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Summary

Streptomyces scabies has been attributed to be the causal agent of common 
scab, a superficial disease of the potato. Confusion over the taxonomic 
position of the organism arose as a result of the erroneous designation of a 
type strain that did not match the original description. This confusion was 
compounded by the deposition of many taxonomically distinct pathogenic 
strains in culture collections under the name of Streptomyces scabies. These 
studies attempted to clarify the taxonomic position of this organism. Common 
scab strains were characterised on the basis of phenotypic variation and 
hybridization to 16S rRNA probes. Pathogenic strains appeared to conform to 
three centres of variation similar to the S.albidoflavus, S.rochei and 
S.diastaticus Streptomyces spp. groups. The pathogenicity of putative 
pathogens was investigated and the pathogenic basis to the taxonomically 
heterogeneous group confirmed. Further studies focused on the development 
and application of approaches to the monitoring and detection of these strains 

in soil. Strain, ISP5078 has been well characterised and was selected as a 
model strain to pursue these objectives. Monitoring and detection strategies 
evaluated included: screening ISP5078 for selective phenotypic markers (such 

as antibiotic resistance) to assist in its selective recovery from soil and 
attempting to insert the marker genes xylE (novel to the Streptomyces) and 

nptll (a kanamycin resistance determinant) into the chromosome of strain 
ISP5078. Studies were also initiated to apply 16S rRNA targeted 
oligonucleotide probes to the monitoring of streptomycete inoculants in the 

natural environment. Studies focused on the development and evaluation of a 
method for the extraction and recovery of 16S ribosomal RNA from soil and 
the application of 16S rRNA probes to in situ hybridizations in the analysis of 
the lifecycle of scab-causing Streptomyces strains in situ. The influence of the 

potato rhizosphere on common scab strain populations was assessed by 

applying specific strategies to follow the fate of ISPS078 in sterile soil with 

and without potato plants. The lifecycle and activity of scab-causing 
streptomycetes in association with potatoes and soil was investigated using 
scanning electron microscopy and in situ hybridization.

I
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1.1 The actinomycètes

Actinomycètes are Gram-positive bacteria with a high guanine plus cytosine 

(%G C) content in their DNA (>55%). The group encompasses genera 

exhibiting a wide range of morphological complexity extending from the 

coccus (Micrococcus) and rod-coccus cycle (Arthrobacter) through 

fragmenting hyphal forms (Nocardia, Rothia) to genera with a permanent and 

highly differentiated branched mycelium (Micromonospora, Streptomyces) 

(Goodfellow & Williams, 1983). Over 45 genera have now been validly 

described (McCarthy & Williams, 1990). Actinomycètes form branching 

hyphae (usually 0.5 to 1.0 pm diameter) and have been placed in the order of 

Actinomycetales (Williams & Wellington, 1982). The order has been 

subdivided into a number of families, which include the family 

Streptomycetae. The Streptomycetae is composed of aerobic actinomycètes 

that form a non-fragmenting substrate mycelium, which may bear spores 

(Microellobosporia, Elytrosporangium, Kitasatoa and occasionally 

Streptomyces) however, most genera produce a well-developed aerial 

mycelium bearing chains of arthrospores enclosed in a thin fibrous sheath 

(Cross & Goodfellow, 1973).

1.2 Approaches to the characterization of actinomycètes

1.2.1 Morphology

Morphology has played an important part in the delimitation of actinomycète 

genera (Williams & Wellington, 1980) and in distinguishing Streptomyces 

from other sporing actinomycètes (Locci, 1988). The distinctive morphology 

of the Streptomyces sporing structures, both in terms of spore chain 

morphology and spore surface ornamentation have been widely used in the 

classification of Streptomyces species groups (Pridham et al., 1958; Tresner et 

al., 1961; Williams & Wellington, 1980; Locci,1988).

-  2 -
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1.2 2  Chemotaxonomic approaches

The importance of morphological characters to actinomycète taxonomy has 

been reduced with the development of chemotaxonomic approaches 

(Lechevalier et al. 1981; Minnikin & Goodfellow, 1981; Saddler et al. 1987; 

O’Donnell, 1988). Most schemes for the identification of genera are currently 

based on morphology, cell wall composition and other chemotaxonomic 

characters. The importance of diagnostic morphological and chemotaxonomic 

characters vary according to the particular genera under study. Hence 

morphological characters have been important in distinguishing 

streptomycetes from other sporoactinomycetes with a similar peptidoglycan 

cell wall structure. The actinomycète genera have been divided up into seven 

cell wall chemotypes (Lechevalier & Lechevalier, 1970). The isomeric form 

of diaminopimelic acid (meso or LL-DAP) and presence of whole cell sugars 

has been useful in the separation of certain Nocardia and Actinomadura from 

the Streptomyces as species of these genera may be morphologically alike 

(Wellington & Cross, 1983). Streptomycetes are characterised by the L- 

isomer of DAP and glycine in whole-cell hydrolysates, termed wall chemotype 

I (Lechevalier & Lechevalier, 1970).

Nocardioform genera are distinguished primarily by their cell wall chemistry 

as their morphology is variable and often not diagnostic. The distribution of 

mycolic acids has been used to distinguish between Mycobacteria, Nocardia 

and Corynebacterium (Minnikin et al. 1975; Minnikin & Goodfellow, 1981). 

Polar lipids, fatty acids and menaquinone patterns have also provided valuable 

information in the characterization of actinomycètes (Wellington & Cross, 

1983).

- 3 -
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Manchester et al. (1990) obtained polyacrylamide gel electrophoresis banding 

patterns of whole-cell proteins for selected representatives from the major 

Streptomyces and Streptoverticillium cluster groups, in order to determine the 

potential of this approach in streptomycete systematics. Protein patterns 

supported phenotypic and chemotaxonomic classification for the phena 1A 

S.albidoflavus, IB S.annulatus and 18 S.cyaneus. However other groups 

including phenon 55, Streptoverticillium griseocarneceum appeared 

electrophoretically heterogeneous.

1 J J  Numerical taxonomic approaches

Reliance or emphasis on one particular character for identification has 

repeatedly caused problems in the development of classification systems 

(Silvestri et al., 1962). Recent contributions to microbial taxonomy have 

emphasised the need for polythetic as opposed to monothetic classifications 

(Sneath, 1962), whereby identifications are determined on the basis of many 

equally weighted characters simultaneously. This approach has been termed 

numerical taxonomy. Numerical taxonomic schemes require extensive 

statistical analysis both for their construction and for the assessment of 

identifications. Much work on the development of these systems has been 

performed by Sneath and colleagues (Sneath, 1957a;b; Sneath, 1962). 

Divisions into taxa at various similarity levels were made on the basis of 

correlated features. The numerical taxonomic approach involves the 

determination of a large number, at least 100 characters (Sneath, 1962), all are 

given equal weight with the proportion of characters common to two 

organisms representative of their overall similarity (expressed as % S values) 

(Wellington & Cross, 1983).

The principles of numerical taxonomy were applied to the identification of
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actinomycètes by Silvestri et al. (1962) who assigned 190 streptomycetes to 25 

centres of variation. This approach has subsequently been adopted by 

Williams et al. (1983a), Langham et al. (1989) & Kamper et al. (1991) for the 

further reclassification of the Streptomyces genus. Numerical classification 

has also been applied to the identification of other genera (reviewed by 

Wellington & Cross, 1983) and recently included the Actinoplanes 

(Goodfellow et al., 1990).

1.2.4 Nucleic acid approaches

Actinomycètes have a high content of guanine and cytosine (%GC), which 

may be characteristic for certain taxa and has been of some value in the 

delimitation of certain genera such as the nocardioform taxa (Wellington & 

Cross, 1983). Streptomyces have a mol % GC of between 69 and 73% 

(Williams et al., 1989). DNA:DNA reassociation studies have also been 

applied to the classification of actinomycètes, where they have been applied to 

the characterization of Rhodococcus species (Mordarski et al., 1977). 

Okanishi et al. (1972) studied the DNA homologies within the group of strains 

described as S.griseus on the basis of 11 phenetic diagnostic characters. The 

authors identified homology values ranging from 36 to 104% with DNA from 

the type strain (ISP 5236), indicating the great genetic heterogeneity within the 

group. Mordarski et al. (1986) performed DNA homology studies on a larger 

number of streptomycetes from cluster 1, S.albidoflavus (Williams et al., 

1983a). Partial congruence was demonstrated between the numerical phenetic 

classifications of Williams et al. (1983a) and the DNA homology studies. The 

work highlighted problems within Streptomyces systematics and that different 

taxonomic approaches imposed alternative structures on the organisation of 

strains within the genus.
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DNA relatedness has recently been applied to members of S.ipomoea, the 

causative agent for soil rot or pox of sweet potato (Labeda & Lyons, 1992) . A 

group of 25 strains isolated from the United states and Japan exhibited high 

average values of relatedness (85%) to the type strain and much lower values 

of DNA relatedness 39 and 17% to other plant pathogenic species and other 

morphologically similar groups of Streptomyces, thus indicating the 

distinctness of this group of strains. DNA relatedness analysis has also 

recently been applied to a diverse collection of S.scabies strains (Healy & 

Lambert, 1991) (Section 3.1).

Stackebrandt et al. (1981; 1983) have investigated the relatedness of a number 

of type species representing various actinomycète genera using DNA : DNA 

homologies and RNA cistron similarities. DNA and RNA homologies have 

allowed the actinomycète genera to be grouped into three distinct clusters 

(Stackebrandt et al., 1981). With Streptomyces, Chainia, Kitasatoa, 

Streptoverticillium, Microbellosporia, Elytrospoangium and 

Actinosporangium forming one tight cluster (Stackebrandt et al., 1981) and 

now included within the Streptomyces genus (Goodfellow at al., 1986 abed). 

The grouping of actinomycète genera on the basis of molecular homologies 

was supported by several physiological and biochemical properties of 

taxonomic value (Stackebrandt et al., 1983). Gladek et al. (1985) used 23S 

rRNA : DNA pairing studies to investigate the relationships between members 

of the Streptomyces genus (Williams et al., 1983a) with S.lavendulae and 

Streptoverticillium strains. High similarity values were obtained between the 

three groups of strains indicating their high taxonomic relatedness. The highly 

conserved nature of the rRNA molecules allows the elucidation of more distant 

relationships than is possible by determination of DNA : DNA homologies. 

Taxospecies that show no DNA : DNA homology can be assigned to distinct
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homology groups on the basis of RNA : DNA pairing studies (Mordarski et 

al., 1981). This approach has been of value in supporting the integrity of the 

Rhodococcus group and indicating its close relationship with Mycobacterium, 

Nocardia and Streptomyces (Mordarski et al., 1980). 16S rRNA targeted

oligonucleotide probes specific for a region on the 16S RNA molecule 

diagnostic for the Streptomyces genus have been used in conjunction with 

phenotypic data to demonstrate the proximity of Kitasatosporia strains with 

the Streptomyces and to propose the unification of the Kitasatosporia strains 

with the Streptomyces genus (Wellington et al., 1992).

Confirmation of suprageneric actinomycète groupings and elucidation of 

intrageneric groupings has been achieved by more detailed analysis of the 16S 

rRNA sequence data (Stackebrandt & Charfreitag, 1990; Witt & Stackebrandt, 

1990; Stackebrandt et al., 1991). Comparison and alignment of partial 16S 

rRNA sequences has provided evidence in support of the unification of the 

Streptoverticillium and Streptomyces genera (Witt & Stackebrandt, 1990) as 

well as unravelling phylogenetic relationships within the Actinomyces genus 

(Stackebrandt & Charfreitag, 1990) and amongst specific wall chemotype IV 

actinomycètes which lack mycolic acids (Embley et al., 1988).

A limited number of DNA restriction fragment length polymorphism (RFLP) 

studies have been performed on actinomycètes (Hinterman et al., 1981; 

Crameri et al., 1983; Bloom et al., 1989a). Crameri et al. (1983) and Dobritsa 

(1985) have demonstrated RFLP patterns to be strain specific, while 

Hinterman et al. (1981) have shown RFLP patterns to be stable markers under 

various growth conditions. Bloom et al. (1989a) assessed the value of RFLPs 

in the analysis of Frankia isolates which are not amenable to traditional 

actinomycète characterization as there appear to be few morphological
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differences between isolates and physiological differentiation has proved 

unsatisfactory. RFLP analysis was correlated with DNA : DNA homology 

studies. Each isolate produced a unique RFLP pattern and isolates identified 

to be closely related via DNA homologies appeared to have related RFLP 

patterns. 16 Isolates were clearly separable into 9 groups on the basis of these 

patterns. These gel groups could be correlated with specific patterns of 

carbohydrate and organic acid utilisation, the only phenotypic characters 

identified to allow classification of isolates into separate groups (Bloom et al., 

1989b).

1.2.5 Actinophage host specificity

Wellington & Williams (1981) investigated the limits and relationships of the 

Streptomyces genus with respect to the phage activity spectra. The host 

specifity of phages isolated to Streptomyces strains and other cell wall 

chemotype I genera were determined. Phage isolated to Streptomyces strains 

appeared able to lyse a range of other genera of the same wall chemotype I. 

These genera all fell within the phenetically defined Streptomyces genus 

described by Williams et al. (1981; 1983a) with the exception of the 

Kitasatasoa and Streptoverticillium strains. The latter two genera showed wall 

chemotype I reactions with the phage but were not included in the 

Streptomyces genus (Williams et al., 1981). Hence while the phenetic 

delimitation of the Streptomyces genus corresponded largely with phage 

activity spectra it differed for these two wall chemotype I genera. These 

findings were confirmed by the activity spectra of phage isolated to non- 

streptomycete wall chemotype I genera. Both sets of phage were only active 

on wall chemotype I genera supporting the phenetic conclusions of Williams et 

al. (1981) and the inclusion of many of these other genera within the 

Streptomyces genus.
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1.3 The ecology of actinomycètes

Actinomycètes are found widely distributed throughout the natural 

environment. Although they are most often associated with the solid 

constituents of litter, humus, dung, soil and rock particles (Lacey, 1973), they 

have also been isolated from aquatic environments (Weyland, 1981). Much 

controversy has surrounded the origin of actinomycètes isolated from aquatic 

environments and whether they did indeed have a terrestrial origin and were 

merely washed into marine and fresh water localities (Weyland & Helmke, 

1988; Jensen et al., 1991). Actinomycètes have also been isolated from 

atmospheric environmental samples, as many actinomycètes produce 

propagules that serve as air-borne agents of dispersal and survival (McCarthy 

& Williams, 1990).

However, the soil is considered to be their most important habitat (Williams 

&Wellington, 1982). Viable counts of several millions per gram are common, 

with representatives from over 90% of actinomycète genera having been 

isolated from soil. Streptomyces have been attributed to be the most abundant 

and important genera of the actinomycètes in the soil (Williams, 1978) hence 

many studies on the ecology of actinomycètes have actually focused on the 

ecology of streptomycetes. Other genera that have been frequently isolated 

from soils include, Micromonospora, Rhodococcus and Streptosporangium. 

Many soil isolates have been found to be prolific producers of antibiotics and 

other secondary metabolites in vitro (McCarthy & Williams, 1990). In 

contrast Thermoactinomyces species are frequently isolated from composts 

and other self heating materials (Williams & Wellington, 1982). Various 

approaches to the selective isolation of specific actinomycète genera from 

terrestrial environments have been described (Williams & Wellington, 1982;
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Williams et al., 1983a; McCarthy & Williams, 1990).

Although the majority of actinomycètes that participate in the complex 

nutrient cycling processes are purely saprophytic microorganisms, 

actinomycètes may also form parasitic and symbiotic associations with plants 

or animals (Williams et al., 1983a). Actinomycètes have been implicated in a 

number of medical conditions including, tuberculosis, leprosy, mycetoma, 

generalised systemic infections, dermaides as well as allergic pneumonitis 

reactions such as those of farmer’s lung, mushroom worker’s lung and 

bagassosis. In contrast, they have been attributed to cause the plant diseases of 

common scab of potatoes and rot of sweet potatoes (Kutzner, 1981) and blue 

berry (Lechavalier, 1981). The symbiotic associations between plants and 

actinomycètes that have received most attention are those involving the 

endophyte Frankia which forms actinorhizal associations via the formation of 

root nodules and fixation of nitrogen in over 200 species of angiosperm plants 

(Lechevalier, 1988). The ubiquity of actinomycètes has been demonstrated by 

their isolation from a diverse set of environments including: the intestines of 

certain arthropods, disintegrating rubber, oilfield ground water and decaying 

wood (McCarthy & Williams, 1990).

1.3.1 The Streptomyces lifecycle

1.3.1.1 Streptomyces in soil

Homogenisation experiments and scanning electron microscopy studies 

indicate that the vast majority of streptomycete colonies isolated from soils by 

viable plating originate from spores (Goodfellow & Simpson, 198S). 

Furthermore the growth of Streptomyces strains in soil is discontinuous, with 

the microbe residing in soil for long periods as arthospores or chlamydospores 

only germinating in the presence of exogeneous nutrients. Scanning electron
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microscopy studies show that particulate organic substances, such as root 

fragments and fungal hyphae are rapidly colonised by streptomycete hyphae 

(Mayfield et al„ 1972). Sporulating streptomycete hyphae appear as nutrients 

are depleted (Goodfellow & Simpson, 1985). Streptomycete spores although 

not as resistant to unfavourable conditions as Bacillus endospores do appear to 

be important to longevity and survival (Williams et al., 1972). Spores usually 

have thicker cell walls than hyphal cells and the presence of an outer sheath 

contributes to make spores highly hydrophobic. The highly hydrophobic 

nature of the spore has been interpreted to signify that spores are dispersed 

either by air or on the surface of water droplets, rather than by water 

percolating through the soil (Williams, 1976). It has also been suggested that 

the hydrophobic nature of spores may assist in their adherence and consequent 

transport via the cuticles of soil arthropods (Ruddick & Williams, 1972).

Streptomyces populations like other soil microbes have been observed to be 

distributed unevenly in the heterogeneous soil environment. Microcolonies 

have been associated with particles of organic matter. The rhizosphere and 

earthworm casts have been considered important microsites for Streptomyces 

(Kutzner, 1981).

Comparison of the actinomycete lifecycle in soil and on the surface of 

artificial media indicate that a morphologically similar process occurs under 

both conditions. The developmental processes include polarised growth and 

mycelial organisation followed by sporulation and the aerial dispersal of spore 

propagules. The filamentous (and metabolically active) growth form appears 

well adapted to the colonisation of solid surfaces (Locci, 1988). However, 

such filamentous branching hyphae are severely restricted in their capabilities 

for dispersion. Hence dispersal is achieved by the fragmentation of mycelium
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and the formation of aerial hyphae bearing spores. Hyphal growth has rarely 

been observed in natural soils, rather actinomycetes are often observed in soils 

as short spore chains indicative of their recent production (Locci, 1988). 

When hyphae are observed in situ they are often thinner and sometimes 

reduced to small pads when compared to those observed under artificial in 

vitro conditions (Mayfield et al., 1972). Under the nutrient limiting conditions 

of soil Streptomyces have been observed to participate in microcycle 

sporulation i.e. the production of spore chains from germinating spores and 

accompanied by minimal vegetative growth (Locci, 1988). Such microcycle 

sporulation is considered to be dependent (in part) on the nutrient limited 

conditions in soil (Lloyd, 1969; Locci, 1988).

A number of reports exist on the poor germination of streptomycete spores in 

natural non-sterile soils (Lloyd, 1969; Mayfield et al., 1972). Lloyd (1969) 

hypothesised that in order for spores to serve as propagules for survival, they 

should not participate in synchronous germination, but rather germinate when 

conditions are favourable. Favourable conditions might be determined by the 

availability of particular nutrients and the absence of antagonistic 

microorganisms. He obtained the following frequencies of germination of 

spores: garden soil 1 to 7%, pasture soil 2 to 14% and wheat soil 2 to 11%, 

these compared with 65 to 90% germination in sterilized garden or pasture 

soil.

Streptomycetes have been widely reported to be active producers of hydrolytic 

enzymes, however the ecological significance of such production remains 

uncertain (Goodfellow & Simpson, 1985). However, streptomycetes are 

considered to have an important role in the degradation of relatively complex, 

recalcitrant polymers that occur naturally in plant litter and soil (Lacey, 1973).
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Streptomycetes have been shown to be involved in cellulose, pectin, starch, 

xylan, lignin and chitin degradation and certain species have been found to be 

able to degrade compounds such as herbicides and plastics (Goodfellow & 

Simpson, 1985).

1.3.1.2 Streptomyces associated with plants

Rhizosphere effects, quantified as R : S ratios i.e. the proportion of bacteria 

isolated from soil in association with plant roots (R) as opposed to the bulk 

soil (S) have been reported for streptomycete populations and a number of 

plants. For example, soya and maize plants were found to harbour 10 to 18 

times as many actinomycètes in their rhizosphere (Abraham & Herr, 1964). A 

number of workers have indicated that high R : S ratios of up to 50:1 have 

been associated with older plant roots (Watson & Williams, 1974; Williams, 

1976), supporting the view that streptomycetes do not compete successfully 

for the single carbon compounds exuded by young roots but grow on senescent 

root tissues which contain more complex molecules (Goodfellow & Simpson, 

1985).

Qualitative differences in the actinomycète populations observed in the 

rhizosphere as opposed to those in the bulk soil have been observed, hence 

Abraham & Herr (1964) identified more actinomycètes able to hydrolyse 

starch in com and soy bean rhizospheres. In addition Agate & Bhat (1964) 

found more pectinolytic actinomycètes and glutamate requiring Nocardia in 

the rhizosphere of mature plants of Calotropis gigantea.

Some evidence exists for the production of plant growth regulators such as 

auxins and giberellin type compounds by actinomycètes isolated from 

rhizosphere samples. Rhizosphere isolates from Pinus silvestris were
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identified to produce both auxins and gibberellin type compounds (Strzelczyx 

& Pokoojska-Burdziej, 1984). Auxin production was particularly evident 

when isolates were grown on tryptophan containing medium. Production of 

auxin was more frequently observed among rhizosphere isolates. Auxins have 

been identified to play a role in plant-mycorrhizal relationships, where they 

have been attributed to affect root morphology and direct the translocation of 

soluble sugars to the mycorrhizal roots. Furthermore, reports exist on the 

ability of rhizosphere microorganisms to enhance mycorrhiza formation.

Mycorrhyzal stimulation has also been considered to be influenced by the 

production of vitamins by rhizosphere isolates. Ectomycorrhizal fungi have 

been identified to have a requirement for the B group vitamins, particularly 

thiamin. Actinomycètes derived from the rhizospheres of Pinus silvestris were 

identified to synthesise a greater number and wider range of B vitamins than 

isolates from a corresponding non-rhizosphere soil (Strzelczyk & Leniarska, 

1985).

Vruggink (1976) has looked at the population dynamics of streptomycetes able 

to incite common scab, Streptomyces scabies, in the presence of different crop 

plants. However, despite some interesting Endings, e.g. in certain soils 

actinomycète populations declined with a beet crop, in general, differences in 

soil type appeared to influence streptomycete soil populations more than the 

cover crop planted. Rouatt & Atkinson (1950) also considered the affect of 

different cover crops on the soil populations of fungi, actinomycètes and other 

soil bacteria. They obtained marked qualitative and quantitative differences of 

the influence of crops on microbial populations. Increases in actinomycète 

populations were evident in scab infested soil planted with soybeans, a slight 

increase was noted with soil planted with red clover and with no population
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differences were observed in the soil planted with rye. A rhizosphere type 

effect, with elevated streptomycete populations at the potato tuber-soil 

interface was also reported (Vruggink, 1976).

1.3.1.3 Streptomycetes as agents in biological control

Numerous reports exist of the inhibitory activity of actinomycète isolates 

against plant pathogens. Kundu & Nandi (1985) found that the addition of 

cellulosic waste products (rice stubble and water hyacinth biomass) resulted in 

the reduction of cauliflower ‘damping-off’ (Rhizocotonia sola ni). Disease 

control was attributed to the increased numbers of antagonistic actinomycètes 

and bacteria that grew with the addition of the amendments to the soil. 

Although much speculation has surrounded the nature of the antagonistic 

effects reported and the possible role that antibiotic production by 

actinomycètes may have in them. Many workers have been unable to 

demonstrate antibiotic production in non sterile soil conditions (Williams, 

1982; Williams & Vickers, 1986). Inability to detect antibiotic activity in the 

natural environment could be attributed to instability, adsorption to soil 

colloids and lack of sensitive methods for the detection of these compounds 

(Williams era/., 1983).

Gause et al. (1981) speculate that the high tolerance of antibiotic producing 

strains to the antibiotics they produce (while closely related strains are highly 

sensitive to their action) supports the view that antibiotic production is of 

ecological relevance and may contribute to competitive and antagonistic 

microbial interactions.

Whaley & Boyle (1967) considered the role of the production of heptaene 

antibiotics in antagonistic interactions in the rhizosphere of desert plants.
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Investigations were made in response to the observation that in the Arizona 

desert, an increase in several root diseases was accompanied by the addition of 

moisture and amendments. Streptomycetes were isolated from the 

rhizospheres of desert plants that were antagonistic to Fusarium oxysporum, 

Rhizoctonia solani, and Verticillium albo-atrum and identified to be producers 

of heptaene antibiotics. The effect of different nutrient sources on antibiotic 

production was investigated under in vitro conditions. Their findings indicated 

that antibiotic production varied with the available carbon and nitrogen source 

and that some carbon and nitrogen sources that sustained minimal levels of 

growth were excellent for antibiotic production. Thus reflecting the nutrient 

status of the soil environment under which it is speculated that production may 

occur. In addition, the authors demonstrated antibiotic production by 

rhizosphere isolates on carbon and nitrogen sources identified to occur in the 

rhizosphere in vitro. However, they do emphasise that the possible 

inactivation of these polyene antibiotics by antagonistic microorganisms and 

adsorbtion to soil particles does require investigation before a role in 

ecological interactions can be assigned.

A number of researchers have reported lowered disease incidence of certain 

fungal pathogens, including Fusarium oxysporum (Buxton et al., 1965) and 

Rhizocotonia solani (Henis et al., 1967), in chitin amended soils. Chitin 

amendment has frequently been shown to promote streptomycete populations 

(Williams & Robinson, 1981) and reduce the incidence of common scab of 

potatoes (Vruggink, 1970). Indirect evidence of Streptomyces soil isolates as 

agents in the biological control of fungal pathogens, comes from the studies of 

Williams & Robinson (1981) on the contribution of fungal mycelium to the 

soil-borne chitin reservoirs (available to streptomycete populations). They 

speculate that fungal sources may provide the major component of soil chitin
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and add support to the argument by citing observations made by Lloyd et al. 

(1965) on the ability of streptomycetes to lyse living fungal mycelium.

1.4 Plant pathogenic streptomycetes

Few streptomycetes are capable of infecting plant tissues and causing disease. 

The most notable, in terms of their agronomic importance are the Streptomyces 

species able to cause common scab of potatoes. The causative agent has been 

described as Streptomyces scabies (Lambert & Loria, 1989). Current 

knowledge of plant pathogenic streptomycetes is given in Table 1.

Common scab is an important disease in potato growing regions throughout 

the world (Davies & Gamer, 1978) affecting all underground parts of the 

potato plant. Infection results in superficial corky lesions on the tuber surface 

and an unpalatable tasting potato flesh as a result of geosmin production by 

streptomycetes.
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Table 1

Summary of current knowledge of plant pathogenic streptomycetes

Species

S.scabies

Host Plant

Potato, Sugar beet 

Carrot and others

Disease 

Common scab 

(severe)

Reference

Hoffman, 1958 

Lapwood, 1973

S.griseus

S.aureofaciens

S.flaviolus

Potato Common scab 

(mosdy mild)

Hoffman, 1958 

Corbaz, 1964

Streptomyces sp. Potato Common scab 

in acid soils

Bonde & 

McIntyre, 1968

Streptomyces sp. Potato Russet scab Harrison, 1962

SJpomea Sweet potato Soil rot & pits Person & 

Martin, 1962

(Taken from Kutzner, 1981)
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Various types of scab have been described according to the severity and type 

of scab lesions these include, pitted and raised scab (Jones, 1931), ordinary, 

superficial, deep and elevated scab (Emillisson & Gustafasson, 1953), russet 

scab (Harrison, 1962) and netted scab (Scholte & Labruyere, 1985).

Common scab is most prevalent in soils that promote optimal growth 

conditions for streptomycetes, i.e. sandy, calciferous soils that are well drained 

and neutral to alkaline in pH. A number of agronomic practices have been 

employed to minimise the incidence of the disease in scab infested soils 

(Labruyere, 1971). These include the planting of resistant potato varieties, 

ensuring the crop is well irrigated particularly during the period of tuber 

initiation and expansion (Lapwood & Lewis, 1967; Lapwood & Hering, 1970) 

and reducing the pH of the soil through the application of green manures.

Tubers initiate as a swelling of an underground stem (stolon) as a tuber grows, 

nodes (eyes) separate from the apical bud as intemode tissue forms between 

them. When first formed the tuber intemodes have stomata, but as the tissue 

expands the stomata are transformed into lenticels (Fellows, 1926). The stoma 

guard cells are gradually raised above the tuber surface, by division of cells 

beneath them, further cell division and expansion causes the stoma to rupture 

and expose the inner cells with the formation of a young lenticel. If the soil is 

wet, cells proliferate from the lenticel opening, however, if it is dry cell 

division stops and suberin is deposited on the outermost cell walls (Lapwood, 

1973). Initiating potato tubers pass through a phase of susceptibility to 

infection by scab-causing streptomycetes, corresponding to a specific 

developmental stage of the lenticels. Susceptible lenticels appear to be newly 

formed with incompletely suberised filling cells, each lenticel is thought to be 

susceptible for about seven days (Adams, 1975). Hooker & Page (1960)
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demonstrated that suberized periderm could not be breached by pathogenic 

S.scabies isolates even after autoclaving. Lenticel development appears 

comparable for both scab-resistant and susceptible varieties (Adams, 1975). In 

wet soils prevention of infection has been attributed to the antagonistic and 

competitive effects of other soil microorganisms (Lewis, 1962 ; Adams & 

Lapwood, 1978). However, cell proliferation under wet conditions would 

displace freshly colonised tissue and may also be involved (Labruyere, 1971).

1.4.1 The ecology of scab-causing streptomycetes

Few attempts have been made to study the ecology of scab-causing 

streptomycetes and much of the early work is contradictory with some workers 

finding that the incidence of scab is influenced by the pattern of crops grown 

between the potatoes and others not. Goss & Afansiev (1938) found that 

common scab was most severe at sites with short rotations or those 

incorporating sugar beet. Most workers appear have found that the incidence 

of common scab was often associated with short rotations or continual 

cropping with potatoes. Hooker (1956) also found that the common scab 

infections were most severe in peat soils with short rotations and or a 

continuous potato crop than by the inclusion of other crops in the rotation. 

Hooker (1956) was unable to correlate plate counts of streptomycete 

populations with the incidence of scab. Counts appeared highest in plots 

cropped to com, followed by potatoes and lastly onions and soybean. Fallow 

plots exhibited the lowest counts.

Russet scab (or netted scab) caused by Streptomyces sp was identified as a 

disease associated with short rotations (Scholte et al., 1985).

Keniath & Loria (1989) have investigated the population dynamics of melanin
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producing Streptomyces, a group that has been identified to include many of 

the scab-causing strains. Population dynamics of the melanin producing group 

was studied in response to the growth of different potato cultivars. 

Streptomycete populations isolated from field plots cropped to potatoes were 

more diverse than those from the control fallow plots. Differences in 

population diversity were also seen amongst the streptomycetes colonising the 

potato rhizosphere and tuber surface, indicating that conditions for 

streptomycete growth differed in both environments. Qualitative and 

quantitative differences in streptomycete populations were seen with time, 

probably as a result of the development of plants and seasonal changes.

The authors also demonstrated differences in the relative numbers of different 

streptomycete species groups in the rhizosphere of the scab susceptible potato 

cultivar, ‘Chippewa’ and the scab resistant cultivar, ‘Superior’.

In a further investigation Keniath & Loria (1990) studied the influence of the 

two potato cultivars on the melanin producing streptomycete populations. 

Populations were monitored in plots planted with the scab susceptible variety, 

‘Chippewa’ and the scab resistant variety, ‘Superior’ and also in fallow soil, 

over a three year period. In general, populations of streptomycetes in soils 

planted with potatoes increased in the soil, the rhizosphere and on the tuber 

surface throughout the growing season. While populations in the fallow soil 

remained stable or declined. No significant differences were observed 

between the population levels of streptomycetes isolated from the soil and 

rhizosphere samples from plots planted with both potato varieties. However, 

the population levels on the tuber surface of the scab susceptible cultivar were 

significantly higher than those on the scab resistant cultivar. Melanin positive 

streptomycete population densities in the soil corresponded well with scab
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incidence and severity. The authors suggest that this correlation may reflect 

actinomycète reproduction on the tuber surfaces. As the population levels of 

actinomycètes as opposed to melanin positive streptomycetes also correlated 

well with the incidence of scab. Less than 6% of the melanin positive isolates 

appeared to be common scab pathogens. This finding illustrates the need for 

selective and distinct markers for pathogenic strains in order to study the 

ecology and epidemiology of pathogenic strains.

1.5 The soil environment

Soil microorganisms constitute one of five interactive forces in the formation 

of soil, the other four being climate, topography, parent material and time. 

The physical and chemical breakdown of the parent rock to fíne particles with 

large surface areas and the accompanying release of plant nutrients initiate the 

soil-forming process. The two major nutrients that are deficient at this stage 

are carbon and nitrogen. Thus the initial colonisers of soil parent material are 

usually organisms capable of both photosynthesis and nitrogen fixation and are 

predominantly the blue green algae. Once higher vegetation has become 

established a continuum of soil processes support a dynamic mixture of living 

and dead cells and soil organic matter (SOM), in various stages of 

decomposition and small mineral particles. Soil gases, water and dissolved 

minerals complete the soil habitat (Paul & Clark, 1989).

Soil environments constitute four different environments in which microbial 

activities occur, these are profiles, horizons, aggregates and colloids. The 

relative dimensions of the components of the soil environment range from 

metres (profiles), centimetres (horizons) millimetres (aggregates) to microns 

(bacteria and colloidal particles) (Bums, 1988).
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The formation of the clay-organic matter complexes are the key structural 

features of most soils. The clay minerals are primarily crystalline, hydrous 

aluminosilicates comprised of silicon oxide tetrahedra and aluminium 

hydroxide octahedra sheets. The sheets are associated either in a 2:1 (Si-Al- 

Si) or a 1:1 (Si-Al) ratio, the unit layers are held together through the 

formation of hydrogen bonds and weaker van der waals forces. 2:1 ratio clays 

are usually able to expand upon wetting, exposing a significant internal surface 

area between adjacent silicon layers, while 1:1 ratio clays do not normally 

hydrate. 2:1 clays also participate in isomorphous substitution, a process by 

which structural cations (eg Al3+ Si2+ ) may be exchanged for those of a 

different valency (eg. Si2+ Fe^jwhich may in turn result in a net negative 

charge. The electronegative charge is compensated by the adsorption of 

positively charged exchangeable cations from the surrounding soil solution 

and is termed the cation exchange capacity of the clay (Stotsky & Bums, 

1982).

Soil organic matter (SOM), a macroscopic component represented by the 

particulate plant, animal and microbial debris in the early stages of 

disintegration, comprises a biochemically defined and generally soluble 

fraction, that may include carbohydrate and protein products from the 

degradation of the macroscopic component and a dark-coloured aromatic and 

polymeric component arising from the breakdown of lignin as well as 

microbial synthesis. This humic fraction may be further subdivided on the 

basis of solubility into humic and fulvic acids and humins. The humic 

material is of equal importance to the expanding clays in soil microbe 

interactions. This is because humic materials also expand upon wetting 

revealing an extensive internal surface area that is a reservoir for water and a 

vast array of organic and inorganic solutes, available for associated microbial
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activity (Bums, 1988).

Clay and humic materials in addition to other organic materials are intimately 

associated to form organomineral complexes (microaggregates) which cluster 

to form aggregates. Most clays, soil microorganisms and SOM constituents 

are negatively charged at neutral pHs. Attachments between components that 

should naturally repel each other are made by ionic bonding via multivalent 

cations. Microbial polysaccharides and microbial fibrils also bind clay 

particles together. Aggregate formation is thus a result of the interactive 

activity of the soil microflora with plant roots producing filaments and 

polysaccharides that combine with clays to form organic matter-mineral 

complexes. Soil aggregates retain water, the thickness and permanence of 

which depend on the type and amount of clay and organic matter within the 

aggregates. The water may form bridges from one aggregate to another and 

comprise the microhabitats in soil where the microbes function. The space 

between the aggregates constitutes the pore space and may be filled with air 

and other gases and volatiles (Stotsky et al., 1991).

Postma et al. (1991) have attempted to investigate the role of certain cell 

surface properties of Rhizobium leguminosarum in the attachment to soil 

particles. The growth and survival of the unaltered strain and three Tn5 

mutants with altered cell surface properties, that included the absence of 

cellulose fibrils, an 80 to 90% reduction in exopolysaccharide production and 

an altered lipo poly saccharide composition were investigated in sterile and non 

sterile soil. Their findings affirmed the importance of cellular attachment to 

soil particles, however they were unable to demonstrate a relationship between 

bacterial adhesion and cell surface properties, rather they speculate that in 

certain groups of soil bacteria attachment to soil particles may be a result of
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entrapment in soil pores.

Soil organisms show their greatest diversity of species and usually their largest 

populations in productive soils. The size of the microbial biomass being found 

to correlate well with the amount of plant growth (1° productivity) and with 

SOM levels. Most organisms exist on the surface of soil aggregates or in the 

pore spaces between them, with microorganisms reported to occupy between

0.4 and 0.2% of the available pore space (Paul & Clark, 1989). Soil bacteria 

do not exist as unattached particles in soil, nor are they easily washed from the 

soil matrix. Rather their cells adhere to or are adsorbed on inorganic and 

organic surfaces. This level is influenced by the water content of the pores. In 

a study of a number of factors including: electrostatic charge of the cell 

surface, hydrophobicity, cell size and presence of capsules and flagella and 

their influence on the transport of bacterial cells through soil. Bacterial cell 

size was consistently related to the movement of cells through a soil column 

with the smaller bacterial cells of less than 1.0 pm being retained by the soil 

least (Gannon et al., 1991). Pore size also imposes limitations on the grazing 

and movement of soil organisms. Studies of Heijen & Van Veen (1991), 

indicated that addition of bentonite and kaolinite amendments to a loam, sand 

soil could enhance the survival of introduced Rhizobiwn inoculants. Inability 

to maintain Rhizobiwn inoculants in soil has been attributed to protozoan 

predation. The addition of clay amendments under appropriate moisture 

regimes appeared to protect Rhizobium cells from predation, by reducing the 

pore size of the soil to allow growth of the bacterial and but not the larger 

protozoan cells.

1.5.1 Components of the soil biota

The soil biota is composed of bacteria, fungi, algae and fauna. In addition,
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there are viruses, which are dependent on other components of the soil biota 

for reproduction and dispersal. Bacteria are however, the most numerous 

component of the biota, some of the more abundant and commonly isolated 

groups include the following: arthrobacters have been estimated to comprise 

up to 40% of total plate counts from soil (Paul & Clark, 1989). The group is 

characterised by pleomorphism and Gram variability and the group is able to 

oxidatively metabolise a wide range of substrates. They are slow growing 

microorganisms and poor competitors in the early stages of residue 

decomposition with other genera competing more effectively for the available 

simple sugar and amino acid molecules. The Streptomyces, Pseudomonas and 

Bacillus species probably account for the second largest group of 

microorganisms present in soil. Any of these genera may account for 5 to 20% 

of a total bacterial plate count. Pseudomonads are Gram negative rods with 

polar flagellation. Generally aerobic, most species are organotrophs occurring 

in soils as well as fresh and marine environments. In contrast, the bacilli are 

Gram positive to Gram variable rods. Most species are motile and produce 

heat resistant endospores. There is a great diversity within the genus. Other 

genera commonly associated with soils include Clostridium, Azotobacter, 

Lactobacillus and various cyanobacteria. The fungal component of soil can be 

equally diverse containing slime molds, flagellate fungi, zygomycetes, 

basidomycetes as well as ascomycetes (Paul & Clarke, 1989).

1.5 2  Microbial interactions

Various types of interactions occur among microbial populations, these 

include interactions between individual cells and other biotic and abiotic 

components. These interactions are in a constant state of flux, resulting in a 

dynamic biological equilibrium among the microbes that shifts with changes in 

the physicochemical status of the environment (Stotsky et al„ 1991).
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Two of the most important microbial interactions affecting bacterial 

populations are predation and competition. Postma et al. (1990) considered 

the interaction of a protozoan predator and indigeneous rhizobia competitors in 

the colonization of sterile soils by a Rhizobium inoculant and the affect of both 

components on the interaction of the inoculant with soil aggregates. In the 

presence of the protozoan predator, a high proportion of the Rhizobium soil 

population were found associated with soil particles and aggregates, indicating 

enhanced survival from predation in protective microniches. In contrast when 

a Rhizobium inoculant was introduced into soil, that had been already seeded 

with competitive rhizobia, the proportion o f the inoculant associated with soil 

particles was considerably lower. Populations of the introduced inoculant in 

either the presence of the predator or competitor alone, remained fairly 

constant in soil. However, in the presence of both the predator and competitor, 

populations of the introduced inoculant decreased dramatically and in excess 

of the sum of the effects of both predation and competition separately. 

Numerous reports exist on the bacterial predation by protozoa (Clarholm, 

1981; Habte & Alexander, 1987; 1988a;b). Predation of bacteria by bacteria 

has also reported to occur (Casida, 1988). A number of bacterial genera have 

been implicated in nonobligate predation, i.e. predation in the absence or 

depletion of soluble nutrients, these include Ensifer adhaerens, Agromyces 

ramosus, Actinomyces humiferus and certain Streptomyces and Myxococcus 

strains (Casida, 1988). Bacteriophage may also be important in regulating 

bacterial population densities in natural environments (Kokjohn et al., 1991) 

though their significance in natural soils remains to be determined (Herron, 

1991).

Ho & Ko (1982) report the prevalence of the antagonistic phenomenon of soil
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against populations of fungi, actinomycetes and other bacteria, i.e. fungistasis, 

actinostasis and bacteriostasis. Microbiostasis appeared to be common to all 

natural soils under study and overcome by the addition of certain nutrient 

amendments to the soil. Bacteriostasis appeared to be the easiest to overcome 

by the addition of amendments to the soil. Brown (1972) demonstrated that 

bacteriostasis was overcome in a number of soils by the addition of wheat root 

and seed exudates.

Disease suppressive soils may develop as a result of certain antagonistic 

interactions between microbes for certain combinations of crop plants and 

phyopathogens (Schroth & Hancock, 1982). Disease-suppressive soils may be 

induced or natural. With natural soils being disease-suppressive as a result of 

the particular physical and chemical characteristics of the soil. In contrast, 

induced suppressive soils occur independent of soil type and as a result of 

agronomic cultural and cropping practices. A history of monoculture with a 

susceptible crop has been found to be a prerequiste for a disease-suppressive 

soil. Disease-suppressive soils have been reported for take-all of wheat 

(Gaeumannomyces graminis var. tritici) and common scab of potatoes 

(Streptomyces scabies) (Scroth et al., 1979). The development of a scab 

suppressive soil is proceeded by a build up of the disease in the soil (a scab 

infested soil) with long term, continuous cropping with potatoes. Soil 

components responsible for the disease-suppressive status of the soil appeared 

to be microbial since they were sensitive to fumigation and autoclaving 

treatments (Scroth et al., 1979).

1.6 The association of microorganisms with plant roots

Plant root systems occupy the soil horizon richest in SOM where the live, 

senescent and dead roots provide substrate materials for microbial growth.

- 28 -

I



The rhizosphere has been termed the region of soil under the influence of the 

plant roots and in which there is a proliferation of soil microorganisms. In 

addition, two other areas of the roots that are colonised by microbes, the 

rhizoplane (the root surface) and the endorhizosphere (the interior of the root). 

The concept of the root cortex as being part of a microbial continuum 

extending from the soil associated with the roots to the root cortical tissues has 

been introduced (Old & Nicolson, 1982).

The number of soil microorganisms in the vicinity of the root has been found 

to decrease with the distance from the root tissue. Bacterial coverage of the 

root has been estimated to be in the range of 5 to 10% (Rovira, 1979). 

Distribution of bacterial cells on the root surface appears to be uneven and 

related to plant microbe contact rather than microbial mobility (Howie & 

Cook, 1985; Dijkstra et al., 1987; Misaghi et al., 1992). Bacterial cells have 

rarely been found associated with the rapidly growing apical tip, with the first 

area to be colonized being just beyond the zone of elongation. Weller (1984) 

monitored the distribution of a fluorescent pseudomonad that was suppressive 

to the causal agent, Gaeumannomyces graminis var. tritici of take-all of wheat 

after its introduction as a coating on the seed. A population gradient of 

bacterial colonisation was demonstrated along the roots with highest 

populations at the base of the root and the population declining towards the 

root tip. A number of studies have consistently identified high densities of 

microbial cells around cell junctions that have been attributed to an abundant 

supply of root exudates and an association with dead epidermal cells (Rovira, 

1979; Bennet & Lynch, 1981).

Howie & Cook (1985) investigated the role of cell motility in pseudomonads 

with flagella and non-motile mutants in the colonisation of roots. No
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significant differences in motile and non-motile populations were found, 

indicating that bacterial distribution was dependent on root elongation in the 

absence of the downward movement of water. Dijkstra et al. (1987) 

considered that the differing bacterial growth rates, in association with passive 

displacement of cells via elongation of the cells at the root surface could 

account for the differing densities of colonization of wheat roots between 

Pseudomonas fluorescens and Bacillus subtilis, which were determined to be 

107 c.f.u. cm-1 root for P flourescens and 105 c.f.u. cm-1 root for B.subtilis. 

Microbial densities in the rhizosphere environment generally increase with the 

age of the plant roots (Campbell & McDonald, 1989).

Protozoan population levels also increase in the vicinity of the root and in 

response to elevated numbers of bacteria, R/S ratios of up to 10 have been 

observed. Their predation activities are not only thought to affect the 

microbial populations but also to release minerals back into the soil that might 

be of benefit to the plant. If the plant is nitrogen or phosphorous limited, as it 

may well be in most natural ecosystems, the photosynthate produced is 

probably sufficient for both and it may not matter if some is lost through the 

roots provided this produces a marginal increase in phosphorous and nitrogen 

uptake (Campbell & McDonald, 1989). Circumstantial evidence of enhanced 

deposition of the plant photosynthate via the production of root exudates in 

natural soils as opposed to in vitro conditions has been observed (Lynch, 

1982).

Microbial interactions in  the rhizosphere and on the root surface 

(rhizoplane)

The root environment has been characterised as a site of intense microbial 

competition for nutrients (Fravel, 1988; Weller, 1988). Much interest has
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focused on the microbial interactions occurring in the rhizosphere and the 

rhizoplane with a view to the manipulating the root microflora to either 

suppress phytopathogens (Biological control) (Weller, 1988) or to enhance 

plant growth by the introduction of Plant Growth Promoting Rhizobacteria 

(PGPR) (Kloepper et al., 1980; 1989). Considerable inconsistency has been 

associated with experiments on biological control (Howie & Echandi, 1983) 

and much speculation still surrounds the reasons for a correlation between 

reduced disease incidence and increased crop yields. Production of antibiotics 

by inoculants (Fravel, 1988) and aggressive colonization of available niches or 

rhizosphere competence (Weller, 1988) have frequently been attributed to the 

successful establishment and activity of inoculants in the rhizosphere. One of 

the most successful biological control strategies involved the use of a non- 

tumourgenic Agrobacterium radiobacter K84 strain to control crown gall 

disease, caused by the related but virulent Agrobacterium tumefaciens (Moore, 

1985). Control operates via the production of Agrocin by K84, this 

bacteriocin is taken up into the susceptible strains by a permease encoded by 

the tumour-forming (Ti) plasmid of A.tumefaciens (Engler et al., 1975), the 

requirement for this plasmid encoded gene means that the bacterocin is 

selectively targeted at A.tumefaciens.

Enhanced yields in the presence of PGPR have been attributed to the 

extracellular production of siderophores, which efficiently complex 

environmental iron making it unavailable to certain components of the soil 

microflora (Kloepper et al., 1980). Increased yields achieved through 

inoculation of plants with PGPR were mimicked by the action of a yellow- 

green fluorescent siderophore isolated from Pfluorescens and named 

pseudobactin (Kloepper et al„ 1980). Many PGPR have been identified to 

produce plant growth promoting substances such as auxins and gibberellins
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(Brown, 1972; 1974). Positive correlations between production of these 

compounds in vitro with enhanced crop yields and altered root or plant 

morphology have been reported. However, the significance of these plant 

microbe interactions remains to be established (Brown, 1974).

Analysis of the organic materials found on or in association with the roots 

reveal an assortment of soluble molecules that include amino, aliphatic and 

aromatic acids and amides and sugars. In addition to these are a range of 

complex insoluble structures such as cellulose, lignin, protein and chitin. With 

the simple sugars and amino and organic acids common to all rhizospheres and 

the more complex compounds particular to certain plant rhizospheres. A 

number of these compounds have particular biostatic and biocidal properties. 

Pathways for the release of plant assimilates from roots include the leakage or 

diffusion of molecules across cell membranes, root secretions and extrusions. 

