out further
research into the design and implementation of parallel
algorithms for the solution of very large MIP problems
using transputer-based hardware. Judging by the results
achieved with a small number of parallel processors, this
should prove to be a fruitful area for years to come.

291

y t > r > B C > i

Abdelrahman, T.S. and Mudge, T.N. (1988), "Parallel branch
and bound algorithms on hypercube multiprocessors", in
Proceedings of the 3rd Conference on Hypercube Concurrent
Computers and Applications - Vol II, ACM Press, 1988. pp
1492-1499.

Allan, S.J. and Oldehoeft, R.R. (1985), "HEP SISAL:Parallel
Function Programming", in Parallel MIMD Computation: HEP
Supercomputer and its Applications, Cambridge, MA: MIT
Press, 1985, pp 123-150.

Ashford, R.W., Connard, P. and Daniel, R.C. (1992),
"Experiments in Solving Mixed Integer Programming Problems
on a Small Array of Transputers", JORS 43(5), May 1992, dp 519-531.
Balas, E. (1963), "Linear Programming with Zero-One
Variables" (in Rumanian), Proceedings of the Third
Scientific Session on Statistics, Bucharest, December 5-7.
Balas, E. (1965), "An Additive Algorithm for Solving Linear
Programs with Zero-One Variables", Operations Research
13(4). pp 517-548.

Balinski, M. and Wolfe, P. (1963), "On Benders'
Decomposition and a Plant Location Problem", Mathematica
Working Paper ARO-27, 1963.
Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.J., Slotnick,
D.L. and Stokes, R .A . (1968), "The ILLIAC IV computer",
IEEE Trans. Comput., 17, pp 746-757.
Batcher, K.E. (1974), "STARAN parallel processor system
hardware", AFIPS Conf. Proc. 1974 National Computer
Conference, May 1974, pp 405-410.
Batcher, K.E. (1980), "Design of a massively parallel
processor", IEEE Trans. Comput., 29, September 1980, pp
836-840.

Beale, E.M.L. (1954), "An alternative method for linear
programming", Proceedings of the Cambridge Philosophical
Society 50 (1954), pp 513-523.
Beale, E.M.L. (1958), "A method of solving LP problems when
some but not all of the variables must take integral
values", Statistical Techniques Research Group, Technical
Report no. 19, Princeton University, July 1958.
Beale E.M.L. and Tomlin J.A. (1970), "Special facilities in
a general mathematical programming system for nonconvex
problems using ordered sets of variables", Proceedings of
the Fifth International Conference on Operational Research,
ed Lawrence J., Tavistock Publications, pp 447-454.

Refs (i)

Beale, E.M.L. and Forrest, J.J.H. (1976), "Global
optimisation using special ordered sets". Mathematical
Programming 10, pp 52-69.
Beale E.M.L. (1977), "Integer programming" in "The state of
the art in numerical analysis", ed Jacobs D.A.H., Academic
Press # 1977.

Beale E.M.L. (1979), "Branch and bound methods for
mathematical programming systems", Annals of Discrete
Mathematics 5 (1979), pp 185-191.
Beetem, J., Dennean, M. and Weingarten, D.H. (1985), "The
GF-11 supercomputer", Proc. 12th Annual Int. Symp. on
Computer Architecture, Boston, Mass., pp 108-118.
Benders, J.F. (1962), "Partitioning Procedures for Solving
Mixed Variables Programming Problems", Numerische
Mathematik 4,pp 238-252.
Ben-Israel, A. and Charnes, A. (1962), "On Some Problems of
Diophantine Programming", Cahiers du Centre d'Etudes de
Recherche Operationelle 4, pp 215-280.
Berg, R.O., Schmitz, H.G. and Nuspl, S.J. (1972), "PEPE -
an overview of architecture, operation and implementation",
Proc. IEEE Natl. Electron. Conf. 27, pp 312-317.
Bhuyan, L.N. and Agrawal, D.P. (1984), "Generalised
hypercube and hypercube structures for a computer network",
IEEE Trans. Comput. 33, pp 323-333.
Boehning, R.L., Butler, R.M. and Gillett, B.E. (1988), "A
parallel integer linear programming algorithm", European
Journal of Operational Research 34(1988), pp 393-398.
Borosh, I. and Treybig, L.B. (1976), "Bounds on Positive
Integral Solutions of Linear Diophantine Equations", Proc.
Amer. Math. Soc. 55, pp 299-304.
Brooks, R. and Geoffrion, A. (1966), "Finding Everett's
Lagrange Multipliers by Linear Programming", Operations
Research 14(16), pp 1149-1153.
Bustos, E., Lavers, J.D. and Smith, K.C. (1979), "A
parallel array of microprocessors - an alternative solution
to diffusion problems", COMPCON'79 (Fall) Digest, pp 380-

Cannon, T.L. and Hoffman, K.L. (1989), "Large-Scale 0-1
Linear Programming on Distributed Workstations", Working
Paper, Dept. of Operations Research, George Mason
University, Fairfax, VA, February 1989.

Refs (ii)

CDC (1983), COC CYBER 200 Model 205 computer system
hardware reference manual, Publication 60256020 (St. Paul,
Minnesota: Control Data Corporation).
Chakrabarti, C. and JAJA, J. (1990), "Systolic
architectures for the computation of the Discrete Hartley
and the Discrete Cosine Transforms based on Prime Factor
Decomposition", IEEE Trans. Comput., 39(11), pp 1359-1368.
Charlesworth, A . E . and Gustafson, J.L. (1986), "Introducing
replicated VLSI to supercomputing : the FPS-164/MAX
scientific computer", IEEE Trans. Comput., 19(3), pp 10-23.
Chen, S.S. (1984), "Large-scale and high-speed
multiprocessor system for scientific applications : CRAY X-MP
Series", in "High Speed Computation" (ed. J.S. Kowalik),
NATO ASI Series voi. 7, Berlin:Springer, pp 59-67.
Childress, J.p. (1969), "Five Petrochemical Industry
Applications of Mixed Integer Programming", Bonner and
Moore Associates, Inc., Houston, March 1969.
Christ, N.H. and Terrano, A.E. (1986), "A micro-based
supercomputer". Byte Magazine, April, pp 145-160.
Christofides, N. (1970), "The shortest Hamiltonian Chain of
a graph", J. SIAM 19, pp 689-697.
Cook, S . A . (1971), "The Complexity of Theorem-Proving
Procedures", Proceedings of the 3rd Annual ACM Symposium on
Theory of Computing, Association for Computing Machinery,
New York pp 151-158.
Cray (1976), CRAY-1 computer system reference manual,
Publication 2240004 (Mendota Heights, Minnesota : Cray Research Inc.).

Cray (1985), "Introducing the CRAY-2 computer system", Cray
Channels, Summer, pp 2-5.
Crowther, W. et al. (1985), "The Butterfly Parallel
Processor", IEEE Computer Arch. Tech. Comm. Newsletter,
Sept/December 1985, pp 18-45.
d'Acierno, A., De Pietro, G. and Villano, U. (1990), "A
Parallel Architecture for Optical Character Recognition",
in Proc. Int. Conf. on Parallel Computing¡Achievements,
Problems and Prospects", Capri, Italy, 3-7 June 1990.
Dakin, R.J. (1965), "A tree search algorithm for mixed
integer programming problems", The Computer Journal 8
(1965), pp 250-255.

Refs (iii)

Dantzig, G. (1951), "Maximization of a linear function of
variables subject to linear inequalities”, in "Activity
Analysis of Production and Allocation", (ed. Tj.C.
Koopmans), Wiley, New York, pp 339-347.
Dantzig, G., Fulkerson, D. and Johnson, S. (1954),
"Solution of a Large Scale Travelling Salesman Problem",
Operations Research 2(4),pp 393-410.
Dantzig, G.B. (1960), "On the Significance of Solving
Linear Programming Problems with Some Integer Variables",
Econometrica 28, pp 30-44.
Dantzig, G.B. (1963), "Linear Programming and Extensions",
Princeton University Press, Princeton, New Jersey.
Dantzig, G.B., Blattner, W.O. and Rao, M.R. (1967), "All
Shortest Routes from a Fixed Origin in a Graph", in Theory
of Graphs: International Symposium, Gordon and Breach, New
York, pp 85-90.
Darlington, J. and Reeve, M. (1981), "ALICE - a
multiprocessor reduction machine for the parallel
evaluation of functional programming languages", Proc. ACM
Conf. Functional Programming Languages and Computer
Architectures, New Hampshire, pp 65-75.
Dash Associates (1989), "XPRESS-MP Reference Manual", Dash
Associates, Blisworth House, Church Lane, Blisworth,
Northants, UK.
deBruin, A., Rinnooy Kan, A.H.G. and Trienekens, H.W.J.M.
(1988), "A simulation tool for the performance evaluation
of parallel branch and bound algorithms", Mathematical
Programming 42(1988), pp 245-271.
Desrochers, G.R. (1987), "Principles of Parallel and
Multiprocessing", New York NY: McGraw-Hill.
DeWitt, D., Finkel, R . A . and Solomon, M. (1984), "The
Crystal multicomputer: design and implementation
experience". Technical Report 553, Dept. of Computer
Science, University of Wisconsin, Madison, 1984.
Dijkstra, E. (1959), "A Note on Two Problems in Connection
with Graphs", Numerische Mathematik 1, pp 269-271.
Dongarra, J.J. (1987), 'Experimental Parallel Computing
Architectures", Amsterdam: North-Holland.
Dornheim, M . A . (1985), Caltech, "JPL advancing
supercomputer as low-cost tool in aerospace work", in
Aviation Week and Space Technology, 22 April, pp 93-101.

Refs (iv)

Driebeek, N. (1966), "An Algorithm for the Solution of
Mixed Integer Programming Problems’, Management Science 12 (7), pp 576-587.