Root caps and tips are sites of active exudation, releasing mucilaginous 

secretions in addition to root cap and root tip cells. The main root axis 

predominantly releases soluble and diffusible material and some mucigel (a 

mixture of polysaccharides). Mucigel has been identified to be the dominant 

excretory product of the roots and was found to account for 80% of the carbon 

lost from wheat roots, aside from losses due to respiration. Labelled 14C tracer 

studies revealed that 11% of plant assimilate is acquired for microbial 

respiration and 2% ends up as SOM (Paul & Clark, 1989).

In addition to the enhanced amounts of organic matter available in the 

rhizosphere, other environmental gradients may occur. In general, the water 

potential surrounding the roots is usually not that different from un-planted 

soil, provided that there is continuity between the soil water and the plant root, 

and the water enters uniformly over the root surface. However, if there is a
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local water stress in the rhizosphere these assumptions may not be valid and 

water uptake may be concentrated into a small proportion of the total root 

which is in direct contact with the soil. Certain groups of bacteria and fungi 

will tolerate reduced water potentials. There may also be compaction of soil 

around the roots, generated as the root pushes through the soil and contributing 

to a restricted flow of water. Gas exchange in the rhizosphere may be 

different, for instance in well aerated soils there may be a slight elevation of 

C 02 levels and depletion of oxygen. However, as the soil becomes 

waterlogged or even wet, the situation alters as diffusion of 0 2 and C 02 is 

slow through the films of water surrounding the roots and soil pores.
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Chapter 2

Materials and methods



2.1 Bacterial strains

2.2 Chemicals

Chemicals used in this study together with their source are given in Table 3.

2.3 Media

All media was prepared using double distilled water and unless otherwise 

stated sterilised by autoclaving at 121 °C for 15 to 20 minutes. A list of media 

used, together with their constituents can be found in Tables 4 and 4a. 

Antifungal and antibiotic additions to these media are listed with the 

concentrations used in Table 5.

2.4 Buffers and reagents

Buffers and reagents were prepared using double distilled water and unless 

stated otherwise were sterilized by autoclaving at 121°C for 15 minutes. 

Buffers, reagents and solutions together with their ingredients are given in 

Table 6.

The bacterial strains used in this study are given in Table 2.

- 35 -
I



Table 2

Source and designation o f streptomycetes used in  this study

Strain Received as

ATCC 49173 S.scabies sp. nov., nom. rev.

ATCC 3352 Streptomyces sp.

ATCC 10246 Streptomyces sp.

ATCC 15485 Streptomyces sp.

ISP 5078 Streptomyces sp.

S46 pathogenic isolate

S47 pathogenic isolate

8.2 pathogenic isolate

8.6 pathogenic isolate

8.7 pathogenic isolate

8.8 pathogenic isolate

8.16 pathogenic isolate

8.17 pathogenic isolate

ASS8112 pathogenic isolate

ISS pathogenic isolate

RA210 pathogenic isolate

PD259 pathogenic isolate

PD260 pathogenic isolate

1028 pathogenic isolate

1033 pathogenic isolate

1034 pathogenic isolate

MP2 scab isolate

MP9 scab isolate

R1 scab isolate

R2 scab isolate

0446 S .albidojlavus (1)

598 S.bacii laris (1)

326 S.alboviridis (1)

Strain Source 

Lambert & Loria (1989)

Novo Nordisk Industries, Denmark 

Novo Nordisk Industries, Denmark 

Novo Nordisk Industries, Denmark 

ATCC 23962 (IMRU 3018)

D Lap wood, Rothamsted Exp. Station, UK 

D Lapwood, Rothamsted Exp. Station, UK 

G Jellis, PBI1 Cambridge UK 

G Jeilis, PBI1 Cambridge UK 

G Jellis, PBI1 Cambridge UK 

G Jellis, PBI1 Cambridge UK 

G Jellis, PBI1 Cambridge UK 

G Jellis, PBI1 Cambridge UK 

Novo Nordisk Industries, Denmark 

Novo Notdisk Industries, Denmark 

Novo Nordisk Industries, Denmark 

J D Janse, PPS2 Wageningen, NL 

J D Janse, PPS2 Wageningen, NL 

J D Janse, PPS2 Wageningen, NL 

J D Janse, PPS2 Wageningen, NL 

J D Janse, PPS2 Wageningen, NL 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

KCI-S-0446 

ATCC 15855 

ATCC 25425
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Table 2 (cont)

Source and designation o f streptomycetes used in this study

Strain Received as

236 S.griseus (1)

ATCC 25481 S .albidoflavus (1)

DSM 40023 S .albidoflavus (1)

632 S. albidoflavus (1)

232 S.albidoflavus (1)

023 S.nitrosporeus (1)

077 S.nitgersensis (1)

508 S.nogaensis (1)

0233 S .ceolicolor ( 1)

422 S.coeliatus (1)

ATCC 27417 S .annulatus (1)

734a Streptomyces sp. (1)

c463 Streptomyces sp. (1)

454 S.viridogenes (3)

962 S.atroolivaceus (3)

968 S.atroolivaceus (3)

978 S.atroolivaceus (3)

975.2 S.atroolivaceus (3)

4.470 S.atroolivaceus (3)

282RB S.atroolivaceus (3)

135RB S.atroolivaceus (3)

164 S.litmocidene (5)

727 S.exfoliatus (5)

082 S.violaceus (6)

593 S fulvissimus (10)

092 S.alithoticus (12)

TK24 S.lividans (21)

054 Sfascilutus (29)

Strain Source

ATCC 23345

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

ATCC 12769 

DSM 40508 

ATCC 23899

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

ISP 5454, ATCC 3372 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

JI3 Institute, Norwich, UK 

ATCC 19751
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Table 2 (cont)

Source and designation o f streptomycetes used in this study

Strain

558

069

316

550

194

445

216

0767

0435

0547

051

ATCC 23934 

DH50C

Received as

S.colombiensis (61) 

S.lavendulae (61)

S.poly chromogenes (61) 

S.katrae (61)

S.sacemochromogenes (61) 

S.subtilis (61) 

S.lavendulocolor (61) 

Stv.griseoverticillium (55) 

Stv. cinnamoneum subsp.

azacoleta (55) 

Stv.septatum (55) 

Stv.albireticuli (55) 

Streptoverticillium sp. (55) 

E.coli

Strain Source

ATCC 27425 

DSM 40069 

ATCC 12595

E M Wellington, Warwick University, UK 

E M Wellington, Warwick University, UK 

ATCC 27467

E M Wellington, Warwick University, UK 

ATCC 27436 

DPDU 0074

E M Wellington, Warwick University, UK 

ATCC 19721

E M Wellington, Warwick University, UK 

R Spooner, ICRF, London, UK

1 PBI - Plant Breeding International

2 PPS - Plant Protection Service

3 JI - John Innés Institute
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Table 3

Chemicals used in this study 

Chemical

Acetone 

Adonitol 

Agar no.l

Agarose type II medium EEO 

Allan toin

a-aminobutyric acid

Ammonium molydate 'analar'

Ammonium sulphate

Ampicillin

Arbutin

L-arginine

L-asparagine

Aurintricarboxylic acid

Bactotryptone

Bavistin

Boric acid

Bovine serum albumin (BSA) fraction V

Bromophenol blue

Caesium chloride

Calcium carbonate

Calcium chloride

Casamino acids

Catechol

Cellobiose

Chitin (crab shell)

Supplier

Merck, Sharp and Dome Ltd. 

Sigma 

Oxoid 

Sigma 

Sigma 

Sigma 

BDH1 

BDH1 

Sigma 

Sigma 

Sigma 

Sigma 

Sigma 

Difco

BASF PLC, Ipswich 

Rhone Poulenc 

Sigma 

Sigma 

BDH1 

Fisons 

BDH1 

Difco 

Sigma 

Sigma 

Sigma
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Table 3 (cont)

Chemicals used in this study

Chemical Supplier

Copper chloride Fisons

Cyclohexamide Sigma

Diethylpyrocarbonate DEPC Sigma

Dipotassium phosphate BDH1

Dithiothreitol DTT Sigma

DMSO FSA

DNA (Herring sperm) Sigma

DNase Sigma

Egg yolk emulsion Sigma

Ethanol Hay man Ltd.

Ethidium bromide Sigma

Ferric ammonium citrate BDH1

Ficoll 400 Sigma

D-Fructose Sigma

D-Glucose BDH1

Glutaraldehyde BDH1

Glycerol BDH1

Glycine BDH1

Glycogen Sigma

Giess-Illosray Reagent I and II BDH1

Guanidine Sigma

Hexadecyltrimethyl ammonium bromide Sigma

Hydrochloric acid Fisons

8-Hydroxyproline BDH1

Inulin Sigma



Table 3 (cont)

Chemicals used in this study 

Chemical Supplier

Isoamylalcohol Sigma

Isopropanol BDH1

Kanamycin Sigma

Lab lemco Oxoid

Lead acetate BDH1

Lithium chloride Sigma

Lithium dodecylsulphate Sigma

Lysozyme (egg white) Sigma

Magnesium chloride BDH1

Magnesium sulphate BDH1

Malt extract Oxoid

Manganese chloride BDH1

Mesoinositol Sigma

Methanol FSA

Murashige and Skoog medium Flow Labs

Neomycin sulphate Sigma

Nonidet P40 BDH1

Nutrient agar Oxoid

Nutrient broth Difco

Nystatin Sigma

NZ amine-A Sheffield Products, Morham Ltd.

Paraformaldehyde Fisons

Pectin (from citrus fruits) Sigma

Peptone Difco

Phenol (chromatography grade) BDH1

- 41 -



Table 3 (cont)

Chemicals used in this study

Chemical Supplier

Phenol (analar) BDH1

Phenol red BDH1

Polyethylene glycol 1,000 BDH1

Polyethylene glycol 6,000 BDH1

Potassium acetate BDH1

Potassium dihydrogen phosphate BDH1

Potassium nitrate BDH1

Potassium sulphate BDH1

Protease Peptone Difco

D-Raffinose Sigma

L-Rhamnose Sigma

Rifampicin Sigma

RNase I Sigma

Sodium acetate BDH1

Sodium azide BDH1

Sodium borate BDH1

Sodium chloride BDH1

Sodium citrate BDH1

Sodium deoxycholate Fisons

Sodium dihydrogen phosphate BDH1

Sodium dodecylsulphate BDH1

Sodium EDTA BDH1

Sodium hydrogen carbonate BDH1

Sodium hydroxide BDH1

Sodium perchlorate BDH1
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Table 3 (cont)

Chemicals used in this study 

Chemical Supplier

Sodium thiosulphate Fisons

Starch (soluble) BDH1

Storite

Ltd.

Merck, Sharp and Dhome (MSD)

Streptomycin sulphate Sigma

Sucrose BDH1

TES buffer BDH1

Thiostrepton Sigma

Thiourea BDH1

Tris base BDH1

Triton X-100 Sigma

Tryptone soya broth Oxoid

Xanthine Sigma

D-Xylose Sigma

Yeast extract Oxoid

Zinc chloride Fisons

Zinc dust May and Baker2

note

*BDH are now Merck Ltd. and 2May and Baker are now Rhone Poulenc
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Table 4: Media

Medium Constituents (per litre unless indicated otherwise)

YT BactotryptoneO.8% (w/v) 

Yeast extractO.5% (w/v) 

NaC10.5% (w/v)

SOB Bactotryptone2% (w/v)

Bacto yeast extractO.5% (w/v)

NaOlOmM

KC12.5 mM

After autoclaving and prior to use add:

MgCl210mM

MgS0410 mM

L-Broth Bactotryptone 10 g 

Yeast extract 5 g 

NaCl 5 g 

Glucose 1 g

Agar (if solid media) 20 g

R5 Sucrose 103 g

(RY2E alternative K2S04 0.25 g

method) MgCl2.6H20  10.1 g 

Casamino acids 0.1 g 

Yeast extract 5 g 

TES buffer 5.73 g 

Agar 22 g

Trace element solution 2 ml
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Table 4: M edia (cont)

Medium Constituents (per litre unless indicated otherwise)

Trace element ZnCl2 40 mg

solution FeCL3.6H20  200 mg 

CuC12.2H20  10 mg 

MnCl2.4H20  10 mg 

Na2B4O7.10H2O 10 mg 

(NH4)6Mo70 2.4H20 ) 10 mg

R2 Modified soft Sucrose 103 g

nutrient agar MgCl2.6H20  10.12 g

overlay CaCl.2H20  (22.2g/L) 100 ml

(Matsushima and 0.25M TES (pH 7.2) 100 ml

Baltz) Agar 4.10 g

Oatmeal agar Ground oats 20 g

(The oats were Yeast extract 1 g

boiled for aprox. Agar 15 g

1 h prior to

autoclaving).

Reduced arginine, L- Arginine 0.1 g

starch, salts agar Starch (soluble) 12.5 g

(RASS) k 2h p o 4 1 g

NaCl 1 g

MgSO4 7H2O0.5 g 

Agar 15 g
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Table 4: M edia (cont)

Medium Constituents (per litre unless indicated otherwise)

Soft nutrient agar Nutrient broth 8 g

(SNA) Agar 3 g

Tryptone soya broth Tryptone soya broth 30 g

(TSB) Sucrose 100 g

Polyethylene glycol 600050 g 

(Optional dependent on strain)

Yeast Extract-Malt Yeast Extract 3 g

Extract Medium Bacto-peptone 5 g

(YEME) Malt extract 3 g 

Glucose 10 g 

Sucrose 340 g 

After autoclaving add:

MgCl2 (2.5 M) 2 ml

For preparation of protoplasts add:

Glycine 20% (w/v) 25 ml

Potato Propagation Murashige and Skoog medium

Mediuim Sucrose 3% (w/v)

(pH 5.6) Agar 0.6% (w/v)

Potato Tubérisation Murashige and Skoog medium

Medium (pH 5.6) Sucrose 8% (w/v) 

Agar 0.6% (w/v)

I
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Table 4a: Media for Identification Tests

ISP 4 Medium

Solution 1 Soluble starch 10 g 

Distilled water 500 ml

Solution 2 k 2h p o 4 1 g

(pH 7.0) NaCl 1 g 

(NH4)2S 04 2 g  

CaC03 2 g 

Agar 20 g

Distilled water 500 ml

Solutions 1 and 2 were mixed together prior to autoclaving. The agar was 

dispensed into 9 cm Sterilin petri dishes.

Glycerol Asparagine Agar

(pH 7.0 to 7.4)

L-Asparagine 1 g 

Glycerol 10 g

k 2h p o 4 1 g

Agar 20 g

The agar was dispensed into 9 cm petri dishes. 

Peptone Yeast Extract Agar

Bactopeptone 15 g 

Protease peptone 5 g
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Table 4a: Media for Identification Tests (cont)

Ferric ammonium citrate0.5 g 

Dipotassium phosphate 1 g 

Sodium trithiosulphate0.08 g 

Yeast extract 1 g 

Agar 15 g

The agar was dispensed as slopes in test tubes.

Basal nitrogen source medium 

(pH 7.4)

D-glucose 10 g 

MgSO4.7H20 0.5 g 

NaCl 0.5 g 

FeS04.7H20  0.01 g 

N-source 1.0 g 

Agar 12.0 g

The following test nitrogen sources were added to a final concentration of 1% 

(w/v): a-aminobutyric acid, L-histidine, and L-hydroxyproline. The positive 

control was L-asparagine and the negative control no nitrogen source. Agar 

was dispensed into Sterilin repli dishes.

Egg yolk medium 

(pH 7.0)

Peptone 10 g 

Yeast extract 5 g 

Glucose 1 g 

NaCl 10 g 

Agar 12 g
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Table 4a: Media for Identification Tests (cont)

Egg yolk emulsion 5%

The egg yolk emulsion was added after autoclaving and the agar dispensed 

into 9 cm Sterilin petri dishes.

Pectin agar

(pH 7.4)

Solution 1. KH2P 04 4 g 

Na2HP04 6 g 

Distilled water 400 ml

Solution 2. (NH4)2S04 2g 

FeS04.7H20  0.001 g 

MgS04.7H20  0.2 g 

Yeast extract 1.0 g 

Agar 10 g

Distilled water 400 ml

Solution 3. Pectin 5 g

Distilled water 200 ml

Solutions 1,2 and 3 were mixed together after autoclaving.

Nitrate Agar Nutrient Broth 1 L

(pH 7.0) K N 03 2 g

Agar 6 g

The agar was dispensed as slopes in test tubes.

Arbutin Agar Yeast Extract 3 g 
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Table 4a: Media for Identification Tests (cont)

(pH 7.2) Arbutin 1 g

Ferric ammonium citrate0.5 g

Agar 7.5 g

The agar was dispensed as slopes in test tubes, negative controls contained no 

arbutin.

Allantoin agar KH2P04 9.1 g

(pH 6.8) NaHP04 9.5 g 

Yeast extract 0.1 g 

Allantoin 3.3 g 

Phenol red 0.01 g

Agar 7.5 g

The agar was dispensed as slopes in test tubes, negative controls contained no 

allantoin.

Xanthine agar Yeast extract 1 g

(pH 7.0) Lab-lemco 0.8 g 

Glycerol 10 g 

NZ amine-A 2 g 

Xanthine 4g 

Agar 15 g

The agar was dispensed into 9 cm Sterilin petri dishes ensuring an even 

distribution of xanthine.

Nutrient Agar Nutrient agar 23 g 

Glucose 5 g
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Table 4a: Media for Identification Tests (cont)

The agar was dispensed into 9 cm glass petri dishes.

Soft nutient agar overlay

Nutrient agar 16 g

Basal carbon source (N H ^SC ^ 2.64 g 

agar (pH 6.8 to 7.0) KH2P 0 4 2.38 g

K2HP04.3H20  5.65 g 

MgSO4.7H20 1 g 

Agar 15 g

The following carbon sources were filter sterilised and added to a final 

concentration of 1% after autoclaving: adonitol, cellobiose, L-rhamnose, D- 

raffinose, meso-inositol, D-mannitol, D-xylose, D-fructose and inulin. The 

positive control was glucose and the negative control no carbon source. The 

agar was dispensed into Sterilin repli dishes.

Bennet's agar Yeast extract 1 g

(pH 7.3) Lab lemco 0.8 g

Glycerol 10 g 

N-Z amine-A 2 g 

Agar 15 g

Modified Bennet's agar

Phenol agar Bennet's agar with 0.1% Phenol

NaAzide agar Bennet's agar with 0.01 % NaAzide
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Table 4a: M edia for Identification Tests (cont)

NaCl agar Bennet's agar with 7% NaCl

The agar was dispensed into 9 cm Sterilin petri dishes.
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Table 5: Antibiotic and antifungal stocks

Antibiotic

media

Stock solution 

(mg ml-1)

Minimal

Final concentration in 

(Mg ml-1)

Complex Liquid

Ampicillin1 100 100 100 -

Bavistin1 2 50 50 50 -

Cyclohexamide3 50 50 50 50

Kanamycin sulphate1 50 50 50 50

Neomycin sulphate1 10 1 10 1

Nystatin4 50 50 50 50

Penicillin G 1 100 100 100 -

Rifampicin5 10 10 10 -

Storite2 50 50 50 -

Streptomycin sulphate1 50 10 50 -

Thiostrepton6 50 20 50 20

1 H20  soluble and filter sterilised

2 Taken up in DMF or DMSO

3 Autoclaved to go in solution

4 Dissolved in NaOH and made up in SDW - pH readjusted

s Rifampicin taken up in methanol

6 Thiostrepton taken up in DMSO, DMF or chloroform
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Table 6: Reagents and Solutions

Reagent Constituents Reference

Alkaline SDS SDS 2 g Hopwood et al. (1985) 

0.3 M NaOH 100 ml

Catechol solution 100 mM catechol in SDW

Cell Fixation buffer 2 g Paraformaldehyde

dissolved in 30 ml SDW

and 100 Ml 2 M NaOH heated

to 55 to 60°C, add 5 ml 10 times PBS

and adjust to pH 7.2 to 7.4.

Final volume of 50 ml made 

up with SDW.

Chloroform Solution 24:1 ratio of chloroform 

to isoamylalcohol

Chloroform saturated TE buffer over chloroform

with TE buffer solution.

Darbyshires solution pH 8.0 Tris-HCl washed phenol 

chloroform solution stored 

under TE buffer.

DEPC treated H20 1000 ml distilled water 

1 ml Diethylpyrocarbonate (DEPC) 

DEPC allowed to dissolve by 

stirring overnight at 30°C, 

followed by autoclaving.
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Table 6: Reagents and Solutions (cont)

Reagent

GOS Extraction buffer

Glycogen

(dissolved by wanning 

and phenol chloroform 

extracted)

Guanidine HO

Hexadecyltrimethyl 

ammonium bromide 

(used wanned)

Hybridization buffer 

(in situ)

autoclaved and stored 

at -20°C

Constituents

200 mM Tris-HCl pH 8.5, 

1.5% Lithium Dodecyl 

Sulphate,

300 mM Lithium Chloride 

10 mM Sodium EDTA,

1% w/v Na Deoxycholate, 

1% w/v NP-40,

5 mM Thiourea,

1 mM Aurintricarboxylic 

acid,

10 mM Dithiothreitol 

20 mg ml-1

7.5 M Guanidine 

1.0 M Tris-HCl pH 7.0

1% (w/v) solution

0.9 M NaCl 

20 mM Tris-HO 

0.1% SOS
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Table 6: Reagents and Solutions (cont)

Reagent

10 times Ligation Buffer

Lysozyme solution

For Protoplasting:

For plasmid prep.s:

For chromosomal DNA preps.:

PBS buffer (5 times)

PEG 1000

(Freshly made each time)

Phenol solution (neutral)

Allow to separate into 2 

layers. Test pH of upper 

aqueous level, continue to 

wash with Tris-HG until 

neutral.

Phenol solution (acid)

70 mM Tris-HCl pH 7.4 

7 mM MgCl2

O. 2 mM ATP

2 mg/ ml dissolved in:

P. buffer 

SET

TE buffer

650 mM NaG 

50 mM Sodium phosphate buffer (pH 7.2)

25% PEG 1000 Hopwood et al. (1985)

dissolved and filter 

sterilised in P. buffer.

150 g Phenol, R. Spooner pers com.

200 ml 1 M Tris-HG pH 7.0 

0.1% Hydroxyquinoline.

Constituents Reference

Hopwood et al. (1985) 

Hopwood et al. (1985) 

Hopwood étal. (1985)

500 g melted phenol, Hopwood et al. ( 1985)

0.5 g hydroxyquinoline

65 ml TE buffer with 1 M NaG
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Table 6: Reagents and Solutions (cont)

Reagent Constituents Reference

Phenol Chloroform Mix equal volumes of Maniatis et al.( 1982)

Phenol solution with

Chloroform.

Plant Propagation Medium Murashige and Skoog medium

(pH 5.6) Sucrose 3%

Oxoid agar no. 1 0.6%

Potato Tubérisation Medium Murashige and Skoog P.Dale pers.comm. 

medium.

Sucrose 8%

Oxoid agar no. 1 0.6%

Prehybridisation SDS 7% Church & Gilbert

Solution 0.5 M P04 (1984). 

1% BSA 

1 mM NaEDTA

10 mg ml-1 non-homologous DNA

Prewashing and filter 0.1% SSC D.Hahn, pers comm.

stipping solution 0.1% SDS

Wash at 80°C for 15 minutes

with 2 to 3 changes of solution.

P. buffer Sucrose 103 g Hopwood etal. (1985)

(Made fresh at each K2S04 0.25 g

time of use) MgCl2.6 H20  2.02 g 

Trace element 2 ml

I
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Table 6: Reagents and Solutions (cont)

Reagent Constituents Reference
solution.

Distilled water to 

800 ml

After autoclaving and prior to use add in order: 

KH2P04 (0.5%) 1 ml 

CaCl2 (3.68%) 10 ml 

TES buffer (5.73%) 10 ml

50 mM MnCl2.4 H20  

30 mM Potassium acetate 

10 mM CaCl2 

15% w/v glycerol

adjust to pH 5.8 with 0.2 M acetic acid, filter through 

prerinsed (with SDW) 0.22 pm membrane.

10 mM RbCl2 

75 mM CaCl2 

15% glycerol

Adjust to pH 6.8 with NaOH, filter through prerinsed 

(with SDW) 0.22 pm membrane.

RF1 100 mM RbCl

RF2 10 mM MOPS

SET 20% Sucrose Maniatis et al.( 1982)

100 mM Tris-HCl pH 8.0 

50 mM Na2EDTA
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Table 6: Reagents and Solutions (cont)

Reagent Constituents Reference

20 times SSC NaCl 175.3 g Hopwood et al. (1985) 

Sodium citrate 88.23 g

1/4 Strength Ringers NaCl 2.25 g

solution KC1 0.105 g 

CaCl20.12g 

NaHC03 0.05 g

10 times Stop (loading buffer) 15% Ficoll 400 Maniatis et al. (1982) 

1 diM Na2EDTA,

0.25% Bromophenol blue

TBE (10 times, 1 Litre) 108 g Tris base Maniatis et al. (1982)

55 g Boric acid

40 ml 0.5 M EDTA pH 8.0

TE buffer 2 M Tris-HCl pH 8.0 5 ml Maniatis et al. (1982) 

0.25 M Na EDTA pH 8. 4 ml

Washing Buffer

1 0.08 M P 04 Church & Gilbert ( 1984) 

1%P04

2 0.04 M P04 

1% SDS

3 1.0MPO4
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2.5 Growth and maintenance of S trep to m yc e s  strains

Streptomyces strains were grown on plates of oatmeal or R5 agar (Hopwood et 

al., 1985) at 30°C. Strains were stored on plates at 4°C and subcultured at 

approx. 3 month intervals. Suspensions of spore and mycelial material were 

prepared by scraping the surface of a sporulating culture flooded with 10 ml 

20% (w/v) glycerol. The glycerol suspension was recovered and stored at - 

20°C for long term preservation. Liquid cultures of streptomycete strains were 

grown in 30 to 40 ml either in TSB with 10% (w/v) sucrose (and depending on 

the strain 50 g L"1 polyethelene glycol 6000) or in YEME, together with 

appropriate antibiotic additives in 250 ml baffled flasks (fitted with springs) on 

a Gallenkamp Orbital Shaker (180 to 200 r.p.m.) at 30°C for 48 to 72 hours.

2.6 Preparation of spore suspensions as a source of 

Inoculum

Spore suspensions were prepared as above, however the spores were separated 

from mycelial fragments by passing the suspension through a syringe fitted 

with a cotton wool filter. The spores were concentrated by sedimentation 

(3000 r.p.m. for 20 minutes in an MSE bench top centrifuge) and the pellet 

drained and resuspended in 5 ml of the diluent (1/4 strength Ringers solution).

2.7 Enumeration of spore suspensions

2.7.1. Direct counts

Spore suspensions were counted using a haemocytometer (0.1 mm 1/400 mm 

depth counting chamber, Weber Scientific International Ltd.) under phase 

contrast on a light microscope (Standard 14, Zeiss, West Germany).
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2.7.2. Viable counts

Dilutions of a spore suspension were plated out on a suitable medium such as 

R5, in triplicate. Dilution plates with 30 to 300 colonies were counted.

2.8 Preparation of S trep to m yces  protoplasts

50 ml Broth cultures of Streptomyces scabies ISP 5078 were grown for 48 

hours in YEME medium (containing 34% (w/v) sucrose, 0.005 M MgCl2 and 

0.5% glycine) (Hopwood et al., 1985). 2 times 20 ml volumes of the broth 

cultures were spun down for 20 minutes at 3,000 r.p.m. in Sterilin universals 

and the pellets taken up in 10 ml 20% (w/v) glycerol for long term storage at - 

20°C. 1 ml aliquots of the mycelial paste were transferred to Eppendorf tubes 

and spun at 6,500 r.p.m. for 5 minutes (in a MSE Microcentar microfuge). 

The supernatants were discarded and the pellets resuspended in 1 ml 10% (w/ 

v) sucrose. The mycelial suspension was respun at 6,500 r.p.m. for 5 minutes 

(in a MSE Microcentaur microfuge) and the pellet resuspended in 1 ml 

lysozyme solution and incubated at 30°C. After 15 minutes the mycelial 

suspension was trituated with a pipette and reincubated. After a further 15 

minutes the suspension was trituated again with a pipette and then diluted with

O. 5 ml P.buffer. Protoplast formation was detectable when the heavier 

mycelial colonies that gravitate to the bottom of the Eppendorf changed to a 

cloudy suspension. At regular intervals the cells were viewed in phase 

contrast under the light microscope (Standard 14, Zeiss, West Germany). 

When the vast majority of cells in a Held of view appeared to be phase dark 

protoplasts, the suspension was passed through a pasteur pipette containing 

glass wool into a fresh Eppendorf tube. The protoplasts were gently 

sedimented (for 2 minutes at 6,500 r.p.m. in a MSE Microcentaur microfuge), 

the supernatant discarded and the protoplasts resuspended and washed in 1 ml

P. buffer. The protoplasts were counted at 10 or 100 fold dilutions using a
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haemocytometer slide (0.1 mm, 1/400 mm depth counting chamber, Weber 

International Ltd.). At this point the protoplast suspensions were either frozen 

slowly by placing the tubes in a beaker of ice at -70°C overnight, followed by 

separation from the ice and storage at -70°C (Hopwood et al., 1985). 

Alternatively protoplasts were used directly in PEG mediated transformations 

(Section 2.9).

2.9 PEG mediated transformation of protoplasts

Transformations were performed according to the methods of Hopwood et al., 

(1985). When frozen protoplasts were used, they were spun (3000 r.p.m. for 7 

minutes in a MSE MISTRAL bench top centrifuge) and washed by 

resuspending in fresh P.buffer. The resulting 1 ml suspension of protoplasts 

was respun, the supernatant poured off and the pellet resuspended in the 

remaining drop (or 50 pi) of P.buffer. 1 to 2 |il of plasmid DNA was added 

and mixed into the tube followed immediately by 200 |il PEG1000 in P. 

buffer. The suspension was pipetted 4 to 5 times immediately after the 

addition of The DNA and PEG. The transformed protoplast mixture was 

spread onto dried R5 plates (plates were dried so that the surface of the agar 

was no longer smooth but dried and wrinkled). Plates were incubated at 30°C 

overnight. After 14 to 24 hs the plates were overlayed with SNA or a 

modified R5 overlay containing selective antibiotics at 10 to 20% (w/v) of the 

final concentrations recommended by Hopwood etal. (1985).

2.10 Small scale plasmid Isolation from Streptomyces

Small scale plasmid isolation by alkaline lysis was performed according to 

Hopwood et al. (1985). 1.0 ml of a TSB or YEME grown broth culture under 

selection for the plasmid of interest was transferred to an Eppendorf tube. The 

tube was spun (at 6,500 r.p.m. on a MSE Microcentaur microfuge) for 3
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minutes, the supernatant removed and the cell pellet resuspended in lysozyme 

solution made up in SET. The tubes were incubated at 37°C for 30 minutes or 

until lysis occurred. After incubation the cells were mixed gently and 250 |il 

of 0.3 M alkaline SDS solution was added followed immediately by 1 minute 

of harsh vortexing. The cell lysis mixture was then placed in a water bath at 

55°C for 30 minutes and the water bath allowed to cool to room temperature. 

80 |il of acid phenol chloroform was added to the cell lysates and complete 

mixing of the phases achieved by vortexing. The lysates were spun (at high on 

a MSE Microcentaur microfuge) for 5 minutes, the upper phase removed and 

rextracted once with neutral phenol chloroform and once with chloroform 

isoamylalcohol. The aqueous phase was then transferred to a fresh eppendorf 

containing 70 Jil 3 M unbuffered sodium acetate and 700 |il isopropanol. The 

tubes were mixed by inversion and placed at -20°C for an hour. The plasmid 

DNA pellet was recovered by centrifugation (at high speed on a MSE 

Microcentaur microfuge) for 5 minutes, drained, washed with 70% (v/v) ice 

cold ethanol, respun, drained and dried under vacuum. The remaining pellet 

was resuspended in 100 |il sterile distilled water. Plasmid preparations were 

visualised on a 1% (w/v) agarose gel and their identity confirmed by 

restriction digestion.

2.11 Chromosomal DNA preparation

Chromosomal DNA preparations suitable for cloning were prepared from 

Streptomyces scabies ISP 5078 according to Hopwood et al. (1985), modified 

by Derek Hood (Derek Hood, pers comm.).

One gram of wet weight mycelium was placed in a Sterilin universal and 

suspended in 5 ml of 3 to 4 mg ml-1 lysozyme solution and placed at 37°C for 

10 to 20 minutes. A freshly made 10% (w/v) SDS solution was added to the

- 63 -



cell lysis mixture to a final concentration of 1% (w/v) and incubated in a water 

bath at 65°C for 10 minutes. The water bath was allowed to cool to room 

temperature. A 0.2 volume of 5 M sodium perchlorate was added to the lysed 

solution and mixed thoroughly. The lysed material was then extracted twice 

with an equal volume of acid phenol choloroform and twice with chloroform 

isoamylalcohol. The universals containing the cell lysate phenol chloroform 

extractions were repeatedly inverted by hand for 10 to 15 minutes (to prevent 

the DNA shearing), followed by 10 minutes centrifugation (at 3,000 r.p.m.in a 

MSE MISTRAL 1,000 benchtop centrifuge). The DNA in the aqueous phase 

was precipitated with 2.5 volumes of ethanol and a 0.1 volume of 3 M sodium 

acetate. The precipitated DNA was spooled onto a glass rod, allowed to air 

dry and the rod transferred to a fresh universal containing 1 to 2 ml TE buffer 

where it was allowed to stand for 30 seconds to allow the DNA to dissolve. 

RNase was added to a final concentration of 50 Mg ml-1 and the DNA solution 

placed at 37°C for 30 minutes. Finally, the DNA solution was reextracted 

once with neutral phenol chloroform and 2 to 3 times with chloroform 

isoamylalcohol. The DNA was precipitated at room temperature with a 0.25 

volume of 5 M NaCl and 2 volumes of ethanol. The DNA was spooled onto a 

glass rod, the rod dipped in ice cold 70% (v/v) ethanol and air dried before 

being resuspended in 1 ml of TE buffer.

2.12 Growth and maintenance o i E.coli.

E.coli DH5a was streaked out onto LB agar plates and incubated at 37°C 

overnight. Plates were stored at 4°C for up to a month before further 

subculturing. Overnight broth cultures of E.coli were grown up in 5 ml of LB 

in Sterilin universals and shaken at 37°C on a Gallenkamp orbital shaker (180 

to 200 r.p.m.) for 6 to 18 hours.
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2.13 Small scale preparation of plasmid DNA from E .co li.

The following method was obtained as a personal communication from 

R.Spooner, ICRF, London. Cells from a 5 ml overnight culture were harvested 

at room temperature (at 3,000 r.p.m. in a MSE MISTRAL 1000 bench top 

centrifuge). The pellet was recovered, resuspended in 180 Ml SET and the cell 

suspension transferred to a 1.3 ml Eppendorf tube. 180 |il of 4 mg ml-1 

lysozyme solution in SET was added followed by 300 |il of 10% (w/v) Triton 

X-100 and the contents of the tube mixed completely. The lysing cells were 

then placed in a boiling water bath for 1 minute, followed by immediate 

chilling on ice for 1 minute. High molecular weight DNA, RNA and proteins 

were pelleted (13,000 r.p.m. on a MSE Microcentaur microfuge for 10 to 30 

minutes). 300 |il 7.5 M ammonium acetate was added to the recovered 

supernatant and the samples placed on ice for 20 minutes. Protein debris was 

removed by centrifugation (maximum speed for 10 minutes on a [MSE 

Microcentaur microfuge]). The supernatant was recovered, a 0.7 volume of 

isopropanol added and the sample placed at -20°C for 10 minutes. The nucleic 

acids were sedimented (maximum speed for 10 minutes [on a MSE 

Microcentaur microfuge]), the pellet drained, washed with 70% (v/v) ethanol 

and resuspended in 60 |il TE buffer and 1 Ml 10 mg ml*1 RNase solution. 5 |il 

aliquots were used for restriction digestions.

2.14 Large scale preparation of plasmid DNA from E .co li.

Suitable E.coli strains were grown up overnight in 400 ml LB media with 

antibiotics selective for the plasmid of interest. The broth culture was 

transferred to 500 ml Nalgene centrifuge pots and spun (at 5,000 r.p.m. for 10 

minutes [in a JA10 rotor on a Beckman model J2-21 centrifuge]). The cells 

were drained and the cellular pellet resuspended in 7.2 ml of SET. A further

7.2 ml of ice cold 4 mg ml-1 lysozyme dissolved in SET was added, followed
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by 12 ml of Triton X-100. After mixing, the flask was immediately swirled 

over the hottest part of a bunsen flame, until the cells appeared yellow, grey, 

and glutinous. The flask was placed in a boiling water bath for about 30 

seconds and then transferred to ice. The lysate was transferred to Oakridge 

tubes and spun at 20,000 r.p.m. for 30 minutes at 4°C (in a JA20 rotor on a 

Beckman model J2-21 centrifuge). The supernatant was recovered and 

transferred to fresh Oakridge tubes, a 0.5 volume of 7.5 M ammonium acetate 

was added and the tubes placed on ice for 20 minutes to allow precipitation of 

the proteins. The tubes were spun at 15,000 r.p.m. for 10 minutes at 4°C (in a 

JA20 rotor on a Beckman model J2-21) and the supernatant recovered. The 

volume of the supernatant was determined and a 0.7 volume of isopropanol 

added. The DNA was allowed to precipitate at -20°C for 10 minutes. The 

DNA was sedimented at 15,000 r.p.m. (in a JA20 rotor on a Beckman model 

J3-21), the pellet dried under vacuum and resuspended in 4 ml TE buffer. 4.3 

g CsCl was added to the DNA solution together with 0.5 ml 5 mg /ml ethidium 

bromide and the solution transferred to Beckman quick-seal tubes. The tubes 

are heat sealed and spun in a (VTI 65 rotor on a Beckman L8 Ultracentrifuge) 

for 18 h at 52,000 r.p.m. The gradient was examined under long wave 

ultraviolet light and the bands of interest identified. The gradient was secured 

on a clamp and retort stand, while a syringe needle was used to puncture the 

top of the tube. The band of interest was recovered by piercing the bottom of 

the tube and allowing the contents of the tube to pass out slowly. The fraction 

of interest was recovered in a separate Eppendorf tube. The plasmid DNA 

appeared as the lower of two bands, the upper band being linear plasmid and 

chromosomal DNA. The plasmid DNA was cleaned by the addition of an 

equal volume of isopropanol over TE saturated with CsCl, vigorous shaking 

and spinning for several minutes (low speed, in MSE Microcentaur 

microfuge). The lower phase was retained and the isopropanol extraction
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repeated until the interphase was clean and the ethidium bromide removed. 

The volume of DNA was adjusted to 1 ml. The CsCl was diluted with 3 

volumes of TE, followed by a 0.1 volume 3 M sodium acetate pH 5.4 and 2 

volumes of ethanol. The tube was placed at -20°C for 2 h to precipitate the 

DNA. The tubes were spun at 15,000 r.p.m. for 10 minutes at 4°C (in a JA20 

rotor on a Beckman J2-21 centrifuge). The DNA pellet was dried under 

vacuum and resuspended in 400 |il TE buffer.

2.15 Quantification of DNA and RNA from pure cultures

A known volume of DNA or RNA was made up to 1 ml with sterile distilled 

water and placed in a quartz cuvette. Readings were taken against sterile 

distilled water at 260 nm and 280 nm (on a PU 8720 UV/ VIS scanning 

spectrophotometer). An OD260 of 1 is equivalent to 50 Mg ml-1 double 

stranded DNA and 40 Mg ml-1 single stranded DNA or RNA. OD260/ OD280 

ratios of pure DNA and RNA are 1.8 and 2.0 respectively, a lower reading 

being indicative of phenol or protein contamination.

2.16 Restriction of DNA (medium salt conditions)

Restriction enzymes were used according to the supplier's instructions with the 

buffers supplied.

2.17 Restriction mapping of plasmid DNA

Plasmids were restricted with a series of restriction enzymes and these 

products run on 1% (w/v) agarose gels together the size marker ladders: 

Lambda cut with Hind III and Eco RI and pBR322 cut with Hint I and Eco RI. 

The distance of migration from the wells through the gel was measured for 

restriction products of the plasmid and plotted along with the migration
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distance of the size standards on semi-logarithmic graph paper. From the plot 

it was possible to calculate the sizes of the restriction products and order them 

on the plasmid.

2.18 Ligation of plasmid DNA

Ligations were performed in a final volume of 15 |il at room temperature for 

an hour. The ligation mixture included:

1.5 Ml 10 times Ligation buffer 

1 |il Ligase

1.5 Ml 40 mM Dithiothreitol

1.5 Ml 5 mg/ ml Bovine serum albumin

9.5 Ml SDW and DNA

The reaction was stopped by the addition of 2 (il 200 mM EDTANa2 and 13 |il 

of SDW was added to bring the final volume to 30 Ml.

2.19 Agarose gel electrophoresis

100 ml 0.5 tol% (w/v) agarose gels were run to visualise DNA, 1.5% (w/v) to 

visualise rRNA. The agarose was boiled over a flame in 100 ml TBE and 

allowed to cool before the addition of 5 Ml of a 10 mg ml-1 ethidium bromide 

solution. The gel was poured into a tape sealed tray and allowed to set. DNA 

gels were run at 80 to 100 v for 1.5 to 2 hours or overnight at 15 v in TBE 

running buffer. RNA gels were run at 80 to 100 v for 30 minutes. DNA or 

RNA bands were visualised on a short wave UV light box.

2.20 Isolation of small fragments from an agarose gel.

The DNA restriction digestion products were electrophoresed on an agarose
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gel. If the fragment to be isolated was similar in size to other restriction 

products, the fragments of similar size were resolved by running a gel with a 

low agarose content eg. 0.5%. The fragment of interest was identified under 

UV light and DE81 paper (Whatman size 2.3 mm) was placed perpendicularly 

to the orientation of the band. The gel was trimmed and orientated about 90° 

in the gel rig, so that fragment of interest could be electrophoresed onto the 

DE81 paper, which was backed by dialysis tubing. The presence of the band 

on the paper was monitored under UV light. When the fragment had migrated 

onto the DE81 paper, the excess paper was removed and the paper containing 

the fragment was placed in 400 Hi 1.5 M NaCl in TE buffer. The paper was 

homogenized by pipetting it slowly into the buffer and the tube was then 

placed at 37°C for 2 hs. The paper fragments were pelleted at maximum speed 

for 5 minutes (MSE Microcentaur microfuge) and the supernatant recovered. 

The DNA was precipitated by the addition of 800 |il ethanol and placed at - 

20°C overnight.

2.21 Preparation of E.coli competent cells.

A 5 ml overnight culture of E.coli (DH5a) broth was diluted 1 in 100 with 

37°C preincubated SOB with 10 mM MgCl2. The cells were grown up at 

37°C for 1 hour 30 minutes or until the OD at 660 nm was approx. 0.48 

(equivalent to 107 cells ml-1)- The cells were placed at 0°C for 10 minutes 

before being spun gently (2 to 3,000 r.p.m. in a JA20 rotor on a Beckman J2- 

21 centrifuge). The pellet was drained and placed in a volume of ice cold RF1 

equivalent to 0.33 of the initial growth volume of cells. The pellet was 

resuspended by gently pipetting the RF1 buffer over the pellet. The cells were 

placed at 0°C for 15 minutes, before a further gentle spin (2 to 3,000 r.p.m. in 

a JA20 rotor on a Beckman J2-21 centrifuge). The resulting pellet was then 

resuspended in a 1/ 12.5 volume of ice chilled RF2 (of the initial growth
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volume). 200 Ml aliquots were placed in prechilled Eppendorf tubes, frozen in 

liquid N2 and placed at -70°C.

2.22 Transformation o l E .co li

A 200 Ml aliquot of frozen competent cells was thawed at room temperature 

and then placed on ice. DNA was added to approximately SO ng and the cells 

placed on ice for 10 to 60 minutes. The cells were then heat shocked for 90 

seconds at 42°C followed by cooling on ice for 1 to 5 minutes. 800 Ml of L- 

broth or SOB was added and the cells incubated at 37°C for 20 to 60 minutes. 

100 Ml aliquots were plated out on L-broth plates and grown overnight at 37°C. 

Colonies of interest were transferred to fresh plates using a tooth pick which 

was placed in the centre of each colony.

2.23 Identification of xylE  positive colonies

Colonies expressing the xylE gene, encoding production of catechol 2,3 

dioxygenase, were identified by spraying with a solution of 100 mM catechol. 

Positive colonies formed a yellow substrate in the presence of catechol (2- 

hydroxy muconic acid) within approximately 5 minutes of being sprayed. 

These colonies were immediately transferred to fresh plates with a tooth pick.

2.24 Extraction of rRNA from Streptomyces broth cultures.

2.24.1 Method 1.

TSB grown mycelial broth cultures were harvested after 3 to 5 days by 

centrifugation at 3,000 r.p.m. for 20 minutes. Cells were lysed by sonication 

(Jencon sonicator) at 24 microns at 0°C for 2 minutes in a solution of 7.3 M 

guanidine hydrochloride. Cell debris was removed by centrifugation (at low 

speed in MSE Microcentaur microfuge) and the aqueous supernatant recovered
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and extracted twice with neutral phenol chloroform and chloroform. The 

rRNA was precipitated with 2.5 volumes of ethanol and placed at -70°C for 10 

minutes (Hahn etal., 1990a).

2.24.2 Method 2.

Bacterial cells are suspended in the GOS homogenization buffer. These cells 

were lysed by sonication (Jencon) for 3 minutes at a frequency of between 18 

to 24 (im. 1/3 volume of 8.5 M potassium acetate pH 6.5 was added to the 

lysed cells and placed on ice for 15 minutes. The lysis mixture was spun at

3.000 r.p.m. (on a MSE Benchtop centrifuge) for 30 minutes and the 

supernatant recovered. The rRNA was then precipitated by the addition of a 1/ 

9 volume 3.3 M sodium acetate pH 6.1 and a 0.5 volume isopropanol and 

placed at -20°C for 1 hour. The nucleic acids were recovered by spinning at

5.000 r.p.m. for 30 minutes, the supernatant was discarded and pellet 

resuspended in 800 (il TE buffer. A 0.5 volume of 10 M LiCl was added and 

the reagents mixed thoroughly and placed on ice for 5 to 12 hours. The 

precipitates were spun at 10,000 r.p.m. for 30 minutes, (Heraeus Sepatech 

Biofuge 15) and the recovered pellet resuspended in 200 |il TE buffer. 1.5 

volumes of 5 M potassium acetate (pH not adjusted) were added to the RNA 

solution and the samples placed on ice for 3 to 5 hours. After a second spin at

10.000 r.p.m. for 30 minutes (on a Heraerus Sepatech Biofuge 15) the drained 

RNA pellet was taken up in 30 to 100 Ml TE buffer.

2.24.3 Method 3.

A 50 ml broth culture of a particular Streptomyces strain was decanted into 2 

X 20 ml universals and spun at 3,000 r.p.m. (on a MSE benchtop centrifuge). 

The resulting pellets were taken up in 2 ml of Darbyshire solution and 2 ml 

DEPC treated SDW. The cells were resuspended by mixing well. 200 Ml of
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0.5 M EDTANa2 and 200 |il of N-laurlysarcosine (10%) were added to the 

cells and the mixture vortexed for 1 minute to lyse the cells. The lysates were 

spun at 3,000 r.p.m. at 4°C for 30 minutes (in a MSE bench top centrifuge). 

The supernatant was recovered and 4 times 500 |il aliquots placed into 4 times

1.5 ml Eppendorf tubes. 1 ml of 100% ethanol was added to each of the tubes 

and the tubes were placed at -20°C overnight. The tubes were then spun at

13,000 r.p.m. at 4°C (in an MSE microcentaur microfuge). The supernatant 

was removed carefully with a pipette, the pellets air dried and taken up in 50 

|il DEPC treated SDW. Samples were stored at -20°C. Precautions were 

taken to ensure that all materials used was free from RNase enzymes. 

Glassware, spatulas etc. were baked at 120°C overnight and all solutions were 

prepared with RNase free reagents and sterile distilled water that had been 

treated with 0.1 % DEPC.

2.25 Dot blots

100 ng of rRNA was applied to Hybond N nylon filters using a dot blot 

manifold (GIBCO BRL Ltd., Middlesex). Filters were dried on Whatman 

paper no.l soaked with 20 times SSC. RNA was fixed to the filters by 

exposure to short wave UV light (from a transilluminator, Cambridge, UVP 

Ltd, San Gabriel, USA) for 2 minutes.

2.26 Microwave lysis colony blot method applied to

Streptomyces.

Microwave lysis methods were based on the methods of Datta et al. (1987) 

and modified for actinomycetes by P. Baker (pers. comm.). Spore and mycelial 

material was transferred from sporulating plate cultures using tooth picks to 

circular cut nylon Hybond N membranes placed on R5 plates. The colonies

- 72 -

I



were grown for 24 to 48 hrs, before the nylon filter was removed from the 

plate and placed onto 2 to 3 layers of Whatman No. 1 paper saturated with 

0.15 M NaCl and 0.1 M NaOH. Colonies were lysed by placing the tray 

containing the saturated Whatman paper and nylon filters in the microwave 

(Cooktronic M710, Phillips) at high temperature for 60 seconds. The filters 

were placed on fresh Whatman paper to dry and the nucleic acids were fixed to 

the nylon filter by UV irradiation on a short wave UV transilluminator (UVP 

Ltd., Cambridge, UK.) for 2 to 3 minutes. The filters were stored prior to 

hybridization in bags (sealed using an Impulse sealer, E82163(s), Hybaid, 

Middlesex) at 4°C.

2.27 Hybridization conditions

Hybridization conditions were modified from Church & Gilbert (1984). 