Efe, K. (1989), "Programming the twisted cube
architectures", in Proc. 9th Int. Conf. DCS, June 1989, pp

Elder, J., Gottleib, A., Kruskal, C.K., McAuliffe, K.P.,
Randolph, L. Snir, M. , Teller, P. and Wilson, J. (1985),
"Issues related to MIMD shared-memory computers: The NYU
Ultracomputer approach", Proc. 12th Int. Symposium on
Computer Architecture, June 1985, Boston, Mass., pp 126-

El-Dessouki. 0. and Huen, W.H. (1980), "Distributed
enumeration on between computers", IEEE Trans. Comput
29(9), pp 818-825.

Everett III, H. (1963), "Generalised Lagrange Multiplier
Method for Solving Problems of Optimum Allocation of
Resources", Operations Research 11(3), pp 399-471.
Fazio, D. (1987), "It's really much more fun building a
supercomputer than it is simply inventing one", COMPCON,
IEEE, February 1987, pp 102-105.

Felton, E.W. (1988), "Best-first branch and bound on a
hypercube", in Proceedings of the 3rd Conference on
Hypercube Concurrent Computers and Applications - Vol II,
ACM Press, 1988, pp 1500-1504.
Finkel, R . A . and Manber, U. (1985), "DIB - a distributed
implementation of backtracking ", Technical Report 588,
Dept. of Computer Science, University of Wisconsin.
Madison, 1985.

Flynn, M.J. "Very high speed computing systems", Proc.
IEEE, 54 (1966), pp 1901-1909.

Forrest J.J.H.. Hirst J.P.H. and Tomlin J.A. (1974),
"Practical solution of large mixed integer programming
problems with UMPIRE". Management Science 20 (1974),

Fox, B. and Landi, D. (1970), "Searching for the Multiplier
in One Constraint Optimization Problems", Operations
Research 18(2), pp 252-262.
Gacs, H.P. and Lovasz, L. (1981), "Khachiyan's Algorithm
for Linear Programming", Mathematical Programming Study 14,
pp 61-68.

Refs (v)

Gajski, D., Kuck, D. , Lawrie, D. and Sameh, A. (1983)
"Cedar - a large scale multiprocessor", IEEE Proc. 1983
Int. Conf. on Parallel Processing, pp 524-529
(London: IEEE) .

Garey, M.R. and Johnson, D.S. (1979), "Computers and
Intractability, A Guide to the Theory of NP-Completeness",
W.H. Freeman and Company, San Francisco, pp 245
Gay, D.M. (1985), "Electronic Mail Distribution of Linear
Programming Test Problems", Mathematical Programming
Society Committee on Algorithms (COAL) Newsletter 13, pp

Gehringer, E.F., Siewiorek, D.P. and Segall, Z. (1987),
"Parallel Processing: The Cm* Experience", Digital Press,
Bedford, Mass.

Gendron, B. and Crainic, T.G. (1992), "Parallel
implementations of a branch and bound algorithm for
multicommodity location with balancing requirements",
Report 813, Centre for Research on Transportation,
University of Montreal.
Geoffrion, A. (1972), "Lagrangian Relaxation and its Uses
in Integer Programming", Western Management Science
Institute Working Paper No. 195, University of California
at Los Angeles, December 1972.
Geoffrion, A.M. and Graves, G.W. (1974), "Multicommodity
distribution systems design by Benders' decomposition",
Management Science 20(5), pp 822-844.
Glover, F. (1965), "A Multiphase-Dual Algorithm for the
Zero-One Integer Programming Problem", Operations Research
13(6), pp 879-929.

Golden B. , Sharda R. and Wasil E. (1988), "Mathematical
Programming Software for the microcomputer: recent
advances, comparisons and trends", Working paper, School of
Business, University of Oklahoma, U.S.A.
Gomory, R.E. (1960), "An Algorithm for the Mixed Integer
Program", RM-2597 Rand Corporation, July 1960.
Gomory, R.E. (1963), "An Algorithm for Integer Solutions to
Linear Programs" in Recent Advances in Mathematical
Programming, (eds Graves and Wolfe),New York,McGraw-
Hill. 1963 .
Gomory, R.E. (1965), "On the relation between integer and
non-integer solutions to linear programming problems",
Proceedings of the National Academy of Sciences of the
United States of America 53 (1965), pp 260-265.

Refs (vi)

Gomory, R.E. (1967), "Faces of an Integer Polyhedron",
Proceedings of the National Academy of Sciences of the
United States of America 57 (1967), pp 16-18.
Gomory, R.E. (1969), "Some polyhedra related to
combinatorial problems", Linear Algebra and its
Applications 2 (1969), pp 451-558.
Harp, J.G., Palmer, K.J. and Webber, H.C. (1987), "Image
Processing on the Reconfigurable Transputer Processor", in
"Parallel Programming of Transputer Based Machines", (ed.
T. Muntean), IOS publishing, Amsterdam, 1988,pp 252-260.
Hayes, J.P. et al. (1986), "A microprocessor-based
hypercube supercomputer", IEEE Micro, 6(5), pp 6-17.
Held, M. and Karp, R.M. (1970),"The Travelling Salesman
Problem and Minimum Spanning Trees", Operations Research 18,
pp 1138-1162.

Held, M. and Karp, R.M. (1971),"The Travelling Salesman
Problem and Minimum Spanning TreestPart II", Mathematical
Programming 1, pp 6-25.

Hintz, R.G. and Tate, D.P. (1972), "Control Data STAR-100
processor design", COMPCON, IEEE, September 1972, pp 1-4.
Hoare, C.A.R. (1978), "Communicating Sequential Processes",
Comm, of the ACM, vol. 21, no. 8, Aug. 1978, pp 666-677.
Holland, J.H. (1959), "A universal computer capable of
executing an arbitrary number of subprograms
simultaneously", Proc. East. Joint Comput. Conf. 16, pp
108-113.

Hunt, D.J. (1981), "The ICL DAP and its application to
image
processing", in "Languages and Architecture for Image
Processing" (eds. M.J.B. Duff and S. Levialdi), Academic
Press, London, pp 275-282.

Hwang, K. and Briggs, F .A . (1984), "Computer Architecture
and Parallel Processing", New York NY: McGraw-Hill.
IBM (1988), "IBM Mathematical Programming System
Extended/370 (MPSX370) Version 2 User Guide", IBM Italia
S.p.A., Viale dell'Oceano Pacifico, 173,00144, Roma, Italy,
October 1988.

IBM (1990), "Optimisation Subroutine Library: Guide and
Reference", First Edition, April 1990, IBM Corporation,
Neighbourhood Road, Kingston, New York, U.S.A. 12401.

Refs (vii)

Imai, M. , Fukumura, T. and Yoshida, Y. (1979), "A
parallelised branch and bound algorithm - implementation
and efficiency", Systems Computers Controls 10(3), pp 62-

Inmos Ltd. (1985), "IMSt414 Transputer Reference Manual"
(Bristol:INMOS Ltd).
Inmos Ltd. (1988), "Communicating Process Architecture",
Prentice-Hall, p 84.
Inmos Ltd. (1991), "The T9000 Transputer Products Overview
Manual", First Edition, SGS-Thomson Microelectronics, 1991,
p 35.
Jordan, H.F. (1978), "A special purpose architecture for
finite element analysis", IEEE Proc. 1978 Int. Conf. on
Parallel Processing, pp 263-266 (London:IEEE).
Karp, R.M. (1972), "Reducibility among Combinatorial
Problems", in "Complexity of Computer Computations" (eds.
R.E. Miller and J.W. Thatcher), Plenum Press, New York, pp
85-103.
Khachiyan, L.G. (1979), "A Polynomial Algorithm in Linear
Programming", Soviet Mathematics Doklady 20, pp 191-194.
Kindervater, G.A.P. and Lenstra, J.K. (1986), "Parallel
computing in combinatorial optimisation", Report OS-R8614,
Centre for Mathematics and Computer Science, Amsterdam.
Kindervater, G.A.P. and Trienekens, H.W.J.M. (1985),
"Experiments with parallel algorithms for combinatorial
problems". Report OS-R85 12, Centre for Mathematics and
Computer Science, Amsterdam, 1985.
Klee, V. and Minty, G.J. (1972), "How Good is the Simplex
Algorithm?", in Inequalities III, (ed. O. Shisha), Academic
Press, New York, pp 159-175.
Kuck, D.J. "A survey of parallel machine organisation and
programming", Comput. Surv. 9 (1977), pp 29-59.
Kung, H.T. and Leiserson, C.E. (1979), "Systolic arrays
(for VLSI)", in Sparse Matrix Proceedings 1978 (eds. I.S.
Duff and G.W. Stewart), SIAM, pp 256-282.
Kung, H.T. (1984), "Systolic algorithms for the CMU Warp
processor", Proc. 7th Int. Conf. on Pattern Recognition,
Montreal, pp 570-577.
Lai, T-H. and Sahni, S. (1984), "Anomalies in parallel
branch and bound algorithms", Communications of the ACM
27(6), pp 594-602.

Refs (viii)

Land, A.H. and Doig, A.G. (1960), "An automatic method for
solving discrete programming problems", Econometrica 28, dp
497-520.

Laval4e, I. and Roucairol, C. (1985), "Parallel branch and
bound algorithms", presented at Euro VIII Congress,
Bologna, Italy, Report MASI no.112, Univ. Paris VI, 1985.
Lemke, C.E. (1954), "The dual method of solving the linear
programming problem", Naval Research Logistics Quarterly 1
(1954), pp 36-47.

Lemke, C.E. and Spielberg, K. (1967), "Direct Search
Algorithm for Zero-One and Mixed Integer Programming",
Operations Research 15(5), pp 892-914.
Li, G-J. and Wah, B.W. (1984), "Computational efficiency of
parallel approximate branch and bound algorithms", in
Proceedings of the 1984 International Conference on
Parallel Processing, pp 473-480.
Li, G-J. and Wah, B.W. (1986), "Coping with anomalies in
parallel branch and bound algorithms", IEEE Trans. Comput.
35(6), pp 568-573.