Filters were placed in hybridization tubes containing prewarmed hybridization 

buffer in a hybridization oven (Mini hybridization oven, Hybaid, Middlesex), 

at 50°C overnight.

Oligonucleotide probes were 5' labelled using T4 polynucleotide kinase (BRL) 

and 10 to 20 (iCi of gamma 32P adenosine-5-triphosphate (3,000 Ci mmol-1, 

Amersham) according to (Hahn, 1990).

End-labelled oligonucleotide probe was added to the prehybridization buffer. 

Hybridizations were allowed to proceed for 6 to 18 hrs at 50°C. Stringency 

washes were performed with washing buffers I and II for 2 X 20 minutes 

followed by 3 times 10 minute washes with washing buffer 3. Washes were 

performed at 40°C, 50°C and 52°C.

Recovery of intact RNA was confirmed by hybridization with the universal
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eubacterial probe primer 1115 (Embley et al„ 1988). Duplicate filters were 

used to determine the specificity of oligonucleotide probes.

2.28 Autoradiography and phosphorimage analysis

The filter sealed in a plastic bag (Impulse sealer E821163(S) Hybaid, 

Middlesex) was placed in a Hamer film cassette together with two intensifying 

screens (with the shiny sides of the screens facing the film). The cassette was 

placed at -70°C for a period from several hours to several weeks. The exposed 

X-ray film was developed using Kodak LX-24 developer (5 minutes) followed 

by a quick rinse in water and finally 2 to 4 minutes in Kodak FX-40 X-ray 

fixer.

Alternatively, the sealed filter was exposed on a phosphor screen for a period 

from several hours to a week. The exposed screen was then scanned and the 

image analysed and processed on a phosphorimager (Molecular E>ynamics Ltd, 

Sevenoaks, Kent).

2.29 Identification of putative pathogenic streptomycetes.

Putative scab pathogens were identified on the basis of 41 morphological and 

physiological characters contained in the probabilistic identification matrix of 

Williams etal. (1983b).

2.29.1 Morphology

Spore coat surface, spore chain morphology and fragmentation of 

mycelium.

These traits were examined from coverslip preparations of strains. Unknowns 

were inoculated at a 45° angle onto a coverslip embedded into ISP 4 or 

oatmeal agar plates. The strain was allowed to grow and sporulate for 21 days
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at 25 °C, before the coverslip was removed and fixed in formaldehyde vapour 

in a desiccator. The dried coverslips were mounted onto stubs using 

conductive paint and coated with colloidal gold. The samples were then 

viewed under the scanning electron microscope (Joel JSM T330A). 

Categories of spore coat surface morphology include smooth, spiny, hairy, 

warty and rugose (Tresner et al., 1961). Two of these categories were scored 

positive i.e. smooth or rugose, other phenotypes were scored negative. The 

following categories of spore chain morphology (Pridham et al., 1958) were 

scored positive, Rectiflexibiles (long and flexous), Rectinaculiaperti (long and 

flexous with the occasional spiral or twist), Spirales (spiral spore chains with 

more than 1.5 turns per chain) and Verticillati (spore chains in verticels).

Substrate Mycelium

The colour of the substrate mycelium was assessed on glycerol asparagine agar 

after growth for 14 days at 25°C against a colour chart series. The important 

colour groups for streptomycete identification being yellow-brown and red- 

orange. A yellow brown substrate mycelium was scored positive, while 

orange brown was scored negative.

Colour of aerial spore mass

Inoculated plates of oatmeal of ISP 4 agar were examined after 14 days 

incubation at 25 °C. The colour of the aerial spore mass was compared with 

colour charts (Tresner & Badkus, 1963). The important colour groups for 

streptomycete identification being red, green and grey. The category observed 

was scored positive, while the remainder were scored negative.

2 2 9 2  Inoculation of test media

All media was inoculated from 20% (w/v) glycerol spore and mycelial
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suspensions of the unknown strain. The exception to this being the carbon and 

nitrogen tests, these were inoculated from SDW suspensions of spore and 

mycelial material.

2.293 Production of melanin pigments

Melanin pigment production was established by growing strains on plates of 

peptone yeast extract iron agar. Melanin production was detectable after 4 

days at 25 °C as the production of dark pigmentation in the agar when 

compared with an uninoculated plate.

2.29.4 Growth on carbon sources

Ability to utilise adonitol, cellobiose, D-fructose, inulin, D-mannitol, meso- 

inositol, D-raffinose, L-rhamnose and D-xylose was assessed over a period of 

21 days at 2S°C. Ability to utilise the above carbon sources was scored 

positive or negative with reference to growth on the positive control D-glucose 

and a negative control without a carbon source.

2.293 Growth on nitrogen sources

Ability to utilise a-aminobutyric acid, L-histidine and L-hydroxyproline was 

assessed after 15 days growth at 25°C against the positive control of L- 

asparagine and a negative control without a nitrogen source.

2.29.6 Degradation of xanthine

Ability to utilise xanthine was scored for by the production of a clearance zone 

after 28 days of growth at 25°C. Xanthine degradation was scored positive.

2.29.7 Utilisation of allantoin

Inoculated slopes were incubated for 28 days at 25°C. Allantoin utilisation
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was detectable by the occurrence of a colour change from orange/yellow (acid) 

to pink/red (alkaline). Inoculated negative control slopes without allantoin 

were compared with test slopes to avoid confusion over production of 

pigments by the strain and the acid-alkali colour change. Allantoin utilisation 

was scored positive.

2.29.8 Utilisation of arbutin

Inoculated slopes were incubated for 21 days at 2S°C. Arbutin degradation 

was detectable as a blackening of the agar. Inoculated negative controls 

without arbutin were compared against test slopes to avoid confusion over 

blackening from arbutin degradation and blackening from melanin production. 

Arbutin degradation was scored positive.

2.29.9 Utilisation of pectin

Inoculated pectin plates were incubated at 2S°C for 6 days. Degradation was 

evident by the appearance of a clearance zone after flooding the plates with a 

warmed solution of 1% (w/v) hexadecyltrimethyl ammonium bromide for an 

hour. Pectin utilisation was scored positive.

2.29.10 Inhibition of growth by: Aspergillus niger, Bacillus subtilis and 

Streptomyces murinus

Growth inhibition by the above strains was assessed by growing the unknown 

on 3 glass nutrient agar plates for 24 to 48 hs (the strain was not allowed to 

sporulate). The unknown strains were killed by exposure to a chloroform 

atmosphere for 40 minutes and overlayed with a 10 to 13 ml soft nutrient agar 

suspension of each of the above test organisms. A zone of inhibition was 

assigned a positive score.

- 77 -

I



2.29.11 Chemical inhibition tests

Unknown strains were tested for ability to grow on modified Bennet's agar 

containing: 0.01% sodium azide, 0.1% phenol and 7% sodium chloride. 

Strains were grown for 14 days at 25°C. Ability to grow on the inhibitory 

compounds was assigned a positive score.

2.29.12 Growth at 45°C

Ability to grow at 45°C was tested by incubating inoculated plates of Bennet's 

agar at 45°C for 6 days. Growth at 45°C was assigned a positive score.

2.29.13 Resistance/ sensitivity to: neomycin and rifampicin

Sensitivity to the above antibiotics was tested by placing 5 mm diameter discs 

of filter paper Whatman No.l paper treated with a 50 pg/ ml solution of the 

antibiotic onto a Bennet's agar plate spread with the unknown strain. 

Antibiotic impregnated discs were produced by soaking discs of filter paper in 

the antibiotic solution for 2 minutes followed by drying under vacuum 

Williams (1967). Sensitivity to an antibiotic as indicated by the presence of a 

zone of inhibition was assigned a negative score, resistance or no zone was 

scored as positive.

2.29.14 Reduction of nitrate

Inoculated nitrate slopes were incubated for 14 days at 25°C. After incubation 

0.2 ml of each of Giess-Ulosary reagents I and II were added to the slope. 

Nitrate reduction is detectable by the formation of nitrite and therefore the 

formation of a red compound with the addition of the Giess-Ulosary reagents. 

Negatives were confirmed by the addition of zinc powder to the slope, this 

reacts with the reagents to produce the same red compound.
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2.29.15 Production of H2S

Production of H2S was detected by placing Whatman No.l filter paper strips 

soaked in lead acetate in the top of the nitrate agar slopes. A blackening of the 

lead acetate strips after 14 days of incubation signified production of H2S and 

the reaction was scored positive.

2.29.16 Lecithinase activity

Lecithinase activity was detected on inoculated plates of egg yolk agar 

incubated at 25°C for 6 days. The enzyme causes production of a opaque 

creamy yellowish precipitate surrounding the edge of the colony. Lecithinase 

activity was scored positive.

2.29.17 Identification statistics

Three identification statistics were used to assess the reliability of the 

identification of an unknown. A Wilcox probability score of 0.8 and above 

indicated a positive identification. The taxonomic distance was a measure of 

the distance of the unknown from the centroid strain of the cluster to which it 

was assigned, scores of 0.4 and below were indicative of a positive 

identification. The standard error (SE) gives a measure of the variation in 

aberrant test results. A negative score indicated the unknown was closer to the 

centroid than average.

2.30 Identification of patterns of antibiotic resistance and 

sensitivity In plant pathogenic streptomycetes

Strains were screened for uncommon patterns of resistance and sensitivity to 

antibiotics by placing Mastrings multiple antibiotic discs (Mast Laboratories, 

Merseyside, UK.) onto the surface of streptomycete inoculated spread plates of
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2.31 Glasshouse pathogenicity tests of putative

pathogens.

Pathogenicity of isolates was tested under 2 glasshouse regimes.

2.31.1 Method 1

Pathogenicity of isolates was investigated in the glasshouse with an 18 h day, a 

daytime temperature of 20°C and a night time temperature of 15°C. Spore and 

mycelial suspensions (in 1/4 strength Ringers solution) were inoculated into 1 

kg pasteurised John Innes Compost (Section 2.43) prepared with additional 

lime and grit at 103 to 104 c.f.u. g-1. 20 cm diameter pots were sown with 

certified potato seed of the scab susceptible variety, Maris Piper and the scab 

resistant variety, Pentland Crown. Strains were tested in triplicate against both 

potato varieties and the pots were arranged in a randomised block along with 

uninoculated control plants.

Plants were watered daily for the first two weeks and then twice weekly via 

gravel covered capillary matting upon which the pots were placed. Soil 

moisture content was kept below 50% moisture holding capacity (MHC).

2.312 Method 2

Pathogenicity of isolates was investigated according to the method 1 with the 

following differences: 10 L pots were filled with a mixture of equal volumes 

of peat and sand. The potato variety used was Desiree with 10 replicate pots 

per inoculant. The pots were watered carefully from above to 50 to 60% 

moisture holding capacity of the soil.

Progeny tubers from both pathogenicity tests were assessed for scab symptoms 

after 20 weeks when the plants had begun to senesce. Pathogenicity of isolates

- 80 -



was assessed against any background infection seen on the tubers of the 

uninoculated control plants. Pathogenicity of isolates was determined 

according to the percentage coverage of tubers by scab lesions (Large and 

Honey, 1955). In addition progeny tubers from pathogenicity trial 2 were 

weighed and the number of tubers per plant calculated.

2.32 Propagation and maintenance of in vitro plantlets.

Axenic in vitro plantlets of the scab susceptible potato variety Maris Piper 

were kindly supplied to us by P. Hirsh (Rothamsted Experimental Research 

Station) and P. Dale (I.P.S.R. Cambridge Laboratory, John Innes Institute). 

Plantlets were propagated by making intemodal cuttings, removing the leaf at 

the node and placing the bud of the node facing upwards into glass tubes 

containing Murashige and Skoog medium with 3% sucrose and 0.6% agar, pH 

5.6. This medium was sterilised by autoclaving at 10 p.s.i. for 15 minutes.

2.33 Induction of mini tubers

Mini tubers were induced from intemodal cuttings placed into Murashige and 

Skoog medium with additional sucrose (8% sucrose) at pH 5.6. Plantlets 

developed after 2 to 4 weeks and mini tubers were induced after 4 to 6 weeks 

(Fig. 1).

2.34 Induction of scab symptoms on the surface of mini 

tubers.

While the tubers were small and still developing (4 to 5 weeks), they were 

inoculated by placing a drop of a plant pathogenic streptomycete spore 

suspension on the tuber surface. Within 4 weeks scab symptoms were visible 

on the surface of the tubers.
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Minitubers were induced from intemodal cuttings placed on Murashige and 

Skoog complete medium containing 8% sucrose. Minitubers appeared after 4 

weeks incubation at 20°C. The potato variety used was Maris Piper.

Fig.l Induction of in vitro minitubers
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Fig.l Induction of in vitro minitubers

Minitubers were induced from intemodal cuttings placed on Murashige and 

Skoog complete medium containing 8% sucrose. Minitubers appeared after 4 

weeks incubation at 20°C. The potato variety used was Maris Piper.
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2.35 Scanning Electron Microscopy of the tuber and potato 

root surface.

Mini tuber and root material was fixed by placing in 3% glutaraldehyde 

overnight at 4°C. This was followed by consecutive rounds of drying in 10, 

30, 50, 70 and 90% acetone each for 10 minutes and drying overnight in a 

desiccator. The fixed samples were attached to stubs using conductive paint 

and coated with colloidal gold using a sputter coater. SEM preparations were 

viewed on a Joel Scanning Microscope (JSM) T330A.

2.36 In situ hybridizations

2.36.1 Sample preparation

One gram of soil was fixed in 3 mis of cell fixation buffer at 4°C, from 3 hours 

to overnight. The cells were removed from the heavier soil particles by 2 

times 3 ml extractions of cell fixation buffer. At each time the heavier soil 

particles were allowed to settle for 1 minute and the supernatants decanted off 

and pooled. The supernatants were spun for 10 minutes at 5000 r.p.m. and the 

pellet retained. The pellet was washed by resuspending in 1 times PBS, 

resedimented and retained. The pellet was finally taken up in 500 pi of 1 times 

PBS and 500 |il of 96% (v/v) ethanol. The fixed soil was stored at -20°C for 

up to a year. A 1 |il aliquot of the fixed soil -suspension was placed onto a 

glass window of a slide obtained from Cell Line Associates Inc., New Jersey, 

that had been coated in 0.1% (w/v) gelatin and 0.01% (w/v) chromium 

sulphate. The soil suspensions were allowed to air dry for 20 to 30 minutes 

before the slides were placed consecutively in tubes of 50, 80 and 96% (v/v) 

ethanol each for 3 minutes. The slide was then allowed to air dry for 10 

minutes. The hybridizations were performed in a humid atmosphere at 45°C. 

A hybridization chamber was prepared containing moistened paper towels and
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preincubated at 4S°C. A 5 |il aliquot of hybridization buffer was added to the 

1 |il of dried soil material on the slide, together with 1 Jil of the 

oligonucleotide probe (50 ng/ |il). The slide was placed face upwards in the 

sealed hybridization chamber and incubated at 45°C for 1 to 2 hours. The 

slide was then removed from the chamber and the windows rinsed with 

hybridization buffer. The slide was returned to the chamber and incubated at 

48°C for 20 minutes. The slide was finally removed, rinsed with sterile 

distilled water and air dried for 10 minutes. The slide was either viewed under 

a fluorescent microscope at 580 nm (red) or stored for viewing at a later date. 

In order to minimise photobleaching samples were protected with a drop of 

Citifluor solution (Citifluor, Ltd., London, UK.) made up in 9 parts glycerol 

and 1 part PBS buffer.

2.36.2 Fluorescent labelling of the oligonucleotide probe

The labelled probe was prepared by R. Amann and D. Hahn according to 

Amann et al. (1990). An amino linker was attached to the 5' end of the 

oligonucleotide in the last coupling cycle during the synthesis of the 

oligonucleotide. The primary amino-group was then coupled to the

fluorescent dye, tetramethylrhodamine isothiocyanate. The oligonucleotide 

probe used in this study was the eubacterial probe primer 1115 (Embley et 

al., 1988).

2.37 Recovery of bacteria from soil

1 g of soil was transferred to 9 ml of 1/4 strength Ringer diluent and shaken (at 

max. speed for 15 minutes) on a Griffin wrist action shaker. The larger soil 

particles were allowed to sediment and the supernatant serially diluted and 

plated in triplicate onto RASS or R5 agar containing appropriate antimicrobial 

agents.
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2.38 Extraction of rRNA from soil.

RNA was recovered from soil according to the method given in section 2.24.2, 

however, spores in soil were lysed by bead beating continuously for 5 minutes 

in a Braun homogenizer (B.Braun, Melsungen A.G.). A 2.5 : 1 ratio of 0.1 

mm diameter glass beads to soil was used. Hence for a 2 g sample of soil, 7 g 

of beads were added and the extraction buffer added until just below the neck 

of the tube or bottle.

2.39 Extraction of DNA from soil

The following method was based on Cresswell et al. (1991). Ten grams of soil 

were placed in a 50 ml bead beating bottle (Braun) with 25 g 0.1 mm diameter 

glass beads and the bottle filled to the neck with 0.12 M sodium phosphate 

buffer, (pH 8.0). The bottle was placed inside the bead beater (B. Braun, 

Melsungen A.G.) and shaken for 5 minutes continuously, while cooled with 

C 02. The contents of the bottle was transferred to Oakridge tubes and the 

large particles of soil and glass beads sedimented (6,500 r.p.m. in a JA20 

Rotor on a Beckman J2-21 centrifuge). The supernatant was retained and the 

pellet rextracted with 25 ml 0.12 M sodium phosphate buffer (pH 8.0). The 

supernatants were pooled and the DNA precipitated with polyethylene glycol

6,000 (Hopwood et al., 1985) and spun at 3,000 r.p.m. (for 10 minutes on a 

MSE bench top centrifuge). The supernatant was removed and the pellet 

resuspended in 5 ml TE buffer and extracted twice with neutral phenol 

chloroform isoamylalcohol, the neutral phenol chloroform was rextracted with 

TE buffer and the supernatants combined. The aqueous phase was extracted 

with chloroform isoamylalcohol and the upper phase recovered. The DNA 

was precipitated at -20°C overnight, centrifuged and washed with 70% (v/v) 

ice-cold ethanol, vacuum dried and dissolved in 100 |0l TE buffer by heating to 

60°C and trituration and stored at 4°C.
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2.40 Estimation of pH and Moisture Holding Capacity 

(MHC) of soil

The pH of the soil was estimated accordingly (Fisons, agriculture catalogue), 

one part soil was placed in two parts deionised water, mixed vigourously for 

one minute and allowed to stand for two minutes before the pH of the soil 

suspension was measured. The M.H.C. of the soil was determined according 

to Allen et al. (1974) by drying a sample of soil to constant weight, then 

allowing the soil to become saturated with water and calculating the % 

moisture present in the saturated soil. Both estimates were made in triplicate 

and the mean value taken.

2.41 Sterile soil microcosms

20 g of air dried John Innes compost was sieved through a 2 mm mesh sieve 

and placed in glass plant propagation tubes. Where soil was amended the 

amendments were 1% starch and 1% chi tin. Soil was sterilised by three 

rounds of autoclaving and incubation. The soil moisture content was 

assessed and the sterile soil inoculated with an enumerated stieptomycete 

spore suspension in 1/4 strength Ringers. The moisture content of the soil was 

then brought up to 15% with the 1/4 strength Ringers inoculum suspension. 

Suspensions were not mixed into the soil but instead left to filter through the 

soil matrix. Sterile potato plants (Maris Piper) were introduced into the 

microcosms either as mini tubers (experiment 1) or as month old plantlets 

(experiment 2)[Fig. 2].

2.42 Non-sterlle microcosms

Non-sterile microcosms were based on the regime for testing pathogenicity 

(method 1). One kg of pasteurised John Innes compost was inoculated with
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Fig.2 Axenic microcosms with and without plants

20 g of John Innes compost was sterilised by three rounds of autoclaving and 

incubation. Microcosms with plants were seeded with an axenic, sprouting 

mini tuber (Section 6.3.2) or a 4 week old plantlet (6.3.3).
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streptomycete spore suspensions. The moisture content of the pots was kept to 

less than 50% moisture holding capacity, with pots watered once a week from 

below. Potato plants were introduced into the pots as certified Maris Piper 

potato seed tubers.

2.43 John Innés potting compost

The modified John Innés Potting compost was made up by Matt Busby, senior 

horticulturist from the Science Education Department, Warwick University. It 

consisted of:

Per bushel 

Per bushel

7 parts (by volume) loam

3 parts peat

3 parts limestone grit

0.25 lb JI base fertilizer

1.5 oz ground chalk

2.44 Measurement of water content in the soil

Water content in the soil was estimated by taking a sample of soil of known 

weight (wet weight) followed by drying to constant weight in an oven (105°C), 

for 48 to 36 hs. The moisture content of the soil was the difference between 

the wet and dry weights.

2.45 Statistical analysis

Statistical analysis was performed using the MINITAB software package 

(Minitab statistical software, State college, PA., USA). Minimum significant 

differences were calculated from analysis of variance data using the method of 

Peterson (1985). When the number of replicates for each sample point (day)
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was the same, Tukey's H.S.D. was employed. However, if the number of 

replicates differed between sample dates e.g. because of a contamination 

problem in one particular dilution series the M.S.D. coefficient was used. 

Tukey's honestly significant difference:

H.S.D.= Qa ✓ (m.s.e./r)

Minimum significant difference:

M.S.D.= Qa^[(m.s.e. [1/ni + l/nj])/2]

Where: Qa = Value from the studentised range (Q) table of (99%) confidence 

limits. Depending on (i (error degrees of freedom [ANOVA]) and n (no. of 

sample points [days]).

m.s.e 

r 

n i

ni

The Mann-Whitney test 

Non-parametric Statisical methods

The theory upon which the two sample t test is based requires that the two 

sampled populations be normally distributed. Methods not requiring normally 

distributed data are referred to as non-parametric procedures. These methods 

may be applied to situations where a two sample parametric test would 

normally be applied (Zar, 1984).

In this test as for other non-parametric tests the actual measurements are not 

used. Instead the data are arranged in order of size and assigned a rank order.

= mean square error (from ANOVA) 

= sample size (no. replicates)

= the lowest no. of replicates 

= the highest no. of replicates.
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The data may be both ranked from the highest to the lowest values or vice 

versa. For the pathogenicity data, the lowest values were ranked 1, 2 etc. until 

N.

The Mann-Whitney statistic was calculated as follows:

U = nln2 + n l(n l + l) -R l /2  

and

U‘ = n ln2 -U

Where nl = the population size of sample 1 

and n2 = the population size of sample 2

Where R1 = the sum of the sample ranks from population 1 

and R2 = the sum of the sample ranks from population 2

As a check on the assignment of ranks U + U1 = nln2.

For a two tailed test e.g. the null hypothesis is that the scab coverage produced 

by a putative pathogenic streptomycete is the same as that found on 

uninoculated control plants. U and U1 were calculated and the larger of the 

values matched up according to nl and n2 on a table of critical values for the 

Mann-Whitney U distribution. If U or U1 is greater or equal to the tabulated 

figure at the a  0.05 level of significance, the null hypothesis is rejected and the 

two populations found to be significantly different.

2.46 Cluster analysis of taxonomic data using NTYSIS-pc

Data were recorded in binary form and arranged in a matrix (n x t) n = the 

number of bacteria and t = the number of tests. Data matrices were input into
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NTYSIS-pc (Exeter Publishing ltd, Setauket, New York) software on an IBM 

386 PC. Similarity and dissimilarity matrices were created using the simple 

matching coefficient (SSM) (Sokal & Michener, 1958) which includes both 

positive and negative matches and the Jaccard coefficient (Sj) (Sneath & 

Sokal, 1973) which only includes positive matches in the SIMQUAL 

program. Hierarchical clustering was performed in SAHN using algorithms 

for Single linkage and the Unweighted Pair Group Method with Arithmetic 

Averages (UPGMA) (Sokal & Michener, 1958). Dendrograms were obtained 

using the TreeG program (Section 3.6).
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Chapter 3

Characterisation and pathogenicity 
of scab isolates
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3.1 Introduction

3.1.1 Taxonomy of the common scab pathogen

The association of a group of soil-borne bacteria, the streptomycetes, with 

common scab was first made by Thaxter (1891), when he described the group 

as Oospora scabies. These strains were later transferred to the Streptomyces 

genus and renamed Streptomyces scabies (Waksman & Henrici, 1948; 

Waksman, 1961).

Confusion over the taxonomic status of plant pathogenic streptomycetes 

developed with the deposition of many different, pathogenic isolates in culture 

collections throughout the world under the name of Streptomyces scabies. 

Additional confusion occurred as the type strain put forward by Waksman and 

Henrici differed from Thaxter's original description. This resulted in the 

species being considered incertae sedis (type strain not extant, many 

taxonomically different strains available) in the latest edition of Bergey's 

Manual of Determinative Bacteriology (Williams et al., 1989).

3.1.2 Approaches to the characterisation of plant pathogenic 

streptomycetes

Streptomycetes may be characterised and identified on the basis of phenotypic 

variation (Williams et al., 1983a;b; Langham et al., 1989). S.scabies was 

assigned to S.atroolivaceus, cluster 3, in an extensive numerical taxonomic 

study (Williams et al., 1983a). A more limited selection of strains were 

characterised phenotypically by Lambert & Loria (1989) in an attempt to 

clarify the taxonomic position of scab-causing streptomycetes. Their findings 

suggest that most pathogenic streptomycetes conformed to a defined group 

consistent with Thaxter's original description of S.scabies. The group being 

characterised by formation of smooth grey spores, spiral spore chains, melanin
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production and utilization of selected sugars used in the International 

Streptomyces Project (Shirling & Gottlieb, 1966). This group was not 

identified as being closely related to any of the major clusters (Williams et al., 

1983a) although most similarity was observed with clusters 18, 19 and 23. In 

the most extensive study to date, 821 Streptomyces and Streptovericillium 

strains were characterised on the basis of 329 minaturized physiological tests, 

(Kamper et al., 1991). Good agreement was observed with Williams et at. 

(1983a) over the assignment of the major clusters, of interest was the 

classification of the 13 strains of S.scabies included in the study. The 

S.scabies strain ISP 5078 used to represent the group in the study of Williams 

et al. (1983a) was transferred from S.atroolivaceus to S.griseus, (cluster 1, 

subcluster 3). Other S.scabies strains identified to the groups (assigned by 

Kamper et al., 1991) of: S.halstedii, cluster 1-2, S. olivaceus, cluster 1-4, 

S.exfoliatus, cluster 2, S.rochei, cluster 6 Streptomyces spp. cluster 8, 

S.violaceus, cluster 9, S.niveoruber, cluster 13, Streptomyces spp., cluster 14 

and the single member grouping cluster 45, S.scabies. Although the strains 

from the study of Lambert & Loria (1989) were not included in the study by 

Kamper et al. (1991) the authors speculate that they would probably have 

fallen in the S.violaceus, cluster 9 group together with the majority of 

S.cyaneus and S.diastaticus strains.

Phenetic characterisation of certain Streptomyces species has been supported 

by chemotaxonomic analysis. Studies have included analysis of fatty acids 

(Saddler et al., 1987), proteins (Manchester et al., 1990) and DNA (Okanishi 

et al., 1972; Mordaski et al., 1986). A recent study on DNA homologies of 

three groups of plant pathogenic streptomycetes (Healy & Lambert, 1991) 

indicated that the three groups were genetically distinct. Although the 

majority of strains from the group phenotypically resembling the type strain
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ATCC 49173 showed greater than 70% relatedness to the type strain, other 

values were as low as 21%. A high degree of relatedness was seen among the 

S.acidiscabies group of strains, however, it is possible that most of these 

isolates were derived from the same strain (Lambert & Loria, 1989). In 

contrast the S.albidoflavus group of strains exhibit very low values of 

relatedness both within the group and with the type strain.

The Ribosomal RNA Approach

The highly conserved and universally distributed rRNA molecules have 

emerged as being particularly useful in the elucidation of phylogenetic 

relatedness and identification of microorganisms (Woese, 1987).

The concept of using particular highly conserved molecules as 'evolutionary 

clocks' in the elucidation of bacterial phylogeny stems from the analysis of the 

amino acid sequences in the cytochrome C molecule and its application to 

unravelling phylogeny among eukaryotes (Fitch & Margoliash, 1967). 

However, the extraordinary biochemical and evolutionary diversity of bacteria 

makes the identification of suitable proteins for phylogenetic comparison 

difficult (Olsen et al., 1986). Ribosomal RNA molecules arise as suitable 

candidates for phylogenetic studies from their fundamental importance in the 

translation of the genetic code and the manufacture of proteins, they are 

therefore functionally and evolutionary homologous in all organisms. 

Furthermore, ribosomal RNA molecules are extremely ancient molecules. 

Consequently, nucleic acid sequences may be highly conserved with certain 

stretches being invariant across the primary kingdoms. The conserved 

sequences and secondary structure allow the variable sequences to be aligned 

and hence the degree of homology ascertained (Olsen et al., 1986).
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Molecular chronometers or molecules that may serve as suitable 'evolutionary 

clocks' should meet certain criteria in order to be of value in defining 

phylogenetic relationships. Ideally these include clock like behaviour, i.e. 

changes in sequence should occur as randomly and evenly as possible, 

secondly rates of change should be proportional to the evolutionary distances 

measured and finally molecules should be large enough to provide sufficient 

information. Sequences that exhibit clock like behaviour without selective 

constraints may change rapidly so that they only provide information on short 

term evolutionary events. Hence the most useful molecules in the elucidation 

of phylogenetic relationships are functionally constrained. As such, typical 

clock like behaviour does not occur as some sequences are highly conserved 

under selective constraints while others are highly variable and accumulate 

random changes in the absence of selective constraints. Without correct 

consideration, the variable sequences might increase phylogenetic differences 

between organisms, leading to invalid phylogenies, while conserved sequences 

with few changes may have the tendency to under estimate evolutionary 

distances between orgainisms (Woese, 1987).

Woese and colleagues used 16S rRNA catalogues to reveal three as opposed to 

two lines of evolutionary descent and hence in the designation of three 

kingdoms, i.e. the eubacteria, archaebacteria and eukaryotes (Fox et al., 1980). 

Support for the use of 16S rRNA sequences in the elucidation of phylogenies 

is gained from phylogenetic studies of the purple photosynthetic bacteria on 

the basis of 16S rRNA sequence homologies and that these were largely 

supported by data from cytochrome C, ferredoxin and SS rRNA analysis. 

However, some differences in the phylogenetic patterns were observed with 

the assignment of certain lower rank taxa using these alternative molecular 

chronometers (Fox and Stackebrandt, 1987). Fox & Stackebrandt (1987)
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address the application of 16S rRNA homologies to the classification of the 

eubacteria with particular reference to the gram positive groups. They argue 

that at present, higher rank phylogenetic relationships should be assigned on 

the basis of phylogenetic data such as 16S rRNA sequences, but that these 

ranks should not be strictly defined in terms of specific similarity values, but 

rather should be assigned flexibly with a view to maintaining clusters of 

strains, species etc. that are already defined by taxonomically valid phenotypic 

characters (Fox & Stackebrandt, 1987; Stackebrandt, 1988). They argue that 

some phenotypic characters will undoubtedly be good indicators of phytogeny 

and that they should be harnessed in the development of a classification 

system that is both practical to use and phylogenetic (Stackebrandt, 1988).

The majority of phylogenetic studies have focussed on the 16S rRNA species 

for which substantial sequence information has been generated. Comparisons 

of 16S rRNA oligonucleotide catalogues have been used extensively to 

demonstrate intergeneric relationships among the actinomycètes (Stackebrandt 

et al., 1981; 1983). Confirmation of these suprageneric groupings and 

elucidation of intrageneric relationships has been achieved by more detailed 

analysis of 16S rRNA sequence data (Stackebrandt & Charfreitag, 1990). A 

similar approach was taken to elucidate intrageneric relationships within the 

Streptomyces genus (Witt et al., 1989; Witt & Stackebrandt, 1990). 

Phylogenetic trees constructed on the basis of 16S rRNA sequence homologies 

correlated well with clustering patterns derived from phenotypic data 

(Williams et al., 1983a). Alignment and comparison of partial 16S rRNA 

Streptomyces sequence data highlighted two variable regions of the molecule; 

designated a  and 6 (Witt et al., 1989). Certain species-groups were proposed 

as being identifiable via hybridization with complimentary oligonucleotide 

probes to either one or both target regions. Two probes were recommended for
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S.scabies (ISP5078); probe 0(4, complimentary to the a  region at position 

1007 to 1024 (E.coli nomenclature) and probe 61, complimentary to the 6 

region at position 1130 to 1152. Neither of the sequences were identified as 

being unique to S.scabies. S.diasticus and S.caesius were identified as sharing 

the same a  sequence and S.lavendulae and Streptoverticillium luteoreticuli 

identified as sharing the same 6 sequence as S.scabies. A recent study by 

Stackebrandt et al. (1991) assessed the distribution of these 16S rRNA target 

regions among a number of streptomycete and Streptoverticillium strains that 

were sequenced in these regions. Their findings from analysis of 77 strains 

indicated the wide occurence of these sequences, with 19 variations identifable 

in the a  region and only 12 variations identifable in the 6 region. Hence the 

a4  sequence was common to S.violaceoruber, S. cine reus, S. diastaticus, 

S.caesius, S.griseorubens, S.griseus, S.spectabilis. S.albidoviridis, S. 

minutiscleroticus as well as a number of uncharacterised soil and marine 

isolates. The 61 sequence was common to a large collection of 

Streptovericillium strains and in addition to S.griseorubens, S.albidoviridis, 

S.griseus, S.baldicci, S.salomonis together with a number of soil and marine 

isolates. This evidence suggests that these particular stretches of the variable 

regions of the 16S rRNA molecule, though not suitable alone for the 

identification of isolates may contribute an important adjunct to the existing 

battery of tools for the identification of streptomycetes (Stackebrandt et al., 

1991).

The potential of the gamma region for the development of diagnostic probes 

for identification remains to be realised. This region contains the largest 

stretch of variable sequence on the 16S rRNA molecule. It comprises 30 

nucleotides situated between positions 150 to 200 (Stackebrant et al., 1991).
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3.1.3 Pathogenicity of the common scab interaction

Much is still unknown about the cause of pathogenicity in the potato common 

scab interaction. Unravelling the mechanism of pathogenicity is complicated 

because pathogenic isolates may appear morphologically, physiologically and 

serologically inseparable from related non-pathogenic strains (Labruyere, 

1971). In addition, the common scab symptoms seen on the tuber surface are a 

product of the degree of resistance/ susceptibility exhibited by the host plant, 

the virulence of the pathogen and the environmental conditions present while 

the developing tubers are susceptible to infection.

3.13.1. Extracellular enzymes

A number of workers have suggested that the production of particular 

extracellular enzymes might be implicated in pathogenicity. Knosel (1970) 

identified a high pectic acid transeliminase activity in pathogenic isolates, 

supporting the observation that the scab pathogen initially attacks the middle 

lamellae, the pectin component of the cell wall in order to then penetrate the 

cells of the tuber. In addition, McQueen & Schottel (1987) cite evidence for 

production of a zinc inducible esterase by pathogenic streptomycetes, that is 

absent in other non-pathogenic strains. Underground parts of the plant, 

including the tuber are often covered with a waxy polyester like suberin or 

cutin, which is thought to protect the plant against moisture loss and pathogen 

invasion. Hence ability to breach the suberin barrier might confer 

pathogenicity. The zinc inducible nature of the enzyme is interesting, as 

enzyme activity was not found to be inducible in the presence of other divalent 

ions, those tested included: copper, manganese, borate, magnesium and 

calcium (McQueen & Schottel, 1987). Furthermore, zinc is a normal 

component of the suberin found on the surface of tubers.
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3.13.2. Vivotoxins

The most notable development towards an understanding the pathogenicity of 

the common scab organism comes with the identification of the production of 

a vivotoxin 'thaxtomin' by virulent isolates (Lawrence et al., 1990). 

Lawrence et al. (1990) demonstrated induction of scab lesions by a diffusable 

compound by placing dialysis tubing between the surface of scabbed potatoes 

and aseptic mini tubers. Lawrence et al. (1990) were unable to recover 

streptomycetes from the axenic scabbed tissue. The toxin was only recovered 

in reasonable amounts from scabbed tissue, since the authors were unable to 

demonstrate toxin production in broth cultures despite trying a variety of 

media. The toxin was recovered by running material isolated from scab 

lesions on silica gel, thin layer chromatography plates and crystallizing the 

appropriate fractions with acetone and methanol.

3.13.3. Physiological and biochemical differences

While pathogenic principles evidently have an important role in the 

pathogenicity of scab-causing streptomycetes. The interaction is greatly 

influenced both by environmental factors and the physiology of the host potato 

plant. The range of resistance/ susceptibility to scab exhibited by different 

potato varieties infers that there are physical or biochemical differences 

between varieties. Inspection of the periderm (the external layers of cells on 

the tuber surface) by Cooper et al. (1954) revealed differences in the nature of 

the periderm among resistant and susceptible varieties. There appeared to be a 

correlation between the presence of layers of collapsed enucleated cells on the 

surface of the developing tuber and susceptibility to common scab. In 

contrast, the periderms of resistant varieties appeared to consist of intact 

nucleated cells. This phenomenon appears to result from the shedding of 

collapsed cells by the more resistant varieties and the retaining of enucleated
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cells by susceptible varieties. Similar histological patterns of the lenticels 

(thought to be the avenues for invasion by the pathogen) were also observed. 

Cooper et al. (1954) speculate that the collapsed tissue on the tuber surface 

may provide a suitable growth medium for the invading pathogen. Differences 

in the histology of the periderms of resistant and susceptible varieties were 

confirmed in the pathogenicity studies of McKee (1958). Another reported 

difference between resistant and susceptible varieties has been the chlorogenic 

acid content of tubers (Schall, Johnson & Simonds, 1953). Resistance was 

associated with a high content of chlorogenic acid in the tuber periderm and 

suceptibility with low levels. The association of chlorogenic acid with 

resitance was thought to be an effect of pH with scab pathogens being 

inhibited by environments with a low pH. However McKee (1958) and 

Emilsson (1953) were unable to demonstrate a correlation between the 

chlorogenic acid content of the periderm and resistance.

3.13.4. Environmental variables

An important element in the common scab potato interaction is the effect of 

environmental variables (Lapwood, 1972; Jellis, 1977). Numerous reports cite 

the effect of irrigation, particularly during the initial stages of tuber production 

has on reducing the incidence of common scab (Sanford, 1923; Lewis 1970; 

Lapwood & Herring, 1972). Lewis (1970) suggested that lack of scab 

infection during periods of high moisture could be attributed to bacterial 

antagonism, since he observed unusually small ratios of bacterial to 

actinomycete populations under moist conditions. Other workers frequently 

cite the importance of the pH of the soil (Labruyere, 1965), streptomycetes are 

thought to flourish in alkaline, limed soils, hence methods of control include 

the application of green manures to acidify the soil. The level of the inoculum 

in the soil is also thought to be an important factor, so workers tend to add
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inoculum uniformly to the soil to compensate for any population differences 

attributable to pH or the distribution of antagonistic microorganisms when 

conducting pathogenicity experiments (Labruyere, 1971). The effects of a 

number of minerals and micronutrients on the plant pathogen interaction have 

also been considered (Keinath & Loria, 1990).

3.1.4 Pathogenicity Tests

One of the major obstacles to defining the taxonomic relationships between 

scab-causing microorganisms has been the lack of reliable and rapid methods 

for testing pathogenicity. Traditionally, seed potatoes were planted in scab 

infested soil either in the field or glasshouse and scored for scab symptoms 

once the plants have died down and the crop lifted. The problems with this 

type of test include, difficulties associated with maintaining a constant 

environment, in the field this is virtually impossible with workers reporting 

huge variations due to differences in annual precipitation. Attempts to 

overcome these problems have included covering the newly emerged plants 

for the first 9 weeks and while susceptible to infection with polythene tunnels 

(Jellis, 1975).

Many workers prefer the more controlled environment of the glasshouse 

(Booth, 1970; Gunn et al., 1983). However even within the glasshouse it is 

difficult to eradicate the often large gradients in temperature, light and 

humidity that occur, even within the pot. The inclusion of sufficient 

replication is used to compensate for a certain proportion of this variation. It is 

generally possible to have more replication in the field than in the confines of 

a glasshouse. For these reasons the use of sterile mini tuber assays are 

attractive, since they eliminate a number of the problems associated with 

environmental variables. Lawrence & Barker (1963) reported the development
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of such a system of pathogenicity screening, where in vitro potato plantlets 

were induced to produce mini tubers on elevated levels of sucrose (8%). They 

were unable to reproducibly induce scab symptoms on the tubers in tissue 

culture conditions, but found that by transferring plants bearing mini tubers to 

a moist vermiculite environment, reproducible induction of scab symptoms 

upon inoculation with a spore suspension of a plant pathogenic streptomycete 

was achieved. Lawrence et al. (1990) have subsequently applied this system 

to their studies of the vivotoxin, thaxtomin.

A number of methods have been devised for scoring virulence of isolates on 

susceptible tubers, though unfortunately a universal standard has not been 

adopted and different workers have used different criteria in their assessments. 

The problem is exaggerated by the number of different types of scab 

symptoms and confusion generated by the different names assigned to them 

(McKee, 1958). For instance superficial scab is used to include a number of 

minor types of infection including those described elsewhere as russet 

(Harrison, 1962) and netted scab (Scholte & Labruyere, 1985). Generally, the 

two indices of pathogenicity used are the percentage coverage of the tuber by 

scab lesions and the severity of the lesions. Many workers have indicated a 

good correlation between these two criteria, such that badly scabbed tubers are 

covered extensively with severe lesions (Leach et al., 1938; Stevenson et al., 

1942; Jellis, 1977) although a few exceptions were noted. Percentage 

coverage has been frequently scored using keys (Large & Honey, 1955; 

McKee, 1963; Lapwood & Dyson, 1966; Dowley, 1972).

An alternative to the keys is the spot sampling method developed from the 

point quadrat method for determining botanical species composition in 

grasslands and introduced by Lowlings & Ridgeman (1959). The method
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involved placing a marked strip longitudinally around the potato and noting 

the number of points on the strip that were covered by scab lesions. This 

estimate expressed as a percentage cover of tubers was found to be quite 

accurate when compared to the percentage scabbed surface area calculated by 

measuring the area of scabbed lesions using dividers and expressing this as a 

percentage of the whole surface area established by measuring the area of the 

potato peelings. However, the accuracy of this method was found to be off set 

by its laborious time consuming nature (Langton, 1972). Finally Leach et al. 

(1938) and Lauer & Eide (1963) have considered assessing common scab 

infection using the 'highest scab' method. This method involved scoring the 

severity of infection according to the severest lesions on the tubers. Although 

the method was liable to greater test error (Leach et al., 1938) it was found to 

be a rapid and effective method for assessing clonal resistance (Lauer & Eide, 

1963). Many workers have combined both criteria of percentage coverage and 

lesion type to produce a scab index (Marais & Vorster, 1988). Bjor & Roer 

(1980) obtain a pathogenicity score by multiplying lesion severity (identified 

from a key) by the percentage cover times 100/ 27. The figure 27 relates to the 

product of 9 categories of percentage cover and 3 categories of lesion severity.

3.2 Alms

3J.1 To investigate the taxonomic position of a group of putative 

pathogenic streptomycetes with respect to the numerical phenetic 

classification studies of the Streptomyces genus (Williams e t aln 1983a) 

using a probabilistic identification matrix (Williams et al-, 1983b). To 

establish whether these strains have a common identity which is 

phenotypically definable as proposed by Lambert & Loria (1989).
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3.2.2 To assess the value of 16S rRNA targeted oligonucleotide probes 

described for S.scabies ISP5078 (Witt et al., 1989) in the characterization 

of plant pathogenic streptomycetes. Furthermore to assess whether the 

patterns of hybridization from the 16S rRNA targeted probes correlate 

with the phenotypic identifications.

3.2.3 To establish the pathogenicity of isolates under glasshouse 

conditions. In order to check pathogenicity of strains received as putative 

pathogens and assess the degree of virulence of isolates. To relate this 

data to the identification data, to gain further understanding of the 

identity of the causal agent of common scab of potatoes.

3.2.4 Preliminary studies to investigate the application of an axenic mini 

tuber assay for testing the pathogenicity of scab-causing streptomycetes. 

Problems surround the traditional methods for assessing pathogenicity 

under field or glasshouse conditions. These include variable 

environmental factors and the difficulties of working in a non-sterile 

environment, in terms of establishing whether disease symptoms are a 

product of the inoculant or other members of the soil microflora. Sterile 

plant tissue culture systems might offer a definitive and rapid solution.

3.3 The phenotypic characterization of a group of putative 

plant-pathogenic streptomycetes

3.3.1 Characterization

The aims of this study were to establish whether common scab strains form a 

definable taxonomic grouping as described by Lambert & Loria (1989) or a 

taxonomically diverse collection of strains as suggested by Labruyere (1971).
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Strains were identified using the computer assisted probabilistic identification 

matrix of Williams et al. (1983b). The raw data from the individual tests may 

be found in Appendix 1.

Our findings are summarised in Table 7. They indicated that the 24 strains in 

the study identified to 6 of the 23 cluster groups within the probabilistic 

identification matrix (Williams et al., 1983b). Strains ISP5078, ATCC 10246, 

S46 and R2 identified to S.albidoflavus (cluster 1). Strain ATCC 3352 

identified with S.atroolivaceus (cluster 3) and ATCC 15485 identified with 

S.exfoliatus (cluster 5). A group of 6 strains including S47, MP2, MP9, Rl,

8.2 and ISS identified with S.rochei (cluster 12). 4 strains identified well with 

S.cyaneus (cluster 18), these included S.scabies sp. nov., nom. rev. ATCC 

49173, PD260, 1028 and 1034. Finally 6 strains identified with S.diastaticus 

(cluster 19), these included ASS8112, 8.6, 8.7, 8.8, 8.16 and 1033. Strains 

PD259 and 8.17 were considered unidentified as the statistical coefficients 

used to measure the reliability of the identification were well below the 

recommended limits. Our identifications were consistent with those obtained 

for strains ISP 5078, ATCC 3352, ATCC 15485 and ATCC 10246 in the study 

by Lambert & Loria (1989).

3 J J  Discussion of results

From Table 7 it is apparent that many of the streptomycetes in this study did 

not conform to a taxonomically defined grouping as proposed by Lambert & 

Loria (1989). In contrast, two or three phenotypically defined groups emerge. 

These included the strains with a phenotype typical of the S.albidoflavusl 

atroolivaceus! exfoliatus group. Strains ISP5078, ATCC 3352 and ATCC 

15485 were also assigned to the S.albidoflavus/ S.griseus/ S.antihioticus
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Table 7: Identity of putative plant pathogenic 

streptomycetes

Strain Best Cluster Wilcox Taxonomic SE of (d)

Identification Probability Distance

ISP5078 S .albidoflavus 1 0.994 0.283 (1.4710)

ATCC 10246 S .albidoflavus 1 0.922 0.398 1.6015

S46 S. albidoflavus 1 0.992 0.361 0.6160

R2 S.albidoflavus 1 0.975 0.394 1.4890

ATCC 3352 S.atroolivaceus 3 0.972 0.362 1.4380

ATCC 15485 S.exfoliatus 5 0.962 0.364 0.4880

S47 S.rochei 12 0.995 0.511 4.624

MP2 S.rochei 12 0.969 0.438 2.6930

MP9 S.rochei 12 0.951 0.491 4.0920

R1 S.rochei 12 0.968 0.476 3.6880

8.2 S.rochei 12 0.999 0.354 0.4300

ISS S.rochei 12 0.995 0.348 0.2870

PD259 S.chromofuscus 15 0.793 0.462 3.5420

ATCC 49173 S.cyaneus 18 0.971 0.427 1.5180

8.17 S.cyaneus 18 0.619 0.398 0.7760

PD260 S.cyaneus 18 0.804 0.357 (0.2113)

1028 S.cyaneus 18 0.897 0.413 1.1430

1034 S.cyaneus 18 0.739 0.357 (0.2110)

ASS8112 S.diastaticus 19 0.989 0.394 0.8010

8.6 S.diastaticus 19 0.999 0.342 (0.4830)

8.7 S.diastaticus 19 0.820 0.351 (0.2680)

8.8 S.diastaticus 19 0.689 0.441 1.9770

8.16 S diastaticus 19 0.997 0.344 (0.4540)

1033 S.diastaticus 19 0.997 0.385 0.5720
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group or cluster 1 in the study of Kamper et al. (1991). A second group 

emerged with a S.rochei type phenotype. Finally strains with a phenotype 

closest to that of S.scabies sp. nov., nom. rev. fell into the S.cyaneus and 

S.diasticus (clusters 18 and 19 [Williams et al., 1983a]).

3.4. The application of 16S targeted rRNA probes to the 

characterization of plant-pathogenic streptomycetes

3.4.1 Hybridisations with cx4 and 31 oligonucleotide probes

Ribosomal RNA isolated from a group of streptomycetes (both common scab 

strains and non-pathogenic strains) according to method 1 (Section 2.24.1) was 

probed with radio-labelled oligonucleotides complimentary to the 16S rRNA a  

and 3 target sequences proposed for S.scabies ISP5078 (Witt et al., 1989).

Strains hybridizing with these oligonucleotide probes under stringent 

conditions (2°C below Tm) are given in an autoradiograph (Fig. 3) and Table 8 

(this data was obtained in collaboration with D.Hahn).

3.42 Discussion of results

The differential hybridisations of the oc and 3 probes with the group of 

common scab strains support the phenetic data in the assignment of different 

taxonomic identities. The a  probe hybridized with strains from clusters 1, 3, 5 

and 12 but not with any of the strains from the cluster groups closest to the 

recently assigned type strain S.scabies nov., nom. rev. i.e. 18 and 19 (Williams 

et al., 1983a). In contrast, the 3 probe only hybridized with ISP3078 from this 

group of strains. These hybridization results were confirmed by probing a 

range of strains, representative of the major Streptomyces species cluster 

groups (Williams et al., 1983a). This specificity study of the S.scabies probes 

within the Streptomyces genus was undertaken by D.Hahn.
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Fig. 3 Autoradiograph of dot blot hybridization between 16S rRNA of 

strains of Streptomyces species probed under stringent conditions with A - 

eubacterial consensus probe 5' AGGGTTGCGCTCGTTG (50®C);

B - cx4 5'GGCACCATCTCTGATGG (50°C);

C - 31 5'ATCACCCCGAAGCATGCT (50°C).

Organisms: la, ISP5078; lb, ATCC 3352; le, ATCC 10246; Id, ATCC 15485; 

Ie, ATCC 3372; If, S46; Ig, S47; Ih, ISS.

lia, 8.7; lib, 8.2; lie, 8.6; lid, 8.7; He, 8.8; Ilf, MP2; Ilg, MP9; Ilh, 962.

Ilia, RI; 111b, R2; IIIc, 968; IHd, 975.2; IHe, 4.470; Hlf, ASS8112; Illg, 

RA210; IHh, 135.

IVa, 282; IVb, 978; IVc, TK24.
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Table 8: Probing results from rRNA probed with the eubacterial primer 

1115 (Embley et a l 1988), a4 and $1 (Witt et al., 1990) oligonucleotide 

probes

Strain Identification Eu 1115 o4 ß l
ISP5078 S.albidoflavus (1) + + +

ATCC 10246 S.albidoflavus (1) + - -

S46 S.albidoflavus (1) + - -

R2 S.albidoflavus (1) + + -

ATCC 3372 S.viridogenes (3) + + -

ATCC 3352 S.atroolivaceus (3) + + -

962 S.atroolivaceus (3) + - -

968 S.atroolivaceus (3) + + -

975.2 S.atroolivaceus (3) + + -

4.470 S.atroolivaceus (3) + - -

135RB S.atroolivaceus (3) + - -

282RB S.atroolivaceus (3) + - -

978 S.atroolivaceus (3) + - -

A1TCC 15485 S.exfoliatus (5) + + -

S47 S.rochei (12) + - -

ISS S.rochei (12) + - -

MP2 S.rochei (12) + - -

MP9 S.rochei (12) + - -

R1 S.rochei (12) + • - -

8.2 S.rochei (12) + - -

8.17 S.cyaneus (18) + - -

8.6 S.diastaticus (19) + - -

8.7 S.diastaticus (19) + - -

8.8 S.diastaticus (19) + - -

ASS8112 S.diastaticus (19) - + - -

TK24 S.lividans (21) + + -

Note: Filters washed at stringent conditions
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The results from the hybridisation studies with the 3 probe, indicated that the 3 

target site was a potential marker for differentiating this common scab strain 

from other pathogenic strains both in terms of the characterization of isolates 

and the detection of the strain in environmental samples. This result also 

confirmed the findings of Lambert & Loria (1989) and others on the atypical 

nature and hence erroneous designation as the type strain for the S.scabies 

group by Waksman & Henrici (1948).

3.4.3 Colony blot specificity testing of the 3 probe among strains from 

clusters 55 and 61

The above findings on the novelty of the 3 sequence to S.scabies ISP5078 

were in direct contrast to those of Stackebrandt et al. (1991). In their 

comparison of the variable sequences of 77 streptomycete and 

Streptoverticillium strains, the 3 target sequence emerged common to a range 

of strains including streptomycetes and streptoverticillia from cluster groups 1, 

3, 5, 10, 12, 29, 55 and 61 (Williams et al., 1983a). The discrepancy between 

these findings and those of Stackebrandt et al. (1991) prompted the rapid 

testing of the specificity of the 3 probe against a range of strains from the 

clusters 55 and 61 in which Stackebrandt et al. (1991) had contrary to this 

data, observed its wide distribution. A summary of the results from the colony 

blot analysis are given in Table 9. The sequence appeared to be common to 

the 4 Streptoverticillium strains tested as well as a large proportion of the 

cluster 61 strains probed. These results had important implications for the 

application of the 3 targeted probe as an ecological tool. Its widespread 

occurrence amongst different members of the Streptomyces genus prevented 

its use in the monitoring and detection of specific populations of common scab 

strains. The 3 probe did still offer potential for the identification of common 

scab strains taxonomically related to ISP5078. The colony blot method
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Table 9: Summary of colony blot probing results of a range

of cluster 55 and S trep to vertic illiu m  strains

Strain Identification Eu 1115 ß l

316 S.polychromogenes (61) + -

550 S.katrae (61) + +

194 S.sacemochromogenes (61) + +

558 S.colombiensis (61) + -

445 S.subtilis (61) + +

216 S.lavendulocolor (61) + -

069 S.lavendulae (61) + -

0767 Stv.griseoverticillium (55) + +

0435 Stv. cinnamoneum subsp. azacoleta (55) + +

0547 Stv.septatum (55) + +

051 Stv.albireticuli (55) + +

ISP5078 S.scabies (1) + +

Note: Hybridisations achieved after washing filters under stringent conditions
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offered a rapid indication of probe specificity, however, the failure of duplicate 

filters to agree was indicative of the error associated with non-specific binding 

of the probe to debris from lysed colonies. While the trend in the hybridization 

of RNA from a number of cluster 61's and Streptoverticillium strains with the 

J3l probe appeared to be valid. These results could not be considered 

definitive.

3.4.4 Specificity of the (3 sequence among strains (pathogenic and non- 

pathogenic) closely related to those identified to harbour the |3 sequence 

(Stackebrandt et al., 1991)

To resolve the confusion over the occurrence of this sequence it was 

considered important to investigate the specificity of the probe amongst a 

group of isolates both pathogenic and non-pathogenic that either appeared 

closely related to ISPS078 or to represent taxonomic groups harbouring the 0 

sequence (Stackebrandt et al., 1991). Ribosomal RNA was extracted 

according to method 1 (Section 2.24.1) for the group of strains given in Table 

10. Strong hot signals were obtained by probing with the universal eubacterial 

probe 1115 (Embley et al., 1988). However, signals from a duplicate filter 

probed with the 0 oligonucleotide probe were substantially weaker. Both blots 

were resolved by phosphorimage analysis and the results obtained presented in 

Table 10. This data supported the findings of Stackebrandt et al. (1991) on the 

distribution of this sequence among certain streptomycete and streptoverticillia 

strains. Hybridization signals were obtained from strains representative of 

clusters 1, 3, 12, 29 and 61.

One concern over the interpretation and significance of these results was that 

the rRNA probed and isolated according to method 1 was quite degraded. 

Probing degraded rRNA has been considered satisfactory using

- 113 -



Table 10: Summary of hybridizations among streptomycete

and S trep to vertic illiu m  strains

Strain Identification Eu 01

326 S.alboviridis (1) + +

598 S.bacillaris (1) + +

236 S.griseus (1) + +

O il S.nitgersensis (1) + -

0446 S.albidoflavus (1) + -

508 S.nogaensis (1) + -

0233 S.ceolicolor (1) + -

422 S.coeliatus (1) + -

632 Streptomyces sp. (1) + +

734a Streptomyces sp. (1) + +

c463 Streptomyces sp. (1) + -

S46 S.albidoflavus (1) + +

R2 S.albidoflavus (1) + -

454 S.viridogenes (3) + +

ISP5078 S.scabies (3) + +

082 S.violaceus (6) + -

593 S.fulvissimus (10) + -

092 S.alithoticus (12) + +

160 S.griseorubens (12) + -

MP2 S.rochei (12) + -

MP9 S. roche i (12) + -

S47 S.rochei (12) + +

8.2 S.rochei (12) + +

ISS S.rochei (12) + •
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Table 10: Summary of hybridizations among streptomycete and 

Streptoverticillium strains (cont)

Strain Identification Eu 01

R1 S.rochei (12) + -

054 S.fascilutus (29) + +

0547 Stv.septatum (55) + -

550 S.katrae (61) + -

194 S.polychromogenes (61) + +

216 S.lavendulcolor (61) + +

Note: Hybridisations performed under stringent conditions (2°C below Tm) 

with the eubacterial probe primer 1115 and the 0(4 targetted probe
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oligonucleotide probes (Stackebrandt pers. comm.) with the proviso that the 

data generated with the specific probes is interpreted with reference to a 

duplicate blot probed with a universal eubacterial probe. The eubacterial 

probe was considered to be a reliable control to ascertain whether the RNA is 

sufficiently intact for probing.

3 .4 i  Extraction and probing of intact 16S rRNA

Although the probing results confirmed the findings of Stackebrandt et al. 

(1991) on the distribution of the 3 sequence within the Streptomyces. 

Reluctance to define its specificity from the probing of degraded rRNA 

prompted a further study using a similar selection of strains from which intact 

rRNA was isolated (Method 3, Section 2.24.3).

Attempts to extract intact rRNA from a wide range of streptomycetes 

illustrated differences in the ammenability of strains to rRNA recovery (Fig. 

4). A number of strains required modified growth conditions. Avoidance of 

cell lysis and hence RNA degradation prior to harvest was essential in the 

recovery of intact rRNA. ISP5078 was among the strains most susceptible to 

lysis in broth culture. Strains were handled so that baffles in flasks and the 

addition of large amounts of PEG 6,000 or sucrose (components that are used 

to promote diffuse growth and could also promote lysis) were either omitted or 

minimised. Broth cultures were harvested during log phase and all attempts 

were made to avoid handling ageing material that was close to lysing. In 

addition the use of frozen mycelial stocks was avoided, as the freeze thawing 

step also promoted cell lysis.

The differences observed between strains in the ease and recovery of rRNA 

stimulated speculation on the selective bias that could be introduced when
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Fig. 4 rRNA isolated from a range of streptomycetes

Organisms: 1, 233; 2, 558; 3, R2; 4, 0727; 5, S46; 6, 191; 7, S46; 8, 0547; 9, 

ATCC 3352; 10, 734A; 11, ISS; 12, ATCC 3352. Intact ribosomal RNA was 

more readily recovered from strains 558, R2, S46; while degraded rRNA was 

recovered from strains ATCC3352, ISS and 191 under the same rRNA 

preparation regime.
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similar techniques are applied to the analysis of environmental communities. 

In order to extract intact rRNA from Streptomyces, growth and lysis conditions 

had to be optimised on a strain by strain basis. An approach that would not be 

possible in the recovery of rRNA from environmental samples.

The strains probed, together with the hybridization results obtained are given 

in Fig. 5 and Table 11. The pattern of differential hybridisation with the a  

probe observed in Table 8 was confirmed and expanded upon with additional 

strains. In addition, the confusion associated with the specificity of the 3 

probe seemed to resolve itself. Very faint hybridization signals were obtained 

from the 3 probe at the 40°C low-stringency wash (Fig. 5c), however problems 

of low level contamination on the phosphorimage screen meant that no signals 

were detectable at the 50°C stringency wash. When the strength of signal from 

the a  and primer 1115 probed blot was compared with that obtained with the 3 

probe it was clear that signals were significantly weaker. These results 

indicated either poor binding of the 31 probe with the RNA or alternatively 

that there were problems associated with the probe itself either it had been 

labelled inefficiently or had undergone some degradation. The fact that this 

probe was exposed to similar treatment and preparation as the other probes it 

appeared unlikely that the labelling could be so much more inefficient or the 

probe be exposed to nuclease degradation. Hence, these basic checks should 

be performed to establish the integrity of the probe and before drawing 

conclusions on the ability of the probe to bind.

Poor binding of the probe does appear a probable explanation for the 

discrepancy between the data described above and Stackebrandt et al. (1991). 

Furthermore the data of Stackebrandt et al. (1991) appears to have been 

largely obtained through the comparison of sequences rather than
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Fig. 5 Autoradiograph of dot blot hybridization between 16S rRNA of 

strains of Streptomyces species probed under non-stringent (40°C) and 

stringent (50°C) conditions with: A - eubacterial consensus probe 

5'AGGGTTGCGCTCGTTG; B - a4  5'GGCACCATCTCTGATGG; C - 

31 5' ATCACCCCGAAGCATGCT (Stackebrant etal., 1991).

Fig.5a Organisms hybridizing with A- the eubacterial consensus probe 

(40°C):

la, ATCC10246; Ic, 8.7; Ie, ATCC10246; If, 8.2; Ig, 8.2.

lib, S47; lie ATCC49173; lid, ISP5078; Ilf, 0446; Ilg, 233; Uh, 0547.

IIIc, 233; Hid, 727; IHe, S46; Illf, 558; Illg, 598; Illh, 8.7; IHj, ISS.

IVa, ATCC3372; IVb, ATCC3352; IVc, R2; IVd, ISP5236; IVe, 326;

IVf, 069; IVg, ATCC15485.

Vd, 023; Ve, 023; Vf, S46; Vg, ISP5236; Vh, 632; Vi, 632.

VIc, 069; VH, ISP5078; VIh, ISP5236; VH, 092; VIj, 8.7.

VHb, ATCC49173; Vile, ATCC3352; Vlld, 164.

Fig. 5b Organisms hybridizing with B- the a4  probe (50°C):

lid, ISP5078; IHb, c463; IVa, ATCC 3372; IVb ATCC 3352; IVc, R2;

IVd, ISP5236; Vg, ISP5236; Vh, 632; Vi, 632; Vlf, ISP5078; Vli, 092.

Fig.5c Organisms hybridizing with C- the 3 l probe (40°C):

Ilf, ATCC3352; Illg, 558; Illh, 8.7; IVf, 069; Vg, ISP5236; Vh, 632;

Vi, 632; Vlf, ISP5078; VIh, ISP5236; VIj, 8.7; Vlld, 164.
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Table 11: Specificity of oc4 probe at stringent hybridisation 

conditions

Strain Identification Eu oc4

ISP 5078 S.albidoflavus (1)* + +

ATCC 10246 S.albidoflavus (1)* + -

S46 S.albidoflavus (1)* + -

0446 S.albidoflavus (1) + -

598 S.bacillaris (1) (ATCC 15855) + +

326 S.alboviridis (1)* (ATCC 25425) + -

ISP 5236 S.griseus (1) (ATCC 23345) + +

233 S.ceolicolor (1) (ATCC 23899) + -

023 S.nitrosporeus (1) + -

632 S.albidoflavus (1) + +

R2 S.albidoflavus (1) + +

ATCC 3352 S.atroolivaceus (3)* + +

ATCC 3372 S.viridogenes (3) + +

164 S.litmocidene (5) + -

727 S.exfoliatus (5) + -

ATCC 15485 S.exfoliatus (5)* + +

077 S.nitgersensis (1) (ATCC 12769) + -

092 S.althioticus (12) + +

8.2 S.rochei (12)* + -

ISS S.rochei (12) + -

8.7 S.diastaticus (19)* + -

ATCC 49173 S.diastaticus (19)* + -

558 S.colombiensis (61) (ATCC 27425) + -

069 S.lavendulae (61) + -

0547 Stv.septatum (55) + -

* received as common scab strains
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hybridization studies. It is difficult to account for the strong signal from 

ISP5078 observed in Fig. 3, but which has subsequently been unreproducible. 

Since the eubacterial probed blot indicated that similar amounts of RNA were 

present in all the samples, it cannot be attributed to an overloaded well of the 

manifold. However, it can only be concluded that in recent studies with the 

probe, blank blots (obtained in support of the result in Fig. 3) and initially 

attributed to be indicative of specificity were indicative of poor binding. The 

data generated in Table 10 actually appears indicative of the specificity of the 

probe, with these weaker signals were only observed with the added sensitivity 

of the phosphorimager. The cause for inefficient binding of the probe may be 

attributable to regions of 2° and 3° structure on the 16S rRNA molecule that 

prevent the probe reaching the target sequence. Similar problems of poor 

binding were also encountered with the (3 S.lividans probe (described by Witt 

et al., 1989) during attempts to probe recovered RNA from S.lividans TK24 in 

soil (D.Hahn pers.comm.). The S.lividans probe is targeted against the same 

variable region of the 16S rRNA molecule (Witt et al., 1989). Furthermore, 

the RNA applied to the filters had not been denatured prior to its application 

with either DMSO, heat or a mixture of formamide and formaldehyde (Hames 

& Higgins, 1987). Unfortunately, the occasion upon which denaturing the 

RNA was tested as a means to increase availability of the probe target sites 

and sensitivity of detection, was while working on the extraction of rRNA 

from soil using method 2. Denaturing RNA prepared using method 2 made no 

difference to the signal intensity, probably because the RNA clean up 

procedures involved several high salt precipitation steps which act to break 

down RNA secondary structure.

I - 121 -



3.4.6 Probing of genomic DNA from selected S.albidoflavus strains 

Genomic DNA was extracted from a limited selection of strains that included 

strain ISP5078 and probed with the (31 oligonucleotide probe. The results 

obtained are given in Table 12. Hybridization signals were detected from a 

number of S.albidoflavus strains and also a Streptoverticillium strain under 

stringent conditions, adding further evidence to the findings of Stackebrandt et 

al. (1991) on the wide spread distribution of this sequence among strains of 

this taxonomic identity. Furthermore the signals obtained were of a similar 

intensity to those obtained probing the RNA with this particular probe. 

According to Suzuki et al. (1988) there are six rDNA operons in Streptomyces 

species, assuming that the 31 sequence within each operon is the same it is 

expected that there would be up to six target sites for the probe per genome. 

This is in contrast to the vast numbers of rRNA copies that might be 

anticipated in a cell, numbers of 104 to 10s have been estimated (Barry et al., 

1990). These results illustrate further the problems that were encountered 

when applying the (31 probe to RNA and support the view that poor 

hybridization signals could be attributable to poor binding as a result of the 

ribosomal RNA secondary structure obscuring target sites.

In conclusion, the weak signals obtained in Table 10 appear not to be a 

symptom of badly degraded RNA but rather a reflection of the actual 

specificity of the probe. Results from the a  probe and eubacterial probe were 

consistently reproducible and since the 3 probe did not confer additional 

specificity, rather more limited specificity (Stackebrandt et al., 1991). Future 

studies should focus on the application of the a  probe to the differentiation of 

scab isolates of the S.albidoflavus/S.atroolivaceus phenotype from the 

S.cyaneus/S.diastaticus phenotype. Data on the widespread distribution of the 

o  and 3 target sequences among streptomycetes establish the poor suitability
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Table 12: Probing of genomic DNA to establish specificity 

of 31 target sequence among some S .a lb id o fla vu s  strains

Strain Identification Eu(50°C) 31 (40°C) 31(50°C)

ATCC 25481 Cluster 1 + + +

DSM 40023 Cluster 1 + + -

ATCC 23345 S.griseus( 1 ) + + -

KCI-S-0446 Cluster 1 + + -

ATCC 27416 S.annulatus(l) + + +

DSM 40508 Cluster 1 + + +

c463 Cluster 1 + + +

232 Cluster 1 + + +

ISP5078* S.albidoflavus( 1 ) + + +

ATCC 23934 Streptoverticillium + + +

* Common scab strain

/
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of probes targeted to these sequences as tools for the detection of strains in 

environmental samples. These findings also illustrate the difficulties in 

identifying unique naturally occurring genetic markers within the highly 

conserved 16S rRNA molecule, for members of the Streptomyces. The data 

from these hybridization studies did however, assist in our overall objective

i.e. to clarify the taxonomic position of the common scab strains. It supported 

the premise that common scab strains are a heterogeneous grouping and that 

the phenotypic heterogeneity is supported by genetic differences (identifiable 

on the 16S rRNA molecule).

3.5 Pathogenicity of common scab strains

Putative pathogenic streptomycetes were tested for pathogenicity using two 

methods in the glasshouse. Recent studies on the taxonomy of the scab- 

causing organism were largely unsupported by pathogenicity data (Lambert & 

Loria, 1989; Healy & Lambert, 1991). Pathogenicity of isolates isolated from 

Maine was established in the study by Lambert & Loria (1989) but not for the 

other strains that were acquired from culture collections as putative pathogens.

3.5.1 Pathogenicity test 1

Results from the first test are presented in Fig. 6. Maris piper potatoes were 

arranged in a randomised block and grown in 6 times 1.5 L pots in a modified 

JI compost, the moisture holding capacity (M.H.C.) of the compost was 

estimated to be 29% and soil moisture levels were maintained at less than 50% 

M.H.C.. The compost was inoculated with specific test strains. A randomised 

block design was adopted to minimise the effects of the environmental 

gradients in the glasshouse. Strains calculated to be significantly pathogenic, 

in terms of percent coverage with scab lesions according to the Mann-Whitney 

coefficients at the a  0.05 probability level were: ISP5078, S47, 8.2, 8.7, 8.8,
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Fig. 6 Pathogenicity of scab isolates on scab-susceptible potato variety, 

Maris Piper.

Fig. 6a Percentage cover of scab lesions on the surface of potato tubers.

Percentage cover was estimated according to Large & Honey (1955), scab 

isolates 8.2, 8.17, 8.7, & 8.16 appeared highly virulent; while scab strain 

ISP5078 appeared moderately virulent.

Fig. 6b Pathogenicity of isolates was estimated according to the scab 

index (Bjor & Roer, 1980).

The scab index is based on the % coverage of tubers with scab lesions as well 

as the severity of the individual lesions. Good correlation has been observed 

between these criteria, with a high percentage cover usually corresponding 

with severe lesions.
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8.16 and 8.17. The results are given in more detail in Fig. 6 and Table 13. 

Strains were determined to be pathogenic on the basis of % cover of scab 

lesion for tubers on each plant. Pathogenicity scores from test pots were 

ranked together with scores from uninoculated control pots and the Mann- 

Whitney coefficient calculated. The Mann-Whitney coefficient was used as 

the data was not assumed to be non-normally distributed and the values 

assigned were given on an arbitary basis i.e. they were not based on ratio or 

interval data.

3.5 2  Pathogenicity test 2

This trial was performed in association with the plant pathologists at the 

Agricultural University of Wageningen. It contained additional replication 

and larger pots. 10 times 10 L pots were inoculated with each isolate and 

seeded with the scab susceptible potato variety Desiree. The pots were filled 

with a well draining compost soil of 50% peat and 50% sand with a M.H.C. 

estimated to be 32%. Higher levels of soil moisture (in excess of 50%-60% 

M.H.C.) were adopted, as low moisture levels severely inhibit tuber and root 

development. Well developed tubers allow better development of scab 

symptoms (Fellows, 1926). There is a fine balance between sufficient soil 

moisture to produce good root and tuber development and a dry soil to 

promote the growth and development of streptomycete populations and hence 

scab symptoms. The pots were not arranged randomly, but in blocks of 10 with 

2 to 3 blocks separated by a row of uninoculated control pots. This 

compromise on spreading the environmental variables of the glasshouse 

evenly through the trial was exchanged for better containment of inoculants to 

blocks of infected pots. One concern with the randomised block lay out was 

that the most virulent isolates would infect neighbouring pots thus skewing the 

patterns of pathogenicity among the strains. Obviously the redesign of the trial
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Table 13: Pathogenicity data from trial 1 (Maris Piper)

Strain Identification

ISP5078 S.albidoflavus

S46 S.albidoflavus

R2 S.albidoflavus

S47 S.rochei

MP2 S.rochei

MP9 S.rochei

R1 S.rochei

8.2 S.rochei

8.17 S.cyaneus

8.7 S.diastaticus

8.8 S.diastaticus

8.16 S.diastaticus

CONS

%coverage1 Lesion type1

4 3

3 1

3 2

3 3

3 2

3 2

3 1

6 3

6 3

6 3

4 2

7 3

1.5 1

Scab Index1 Pathogenic2

44 Yes

11 No

22 No

33 Yes

22 No

22 No

11 No

67 Yes

67 Yes

67 Yes

30 Yes

78 Yes

5

'values derived from the pathogenicity key of Bjor & Roer (1980) 

2pathogenicity scores determined to be significant with the Mann-Whitney 

coefficient
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from experiment 1 meant that the potato common scab environment was 

altered quite significantly and that direct comparison between tests was 

difficult.

Additional measurements to the percentage cover of tubers were made, these 

were tuber number and weight. In both experiments all progeny tubers greater 

than 1 cm in size were assessed for the presence of scab symptoms. Data from 

the trial is presented in Fig.7 and Table 14. Strains identified to be 

significantly pathogenic at the a  0.05 probability level were: 8.17, 078, 8.8, 

MP9, 8.16, ASS8112, R2, R l, A391 and S47. These strains have a mixed 

taxonomic identity, with strains identifying to S.albidoflavus, S.atroolivaceus, 

S.rochei, S.cyaneus and S.diastaticus. A number of strains including 078, S47, 

8.8, 8.16 and 8.17 appeared to be pathogenic under both glasshouse regimes. 

A number of strains were found to be significantly pathogenic in one trial but 

not in the other these included strains: R2, MP9, R l and 8.2. The first three 

strains were not identified as highly virulent strains in either trial and hence it 

was conceivable that the differences in host plant variety and environmental 

conditions between the trials could be sufficient to push the pathogenicity 

score in either direction across the pathogenicity threshold. The differences in 

the trials seen by strain 8.2 are more difficult to explain as it appeared virulent 

in the Maris Piper trial with a scab index of 67% .and not pathogenic in the 

Desiree trial (scab index 22%). Again it is plausible that the difference in 

pathogenicity is attributable to the altered environmental/ plant host variety as 

these influences have been been documented widely (Lapwood, 1972; Jellis, 

1977). Alternatively changes in the pathogenic properties of this strain may 

have occurred while the strain was maintained in the laboratory for the 18 

month/ 2 year period between the trials. These differences do serve to 

illustrate the difficulties associated with this type of pathogenicity assay and



Fig. 7 Pathogenicity of scab isolates on scab-susceptible variety, Desiree.

Fig. 7a Percentage cover of the surface of potato tubers with scab lesions 

Isolates that appeared moderately to highly pathogenic according to the 

percentage cover criteria (Large & Honey, 1955) include: ISP5078, R2, 8.8 & 

8.16.

Fig.7b Pathogenicity of isolates estimated according to the scab index of 

Boer & Roer (1980).

In general, strains that appeared pathogenic according to the % coverage 

criteria also appeared pathogenic according to the scab index criteria. 

However, a few differences were observed; strain 8.17 was illustrated to be a 

slightly more virulent strain than estimated aaccording to % cover; while 

strains ISP5078 and R2 appeared less virulent than the estimates obtained in 

Fig. 7a.
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Table 14: Pathogenicity data from trial 2 (Desiree)

Strain Identification % coverage1 Lesion type1 Scab Index1 Pathogenic1 2

ISP5078 S.albidoflavus 4 2 30 Yes

ATCC10246 S.albidoflavus 3 1 11 No

S46 S.albidoflavus 4 2 30 Yes

R2 S.albidoflavus 4 2 30 Yes

ATCC3352 S.atroolivaceus 4 2 30 Yes

ATCC15485 S.exfoliatus 2 1 7 No

S47 S.rochei 4 2 30 Yes

MP2 S.rochei 3 1 11 No

MP9 S.rochei 4 2 30 Yes

R1 S.rochei 4 2 30 Yes

8.2 S.rochei 3 2 22 No

ISS S.rochei 3 1 11 No

8.17 S.cyaneus 4 3 44 Yes

PD260 S.cyaneus 3 1 11 No

1034 S.cyaneus 2 1 7 No

8.6 S.diastaticus 4 2 30 Yes

8.8 S.diastaticus 6 3 67 Yes

8.16 S.diastaticus 7 3 78 Yes

1 Values derived from the pathogenicity key of Bjor & Roer (1980)

2 Pathogenicity scores determined to be significant with the Mann-Whitney

coefficient



the urgency required in the development and standardisation of an assay to 

alleviate the problems of environmental variation.

In a number of instances the type of scab lesion seen on infected tubers altered 

with the susceptible potato variety. This is because the corky scab lesions are 

a product on the host plant defence mechanism as well as the invading 

pathogen. The severity of the lesions has been attributed to the degree of 

resistance or susceptibility of the potato variety to the invading pathogen 

(Leach et al., 1938), rather than an attribute of the pathogen itself. For 

instance 078 produced more superficial but far more wide spread lesions on 

Desiree than Maris Piper (Fig. 8) and 8.16 produced raised scabs rather than 

pitted scabs on Desiree as opposed to Maris Piper. These differences are 

consistent with the scab susceptibility ratings given to the varieties by NIAB. 

Hence Maris Piper is given a score of 2 and Desiree 3, with 2 indicating most 

susceptibility and 8 most resistance.

3.5.3 The relationship between pathogenicity (determined by % cover of 

tubers with scab lesions) and affect on crop yield.

Generally common scab is considered to be a superficial disease of the potato 

affecting primarily the appearance of the potato rather than the yield. 

However, a number of reports indicate that certain pathogenic strains e.g. 

those identified to cause netted scab severely attack the root systems and 

substantially reduce yields (Scholte & Labruyere, 1985). Two indices of yield, 

tuber number and weight were also correlated against percent coverage with 

scab lesions. No positive correlations were identified indicating that crop 

yield was independent of infection. The highest correlation (r=0.642) was 

observed in a plot of weight of progeny tubers against % coverage by scab,
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Fig. 8 Scab infection of Maris Piper, Pentland Crown and Desiree 

potatoes with ISP5078.

Fig.Sa Scab symptoms obtained on Maris Piper and Pentland Crown. 

Maris Piper potatoes (NIAB scab susceptibility rating 2) exhibited a moderate 

to severe scab symptoms with infection with ISP5078. In contrast, Pentland 

Crown (NIAB scab susceptibility rating 8) was resistant to infection.

Fig. 8b Scab symptoms obtained on Desiree.

ISP5078 infection of Desiree was considerably more superficial than that 

observed on Maris Piper. Tubers were covered extensively in superficial 

blemishes rather than penetrating lesions. Desiree has been given a scab 

susceptibility score of 3 by NIAB.
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supporting a trend in the development of the symptoms with an increase in 

weight and size of the tuber. A trend observed by Fellows (1926).

3.6 Clustering of putative common scab strains on the 

basis of phenotype, hybridization with 16S rRNA targeted 

oligonucleotide probes for S.scabies ISP5078 and 

pathogenicity.

Cluster analysis was performed on the data from the phenotypic tests included 

in the probabilistic identification matrix (Williams et al., 1983b), hybridization 

signals obtained with the a4  and 01 probes for S.scabies (Witt et al., 1989) 

and pathogenicity of isolates, determined to statistically significant. Data was 

organised into matrices in a binary form. The characters of pathogenicity and 

hybridization with the 16S rRNA probes were weighted to be equivalent of 

five phenotypic characters. The data has been analysed using several 

clustering coefficients and is presented as dendrograms (Figs. 9,10 & 11).

The dendrogram given in Fig. 9 has been constructed by analysing the data 

using the SSM UPGMA coefficients. The SSM or matching coefficient, 

estimates similarity on the basis of positive and negative matches, it is the 

proportion of characters that have the same state (Sneath, 1962). UPGMA or 

unweighted average linkage indicates that the simple arithmetic average of the 

similarities across the two groups is taken, equal weight is assigned to each 

similarity. UPGMA has been recommended for most cluster analysis purposes 

and has been found to maximise co-phenetic correlation (a measure of 

hierarchical) (Jones & Sackin, 1980). The strains separate out into clusters 

accordant with the taxonomic identities obtained with the probabilistic 

identification matrix (Williams et al., 1983b). Hence the S.albidoflavus,
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S.atroolivaceus strains cluster at the 66% similarity level and separate out 

from the S.cyaneus/ S.diastaticus which cluster at the 72% similarity and the 

S.rochei strains clustering at approx. 71 % similarity. Two strains identified as 

S.albidoflavus fall within the S.rochei cluster, indicating the heterogeneity 

within this cluster (Williams et al., 1983a).

The dendrogram given in Fig. 10 has been produced by analysing the data with 

the Jaccards and UPGMA coefficients. The Jaccards coefficient does not take 

the negative matches into account, i.e. in an assessment of similarity two 

negatives do not count as a similarity (Sneath, 1962). Again the S.albidoflavus 

strains appeared taxonomically distinct from the other scab strains, forming a 

tight grouping at the 62% level of similarity. The remaining group separated 

out into two smaller groups one composed of the majority of the cluster 18 and 

19 strains at the 55% level of similarity, the other included the S.rochei strains 

and some cluster 1 strains which also clustered at the 55% level of similarity. 

MP2 and ATCC 10246 appeared as outlying strains separate from the 

remaining clusters.

The dendrogram given in Fig. 11 has been produced by analysing the data 

using SSM and single linkage. Single linkage defines the similarity between 

two groups as the similarity of the two most similar strains, one in each group. 

The S.albidoflavus/ S.exfoliatus strains form a tight cluster at the 68% 

similarity level, the S.cyaneus and S.diastaticus strains also cluster together at 

a similarity level of 60%, with the S.rochei strains separating out at the 70% 

level of similarity. Two outlying strains emerged with this treatment of the 

data, these strains are MP2 and ATCC 10246 which do not appear similar to 

the other three clusters. MP2 was identified as S.rochei and ATCC 10246 as 

S.griseus.
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Fig. 9 Dendrogram to illustrate clustering of scab strains (SSM and 

UPGMA coefficients).

Scab strains have been clustered on the basis of phenotypic characters, derived 

from the probabilistic identification matrix (Williams et al., 1983b) 

pathogenicity and hybridization with 16S rRNA probes. The clusters 

produced are consistent with the identifications obtained (Williams et al., 

1983b). Strains with an S.albidoflavus, S.atroolivaceus phenotype fall together 

as do the S.rochei strains and the S.cyaneus, S.diastaticus strains.
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Fig. 10 Dendrogram to illustrate clustering of scab strains (Jaccards and 

UPGMA coefficients).

Scab strains have been clustered on the basis of phenotypic characters derived 

from the probabilistic identification matrix (Williams et al., 1983b), 

pathogenicity and hybridization with 16S targeted rRNA probes. Clusters 

were produced that were consistent with phenotypic identifications; hence 

S.albidoflavus strains grouped together as did the S.rochei and S.cyaneus, 

S.diastaticus strains. Two outlying strains ATCC10246 and MP2 did not fall in 

any of the cluster groups described above.
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Fig. 11 Dendrogram to illustrate clustering of scab strains (SSM and 

Single linkage coefficients).

Scab strains have been clustered on the basis of phenotypic characters derived 

from the probabilistic identification matrix (Williams et al., 1983b), 

pathogenicity and hybridization with 16S rRNA targeted probes. Good 

congruence was observed between phenotypic identifications and the cluster 

groups formed. Strains with a S.albidoflavus identity fell together as did, the 

S.rochei and the S.cyaneus and S.diastaticus strains. Strains MP2 and ATCC 

10246 did not group within the clusters described above.
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In conclusion, the clustering of the data using a number of coefficients further 

demonstrated findings of heterogeneity among this group of scab-causing 

streptomycetes. The fact that these groups appear stable when treated with a 

number of coefficients emphasised the distinctness of the groups and that the 

isolates investigated in this study did not have a common taxonomic identity.

3.7 Preliminary studies on the application of a minituber 

assay for assessing pathogenicity

Developing mini tubers induced on Maris piper plantlets were inoculated with 

spore suspensions of ISPS078 and MP2. From 6 flasks each bearing IS to 20 

plantlets initiating tubers, the tubers in 2 flasks were inoculated with MP2, 2 

flasks with ISPS078 and 2 flasks were left uninoculated. Scab symptoms were 

visible on the surface of most tubers after 1 month. Symptoms were 

comparable in severity to those observed on Maris piper in the glasshouse. 

Hence infection with ISP5078 was more severe with scabbed areas being 

larger and lesions deeper than those seen on the MP2 infected minitubers. 

Mini tuber material infected with ISPS078 was viewed under the scanning 

electron microscope (Fig. 12). A second study was set up to look at the 

development of a pathogenic strain in association with the developing mini 

tuber. However, the mini tubers were well developed at the time of 

inoculation and induction of scab symptoms failed to occur. Furthermore 

when the surface of the minitubers was examined under the scanning electron 

microscope the tubers were covered in spores that had not germinated. Mini 

tuber material was examined from the date of inoculation at days 0, 2, 5, IS 

and 30. It was concluded that similar to the findings of workers in the field 

and glasshouse that mini tubers also pass through a period of susceptibility to 

infection coincident with the transition of developing stomata into lenticels 

and that in this later experiment the tubers were inoculated at a stage beyond
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Fig.12 Scanning electron micrographs of scab pathogen ISP5078 

colonising the surface of axenic minitubers.

SEM micrograph I (Magnification X 1,000)

SEM analysis of the infected minituber surface (minituber scab lesions) was 

undertaken at approximately 4 weeks after inoculation of the tuber surface 

with a streptomycete spore suspension. The micrograph illustrated the 

minituber surface to be a rich source of nutrients for streptomycete inoculants, 

as prolific development of the mycelial form of the inoculant was observed. 

The inoculant was also observed to be sporulating at the tuber surface.

SEM Micrograph II (Magnification X 1,500)

A micrograph at a higher magnification indicated the prolific growth of the 

mycelial phase of the inoculant, there was little evidence of sporulation at this 

microsite indicative of an abundance of nutrients.
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susceptibility to infection. However, this explanation did not account for the 

lack of germination of the Streptomyces spores which while unable to infect 

the tubers would normally in the absence of competition colonise the tuber 

surface. Lawrence & Barker (1963) report that they were unable to induce 

scab symptoms on mini tubers in a tissue culture environment and found it 

necessary to transfer the developing tubers (approx. 16 days after initiation) 

into moist vermiculite in a petri dish. The change in growth environment 

promoted infection and the development of scab symptoms. Hence it is 

probable that the absence of germination of the Streptomyces spores is 

attributable to the hostile growth conditions of the humid tissue culture 

environment and possibly the surface of the mini tuber. Mini tubers induced 

in tissue culture appeared to produce a thicker waxy coating on the tuber 

surface than is evident on glasshouse or field grown tubers. Lawrence & 

Barker (1963) discovered that they could promote the severity of infection of 

mini tubers dramatically by washing the mini tubers with water and soaking in 

dilutions of methanol, prior to inoculation. They are unable to explain why the 

washing procedure promoted infection but suggested the dilution of natural 

compounds on the surface or the possible alteration of osmotic values or the 

permeability of the tuber surface. These findings suggest that the untreated 

mini tuber surface may have properties of a physical or chemical nature that 

may be inhibitory to the growth of Streptomyces strains.

3.8 Concluding discussion and future work

Our data support the view of the presence of more than one taxonomic group 

of plant pathogenic streptomycetes. This is in contrast to Lambert & Loria 

(1989) who propose that pathogenic strains form a taxonomically defined 

grouping. However the data does support Lambert & Loria (1989) in their
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designation of a new type strain for the S.scabies species and their conclusions 

on the erroneous designation of ISP 5078 by Waksman & Henrici (1948) and 

its atypical nature amongst other scab strains. It is apparent that a large 

number of virulent pathogens do appear taxonomically related to the strain 

assigned by Lambert & Loria (1989) in their revival of the species. However, 

there are additional virulent strains that do not appear related to S.scabies sp. 

nov., nom. rev. (Lambert & Loria, 1989). Our findings suggest the presence 

of several centres of variation, identified tentatively as the group of strains 

around the S.albidoflavus cluster 1, S.rochei cluster 12 and S.cyaneus, 

S.diastaticus clusters 18 and 19. The presence of other pathogenic groups with 

low values of relatedness to the S.scabies sp. nom., nov. rev. has been recently 

supported by DNA homology studies (Lambert & Healey, 1991). Furthermore 

the identification of several groups of plant pathogenic strains in this study has 

been supported by pathogenicity studies. Expertise from plant pathology and 

actinomycete taxonomy has been combined in the elucidation of the taxonomy 

of this organism, which has up until now, though deemed essential, largely 

failed to occur.

The groups of pathogenic strains that have been identified result in part from 

the source of our strains and any limitations imposed by our methods of 

characterization. One could speculate that a large scale worldwide study on 

the isolation and characterization of the causal agents from scabbed material, 

would reveal further phenotypic and genotypic variation among isolates with 

pathogenic properties. Further characterization based on phenotypic and 

genetic markers (eg. 16S rRNA probes) of pathogenic isolates from 

agricultural centres worldwide will only help to resolve the confused situation. 

It is critical that this work is underpinned by reliable and standardised 

assessments of pathogenicity. Essential perquisites are reliable quantitative
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measurements, the current measures comprise qualitative keys based on 

subjective assessments of percentage coverage or lesion type. A quantitative 

assay e.g. that associated with the production of a toxin [such as that identified 

by Lawrence et al. (1990)] would be invaluable in comparisons of 

pathogenicity.

The use of the mini tuber assay used by Lawrence et al. (1990) offers a 

powerful solution to the problems associated with environmental fluctuations 

in the field and glasshouse. However, one concern over the artificial nature of 

such assays would be the comparablity of the pathogenicity observed in a 

minituber assay to that seen in the glasshouse and field. These studies 

demonstrated comparable infections in vitro and in vivo. An advantage of the 

sterile system is the confidence that the inoculant was responsible for the 

observed symptoms and the absence of any background contamination in the 

uninoculated controls. In the glasshouse the possibilities for the contamination 

of treatments with pathogenic isolates that have been either introduced or 

indigenous are vast. In trial 2 it was possible to see the transfer of aggressive 

strains into the adjacent uninoculated control pots from the presence of the 

scab lesion pattern associated with that strain on control tubers. For this 

reason it was helpful to have the plants in blocks rather than having the 

individual plants randomised, as it was easier to assess the pattern of a scab 

infection through a block of ten plants.

It is possible that the mini tuber assay may select for particular pathogenic 

properties and ignore other factors that have a bearing on pathogenicity such 

as competitive or antagonistic ability in the tuber/ soil microenvironment. 

However, these considerations aside, the mini-tuber assay is an important 

development in the unravelling of the taxonomy and pathogenicity of this
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4.1 Introduction

Recent years have seen considerable interest in the development of technology 

for the detection and monitoring of microorganisms in the natural environment 

(McCormick, 1986; Pickup, 1991). These advances have in part resulted from 

the interest in genetically engineered microorganisms (GEMs) which are 

currently being investigated for use (Stotsky et al., 1991) in areas such as 

biological control (Lindow, 1985; Pimentel, 1985; Watrud et al., 1985; 

Entwhistle et al., 1988) the degradation of recalcitrant pollutants (Dwyer et al., 

1988), the mining of metals (Brierly, 1985) and the improvement of soil 

fertility (Amarger, 1988; Hirsh & Spokes, 1988). Interest in the accidental or 

deliberate release of GEMs into the natural environment has stimulated 

questions concerning the potential risks to public health and safety and the 

impact on ecosystems (Domsch et al., 1988; Tiedje et al., 1989). Questions 

about the probabilities of survival, colonisation, and activity of released GEMs 

and their DNA in established microbial communities may only be answered by 

applying knowledge derived from the study of microbial ecology and 

molecular interactions in these habitats (Stotsky et al., 1991). The extremely 

diverse and versatile nature of microorganisms means that standardised 

regulations governing release cannot be applied, necessitating regulation on a 

case by case basis (Colwell, 1986). The development of sensitive detection 

techniques with which to monitor the survival, growth and genetic transfer by 

GEMs in the environment is therefore necessary for meaningful ecological 

data to be obtained. These methods for detection and enumeration of 

inoculants in situ will be dependent on the availability of suitable markers 

(Colwell, 1986).

Furthermore the development of methodology for the detection and monitoring 

of microorganisms in situ is also pertinent to the study of the ecology and
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epidemiology of certain plant, human and animal diseases and will contribute 

to the elucidation of methods for control and prevention. Ecological data and 

methodology for detection and monitoring that has begun to emerge in studies 

of gene transfer between streptomycetes (Wang et al., 1989; Wellington et al., 

1990; Cresswell et al., 1992) in the natural environment will thus be of 

relevance to studies on the ecology of the causal agent of common scab, 

Streptomyces scabies.

4.1.1 Sampling

Obtaining representative samples from soil is particularly difficult because of 

the non-uniform spatial distribution of bacterial colonies within the soil matrix 

(Wellington et al., 1990). Nutrient, water and pH gradients may arise from the 

presence of plants resulting in localised differences in bacterial numbers of 10 

to 50 fold in rhizosphere soils (Paul & Clark, 1989). The sampling strategy 

should therefore consider the variability of the soil material under analysis, 

the number of samples required can be derived statistically according to the 

properties being assessed (Bianchi & Bianchi, 1982). However 5 to 10 

replicates is considered good practice with as many as 20 to 30 individual 

samples required from highly variable soil sites (Allen et al., 1974). Errors 

attributed to the difficulties of sampling a highly heterogeneous environment 

may be minimized by processing composite samples (Atlas & Baratha, 1981). 

Spatial variation in field soils can be sufficient to obscure seasonal changes 

(Ball & Williams, 1968). Samples may be taken with a trowel (cylindrical 

graduated trowels may be used to sample soil profiles) if they are to be 

analysed with reference to weight or a graduated metal cylinder or 'corer' if 

they are to be analysed with reference to volume (Allen et al., 1974). The 

latter should be designed to avoid compaction of the sample in order to 

maintain the natural stratification of soil profiles and hence a high degree of
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vertical biotic and abiotic heterogeneity (Bums, 1988). Other approaches to 

studying soil microorganisms in situ have involved the burying suitable 

surfaces for colonisation such as Cholodny-Rossi's glass slide, which is 

recovered after a given time and examined using microscopy (Atlas & Bartha, 

1981). Sampling from plant or animal tissues generally requires removing 

bacteria from surfaces via washing or scraping and recovery from specific 

tissues via maceration. Kuchenbuch & Jungk (1982) describe a method for 

determining concentration profiles at the root surface interface by making thin 

slices of the rhizosphere soil. Plants are grown in small containers in which 

the roots are separated from the soil by a screen of nylon cloth, root hairs but 

not roots penetrate the nylon cloth. The soil block (beneath the nylon sheet) 

is frozen in liquid nitrogen and then sliced thinly using a refrigerated 

microtome; the thin slices may then be analysed in terms of distance from the 

root (Kuchenbuch & Jungk, 1982). Strategies that have been employed in 

sampling from aquatic environments have usually involved using an evacuated 

chamber which can be opened at a given depth, while air samples are taken by 

passing a given volume of air through a membrane filter of a particular pore 

size (Atlas & Bartha, 1981).

4.1.2 Extraction of bacteria from environmental samples

Traditionally bacteria have been recovered from soils through the mechanical 

shaking of the soil in an appropriate diluent. Alternatives to mechanical 

shaking include the application of Waring blenders which are able to 

disintegrate soil aggregates (Kanazawa et al., 1986). Kanazawa et al. (1986) 

demonstrated 8.9 times enhanced recovery of bacteria from a forest soil using 

a Waring blender rather than mechanical shaking.

The sensitivity of detection for viable plate count methods has been estimated
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to be 102 c.f.u. g '1 (Trevors & Van Elsas, 1989). However, this may be 

improved upon by combining methods to extract and concentrate the biomass 

from environmental material prior to plating (Herron & Wellington, 1990). 

Detection limits as low as 10 streptomycete spores per 100 g of sterile soil 

have been achieved (Herron & Wellington, 1990).

Strong chemical and physical associations may form between microorganisms 

and particulate matter (Stotsky & Bums, 1982). These associations may be of 

an ionic nature since bacteria have been found to be negatively charged, while 

clay minerals in soils contain positively charged cations. In addition, bacterial 

mucigels and fibrillae may contribute to soil-microbe interactions (Paul & 

Clarke, 1989). Dispersion of soil aggregates has been considered important as 

entrapment of microorganisms within aggregates is considered to be one of the 

most important means by which microorganisms are retained in the soil 

(Hopkins et al., 1991a;b). Attempts to disrupt these soil-microbe associations 

in order to extract the bacteria have utilised homogenization, chemical 

dispersants, cation exchange resins and differential centrifugation (Faegri et 

al., 1977; Bakken, 1985; MacDonald, 1986; Herron & Wellington, 1990; 

Hopkins et al., 1991a; 1991b).

Faegri et al. (1977) recovered 50 to 80 % of soil bacteria using sequential 

fractionation methods which involved repeated homogenization of the soil and 

separation by differential centrifugation. The method was developed and 

evaluated for a soil with a high organic content. The nature of soil aggregation 

in organic soils differs from that in mineral soils and may account for the 

reduced recoveries obtained of 30% when the approach was applied to mineral 

soils (Holben et al., 1988; Steffan et al., 1988). Bakken (1985) combined 

blending and centrifugation treatments to release bacteria from soil. Further
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purification of bacterial cells from clay and organic matter of bacterial cells 

was achieved by centrifugation density gradients of percoll and ludox where 

the clay and organic particles were sedimented. However, more than 50% of 

the bacteria which were probably attached to clay and humic particles also 

sedimented through the gradient. Baecker & Ryan (1987) have applied 

hammer-mill comminution followed by high speed liquid homogenization to 

the recovery of actinomycetes from soil. They obtained results that indicated 

that the suspension of spores in soil was directly related to the cation exchange 

capacity and the particle size distribution of the soil. Dispersion of soil 

aggregates and release of soil microorganisms through the exchange of cations 

from soil and cell surfaces using an ion exchange resin in conjunction with a 

non-biocidal detergent is an approach that has been developed by MacDonald 

(1986), applied to the recovery of streptomycete spores from soil (Herron & 

Wellington, 1990) and evaluated by Hopkins et al. (1991b) for representative 

sampling of the soil microflora. The cation-exchange approach proposed by 

MacDonald (1986) for the chemical dispersion of soil particles was established 

to be the most effective single-step for the disruption of soil aggregates in 

studies by Hopkins et al. (1991a).