Lovett, T. and Thakkar, S. (1988), "The Symmetry
multiprocessor system", Proc. 1988 Int. Conf. of Parallel
Processing, University Park, Pennsylvania, pp 303-310.
Ma, R.P., Tsung, F-S. and Ma, M-H. (1988), "A dynamic load
balancer for a parallel branch and bound algorithm", in
Proceedings of the 3rd Conference on Hypercube Concurrent
Computers and Applications - Vol II, ACM Press, 1988, pp
1505-1513.
Manne, A.S. (1971), "A Mixed Integer Algorithm for Project
Evaluation", Memorandum 71-3 (February 1971), Development
Research Center, International Bank for Reconstruction and
Development, Washington,D.C.
Maples, C., Rathbun, W., Weaver, D. and Meng, J. (1981),
"The design of MIDAS - a Modular Interactive Data Analysis
System", IEEE Trans. Nucl. Sci.,28, pp 3746-3753.
McCanny, J.V. and McWhirter, J.G. (1982), "On the
implementation of signal processing functions using one-bit
systolic arrays", Electron. Lett. 18, pp 241-243.
McKeown, G.P., Rayward-Smith, V.J., Rush, S.A. and Turpin,
H.J. (1990), "Using a transputer network to solve branch
and bound problems", presented at O.R. Society Conference
1990, University of Wales, Bangor, (School of Information
Systems, University of East Anglia, Norwich).

Refs (ix)

Microway Ltd (1988), "Microway NDP FORTRAN Compiler
Reference, V1.4VM", Mass., U.S.A.

Miller, P.C., John, C.E.S. and Hawkinson, S.W. (1988), "FPS
T series parallel computer", in Programming Parallel
Processors, Reading, MA: Addison-Wesley, 1988, pp 7 3 -9 1 .
Miranker, G.S., Rubenstein, J. and Sanguinetti, J. (1988),
"Squeezing a Cray-class supercomputer into a single-user
package", COMPCON, IEEE, March 1988, pp 452-456.
Mohan, J. (1982), "A study in parallel computation: the
travelling salesman problem", Technical Report CMU-CS-82-
136, Computer Science Department, Carnegie-Mellon University.

Mohan, J. (1983), "Experience with two parallel programs
solving the travelling salesman problem", in Proceedings of
the 1983 International Conference on Parallel Processing
IEEE, New York, pp 191-193.
Moore, W., McCabe, A. and Urquhart, R. (1987),
Arrays", Bristol: Adam Hilger. "Systolic

Morrison, P. and Morrison. E. (1961) "Charles Babbage and
his calculating engines".New York:Dover, p 34.
Motegi, M. , Uchida, K. and Tsuchimoto, T. (1984), "The
architecture of the FACOM vector processor", in "Parallel
Computing 83", (eds. M. Feilmeier, J. Joubert and U.
Schendel), Amsterdam:Elsevier, North-Holland, pp 541-546.
Mraz, R. and Seward, W. (1987), "Performance evaluation of
parallel branch and bound search with the Intel iPSC
hypercube computer", Proceedings of Supercomputing 88,
Boston, pp 82-91.

Nagashima. S., Inagami. Y., Odaka, T. and Kawabe, S.
(1984), "Design considerations for a high speed vector
processor: the HITACHI S-810", Proc. Int. Conf CD
(MD:IEEE).

Nau, D.S., Kumar, V. and Karal, L. (1984), "General branch
and bound and its relation to A' and AO'", Artificial
Intelligence 23, pp 29-58.

Nemhauser, G.L. and Widhelm, W.B. (1971), "A Modified
Linear Program for Columnar Methods in Mathematical
Programming", Operations Research 19, pp 1051-1060.
Nemhauser G.L. and Wolsey L. A. (1988), "Integer and
Combinatorial Optimisation", Wiley-Interscience Series in
Discrete Mathematics and Optimisation, New York, 355-367.

Refs (x)

Padberg, M.w. and Hong, s. (1980), -On the Symmetric
Travelling Salesman Problem: A Computational Study",
Mathematical Programming Study 12, pp 78-107.
Pardalos, P.M. and Rodgers, G.P. (1990), "Parallel branch
and bound algorithms for quadratic zero-one programs on the
hypercube architecture". Annals of Operations Research
22(1990), pp 271-292.

Pase, D.M. and Larrabee, A.R. (1988), "Intel iPSC
concurrent computer", in Programming Parallel Processors,
Reading, MA: Addison-Wesley, 1988, pp 105-124.
Patry, P., Salome, J. and Kuchler, P. (1987), "Optical
character recognition on a network of transputers", in
"Parallel Programming of Transputer Based Machines" (ed. T.
Muntean), IOS publishing, Amsterdam, 1988,pp 433-448.
Pease, M.C. (1977), "The indirect binary n-cube
microprocessor array", IEEE Trans. Comput. C-26, pp 458-

Peyton-Jones, S.L. (1987), "The implementation of
functional languages", Englewood Cliffs, New Jersey,
Prentice-Hall.

Pfister.G.F., Brantley, W.C., George, D.A., Harvey, S.L.,
Kleinfekder, W.J., McAuliffe, K.P., Melton, E.A., Norton,
V • A . and Weiss, J. (1985), "The IBM research parallel
processor prototype (RP3): Introduction and Architecture",
Proc. 12th Int. Symposium on Computer Architecture, June
1985, Boston, Mass., pp 764-771.
Pham, D.T., Hu, H. and Pote, J. (1990), "A transputer-based
system for locating parts and controlling an industrial
robot", SERC/DTI Transputer Initiative Mailshot, November
1990, pp 53-59.

Preparata, F.P. and Vuillemin, J. (1981), "The cube
connected cycles: a versatile network for parallel
computation", Commun. ACM, 24, pp 300-309.
Pruul, E.A., Nemhauser, G.L. and Rushmeier, R .A . (1988),
"Branch and bound and parallel computation: a (sic)
historical note", Operations Research Letters 7(2), pp 65-

Quinn, M.J. (1986), "Implementing best-first branch and
bound algorithms on hypercube multicomputers", Technical
Report PCL-86-02, Dept, of Computer Science, University of
New Hampshire, Durham, New Hampshire 03824.
Quinton, P. (1987), "An Introduction to Systolic
Architectures", Lecture Notes in Computer Science, 272, dp

Refs (xi)

Reddaway, S.F. (1973), "DAP - a distributed array
processor", First Annual Symp. on Computer Architecture,
Florida, pp 61-65.

Roucairol, C. (1986), "Experiments with parallel algorithms
for the asymmetric salesman problem", presented at EURO
VIII, Lisbon, Portugal.

Roucairol, C. (1987), "A parallel branch and bound
algorithm for the quadratic assignment problem". Discrete
Applied Mathematics 18(1987), pp 211-255.
Roucairol, C. (1989), "Parallel branch and bound algorithms
- an overview", in Parallel and Distributed Algorithms
(eds. M. Cosnard et al.) , Elsevier Science Publishers B.V.
, North-Holland, 1989, pp 153-163.
Russell, R.M. (1978), "The CRAY-1 Computer System", Comm,
of the ACM, 21(1), January 1978, pp 63-72.
Schnabel, R.B. (1984), "Parallel computing in
Optimisation", in Proceedings of the NATO Advanced Study
Institute on Computational Mathematical Programming, Bad
Windsheim, Germany F.R., July 1984, pp 358-381.
Schwartz, J.T. (1980), "Ultracomputers", ACM Trans. Prog.
Lang. Syst. 2, pp 484-521.
Seitz, C.L. (1985), "The Cosmic Cube", Commun. of the ACM,
28(1), pp 22-33.

Seitz, C.L., Athas, W.C., Dally, W.J. et a l . (1988),
"Message-
Passing Concurrent Computers: Their Architecture and
Programming", Reading MA: Addison-Wesley.
Shapiro, J. (1968), "Group Theoretic Algorithms for the
Integer Programming Problem II: Extension to a General
Algorithm", Operations Research 16(5), pp 928-947.
Slotnick, D.L., Borck, W.C. and McReynolds, R.C. (1962),
"The SOLOMON computer", AFIPS Conf. Proc. 22, pp 97-107.
Smith, B.J. (1978), "A pipelined shared resource MIMD
computer", IEEE Proc. 1978 Int. Conf. on Parallel
Processing, pp 6-8.
Sporer, M., Moss, F.H. and Mathais, C.J. (1988), "An
introduction to the architecture of the Stellar Graphics
supercomputer", COMPCON, IEEE, March 1988, pp 464-467.
Sridharan, R. (1991), "A Lagrangian heuristic for the
capacitated plant location problem with side constraints",
JORS 42(7), pp 579-586.

Refs (xii)

Sternberg, s . R. (1985), -An overview of image algebra and
related architectures-, in -Integrated Technology for
Parallel Image Processing- (ed. S, Levialdi), Academic
Press, London, pp 79-100.

Stewart Jr.. W.R. and Golden. B.L. (1984), "A Lagrangian
relaxation heuristic for vehicle routing", EJOR 15(1), pp

Sullivan, H., Bashkow, T.R. and Klappholz (1977), "A large
scale homogeneous, fully distributed parallel machine",
Fourth Symposium on Computer Architecture, March 1977 d d

Swan, R.J., Fuller, S.H. and Siewiorek, D.P. (1977), "Cm*:
a modular multi-microprocessor", Proc. National Computer
Conference 46, pp 637-644.
te Riele, H.J.J., Dekker, Th.J. and van der Vorst, H.A.
(1987), "Algorithms and Applications on Vector and Parallel
Computers", Amsterdam: North-Holland.
Trienekens. H.W.J.M. (1986), "Parallel branch and bound on
a MIMD system", Report 8640/A, Econometric Institute,
Erasmus University, Rotterdam.