Hopkins et al. (1991a) have attempted to address the problems of 

representative sampling of the soil microflora using procedures to disperse soil 

aggregates and dissociate the soil microorganisms from soil particles. The 

efficiency of each stage was assessed turbometrically and by measuring the 

biomass recovered in each fraction using microscopic cell counts, ATP, 

phospholipid, lipopolysaccharide, ergosterol contents and viable counts. 3 soil 

types were compared a sandy loam, a clay loam and a peat soil. 

Microorganisms least contaminated with soil material were recovered from the 

sandy loam soil, while difficulties were obtained in recovering cells from the
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clay and peat soils that were free of the smaller mineral particles or less dense 

organic particles.

In aquatic environments, water samples are usually filtered and the biomass 

collected on filters (Sommerville et al., 1989). Donegan et al. (1992) 

demonstrated differential recoveries of bacterial isolates from the phylloplane, 

the highest populations were recovered from leaf material that had been treated 

with stomacher blending, rather than with blending, sonication or washing.

4.1.3. Traditional methods of monitoring and detection

4.1.3.1 Viability count

Particular groups of microorganisms indicative of pollution and contamination 

are monitored in food stuffs, water, activated sludges and environmental 

samples. Such monitoring is considered essential for public health and safety 

(Kasper & Tartera, 1990). Viability count methods using particular 

bacteriological media are used for the routine monitoring of these indicator 

microorganisms. However, since all media are selective to a certain extent, 

viable counts are often inaccurate or not indicative of the relative components 

of the microbial flora sampled (Pickup, 1991). Length and temperature of 

incubation as well as the particular media components have been found to 

influence the viability count (Ford & Taylor, 1949). Sorheim et al. (1989) 

compared the populations recovered from soil on three different non-selective 

media, bacterial isolates exhibiting approximately the same level of diversity 

were isolated on all media, however each media appeared to select for a 

different population of isolates with 30% of the population appearing common 

to all three media. 20% of isolates recovered from 2 of the media were distinct 

to that particular media and 60% of isolates on the third media were unique to 

it. Cells extracted from samples may be plated on solid media (spread plate)
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or mixed into the molten agar and allowed to set (pour plate). Low melting 

point agar substitutes have been employed where the pour plate is required and 

the microbes of interest are sensitive to temperatures of about 40°C (Gardener 

& Jones. 1984).

Alternatives to the spread and pour plates include the most probable number 

procedures (MPN) (Alexander, 1982). The MPN technique involves serial 

dilution of the sample in an appropriate media to an extinction point, (Atlas, 

1982). 3 to 10 Replicates of each dilution are made and the pattern of

positive and negative scores recorded (i.e. growth or no growth). Statistical 

tables are used to determine the most probable number of microorganisms 

present in the original sample. Most MPN techniques employ liquid culture, 

which may be advantageous when defined media is required and hence in 

avoiding contamination introduced via the agar in solid media. However, 

MPN techniques are dependent on growth and reproduction of strains of 

interest and are therefore subject to the same constraints as the plate count. 

MPNs may also be less accurate than the plate count as they establish a MPN 

with confidence limits rather than a number of actual reproductive units. The 

adaption of microtitre technology to MPN analysis (Rowe et al., 1977) has 

made the laborious and repetitious technique more accessible to use with 

environmental samples.

4 .1JJ . Direct count

Methods for the enumeration of microorganisms in environmental samples 

using microscopy are not dependent on the ability to culture the bacteria in the 

sample and may therefore be more accurate than viable counts. Total direct 

counts of bacteria on black membranes, in counting chambers or on natural 

and artificial surfaces have been achieved using epifluorescence microscopy
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(Hall et al., 1990). Epifluorescence is achieved by exciting a range of nucleic 

acid and protein stains that fluoresce with light of a suitable wavelength. 

Electron microscopy has also been applied to the direct counting of filtered 

samples (Hall et al., 1990). Counts of specific components of the microbial 

community may be achieved where the species or genera of interest are 

morphologically distinct or distinguishable via alternative means. These may 

include immunological, biochemical and genetic differences.

4.1.3.3 Immunofluoresence

Fluorochromes, such as fluorescein isothiocyanate (FITC) may be coupled to 

antibodies (fluorescent antibody or FA) that bind a particular microbial target 

antigen (Chantler & Mclllmurray, 1988). FA may be applied as a natural stain 

to an environmental sample, if the target microbe is present, the labelled 

antibodies will bind specifically with the target antigens. When the stained 

preparation is then viewed under the fluorescent microscope the outlines of the 

microbes of interest are seen as a result of the light emitted from the FA bound 

to its surface (Bohlool & Schmidt, 1980). The FA approach makes the study 

of the autecology of specific microbes possible as it allows them to be 

visualised in their natural environments (Schmidt, 1974). Immunofluorescence 

detection has been of value in studying bacteria that are difficult to cultivate 

and including the methanogens (Conway de Macario et al., 1982). Factors that 

affect the successful application of fluorescent antibodies to studies in 

microbial ecology include, specificity, cross reactivity, autofluorescence from 

environmental materials, nonspecific staining, expression of the antigen 

encoding genes and stability of the antigen under environmental conditions 

(Schmidt, 1974; Bohlool & Schmidt, 1980; Ford & Olson, 1988). Difficulties 

associated with the autofluorescence and non-specific adsorbtion to soil 

minerals have been overcome by applying a dilute solution of gelatin

- 152 -



hydrolysed at a high pH to the soil preparation prior to staining. The gelatin 

may also be conjugated with a fluorochrome of contrasting colour to serve as a 

counter stain in order to highlight the specifically stained bacteria in relation to 

the gelatin-labelled components of the soil microenvironment (Bohool & 

Schmidt, 1968). One drawback of the approach is its inherent lack of 

sensitivity in the enumeration of FA-stained bacteria; in order to count 1 

bacterium at a magnification of times 1000, the cell density must be 106 to 107 

g_1 soil. In order to improve upon this, it would be necessary to separate the 

bacteria from the soil and concentrate them prior to staining (Bohool & 

Schmidt, 1980). Immunofluorescence techniques are; however, unable to 

distinguish between viable and dead cells.

Immunological detection

In addition to the application of monoclonal antibodies and polyclonal antisera 

to immunofluoresence microscopy, they may be incorporated in enzyme- 

linked immunosorbent assays (ELISA). Rather than being coupled to 

fluorescent dyes, antibodies are linked with enzymes such as alkaline 

phosphatase, horseradish peroxidase, 3-galactosidase and urease (Chantier & 

Mclllmurray, 1988). Such assays have been of great importance in the 

detection of medically important microorganisms in blood and tissue samples 

and in the assessment of food contaminants (Brooker et a i, 1990). ELISA has 

been successfully applied to the detection and monitoring of Rhizobium strains 

(Martensson, 1984) and Pseudomonas putida (Morgan et a i, 1991). 

Quantitative ELISA has been estimated to be able to produce a positive signal 

from a lower limit of 104 cells. Detection limits of 10 to 102 cells /g soil were 

achieved by Scholter et al. (1992) by using an immunoassay with a 

horseradish peroxidase labelled antibody and a chemoluminesence reaction 

(rather than the colormetric test used in a standard ELISA procedure) which
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was started by adding luminol and measured by scanning with a luminometer.

Monoclonal antibody immunoblot methods have been reported for the 

detection of Pedicoccus acidilactici from foods (Bhuna & Johnson, 1992) and 

for the rapid identification of Rhizobium strains and their quantification in root 

nodules and preinoculated seed (Olsen & Rice, 1991).

Monoclonal antibodies have recently been applied to the rapid isolation of 

P.putida from lake water samples via immunocapture (Morgan et al., 1991). 

Magnetic beads were coated with antibodies that specifically bind antigen on 

the bacterial flagella. The approach served as an enrichment step to be 

combined with direct detection methods as immunocapture allowed bacteria to 

be specifically recovered from other microorganisms and environmental 

components. Wipat et al. (1991) have also applied immunocapture to the 

recovery of streptomycete spores from soil. Page & Bums (1992) have 

presented preliminary data on the application of monoclonal antibodies 

targeted to a Flavobacterium strain to the enumeration of the strain in soil 

using flow cytometry. At present the flow cytometry approach appears less 

sensitive than direct and viable counting procedures.

Cultural vs non-cultural microorganisms

A major limitation to studies in microbial ecology is the inability to isolate and 

cultivate the vast majority of bacteria. This is confirmed by the discrepancy 

between plate and direct counts. In lake water samples Jones (1977) was able 

to obtain direct counts of 106 while only obtaining viable plate counts of 103 

bacteria ml*1. Further studies by Hoppe (1978) and Ferguson et al. (1984) on 

the marine environment estimate the culturable proportion of viable bacteria to 

be 0.01 to 12.5%. Similar findings have been reported in soil (Atlas, 1982).
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Furthermore some bacteria have been shown to become unculturable but retain 

their viability after exposure to the environment. Bacteria adopting this 

physiological state are described as non-culturable but viable (NCBV) 

(Colwell et al., 1985). Microorganisms identified to adopt this state include 

E.coli, Salmonella typhimurium and Vibrio spp. (Rozak & Colwell, 1987; 

Colwell et al., 1985). Direct counts do not discriminate between components 

of the microbial population that are viable and culturable, NCBV and dead. 

Hence direct counts are inclined to overestimate the viable component of the 

population. A number of workers have attempted to distinguish between the 

viable and non-viable component of a direct count. The acridine orange count 

has been widely accepted for the purposes of obtaining a total direct count. It 

has been suggested that the technique was able to distinguish between living 

and inactive cells. The acridine orange intercalates with nucleic acids and 

fluoresces red-orange in association with RNA and green in association with 

DNA. However, other factors such as the incubation time, PH and 

concentration of the dye have also been found to influence the fluorescent 

colour (Hobbie et al., 1977). Kogure et al. (1979) introduced the direct viable 

count (DVC), whereby cells in environmental samples were incubated with the 

DNA gyrase inhibitor naladixic acid. The naladixic acid prevents DNA 

replication and hence cell division; however other synthetic pathways continue 

resulting in the production of elongated cells. Hence the DVC allows 

enumeration of cells that are actively growing as well as the proportion that are 

dormant, but physiologically active. This technique is limited to naladixic acid 

susceptible Gram negative bacteria. In recent years, molecular methods have 

been applied to microbial ecology. They present one solution to the problems 

of investigating components of the ecosystem that are non-culturable. Rather 

than isolating and culturing the bacterial cells, it is possible to isolate a target
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molecule such as RNA or DNA and screen for marker genes or sequences 

representative of the population of interest. These methods do not 

discriminate between the viable and dead components of the soil microflora.

Phenotypic M arkers

Colony morphology has been used in a number of studies usually in 

combination with antibiotic resistance determinants for monitoring the fate of 

inoculants in situ. Colony morphology was used to distinguish Bacillus 

inoculants from indigenous populations in mushroom composts in studies of 

plasmid stability (Amner et al., 1991).

Biomarkers M arkers

Microbial biomarkers are chemical components of the microbial cell, which 

may be analysed both qualitatively and quantitatively in terms of microbial 

biomass and activities following their extraction from environmental samples 

(Parkes, 1987). Membrane lipids and their associated fatty acids have 

received great interest as they are essential cellular components that have great 

structural diversity and high biological specificity. Furthermore these 

molecules have been used as important taxonomic markers for the 

identification of microorganisms (Minnikin & Goodfellow, 1981; Saddler et 

al., 1987; O'Donnell, 1988) and hence there are large reference data bases of 

the fatty acid profiles for many bacterial species (e.g. MIDI, Delaware, USA). 

Certain biomarkers such as the phospholipids are ubiquitous components of 

cell membranes and as such may be used to provide a measure of the total 

biomass from both prokaryotes and eukaryotes. Biomarkers that have been 

used to derive estimates of bacterial biomass include the cell wall constituents 

peptidoglycan, lipopolysaccharide and teichoic acids (Parkes, 1987; Hopkins 

et al., 1991a). Other biomarkers are specific to certain genera or species. An
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ideal biomarker has both specificity and represents a high proportion of the 

fatty acid content of the cell. Such specific biomarkers have been used the 

analysis of the community structure of sulphate reducing bacteria in anaerobic 

sediments (Taylor & Parkes, 1983; 1985). The successful use of lipid 

biomarkers to quantify and characterise microbial communities in situ relies 

on the isolation of bacteria which are representative of those in situ and their 

subsequent growth under appropriate conditions to allow determination of 

their lipid profiles. The isolation of bacteria is not necessarily a prerequisite 

for the application of fatty acid biomarkers as specific biomarkers may be 

isolated direct from environmental samples and correlated with particular 

microbial populations or biological activities (Parkes, 1987). While certain 

bacteria may be identifiable through the presence of unusual fatty acids, the 

fatty acid composition of many strains is not a stable characteristic and is 

susceptible to changes in the growth medium, temperature, aeration as well as 

growth phase. Hence taxonomic determinations based on fatty acid analysis 

are carried out under very stringent standardised conditions (Saddler et al., 

1987).

Genetic markers : Antibiotic Resistance Mutations

Numerous studies have used antibiotic resistance mutations as selective 

markers for the monitoring of inoculants in situ (Compeau et al., 1988; 

Fredrickson et al., 1989; Thompson et al., 1990). These markers appear to 

offer a relatively simple and effective method for monitoring inoculants in 

complex ecosystems and have been applied to Rhizobium nodulation studies 

(Johnston & Beringer, 1975; Turco et al., 1986), the evaluation of particular 

biological control agents (Weller & Cook, 1983; Weller, 1984; Fredrickson & 

Elliott, 1985; De La Cruz, 1992), for investigating the potential for plasmid 

gene transfer between inoculants (Lacy et al., 1984; Manceau et al., 1986; Van
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Elsas et al., 1988) and for investigating the fate of microbes of potential use in 

genetic engineering (Liang et al., 1982). A number of these studies have 

highlighted the instability of some spontaneous antibiotic resistances and 

alterations in fitness and competitive abilities. Turco et al. (1986) evaluated 

the suitability of doubly marked spontaneous antibiotic resistance Rhizobium 

mutants (streptomycin-rifamycin and streptomycin-spectinomycin) in 

inoculation studies, 93% of the mutants isolated had reduced competitive 

abilities than their parent strains, while 38% showed reduced N2-fixation 

effectiveness. Compeau et al. (1988) studied the fate of spontaneous rifampin- 

resistant mutants of Pseudomonas putida and Pseudomonas fluorescens in 

sterile and the live soil from which they were isolated. The P.putida mutants 

showed no differences in terms of growth rate, competitive fitness and 

membrane protein composition, while the P.fluorescens mutants appeared to 

form two groups, group 1 mutants did not appear to differ from its wild type 

parent in the traits mentioned above, however mutants from group 2 

demonstrated reduced competitive fitness compared to the parent wild type 

strain.

Thompson et al. (1990) employed a triple marked spontaneously antibiotic 

resistant Flavobacterium (streptomycin, rifampicin and kanamycin) and a 

single antibiotic resistant Arthrobacter (streptomycin) in their survival studies 

of two ecologically distinct bacteria. They report that the approach allowed 

the accurate determination of the growth and survival of both strains in soil 

microcosms and that microbial growth rates and biochemical characters of 

mutants appeared unchanged.

Certain studies have revealed the presence of natural resistances to antibiotics 

in bacterial isolates from soil and water samples (Kelch & Lee; Cole & Elkan).
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Recorbet et al. (1992) recently demonstrated the difficulties of using neomycin 

phosphotransferase (jnptW) as a selective marker in soil, as 0.1 to 2% of the 

soil microflora from a population derived from a total viable plate count 

showed some degree of resistance to neomycin and kanamycin. Colony 

hybridization methods were used to probe isolates recovered with and without 

aminoglycoside selective pressure with Tn5 (a 5.7kb kanamycin-neomycin 

resistance transposon originally isolated from an R factor transferred from 

Klebsiella to E.coli [Berg et al., 1975]) and nptll sequences. Sequences 

homologous to Tn5 appeared quite common among soil isolates recovered 

with and without aminoglycosides, however sequences homologous to the 

nptll gene were not detected. Findings of wide spread resistances amongst the 

soil microflora have reinforced the need to develop alternative and 

complimentary methods for marking and monitoring inoculants in situ. The 

introduction of novel reporter genes that have not been identified within 

indigenous populations has been one approach which has received a lot of 

interest from microbial ecologists.

Genetic Markers: reporter genes

Genetic markers that may be applied to microbial ecology include: (i) 

oligonucleotide target sequences or signatures, (ii) genetic sequences relating 

to specific functions such as antibiotic resistance, biosynthesis genes or 

indeed sequences that relate to morphological characters such as unusual cell 

wall proteins and (iii) chromogenic markers that encode a particular screenable 

enzyme activity such as bioluminescence (lux) (Rattray etal., 1990; De Weger 

et al., 1991) and catechol 2,3 dioxygenase (xylE) (Winstanley et al., 1989) or 

novel substrate utilization lacZY (Drahos et al., 1986). These genetic markers 

may be introduced into the cell via plasmids or inserted into the chromosome. 

Although extrachromosomal markers may be more readily introduced into



cells they are inherently more unstable, with the tendency of many plasmids to 

segregate and be lost at cell division, (Morgan et al, 1989; Pickup et al., 1990). 

Hence, it is preferable to mark strains on the chromosome, but as plasmids are 

often multicopy, chromosomally encoded genes will probably result in lower 

expression.

A number of chromogenic or reporter genes have been utilised in the 

production of marked strains by microbial ecologists. Reporter genes that 

have been applied to the monitoring of inoculants include lacZ (Drahos et al., 

1986), the lux genes (Rattray et al., 1990; De Weger et al., 1991) and xylE 

(Winstanley et al., 1989; Wipat et al., 1991; Bailey & Thompson,1992). The 

gus reporter gene which encodes production of the E.coli enzyme 0- 

glucoronidase has been used extensively in plant systems (Jefferson, 1989). 

Its potential as a marker in bacterial systems remains to be realised, although 

attempts are currently being made to assess its use in Rhizobium spp. 

(K.Wilson pers. comm.).

The xylE reporter gene encodes the production of catechol 2,3 dioxygenase 

(C320) which in the presence of catechol will form a distinctive yellow 

compound 2-hydroxy muconic semi aldehyde. The xylE gene has been used 

successfully under the control of the lambda pL and pR promoters with 

thermoregulated C320 expression achieved with the lambda represser c/857. 

These constructs have been applied to studies of plasmid stability and ecology 

in soil and water samples (Winstanley et al., 1989; Morgan et al., 1989; 

Pickup et al., 1990; Saunders et al., 1990; Wipat et al., 1991; Macnaughton et 

al., 1992). Morgan et al. (1989) have developed membrane filter methods to 

detect bacterial cells harbouring the xylE gene and its product C230. They 

have raised polyclonal antibodies to C230 and applied ELISA technology to
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the quantification of C230 direct from water samples. This assay was able to 

detect up to 103 c.f.u. ml’1 water. Since C230 activity is destroyed by oxygen, 

it is rapidly lost outside the cell unless in the presence of protective 

compounds such as ethanol or acetone, detection of C230 is therefore an 

indicator of viable host cells (Morgan et al., 1989). Combined use of an 

enzyme assay for C230 (Sala-Trepat & Evans, 1971) and an immunoassay 

may provide information on the activity and expression of the C230 

phenotype, particularly when used in conjunction with DNA hybridization 

methods to determine the stability and presence of the gene sequence (Morgan 

et al., 1989; Saunders et al., 1990). Studies of Pickup et al. (1990) focus on 

the stability of the xylE marker in different host backgrounds, within different 

plasmid constructs in aquatic microcosms. Their findings indicate that loss of 

the plasmid and hence the xylE marker is associated with the multiplication of 

inoculants in situ; they also demonstrate that the marker may appear quite 

stable in one particular host background and construct when inoculated at a 

level of 10s cells ml-1 but is highly unstable when inoculated at concentrations 

of 102 cells ml-1 water. Wipat et al. (1991) looked at the stability of plasmid 

constructs harbouring xylE in Streptomyces strains in soil, while Macnaughton 

et al. (1992) use the plasmid encoded marker in combination with kanamycin 

resistance to assess the relative ability of Pseudomonas putida strains to grow 

and survive in different soil types, both sterile and live. Populations of the 

marked P.putida declined faster in peat or sandy soils as opposed to soils with 

high levels of bentonite clay. No background levels of catechol 2,3 

dioxygenase positive colonies were detected from the control microcosms.

Bailey & Thompson (1992) have introduced the reporter gene onto the 

chromosome of a pseudomonad strain isolated from the phylloplane of sugar 

beet. The xylE gene was introduced onto the chromosome by inserting
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fragments of chromosomal fragments bearing the xylE marker into a colEl 

replicon plasmid that is unable to replicate in a non-Enterobacteriacae host 

background. The suicide vector containing the marker was sequenced and a 

unusual restriction enzyme identified, a kanamycin resistance determinant was 

introduced at this site and the resulting construct introduced into the 

pseudomonad host via electroporation. Integration into the chromosome via 

homologous recombination was confirmed by performing a Southern blot 

analysis on colonies that were recovered on kanamycin and turned yellow 

when sprayed with catechol. The authors are currently investigating its use as 

a marker for studying the microbial ecology of the phylloplane.

A number of workers cite the particular value of the Pseudomonas putida xylE 

reporter gene to Streptomyces strains in terms of its stability and good 

expression (Clayton & Bibb, 1989; Ingram et al., 1989). Alternative reporter 

genes have also been investigated for use in the Streptomyces, particularly 

with a view to studying the regulation of specific genes during morphological 

and physiological differentiation (Schauer et al., 1988). The reporter gene lacZ 

appears unsuitable for use in the Streptomyces as all the species that have been 

examined so far have significant levels of endogenous (3-galactosidase activity 

and mutants without this activity were found to have pleoitropic defects, 

furthermore expression of the E.coli lacZ gene in Streptomyces is poor as a 

result of differences in codon usage (King & Chater, 1986; Ingram et al., 

1989). The reporter system based on the Vibrio harveyei luxAB operon 

fragment has appeared extremely sensitive and proved useful for investigating 

the spatial and temporal regulation of developmental genes in S.coelicolor, but 

is inconvenient for screening large numbers of samples (Schauer et al., 1988).

Ward et al. (1986) have developed plasmid promoter-probe vectors using the 

aminoglycoside phosphotransferase gene (neoP-, Aphll, nptll) reporter gene
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derived from the transposon Tn5 that confers resistance to neomycin and 

kanamycin. Neomycin phosphotransferase activity may be assayed on 

antibiotic gradient plates, via a simple enzyme assay or by estimating the 

amount of neo mRNA synthesised. The system appeared highly efficient in 

Streptomyces lividans with expression of the gene correlating well with the 

transcriptional activity of the promoters being investigated.

The sensitivity of reporter genes like xylE in viable plate counts is increased 

when combined with an antibiotic resistance marker (Trevors & Van Elsas, 

1989). Antibiotic resistance markers used in plate counts have an estimated 

level of detection of 102 cfu g-1 soil. The ability to produce selective media 

targeted at the strain under study by the incorporation of antibiotics has meant 

that antibiotic resistance determinants have and will continue play a important 

role in studies of microbial ecology (Van Elsas et al., 1986).

Little is known of the metabolic burden that these markers may impose upon 

the inoculants under study and indeed how alterations to the phenotype and 

genotype of the strain will in turn affect ability to survive and compete in the 

natural environment.

Plasmid Stability

Reports vary on the whether plasmids represent a metabolic burden to cells 

and appear to be dependent on the strain, plasmid and environmental 

conditions. Chemostat studies of plasmid stability in the absence of selection 

indicated that plasmid free cell lines have a faster growth rate and maintain 

higher populations (Godwin & Slater, 1979). However, these effects were 

found to be dependent on environmental conditions, hence plasmid loss was 

more frequently associated with phosphorus limited conditions than with
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carbon limitation. The effects of environmental influences on R plasmid 

stability in E.coli in soil was also demonstrated by Devanas et al. (1986). In 

addition this study failed to establish a relationship between plasmid size and 

susceptibility to loss. Alternative studies indicated that certain combinations 

of compatibility plasmids i.e. TP 120 (Inc N) and RI (Inc FII) are stably 

maintained in E.coli chemostat grown cells preferentially to either one or no 

plasmids. In contrast, incompatible plasmids TP120 (inc B) and TP113 (inc 

B) are only maintained in cells in the presence of antibiotic selection 

(Gowland & Slater, 1984). Schlif & Klingmuller (1983) reported the rapid 

loss of plasmids introduced from E.coli into recipient isolates from soil and 

water samples, in the absence of selection after réintroduction into soil or 

water. Plasmid loss was greater at 20°C than 4°C and at 4% soil moisture as 

opposed to 16%. Studies by Jain et al. (1987) indicated the stability of large 

catabolic plasmids in extreme environments (previously identified to support 

physiologically stressed bacterial populations) such as ground water aquifier 

environments. These findings are consistent with those of other workers who 

have been able to observe stably maintained plasmids in environments where it 

has been difficult to assess the selective pressures operating. Plasmids 

harbouring tetracycline resistance genes appeared stable in mushroom 

composts (a microbially dynamic environment) in the absence of any apparent 

selective pressures (Amner et al., 1991). Levy (1985) suggests that certain 

groups of bacteria may serve as reservoirs of plasmids bearing resistance to 

antibiotics and tolerance to heavy metals. It has been speculated that the 

acquisition of plasmid DNA is a rapid means of adaption to unfavourable 

environments and that there are strong evolutionary forces acting on the 

maintenance of plasmids of unknown selective advantage within the gene 

pool. Cited examples of plasmid reservoirs are E.coli for other members of the 

Enterobacteriaceae, Haemophilus parainfluenzae for Haemophilus spp. and
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Staphlococcus epidermis for S.aureus.

Studies have also demonstrated that cells bearing Tn5 or Tn70 elements 

showed a survival advantage in chemostats in the absence of any known 

selective pressure (Biel & Haiti, 1983; Chao et al., 1983). In the later study 

with Tn/0, the authors related the survival advantage to the transposition of 

one of the flanking regions of the transposon. Movement of this element 

resulted in increased mutation rates and hence greater adaptation of the cells to 

the growth conditions.

Chromosomal genes may produce less of a metabolic burden on cells than 

those that are plasmid borne. Constitutive expression of marker genes may 

also contribute to this problem more than expression that is induced for 

enumeration purposes (Winstanley et al., 1989; Wipat et al., 1991).

4.2 A im s

4.2.1 To screen for and identify naturally occurring phenotypic markers such 

as antibiotic resistance and tolerance to toxic compounds in the common scab 

strain ISP5078 and evaluate the suitability of these markers for the selective 

isolation of ISP5078 from the indigenous microflora in soil.

4.2.2 To mark ISP5078 on the chromosome with a combination of unique 

genotypic and phenotypic characters not normally associated with the 

Streptomyces. The xylE gene was chosen as it is unique to Pseudomonads 

harbouring Tol plasmids and good expression of the gene has been 

demonstrated within the Streptomyces. This gene was combined with the 

selective nptll reporter gene, which is also expressed efficiently within the 

Streptomyces and allows the selective isolation of strains from soil on
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kanamycin and neomycin.

4.2.3 To optimise transformation procedures via protoplasting for strain 

ISP5078 using plasmid pIJ673. The purpose of this manipulation was twofold: 

firstly to introduce a cassette harbouring the xylE and nptll reporter genes with 

maximum efficiency (and hence to optimise the insertion of the reporter genes 

into the chromosome via homologous recombination) and secondly to assess 

the potential of plasmids as markers for common scab strains in order to study 

their ecology in soil and plant microcosms.

4.3 Selection of ISP5078 for the study of the ecology of a 

common scab strain

It was felt necessary to focus on the development of methodology for the 

detection and monitoring of one particular common scab strain from the group 

that were characterised. Strain ISP5078 was selected for a number of reasons: 

firstly, the sequence data from Witt et al. (1989) included this strain, and 

hence offered the 16S rRNA target regions as potential markers for the 

differentiation of this strain from other common scab strains. Secondly the 

strain appeared pathogenic in both glasshouse trials and it was of particular 

interest to investigate the ecology of a pathogenic strain. Finally it is one of 

the few common scab strains to have been included in a number of previous 

studies (Williams et al., 1983a; Lambert & Loria, 1989; Witt et al., 1990; 

Kamper et al., 1991). The strain has received attention, because of its initial 

designation as type strain for S.scabies (Waksman et Henrici, 1948) and has 

therefore been properly described by the International Streptomyces Project 

(ISP) so that there can be no confusion over its identity. A number of studies 

on scab-causing streptomycetes have involved uncharacterised pathogenic 

isolates making comparisons between reports difficult.
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RESULTS

4.4 Phenotypic markers

In order to look at the ecology of ISP5078 in the soil-potato plant 

environment, it was necessary to have a number of means available for its 

detection in soil and plant material. Although problems of selectivity and 

sensitivity have been associated with the viable and direct count procedures, 

they represent a base line for the comparison and evaluation of other 

methodology (Sorheim et al., 1989). Viable plate counts have been an 

important component of previous studies on the ecology of streptomycetes 

(Rafii & Crawford, 1988; Rafii et al., 1988; Wellington et al., 1990; Herron & 

Wellington, 1990).

Naturally occurring phenotypic markers in the guise of resistance to antibiotics 

have frequently been associated with actinomycetes like the Streptomyces 

(Vining, 1990). The search for naturally occurring phenotypic markers such as 

antibiotic resistance was therefore an important first approach to the 

requirement for marked strains. Naturally marked strains offer the potential to 

study the ecology of a particular isolate without problems of an altered 

phenotype or genotype that may result from other marking strategies.

ISP5078 was screened for resistance and susceptibility to a range of antibiotics 

using Mast Rings antibiotic discs on a RASS media (Table 15). RASS was 

developed specifically for the selective isolation of streptomycetes from soil 

(Herron, 1991). High levels of resistance were identified to the antibiotics 

penicillin G, ampicillin and cloxacillin, the sulphonamides trimethoprim and 

cephalorodine, in addition to resistance to lincomycin and weaker resistance to 

tetracycline.
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Table 15: Summary of Antibiotic Resistance Patterns of 

ISP5078 on Rass media

Antibiotic Amount Resistance/Sus

Ampicillin 3pg +++

Cephalorodine 5pg +++

Chloramphenicol 25pg —

Clindamycin 2pg --

Cloxacillin 5pg +++

Erythomycin 5pg —

Fusidic Acid lOpg -

Gentamycin lOpg —

Lincomycin 1 unit +++

Methicillin lOpg +++

Novobiocin 5pg —

Penicillin 1 unit +++

Streptomycin lOpg —

Sulphamethaxazole 25pg —

Tetracycline lOpg +

Tetracycline 25pg —

Trimethoprim 1.25pg +++

Key to scores:

+++ very resistant 

— very susceptible

Note: resistance is determined by placing (Mast Rings, Merseyside) antibiotic 

discs onto plates spread with ISP5078
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In addition to these resistances, analysis of data from the probabilistic 

identifications indicated that the strain was also resistant to phenol at 0.1 % and 

sodium azide at 0.01%. Resistance to these toxic compounds was investigated 

alongside the antibiotic resistances for potential in a formulation of a selective 

medium for ISP5078. Studies focused on the recovery and enumeration of 

ISP5078 and indigenous streptomycetes from ISP5078 inoculated non-sterile 

and sterile soils and uninoculated non-sterile soil. Counts from each treatment 

were compared on RASS with and without selective agents. To test the 

selectivity of the media under conditions optimal for the growth and activity of 

the indigenous soil microflora, the dried soil was wetted to 15% moisture with 

the addition of the inoculum, where appropriate. The soil was incubated at 

20°C for 5 days to allow germination and growth of any dormant or resting 

propagules, before enumeration on dilution plates. The ISP5078 inoculum 

was added to a final concentration of 104 c.f.u.'S soil. This level was below 

that of the indigenous streptomycete population, so that the medium had to be 

genuinely selective for ISP5078 for recovery and enumeration.

Since reports exist on the presence of antibiotic resistances among natural 

isolates (Kelch & Lee, 1978; Cole & Elkan, 1979) and as a result of the 

selective pressures from their clinical use (Anderson, 1968; Talbot et al., 1980; 

Hughes & Datta, 1983), initial studies considered the application of phenol 

and sodium azide as selective agents. Phenol and sodium azide were included 

in RASS media with and without additional antibacterial and antifungal agents 

and the selectivity of these media for the isolation of ISP5078 from the 

background soil microflora assessed. These findings are presented in Table 

16. They indicate that certain mixtures of selective agents result in a toxic 

combination to both the inoculant and background soil microflora. No

I ■ 169 -



ISP5078 pop" indistinguishable - non-selective

1SP5078 pop" indistinguishable - non-selective

Veiy TOXIC - No growth

ISP5078 pop” indistinguishable - non-selective

Partially selective

ISP5078 pop" indistinguishable

Partially selective

Non-selective

Very TOXIC - no growth

Non-selectivc

Growth reduced - non-selective

Non-selective

Veiy TOXIC - no growth

Non-selective

Very TOXIC - no growth

Non-selective

Growth reduced - non-selective 

Very TOXIC - no growth 

Non-selective

Growth reduced - non-selective

Non-selective

Non-selective

Non-selective

Non-selective

Non-selective

Non-selective

Table 16 Effects of certain combinations of selective agents on the 

recovery of ISP5078 from soil.
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✓ ✓ ✓ ✓ ✓ Growth reduced - non-selective 

Non-selective

Growth reduced - Non-selective

Non-selective

Non-selective

Non-selective

Non-selective

Growth reduced - non-selective

Non-selective

Non-selective

Non-selective

Non-selective

Non-selective

Non-selective

Non-selective

TOXIC - reduced count

Non-selective

Non-selective

Non-sclective

Non-selectivc

TOXIC - reduced count

✓ ✓ ✓
✓ ✓ ✓
✓ ✓ ✓ ✓

✓ ✓
✓ ✓
✓ ✓ ✓
✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓
✓

✓ ✓ ✓
✓

✓ ✓
✓ ✓

✓ ✓ ✓ ✓
✓ ✓ ✓

✓
✓ ✓

✓ ✓
✓ ✓ ✓

✓ ✓ ✓

Table 16 (cont) Effects of certain combinations of selective agents on the 

recovery of ISP5078 from soil.
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particular pattern was evident. It was not possible to identify particular 

combinations that were toxic; rather it appeared that the combination of any 4 

or 5 antibiotics and antifungals would result in a count reduced by 1 to 2 

orders of magnitude or no count at all when compared to the count obtained on 

media without selective additives.

Synergistic toxic effects were exaggerated with the incorporation of sodium 

azide and phenol in the selective medium. Sodium azide appeared to 

contribute to more toxic combinations than phenol. Complete toxicity was 

observed (no count was obtained) when Storite was combined with phenol or 

sodium azide and when Bavistin was combined with sodium azide. However, 

when phenol was combined with Bavistin the streptomycete count was 

reduced by an order of magnitude but a fraction of the population was still 

recoverable. Since the fungisidal activities of Storite and Bavistin are similar 

and the former was more prone to the production of these toxic effects, 

Bavistin was included in selective media in preference to storite in further 

studies using the plate count. None of the combinations of selective agents 

tested actually allowed the selective isolation of the scab inoculant, ISPS078 

from the background streptomycete soil microflora.

A parallel study on the application of naturally occurring lincomycin 

resistance as a selectable marker for the recovery of S.avermetillus from soil 

also demonstrated similar widespread antibiotic resistance in indigenous 

streptomycetes (Rhianon Williams, University of Warwick, pers.comm.).

In conclusion, combinations of (5-lactams and sulphonamide antibiotics, 

phenol and sodium azide were inappropriate for the selective isolation of 

particular scab-causing streptomycetes from soil. Resistance to the antibiotics
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and selective agents under study appeared to be distributed widely through the 

indigenous population of streptomycetes. This was particularly true of the 

grey sporulating streptomycetes which included ISP5078. In general, isolation 

plates were free of other bacteria, suggesting that some of these mixtures of 

selective agents incorporated in RASS may be appropriate for the general 

isolation of certain groups of streptomycetes. Finally, the synergistic effects 

identified with specific combinations of selective agents serve to highlight the 

problems in the development of media that is sufficiently selective to suppress 

components of the soil microflora that will rapidly over grow dilution plates 

and obscure the strain of interest but that also allow reliable enumeration of the 

inocula.

4.5 Cloning strategy for the introduction of the xylE  reporter 

gene into ISP5078

The xylE gene encodes the production of catechol 2,3 dioxygenase. This 

enzyme will catalyse the conversion of catechol into 2-hydroxy muconic 

semialdehyde, a distinctive yellow coloured compound. The enzyme has been 

reported to be unique to Pseudomonads harbouring Tol plasmids and hence not 

present within the Streptomyces genus. Thus strains marked with the reporter 

gene would be readily distinguishable from indigenous populations of 

streptomycetes. The objective was to combine this reporter gene with a 

selectable marker and introduce this cassette onto the ISP5078 chromosome. 

The selectable marker chosen was the nptll gene. This gene encodes the 

enzyme neomycin phosphotransferase and confers resistance to the 

aminoglycoside antibiotics including kanamycin and neomycin. It appeared to 

be a good selective marker for Streptomyces since naturally occurring 

aminogylcoside resistance has been found to be relatively rare among 

streptomycete isolates (Phillips et al., 1992).
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The overall aim of the cloning work was to produce a cassette containing the 

xylE and nptll reporter genes that could be ligated to ISP5078 chromosomal 

DNA fragments and transformed into ISP5078. Since there were no cloning 

vectors available for the strain, incorporation of the cassette into the 

chromosome was dependent on homologous recombination.

The xylE gene was derived from pCF32 (Spooner et al., 1987) and the nptll 

gene derived from pNEO (a commercially available plasmid), the nptll gene 

was under the transcriptional control of the Tn5 promoter (these constructs 

were kindly supplied by R.Spooner, ICRF, London) (Figs. 13 & 14).

4.5.2. Excision of the xylE  gene from pCF32

The BamH\ flanked xylE gene was excised from pCF32, by performing a 

BamH\ digestion in a lOOpl volume of approximately 5|Jg plasmid DNA for 2 

hrs at 37°C. The products of digestion were run on a 1 % agarose gel until the 

smaller xylE fragment was well separated from the remaining plasmid DNA. 

The xylE fragment was recovered on DE81 paper (Section 2.20).
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Fig. 13 Plasmid map pNEO

A derivative of pBR322 as a result of the conversion of the HindUl/Sall fragment of 

Tn5 to Hindlll/BamHl and then inserted into the Hindlll and BamHl sites of pBR322. 

The nptll reporter gene (KmR) is fired by the Tn 5 promoter. The pNEO plasmid 

contained another antibiotic resistance marker, ampicillin resistance (ApR). The 

plasmid map has been linearised at the unique £coRI site for convenience.

Key to Restriction Sites:

E £coRl

C Clal

H //indili

b BglII

P Pstl

Sp Sphl

B BamHl

S Sad

Fig. 14 Plasmid map, pCF32

The plasmid contained the xylE gene flanked by two BamHl sites.
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4.5.3 Introduction of the xylE gene into pNeo

Since it is possible to ligate a Bam\\\ cut fragment into both a Bam HI and 

Bglll restriction site and the nptll gene is flanked upstream by a BglU site and 

downstream by a Bam HI site, attempts were made to clone the xylE gene in at 

both sites. Hence pNeo digestions were performed with both BamHI and 

BglII. The following ligations were set up with these digestion products:

1. 100 ng pNeo/BamHI (negative control)

2. 100 ng pNeo/BamHI and 33 ng xylE/BamHl

3. 100 ng pNeo/BamHI and 66 ng xylE/BamHl

4. lOOng pNeo/Bg/II (negative control)

5. 100 ng pNeo/Bg/II and 33 ng xylE/BamHl

6. 100 ng pNeo/Bg/11 and 66 ng xylE/BamHl

The ligation products were transformed into DH5a competent cells and the 

transformed cells were spread onto LB plates containing kanamycin and 

ampicillin. Resultant colonies were sprayed with 100 mM catechol to identify 

catechol 2,3 dioxygenase activity. 25 positive colonies were recovered from 

cells transformed with ligation 3 and 1 colony from cells transformed with 

ligation 6. When sprayed with catechol xylE transformants derived from 

ligation 3 were a mixture of bright and pale yellow colonies. The xylE positive 

colony derived from ligation 6 was bright yellow. The differences in colour 

were thought to reflect the orientation of the xylE gene in the BamHI and Bglll 

sites, such that the xylE cassette in the bright yellow coloured colonies had 

probably been placed immediately behind and in the same orientation as the 

nptll gene and light yellow colonies probably signifying that the xylE gene had 

been incorporated in the opposite orientation and that transcription of the gene 

was being fired from the promoter of the ampicillin resistance gene (ApR) and
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requiring more of the plasmid DNA to be transcribed prior to the xylE gene.

4.5.4 Characterization of the xylE /nptll constructs

Restriction enzyme digestions were performed on small scale plasmid DNA 

preparations from all colonies, in order to identify the plasmid constructs of 

interest. Large scale plasmid DNA preparations were performed on colonies 

bearing the required plasmid constructs from each of the categories. 

Constructs designated pPAR 1 and 2 were obtained from ligation 3 (Fig. 14a). 

Although attempts were made to clone the xylE gene into the Bam\\\ and BglW 

sites of pNeo, it was considered preferable to have the xylE gene cloned into 

the BglW site and hence downstream of the nptll promoter and upstream of the 

nptll gene. Thus for future experiments any streptomycetes exhibiting 

neomycin phosphotransferase activity would almost certainly be harbouring 

the xylE gene as well. In contrast, if the xylE gene was downstream of the 

nptll gene there would be the possibility of isolating marked streptomycetes 

that were kanamycin resistant without catechol 2,3 dioxygenase activity. For 

this reason the single bright yellow colony derived from ligation 6 appeared to 

be the preferable candidate, with in all likelihood the xylE gene would be in 

the correct orientation, being immediately upstream of the kanamycin resistant 

Tn5 promoter and downstream of the nptll gene. However, when this plasmid 

was mapped by restriction analysis it was apparent that it was actually 

contaminating pCF32. Since no plasmids were obtained with the xylE gene 

inserted at the flg/II site, even in repeated ligations, it is possible that insertion 

of DNA into the BglW site inactivates the TnJ promoter or interfers with 

transcription, so that KmR xylE colonies could not be recovered. The pPAR 1 

construct appeared to be the next best option, it was analysed by restriction 

mapping (Fig. 15) and appeared to conform to the predicted construct. 

Restriction analysis included the following digestions: Eco RI, Eco RI/flg/II,
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Fig. 14a Plasmid constructs

Plasmid maps are presented for constructs pNEO, pPARl, pPAR2 and pPAR3. 

pPARl and pPAR2 have been generated by inserting the xylE gene into the BamHi 

site upstream from the KmR gene. The xylE gene could be inserted in either 

orientation with transcription driven by the promoter of the KmR gene (bright yellow 

colonies) or the ApR gene (light yellow colonies). pPAR3 has been generated from 

pPARl through the removal of the BamH\ site between the KmR and xylE genes. 

Plasmid maps have been linearised at their unique £coRI sites for convenience.

Key to restriction sites:

E = EcoK\

C = Clal 

H = H indlll 

b = Bglll 

P = Pstl 

Sp = Sphl 

S=Sall
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Fig. 15a. Restiction analysis included the following digestions : a, EcoRl', 

b, pBR322///(«fI size markers; c, EcoRl/ Bglll; d, EcoRl/ Pstl; e, £coRI/ 

Sail; f, EcoRl/ Xhoi; g, EcoRl/ BamHl; h, EcoRl/ Clal; i, X EcoRl/Hindlll 

size markers; j, Bglll/ Pstl; k, Bglll/ Sail; 1, Bglll/ Xhol; m, B gill/BamHl; 

n, Bglll/ Clal.

Fig. 15b Restriction map of the plasmid pPARl, containing the xylE gene 

was cloned downstream of the Tn5 KmR of pNEO under transcriptional 

control of the KmR promoter.

Fig. 15 Characterisation of pPA R l
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Eco RI/Pst I, Eco RI/Sa/1, Eco Rl/Xhol, EcoRU BamHl, EcoRUClal, Bglll/Pstl, 

Bgill/Sail, BgllllXhol, Bglll/BamHl, Bglll/Clal. The products of digestion 

were run on a 1.5% agarose gel together with lambda and pBR322 size 

markers.

The pPARl construct was used for the development of the nptll xylE cassette.

4.5.5 Removal of internal BamHl site by partial BamHl digestion

The nptll/xylE cassette in pPARl has a BamHl site downstream of it. It would 

be particularly useful if the cassette was flanked by BamHl sites. This 

required the addition of a BamHl site upstream of the cassette and removal of 

the BamHl site between the nptll and xylE reporter genes. The following 

procedure was employed for removal of the internal BamHl site.

A BamHl/ pPARl digest time course was set up, whereby the reaction was 

terminated (by removal of a 20 |il aliquot and the addition of 2 |il of 200 mM 

EDTA) at the following intervals: 0, 1,2, 4, 8, 15, 30 and 60 minutes. Each 

aliquot contained approx. 100 ng of DNA. The digestion products were run on 

an agarose gel, and the band of linear pPAR 1 plasmid DNA identified. The 

linear fraction was recovered from the gel onto DE81 paper, eluted and ethanol 

precipitated (Section 2.20).

4.5.6 End filling of BamHl site

Klenow enzyme (the large subunit of E.coli DNA polymerase) was used to 

convert the BamHl ends of the DNA into blunt ends. The precipitated linear 

pPARl was resuspended in a 10 |il volume of:

20 mM Tris-Cl, pH 8.0 

7 mM MgCl
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10 mM Klenow

and incubated at 37°C for 2 mins followed by the addition of 1 |il of 0.125 mM 

dNTPs and incubation at 37°C for a further 2 minutes.

4.5.7 Blunt ended ligation

To the end filled linear pPARl, a 40 |Jl volume of the following was added.

66 mM Tris-Cl, pH 7.6 

6.6 mM MgCl2 

5 lil 1 M DTT 

100 ug ml-1 BSA 

1 mM Spermidine 

0.2 M ATP

25 U m l1 T4 DNA Ligase

After incubation (6h at room temperature), a 20 lil aliquot was used for the 

transformation of DH5a competent cells. Cells were spread onto LB plates 

containing both kanamycin and ampicillin. Transformants were identified 

after 24 hours by spraying with catechol. Two classes of transformant were 

expected, corresponding to the loss of the BamHl site either between the xylE 

and nptll genes or downstream of the xylE gene. Only 3 colonies were 

recovered. Overnight small scale broth cultures were set up for each in LB 

with kanamycin and small scale plasmid preparations performed on the 

harvested cells.

4.5.8 Characterization of pPAR 3

The following digestions were performed on each sample of plasmid DNA: 

BamHl and BamHl/ EcoRI. The products of digestion in addition to pPARl 

BamHl and BamHl/ EcoRl digests were run on an agarose gel. One colony 

appeared to contain the desired plasmid digest pattern. This plasmid was
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designated pPAR3. A large scale preparation of the plasmid DNA was 

performed and analysed by restriction mapping as described for pPARl 

(Fig. 16).

The digestion patterns confirmed the removal of the internal BamWl site. For 

example, £coRI BamHl double digestion produced a doublet of bands 

migrating at approximately 4 kb, as do Bglll BamHl digestions. This is in 

marked contrast to pPARl (Fig. 15)

4.5.9 Inclusion of a BamHl cloning site upstream of the xylElnptll cassette 

To facilitate excision of the xylElnptll cassette from the plasmid DNA, a final 

manipulation was performed to include a BamHl site upstream of the reporter 

genes. This was achieved by the introduction of the poly linker cloning sites 

from M13mpl9X replicative form (RF) between the £coRI and //indill 

restriction sites of pPAR3. M13mpl9X is a derivative of M13mpl9, the Xbal 

site of M13mpl9 has been replaced by a Xhol site. It was supplied by Prof. 

J.M. Lord and R. Spooner (Warwick University).

The following digestions were performed:

approx. 500 ng pPAR3 EcoRl/ Hindlll double digestion 

approx. 500 ng M13mp 19 times RF £coRI/ Hindlll double

digestion

These were followed by the following ligations:

8 100 ng pPAR3 Hindlll/ £coRI

9 100 ng pPAR3 Hindlll/ EcoRl and 50 ng M l3 RF Hindlll/
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Fig. 16a Plasmid pPAR3 was characterised by restriction analysis: a, £coRI; b, 

lambda size markers; c, EcoRl/ Bglll; d, EcoRi/ Pstl; e, EcoRl/ Sail; f, £coRI/ 

Xhol; g, £coRl/ BamHl; h, EcoRl/Clal; pb, pBR322 Hinfl size markers; j, 

BglU/ Pstl; k. Bglll/ Xhol;; Iftglll/ BamW; m, Bglll/ Clal; n, Bglll/ Sail.

Fig.l6b The digestion pattern confirmed the removal of the BamHl site 

between the xylE and nptll genes.

Fig. 16 Characterisation of pPAR3

- 184 -
I

Figure 16a

Figure 16b



EcoRl

10 100 ng pPAR3 Hindlll/ EcoRl and 100 ng M l3 RF Hindlll/

EcoRl

Ligations were incubated at room temperature for 2 hs. Reactions were 

terminated by the addition of 2 |al of 200 mM EDTA and 13jJl SDW. 6 Jil of 

the final reaction volume was used for a transformation of E.coli DH5a.

4.5.10 Characterization of pPAR4

Equal numbers of colonies grew up from all transformation mixtures which 

turned bright yellow when sprayed with catechol. 18 colonies from cells 

transformed with ligation 10 were grown up overnight in small scale L-broth 

cultures containing kanamycin. Small scale plasmid preparations were 

performed, on the harvested cells and the plasmid DNA digested with BamHl.

Colonies were identified that appeared to contain two BamHl sites. Further 

confirmation of the introduced BamHl site was achieved by digestion with 

Clal. Clal digestion patterns confirmed the presence of the additional BamHl 

site. Large scale plasmid preparations of 4 of these colonies were performed 

followed by the confirmatory BamHl and Clal digestions (Fig. 17). Two of 

these colonies were confirmed to have a BamHl site upstream of the xylE/nptll 

cassette and were designated pPAR4.

4.5.11 Excision of the BamHl flanked xylEInptll cassette 

Approximately 10 (Jg of pPAR4 DNA was digested with BamHl, the DNA was 

loaded into an extended well and run on a 0.6% agarose gel at 20V overnight. 

The products of the BamHl digestion are very similar in size and required a 

low % agarose gel and and an extended running time for their resolution (Fig.
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Fig. 17 Confirmation of pPAR4

Fig. 17a Confirmation of the construction of pPAR4 and therefore the 

introduction of the Ml 3 poly linker was achieved through digestion with Clal 

and BamHl. BamHl digestion generated two fragments of similar sizes (each 

around 4kb) which were not resolved on this gel and the diagnostic Clal 

digestion products were a small band of approx. 0.3kb and a larger band of 

7.5kb.

Fig. 17b Plasmid map pPAR4

The xylE/ nptll genes are flanked by BamHl sites, facilitating excision of this 

fragment via BamHl digestion.
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18). The larger fragment representing the xylEInptll cassette was recovered 

onto DE81 paper (Section 2.20). The close proximity of the two fragments 

meant it was difficult to avoid some contamination from the lower fragment. 

To reduce this, the lower band was excised prior to the recovery of the upper 

band onto DE81 paper which was backed by dialysis tubing to prevent loss of 

the fragment. The fragment was checked for purity on a 0.5% minigel and 

resuspended in a final volume of 25 pi of which a 1 pi aliquot could be 

visualised on an ethidium stained agarose gel.

4.5.12 Digestion of ISP5078 genomic DNA with BamlU, BglII and EcoRI 

Genomic DNA from ISP5078 was cut with the restriction enzymes: BamlU, 

BglW and EcoR\ in order to assess the frequency of sites for these enzymes. 

There were many BamHl and BglU sites giving restriction ladders with a good 

distribution of different sized fragments (Fig. 19). In contrast, the high GC 

content of Streptomyces DNA makes restriction sites with a high AT content 

relatively rare, EcoRl cut ISP5078 genomic DNA produced restriction ladders 

containing predominantly high molecular weight fragments (not shown). 

These observations have been also made by other workers (Chater & 

Hopwood, 1984). The BamH\ and BglU restriction sites were chosen for the 

final cloning steps.

4.5.13 Cloning strategy for the incorporation of the xylEt nptll cassette 

into the ISP5078 chromosome by homologous recombination

The overall cloning approach is summarised in a scheme given in Fig. 20 and 

proceeded as follows: 40 pi of a saturated solution of ISP5078 genomic DNA 

solution in SDW was digested with BamHl. The volume was increased to 280 

pi with SDW and the products of digestion extracted with phenol chloroform 

and chloroform isoamylalcohol. The BamHl digested DNA was ligated to
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Fig. 18 Excision of the xylElnptll insert

BamH\ restricted pPAR4 DNA was run in an extended well of the gel for 18hs 

on a 0.5% agarose gel to allow separation of the two fragments of similar size. 

The larger of the two bands contained the xylE/ nptll insert and was recovered 

(according to Section 2.20).
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Fig. 19 Restriction of ISP5078 genomic DNA with BamHl and Bglll.

In order to pursue the cloning strategy outlined in Fig. 20 it was important to 

confirm the presence of significant numbers of restriction sites for the BamHl 

and Bglll restiction sites. The restriction ladders given in Fig. 19 illustrate the 

presence of many small bands of DNA indicative of many restriction sites.
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Fig. 20 Overview of ISP5078 cloning strategy

Genomic ISP5078 DNA was digested with BamHl, and the fragments ligated 

to form closed circles. The genomic circles were then digested with Bglll, the 

xylE/nptll insert was then ligated into the Bglll sites. ISP5078 protoplasts were 

transformed with these DNA molecules, the low frequency homologous of 

recombination of the insert into the chromosome was screened for.

Key:

= ISP5078 genomic DNA

.......  = xylEInptll insert

B = BamHl restriction site 

b  = flg/Il restriction site
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form closed circular molecules of DNA in a final volume of 400 pi. A large 

reaction volume was used to promote intra rather than intermolecular ligation, 

by the addition of the following:

40 fil 10 times ligase buffer 

40 |al BSA (5 mg m l1 )

40 Hi DTT (40 mM)

3 Ml T4 Ligase

The ligation was allowed to proceed overnight at 15°C. The reaction was 

terminated by phenol chloroform extraction of the ligation mixture and the 

DNA precipitated with ethanol. 2 pi of 20 mg ml'1 glycogen (a carrier 

molecule) was added to the ethanol solution to ensure efficient recovery of the 

ligated DNA.

The precipitated DNA was taken up in a final volume of 30 pi and digested 

with BglW in order to cut some of the closed circular molecules at a different 

point to that of the BamHI site. The DNA volume was increased with SDW 

and the products of digestion extracted with phenol chloroform and 

chloroform isoamylalcohol before ethanol precipitation. The BglW digested 

DNA was resuspended in 20 pi of the xylEI nptll cassette DNA and ligated 

overnight at 13°C with the addition of 2.3 pi 10 times ligase buffer and 23 

Units of T4 ligase. The ligation volume was kept small and the concentration 

of DNA molecules high to promote intermolecular ligation of the insert to the 

genomic DNA. The ligated molecules were then used in 2 pi aliquots for 

ISP5078 transformations.

4.5.14 Optimal transformation of ISP 5078

Transformations were based on the methods of Hopwood et al. (1985) for the
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PEG mediated transformation of streptomycete protoplasts. These methods 

were developed for the transformation of streptomycetes with plasmid DNA. 

Transformation of protoplasts with chromosomal DNA fragments has been 

reported to occur at very low frequencies and until recently there were few 

methods available for the routine insertion of sequences into the chromosome. 

With this in mind, PEG mediated plasmid transformation methods were used 

with closed circles of genomic ISP5078 DNA containing the xylE/nptll 

cassette. Transformation conditions were optimised for this strain using 

plasmid pIJ673. This plasmid is a derivative of plasmid pIJlOl with the 

spread region disrupted by the inclusion of additional antibiotic resistance 

determinants (Fig. 21).

ISP5078 broth cultures were grown up in baffled flasks containing YEME 

medium with glycine according to Hopwood et al. (1985). The quality of 

protoplasts prepared from YEME grown ISP5078 mycelium was better than 

that achieved from cells grown in TSB with 10% sucrose and PEG. This was 

probably because the duration of the lysis step was reduced considerably from 

one hour to 20 to 30 minutes. From the production of 1010 protoplasts ml'1 the 

regeneration frequency on dried R5 plates was 106 to 107, and the number of 

transformants produced using 1 pi pIJ673 DNA (equivalent to 2.5 pg, 260/ 

280 ratio = 1.9) was 103 per plate. A one in 10 dilution was required to 

produce single colonies. A modified R5 overlay was poured over the 

developing protoplasts after a 20 h incubation containing antibiotics selective 

for the plasmid. These were added at 1/10 of the concentration recommended 

by Hopwood et al. (1985). Hence neomycin was added to the overlay to a 

final concentration of 10 pg ml'1 and thiostrepton 25 pg ml'1. 17 of the

regenerating transformant colonies were picked, grown up in liquid broth 

under selection and small scale plasmid preparations performed by alkaline
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Fig. 21 Plasmid map, pIJ673

Plasmid pIJ673 was derived from the multicopy plasmid pIJlOl (Kieser et al„ 

1982). A viomycin gene (vph) has been inserted into the spread region and 

thiostrepton (tsr) and neomycin (aph) resistance determinants inserted into the 

non-essential regions.
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lysis on each of them. Confirmation of pIJ673 was obtained by digestion with 

Pjfl to give a typical 5 band pattern given in Fig. 22 and described by 

Wellington et al. (1989). At least 16 of the 17 colonies contained plJ673, 

(insufficient plasmid DNA was recovered from the other transformant).

4.5.15 Transformation of ISP5078 with xylE cassette and ISP5078 

genomic DNA circles.

Using the transformation procedures described above, 2 pi aliquots of the 

ligated DNA solution were used in PEG mediated transformations of ISP 5078 

protoplasts. Regenerating protoplasts were overlayed with soft modified R5 

overlay containing kanamycin. However, the result was the production of 

lawns of kanamycin resistant colonies growing through the agar overlay. This 

was also the case for regenerating ISP5078 protoplasts that received PEG and 

SDW but no DNA and were overlayed with kanamycin. To add to the 

problems of universal resistance to kanamycin after protoplasting, the 

substrate mycelium of the strain growing on the regeneration agar soon 

became a very similar bright yellow to that produced by the 2,3 dioxygenase 

enzyme in the presence of the catechol (Fig. 23). When the colonies were 

sprayed with catechol and it was not possible to observe a dramatic colour 

change. Since the colonies exhibited a yellow substrate mycelium, it may not 

have been possible to detect colonies expressing the xylE reporter gene by eye. 

xylE expression in E.coli involved a copy of the gene on a multicopy plasmid 

and so was relatively easy to identify. In contrast a chromosomally encoded 

gene product was being screened for in ISP5078, hence reduced enzyme 

product would be expected. Difficulties associated with the colour of the 

substrate mycelium might have been overcome by spraying the colonies at an 

earlier stage before the colonies change from a grey-white to a bright yellow or 

at a later stage of development with production of the white aerial mycelium.
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Fig. 22 Confirmation of Transformation of ISP5078 with pIJ673

Plasmid DNA recovered from ISP5078 transformants was restricted using Pstl. 

The 5 band pattern generated was diagnostic for this plasmid (Wellington et 

al., 1990).
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Fig. 23 Comparison of ISP5078 yellow substrate mycelium with the 

product of the xylE gene in the peesence of catechol (2-hydroxy muconic 

semi aldehyde).

S.lividans 1326 harbouring a plasmid expressing the xylE gene is presented 

alongside the ISP5078 strain. The 2-hydroxy muconic semi aldehyde product 

was a similar colour to the substrate mycelium of 1SP5078, indicating the 

difficulties in identifying its expression and therefore its use in this strain. 

Strain MP2 also given in the photograph, has a paler substrate mycelium and 

may comprise an alternative host strain for this marker.

/
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Repeated transformation and spraying of regenerants at different stages in the 

life cycle did not however, reveal any obvious xylE positive colonies.

4.5.16 Induction of cryptic antibiotic resistance genes through 

protoplasting

ISP5078 was checked for ability to produce catechol 2,3 dioxygenase and 

resistance to kanamycin prior to beginning the cloning work. The strain 

proved negative on both accounts and when rechecked the parent strain 

remained very susceptible to low levels of kanamycin. The induction of 

kanamycin resistance following protoplast transformation would probably 

obscure the low frequency homologous recombination event being screened 

for.

Of particular relevance to these findings are the studies by Hotta et al. 

(1988a;b) on the activation of cryptic aminoglycoside resistance genes by 

protoplasting. The strains under study belong to S.griseus, the group to which 

ISP5078 was identified. Although little is understood of the influence 

protoplasting has on the cryptic gene, its activation results in the production of 

a novel aminoglycoside acetyltransferase AAC (3) that confers high levels of 

resistance to a range of aminogylcoside antibiotics including: kanamycin, 

neomycin, gentamycin, dibekasin and paromamycin. Southern blot analysis of 

a range of streptomycetes probed for the presence of the cryptic gene, 

indicated that homologous sequences were present in all S.griseus strains that 

have been studied and absent in the other Streptomyces species (Hotta & 

Ishikawa, 1988). The authors speculate that the distribution of this sequence 

may relate to a specific role of the cryptic gene product in the life cycle of 

S.griseus.
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Although the kanamycin resistance mechanism for ISP5078 was not 

characterised in detail, high levels of resistance to kanamycin (100 Mg ml-1) 

and neomycin (10 Mg ml'1) were also obtained. Resistance to aminoglycoside 

antibiotics amongst actinomycètes has been found to occur as a result of 

enzymic deactivation either via phosphorylation or acetylation or via 

ribosomal méthylation (Nakano & Ogawara, 1986; Hotta et al., 1988b) or 

indeed a combination of these mechanisms, resistance spectra are thus 

determined by the mechanism(s) operating. Streptomycete mutants with 

resistance to antibiotics may be induced by repeated subculture onto higher 

and higher levels of antibiotics. Furthermore studies by Phillips et al. (1992) 

indicated that kanamycin resistance of > 5  Mgml'1 to be rare in natural 

streptomycete isolates. It is therefore difficult to envisage the dramatic change 

in resistance to kanamycin by large numbers of ISP5078 protoplast 

regenerants without the activation of a cryptic antibiotic resistance gene as 

reported by Hotta et al. (1988a). Regenerants grew through a soft agar overlay 

containing 500 Mg ml-1 kanamycin. Hotta et al. (1988b) report a 200 fold 

increase in resistance S.griseus strains ie. from < 5 Mg ml-1 to 500 to 1000 Mg 

ml-1 resistance with protoplast regeneration. However, further analysis similar 

to that undertaken by Hotta et al. (1988a) would be necessary in order to 

clarify this.

The kanamycin resistant mutation appeared to be stably maintained in culture 

both in the presence and absence of kanamycin. Although the kanamycin 

resistant regenerants did appear morphologically indistinguishable from the 

parent strain when isolated, after 18 months to 2 years in culture the strain did 

differ morphologically possessing a characteristic ragged edge compared with 

its kanamycin sensitive derivative (the altered phenotype was moredistinctive 

in the absence of kanamycin selection). This is in contrast to Hotta et al.
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(1988b) who generated kanamycin protoplast regenerants that appeared 

phenotypically indistinguishable from the parent strain, but which did have 

distinct RFLP genomic DNA patterns.

4.5.17 The application of kanamycin induced resistance in 1SP5078 as a 

m arker for detection and monitoring in soil

Although it was not possible to comply with our initial aims to identify 

naturally occurring selective resistance markers and to introduce the xylE and 

nptll reporter genes into ISP5078, it was possible to generate kanamycin and 

neomycin resistant strains. Since, aminoglycoside resistance is rare among 

streptomycete isolates (Phillips et al., 1992) these markers offered potential for 

the selective recovery of ISP5078 from the indigenous soil streptomycete 

microflora. However before the ecology of the strain could be studied in situ, 

it was important to assess the stability and the reversion rate of the marker in 

soil. It would also be important to evaluate whether the induced kanamycin 

resistance alters the fitness of the strain in terms of its ability to survive and 

compete in the natural environment (Compeau et al., 1988).

4.5.18 The application of pIJ673 as a selective marker for the detection 

and monitoring of ISP5078 in soil

The technology for inserting markers into the Streptomyces chromosome has 

developed considerably. Recent developments have seen a sudden increase in 

the number of delivery vectors utilising integrating plasmids, transposons and 

bacteriophage (reviewed by Kieser & Hopwood, 1991). Initially these vectors 

will be evaluated in the genetically well characterised S.lividans and 

S.coelicolor strains. Their role in the introduction of markers onto the 

chromosome of uncharacterised strains remains to be defined. For the short
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term the introduction of marked genes into genetically uncharacterised strains 

may be limited to their introduction on plasmids (Wipat et al., 1991). The 

disadvantages of using plasmid borne markers have been well documented, 

namely loss via segregation at cell division, transfer to alternative hosts and 

the possibility of the additional metabolic burden of the plasmid to the cell. 

Plasmids have however, been associated with considerable numbers of natural 

Streptomyces isolates (Hopwood et al., 1986) including the common scab 

strains (McQueen et al., 1985); hence their application as markers would add 

an important dimension to the study the ecology of the Streptomyces. The 

plasmid pIJ673 (a derivative of pUlOl [Kieser et al., 1982]) (Fig.21) that has 

been introduced into ISP5078 confers resistance to a highly selectable 

combination of antibiotics, particularly suited to the selective recovery of 

specific Streptomyces inoculants from soil (Wellington etal., 1990).

Studies to evaluate the stability of plasmids and their affect on the ecology of 

the host strain are limited by the requirement for chromosomally marked 

strains in order to monitor the proportion of the population that are cured of 

the plasmid but survive under environmental conditions.

4.5.19 Problems and perspectives on the cloning in genetically 

uncharacterised strains

The majority of heterologous cloning in Streptomyces has been performed in 

S.lividans, the reason being the absence of restriction barriers to incoming 

foreign DNA. With an increased interest in the genetic analysis of the genus, 

has come the awareness that strains without restrictive systems are rare. The 

problem is exemplified by the suggestion that S.fradiae may have 5 different 

restriction systems operating (Matushima et al., 1987) and that the 

Streptomyces are an important commercial source for the production of many
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restriction enzymes (Chater & Hopwood, 1984). Consequently restriction free 

mutants of S.fradiae have resulted in increased plasmid transformation 

frequencies in excess of 3 to 4 orders of magnitude (Matushima et al., 1989). 

Streptomyces griseus strains have been suspected to have operational 

restriction systems (Cox & Baltz, 1984). The potential problem of restriction 

systems has been emphasised by Hopwood et al. (1985) who indicate that the 

introduction of any DNA from E.coli into S.coelicolor necessitates prior 

transformation and recovery from S.lividans. Introducing the DNA into a 

plasmid and passing it through S.lividans is an advisable precautionary step in 

the cloning strategy of uncharacterised strains. Hence this was attempted by 

ligating the xylE cassette into a unique BamtU site of plasmid plJ486 (a 

derivative of pIJlOl). The success of the ligation was monitored, by analysing 

the DNA before and after ligation by gel electrophoresis. Although many 

transformants were produced harbouring pIJ486, none of those screened 

turned yellow when sprayed with catechol. Plasmids from putative 

transformants were isolated and restricted however none of the preparations 

analysed by restriction contained inserts. Although transformations were 

repeated several times, the approach was not overly pursued. Since reports 

exist of good expression of the xylE gene in Streptomyces lividans (Wipat et 

al., 1991; Ingram et al., 1989) failure to obtain expression is unlikely to relate 

to the combination of strain and reporter gene. Alternatively, the problems 

may be attributed to the use of an inappropriate plasmid vector. Hopwood et 

al. (1985) remark that some cloned fragments appear stable in one vector but 

not another. Hence, future attempts might focus on other vectors and include 

cloning of the Bam\\\ flanked reporter cassette into the unique Bglll site in the 

non-essential regions of pIJ702 (Hopwood et al., 1986). In addition the 

transformation event being screened for could be quite rare and lack of success 

related to an insufficient number of transformants screened.
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The marker system appeared more problematic than originally envisaged. 

Production of kanamycin resistant protoplast regenerants were a potential 

problem with transformation procedures that require a protoplast stage. 

Furthermore it was felt that chromosomal expression of the xylE gene (and 

hence the reaction with catechol to produce the distinctive yellow compound) 

may not have been sufficient to be visualised through the yellow substrate 

mycelium of strain ISP5078. At this point it was decided to abandon this 

approach and focus on the application of kanamycin and pIJ673 marked strains 

to studies of the autecology of ISP5078.

4.5.20 Alternative approaches for the transformation of chromosomal 

DNA that might be applied in further attempts to introduce m arker genes 

onto the chromosome of uncharacterised strains

The low frequency of transformation of chromosomal DNA has been 

increased by the incorporation of the DNA into liposomes which are then 

fused with the protoplasts (Makins & Holt, 1981). Rodicio & Chater (1982) 

report increased transfection frequencies of S.lividans protoplasts by <1>C31 in 

the presence of small DNA free liposomes. However, few reports exist of the 

application of this approach to cloning in Streptomyces. Alternative strategies 

might also consider electroporation and phage delivery vectors, the latter 

approach circumventing the need for protoplasting and hence the consequent 

mutagenesis effect. MacNeil (1987) reported an efficient transformation 

procedure for plasmid DNA by applying electroporation to S.lividans 

protoplasts. It was also suggested that it might be possible to develop 

procedures for whole cells such as freshly germinated spores. McHenney & 

Baltz (1988) report on the broad host range streptomycete bacteriophage 

(FP43) mediated high frequency transduction of plasmid DNA. The
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bacteriophage appeared to be able to transduce some streptomycetes with well 

characterised restriction systems. A recent report by Hilleman et al. (1991) 

indicated that the frequency of transformation was increased by 10 to 100 

times with certain combinations of strain and vector through transformation 

with single stranded as opposed to double stranded vector DNA.
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5.1 Introduction

The pressure to develop suitable methodology for detection and monitoring 

has resulted in the widespread application of molecular methods to microbial 

ecology (Ogram & Sayler, 1988; Trevors & Van Elsas, 1989; Pickup, 1991). 

Molecular approaches are also useful because they offer the opportunity to 

monitor components of the ecosystem that remain recalcitrant to culture and 

thus have been poorly studied (Olsen, 1990; Ward et al., 1990; Weller et al., 

1991). The shortcomings of traditional methods that rely on the isolation and 

cultivation of microbes from the natural environment have been illustrated by 

the findings that only 1 to 5% of soil microorganisms observed by direct 

counts were actually culturable (Bakken, 1985; Bone & Balkwill, 1986).

In addition molecular techniques allow the possibility to monitor the stability 

and containment of genetic sequences within microbial populations. Since 

techniques such as the Southern blot hybridization method allow the detection 

of genetic rearrangements (such rearrangements might be anticipated to occur 

with the introduction of genes via transposons or integrating plasmids) as well 

as the ability to monitor the horizontal transfer of introduced genes into new 

populations (Jain et al., 1988). Finally since gene probes target gene 

sequences and not their products these techniques offer the potential to 

monitor the presence of genes within communities without the prerequisite for 

their expression (Jain et al., 1988). This latter point is of particular 

importance, since only a small minority of taxa in an environmental sample are 

growing rapidly at any time, and thus only a few may be actively expressing 

genes (Holben & Tiedje, 1988).

The most recent contribution to the battery of detection methods in microbial 

ecology has been the application of PCR technology. Molecular approaches
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encompassing PCR offer highly sensitive levels of detection, without the 

prerequisite for isolation and cultivation. PCR protocols allow the cloning and 

sequencing of nucleic acids direct from environmental samples (Zehr & 

McReynolds, 1989; Giovannoni, 1991; Steffan & Atlas, 1991). The 

application of molecular biology to microbial ecology has introduced the 

possibility to analyse the composition of communities of previously 

undescribed unculturable microorganisms (Giovannoni et al., 1990; Amann et 

al., 1991).

An initial requirement for the molecular analysis of specific populations is the 

extraction and recovery of nucleic acids. Generally, this involves extraction 

and recovery of DNA or RNA from environmental samples. However, it is 

also possible to extract and culture the cells, (onto selective media) from 

environmental materials (Pettigrew & Sayler, 1986; Jain et al., 1988). 

Alternatively gene sequences may be assayed for directly from environmental 

materials. This approach has been applied to the identification of Rhizobium 

strains from root nodules (Cooper et al., 1987).

The stability of DNA molecules relative to RNA molecules has meant that 

DNA has often been the target molecule of choice in the application of 

molecular approaches. The efficiency of recovery of DNA from the 

environment will contribute to the sensitivity of detection and is dependent on

(i) representative sampling and extraction efficiency and (ii) sufficient 

purification to produce nucleic acids that are amenable to further analysis by 

probing, digestion by restriction enzymes, ligation and PCR.

The two approaches that have been taken in the recovery of DNA from 

environmental samples involve the indirect and direct extraction of DNA from
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soil. Indirect extraction methods necessitate the prior extraction of the cell 

biomass from soil, the cell fraction is then lysed and the DNA recovered 

(Holben et al., 1988). Direct lysis procedures omit a cell extraction step, with 

lysis occurring in situ, followed by the recovery of the DNA from the soil 

matrix (Steffan et al., 1988).

5.1.2 Indirect extraction of DNA

This approach requiring an initial extraction of the cells from soil was 

pioneered by Torsvik and colleagues (Torsvik & Goksoyr, 1978; Torsvik, 

1980). They used the cell fractionation method of Faegri et al. (1977) to 

separate and recover microbial cells from soil, by rounds of differential 

centrifugation. However, the DNA isolated was brown in colour and badly 

contaminated with humic acids. Lengthy purification steps were required to 

remove the humic acids, these included the addition of 8M urea to the bacterial 

lysate, the passage of the DNA suspension through an ion exchange column 

and hydroxyapatite chromatography. These lengthy and exhaustive 

procedures resulted in substantial losses of DNA and yields of 19 to 28%. 

Holben et al. (1988) took the methodology a stage further, by separating the 

soil bacteria from the soil in a homogenisation solution containing polyvinyl 

pyrrolidine (PVPP) and sodium ascorbate. Humic acid contaminants are 

removed by absorption to the insoluble PVPP polymer. Sodium ascorbate was 

added as a reducing agent to prevent oxidation of phenolics (these include 

humic acids). Lysis of the bacterial fraction was achieved by treatment with 

lysozyme, pronase and sarkosyl. The recovered DNA solution was purified by 

caesium chloride density gradient centrifugation. Hence Holben et al. (1988) 

were able to shorten the protocol of Torsvik (1980) making it more amenable 

to environmental samples. The DNA recovered had a purity comparable to 

that obtained from pure cultures and was readily digested with restriction
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endonucleases. The method yielded DNA in the range of 50 to 150 kb, 

however while applicable to hybridization studies it was considered unsuitable 

for cloning (Fuhrman et al„ 1988).

A procedure for the indirect extraction of DNA from marine planktonic 

microorganisms was recently described by Fuhrman et al. (1988). In the 

marine environment the problem of low population densities necessitates the 

filtering of large volumes of water and the collection of cell biomass on filters. 

DNA was extracted cells collected from water subject to prefiltration (to 

remove eukaryotes) and concentrated onto 0.22 (im filters. Marine microbes 

were lysed by incubating the filters in 1% SDS and heating to 95 to 100°C. 

The DNA recovered was greater than 23 kb in length and sufficiently pure to 

allow endonuclease digestion with Sa«3AI and ligation to vector DNA. The 

efficiency of extraction of nucleic acids from the marine environment was 

subsequently improved by omission of the prefiltration step (Sommerville et 

al., 1989). Cell lysis and proteolysis were performed within the housing of the 

filter unit. This simplicity and containment to the filter unit making the 

procedure particularly suitable to analysis of environmental samples while on 

board ship.

5.13 Direct extraction of DNA

Much effort has been focused on the development of direct extraction methods 

for the analysis of environmental communities. The initial cell extraction step 

utilised for indirect methods assumes complete and representative recovery of 

cells from the soil. However bacterial fractionation methods may selectively 

remove cells that are loosely bound and easily dislodged, while leaving those 

species that are more tightly bound to components of the soil matrix (Ogram et 

al., 1987). This initial extraction may therefore introduce a bias for a

I
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particular component of the bacterial population. Furthermore, direct 

extraction methods have been reported to result in higher yields of DNA and 

shorter protocols (Ogram et al., 1987; Steffan et al., 1988). The first report of 

this type was described by Ogram et al. (1987) for the recovery of DNA from 

sediments.

Initially soil was washed repeatedly with a sodium phosphate buffer to remove 

any extracellular DNA bound to the sediment. Cells were then disrupted by 

heating to 70°C for an hour in 1% SDS followed by bead beating. The 

efficiency of lysis was estimated to be as high as 90% in sediments (containing 

19 to 44% clay and 3 to 16% organic carbon). Nucleic acids were recovered 

by 2 times 0.12 M alkaline (pH 8.0) sodium phosphate extractions, followed 

by precipitation with polyethelene glycol. Recovery of the DNA from 

sediments containing clay minerals was more efficient at an alkaline pH. 

DNA is negatively charged at a low to neutral pH and hence is prone to 

absorption by clay minerals (Ogram et al., 1988). The DNA resuspended from 

the PEG pellet was subsequently extracted with phenol chloroform and 

purified by caesium chloride gradient centrifugation and hydroxyapatite 

chromatography. The DNA yielded ranged from 0.5 to 10 kb and was suitable 

for hybridization. The low molecular size being attributable to the shearing 

action of the bead beating step. Purification by both CsCl gradient 

centrifugation and hydroxapatite chromatography appeared necessary for 

recovering DNA from sediments containing large amounts of organic carbon. 

However, purified DNA was recoverable from soils with low to negligible 

levels of organic carbon with the omission of CsCl gradient centrifugation 

purification step.

In a comparison of the methodology for direct and indirect extraction of DNA,
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particular attention was given to the recovery and purity of DNA extracted 

from soils high in organic matter and prone to the release of large amounts of 

humic acids (Steffan et al., 1988). The study indicated that while yields of 

DNA recovered from the direct extraction methodology of Ogram et al. (1987) 

exceeded those for indirect extraction methods, the problems of humic acid 

contamination were more exaggerated with direct extraction methods. Humic 

acids co-purify with nucleic acids, producing a brown coloured DNA pellet. 

Humic acids may inhibit the action of many restriction enzymes and affect the 

efficiency of hybridization. Steffan et al. (1988) found that the incorporation 

of PVPP into the homogenisation buffer, followed by caesium chloride density 

gradient purification and hydroxyapatite chromatography eased the problems 

of humic acid contamination and promoted the recovery of purified DNA. In 

addition, while DNA recovered from both procedures was amenable to dot- 

blot hybridization, humic acid contamination though minimised was able to 

prevent digestion with the restriction endonuclease Sail. DNA recovered via 

the indirect lysis procedures was restrictable with EcoKl but not when 

recovered from the direct lysis procedure. Sayler et al. (1992) report 

methodology for the direct extraction of DNA from soils and sediments that is 

amenable to digestion with a number of restriction endonucleases including 

£coRI. The method incorporates the lysis regime described by Ogram et al.

(1987) followed by 3 times 0.12 M sodium phosphate extractions of the soil 

and bead mixture. The combined supernatants were precipitated with PEG 

and the recovered DNA extracted with phenol and chloroform isoamylalcohol. 

The DNA solution was precipitated twice, first with ethanol and sodium 

acetate and then by the addition of 5 M potassium acetate to a final 

concentration of 0.5 M and by placing on ice for 2 hours. The resulting brown 

precipitate was recovered by centrifugation and the DNA solution purified by 

hydroxyapatite chromatography. The eluted fractions were analysed by
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absorption spectroscopy at an optical density of 260 nm; those fractions 

identifying to contain DNA were pooled and dialysed 4 times against 2 L of 

0.010 M Tris-HCl, 0.005 mM EDTA. Following dialysis DNA was 

concentrated by ethanol precipitation.

5.1.4 Colony and plaque hybridization

The colony blot hybridization technique is probably the simplest application of 

nucleic acid hybridization and the easiest to integrate with the traditional 

methodologies of microbial ecology. Bacterial colonies or phage containing 

plaques may be transferred from an appropriate isolation medium to 

hybridization filters. The colonies are lysed either enzymatically or under 

alkaline conditions, and the nucleic acids fixed to the filter. The filter is then 

used in hybridizations with a suitable probe.

The colony hybridization method has been applied to the detection of specific 

genotypes in the environment. These have included the study of the stability 

of catabolic plasmids in ground water aquifier systems (Jain et al., 1988), the 

correlation of naphthalene degradation with the number of naphthalene 

degrading bacteria in activated sludge systems (Blackburn et al., 1987) and the 

enumeration of mercury resistant bacteria in contaminated environments 

(Barkay, 1987; Barkay et al., 1989). The technique has also been applied to 

the identification of Rhizobium strains in legume root nodules (Hodgson & 

Roberts, 1983).

The sensitivity of the colony blot technique is dependent upon the relative 

proportions of the target and the background non-target populations that form 

colonies on the isolation medium. The original protocol (Grunstein & 

Hogness, 1975) has been adapted for high density screening of catabolic
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genotypes in environmental samples (Sayler et al. ,1985). Detection limits for 

colonies harbouring the Tol plasmid against a background of non-homologous 

plasmid bearing E.coli strains were established to be 1 Tol plasmid bearing 

colony among 106 cells of E.coli.

Gene probes may be hybridized to colonies isolated from environmental 

samples on selective and non-selective medium. Steffan et al. (1989) 

compared the sensitivity of both approaches for the the monitoring of 4- 

chlorobiphenyl degrading Alcaligenes and a 2,4,5-trichlorophenoxyacetic acid 

degrading Pseudomonas cepacia in fresh water microcosms. Non-selective 

media often failed to detect either inoculants despite their presence at 0.1 % of 

the total population and equivalent to a target population 104 viable cells ml'1 

(determined by other detection methods). In contrast, selective plating even at 

the lowest dilutions allowed enumeration of both strains, with colony 

hybridization indicating that 10% of the cells growing on the selective media 

to be non-target cells.

Selective plating was also necessary for monitoring E.coli cells (using colony 

hybridization methods) seeded into lake water. 48 hrs after inoculation in 

unfiltered lake water, E.coli populations began to decline in the presence of 

competition from the natural lake microbiota, making detection possible only 

under selective conditions (Amy & Hiatt, 1989). The colony hybridization 

technique has been limited to bacteria amenable to the conventional methods 

of enzymatic and alkaline analysis. However Datta et al. (1987) have applied 

microwave assisted alkaline lysis to Listeria monocytogenes, thus making the 

rapid colony blot hybridization technology applicable to the detection of this 

medically important group of microorganisms. The methods of Datta et al.

(1987) have also been applied to the identification of a range of Gram positive
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actinomycète genera (P.Baker pers.comm.).

While the colony hybridization technique confers some advantages over 

traditional methods for detection and monitoring i.e. it may provide 

information on both the phenotype and genotype of the target microbes. The 

method is subject to a number of limitations, these include: the selectivity of 

the isolation medium, the number of target and non-target microorganisms in 

the environment, the amenability of particular strains to lysis and the inability 

to cultivate more than a small fraction of the total microbial population from 

the environment. These limitations illustrate the short comings of a single 

method for the detection and monitoring of inoculants and highlight the need 

for an integrated approach based on a number of monitoring strategies. 

Fredrickson et al. (1988) compared a number of monitoring strategies for the 

detection of a Tn5 marked Rhizobium leguminosarum strain in agricultural 

soils. Similar counts were obtained using the plate count, MPN plant 

infectivity, colony blot DNA hybridization, MPN-DNA hybridization and FA 

direct counts after 5 days of incubation in non-sterile soil. However, after 30 

days of incubation plate counts and colony blot hybridisations estimated the

R.leguminosarum population to be 106 CFU g '1 dry soil, whereas the FA count 

and the MPN replica plate count estimated the populations to be 10 fold higher 

and 10 fold lower respectively.

5.1.5 In situ detection

The colony blot hybridization assay has been modified to allow the direct 

detection of a number of bacteria and viruses from extracts of plants and 

insects (Owens & Denier, 1981; Keating et al. 1989). Such procedures are 

necessary for the detection of obligate viral pathogens and bacterial symbionts 

that are not amenable to culture and isolation (Owens & Denier, 1981; Barker
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et al., 1985; Flores, 1986; Laksham et al., 1986). The bacterial symbionts 

Rhizobium and Frankia have been identified using a crushed root nodule assay 

(Cooper et al. 1987; Simonet et al. 1988).

5.1.6 Nucleic acid methods for measuring community diversity and 

structure

Two relatively rapid approaches to the analysis of community structure and 

diversity that have been applied to total DNA recovered from environmental 

samples are firstly, the diversity measurements based on C0t plots (Torsvik et 

al., 1990a;b) and secondly the cross-hybridization of total DNA recovered 

from different microbial communities (Lee & Fuhman, 1990).

5.1.6.1 Community DNA hybridization

In the latter approach total DNA extracted from different marine planktonic 

bacterial communities was applied in pairwise hybridisations. Hence DNA 

from one bacterial community was labelled with 35S by nick translation and 

used to probe DNA extracted from another community that has been bound to 

nylon hybridization membranes to produce a dot-blot. The intensity of 

hybridization was calibrated against a control dot containing the same DNA 

(that was used to make the probe). Differences in intensities of pairwise 

hybridisations were expressed in terms of percentage similarity after 

normalisation with the control blot. Reciprocal hybridisations were made for 

each comparison of pairs. Occasionally reciprocal differences occurred, 

asymmetric hybridisations were attributed to signify, that either one sample is 

a subset of the other, or that a species common to both populations has a high 

GC DNA content. Using this approach the authors were able to establish 

seasonal and geographical differences in the marine planktonic species 

composition at a variety of locations (Fuhrman & Lee, 1989; Lee & Fuhrman,
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1990).

5.1.6.2 Community reassociation kinetics

DNA reassociation kinetics can be used to provide an estimate of the 

complexity and diversity of the microbial communities (Ogram & Sayler, 

1988). Total DNA recovered from environmental samples was thermally 

denatured and allowed to reassociate. The reaction follows second-order 

kinetics, with the rate being dependent on the number of similar sequences, 

since the greater the number of similar sequences the faster the reassociation. 

The fraction of reassociated DNA (determined spectrophotometrically) is 

plotted as a function of the product (C0t) of DNA nucleotide concentration 

(Co) in moles per litre and the reaction time (t) in seconds. Under defined 

conditions C0t for a half-completed reaction (Cgt 1/2) is proportional to the 

genome size or complexity of DNA. The shape of the curve is indicative of 

the structure of the community. Hence the presence of a dominant species 

would be represented by the rapid reassociating fraction of the curve. In 

contrast a complex community with each species represented equally, would 

be characterised by a very slow reassociation curve and a high Q)t 1/2. The 

preliminary application of the technique to the analysis of the microbial 

community of an activated sludge system has been discussed by Ogram & 

Sayler (1988).

Torsvik et al. (1990a) have assessed the validity of using Q)t 1/2 as a diversity 

index in soil, for the analysis of soil microbial communities. Their findings 

indicated that the DNA isolated from soil is highly heterogeneous. In addition 

the reassociation curves did not follow second-order kinetics, indicating the 

presence of several different fractions of DNA representing both common and 

very rare biotypes. The rates of reassociation were lengthy, with incubation
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times in excess of several weeks required for 50% reassociation. The 

technique is very sensitive to contaminating impurities with reassociation rates 

being prolonged in the presence of humic acid contamination and other 

impurities. A 5% fraction of the total DNA had a reassociation rate equivalent 

of about a 73 of the E.coli genome rate and was thought to signify a 

population of plasmids and or bacteriophage within the sample (Torsvik et al., 

1990a). In a comparison of genotypic and phenotypic variation (Torsvik et al., 

1990b) used API identification tests and cluster analysis in addition to the Qjt 

plots. The authors were able to demonstrate good agreement between both 

phenotypic and genetic indices of diversity. Where the genetic diversity of a 

community was high i.e. in excess of 90 isolates there was a tendency for the 

C0t 1/2 values to under estimate the number of genomes. Nevertheless, the 

genetic diversity measurable with C0t analysis exceeded that obtainable 

through traditional plating techniques by about 200 times (Torsvik et al., 

1990a) and confirmed the findings of others that the strains isolated from 

natural environments comprise a small fraction o f the microbial community.

5.1.7 Genetic probes

A variety of probes varying in sensitivity and specificity have been applied to 

the detection of different genotypes in the natural environment. A summary of 

the application of various probes is given in Table 17.

5.1.7.1 Double-stranded DNA probes

Initial hybridization studies with bacteria o f environmental importance 

including E.coli (Echeverria et al., 1982), Salmonella (Fitts et al., 1983) and 

viroids (Owens & Diener, 1981) employed double-stranded (ds) DNA probes. 

The application of ds DNA probes to environmental hybridization studies was
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a result of their easy preparation, particularly from poorly studied strains. 

Double-stranded DNA probes have been prepared from whole genomes, 

plasmids and subcloned fragments of DNA.

Total genomic DNA probes have been used in identification studies of 

Rhizobium (Hodgson & Roberts, 1983) and Lotus rhizobia (Cooper et al., 

1987). Such probes have proved valuable in taxonomic identifications, since 

they have been found to complement closely related strains, but not however, 

to be strain specific (Cooper et al., 1987). Genomic probes may also be more 

sensitive than probing with single copy genes (Roberts et al., 1987).

A number of studies have utilised naturally occurring plasmids (as probes) that 

have been frequently associated with the strain under study. Simonet et al.

(1988) have used a cryptic plasmid for the identification of Frankia strains in 

alder root nodules and Steffan et al. (1989) and Pettigrew & Sayler (1986) 

have used a plasmid for the detection of Alcaligenes A5 in freshwater 

microcosms.

Species specific probes have been obtained by screening a library of randomly 

cloned digested genomic DNA for the presence of DNA fragments that appear 

unique to the target strain. The approach has been applied to Bacteroides spp. 

(Kuritza et al., 1986), a fungal pathogen of lemon Phoma tracheiphilia (Rollo 

et al., 1987) and for a group of fungal pathogens, Phytophthora citrophora 

able to incite root rot of citrus species. The advantages of cloned fragment 

probes over genomic probes being that they are easily amplified and more 

specific. Gene probes for specific phenotypic traits have been applied to the 

detection and monitoring of particular populations, traits that have been 

targeted include genes encoding: pathogenicity determinants (Datta et al.,
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1987), biodegradative capabilities and resistances to antibiotics and heavy 

metals. Examples include, the formyltetrahydrofolate gene present in the 

acetogenic bacteria (Lovell & Hui, 1991), the mer genes conferring tolerance 

to mercury (Barkay, 1987; Barkay et al., 1989) and plasmid encoded genes for 

aromatic hydrocarbon catabolism (Sayler et al., 1985; Blackburn et al., 1987). 

Such probes may be common to several different species and being specific 

for a particular function may contribute valuable information about the 

metabolism or physiology of particular communities.

5.1.7.2 Labelling of double-stranded probes

Nick translation is probably the most common strategy for labelling probes. 

The substrate for the reaction is double-stranded DNA and may comprise 

genomic DNA as restricted or sheared fragments or plasmid DNA. A 

controlled number of nicks (each containing a free 3' OH group) are 

introduced into the ds-DNA molecule using a small amount of DNase I. 

Polymerase I initiates a replacement strand synthesis by the removal of 

preceding nucleotides via the 5' > 3' exonuclease and the simultaneous 

synthesis of the DNA duplex by the 5' > 3' polymerase activities. The reaction 

is performed in the presence all four deoxynucleoside triphosphates (dNTPs), 

generally one of the nucleotides is radio-labelled with P32. Probes of higher 

specific activity may be produced by incorporating more than one 

radiolabelled dNTP in the reaction buffer. Hence as the reaction proceeds the 

labelled nucleotides are incorporated into the probe. The probe is recovered 

from the unincorporated label and the double stranded form denatured usually 

by heat, prior to use in hybridizations.

5.1.7.3 Single-stranded DNA and RNA probes

Single stranded DNA or RNA probes may be more sensitive than ds-DNA
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probes, since they can only hybridize with the target sequence and cannot 

reanneal. Single-stranded DNA probes may be produced by cloning ds-DNA 

into a vector containing a 13-base sequence of the M l3 phage universal primer 

complimentary to the 5' side of a multiple cloning site. The universal fragment 

is used to initiate synthesis of a single strand of DNA [- strand] from the 

template by the klenow fragment of E.coli polymerase I. Such probes may 

have a specific activity of 108 d.p.m. and do not require denaturation prior to 

hybridization. Probes for the detection of avocado sunblotch viroids were 

prepared from single-strand phage M13 DNA clones (Barker et al., 1985).

A similar approach was used by Flores (1986) in the production of cDNA 

probes complimentary to the single stranded RNA virus CEV. In the latter 

study, denaturation of the target RNA increased sensitivity of detection 

significantly. Holben et al. (1988) produced single stranded DNA probes 

complimentary to the nptll gene for the detection of Bradyrhizobium 

japonicum in soil. Probes were produced by standard cloning procedures in 

M l3 and labelled by primer extension in presence of radiolabelled dNTPs. To 

maximise the specific activity of probes, all four dNTPs were 32P labelled.

RNA or ribo probes have been prepared by cloning the DNA of interest into a 

vector with an SP6 promoter (from Salmonella phage SP6) and using SP6 

RNA polymerase for the production of RNA transcripts from the vector 

(Sayler & Layton, 1990). Transcription proceeds in the presence of dNTPs 

one or more of which are radiolabelled. This approach has been used for the 

production of RNA probes for the detection of PSTV (Lakshman et al., 1986). 

Ribonucleotide and deoxyribonucleotide duplex structures differ in relative 

stability for the same sequence, such that they decrease in stability in the 

following order: RNA-RNA > RNA-DNA > DNA-DNA. For short RNA-
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DNA duplex structures the difference in stability appears negligible, however 

the use of long RNA transcripts as probes could contribute significantly to an 

increase in the efficiency of hybridization (Stahl & Amann 1991). RNA and 

ss-DNA probes have been found to be more sensitive than ds-DNA probes, 

with the sensitivity of asymmetric RNA probes exceeding that of DNA probes 

by a factor of 10 (Melton et al., 1984). Despite their reduced sensitivity, 

double-stranded DNA probes have been used most frequently for the detection 

of environmentally important microbes (Table 17), this may be due to the 

additional cloning steps required for the production of ss-DNA and RNA 

probes (Sayler & Layton, 1990).

5.1.7.4 Oligonucleotide probes

Oligonucleotide probes may be synthesised chemically and comprise short 

nucleotide sequences (usually less than 40 bp). As such they are highly 

specific for target sequences with a single miss-match drastically affecting 

stringency.

In addition to their specificity, oligonucleotide probes targeted against rRNA 

genes may be highly sensitive because of the high concentration of ribosomal 

sequences in the bacterial cell (Giovannoni et al., 1988a). Substantial 

sequencing of the 16S rRNA molecule for the purposes of the elucidation of 

phylogenetic relationships, allows the design and construction of highly 

specific probes (Olsen et al., 1986; Pace et al., 1986). A prerequisite of a well 

characterised genetic system either as an introduced sequence such as a 

reporter gene or via available sequence data for e.g. the 16S rRNA molecule is 

required for the design and application of specific oligonucleotide probes.

5.1.7.5 5'-End labelling with P32
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Oligonucleotides, restriction fragments and fragmented RNA may be end- 

labelled with P32. T4 polynucleotidekinase catalyses the transfer of a terminal 

phosphate group from the gamma-P32 ATP to the 5'-hydroxyl group of RNA 

or DNA. The main limitation of this labelling strategy being the incorporation 

of a single nucleotide per strand of RNA or DNA. Consequently the specific 

activity of probes prepared in this way may not be as high as those produced 

using alternative strategies (Stahl & Amman, 1991). Oligonucleotides may 

also be used as primers for polymerase chain reaction (PCR) DNA 

amplification (Saiki et al., 1988).

5.1.8 Polymerase chain reaction (PCR) generated probes

The PCR method can be used to produce unlimited amounts of double- 

stranded DNA starting from very small amounts of DNA or RNA (if cDNA is 

synthesised from the RNA using reverse transcriptase prior to amplification). 

Label can be incorporated during the PCR reaction by the inclusion of labelled 

dNTPs into the reaction mixture or following amplification by any of the 

conventional labelling strategies such as nick translation, primer extension and 

end-labelling (Stahl & Amman, 1991). Recorbet et al. (1992) synthesised 

probes using PCR complimentary to the nptll reporter gene that had been 

introduced into marked E.coli strains. The PCR generated probe was labelled 

by primer extension and used to investigate the genetic basis of kanamycin 

resistance amongst soil isolates using colony blot hybridization.

5.1.9 Non-radioactive detection

The labelling strategies considered above involve the incorporation of 

radiolabelled nucleotides into probes. However, interest in the avoidance of 

these expensive and potentially dangerous radiochemicals has lead to the 

development of a number of non-radioactive alternatives. Most non­
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radioactive methods involve the indirect detection of the target DNA via 

enzyme-linked antibodies. Initially haptens are incorporated into the DNA 

probes either chemically or enzymatically. After hybridization, enzyme-linked 

antibodies are added and a colorimetric assay is used to detect the enzymes 

attached to the probe : target sandwich. The alkaline phosphatase and 

horseradish peroxidase enzymes have been used as they allow detection at low 

levels. Chemiluminescent methods have been developed as an alternative to 

colorimetric enzyme assays (Scholter et al., 1992).

The original hapten molecules used in these labelling reactions were biotin 

molecules. Biotin molecules may be incorporated into the DNA molecule via 

nick translation and the use of biotin-dUTP or via light activation of 

photobiotin. The glycoproteins avidin and streptavidin have a high affinity for 

biotin and bind to the biotin labelled probes. Avidin or streptavidin antibodies 

coated with the enzymes alkaline phosphatase or horse radish peroxidase can 

be used to assay the amount of DNA hybridized. A number of workers have 

applied non-radioactively labelled probes to the analysis of environmental 

(Habili et al., 1987) and food samples (Dovey & Towner, 1989). Labels that 

have been employed include biotin, fluorochromes, chemiluminescent 

moieties and enzymes (Urdea et al., 1988).

A number of approaches for amplifying the signal generated from non- 

radioactively labelled probes, include the attachment of multiple labels to each 

probe and the design and development of labels with stronger signals 

(Fahrlander, 1988).

5.1.10 PCR

An alternative strategy for improving the sensitivity of detection of nucleic
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acid sequences is the amplification of the target sequence by PCR. The 

method involves repetitive cycling between high temperatures to melt and 

denature DNA duplexes, followed a relatively low temperature to allow the 

anealing of primers with the complimentary region of the target DNA, and an 

intermediate temperature for primer extension. The temperature cycling is 

normally attained through the use of a commercially available thermocycler. 