Villano, U. (1990), "A Microcomputer Architecture for High-
Speed Mono- and Bi-dimensional FFT computation", submitted
to IEEE Trans, on Parallel and Distributed Syst., July

Vornberger, O. (1988), "Load balancing in a network of
transputers", Lecture Notes in Computer Science 312,
Distributed Algorithms, Springer-Verlag, pp 116-126.
Wah, B.W. and Ma, Y.W.E. (1984), "MANIP - a multicomputer
architecture for solving combinatorial extremum-search
problems", IEEE Trans. Comput., 33(5), pp 377-390.
Watanabe, T. (1984), "Architecture of supercomputers - NEC
SX system", NEC Res. Dev. 73, pp 1-6.
Watanabe, T. (1987), "Architecture and Performance of the
NEC Supercomputer SX System", Parallel Computing, 5, pp
n A n -O

Watson. W.J. (1972), "The TI ASC - A highly modular and
flexible supercomputer architecture", Proc. AFIPS Fall
Joint Computer Conf., pp 221-228.
Whitby-Strevens, C. (1985), "The Transputer", Proc. 12th
Int. Symposium on Computer Architecture, Boston, Mass.,
June 1985, pp 292-300.

Refs (xiii)

White, W. (1966), "On a Group Theoretic Approach to Linear
Integer Programming", Operations Research Center Report 66-
27, the University of California at Berkeley, 1966.
Williams H.P. (1978), "Model building in
programming", Wiley, New York, 1978. mathematical

Wilson , A.W. Jr. (1987), "Hierarchical cache/bus
architecture for shared memory multiprocessors", Proc. 14th
Int. Symposium on Computer Architecture, June 1987
Pittsburg, Penn., pp 244-252.

Wulf, w.A. and Bell, C.G. (1972), «C.mmp: a multi-mini-
processor", Proc. AFIPS Fall Joint Computer Conference 41 (2), pp 765-777.

Wulf, W.A., Levin, R. and Harbison, S.P. (1981),
"HYDRA/C.mmp: An Experimental Computer System", New York
NY: McGraw-Hill, 1981, p 277.

Young, R.D. (1965), "A Primal (All Integer), Integer
Programming Algorithm", Journal of Research of the National
Bureau of Standards 69B, pp 213-250.
3L Limited (1988), Parallel FORTRAN User Guide. Peel House,
Ladywell, Livingston, Scotland.

Refs (xiv)

Bibliography
deCarlini, U. and U. Villano, "Transputers and Parallel
Architectures: message-passing distributed systems", Ellis
Horwood Ltd., Chichester, 1991.

Fountain,T.. -Processor Arrays: Architecture and
Applications", Academic Press, London, 1987.
Galletly, J., "Occam 2-, Pitman Publishing, 1990.
Garey, M.R. and D.S. Johnson, "Computers and
Intractability: A Guide to the Theory of NP-Completeness",
W.H. Freeman and Company, San Francisco, 1979.
Garfinkel, R.S. and G.L. Nemhauser, "Integer Programming",
John Wiley, London, 1972.

Hockney, R.W. and C.R. Jessope, "Parallel Computers 2:
Architecture, Programming and Algorithms", Adam Hilger
(IOP Publishing), Bristol, U.K., second edition 1988.
Lewis, T.G. and H. El-Rewini, "Introduction to Parallel
Computing", Prentice-Hall International, 1992.
Nemhauser, G.A. and L .A . Wolsey, "Integer and Combinatorial
Optimization", John Wiley, New York, 1988.
Salkin, H.M., "Integer Programming", Addison-Wesley,
Reading, Massachusetts, 1975.
Taha, H.A., "Operations Research: An Introduction",
Macmillan Publishing Company, New York, Fifth Edition,

Where sources are referred to in the text, this is
indicated by the use of {), i.e.
"... see {Nemhauser and Wolsey, page 254} for further
details"

Appendix 1: Further Details Relating to
the MIP-Solving Algorithms Discussed

in Chapter Two.

J W B d l K 1A. Darivatlon of th. Oomory Cut for H t Probl— a

To dolina a Oonory cut and show that it la appropriato for tha purpoaa of roducing tho
aolution apaca of PIP problem, without ramoving any intagar faaaibla solutiona. conaidar
tha following, adaptod from (Oarfinkol and Nomhauaar, pp 157-158):

Tha optimal tabloau for a PIP problom may bo roprosontad by tho formulation

Vi-0.1,2, ...» (1)
x, i 0 and inta<

R ■ aat of non-baaic variablea
x,, ■ baaic variablo for row i
x, ■ non-baaic variabloa
• i l • coafficiant of variablo x„ in row i
b, a right hand aida conatant.

Sinca >„ 1 0 by dafinition.

' " ' I s 1'“ 1'' “ 1' <2>

C(a„| ia tha intagor part of a„).

Alao, ainca ail tha x variabloa muât ba intagora. tha laft hand aida of (3)
intagor, tharaforo

*$ïR lav]xJ * (3)

App I (I)

(l)-(J) gives

Z(we now define

b, ■ (b,l ♦ o, and a„ » (a,,) ♦ f„

then (4) becomes

(5)

Thia can be written as

JgRf ‘) xl ’ 9 a * • <«>

where a 2 0 is a slack variable for the new constraint.

Thia is the Gomory Cut.

Note that if fl, > 0 then (9) is violated, since x, ■ 0 if j is a member of set R. Thus the
cut can be used to exclude solutions where g, > 0 (i.e. where basic variables take non-
integer values). No integer feasible solution will be omitted by using the cut. since in
its derivation, the integrality of the x variables la assumed.

App I (ii)

Thu», substituting in (•), sithsr

Si 1 a, <»>

or

£ - 1 (10)

Now, lot V ■ (J|j Is s mambar of sot R, , e„ > 0 >) and
*< ■ (J|J is S member of sot Ra , S„ « 0).

Thon, if (9) is truo, so is

£ h /> ix, • £ R;eu yi 1 Or <“ >

Sines, by definition. f„ 2 0 for oil J in R,, if (10) is truo. so is

‘ O' - 1

and hones, so is

£ r ,9» y> ‘ Oi - 1 <“ >

Multiplying (12) by g,/(g,-l), which is nagativo, gives

_ E Qi »»y,
J c r 2 (1 - gt) * 9i (13)

Sines (11) and (13) ars Mutually exclusive, a Joint condition con be expressed as
follows)

App I (Iv)

* & • « * « ■ Ä l T ^ V * « (14'

This ia tha Oomory Cut tor HIP problem«.

(14) can be Improved if there exiat membera j of the aet R,

Xf ao. let R,' ■ (J|J la a member of aet R,, f„ i g,); ar
*i- ■ (ill I« • member of aet R, , f„ > g, ».

Subtracting

froai both aidea of equation (•) give«

XB1 E
Je*.’

E ([a l) X j E

E £h°>jyj - t*i) »

* Ä (f“ ‘ 1)x> * * g‘

WH*»** * - l,J% * jS l* « * * o>

■uch that f„

f ijXj

(15)

(16)

- 1 (17

App 1 (v)

Sine« (f„ - 1) will «lwaya be negative for j in and •„ will always be negativ« for
j in Rj", if (16) is tru«, so ia

E
J e«,

E
j e « ; e „y , »»< (18)

Similarly, if (17) is tru«, ao is

E
J e« ; J e« , ®i,Vj s - 1 (19)

Multiplying (19) by g,/(g,-l). which ia negativ«, gives

' (i ’-a,) (jF«,(r« ' 1 (* jf«, e« y>) 1 3‘ (20)

Thua, sine« (16) and (30) are mutually exclusiv«, a Joint condition can b« expressed as
follows;

E
Je«,"

E gj(l - fglXi
j e « ; (i - g,)

E
JE«,

. E
Jc r; (1 - gt) * 9i

Thla ia th« tightest Oomory Cut for NIP problems.

App I (Vi)

Liofi_oi_

Bandars' algorithm allows tha solution of an HIP by rawritlng It as a PIP.

Conaidar tha following, adaptad from (Oarflnkal and Namhauaar. pp 135-143;

Considar tha NIP problam

x," ■ MAX x, ■ cx ♦ dy
Ax * By i b 111
x 2 0 and intagar, y 2 0

For any non-nagativa valua, x».,, of tha Intagar vactor x, tha NIP problam (1) raducas to
tha LP (2)i

x,,(xv.,l - cx.., ♦ NAX dy

Looking at tha solution to tha dual LP (3) provides insights into tha choice of x.,
necessary to give an optimal solution to NIP problem (1). By LP duality theory, if NIP
(1) is to hava an optimal solution, the dual LP (3) must not be infeasible or unbounded.
Since tha dual constraints are completely independent of x..,, if tha dual LP <3) is
infeasible, than tha NIP problam (1) is either infeasible or unbounded. If tha dual LP
(3) is unbounded, this implies that its objective function is decreasing along soma
extrema ray (sea Fig A1.1 below) . Thus, there exists an extrema point u*" and a direction
v such that every point on tha extrema ray

u“1 ♦ 0v (6 2 0)
is feasible to the dual LF (3).

M b - Ax..,
y 2 0

The dual of LP (2) is:

Ut'lx.,1 ■ cx.., NIN u I
uE 2 d
u 2 0

App 1 (vii)

rig. Al.l: The case where the
Dual LP (3) is unbounded.

Thu«, when th« dual LP (3) 1« unbounded, It« objective (unction may be written in term«
of the extreme ray

U, « (tt* ♦ ®v) (b - Ax..,)

where T ■ Cu'lu* 1« an extreme point of dual LP (3)) and where u, decreaaea with 8.

Removing conatant term«, thia can be rewritten aa

u, • 8v(b - Ax.., I , which decreaaea with 8.

Since 8 2 0, then v(b - Ax..,) < 0 and ao if 0 ia a aet of directiona auch that

Q ■ {v*|u* ♦ 8v"\ 8 2 0 la an extreme ray for aome u' a T)

it ia aufflcient to impoae the conatraint

v*(b - Ax) 2 0 for every V a Q

in order to rule out x^, candidatea which will cauae the dual LP (3) to become unbounded.
Since thla is the only case that we are interested in, we may rewrite the dual LP (3) aa

App I (viii)

“o' <*v.i> - C X v ., Hun“ 'l* Ajc)

v*(b - Ax) i 0 for every v*€Q.

8lnc* x,* * MAX x«'(x) . x 2 0. integer and admiaaible, It can alao be written aa X,' • MAX
u,*(x). x * 0, integer and admiaaible.

X0* - MAX {C X ♦ * it ~ AX))

v*(b - Ax) i0 for every v*€Q.

Introducing a variable

z - C X ♦ "tj-jU'lb - Ax)

thia can be written aa

MAX Z
Z i cx * u*(b - Ax) (or every u‘ • T
0 i v*(b - Ax) for every v* a Q (4)
x 2 0 and integer

Thie ia Bandera- reformulation of the original NIP problem (1).

App I (ix)

-i£i- kos ? '

Oomory showed that by relaxing tha non-negativity (bu not integrality) conatrainta on
certain variables, any IP can be represented by a minimisation problem defined as a
group.

Consider the following, adapted from (Salkin, pp 282-284):

Define the standard representation of a PIP problem as

Ax - b <1)
x A 0 and Integer

We shall rewrite thia problem as

Maximise c,x, ♦ c.x.
subject to Bx, ♦ Nx. ■ b (2)
and x, 2 0, x. 2 0 and integer

where B is a basis whose columne are from A, N are the remaining non-basic columns from
A snd the terms are rearranged ao that x, are the basic variables associated with B and
x. are the non-basic variables associated with N. The costa corresponding to the basic
and non-baalc variables are c, and c, respectively.

Since B is a basis, it has an inverse, and thus we may solve the constraints for (2) to
get

Maximise
Subject to

x. ■ B ‘b - B ‘Nx. (3)

Thus, problem (2) may be rewritten as

Maximise c,B‘b - (c.B 'N - c.)x.
Subject to x. ■ B *b - B ‘Nx. (4)
and x. 2 0 and integer,

x. 2 0 and integer

Since the term c,B ‘b is a constant, it may be dropped from the objective function. Also,
conatrelning x, to be an Integer is equivalent to stating that x. e 0 modulo 1. Thus, from
<41

App 1 (X)

Let B 'b be denoted by the coli a,, then the congruence reletionehip becomes

* «0 (8)

Since two vectors ere congruent (modulo 1) if end only if the corresponding elements sre
congruent (modulo 1). there sre ectuslly m congruence relstions in (8). we may add or
subtract multiples of Xj,j, e 0 (mod 1) to each equation without destroying the congruence
relstionship so that every column a, has non-negative entries less than one. Similarly,
the elements in a, may be reduced to non-negative fractions by adding or subtracting
multiples of 0 a 1 (mod 1) to each component.

Let the columns that have the fractional parts be denoted as ft, (j«0,l....n) .

Thus, the problem may again be rewritten as

n
M inim is»

s u b je c t to • *o (modi) (9)

and Xj„, 2 0 and integer (J»l....,n)

where a, 2 0 are the costs and each column ft, (J-0,1....n) satisfies 0 i t, < i (where
S is a column of ones).

Problem (9) is referred to as the group Minimisation Problw

App I (*ii)

CrltfH f f?r jhm Plry M i

Bafora discuasing soma of tha implicit anumaration eritarla appaaring in tha litaratura
on Diract Saarch Enumaration. soma furthar tarma must ba da finad in addition to thosa
dafinad in saction 2.4.2.

Tha subproblam at point x* 1 ls problam p

Subjact to Ax1 S b
and 0 S x‘ S x
whara x, - 0 or 1 for J-l,..,n and l i s i column oí onaa.

If tha c variablas sat at taro ara droppad and tha 1 columna whosa variablaa ara fixad
at ona ara subtractad (rom tha right hand sida vactor b. than P can ba rawrittan aa

Minimi«« a - a* « c'x*
Subjact to A'x1 i b‘
and 0 i x* S a
whara x, ■ 0 or 1 for J a r .

x' ■ (x,) la tha vactor corraaponding to fraa variablas. P la tha corraaponding aat of
indicas in x*. c' and A* ■ (A,) ara costa and columna of A, b‘ la tha updatad right hand
sida, and a1 la tha Bum of tha costa of tha 1 variablaa fixad to ona.

Thia subproblam la ñamad P‘. Tha associatad LP problam la ñamad LP‘ and ita opti mal
aolution ls t (which includaa tha conatant a'I . Tha prasant basi intagar solution la a\

Soma of tha inpllcit anumaration eritaria of tha diract saarch algorithm ara as follows:

iling Ttt^f

Tha objactlva function valúa at noda x1 la a1. Thia valúa can ba dacraasad by at moat tha
sum (ovar tha fraa variablaa) of tha nagativa costa. Thua, an improvad intagar aolution
(ainca wa ara daaling with mininisation probi «mal found f rom noda x* ia only possibla if

Minimisa

(1)

whara r ■ {J l r | e, < 0).

A p p I (xiii)

Thi» mean» that a fraa variable with a poaitiva coat ahould not ba aat to ona if it
incraaaaa s' ao that (1) cannot ba aatiafiad. Thua, cancel, at level 1, any j a r for
which

cj * ♦ jpr -ct 1 *' (2)

Infoaslblllty Teat

Tha conatralnta of the aubproblam ara of the form
o' ■ b' - A V 2 0 ())

where s' ■ (a,) ara non-negative slack variables.

Since «, i 1, tha largest possible value for slack s, is

p i • •>/ - u >

whara P_ ■ (j * P | a„ < 0).

Therefore, for a zaro-ona solution P, 2 0 for i»l....m (S)
Prom (4>, p, 2 b,‘ and thus for b,‘ 2 0, (S) is automatically satisfied. Using (4), wa can
find a P, for each conatralnt which has b,' « 0. If any of those P, values is negative, a
backwards stop is justified.

SgP9THPU9,n TlH
If a free variable has a large positive coefficient in some row, then setting this
variable to one reduces b,' and may result in a P, < 0. Therefore, if, for any J a P,

pi ' < 0 for i (1 ilim) (6)

Note that if (6) indicates a cancellation, a column a, is omitted from A' and so the
values of P, (as defined by (4)1 may be changed, and (»1 and (•) retested.

App 1 (xiv)

g a n g a u n i o n o n . T e a t

If ona of tha negativa coe(fidente of (raa variablas waa omitted when computing p, (i.a.
a (raa variatola waa temporari ly aat to aaro), thia could raault in P, « 0. Z(thia
happena, than (or a saro-ona aolution to ba poaaibla, tha oaiittad variatola muat taka tha
valua ona.

Tharafora if, (or any j a P,

P i * a i } <0a i j < 0 f o r so m B 1 (7)

than x, muat hava valua ona In any caro-ona aolution producad from noda x*. If anothar
taat raaulta in cancelling x,. a backward» atap la juatlflad.

If to,' 2 0, obaarva that P, ♦ a„ 2 to,' 2 0 (or any a„ < 0, or (7) would never Indicate that
a variable muat hava valua ona.

Linear Programming Teata

Obvloua point» relating to tha LP relaxation o(tha aubproblem are:

(1) If any LP aolution LP1 la Integer (In tha free x variable»), thia aolution la
optimal (or P‘).

(2) If LP1 haa no (aaaibla aolution, thara la no taro-ona aolution to P1.
(3) tha optimum valua of the objective (unction t (or the LP‘ la a lower bound on tha

valua z (or any zero-one aolution to tha aubproblam (l.a. t i z) .
(4) If, at any dual almplex Iteration, tha valua of tha LP objective (unction z

exceed» the currant beat integer aolution »*, a backward» »tap la allowed.

App I (xv)

«BBfadiK in Derivation of Constraint* for the
Algorithm for Uro-Oi.. MjP_.Probl— *

Th« Lemke and Spielberg Dir«ct Search Algorithm for xero-one NIPs derive* conatrainta
that ar« valid at any node using only tha sero-one variable*.

Consider tha NIP problem

Minimisa s ■ cx * dy
Subject to Ax • By S b (1)
and 0 i x S 1 and integer, y 2 0

For any fixed saro-ona vector x, the NIP problem (1) reduce* to tha LP (3) i

Minimise s - cx ■ dy
Subject to By S b - Ax (21

Xf (x,y) is to give an improved NIP solution, then cx ♦ dy < s‘ and Ax * By S b.
Multiplying the first equation by a non-negative vector u and adding it to the first
yields

At each node that is explicitly enumerated, an LP of form P is solved. The Siirplex
computations generate extreme points of the polyhedron U, where U ■ (u|uE ♦ d 2 0, u 2
0). (Xf U is empty then the NIP problem has no solution).

Therefore, whenever an LP of form P is solved, it yields dual extreme points u and
constraints of typ« (S) in only the x variables. Since U is independent of x, these
inequalities are valid at any node.

y 2 0

The dual of LP (2) is the dual LP (3)i

Minimise
Subject to uB ♦ d 2 0

u 2 0

(s' ♦ ub) -<uB • d)y -<uA » c)x * 0 (4)

Since this that uB ♦ d 2 0, for
(c ♦ uA)x < s'

App 1 (xvi)

Sine« it la possible to have a larga number of dual extreme pointe and thus generate a
large number of constraints at each node, a good rule of thumb is to generate only the
constraint coming from the optimal dual extreme point.

A necessary and sufficient condition on x to admit feasible solutions y to the HIP is
that

v(b - Ax) * 0 (6)

where v is a direction of a ray in U.

This constraint is derived in a similar way to the constraint mentioned in the derivation
of Bandera' decompoaition algorithm, as previously mentioned in section 2.2.1.

App 1 (xvii)

11» IQ. Derivation of the
Share to branch

If, when using the Branch and Bound method to solve a MIP problem, the
solution to an LP relaxation indicates that branching is called for, a choice
will usually have to be made as to which variable to branch upon. Beale
describes the following method for choosing the branching variable ([Beale,
1979J) .

An estimate of the degradation to the LP solution value caused by making each
branch is made. The calculation of an estimated degradation is based on
finding the amount by which the variable value will change and multiplying
this by a per unit movement penalty.

If a supposedly-integer variable x, take a continuous value C,, where Ct ■ |C,|
+ ft, let imposing a new lower bound of |Cj 1 on x, decrease the objective
function by the 'up penalty* of p, for every unit increase from the current
value of x,. (This is an "up penalty* since the variable value must be moved
up to the new lower bound). Similarly, let the -down penalty* incurred by
placing an upper bound of |Ct| on x, be p,‘ for every unit decrease from the
current value of xt.