Initial PCR experiments used the Klenow fragment of the E.coli DNA 

polymerase I to catalyse the extension of the annealed primers (Saiki et al., 

1988). The Klenow fragment is irreversibly denatured at the high 

temperatures required for denaturation of the DNA duplex approx. 94°C 

necessitating the addition of fresh enzyme with each cycle. The substitution of 

the thermostable DNA polymerase isolated from Thermus aquaticus (Taq 

polymerase) obviates these problems. Thermus aquaticus is a thermophilic 

eubacterium that may be routinely isolated from hotsprings. Taq polymerase 

exhibits unusually high processing activity however, the enzyme does not 

possess a 3' exonuclease activity which has been associated with the proof 

reading functions in E.coli (Giovanonni, 1991). This lack of 3'-exonuclease 

activity may contribute to the low level of premature chain terminations that 

have been attributed to the enzyme pausing at secondary structure. 

Consequently, this may result in a relatively high rate of misincorporated 

nucleotides.

The specificity of the oligonucleotide primers (20 to 30 nucleotides) is 

important, since failure of a primer to hybridize with the DNA template will 

result in no PCR product. In addition, hybridization conditions should be 

optimised to promote specific binding, since DNA oligomers will hybridize 

with sites containing mismatches under non-stringent conditions and result in 

non-specific amplifications.
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Increased sensitivity of detection results from the production of large amounts 

of target sequence and therefore an increase in the target: non-target sequence 

ratio. PCR provides two levels of stringency, primer anealing and probe 

hybridization.

This latter point has allowed the development of several new techniques with 

the potential for the rapid screening of environmental samples. Primers may 

be labelled with biotin, horseradish peroxidase or fluorescent dyes, so that 

following amplification each copy of the amplified product has the specific 

label (Chehab & Kan, 1989; Sauvaigo et al., 1990).

5.1.10.1 The application of PCR to the detection of microorganisms in 

environmental samples

Without amplification gene probes have been reported to detect DNA in the 

range of 103 to 104 cells per gram soil (Holben et al., 1988; Steffan & Atlas, 

1988). Using PCR technology Steffan & Atlas (1988) were able to detect as 

few as a 100 Pseudomonas cepacia cells per 100 g sediment against a 

background of 1011 non-target microorganisms, representing a 3 fold increase 

in sensitivity upon hybridization of unamplified DNA.

Chaudhry et al. (1989) also used PCR as a means for detecting genetically 

engineered microorganisms. E.coli cells were transformed with 2,4- 

dichlorophenoxyacetic acid-degradative plasmids harbouring an insert of 0.3 

kb eukaryotic DNA derived from napier grass. The napier grass insert was 

selected as no hybridization was found to occur with it from DNA from a 

number of microorganisms screened as well as DNA isolated from microbial 

communities from soil, sewage and lake water. Plasmid bearing E.coli cells
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seeded into lake water and sewage were monitored using plate counts in 

addition to PCR amplification and probing. PCR allowed detection of the 

seeded inoculant after 10 to 14 days incubation, whereas the plate count only 

allowed detection up to 6 and 10 days incubation.

Pillai et al. (1991) combine a cell extraction procedure based on the use of 

sucrose density gradients with two rounds of PCR amplification for the 

detection of bacterial sequences in soil. The sensitivity of detection for E.coli 

cells bearing introduced Tn5 (nptll) sequences was determined to be 1 to 10 

c.f.u. g 1 soil. Detection being an order of magnitude higher for the sandy soil 

as opposed to the clay loam soil used in this study.

In contrast, Tsai & Olson (1992) combine direct DNA extraction methods with 

PCR amplification for the detection of E.coli 16S rRNA genes. They are able 

to obtain detection limits of 3 cells g-1 (calculated on the basis that there are 

approximately 7 rRNA genes cell-1) this is equivalent to 21 gene copies g-1 

soil. Inhibitory effects of humic acid contaminants on the polymerase chain 

reaction resulted in less efficient amplification of nucleic acids from soil 

samples when compared to pure bacterial cultures. Inhibitory effects of humic 

acids in contaminated samples were overcome by a 1/ 32 dilution of the DNA 

extract.

5.1.10.2 The application of PCR technology to the detection of indicator 

and plant pathogenic microorganisms

Coliform bacteria are used for monitoring the biological safety of water 

supplies. Their detectable presence in water samples is considered to be 

indicative of potential faecal contamination, and hence the possible presence 

of enteric pathogens. Bej et al. (1990) used PCR amplification and
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hybridization to detect the presence of coliform bacteria in water samples. 

Amplification of the lacZ region of the E.coli genome allowed amplification of 

E.coli and other coliform bacteria, including Shigella spp. but not Salmonella, 

whereas amplification of the lamB region allowed detection of certain coliform 

spp, but including Salmonella and Shigella spp. Using amplification and 

hybridization directed at both gene sequences the authors were able to detect 

as little as 1 to 10 fg of genomic E.coli DNA and as few as 1 to 5 viable E.coli 

cells in water.

Brauns et al. (1991) have employed PCR technology for the detection of 

culturable and viable nonculturable Vibrio vulnificus cells, a human pathogen 

implicated in primary septicemia. The organism is indigenous to estuarine 

environments and primary septicemia generally results from the ingestion of 

raw oysters harbouring the bacterium. Traditional monitoring techniques only 

allow detection of the bacterium during the warm summer months when the 

bacterium is in a culturable state. Using a region of the cytotoxin-hemolysin 

gene from V. vulnificus identified to be specific to this strain, the authors were 

able to detect as little as 72 pg of DNA from culturable cells and 31 ng of 

DNA from nonculturable cells.

The cereal disease take-all has been traditionally diagnosed visually or by 

culturing fungi from diseased plants. However, unambiguous visual diagnosis 

is complicated by the fact that many of the disease symptoms may also be 

attributed to other diseases or environmental factors. Furthermore the 

selective medium used to culture the strain has been found to be inhibitory to 

G.graminis.

Schesser et al. (1991) have used PCR amplification for the detection of the
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take-all fungus, Gaeumannomyces graminis, in infected wheat seedlings. 

Primers were designed against a 4.3 kb DNA fragment cloned from the 

mitochondrial genome of G.graminis var. tritici. Two rounds of PCR 

amplification were used, employing nested primers in the second round. The 

application of two rounds of PCR and the use of nested primers (primers 

located within the amplified region) promoted highly sensitive and specific 

amplification avoiding the production of non-specific amplification products.

5.1.10.3 The application of PCR for the cloning and sequencing of nucleic 

acids

Historically genes have been cloned from organisms of interest by the 

generation of a gene library in either a lambda phage or cosmid vector 

(Maniatis et al., 1982) followed by screening of the library for a desired 

phenotype or genotype. However, the development of PCR technology allows 

the amplification of specific regions of DNA for sequencing, obviating the 

need to produce gene libraries, that require exhaustive screening.

Two cloning strategies have been utilised with amplified PCR products, the 

first referred to as 'forced cloning'. This approach requires the design of 

primers incorporating restriction sites, that will be introduced into the terminal 

ends of the amplified product. The advantage of forced cloning techniques 

being that the vector having been cleaved at two different polylinker restriction 

sites cannot religate without the insertion of the amplified product. Thus, a 

large proportion of transformants contain cloned PCR DNA. The 

disadvantage being that the amplified genes may be cleaved at internal 

restriction sites and furthermore restriction at terminal sites is frequently less 

efficient than restriction at internal sites (Giovannoni, 1991).
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Wimpee et al. (1991) used PCR employing forced cloning techniques for the 

development of species specific probes for different groups of luminous 

marine bacteria. Primers were designed to be complimentary to two conserved 

regions of the luxA gene. The primers were constructed to contain different 

restriction sites, facilitating the cloning of the amplified products into the 

bacteriophage M l3 for sequencing. The specificity and hence cross reactivity 

of the products of amplification were tested against a range of luminescent 

bacterial species. Under conditions of high stringency three probes appeared 

specific for three different species. Initial results also demonstrated the 

potential for a mixed lux probe able to detect all luminescent species under 

non-stringent conditions.

An alternative strategy for the cloning of PCR products is the application of 

blunt-ended ligation techniques. DNA molecules generated by PCR have 

synthetic 5' termini, lacking 5' phosphates. Hence if ligated into a blunt ended 

vector they generate circular molecules with a single nick in each strand. 

These molecules are highly transformable.

5.1.10.4 Degenerate primers

Degeneracy in the genetic triplet code, means that the exact DNA sequence of 

a protein cannot be inferred from its amino acid sequence. However, this may 

be overcome in approaches involving the application of PCR for cloning and 

sequencing by employing degenerate primers. Degenerate primers can be 

produced to cover every single nucleic acid combination for a defined amino 

acid sequence. The mixture of primers is then used for amplification of 

particular sequences. Optimal results are achieved with primers of less than or 

equal to 20kb and for regions with relatively low degeneracy ie. < 64-fold
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(Steffan & Atlas, 1991).

Degenerate PCR procedures have been applied to sequence analysis of DNA 

from environmental samples. Zehr & McReynolds (1989) have used 

degenerate primers to amplify nitrogen fixation genes (nif) from the 

cyanobacterium Trichodesium thiebautii, an organism that has never been 

maintained in vitro. The authors analysed known amino acid sequence data 

for nif gene products of other nitrogen fixing microorganisms and identified 

regions of highly conserved sequence. They selected regions of less than 200- 

fold degeneracy and designed mixed primers (17 mers) to cover all possible 

combinations. DNA recovered from T.thiebautii bundles was isolated and 

subjected to PCR with a degenerate primer mixture of 126 and 96 oligomers 

for the up and downstream primers, respectively. The products of PCR were 

introduced into M l3 cloning vectors for consequent sequence analysis via 

blunt-ended ligation. Kirstein et al. (1991) extended this work, by cloning and 

sequencing regions of other marine, nitrogen-fixing microorganisms in an 

attempt to elucidate their taxonomic relatedness. The study included a 

heterotrophic isolate from the root/rhizome of the seagrass Ruppia maritima, 

and the heterocystous fresh water cyanobacterium Anabena oscillaroides.

The wealth of sequence data available for the 5S and 16S rRNA genes, has 

allowed selection of oligonucleotide primer sites for the amplification of 

desired rRNA genes. Giovannoni et al. (1990) have exploited the available 

data, in their design of primers for the sequencing and characterization of 

Sargasso sea bacterioplankton rRNA genes.

5.1.11 RNA extraction from soil

An alternative target molecule to DNA for molecular detection and
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measurement of community diversity are the ribosomal RNA molecules. 

Targeting RNA as opposed to DNA offers increased sensitivity over DNA as a 

result of the vast number of ribosomes and hence ribosomal genes per cell. 

This number has been estimated to be up to 10,000 per cell (Olsen et al.,

1986).

A number of methods have been reported for the extraction of rRNA species 

from soil. Hahn et al. (1990a) were able to recover rRNA from a sandy loam 

and peat soil without detectable humic acid contamination, by lysing the cells 

in situ in a 7.5 M guanidine hydrochloride homogenisation solution using 

sonication. The supernatant was recovered by centrifugation and extracted 

with phenol and chloroform before precipitation with ethanol. Any residual 

humic acid contamination was removed by washing the RNA bound nylon 

filters at high temperatures, prior to hybridization.

An alternative strategy has been reported for the rapid extraction of mRNA 

(Tsai et al., 1991). This procedure also involves the direct extraction of the 

nucleic acids from soil, as the cells are lysed in situ by vigorous shaking in a 4 

M guanidine thiocyanate solution containing sarkosyl and mercaptoethanol. 

The pH of the nucleic acid solution was reduced to 4.0 and the solution 

extracted with phenol and chloroform before precipitation of the RNA with 

isopropanol. The method yields a 60% recovery of RNA from inoculants 

seeded into soil. Humic acid contamination occurred in soils and sediments 

with a high-cation-exchange-capacity.

5.1.12 Analysis o f microbial communities using rRNA molecules.

Of the three RNA species present in cells, the 16S and 23S subunits have 

emerged as the most useful molecules for phylogenetic studies. This has been
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as a result of their larger size and higher information content. Most of the 

studies have focused on the 16S rRNA molecule as a larger data base of 

sequence information has been accumulated for this subunit.

5.1.12.1 The application of phylogenetic probes to the analysis of 

microbial communities

Alignment and comparison of 16S rRNA sequences has revealed sequence 

domains that are unique to particular taxa (Giovanonni et al., 1988a). 16S 

targeted oligonucleotide probes complimentary to taxon-specific sequences 

have been used in the analysis of microbial communities (Stahl et a i, 1988). 

The probes have been applied both to the detection and quantification of target 

organisms within environmental samples by the extraction and probing of 

recovered nucleic acids (Stahl et al., 1988) and also for the identification of 

fixed cells in mixed cultures via in situ hybridization and fluorescent 

microscopy (Giovanonni etal., 1988a).

5.1.12.1.1 Hybridization

Stahl et al. (1988) used species and group specific 16S rRNA targeted 

oligonucleotide probes for the enumeration and monitoring of bovine rumen 

bacterial populations. Using dot-blot hybridization with densitométrie 

analysis, populations of Bacteroides succinogens and Lachnospira multiparus 

were monitored in ruminal samples, prior to, during and after perturbation of 

the ecosystem by the addition of an ionophore antibiotic, monensin. Monensin 

has been routinely incorporated into cattle feeds to promote their efficient 

utilisation. However, whether the increased efficiency in the conversion of 

plant-based feeds into useful compounds to the animal was attributable to a 

change in ruminal populations or to a change in their metabolism was 

unknown. Three 16S rRNA targeted oligonucleotide probes were used to
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monitor the ruminal bacterial population dynamics: the 'signature' probe 

hybridized with the RNA from all but one strain of B.succinogenes, the other 

probes identified either of two natural groups within the ruminal assemblage. 

Although the two genetically defined groups of B.succinogenes did respond 

markedly and differently to the addition of monensin, population changes were 

transient and were soon restored to their premonensin levels. The bacterial 

composition appeared well buffered to change by monensin, thus supporting 

the hypothesis that monensin acts primarily by altering the metabolism of a 

relatively stable population.

5.1.12.1.2 In situ hybridization

Giovannoni et al. (1988) identified regions that were kingdom specific for the 

three primary lines of evolutionary descent: the eubacteria, archaebacteria and 

eukaryotes. Oligonucleotide probes were synthesised that were 

complimentary to these diagnostic regions and the specificity of the probes 

was confirmed by dot-blot hybridizations. The authors were able to 

demonstrate the application of the kingdom specific probes (labelled with 35S 

phosphothionate) in the identification of whole glutaraldehyde-fixed cells. 

The probes also appeared phylogenetic in these in situ hybridizations, and cells 

of a particular kingdom could be identified from mixed cultures using 

microautoradiography. DeLong et al. (1989) applied fluorescently labelled 

phylogenetic 16S rRNA targeted probes in the identification of formaldehyde 

fixed cells. The abundance of ribosomes (104 to 10s per cell) allowed the 

fixed cells to be readily visualised using fluorescent microscopy. The 

simultaneous application of multiple probes labelled with different fluorescent 

dyes permitted the identification of different cell types within the same 

microscopic field. Fluorescently labelled phylogenetic probes were developed 

to discriminate between the three kingdoms. In addition the potential for the
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technique to distinguish between the two closely related bacteria, Proteus 

vulgari and the son-killer bacterium was illustrated. Finally quantitative 

microflourimetry demonstrated that the amount of rRNA-specific probe that 

binds to E.coli varies with ribosome content and hence is indicative of activity 

(DeLong et al., 1989).

5.1.12.2 rRNA sequence analysis for the analysis of microbial 

communities

RNA isolated from environmental samples may serve as a template for 

synthetic primers and direct sequencing reactions utilising reverse 

transcriptase. This approach was taken by Stahl et al. (1985) in the 

characterization of 5S rRNA gene sequences from a yellow hot spring 

microbial community. This approach was valuable in demonstrating the 

microbial complexity of the spring since an archaebacterium species affiliated 

to the sulphur metabolising branch and two eubacterial species that appeared 

distantly related to Thermus spp. comprised 50% of the 5S rRNA sequences 

analysed.

An alternative strategy to the direct sequencing of rRNA sequences has been 

the analysis of sequences via the cloning of rRNA genes (Weller et al., 1991). 

Weller et al. (1991) initially isolated ribosomes from environmental samples. 

Ribosomal RNA was then recovered from the small subunit of the ribosome 

and randomly primed with dNTPs. This approach eliminated the requirement 

for primers anealing to the universally conserved sequences and hence the 

dependence on the use of conserved sequences which may bias the recovery of 

16S rRNA sequence data. This approach has also been shown to yield longer 

sequences (Weller et al., 1991). This method was applied to the analysis of 

16S rRNA sequences from a cyanobacterial mat located in Octopus spring.
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The study revealed the presence of 3 16S rRNA sequences from three formerly 

uncultured community members. One sequence was indicative of a 

cyanobacterial strain, another a green non sulphur bacterium and the third was 

possibly a novel phylogenetic type. These findings have been confirmed by 

others who also were able to identify microbial diversity previously 

undescribed in marine environments (Giovannoni et al. 1990; Ward et al., 

1990).

Amann et al. (1991) combined the recovery and analysis of rRNA sequence 

information via polymerase chain reaction procedures with the development of 

specific 16S rRNA targeted oligonucleotide probes for use in in situ 

hybridizations. This approach has been taken to study the Holospora bacteria, 

a highly infectious nuclear endosymbiont of cilliates. 16S rRNA sequence 

analysis was used to determine the phylogenetic position of Holospora obtusa 

within the Proteobacteria. The sequence information was then used for the 

design of probes for the detection and differentiation of Holospora cells within 

the nuclei of Paracmecium species. The fluorescently labelled probes allowed 

direct visual identification of the bacteria in situ and demonstrated colonisation 

of food vacuoles as well as the macro- and micronuclei of infected paramecia 

by the endosymbionts . In addition in situ hybridization provided confirmation 

that the amplified and cloned sequences originated from the endonuclear 

symbionts and were not artefacts from contaminating bacteria used for feeding 

the ciliates.

5.2 Alms

5.2.1 The primary aim was the development of a method for the recovery of 

intact ribosomal RNA from soil that is amenable to hybridization with 16S 

rRNA targeted oligonucleotide probes. Reproducible extraction of nucleic
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acids from environmental substrates would allow quantification (via the 

measurement of radioactive disintegrations or via the analysis of 

autoradiographs using densitométrie analysis) and enumeration of the 

inoculant under investigation by the calibration of hybridization signals to 

known amounts of spiked mycelium and spores in soil.

5.2.2 A secondary consideration was to exploit differences in the susceptibility 

of the streptomycete spore and mycelial components to lysis and refine the 

methodology for the selective and differential recovery of RNA from spores 

and mycelium. The development of methodology, selective for different 

components of the microorganisms life-cycle, offers the potential to 

investigate the activity and ecology of the inoculant in the natural 

environment.

5.2.3 To establish the limits of detection for spores and mycelium within soil. 

The data generated from any method of monitoring is only meaningful within 

the context of detection range for a particular organism in a particular 

environmental sample.

5.2.4 To compare the sensitivity of detection by probing with a 16S rRNA 

targeted oligonucleotide probe to RNA and DNA recovered from soil. The 

abundance of RNA molecules within the cell, estimated to be 104 to 10s means 

that ribosomal-bome sequences are naturally amplified within the cell and thus 

more amenable to detection in environmental samples. However, this 

advantage may be counter balanced by the additional care required to recover 

intrinsically less stable RNA as opposed to DNA molecules.
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5.3. Results

All method development work involved the use of soil (wetted to 15% 

moisture content w/w) sterilised by two rounds of autoclaving and incubation 

then spiked with known amounts of wet weight mycelium or a specific number 

of spores. Although difficulties arise in the enumeration of mycelial 

microorganisms, for the purposes of method development the following loose 

correlation was used in the conversion of wet weight mycelium into cells, 1 

mg wet weight mycelium releases 109 protoplasts (D. Hahn pers. comm.).

5.3.1 A comparison of methods for the extraction of rRNA from soil.

The first experiment concerned the comparison of the guanidine hydrochloride 

method (Hahn et al. 1990a, Method 1, Section 2.24.1) with a lithium chloride/ 

GOS extraction [(Hughes & Galau, 1988) Section 2.24.2].

Ribosomal RNA was recovered from Streptomyces lividans TK24 mycelial 

spiked soils and pure cultures using both methods. Two modified protocols 

based on these methods were also included in the comparison. In one SDS 

was added to the guanidine hydrochloride homogenisation buffer to a final 

concentration of 0.5%. The presence of SDS has been reported to improve the 

purity of the initial RNA precipitate, its addition after the initial 

homogenisation avoiding problems of excessive foaming. In the second, the 

cells were lysed in the guanidine hydrochloride homogenisation buffer, the 

supernatants recovered and precipitated. The recovered pellet was then taken 

up in the GOS homogenisation buffer and the RNA recovered according to 

method 2. The four approaches to the recovery of RNA are illustrated in a 

scheme in Fig. 24. E.coli pure cultures and spiked soils were used as positive 

controls and uninoculated soil as a negative control. Lysis of the mycelium 

was achieved by sonication at 0°C for three minutes.
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Fig. 24 Isolation of rRNA from soil using 4 methods.

4 approaches to the isolation of rRNA from pure cultures and soil were 

compared, 2 were based on the Guanidine-HCl method (Hahn et al., 1990a) 

and 2 on a procedure that was developed for the extraction of RNA from 

cotton plants (Hughes & Galau, 1988). The soil was a heavy clay.

Key to abbreviations:

ETOH Ethanol

Gos Homogenisation buffer (Hughes & Galau, 1988)

HC1 Hydrochloric acid

KaC Potassium acetate

P/C Phenol Chloroform

SDS Sodium dodecyl sulphate

s/n Supernatant

vol Volume(s)

/

- 241 -

Figure 24

Isolation of rRNA using 4 methods

1 Guanidine - HC1 2 Guanidine - HC1 - SDS 3 GOS 4 Guanidine - HC1 / GOS

Sonicate 3' 
continuously

Spin, recover s/n

Add 2Vi x vol ETOH 
-70°C 20-60'

P/C extract
1) 800pl P/C
2) 400pl P/C

I
Chloroform extract 

1 *Precipitate RNA 
2 Vi x 100% ETOH 

-70°C 20-60'

70% JrOH wash

i
20pl TE

Sonicate 3' 
continuously

Add 1/20 vol 
10% SDS vortex

1
Spin, recover s/n

Sonicate 3' 
continuously

Sonicate in 
Guanidine 3'

Spin, recover s/n

I
Add 2Vi x vol ETOH 

-70°C 20-60'

Resuspend pellet 
in homogenisation 

buffer (GOS)

Add 1/3 vol 8.5M KaC 
pH 6.5 .

*
Ice, 15'

*
Spin 5000g 20'

Recover s/n, add 1/9 
vol 3.3M NaAc, pH 6.5 
40.5 vol Isopropanol



Only the unmodified GOS method resulted in reasonable RNA preparations 

from soil. The other three protocols produced faint smears that were barely 

discernible on a 1.2% agarose gel. RNA recovery from pure cultures was 

reasonable for all the methods except where guanidine homogenisation 

proceeded extraction with method 2 (Hughes & Galau, 1988). Yields of RNA 

from pure cultures did appear to be greater by gel electrophoresis analysis 

from the unmodified GOS/ lithium chloride method.

Hence further work focused on the application of the RNA extraction method 

described by Hughes & Galau (1988) to the recovery of RNA from soil.

5.3.2 The differential extraction of rRNA from spores and mycelium

Streptomycete spores are highly resistant to disruption and lysis. This is in 

contrast to the mycelial growth form that is readily lysed by treatment with 

lysozyme or methods of physical disruption, including sonication. Since 

streptomycetes are characterised by a life-cycle with two distinct growth 

forms, it is possible to monitor the activity of the inoculants in soil by 

estimating the relative proportions of spore and mycelium inoculum in situ. 

This approach was taken by Herron & Wellington (1990) in their development 

of methodology for the differential extraction of spores and mycelium from 

soil. Differential methods of lysis for the two components of the microbes 

life-cycle have been exploited by Cresswell et al. (1991) for the selective 

extraction of plasmid DNA from spores and mycelium from soil. In the latter 

approach DNA was extracted from spores using 0.1 mm diameter glass beads 

and a Braun homogeniser, in contrast 70°C heat and SDS were combined to 

lyse mycelium in soil.

5.3.2.1 Optimal conditions for the physical disruption of spores
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Unfortunately, a Braun homogeniser was not available

in Wageningen, NL to carry out this experimental work, hence preliminary 

investigations were made to establish alternative conditions for the lysis of 

spores using different ratios of 0.1 mm diameter glass beads and periods of 

sonication.

A Streptomyces lividans spore suspension (enumerated by the viable plating) 

was resuspended in GOS homogenisation buffer and aliquoted into microfuge 

tubes in 400 (Jl amounts and equivalent to 5 times 107 spores per tube.

Tubes were treated as follows:

1.0.4 g glass beads and 3 minutes continuous sonication

2. 0.9 g glass beads and 3 minutes continuous sonication

3. 0.4 g glass beads and 2 times 3 mins continuous sonication

4. 0.9 g glass beads and 2 times 3 mins continuous sonication

5. 0.4 g glass beads and 3 times 3 mins continuous sonication

6. 0.9 g glass beads and 3 times 3 mins continuous sonication

Ordinarily the efficiency of cell lysis would be monitored by light microscopy, 

before, during and after cell disruption. However, the small size of 

streptomycete spores approx. 1 pm in diameter make them barely discernible 

under the light microscope. Hence for this investigation the efficiency of lysis 

was assessed in terms of the viability of spores after treatment and with regard 

to the yield of recovered rRNA.

The ribosomal RNA was prepared according to Hughes & Galau (1988) and 

was analysed by gel electrophoresis and dot-blot hybridization by probing with 

the eubacterial probe, primer 1115. Very little rRNA could be visualised from 

the spores on an agarose gel other than a faint smear detectable from treatment 

4 , however RNA was detectable by dot blot hybridization (Fig. 25).
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Table 18 & Fig. 25 Optimisation of conditions for the lysis of 

streptomycete spores

Various ratios of 0.1 mm glass beads to sample buffer and different lengths of 

high frequency sonication were experimented with to obtain lysis. Lysis was 

assessed in two ways, 1. the viability of the cells after the lysis treatment 

(Table 18) and 2. rRNA recovery after lysis (Fig. 25).

Table 18

Optimal conditions of lysis, established from the viability data corresponded to 

a viable count of no c.f.u ml-1 supernatant or g-1 cell debris pellet. No viable 

colony forming units were obtained with a 2.5 : 1 ratio of beads to 

homogenisation buffer and 3 times 3 minutes sonication. This was taken to be 

indicative of efficient lysis.

Fig. 25

Dot blot hybridization of rRNA recovered from S.lividans, TK24 spores using 

lysis treatments: A- 1:1 beads, 1 X 3 mins sonication; B- 2.5:1 beads, 1 X 3

mins sonication; C- 1:1 beads, 2 X 3  mins sonication; D- 2.5:1 beads, 2 X 3

mins sonication; E- 1:1 beads, 3 X 3  mins sonication; F- 2.5:1 beads, 3 X 3

mins sonication. Maximum recovery of rRNA was achieved with treatment D

(2.5:1 beads, 2 X 3  mins sonication), the corresponding viable counts were 4 

and 2 c.f.u. ml-1 and g-1 respectively. Increased sonication reduced viability 

marginally and contributed to increased rRNA degradation, resulting in a 

smaller hybridization signal.

/
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Table 18: Viability data from experiment to determine 

optimal conditions for the lysis of spores

Treatment c.f.u.

s/n 1 times 3' sonication 0.4 g beads >10^

pellet 1 times 3' sonication 0.4 g beads 1500

s/n 1 times 3' sonication 0.9 g beads 117

pellet 1 times 3' sonication 0.9 g beads 353

s/n 2 times 3' sonication 0.4 g beads 35

pellet 2 times 3’ sonication 0.4 g beads 16

s/n 2 times 3' sonication 0.9 g beads 4

pellet 2 times 3' sonication 0.9 g beads 2

s/n 3 times 3' sonication 0.4 g beads 45

pellet 3 times 3' sonication 0.4 g beads 21

s/n 3 times 3' sonication 0.9 g beads 0

pellet 3 times 3' sonication 0.9 g beads 0

Key: s/n = supernatant 

Figure 25
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The cell debris pellet was washed by resuspending in 400 |il of liquid R5 

broth, the debris was spun down again and taken up in fresh R5 medium. 

Samples from the supernatant and pellet were plated out onto solid R5 

medium. The number of colony forming units derived from a 100 (il aliquot 

are given in Table 18. and are a measure of the efficiency of lysis.

In conclusion, the blot and viability counts indicated that a 2.5:1 ratio of 0.1 

mm diameter glass beads to buffer produced more efficient lysis than a 1:1 

ratio. The disruption of spores increased with longer exposures to sonication, 

however, the prolonged period of 3 times 3 minute bursts of sonication 

promoted rRNA degradation balancing out the more efficient spore lysis 

observed in the viability count data. Hence optimal conditions for spore 

disruption and recovery of rRNA were considered to be a 2.5 : 1 ratio of beads 

to buffer and 2 times 3 minute rounds of sonication.

5.3.2.2 Differential extraction of rRNA from spores and mycelium

Using a three minute sonication treatment in the absence of beads together 

with the conditions established for the lysis of streptomycete spores (2 times 3 

minutes on sonication in the presence of a 2.5 : 1 ratio of beads) attempts were 

made to differentially extract rRNA from spores and mycelium.

Duplicate 3 g samples of soil (using a soil with a high clay content, originating 

from Germany) were spiked with the following : 1) a S.lividans TK24 spore 

suspension, 2) a TK24 mycelial suspension, 3) TK24 spores and mycelium and 

4) uninoculated negative control.

The number of spores inoculated per 3 g sample was estimated to be 1.2 times 

107 and 100 mg m l'1 wet weight mycelium per 3 g soil sample.
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The samples were treated with 3 minutes sonication for the lysis of mycelium 

in situ, followed by extraction and recovery of the RNA. Glass beads were 

then added to the soil to produce a 2.5 : 1 ratio and the samples were 

sonicated for 2 rounds o f three minutes to bring about lysis of the spores. 

Ribosomal RNA extracts from all samples were compared by gel 

electrophoresis.

From the gel it was apparent that insufficient RNA was recovered from the 

quantity of spores used in the experiment to be seen on the gel. Hence only 

ribosomal RNA from mycelium was visualised on the gel. Secondly, only a 

fraction of the rRNA was recovered after the initial homogenisation and 

extraction. Furthermore, more mycelial borne RNA was actually recovered 

after the second homogenisation treatment i.e. sonication with beads and 

further extraction. Several extractions would therefore be required to recover 

all the rRNA released from the mycelium and before the soil could be treated 

with bead beating to recover the spore rRNA. The finding that more mycelial 

rRNA was recovered after bead-beating, is consistent with the findings of 

Cresswell et al. (1991) that the recovery of mycelial DNA was more efficient 

by bead-beating with a Braun homogeniser than lysis by SDS and heat. The

bead-beating action serves to break down the soil matrix which may explain in
*

part, the more efficient extraction obtained with this procedure.

Thus, the availability o f methodology for the differential lysis of spores and 

mycelium appeared to be only the first step in the development of a protocol 

for their differential extraction. Recovering all the mycelial RNA from soil, 

especially those high in clay colloids with a high affinity for nucleic acids was 

particularly difficult. Furthermore since spores may have small amounts of
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rRNA than mycelial cells (Quiros et al., 1989) only a small fraction of residual 

mycelial RNA would be required to distort the determinations of the relative 

abundances of spore and mycelial borne nucleic acids.

5.3.3 An investigation into the frequency and efficiency of washing for the 

recovery of RNA from soil

This experiment was designed to establish how efficient washing the soil with 

the homogenisation buffer was in the recovery of RNA from the mixture of 

soil and lysed mycelium. Two soils were compared the soil used in the above 

experiment with a high clay content and a soil based potting compost, with a 

high organic carbon content.

Two volumes of homogenisation buffer were compared, the 3 ml volume that 

was routinely used in rRNA extractions and a 6 ml volume. Soils were 

extracted 1, 2, 3 and 4 times with either volume of sample buffer, the 

supernatants were decanted off after centrifugation to bring down the soil and 

combined after each extraction. The nucleic acids were then precipitated and 

the amount of RNA recovered compared on a 1.2% agarose gel.

Our findings indicated that with a 3 ml extraction volume from John Innes 

potting compost, that the majority of RNA was recovered in the first 

extraction, however RNA did also accumulate with each subsequent 

extraction. In addition, the more extractions used the greater the problem of 

humic acid contamination. Humic acids bind with ethidium bromide and can 

be discerned to run ahead of the RNA on an agarose gel. When a 6 ml volume 

of homogenisation buffer was used for the recovery of RNA from 3 g of soil, 

there was no apparent difference between 1, 2, 3 and 4 extractions in the 

quantity of RNA recovered. However as before, problems of humic acid
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contamination were exaggerated with more than two extractions.

Using both extraction volumes, significantly more RNA was recovered from 

the John Innés potting compost than the German soil. This supports the 

findings of others that soils with a high clay content do absorb nucleic acids 

making their recovery difficult despite repeated extraction (Ogram et al.,

1987). Optimal recovery of RNA from the German, clay soil was achieved 

with either one 6 ml extraction or 2 times 3ml extractions, with further 

extractions not resulting in significantly improved yields of RNA but in 

increased humic acid contamination.

Since humic acid acids can contribute enormous problems in nucleic acid 

analysis by hybridization, two extractions were considered a good compromise 

in obtaining the bulk of the recoverable RNA from soil without extracting too 

many contaminating humic acids. Likewise a 3 ml extraction volume 

appeared more efficient than one of 6 mis. This was probably due to a reduced 

efficiency with larger volumes at the precipitation stage. Hence, the 2 times 3 

ml extraction step described in the method was retained for the recovery of 

RNA from 3 g of soil. The recovered ribosomal RNA was applied to a 

hybridization membrane using a dot-blot manifold and probed with the 

eubacterial probe primer 1115 (Embley et al., 1988). Humic acid 

contamination may affect both the binding of nucleic acids to the hybridization 

membrane and the efficiency of hybridization. Initial hybridizations revealed 

that the RNA samples from this experiment were contaminated with humic 

acids and resulted in very weak hybridization signals. A final extraction of the 

RNA with chloroform saturated with TE buffer, purified the RNA sufficiently 

to obtain strong hybridization signals (Fig. 26).
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Fig. 26 Extraction efficiency and reproducibility of rRNA extraction from 

two soils.

Ribosomal RNA was recovered from duplicate samples of John Innes potting 

compost, A & B and a heavy clay soil, C & D seeded with S.lividans, TK24 

mycelium. I; The RNA that was recovered from soil after one extraction, II; 

RNA recovered and combined from the first two extractions, III; RNA 

recovered and combined from three, IV; the RNA recovered and combined 

from four extractions.

The study indicated that the majority of rRNA was recovered from the first 

extraction. The 2 soils were seeded with equal amounts of mycelium from 

which RNA recovered, however, the clay soil appeared to retain more of the 

rRNA than the compost, resulting in reduced hybridization signals. In addition, 

the extraction of nucleic acids from the John Innes compost appeared more 

reproducible than those from the clay soil.
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In a review of detection methodology, McCormik (1986) illustrates the 

problems facing environmental microbiologists in recovering target sequences 

from soil, as he describes the search and development of improved ways of 

'washing dirt' as a fundamental and necessary step towards increased 

sensitivity in detection and monitoring strategies.

5.3.4 A comparison of the sensitivity of probing RNA and DNA recovered 

from soil with 16S rRNA targeted probes

RNA was recovered according to method 2 (Hughes & Galau, 1988) while 

DNA was recovered according to the methodology of Cresswell et al. (1991). 

Nucleic acids were extracted from John Innes potting compost spiked with 

ISP5078 Streptomyces scabies mycelium (35 mg wet weight mycelium g-1 

soil). Lysis of the mycelium was achieved by beadbeating soil samples for 

both RNA and DNA extraction.

The samples were analysed by gel electrophoresis and dot blot hybridization. 

Dot blots were probed with the |3 probe under stringent conditions. The 

hybridized blot was resolved on a Betascope (Fig. 27). RNA and DNA 

extractions were performed on duplicate soil samples. From the blot it was 

apparent that more rRNA was extracted from one sample than the other, as one 

set of hybridization signals was marginally stronger than the other. These 

differences may be due to the heterogeneous nature of the environmental 

substrate and possible heterogeneity within the inoculum seeded into the soil. 

However, the data does indicate the variation that may arise in the application 

of this methodology to environmental samples.

Recovered nucleic acids from the method of Cresswell et al. (1991) produce 

hybridization signals comparable to those obtained by probing RNA.
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Fig. 27 Comparison of target sequence for 16S oligonucleotide probe 

hybridized with ribosomal RNA and genomic DNA recovered from 

mycelium seeded in soil.

Dot blot hybridization of target nucleic acid recovered from S.lividans 

mycelium spiked into autoclaved John Innes compost.

Hybridization signals correspond to : 1, A 100% rRNA; 1, B 50% rRNA; 1, C 

25% rRNA; 1, D 50% denatured rRNA;

2. A 100% rRNA; 2, B 50% rRNA; 2, C 25% rRNA; 2, D 10% rRNA

3. A 100% DNA; 3, B 50% DNA; 3, C 25% DNA;

4. A 100% rRNA DNase; 4,B 100% DNA RNase; 4, C -ve con;

Signals generated were enumerated in terms of radioactive disintegrations, 

these counts (given below Fig. 27) corresponded well with size of the 

hybridization signals.

/
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A B C D

1

2 •  •  •

3 •  f •
4 »  •

A B C D

counts counts counts counts

1 55789 49581 18Ç88 24053

2 23429 13979 10763 5329

3 20046 9158 9372 2818

4 12280 10799 3264 3044

Radioactive counts measured in each spot of the dot blot above.



However, when these samples were treated with either DNase or RNase the 

intensity of the signal was reduced by approximately 50%. This indicates that 

the nucleic acids extracted were actually a mixture of RNA and DNA. When 

the DNA component (after RNase treatment) was compared with the RNA 

extracted from the same amount of streptomycete mycelium even with the 

inefficiencies employed in the RNA extraction method the signal obtained by 

probing the RNA was at least twice as intense as that achieved by probing 

DNA. Finally, a comparison was made in signal intensity between RNA that 

had been denatured with formamide and formaldehyde and untreated RNA. 

No difference could be observed in the intensity of the signal indicating either 

that the secondary structure of the RNA prepared according to these 

procedures had already been removed by the high salt precipitation steps 

involved in the procedure or alternatively, that the target site for the probe was 

not obscured by the secondary or tertiary structure of the ribosomal RNA 

molecule.

5.3.5 Optimal lysis of spores by bead beating

Cresswell et al. (1991) established that bead beating was an efficient method 

for the recovery of nucleic acids from spores. However, since the spores 

represent the resting stage of the streptomycete life-cycle and as the ribosomal 

RNA content of cells has been found to correlate with active metabolic activity 

(Giovanonni et al., 1988a; De Long et al., 1989) it might be assumed that 

spores would have smaller quantities of ribosomes per cell than vegetative 

mycelium. Quiros et al. (1989) have investigated the ribosomal RNA content 

of streptomycete vegetative mycelium and spores. Estimates of ribosome 

content from vegetative mycelial cells and spores at three different stages of 

germination i.e. dormant, dark and swollen were calculated per mg protein. 

Their studies indicated that the number of ribosomes almost doubled in the
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transition from a dormant spore to a dark spore (a spore in the early stages of 

germination), the ribosomes in swollen spores increased further to exceed that 

of vegetative mycelial cells and to be approx. 3.5 times the number associated 

with dormant spores.

Streptomycetes survive for long periods in the soil as spores, only germinating 

to produce mycelial colonies in the presence of moisture and nutrients. It was 

therefore considered necessary to be able to recover ribosomal RNA from 

spores in soil as efficiently as possible with respect to the detection and 

monitoring of streptomycete inoculants in situ. Although the developmental 

stage of the spores was not characterised (dormant, dark and swollen), the 

spores used were freshly harvested from plates prior to freezing and use in 

these studies. Hence the spores used were probably spores in the dormant or 

earliest stages of germination and should be a reasonable indicator of the 

degree of sensitivity that this approach would have for resting spores in soil.

The ratio of 2.5 : 1 0.1 mm diameter glass beads to buffer and soil was 

retained in these experiments. 3 g samples of soil were spiked with 109 spores. 

Bead beating was substituted for sonication as the facility became available 

and the technique had been demonstrated to be highly efficient for the lysis of 

spores and recovery of nucleic acids (Cresswell etal., 1991).

Lysis using the standard GOS buffer and protocol (Hughes & Galau, 1988) 

was compared with a buffer comprising a potent chelating agent, aminsalicylic 

acid and an efficient detergent, trisopropylnapthalene (M.Hartley, Warwick 

University, pers. comm.). In the latter treatment, after homogenisation by 

bead beating the supernatant was recovered by sedimenting the soil and beads 

and extracting the recovered supernatant with neutral phenol chloroform, prior
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to precipitation of the nucleic acids. The ribosomal RNA was then prepared as 

usual according to Hughes & Galau (1988).

A third treatment was introduced to assess the effect of the phenol chloroform 

extraction on the recovery of ribosomal RNA. In this treatment, the GOS 

buffer was used for the bead-beating homogenisation step, followed by a 

phenol/ chloroform extraction, precipitation of the nucleic acids and then 

preparation according to method 2.

Ribosomal RNA extracted from spores from duplicate samples of all 

treatments was intact and comparable in quantity (Fig. 28). It was apparent 

that the lysis of spores was already fairly efficient as alterations to the 

composition of the homogenisation buffer made no difference, hence 

inefficient yields could probably be attributed to other steps in the protocol. 

However, of interest was the marked affect that phenol chloroform extraction 

had on the purity of the RNA recovered. From Fig. 28 it can be seen that the 

samples that were extracted with phenol chloroform were considerably more 

contaminated with humic acids than those prepared according to the 

unmodified procedure. The phenol/ chloroform extraction caused the humic 

acids and nucleic acids to bind irreversibly. The RNA extraction method 

(Hughes & Galau, 1988) deliberately avoids the use of phenol and guanidium 

salt extractions. This is as a result of the irreversible binding of RNA with 

homogenized leaf tissue when these methods were applied to certain crop 

plants such as cotton. Presumably these plants were high in phenolic 

compounds, which include the humic acids that are commonly associated with 

soils and sediments.

It is possible that the close association of humic acids and nucleic acids
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Fig. 28 Optimisation of homogenisation for the lysis of streptomycete 

spores
Homogenisation buffers: A & B- aminosalicyclic acid and

trisopropylnapthalene; C & D- GOS buffer (Hughes & Galau, 1988) with 

phenol chloroform extraction after bead-beating treatment; E & F, Unaltered 

GOS treatment.
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brought about with the neutral phenol chloroform extraction step could be 

influenced by changes in pH and therefore by altering the ionic state of the 

RNA molecules. It would be interesting to try an alkaline phenol extraction. 

Torsvik (1980) attempted to purify DNA from soil using phenol extraction at a 

pH range from 6.0 to 9.0, purification of the DNA was most effective using 

phenol at pH 9.0 and with the consequent recovery of the more humic acids in 

the phenolic phase.

A number of researchers have considered the importance of the pH of 

extraction buffers on the recovery of nucleic acids from soils. Findings of 

Ogram et al. (1987) indicated that DNA was recovered from the soil matrix of 

a soil with a high clay content more readily at an alkaline pH. This has been 

attributed to the fact that at a low to neutral pH the DNA is neutral and moves 

into the interlamellar space where it is absorbed; in contrast at a higher pH 

DNA is in the ionic form and excluded from interchelation (Ogram et al., 

1987). However, the study was unable to demonstrate any correlation between 

the content of organic carbon and absorption of DNA to the soil particles 

(Ogram et al., 1987). Torsvik (1980) reported improved recovery of DNA 

from soils through the use of an alkaline buffer. Although these studies have 

not been done with RNA, similarities in chemical structure and behaviour will 

mean that these findings are pertinent to the extraction of RNA. However, the 

soil used in this study, was not a heavy clay soil but a sandy loam with a high 

organic carbon content. In the protocol of Hughes & Galau (1988) the 

homogenisation buffer was alkaline with a pH of 8.5 indicating the RNA 

would be in an ionic form. Normally alkaline extraction would be followed by 

an acidic potassium acetate precipitation step, which the authors indicate 

promoted the removal of impurities and the recovery of a white nucleic acid 

pellet.
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5.3.6 Detection limits for rRNA recovered from spores

In order to estimate the sensitivity of the ribosomal RNA extraction 

methodology for the detection of inoculants in situ. It was considered 

important to base such an estimate on the number of spores in soil. The 

reasons being two fold: firstly, Streptomyces survive for long periods in soil as 

spores and conceivably would be present as such in most soils in which their 

ecology or presence would be required to be monitored. Secondly, 

enumeration of mycelial microorganisms is particularly difficult, since 

estimates based on colony forming units c.f.u. provide no information on the 

number of cells contributing to a colony.

Thus 3 g samples of John Innes potting compost were spiked with a dilution 

series of streptomycete spores ranging from 3 times 1010 to 103. Ribosomal 

RNA was recovered from all samples by bead-beating and the RNA prepared 

according to Hughes & Galau (1988). Samples of rRNA were suspended in a 

final volume of 30 Ml and a 10 |Jl aliquot run on a gel. Ribosomal RNA could 

be visualised from 107 spores or more (Fig. 29). Although the dot-blot 

hybridization failed, the sensitivity of detection would conceivably be 

improved by 1 to 2 orders of magnitude depending on the type and specific 

activity of the probe resulting in a detection limit of the order of 105 to 106 

spores per sample.

When compared to the sensitivity of the plate count 102 c.f.u. g-1 soil, the 

RNA method appears disappointingly insensitive. However, the plate count 

method is selective for microorganisms that are amenable to cultivation, while 

nucleic acid based detection methods do not impose the constraints and biases 

of culturability on sampling and extraction.
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Fig. 29 Ribosomal RNA recovered from ISP5078 streptomycete spores in 

soil.

Amount of spores g-1 soil: 10, 1010; 9, 109; 8, 103; 7, 108; 6 107; 5, 106; 4 105; 

3 104; +, 108 TK24 spores; -, no spores, control.

Ribosomal RNA from 108 S.lividans or ISP5078 spores could be visualised on 

an agarose gel
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While establishing the efficiency of lysis was considered an important first 

step to improving extraction efficiencies, there are other stages worthy of 

some attention. In particular this rRNA extraction procedure relies on 

repeated high salt precipitation steps for the removal of contaminating 

molecules such as humic acids. Preliminary assessment of each stage 

indicated that purification via precipitation was accompanied by substantial 

losses in yield (M.Brigila, Agricultural University, Wageningen, NL. pers. 

comm.). The incorporation of components such as PVPP and sodium 

ascorbate into the homogenisation buffer have been found to ease problems of 

humic acid contamination from DNA extracted from soil (Holben et al., 1988; 

Steffan et al., 1988). Since RNA molecules behave similarly to DNA 

molecules, the incorporation of agents to assist in the recovery of RNA with 

reduced humic acid contamination early on in the preparation might warrant 

the omission of the later precipitation step and hence promote enhanced yields. 

Whether or not there is a possibility of reducing the number of purification 

steps, the methodology used here was not without problems of humic acid 

contamination. Without a final chloroform (saturated with TE buffer) 

extraction the nucleic acids were rarely amenable to dot-blot hybridization. 

Another manipulation exploited for the purification of DNA from humic acids 

has been PEG precipitation as an alternative to ethanol and isopropanol which 

serve to co-precipitate the nucleic acids with humic acids (Ogram et al., 1988; 

Cresswell et al., 1991). There are a number of developments that have been 

made while improving methodology for the extraction of DNA from soil that 

have not been and should be evaluated in protocols for the extraction of RNA 

from soil. Thus future studies on the development of extraction methods for 

RNA from soil should be concerned with testing those purification steps most 

amenable to routine sampling that will be required in environmental 

investigations.
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Increased sensitivity may be obtained by optimising the labelling of probes 

and the hybridization conditions under which they are used. These studies 

utilised end-labelled oligonucleotide probes. This labelling system is most 

efficient when used with y P32 of a high specific activity. In addition, there is 

a relationship between the efficiency of labelling and the more P32 added to 

the reaction (Maniatis et al., 1982). Stackebrandt et al. (1991) emphasise the 

need to test all probes empirically and ascertain optimal conditions for their 

use. Optimal conditions of use may be determined by varying the ratio of 

probe to target sequence bound to the membrane (Williams & Mason, 1987). 

Furthermore, conditions may be optimised by using replicated dot blots and 

hybridizing at the same temperature, varying the washing conditions with one 

set and on the second set varying the hybridization conditions, keeping the 

washing conditions constant and monitoring the affects under both regimes 

(Anderson & Young, 1987). The Tm of the probe may also be estimated 

empirically by hybridizing as appropriate, performing successive washes at 

increasingly stringent temperatures and monitoring the stability of the duplex 

after each wash. Such precautionary measures are advised as the Tm of 

hybrids formed between nucleic acids bound to filters have been estimated to 

be lower than predicted from solution hybridization (Anderson & Young, 

1987).

Improved sensitivity of detection for extraction of nucleic acids might also be 

achieved by either concentrating the spores from large volumes of soil using 

methodology of the type described by Herron & Wellington (1990) or through 

the amplification of RNA or DNA target sequences via PCR (Giovanonni, 

1991). With the introduction of PCR methodology, the need to exploit the 

natural amplification in the cells of ribosomally encoded sequences is
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considerably reduced. Furthermore since more care is required for the 

preparation of rRNA target sequences (as they are more prone to nuclease 

degradation), it is conceivable that this approach may be superseded by DNA 

based methods.