An estimated decrease to the LP solution of
D,‘ ■ P,’fi
would occur if an upper bound was imposed and a decrease of
D, - p, (1-f,)
would occur if a lower bound was imposed.

The values of p, and pt' are calculated as follows.
Write the problem constraints in terms of the variable that is to be branched
upon, x t, i.e. let the problem be formulated as

App 1 (xviii)

MAX +2.aojxj m b0 - a0ixj

where
x, = decision variables
ak) = coefficient of variable x, in row k
b, ■ right hand side constant for row k
If the value of x, is increased by (1-f,), there is no effect on the objective
function value or on any of the other variables if the value of each bn is
simultaneously decreased in each row k by j, ■ akl<l-f,). Similarly, if the
value of x, is decreased by f|(there is no effect as long as each b* is
simultaneously decreased by z„ « -aklf4.

Thus, to estimate the degradation to the LP solution imposed by changing the
value of the variable x,, we can hold the value of xt constant and decrease
b* by z„ for all rows k.

Let Kk be the shadow price for the row k. Thus, if the movements z, are small,
the degradation to the LP solution imposed by branching could be estimated by

i.e., p, and p,’ are calculated by making use of the row coefficients for the
variable x, and the shadow prices X,, on the rows k.

It would be unwise, however, to simply use equation (1) to calculate the per
unit degradation for the row, since the shadow price for a row only measures
the cost of making very small changes and could thus greatly underestimate
the costs of the larger changes that could occur. Equation (1) is thus only
considered to give a lower bound on the value of the degradation. Indeed, if

(1)

App 1 (XÌX)

xt is a basic variable (the only situation where we would be considering
branching), then the degradation will always be zero if equation (1) is used.

To get a more useful estimate of degradation, the XPRESS-MP optimiser ([Dash
Associates, 1989]) adapts equation (1) to create the following heuristic
method for estimating degradations to the LP solution.

Let the actual change made to the right hand side constant b, of a row k (in
order to model the effects of branching on a variable x,) depend uponi
the type of the row; and
the sign of the coefficient of the branching variable x, in that row.

Table Al.l shows how the heuristic method models the effects of changes to
the value of x, for each row of the problem.

akl in row k: Positive Positive Negative Negative

Row k type: *S* row row ■S" row ■■• row

Increase x,

by (1-f,)

Decrease b*

by akl* (1-f,)

Increase b*

by a„*(l-f,)

Increase b, by

(•».iMl-ft)

Decrease b*

by | a„,|

•(1-f,)

Decrease x,

by f,

Increase b*

by a„*f,

Decrease b*

by a*i*f|

Decrease b„ by

1 *.!•«»
Increase b*

by |«ul*Ci

Table Al.l. Modelling the change in the value of x4.

App 1 (XX)

N.B. When a problem has been input to the XPRESS-MP optimiaer, any ■2* type
rows are converted to *S* type row*. Thus, the only types of rows that we are
concerned with are •£• or '■* type rows (along with the unconstrained
objective function row).

Since, as mentioned above, the shadow price should only be used to measure
the cost of making small changes to b», the XPRESS-MP optimiser heuristic also
makes use of a ‘pseudo-shadow-price’ ps* for each row k in order to measure
the cost of making the changes described in Table Al.l.

The shadow price and pseudo-shadow-price for a row are used to construct a
function
cost,, ■ MIN{-ps„, Jij when atl is positive and x, is being increased

or when atl is negative and x, is being decreased;
■ MAX(psa,xk) when a*, is negative and x, is being increased

or when a., is positive and x, is being decreased.

The heuristic gives values to ps„ as follows in order to calculate appropriate
values of cost,.

If the value of x, is to be increased in row k, ps, is set to a positive,
user-specified tolerance tol* (default value 0.01) unless the row is
unconstrained, in which case ps„ is set to zero (since changing the value of
x, will have no effect on an unconstrained row) . If the value of x, is to be
decreased in row k, then ps„ is set to zero unless the row is of type in
which case it is set to a positive, user defined tolerance tol, (default value0 . 0 1) .

App 1 (xxi)

The heuristic uses these settings for ps, because the shadow prices for the
■S’ type rows are allowed to be zero or positive, whilst the shadow prices
for the type rows are allowed to be positive, zero or negative.

The overall effect, as can be seen from Table A1.2, is to force cost„ to be
non-zero if possible.

akl in row ki Positive Positive Negative Negative

Row k type: IA *1 i ■■* row ■S * row *■* row

Unit Cost of
increasing x,
(COSTUP row)

MIN(-tolk,K„)
•akl

MIN{ -tol„, kk)
* •» 1

MAX<tolk,xk>
* *kl

MAX (tolk, Xk)
* a„,

Unit cost of
decreasing x,
(COSTDN row)

MAX (0, Kk)
*»i.i

MAX (tolk, Kk)
*•».

MIN { 0 , Rk}
* akl

MIN(-tolk,
M *

Shadow price
values

♦ve or zero -ve, zero,
or ♦ve

♦ve or zero -ve, zero,
or ♦ve

Table A1.2. Components of the per unit cost of changing the value of x,.

The heuristic calculates p, (the total per unit penalty for increasing x,) by
calculating the sum of the COSTUP row in Table A1.2 and p,' (the total per
unit penalty for decreasing x,) by calculating the sum of the COSTDN row of
Table A1.2.

Note that the value of p, is calculated for use with the 'negative* distance
ft and is hence always negative, whereas the value of p,' is calculated for use
with the 'positive* distance (1-f,) and is hence always positive.

App 1 (xxii)

Th« heuristic method used to calculate the per unit penalties for branching
on an integer-conatrained variable is easily extended to calculating
penalties for branching on Special Ordered Sets of Type One and Two (as
defined in section 7.3).

When estimating the degradation to the LP solution caused by making a branch
on a Special Ordered Set of Type One, a set member variable is chosen (as
described in section 7.3.1) and its value altered when a branch is made on
the set. This is a similar situation to that for branching on general
integer variables and thus the same heuristic method can be used by the
XPRESS-MP optimiser.

When estimating the degradation to the LP solution caused by making a branch
on a Special Ordered Set of Type Two, two set member variables are chosen (as
described in section 7.3.1) and their values altered when a branch is made on
the set. Since the effects of changing the values of two variables can still
be modelled by altering the right hand side of the constraints in which they
occur, the situation is again similar to that faced when branching on general
integers.

For both types of Special Ordered Set, the effects of altering the right hand
side are modelled for each row. The component degradations caused by altering
the individual rows are then summed to give the estimate of the total
degradation incurred if the set is branched upon.

The degradation caused by altering an individual row depends (as when
branching on general integers) upon the sign of the altered variable(s) in
the row and the type of the row. The entries in the COSTUP and COSTDN rows of
Table A1.2 above can thus be used to give an indication of what the per unit
movement penalties should be for the different combinations of row type and
coefficient sign that might occur.

App 1 (xxiii)

It should be noted however, that the row coefficients of the changed
variable(s) are already used in the construction of the ‘corrected* and
•uncorrected" vectors used to indicate the actual movement on the row for a
Special Ordered Set (as described in section 7.3.1). The actual per unit
movement penalties used for each row when dealing with Special Ordered Sets
must thus be as in Table Al.3 below.

a,, in row k: Positive Positive Negative Negative

Row k type: *£* row ■ ■■ row •S ■ row *■* row

Per Unit Cost
of increasing
xt on row k

MIN{ -toll,, Xk) MIN{ -tol,, xt) MAX(tol,, X„) MAX (tolk, X,)

Per Unit cost
of decreasing
x, on row k

MAX (0, Xk) MAX (tol,, x,) MIN{ 0 , X,) MIN
{ “ tol|,, X,)

Table Al.3. Per unit cost of changing the value of x, for row k.

App 1 (xxiv)

22
22

2ï
S

Structuras

Thia Appendix contains graphs showing tha solution timaa obtainad by attacking tha sat

RUN1 usas tha coda diacussad at tha baginning of Chaptar 5 (tha raaulta for which ara

RUN2 usas a similar coda to RUN1. axcapt that packad data atructuraa ara uaad to raduca

RUN3 «gain usas packad data structuras, but data is sant and racaivad Word by Word by tha
appropriata procaaaas on transputars, but paasad batwaan transputars aa four massagas
whosa langth dapands on tha aisa of tha problasi attackad and tha numbar of intagar
antitlas it containa.

RUN4 alao usas packad data structuraa, but data la sant. paasad and racaivad as four
massagas whosa langth dapands on tha sisa of tha problasi attackad and tha numbar of
intagar antitlas lt contalns.

Tast runs thraa and four can ba usad to axamina tha ovarhaada accumulatad at tha slava
and mastar procassora by sanding massagas of dit forant longths.

of tast probi« using four diffaront n-transputar codas.

hald in Appendix 2A) . This coda doaa not packad data structuras, and sands massagas

tha disk-roading and message-passing tii massagas ara still it one word at a

App 2 (xviii)

Comparison of Problem Solution Times
P rob lem A Z A

Number of Slave Transputers

WN 1

Fig. 2Ctl: Solution Time Comparisons for Problem AZA.

Com parison of Problem Solution Times
Problem A ZB

550

500

450

IT400
I 350
J 300

250

200

150

100 1 2 3 4 5 6 7 8Number of Sieve Transputer»
-•-RUN 1 — RUN 2 RUN 3 -•- RUN 4

rig. 2Ci2: Solution Time Comparisons for Problem AZB.

App 2 (x i x)

10
1 2 3 4 5 6 7 8

Number of Slava T rompu la r i

- • -R U N 1 — RUN 2 —•••— RUN 3 -a -R U N 4

rig. 2C 13 : Solution Time Comparisons for Problem AZC.

Com parison of Problem Solution Times
Problem HPW15

2.8

2.6

2.4

Ä 2.2

1.2
1

0.8
1 2 3 4 5 6 7 8

Numbar of Slava Iranaputara

RUN 1 RUN 2 RUN 3 -® - RUN 4

rig. 2C14 : Solution Time Comparisons for Problem HPW15.

App 2 (xx)

Comparison of Problem Solution Times
P rob lem N G T 274

Fig. 2Ci5: Solution Time Comparisons for Problem
INGT274.

Com parison of Problem Solution Times
Problem MRX

Fig. 2 C 1 6 : Solution Time Comparisons for Problem MRX.

App 2 (xxi)

1600

Comparison of Problem Solution Times
Prob lem MR1

Number of Slave T ranipuleri

RUN 1 RUN 2 RUN J RUN 4

Fig. 2C»7: Solution Time Comparisons for Problem MR1

Com parison o f Problem Solution Times
Problem CHAL

700

Number of Slove Tronepulera

RUN 1 RUN 2 -•* - RUN 3 RUN 4

F i g . 2 C 1 8 : Solution Time Comparisons for Problem CHAL

App 2 (xxi1)

Comparison of Problem Solution Times
P rob lem GY

500
450
400
1" ° f 300
Î250
P 200
150
100
50 1 2 3 4 5 6 7 8 Number of Stove Transputers

RUN 1 RUN 2 RUN 3 RUN 4

rig. 2 0 9 Solution Time Comparisons for Problem GY.

Com parison of Problem Solution Times
Problem INGT1345

400
350 _ A
300 A /\Î250

¿•200 /A\ / \ _1 150
100 V50 Ï — .r V Z- L ̂
0 1 2 3 4 5 6 7 8 Number of Stove Transputers

RUN 1 RUN 2 RUN 3 -m- RUN 4

rig. 2C 110 : Solution Time Comparisons for Problem
INGT1345.

App 2 (xxiii)

Comparison of Problem Solution Times
Prob lem DAAC

25

20

1”
I '°

5

0
1 2 3 4 5 6 7 8

Number of Slava Tronipufar*

RUN 1 RUN 2 -**- RUN 3 RUN 4

Fig. 2Ctll: Solution Time Comparisons for Problem DAAC.

Com parison of Problem Solution T imes
Problem C31

Fig. 2 C 1 12 : Solution Time Comparisons for Problem 031.

App 2 (xxiv)

6

Comparison of Problem Solution Times
P rob lem G 32

Fig. 2Cil3: Solution Time Comparisons for Problem G32.

Com parison of Problem Solution Times
Problem OK

Fig. 2 0 14: Solution Time Comparisons for Problem OK.

App 2 (xxv)

Comparison of Problem Solution Times
P rob lem SETX

1.8

1.6

1.4

v: '
I0-* V ------ -------

0.6 ?
0.4

0.2
11 2 3 4 5 6 7 8

f*iT4)er ot Slav« Trarwputsrs

RUN 1 RUN 2 H * - RUN 3 -m~ RUN 4

Tig. act 15: Solution Time Comparisons for Problem SETX.

Com parison of Problem So lution Times
Problem BAG882

450

400 '

350 1

«5 . 300

l 250
7 200

P 180

100

so

0
1

m _ ____ »

2 3 4 5 6 7 8
Numb«r of Slava Trooipularm

RUN 1 —4 - RUN 2 RUN 3 RUN 4

rig. 2Csl6:
B A G 8 8 2 .

Solution Time Comparisons for Problem

App 2 (xxvi)

Comparison of Problem Solution Times
Prob lem TAX1

35 00 -

30 00

25 00

j j 20 00

£ 1500

1000 — -

500 ■ —

0
1 2 3 4 5 6 7 8

Number of Slavs Transputer*

RUN 1 RUN 2 “ • * - RUN 3 RUN 4

rig. 2C 1 17 : Solution Time Comparisons for Problem TAXI

Com parison of Problem Solution Times
Problem TAX2

140

120

100

1 80
Ì *° \

40 V
20 -— — 1— 9 — 1— 1

0
1 2 3 4 5 6 7 8

Number of Slave Tranepufere

RUN 1 RUN 2 - * * - RUN 3 RUN 4

rig. 2 0 Iti Solution Time Comparisons for Problem TAX2.

App 2 (xxvii)

Comparison of Problem Solution Times
P rob lem CRAC

Numb« of Slav! Transput««

RUN 1 RUN 2 ~m ~ RUN 3 RUN 4

Fig. 2C1 19: Solution Time Comparisons for Problem CRAC .

Com parison of Problem Solution Times
Problem D0M1

Numb« of Slav* Transput««

RUN 1 “ RUN 2 RUN 3 RUN 4

F i g . 2 C 1 2 0 : Solution Time Comparisons for Problem DOMI.

App 2 (xxviii)

Fig. 2Ci21: Solution Time Comparisons for Problem MCA.

Com parison o f Problem Solution Times
Problem MOO78 8

60

Fig. 2 0 22: Solution Time Comparisons for Problem
MO0788.

App 2 (xxix)

App J (i)

1 2 I 5 6 7
tiae 1372.2 nod«« SIS
speedup 1.00
•ol 4
inf 234
cutl 1
cut2 19
cutl 0
cut4 0
cuts 0
attack 2S7
navar 0
twice 2S6
maxtptr 1
avtptr 1

14.14 489.99 179
537 517
1.89 2.80 1

6 7
246 246

0 0
268 268

0 0
1 0267 268
2 3

1.93 2.95 1

308.3 274.62 218.17 220.73
543 579 575 575

4.45 5.00 5.76 6.22

5.49 6.41
Tabla 2i7J: Reaulta for m l uaing Noda Selection Strategy 4

time 539.8 127.59 250.95 194
---- Ill 125 133

1.00 1.65 2.15

1.93 2.86

167.74 180.87 190.77 175.82
147 197 209 215

1.22 2.98 2.83 3.07

5.8 6.54
Table 3.74 Reaulta for CHAL uaing Noda Selection Strategy 4.

time 294.57 111.86 230 347.89 151.74 149.06 112.17 182.94
421 551 271 263 657

0.82 0.81 1.91 2.15 0.74

Table 1.79 Reaulta for OY i
5.1 5.16

'tion Strategy 4

App 3 (X X V I)

tptra

aol
inf
c u d
cut2
cut 3
cut 4
cuts
attack

1.45 1.83

Tabi* Ji7*: Raaulta for Q32 uaing Nod» salaction Strategy 4

127.27 84.2S 44.16 53.14 58.44
2.20 2.15 2.88

Inf
cuti cut 2
cut3
cut4
c u ts
attack

avtptr 1 1.73 2.28 2.6 2.86
Tabi# 3180 Raaulta for OK uaing Nod# S#l#ctl

0.82 0.55 1.4» 0.5 0.5 0.44
25 25 25 25

1.61 2.40 2.40 2.69 2.64 2.64 3.00

1.73 2.12
Tabi* Siti: Raaulta for SETX uaing Nod# 8#l#ction Strategy 4

App 3 (xxviii)

i i i

Sol nodal
Inf nodal
Cut 1
Cut 2
Cut 3
Cut 4
Cut 5
Attack
Max tptr
Av tptr 1.73 2.34 a .42 2.62 2.62 2.6

1.09 0.72 0.55 0.4» 0.44 0.49 0.4

Sol nodaa
Inf nodaa
Cut 1
Cut 2
Cut 3
Cut
Cut 5
Attack
Max tptr
Av tptr 1.62 2.38 2.69 2.69 2.69 2.6
Tatola 4Bi6 Problem SETX;Branching prlorltiaa uaed.Flxed saparation atrategy.Node aalactlon atratagy 2 uaad.

Cut 1
Cut 2
Cut 3
Cut 4
Cut S
Attack
Max tptr
Av tptr 1.62 2.23 2.6» 2.85 2.85 2.8

■ uaad;Pixad aaparatlon atratagy.Noda

0.66 0.55 0.5 0.55

Inf nodaa
Cut 1
Cut 2
Cut 3
Cut 4
Cut 5
Attack
Max tptr
Av tptr 1.58 2.23 2.73 2.63 2.63 2.63
Tabla 4a 18 Problem SETX;Branching prloritiea uaed;Plxed aaparatlon atrategy.Node aalactlon atratagy 4 uaad.

App 4 (x)

0.6 0.5S

Inf nodes
Cue 1Cue 2
Cue 1 cue 4
cue s
Attack
Max tptr

2.59 2.5 2.6

0.5 0.55

2.96 2.96
Tabla 4B■ 9 Problem SETX.No branching priorities used.Beale and Porrest separation
strategyiNode selection strategy 1 used.

0.94 0.66 0.55 0.44 0.49 0.5

Cut 1
Cut 2
cue 3
Cut 4
Cut 5

0.55 0.55

2.57 2.42 2.56 2.93 2.93
Table 4Bi 10 Problem SETX;No branching priorities used; Beale and rorreat separation
strategyiNode selection strategy 2 used.

Inf nodes
Cut 1
Cut 2
Cut 3
Cut 4
Cut 5
Attack
Max tptr
Av tptr 1.62 2.03 2.39 2.64 2.6 2.69 2 69
Table 4Bi 11 Problem SETX.No branching priorities usedjBeale and Porrest separation
atrategyiNode selection strategy 3 used.
Tptrs 1 2 3 4 5 6 7 8

Inf nod«
Cut 1
Cut 2
Cut 3
Cut 4
Cut 5
Attack
Max tptr
Av tptr 1.62 2.03

382
15
7000113
4

2.32

36 38
2 3
13 19
9 20 10 00 01 1
12 13
5 4

2.71 2.79
Table 4Bi 12 Problem SBTXiNo branching priorities usediBeale and Porreat separation
strategyiNode selection strategy 4 used.

App 4 (xi)

i a 7 a
Tim« 0.«7
Sol nodes 1
Inf nod«a 7
cut i a
cut a «
Cut 3 0
Cut 4 0
Cut 5 0
Attack 7
Max tptr 1
Av tptr 1

10 10

0.55 0.55
39 39
3 3

Tabl« «a I 13 Problem SETX;Branching prior It lea used;Beale and Porreat separat
strategy.Nod« a«l«ction strategy 1 used
Tptra 5 6 7 8
Timm o.aa
Sol nod«a 1
Inf nod«a 7
Cut 1 3
Cut 2 4
Cut 3 0
Cut 4 0
Cut 5 0
Attack 7
Max tptr 1
Av tptr 1

o.ca
39

i i0 0
2

104
2.4

0.55 0.55 0.55
29 29 39
3 3 3
9 9 9
4 4 41 1 1 0 0 0
2 2 3

10 10 10
4 4 4

2.4 2.4 2.4
Tabl« 4Bt14 Problem SBTX;Branching priorities us*d;B«al« and Porreat aaparat
strategy;Nod« selection strategy 2 used.

1 2 3 4 5 6 7 8

Sol nod«i
Inf nod«i
Cut 1
Cut 2
Cut 3
Cut 4
Cut 5
Attack
Max tptr
Av tptr

TiiM 0.87
Nodaa 21
Sol nod«a 1
Inf nod«a 7
Cut 1 2
Cut 2 4
Cut 3 0
Cut 4 0
Cut 5 0
Attack 7
Max tptr 1
Av tptr 1

0.55 0.49

2.5 2.62

0.55 0.55

2.62 2.48
Tabl« 4Bi16 Problem SBTX;Branching priorities uaed;Beale and Porraat aaparati
strategy;Nod« selection strategy 4 used.

App 4 (xii)

App 4 (xiii)

62.

Inf nodes
Cut 1
Cut 2
Cut 3
Cut 6
Cut 5
Attack
Max tptr
Av tptr

Cut 1
Cut 2
Cut 3
Cut «
Cut 9

38.94 33.31 21.0

4.46 4.62
rlorities usad;Beala anc rreat separation

20.98 24.8 24.88 22.3

i used;Beale and Forrest separation

Sol node;
Inf nodei
Cut 1
Cut 2
Cut 3
Cut 4
Cut 5
Attack
Max tptr
Av tptr

90.25 50.26 33.56 35.04 35.04

1.85 2.72 3.33

35.1 20.98

lies used,Beale and Forrest separation

72.43 44.27 36.52 35.03 33.04 35.03 20.92

3.29 3.93 4.39 3.26
Table 6Bi32 Problem DOMI ; Branching priorities used;Beale and Forrest separation
strategy;Node selection strategy 4 used.

App 4 (xvi)

App 4 (xvii)

81.9 36.09 11.3 33.39 33.46 39.4« 39.05 39.16

S.33 3.98
Table 4Bi37 Problem MCA.Branching prioriclea uaediPixed separation strategy;Node

Time 81.93 16.19 39.1
Nodes 41 39 4
to l I

Cut 1
Cut 3
Cut 3
Cut 4
Cut 3 Attack
Max tptr
Av tptr

33.39 33.33 39.77 39.11 38.43

1.7 3.7« 3.63 4.31
itching priorities '

3.33 3.93
ition strategy;Node

183.68 64.54 33.15 40.81 38.31

1.89 3.73 3.54

30.7 31.

3.17 6.04
i uaed;Pixed separation strategy;»

«1.3 38.56 31.74 36.43 39.71 38.51 39.11

i used;Fixed separation strategy;Node

App 4 (xviii)

•2.17 16.2 31.26 23.49 23.34 29.•! 29.22 28.94
Sol nodai
Cut 1
Cut 2
Cut 3
Cut 4
Cut 3
Attack
Max tptr
Av tptr 1.7 2.73 3.68 4.23

•2.16 16.36 29.28 23.46 29.3

i uaadiBaala and Porraat i

29.91 29.11 29.11
Sol nodaa
Inf nodaa
Cut 1
Cut 2
Cut 3
Cut 4
Cut 3
Attack
Max tptr
Av tptr 2.7 1.63 4.42

I uaadiBaala and Porrast i

Cut 1
Cut 2
Cut 1
Cut 3
Attack
Max tptr
Av tptr

64.76 34.31 40.86 29.22 31.69 11.64 32.11

1.89 2.81 4.28 3.13
i uaadiBaala and Porrast

Tima 81.68
Nodaa 26
Sol nodaa 2
Inf nodas 2
Cut 1 0
Cut 2 11
Cut 1 0
Cut 4 0
Cut 3 0
Attack 11
Max tptr 1
Av tptr 1

41.23 28.67 11.73 24.11 29.66 10.92

1.92 2.74 4.14 3.17

29.44
341
6

10
9
400

22
•6.32

Tabla 4Si48 Problam MCA;Branching priorltiaa uaadiBaala and Porraat aaparation
at ratagy; Nods aalaction atratsgy 4 usad.

App 4 (xx)

108.69 61.71 44.21 19.13 38.78 18.67 18.62 19.77

105.29 52.62 44.11 18.46 17.74 14.55 17.11

Inf nodai
Cut 1
Cut 2
Cut 1
Cut 4
Cut 5
Attack
Max tptr
Av tptr 1.89 2.61 1.22 1.71 4.06 4.41 4.42

111.94 61.74 112.92 69.53 45.1 44.33 41.01 51.79

1.81 2.54 1.61 4.08 4.26 4.45
uaadirixad aapara

T l M 245.61 121.47 50.11 43.61 42.51 43.29 42.14 44.82

Inf nodai
Cut 1
Cut 2
Cut 1
Cut 4
Cut 5
Attack
Max tptr
Av tptr 1.85 2.42 1.11 1.77

uaadirixad aaparatlon

App 4 (xxi)

96.23 56.7« 37.7« 35.65 34.11 36.1« 36.2 36.09

2.59 3.08

1.03 56.85 34.22 34.71 36.2 36.36

undiBul* and Porraat

1.32 83.1 49.87 «5.2 41.41 «3.9« 43.12

■!•» uaad.Baala and Porraat

59.82 35.32

1.85 2.64 3.83 4.18 3.78 4.41
tala and Porraat

App 4 (xxiii)

T i m
Nod« a
Sol nod«a
Inf nodaa
Cut 1
cut a
Cut 3
Cut 4
Cut S
Attack
Max tptr
Av tptr
Tabla «■>
atratagy.-Nod« a«l«c

Tptra
140.67 69.75 49.48 44.21

2.69 3.38

40.86 41.31

4.26 4.25 4.35

rim 133.9 >.09 48.72 37.57 38.67 33.23 33.12 39.82

Cut 1
Cut 2
Cut 3
Cut 4
Cut 5
Attack
Max tptr
Av tptr 1.92 2.73 3.32 3.78

Inf nodaa
Cut 1
Cut 2
Cut 3
Cut 4
Cut 5
Attack
Max tptr
Av tptr

80.25 55.3 38.72 52.45 50.59 41.14

3.86 4.03 4.17 4.52
llaa uaadiBaala and Format ■

42.68 54.87 48.56

1.86 2.68 3.9 4.08 4.34 4.42
tala and Format reparation

A p p 4 (XXIV)

App 4 (XXV)

22W A 11®9,5 M«.0« 703.33 <98.48 694.2712 3667 3653 364821 716.84 716.552761 3707

1102 1130 1398
2 3 4

1.84 2.54 3.35
1288 1387

1.53 3.52

“ !:.r *” ■<» «« >.
Inf nod<
Cut 1
Cut 2
Cut 3
Cut 4
Cut 5
Attack

2473 3365

1199 1145

n atrategyiNode

” 5 2 « la$2oi 7,2;?i 722 J i 602 17 573 05 *48.83 596.76 2845 3008 2437 3566 34X1 2363 2584 2615

1376 1464 1180 1343

»175 Problem MINE2.Branching prlorltlaa uaed;Fixed separa on atratagy 3 uaed. t r a t agy; Node

l£. “»« “S5.J ”mJ5 »«•;!! «? « »’? »■2408 3393 2479 2306

1035 1358

1446 1448 1183 ISSO1 2 3 41 1 82 3.61 3.35
1140 1155 1196 1115

5 6 7 82.5 3.71 3.73 3.67
>aratlon strategy,h

App 4 (xxvii)

88«.57 «78.73 345.65 286.27 277.38 273.48 271.72 270.«
1011 1023 1059 1069 1117 1139 1165 11«

Inf node«
Cut 1
Cut 2
Cut 3
Cut 4
Cut 5
Attack
Max tptr
Av tptr 1.86 2.63 3.36 3.83 4.03 4.1« 4.0C

!»i77 Problem MINE2,No branching prioritl«« used.Be«
:lon strategy; Node selection strategy 1 used. a and Porraat

ima 612.48 314.34 227.56 211.84 184 183.95

ila and Porrast

729.9« 507.2« 282.65 252.82 186.26 208.28 188.84 191.75

Inf nodei
Cut 1
Cut 2
Cut 3
Cut 4
Cut 5
Attack
Max tptr
Av tptr 1.85 2.63 3.78 4.03

ilaa used;Beale and Porrast

973.4« 519.49 393.38 355.0« 267.43 260.89 339.11 314.78
1059 1129 1183 1349 1153 1233 1481 1386

Inf nodea
Cut 1
Cut 2
Cut 3
Cut 4
Cut 5
Attack
Max tptr
Av tptr
Table «8160 Problem MINE2;No branching priorities usedjBeala and Porraat
separation strategy.Node aalaction strategy 4 used.

App 4 (xxviii)

“ Si! “ id! "ii8 i »•:»162« 1485
Ini nodai
CuC 1
Cut 2
Cue 3
Cue 4
Cue 5
Attack
Max tptr
Av tptr 3.6 3.66

Tptr«
Tim*Node«
Sol nodaa
Inf nodaa
Cut 1
Cut 2
cue 3
cue 4
Cut 5
Attack
Max tptr
Av eper

” !i!i ” !>!! “ JiS **?;H " M i >••:!’ >«•»«1388 1214 1348 1439

3.24 3.61 3.67 3.69

J i ^ : 2 i S S S t ^ ^ 47J55Tul- — — - -p-.eion

12i«2 "M ! 47?«2S
Inf nodai
Cue l
Cut 2
Cut 3
Cue 4
cue s
Attack
Max tptr
Av tptr 3.81 3.72

Tima
Nodas
Sol nodaa
Inf nodas
Cut 1
Cut 2
Cut 3
Cut 4
Cut 5
Attack
Max tptr
Av tptr 3.78 3.83

App 4 (xxix)