However, one significant difference between RNA and DNA molecules is that 

RNA molecules are indicators of activity. The cellular content of ribosomal 

RNA molecules has been correlated with metabolic activity (Giovanonni et al., 

1988a; DeLong et al., 1989) and ribosomal degradation may occur with a 

starvation response in some groups of bacteria (Kramer & Singleton, 1992). 

Furthermore extraction and analysis of mRNA molecules may provide 

information on the expression of particular genes. Hence, it is conceivable 

that when the methodology has been established for the sensitive detection and 

monitoring of strains in soil using DNA based methods, questions will be 

directed more specifically towards understanding the activity of inoculants in 

situ and their particular role in the ecosystem. The RNA molecules will 

undoubtedly have an important contribution to play in the elucidation of these 

answers.
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Chapter 6

The application of various approaches to 
the detection and analysis of the life 

cycle of common scab causing 
streptomycetes within soil microcosms
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6.1 Introduction

6.1.1 Microcosms

Microcosm model systems were developed with the recognition that it was 

legally and environmentally unacceptable to test potential pollutants in the 

field without some prior knowledge of their rates and routes of degradation 

and/ or transfer through the various components of the biosphere (Bums,

1988). Microcosms have since been adopted to study the fate of 

microorganisms and their interactions such as the potential for gene transfer in 

environmental samples (Trevors, 1988). By definition microcosms attempt to 

mimic certain characteristics of the natural environment and allow predictions 

to be made about the fate of the specific chemicals and microbes under study, 

while at the same time allowing some of the many environmental variables to 

be tightly controlled or even manipulated. They offer more reproduciblity and 

are more amenable to experimental analysis than studies under environmental 

conditions. In the design and choice of microcosms there is a conflict between 

the reductionist approach, which allows the reproducible study of 

comparatively simple and carefully controlled systems and the holistic 

approach which acknowledges that environmental processes are much more 

than the sum of their component parts and attempts to measure these processes 

in a relatively undiusturbed system (Bums, 1988). Hence while a model 

system may be easy to design and apply experimentally, the data generated 

may be of little informative value with regard to the events in the natural 

environment. In contrast, a complex model may be a valid reflection of a 

natural habitat, but difficult to interpret. Regardless of the complexity of the 

microcosm its credibility can only be judged on the basis of whether the data 

produced simulates the situation in the field (Bums, 1988).

Two of the most common approaches to the design of soil microcosms in
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microbial ecology have been either to remove much of the inherent 

heterogeneity of the soil environment through the combined actions of drying, 

sieving (through a 2mm gauze) and mixing to create a uniform substrate. The 

activity of the microbe is then studied with reference to physical and chemical 

properties of the soil. The second approach maintains the stratification of the 

soil profile and hence the biological, physical and chemical gradients via the 

excision of intact soil cores or blocks. Microcosms of both types may be 

autoclaved and reinoculated with specific members of the soil biota, bacteria, 

fungi, protozoa, nematodes, earthworms and plants. Under these 

circumstances recolonisatation is being studied and these microcosms are 

termed gnotobiotic (Bums, 1988).

6.1.1.2 Microcosm models with plants

Morel et al. (1989) have studied the fate of two genetically modified bacteria 

an Esherichia coli and a Pseudomonas putida in the com rhizosphere under 

hydroponic and sterile conditions with and without other rhizosphere 

microorganisms. Both bacteria grew well in the presence of root exudates as a 

sole carbon source. However, the introduction of rhizosphere microorganisms 

into the microcosm affected the survival patterns of E.coli more than P.putida, 

with P.putida showing greater resilience to competition than E.coli.

Bennet & Lynch (1981) have studied bacterial growth and development in the 

rhizosphere of gnotobiotic cereal plants. Tubes of autoclaved sand were 

seeded with wheat, barley and maize plants spiked with specific bacterial 

inoculants (a Curtobacterium, a Mycoplana and a Pseudomonas sp.). 

Colonisation of the roots was monitored using total viable plate counts of root 

sections and light microscopy of analine blue stained sections of root material. 

Colonisation patterns were the same for the three microbes in the rhizospheres
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of wheat and barley. However, the development of the Curtobacterium and 

Mycoplana were markedly different in the maize rhizosphere. Both microbes 

exhibited an initial lag period of about 28h before the introduced populations 

increased and neither bacterium reached population levels as high as those in 

the wheat or barley rhizospheres. Interesting patterns of growth were observed 

in co-inoculation studies, hence when the Curtobacterium and Mycoplana 

were both inoculated into the maize rhizosphere, the Mycoplana population 

remained similar to that observed in the single bacterial inoculations but the 

Curtobacterium populations were enhanced by a factor of 10. Observed 

differences of bacterial isolates in the maize rhizosphere may be attributed to 

differences in the nature of root exudates, lack of growth stimulating 

compounds or presence of growth inhibitory compounds. When all three 

bacteria were co-inoculated the Pseudomonas growth rate was stimulated and 

populations reached similar levels to those attained with single inoculations. In 

contrast the Mycoplana growth rate was reduced and final populations a 1/10 

of those observed under single inoculations while Curtobacterium populations 

increased slightly in the first 24h but then disappeared completely. This set of 

experiments indicates how increasing the complexity the microcosms through 

the introduction of more that one inoculant affects the growth and survival 

patterns of individual inoculants.

Armstrong et al. (1987) report on the development of a microcosm method to 

assess the survival of recombinant bacteria associated with plant surfaces 

(radishes) and a plant-feeding insect (the variegated cutworm, Peridrom 

saucid). Radish seedlings were exposed to cutworm larvae and sprayed with 

recombinant Pseudomonas cepacia harbouring a plasmid with antibiotic 

resistance determinants and non-recombinant P.cepacia strain. Background 

populations of epiphytic bacteria increased throughout the duration of the
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experiment, while P.cepacia populations declined. Both P.cepacia strains 

were acquired in the digestive tracts of the cutworm larvae, but did not appear 

in frass samples. Transconjugation between Pseudomonas strains although 

identified to occur on plates did not appear to occur under these microcosm 

conditions.

6.1.1.3 Intact soil-core microcosms

Bolton et al. (1991) studied the population dynamics of a rifampicin resistant 

Pseudomonas sp. in intact soil-cores planted to winter wheat that were placed 

under 4 different environmental regimes. These included the laboratory at 

ambient temperature, in a growth chamber with temperature fluctuations 

simulating those in the field, field lysimeters and field plots. Although some 

differences in population size between the laboratory and growth chamber 

microcosms were identified when compared to populations in the field, in 

general, colonisation of the roots at the three leaf developmental stage and at 

the final boot stage of plants was similar under the four microcosm systems. 

The study demonstrated the validity of using intact soil core microcosms either 

in the laboratory or a growth chamber to simulate field conditions and the need 

to calibrate them to field conditions before making predictions on the survival 

of inoculants.

Bentjen et al. (1989) have also assessed the validity of using intact soil-core 

microcosms to investigate the fate and ecological impact of genetically 

engineered microorganisms. Soil cores were planted with wheat and maize 

seeds and inoculated with Azospirillium lipoferum Tn5 mutants. Microcosm 

leachate, rhizosphere soil, plant endorhizosphere, insects and xylem exudates 

were sampled and enumerated for A.lipoferum Tn5 mutant populations using 

an MPN-DNA hybridisation method. Variation between replicates was
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observed and attributed to the inherent variability of the soil-core microcosms 

and therefore an accurate reflection of the heterogeneity of the complex field 

environment.

Fredrickson et al. (1989) used intact soil-core microcosms to investigate the 

fate of a root growth inhibiting Pseudomonas sp. in soil planted with spring 

wheat. Pseudomonads were marked using Tn5 mutagenesis and inoculated 

into the surface layers of the soil-cores. The fate of mutants producing the 

root-inhibiting toxin (tox+) and unable to produce the toxin (tox-) was studied. 

Samples were taken from the surface layers of the soil, with reference to depth 

in the bulk soil, the rhizosphere, the rhizoplane, soil leachates and also from 

earthworms colonising the soil cores. Mutant populations were enumerated 

using dilution plating with selective media. TnJ mutants had been transported 

through the colomn with percolating water and were identified in soil-core 

leachates, they were also present in the gut of earthworms. Population levels 

in the surface layers of the soil declined with time, however the mutants 

colonized the wheat rhizosphere and rhizoplane throughout the soil-core. The 

presence of Tn5 mutants in the digestive tracts of earthworms demonstrated 

their potential as vectors in the dessemination of introduced microbes.

6.1.1.4 Aquatic microcosms

Awong et al. (1990) describe an aquatic microcosm that utilises survival 

chambers in a flow through or static renewal system, allowing exchange of 

materials between chambers and the surrounding water. Other workers have 

utilised sediment soil cores with an aqueous interface (Bums, 1988).
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6.1.2 The application of soil microcosms to the study of streptomycete 

ecology

Soil microcosms have been used to study the growth, lifecycle and survival of 

Streptomyces strains in sterile and non-sterile soils. The studies of Wellington 

et al. (1990) utilised 200 g soil microcosms in which the soil had been mixed, 

dried and sieved (4mm sieve) in treatments that were sterile and non-sterile, 

with and without 1% starch and chitin amendment. Inter and intraspecific 

transfer of the multicopy plasmid pIJ673 was demonstrated between 

Streptomyces strains. Populations were sampled and enumerated by 

mechanically shaking soil in 1/4 strength Ringers diluent and plating on 

selective media. Estimates from viable counts were correlated with scanning 

electron microscopy observations of the soil to investigate the activity of the 

strain at different time points throughout the experiment. Initial detection of 

transconjugants coincided with the observed mycelial stage of the 

streptomycete lifecycle. Differences in the interspecific plasmid transfer 

frequencies were observed between inoculants in soil and on agar plates. 

These differences were attributed to inhibitory interactions occurring between 

strains on the plates which may be due to antibiotic production and sensitivity 

by the strains. These antagonistic effects were not observed in soil.

Bleakley & Crawford (1989) considered the effect of a number of 

environmental factors on the survival and transfer of a conjugative plasmid 

between Streptomyces strains. A number of nutrient regimes were 

investigated in 51.0 g sieved, sterile silt-loam soil microcosms. These 

included, amendment with CaC03, CaC03 and cotton seed flour, chitin and 

cellulose and moisture regimes of 20, 40 and 60% water-holding capacity. 

Viable counts were determined after a month at 30°C by plating on media 

selective for the plasmid recipient combination. Heterotrophic microbial
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activity was assayed with fluorescein diacetate. Nutrient amendment resulted 

in two to three times more fluorescein diacetate activity than unamended, 

limed treatments of an equivalent moisture content. Nutrient amended, low 

moisture regimes provided optimal conditions for mycelia development and 

hence conjugative plasmid transfer between Streptomyces inoculants in soil.

Wang et al. (1989) studied the survival and effect on soil organic carbon 

mineralisation of a number of wild type, mutant and genetically enhanced 

lignin decomposing Streptomyces strains. The microcosms consisted of a silt, 

loam soil, which were sterile and non-sterile and with and without 

lignocellulose amendment. Evolution of C 02 was monitored in respiration 

cabinets. All strains survived either as spore or mycelial inoculants for at least 

30 days, with selected strains lasting as viable spores for up to 10 months. 

Oniy two inoculants were able to significantly alter the short term rates of 

carbon mineralisation. One S.lividans recombinant showed enhanced rates of 

carbon mineralisation particularly in non sterile soil amended with 

lignocellulose, however this affect was transient, with the strain appearing 

genetically unstable in soil. Another S.lividans strain temporarily reduced 

carbon mineralisation rates but only in non-sterile soils in the first few days.

6.2 Aims

6.2.1 To assess the influence of potato plants on plant pathogenic 

streptomycete populations in soil, and establish whether rhizosphere 

effects occur.

6.22. To monitor the growth, survival and lifecycle of plant pathogenic 

streptomycetes in sterile and non-sterile soil microcosms.
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6.2.3 To compare and apply a number of different strategies for the 

detection and monitoring of plant pathogenic streptomycete inoculants in 

soil.

6.3 Results

6.3.1 Experiment 1. considered the growth and survival of two streptomycete 

strains, TK24 a laboratory strain and streptomycin resistant mutant of

S.lividans and a putative common scab strain MP2 (isolated from Maris Piper) 

harbouring the plasmid PIJ673 which confers resistance to neomycin, 

thiostrepton and viomycin. The plant soil microcosm conditions were the 

same as those adopted in the Maris Piper pathogenicity trial (Section 2.31.1). 

Hence it comprised 1 Kg of pasteurised John Innes compost seeded with Maris 

Piper certified seed potatoes in treatments with potato plants. The rationale to 

work under near environmental conditions being that the regime was a natural 

progression from the work already established with marked strains in non- 

sterile soil microcosms (Wellington et al., 1989). Soil in pots with and 

without plants was kept below 30% moisture holding capacity.

Inoculants were recovered from soil on R5 medium containing selective 

additives. Selective media for TK24 included streptomycin, rifampicin and 

tetracycline together with the antifungal compounds nystatin and 

cyclohexamide. MP2 harbouring plJ673 was isolated on media containing 

thiostrepton, neomycin, nystatin and cyclohexamide. Soil samples from pots 

inoculated with both strains were also spread onto plates containing 

streptomycin, rifampicin, tetracycline, neomycin, thiostrepton and antifungals 

for the identification of any TK24 inoculants that may have acquired the 

plasmid pIJ673 from MP2 via conjugation. The aim was to evaluate the use of
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plasmids as markers in terms of their stability in the host strain over time and 

rates of transfer to a potential recipient strain, S.lividans TK24.

The selectivity of the various media were tested on the other strains, thus MP2 

harbouring PIJ673 would not grow on R5 with streptomycin, rifampicin and 

tetracycline or R5 containing streptomycin, rifampicin, tetracycline, neomycin 

and thiostrepton. The same checks were applied to TK24, which was unable 

to grow on selective medium except that containing streptomycin, rifampicin 

and tetracycline. Finally TK24 + pIJ673 grew on R5 with streptomycin, 

rifampicin, tetracycline, neomycin and thiostrepton, hence this medium did 

support the growth of TK24 transconjugants. In a previous study (Section 4.4) 

synergistic and toxic effects were demonstrated between various antibiotic and 

antifungal combinations in an effort to develop selective media. These effects 

were demonstrated on RASS (Herron, 1991), a minimal medium that in the 

absence of selective additives may impose certain nutrient stresses on 

microorganisms. In contrast, R5 is a rich complete medium (Hopwood et al„ 

1985) designed for the optimal growth of Streptomyces and may therefore 

allow growth of resistant strains in the presence of various combinations of 

antibiotics and antifungals.

Pots without plants were sampled by mixing the 1 kg of soil thoroughly with a 

large, sterile spatula and then removing 3 times 1 g samples. In contrast pots 

with potato plants, were sampled by blending the subteranean parts of the plant 

in a Waring blender until homogeneous and evenly distributed before 

recovering 3 times 1 g samples. 1 g samples were treated as described earlier 

(Section 2.37) and dilutions plated out in triplicate on the appropriate selective 

media.
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Pots were inoculated with spore suspensions enumerated by viable plating to 

contain approximately 1 times 109 spores ml-1. One ml of a spore suspension 

was added with the 1/4 strength Ringers diluent at the time of initiation of the 

experiment soil moisture was added to 15% (w/w) with the inoculum and 

diluent solution. The inoculum was mixed into the pot to give a final spore 

inoculum level of 106 spores g-1 soil. Pots were then seeded with potatoes if 

required.

The following treatments were set up in pots with and without potato plants:

(1) TK24

(2) MP2 +pIJ673

(3) TK24 and MP2 +pIJ673

(4) Uninoculated

Pots were sampled at the following time intervals: days 0, 2, 8, 16 and 120.

The histograms show the logged viable plate counts (c.f.u.) data for the single 

inoculations of TK24 and MP2 +pU673 with and without potato plants (Fig. 

30) and the viable count data from the double inoculation of MP2 +plJ673 and 

TK24 with and without the plant (Fig. 31). Pots were sampled and populations 

enumerated at days 0, 2, 8, 16 and 120. The study focussed on the 

establishment of inoculants in the early part of the time course and at 

population levels after 4 months and hence tubérisation and senesence of the 

parent plant. Potato root and tuber material was examined by scanning 

electron microscopy at day 120.

6.3.2 Results and conclusions

Some of the difficulties that emerged from running the experiment were the
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Fig. 30 Histogram bar charts of single inoculations of S.lividans TK24 and 

MP2 + pIJ673 with and without plants in non-sterile soil.

Difficulties of enumerating the inoculants under non-sterile conditions meant 

that it was not possible to assess the influence of the plant on ISP5078 

populations. Population differences would have to have been considerable to 

overcome the large error margins (M.S.D. values) associated with the variable 

non-sterile environment.
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Fig.31 Histogram bar charts of the double inoculation of S.lividans, TK24 

and MP2 + pIJ673 in the presence and absence of a potato plant.

Analysis of population trends and dynamics was compromised as a result of 

enumerating inoculants under non-sterile conditions. However, at day 120 a 

significant discrepancy between the MP2 + pIJ673 and TK24 populations was 

observed. The TK24 population was no longer detectable, while the MP2 + 

pIJ673 was easily recovered and enumerated. The differences in the 

inoculants relative abilities to grow and survive was attributed to reduced 

ecological fitness of TK24 as a result of the streptomycin resistant mutation.
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problems of obtaining reliable viable count data under near environmental 

conditions. While the levels of inoculum were realistic for infection studies, 

they were also at similar levels to other indigenous soil microorganisms, of 

which some appeared to be able to compete more successfully on the selective 

media. Contamination problems were compounded by the presence of the 

potato plant, and a decomposing mother tuber. This was illustrated in the 

scanning electron micrographs (Fig. 32) which show the prolific development 

of fungi at the tuber surface. This together with the relatively modest amount 

of replication that was possible to include in the experiment with regard to the 

volume of soil under study resulted in high M.S.D. values. The analysis of 

trends in the data was therefore compromised and conclusions have only been 

drawn over quite dramatic differences in the viable count data. The choice of 

media confounded the problems, as R5 is a rich, complete medium which 

supported the growth of many microorganisms.

Uninoculated control pots were monitored for indigenous background 

actinomycètes that might affect enumeration of the TK24 and MP2 + pIJ673 

populations. The selective combination for TK24 appeared to eliminate the 

growth of all background soil actinomycètes, and the red-blue pigmentation of 

the strain assisted in its discrimination from the majority of soil-borne 

actinomycètes. The selective media for MP2 +pIJ673 allowed the growth of a 

small number of of actinomycètes of varied fnorphology, at the lowest 

dilutions. The populations of MP2 + pIJ673 were discernible from these 

indigenous actinomycètes, as they were generally isolated in higher numbers 

and were phenotypically uniform.

No significant differences were observed in the soil population levels of 

streptomycete inoculants in the presence or absence of the potato plant. Of
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Fig. 32 Scanning electron micrographs of the non-sterile potato tuber 

surface.

Micrograph I (X 330) visually illustrated the problems of applying viable 

plating procedures to the enumeration of inoculants in a highly dynamic 

natural environment. Hence this section of tuber material was covered in a 

carpet of fungal mycelium and conidia. Fungi rapidly overgrew the dilution 

plates making the enumeration of inoculants (via cultivation) difficult.

Micrograph II (X 5,000) illustrated the presence of actinomycètes (chains of 

spores) at the tuber surface despite intense microbial competition for nutrient 

resources.
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interest is the apparent difference in the long term survival of the mutant, 

laboratory strain TK24 and the natural isolate MP2 + pIJ673 that was observed 

at day 120. Our results indicated the dying off of the TK24 population with 

time. However, since the detection limit for the experiment was of the order 

of 103 c.f.u. g-1, it is possible that the inoculant was still present beneath the 

levels of detection. A decrease in the population levels of TK24 in soil over 

time has also been shown by Cresswell et al. (1992) in microcosm studies over 

a 60 day period. These results suggest a reduced ecological fitness of this 

strain as a result of the mutation. They highlight the difficulties of using strains 

marked by mutations to determine the behaviour and ecology of inoculants 

under environmental conditions. Such studies are of value in predicting the 

fate of inoculants planned for release in the natural environment (Thompson et 

al., 1990) and determining the suitability of specific inoculants as agents in 

biological control (Weller, 1984). Other workers have also experienced 

reduced competitive fitness, growth rates and alterations in membrane 

biochemistry with antibiotic resistant mutants. Compeau et al. (1988) 

identified decreased competitive fitness in certain Pseudomonas fluorescens 

rifampin-resistant mutants and Turco et al. (1986) observed reduced 

competitive nodule-forming ability in doubly antibiotic resistant marked 

Rhizobium species. Both studies, emphasised the need to evaluate the 

behaviour of mutants alongside the wild type strain in sterile soil microcosm 

assays before applying antibiotic resistant mutants as marked strains in 

ecological studies. Until alternative detection strategies become available, 

comparisons of the behaviour of marked and unmarked strains are not possible 

under non-sterile conditions. Compeau et al. (1988) therefore recommend 

comparing the fitness of both the mutant and wild type isolates by the co­

inoculation of both strains in sterile soil and assessing their relative growth 

rates and abilities to compete against each other. The population of MP2
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+pIJ673 was detectable at day 120, in pots seeded with and without potato 

plants. Although we were unable to assess plasmid loss, it is of interest that a 

detectable proportion of the MP2 population retained the plasmid for so long 

in a highly dynamic environment. Particularly since the plasmid may 

represent an added metabolic burden on the strain in the nutrient limited soil 

environment. It is conceivable however, that there may be positive, selective 

forces acting on the maintenance of the plasmid that we are unable to measure. 

Alternatively these findings may support others unable to identify selective 

forces acting on the stable maintenance of specific plasmids in certain host 

backgrounds (Levy 1985). Amner et al. (1991) were able to demonstrate the 

stable maintenance of plasmids encoding antibiotic resistance determinants in 

mesophilic and thermophilic B.subtilis strains in the absence of selection in a 

non-nutrient limiting compost environment. The feasibility of using plasmids 

as markers in Streptomyces lividans, TK24 in soil has been investigated by 

Wipat et al. (1991). Plasmids NW4 and NW5, derivatives of pIJ486 that 

contain a xylE gene insert, appeared 95% stable over an 80 day period within 

streptomycete spores in soil, with 78 to 89% retaining the C230 phenotype. 

Plasmids were maintained equally well in the S.lividans host regardless of 

whether the xylE gene was thermoregulated or expressed constitutively. When 

S.lividans strains harbouring pIJ486 were compared with those harbouring 

NW4 and NW5 in soil, over time, reduced spore counts and sporulation were 

observed from the strains carrying NW4 and NW5. These differences were 

attributed to be a result of the additional metabolic load of the xylE insert. 

Larger co-integrate plasmids appeared highly unstable in S.lividans, TK24 in 

soil.

Since many members of the Streptomyces (including many uncharacterised 

strains) are amenable to plasmid transformation and many natural isolates
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harbour plasmids, they may serves as suitable markers with an assessment of 

the of the rates of instability and metabolic burden to the cell.

Transconjugants were not recovered throughout the course of the experiment. 

It is possible that they may have occurred at some point before the TK24 

population declined and remained below detection levels. However, given the 

reduced fitness of S.lividans, TK24 under these conditions (the count was 

below detection levels at day 120) it is possible that if transfer was occurring 

that the additional metabolic burden of the plasmid would result in a strain of 

reduced ecological fitness.

6.3.2 Experiment 2

To investigate the growth and survival of S.scabies ISP5078 in sterile 

amended and unamended soil microcosms with and without potato plants.

6.3.2.1 Rationale for the experiment: As a result of the difficulties 

encountered in obtaining meaningful data under non-sterile conditions a study 

of the lifecycle of the scab-causing strain, ISP5078 was conducted in sterile 

soil. Such a study under standardised conditions was also considered 

necessary for the comparison of a number of approaches to detection and 

monitoring.

6.3.2.2 Experimental design

Four different soil-plant regimes were compared:

(1) Sterile soil unamended

(2) Sterile soil amended (with 1 % starch and chitin)

(3) Sterile soil unamended with an axenic potato plant

(4) Sterile soil amended with an axenic potato plant
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Duplicate 20 g microcosms were set up for each sample day. The experiment 

was sampled at days 0, 2, 5, 15, 30, 60, 90 and 120. Soil (John Innes compost) 

was pretreated by sieving it through a 4mm filter and three rounds of 

autoclaving and incubation.

The inoculum was added to a final concentration of 3.5 times 103 spores g-1 

soil. Inoculum was added with the 1/4 strength Ringers diluent to 15% soil 

moisture content (w/w). Plants were introduced into the soil microcosms as 

sprouting axenic mini tubers.

Three approaches for monitoring and detection of inoculants were compared 

throughout the course of the experiment:

(i) Viable plate count

(ii) Probing of recovered 16S rRNA from soil

(iii) In situ hybridisations

Viable plate counts

Three 1 g samples were removed from the duplicate microcosms after 

thorough mixing and were suspended and agitated in 1/4 strength Ringers 

solution. Serial dilutions were plated onto RASS media containing penicillin, 

ampicillin and cyclohexamide.
♦

Probing of recovered 16S rRNA from soil

RNA recovered from soil microcosm samples according to the procedure of 

Hughes & Galau (1988) was hybridised with the 01 oligonucleotide probe 

(Stackebrandt et al., 1991).
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In situ hybridisations

Were performed with the eubacterial probe primer 1115 (Embley et ah, 1988).

6.3.3 Results

6.3.3.1 Viable count data

Counts from duplicate microcosms were combined to obtain mean values for 

each treatment. The data was transformed to produce log values and M.S.D.s 

calculated (Section 2.45). Histograms show the mean logged counts for the 

ISP5078 populations in sterile amended soil (Fig. 33) and also the population 

data for ISP5078 in unamended soil (Fig. 34). Figs. 33 & 34 compare the 

growth of ISP5078 in the presence and absence of a potato plant in both sterile 

amended and unamended soils. M.S.D values were small, as a result of no 

background contamination and reduced environmental variation. Significant 

population differences were observed between the ISP5078 populations in 

amended and unamended soils (Figs. 35 & 36). Final population levels in 

amended soils of 109 c.f.u. g-1 were obtained, exceeding those in unamended 

soils by 1.0 to 1.5 orders of magnitude. In contrast, no significant differences 

were apparent between the treatments with and without plants in amended and 

unamended soils (Figs. 33 & 34).

The data has also been plotted as scaled graphs that indicate the population 

changes relative to day 0. The scaled graphs (Fig. 33b & 34b) illustrate the 

differences between ISP5078 populations in the presence or absence of potato 

plants in amended and unamended soils. The plant exerted little influence over 

the population under either of the regimes. The growth rate of inoculants in 

association with plants may be marginally faster, however any differences are 

small and do not appear significant. The scaled graphs (Fig. 35b & 36b) show 

the ISP5078 populations with and without amendments in the presence
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Fig.33 Growth and survival of ISP5078 in sterile amended soil with and 

without potatoes

Fig.33a The histogram bar chart indicated that the axenic potato plant did not 

have a significant influence on the ISP5078 population in sterile amended soil. 

Fig.33b The scaled graph indicated an increase in the inoculated population 

relative to day 0. The graph confirmed previous findings (Wellington et al., 

1990) of germination and growth within the first 2 to 15 days. The population 

reached a threshold by day 15 which was retained throughout the duration of 

the study. Trends in the population growth patterns were similar with and 

without the potato plantlet.

/
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Fig.34 Growth of ISP5078 in sterile amended soil in the presence and 

absence of plants.

Fig.34a Histogram bar chart. No significant difference in the level of the 

ISP5078 population was observed in the presence and absence of the potato 

plant.

Fig. 34b Scaled graph. Population levels of ISP5078 have been illustrated in 

terms of initial populations at day 0. Similar to findings in Fig.33b, most 

growth was observed between days 2 and 15. By day 15, the populations had 

reached a threshold which was maintained or which reduced slightly 

throughout the duration of the experiment. The growth rate of the inoculant in 

the presence of the plant appeared marginally faster than in its absence; 

however these differences were not statistically significant.
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Fig.35 Growth of ISP5078 in sterile amended and unamended soil in the 

presence of potato plants.

Fig. 35a Histogram bar chart. Considerable differences in the level of the 

ISP5078 population was observed in the presence and absence of amendments. 

The final population in the presence of amendments (1% starch & 1% chitin) 

exceeded that in the absence of amendments by an order of 1 to 1.5 log10 c.f.u. 

g -1.

Fig. 36b The scaled graph illustrates the population of the ISP5078 inoculant 

against time, relative to its initial level at day 0. Between the sample days 2 

and 5, the growth rate of the inoculant appeared to be faster in the presence of 

amendments. From day 5 onwards, the population increases in amended and 

unamended soils are parallel indicating similar growth rates.
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Fig.36 Growth of ISP5078 with and without amendments in the absence of 

plants.

Fig.36a Histogram bar chart. Similar trends were observed to those in Fig.35, 

hence populations of ISP5078 were enhanced 1 to 1.5 LoglO c.f.u. g-* in the 

presence of amendments.

Fig.36b Scaled graph. Similar to the trends observed in Fig.35 a lag or initial 

difference in the growth rate was observed between the growth of ISP5078 in 

amended and unamended soil.

/
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(Fig. 35) or absence (Fig. 36) of plants. They indicate that the growth rate of 

ISP5078 was faster (at least initially), in the presence of amendments than 

without.

The population ratios for the four different regimes, including R : S and 

amended : unamended ratios are summarised in Table 19. While they 

illustrate the population differences particularly with the amended and 

unamended treatments, the ratios are small when compared to those reported 

as a result of enrichment by the rhizosphere in natural soils. However, this 

study was performed in sterile soil rather than a natural soil and as such the 

background soil populations were very high. The autoclaving process released 

nutrients and minerals into the soil for which there was no competition, hence 

the growth and development of a greater population of streptomycetes was 

supported by the bulk soil. Natural soils are also nutrient limited so that 

exudates from the rhizosphere encourage prolific microbial growth relative to 

the bulk soil. The 20 g volume of soil, was mixed and sampled uniformly 

assuming that as a result of the small soil volume, all the soil would be under 

the influence of the rhizosphere. However, this sampling approach was found 

to be too insensitive to detect enhanced microbial populations as a result of the 

presence of a plant. This experiment was run as a batch system, it was set up 

at 15% (w/w) soil moisture content at day 0 and incubated at 20°C for 120 

days. As the system was contained, but did not receive additional moisture 

and nutirents the plants germinated and grew well for a month, but after this 

time began to dry out and die off. The interaction between the plant and the 

streptomycete population was therefore only studied in the early stages of 

plant development. In a further experiment it was decided that it would be 

interesting to investigate the plant microbe interaction as the plant developed 

and at later stages of plant development as enhanced populations have been
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Table 19 Streptomycete population ratios with and without

amendment and with and without plants

Ratio % increase

AM/UA 1.10 11

AM/UA + potato 1.20 20

R/SUA 1.04 4

R/S AM 1.03 3

Note: Lambert and Loria R/S ratios for field populations of streptomycetes 26 

in 1986 and 63 in 1987.

- 287 -



associated with older plant roots (Watson & Williams, 1974; Williams, 1976). 

Furthermore, since the widely reported rhizosphere effect was not detected in 

the present experiment, it was decided to sample and enumerate the microbial 

community from the bulk soil and the root surface in a future experiment.

6.3.3.2. Hybridization data

The 16S rRNA was extracted from a 5 g sample of soil (from the sterile 

amended treatments without plants). Unfortunately, the blot required a long 

period of exposure to recover the autoradiograph (Fig 37b). The weak 

hybridization signals were probably a function of poor binding of the probe 

and contaminating humic acids. However, the relative signals from the blot 

(and photograph of the gel, Fig. 37a & 37b) support the trends observed in the 

viable count data. Thus rRNA was barely discernible from soil samples from 

days 0 and 3 and not discernible at all at day 2, the corresponding counts from 

these days were the lowest in the experiment. The hybridization signals from 

days 15, 30, 60 and 90 were much stronger and correspond to a two log 

increase in the streptomycete c.f.u. counts. A negative control, uninoculated 

sterile soil was set up in duplicate and gave no hybridisation signal, indicating 

that the signals were attributable to the RNA rather than soil constituents.

The extractions appeared to be reproducible, as duplicate samples agreed for
¥

days 0, 5 and the negative control. Duplicate samples were also prepared for 

day 90, but unfortunately the first extractions of the soil from both samples 

were combined in one duplicate and the second extractions combined in the 

second duplicate. Since most of the RNA comes out with the first extraction 

the blot has one blank spot and one spot twice as dense for this sample day.

This unfortunate error reflects the great number of manipulations in the
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Fig.37a Ribosomal RNA recovered from ISP5078 growing and surviving 

in sterile amended soil over a 90 day period.

Ribosomal RNA was extracted from the inoculant in soil according to Hughes 

& Galau (1988) at the following sample times, days: 0, 2, 5, 15, 30, 60 & 90. 

An uninoculated negative control was also included, gel lane Duplicate 

rRNA preparations were made from soil samples from days 0, 5, 90 and the 

negative control. In general, the preparations were similar and the technique 

appeared reproducible. Unfortunately, the first rRNA extractions from both 

duplicates from day 90 were combined, resulting in one lane with alot of RNA 

and another without any visible rRNA.
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Fig.37b Dot-blot hybridization of rRNA recovered from ISP5078 growing 

and surviving in soil over a 90 day period.

Ribosomal RNA recovered from soil (Fig. 37a) was hybridized with the 01 

targeted oligonucleotide probe (Stackebrandt et al., 1991) under stringent 

conditions (50°C). Hybridization signals were obtained from RNA recovered 

from soil samples from days: 0, 5, 15, 30, 60 and 90. Duplicate samples were 

prepared for days 0, 5, 90 and the uninoculated negative control. The signal 

for day 90 was twice as intense as it should have been, as extractions for both 

duplicates were inadvertently combined. The relative intensity of the rRNA 

signals reflected the viable plate count population data. Hence signals were 

weakest between days 0 to 5 corresponding to lower plate count populations. 

Where as the increased viable count from days 15 onwards was reflected by a 

stronger hybridization signal.
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extraction protocol, that can extend over several days. For example if 5 g of 

soil is to be analysed 12.5 g of glass beads are added together with 20 to 25 ml 

homogenisation buffer for beadbeating and consequent extraction. An equal 

volume of extraction buffer is required to wash the soil and beads to recover 

any remaining RNA, producing volumes of about 50 ml per sample. 

Procedures for the precipitation of the nucleic acids amplify the volumes 

further, 100 to 120 ml. Such volumes generally have to be divided into 4 

separate tubes for centrifugation. This experiment involved 13 samples.

6.3.3.3 In situ hybridisations

In situ hybridisations were performed on samples of soil from all microcosms. 

Hybridisations were attempted with the (31 probe that initially had appeared to 

be specific for ISP5078, however, the technique was not amenable to this 

combination of strain and probe. Since the technique depends upon the probe 

penetrating the cell, aligning and hybridizing with the target sequence, the 2° 

and 3° structure of the molecules remain largely intact and may therefore 

obscure certain target sequences. In addition there are proteins associated with 

the ribosome, which may also block binding sites. It might be possible to 

make the target sequence accessible to the probe by proteinase and other 

denaturing treatments. However, for the purposes of illustrating the approach 

under sterile conditions we used the eubacterial probe primer 1115, which 

consistently hybridizes well.

Flourescent light micrographs were taken of the sterile amended (no plant) 

series of treatments. These photographs also reflect the development of 

inoculants in sterile amended soil with potato plants (Fig. 37c). In contrast, 

very little mycelial development was seen in the unamended soil treatments, 

only one or two very small microcolonies were observed in the day 15 samples
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Fig.37c In situ hybridization studies of the growth and survival of ISP5078 

in sterile amended soil over 90 days.

The in situ hybridizations were performed with a rhodamine labelled, primer 

1115, Eubacterial oligonucleotide probe. The growth and development of the 

ISP5078 inoculant was observed in sterile amended soil. At day 0, the spore 

inoculum could not be discerned from the background autofluorescence of the 

soil minerals. By day 5, the spores have germinated and small mycelial 

microcolonies were observed. At day 15, prolific mycelial development and 

colonisation of the soil substrate was apparent. While at day 30, the transition 

from the mycelial stage of the life cycle to the production of spore chains was 

observed. By day 60, partial fragmentation of the spore chains had occurred, 

as only small residual chains of spores could be observed. Day 90, total 

fragmentation of spore chains had occurred and single spores could not be 

discerned from the background autofluorescence.
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which, in contrast to the amended soils, revealed prolific, ramifying mycelial 

growth. In unamended soil, the inoculants appeared to reside in the soil as 

single spores or small fragmented spore chains not unlike the photographs of 

day 0 and day 90 from the amended series. This vast difference in the 

colonisation of the soil matrix was reflected in a 1.0 to 1.5 log difference in the 

c.f.u. viability counts.

This approach allowed direct visualisation of the lifecycle of Streptomyces in 

soil. Findings indicated that spores germinated to produce ramifying mycelial 

networks that colonise soil particles and crevices in the presence of nutrients 

and moisture (days 5 to 15). As the nutrients and moisture were depleted 

spore chains were produced and the vegetative mycelium died off (day 30), the 

spore chains fragmented to become shorter and fewer (day 60) until single 

spores were produced that were no longer discernible from the background 

autofluoresence of the soil minerals (day 90).

Thus in a nutrient rich environment, either artificially amended or in 

association with plant root amendments, this approach in conjunction with 

specific probes offers the possibility to study inoculants in situ. The technique 

is particularly powerful when applied to microorganisms like the Streptomyces 

with a distinctive lifecycle that is indicative of activity and can be analysed by 

microscopy. In addition to information on the presence and abundance of the 

strain in situ, the technique may be used to provide information on the activity 

of the strain. As ribosomal content and hence the strength of fluorescent 

signals may be correlated with biosynthetic activity (Giovanonni et al., 1988).

Conclusion

The three detection approaches applied to the study of ISP5078 in soil were
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complimentary and in agreement with regard to the information generated 

about the inoculants. The viable plate counts, provided numerical population 

data of c.f.u. in soil that was amenable to statistical analysis. The dot blot 

approach allowed detection of the culturable and non culturable components of 

the soil population. It may be calibrated with known quantities of cells and or 

RNA together with densitométrie analysis or quantification of the radioactive 

disintegrations if probes are radio-labelled, to give estimates of the population 

density in soil. In the present study the streptomycete inoculant was culturable 

and as this approach was less sensitive than the traditional viable plate count, it 

provided least information about the inoculant in soil. If however, it was not 

possible to deselect the inoculant from a non-sterile soil microflora, but a 

highly specific probe was available this approach would yield more 

information. The combination of methods for the direct extraction of nucleic 

acids from soil with amplification via PCR promises to reduce detection levels 

from those achievable with viable plate counts (Steffan & Atlas, 1988; Steffan 

& Atlas, 1991). These approaches have and are likely to continue to focus on 

the amplification of DNA rather than rRNA (via a reverse transcriptase step) 

as DNA is more inherently more stable and therefore more amenable to 

environmental analysis.

Finally, the in situ hybridisation technique allowed the interactions between 

the microbes and environmental substrates to be observed and patterns of 

growth and activity to be visually recorded. This approach offered insight into 

the heterogenity of the terrestrial environment, the non-uniform distribution of 

microbes and colonisation of microsites. It provides information that is 

obscured by the two previous approaches. This technique is also applicable to 

non-culturable microorganisms and will no doubt be of value in unravelling 

their contribution to certain ecosystems (Amann et al., 1992).
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6.3.4 Experiment 3

Aim: To study the influence of the potato plant on the growth and activity of 

strain ISP5078 in sterile soil.

6.3.4.1 Experimental approach

This experiment was a development of the proceeding one, thus the 

microcosms were set up as before with the following amendments. Four week 

old plantlets were introduced into the microcosms at day 0, rather than as 

sprouting minitubers. The aim was to establish mature plants within the 

microcosms, with extensive root systems so that all bulk soil would be under 

the influence of the rhizosphere. The water content in the soil was monitored 

at each sample date and adjusted to 15% moisture holding capacity throughout 

the course of the experiment.

Microcosms were sampled at days 0, 2, 5, 15, 30 and 60. In addition to the 

soil samples taken, the roots were recovered, chopped finely and divided into 5 

equal and comparable portions. One was used to determine the dry weight, 

three were weighed and added to 2 ml 1/4 strength Ringers solution for the 

determination of viable plate counts. The final sample was fixed in 3% 

glutaraldehyde and used in scanning electron microscopy studies.

Inoculants were monitored by viable plate count procedures as before and via 

scanning electron microscopy. These approaches were chosen as they offered 

maximum information without exhaustive manipulations. The information 

that we obtained with in situ hybridisation being comparable to that of 

scanning electron microscopy (while under sterile conditions). In situ
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hybridisations are of value for determining the identity of particular inoculants 

from mixed cultures or non-sterile environmental samples when used in 

conjunction with specific probes. Furthermore, the higher magnification 

afforded by scanning electron microscopy offered enhanced resolution.

6.3.4.3. Results

6.3.4.3.1 Viability data

The plate count data has been illustrated as a histogram (Fig. 38a) and a scaled 

graph (Fig. 38b). Two of the three sets of data consider the populations of 

ISP5078 in soil, both in the presence and absence of the potato plant. 

Interestingly, despite the presence of mature plants and extensive root systems, 

no differences in population levels was discernible. Hence any impact that the 

rhizosphere or plant had was lost within the 20 g microcosm and must 

therefore be localised. The population levels of streptomycetes isolated from 

root material were significantly higher, by an order of magnitude. Root 

material did appear to support a higher streptomycete population than the 

sterile soil. Undoubtedly streptomycetes will be concentrated in certain areas 

of the root tissue, depending on age, the amount or quality of exudates and 

absent in other areas. This figure may an underestimate as the efficiency of 

recovery was not assessed.

6.3.4.3.2 Scanning electron microscopy data

Scanning electron micrographs were taken of soil and root samples from each 

of the sample days (Fig.s 39 to 47). Similar to the in situ hybridisation data, 

they emphasised the difference (that is suggested in the viability count data) in 

the numbers of streptomycetes associated with the root and those in the soil. 

While, visualising the organism on the root surface was easier than in soil, 

fragmented spores were difficult to find in soil, but obvious on the root, the

- 296 -



Fig.38 Growth and survival of ISP5078 in sterile soil with and without 

axenic potato plants.

Fig.38a A histogram of the viable plate counts for c.f.u. g-1 soil/ root of 

ISP5078 growing and surviving in sterile soil, both with and without a potato 

plant and in association with the potato root. Elevated population counts of 

the ISP5078 inoculant were observed in association with the root material. The 

c.f.u. counts g-1 root material were 1 to 1.5 loglO higher than those recovered 

from sterile soil (with or without an axenic potato plant). This difference was 

of the same magnitude to that observed between sterile amended and 

unamended soil. Counts at the root surface were significantly higher at day 0 

than those obtained from soil samples. This was probably as a result of the 

procedure in which the microcosms were seeded with inoculant. It was added 

to the soil surface and allowed to percolate through the matrix; since the plant 

was placed in the surface layers of the microcosm it would come into contact 

with more inoculant at day 0 than would be distributed in the bulk soil.

Fig.38b Scaled graph. No population differences were observed in the viable 

plate counts obtained from soil planted with potatoes compared to unplanted 

soil. The elevated counts observed in association with the roots indicated that 

the influence of the rhizosphere is localised and can only be detected by 

sampling the root rather than the soil material.
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Fig.39 Scanning electron micrograph ISP5078 colonising the potato root 

surface.

Magnification X 1,000. Day 0, soil and root material. No evidence of the 

streptomycete spore inoculum.
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Fig.40 The development of streptomycete inoculants at day 60.

Magnification X 5,000. Inoculants were present in the mycelial and spore 

growth form at day 60.
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Fig.41 Fragmentation of spore chains (day 60)

M agnification X 7,500
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Fig.42 Germination and mycelial development of ISP5078 at the potato 

root surface at day 3.

Magnification X 3,500, low power view of the colonisation of the potato root 

by the ISP5078 inoculant. Spores could not be observed.

Magnification X 7,500, higher power view of collapsed mycelial filaments on 

the potato root surface, day 3.
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Fig.43 Scanning electron micrograghs of sterile soil colonised by ISP5078.

The surface of soil particles was photographed from samples at days 3, 5, 15 

and 60. No evidence of the inoculant was observed in any of the samples of 

soil examined. The soil environment provided a stark contrast to the nutrient 

rich environment of the potato root, which supported abundant growth of 

ISP5078.
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Fig.44 A comparison of the soil and potato root environments at days 15 

and 60.
No colonisation of the soil was apparent at days 15 and 60. In contrast the root 

surface exhibited some mycelial development and sporulation at day 15 and 

prolific sporulation was observed at day 60.
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Fig.45 Time course of the development of the ISP5078 inoculant in 

association with a potato root.

Day 3, germinating spores, some mycelial development.

Day 5, early transitional stages of differentiation from mycelium into spore 

chains.

Day 30, prolific sporulation.

Day 60, further sporulation.
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Fig.46 Time course of the ISP5078 inoculant in association with the potato

root.

Day 3, mycelial development, colonisation of the root surface. 

Day 5, mycelial development and some early sporulation.

Day 15, spore chains 

Day 30, prolific sporulation
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differences in the colonisation of the two substrates (soil and root) appeared 

considerable. No mycelial development could be observed in the bulk soil. 

The development of inoculants from germination through the different stages 

of the lifecycle were visualised at the nutrient enriched root surface. The 

growth of inoculants at the root surface appeared more dynamic as a result of 

the developing plant and introduction of the water regime (than seen in 

experiment 2). At day 60 (Fig. 40) it was possible to observe both the 

production of spores and the mycelial development of inoculants on different 

sections of root material, while in experiment 2 the moisture and nutrients had 

been exhausted at this point and inoculants were present mostly as spore 

chains. The scanning electron micrographs demonstrated the heterogeneity of 

the environmental substrate and its non-uniform colonisation by the inoculant.

6.3,5 Experiment 4

6.3.5.1 Aim: The evaluation of a kanamycin resistant mutant and plasmid 

pIJ673 in sterile soil as selective markers for the detection and monitoring 

of ISP5078.

6.3.5.2 Experimental design

20 g sterile soil microcosms were set up in duplicate and single inoculations 

made with the ISP5078 kanamycin resistant mutant, ISP5078 harbouring 

plasmid pIJ673 and the original ISP5078 strain.* The water content of 

microcosms was monitored at the times of sampling and adjusted to 15% soil 

moisture (w/w). Soil from the first two treatments was plated out on the 

appropriate selective media i.e. R5 with kanamycin for the mutant strain and 

R5 with neomycin for the strain harbouring the plasmid. Mutation reversion 

and plasmid loss, or inability of the strain harbouring the plasmid or mutation 

to grow on the selective media was monitored by plating on R5 without
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sélectives.

R5 media was used in these studies, as a number of problems were 

encountered with the combination of the highly selective RASS medium, 

certain selective agents and these strains. Despite routine subculture and the 

production of spore inocula from both strains on the RASS antibiotic media, 

after a cycle of freezing and thawing the strains appeared unable to grow on 

this selective combination. A number of attempts were made to obtain growth 

on RASS with selective antibiotics including a transfer to RASS without 

antibiotics, on which the strain grew but still would not grow when transferred 

back to RASS with selective additions. The strain was also introduced into 

soil and incubated for 48 h but again could not be recovered on RASS with 

antibiotics, even with reduced antibiotic concentrations. These problems were 

overcome completely by using the R5 media in combination with antibiotics. 

While this did not affect the present study under sterile conditions, it did make 

the application of these markers to non-sterile conditions difficult as a minimal 

and selective media like RASS is essential for the deselection of indigenous 

microbes and therefore in obtaining reliable viability data from non-sterile 

soils.

6.3.S.3 Results and conclusions

Viable c.f.u. count data is given in the form of histograms and scaled line 

graphs for the kanamycin resistant strain (Fig. 48) and strain containing the 

plasmid (Fig. 49).

6.3.5.3.1 The kanamycin resistant mutant

At day 0, comparable counts were obtained for ISP5078 and the KmR strain 

both on the selective and non-selective media, indicating that at the outset the
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Fig.48 Stability of ISP5078 kanamycin resistant mutation in sterile soil.

Fig. 48a The stability of the mutation was monitored in soil by plating on R5 + 

kan and R5 without selection. The growth of the mutant strain was also 

compared with the ISP5078 parent strain. The c.f.u. viable plate counts g-1 

soil for the ISP5078 control strain and the KmR strain in the absence of 

selection were very similar. The counts obtained for the KmR strain in the 

presence of selection were however, approximately 1 log 10 less at day 2. 

Counts obtained on kanamycin continued to be lower than the counts obtained 

in the absence of selection for the remainder of the experiment.

Fig. 48b Scaled graph. This further illustrated the initial drop in the c.f.u. count 

of the KmR strain at day 2 and which was maintained throughout the duration 

of the experiment. The loss of KmR phenotype was probably co-incident with 

the initial burst of germination, growth and cell division.
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Fig.49 Stability of plasmid pIJ673 in ISP5078 in sterile soil.

Fig.49a Histogram of log 10 c.f.u. g-1 soil. The stability of the plasmid was 

monitored by plating ISP5078 harbouring the plasmid on R5 with and without 

neomycin selection. Comparisons in the population count were made for the 

inoculant with the plasmid and the control, 1SP5078 parent strain. The 

population of 1SP5078 + pIJ673 recovered on neomycin was significantly 

lower than the population recovered without selection on day 2. The 

difference between the count in the presence and absence of selection varied 

throughout the course of the experiment. It was however, maintained. Counts 

in the absence of selection for the plasmid containing strain were comparable 

to those obtained from the control parent strain. Loss of the plasmid at day 2 

was coincident with the initial burst of germination, growth and cell divison.

Fig.49b The scaled graph clearly depicts the difference between the plasmid 

containing population recovered on selection and that recovered in the absence 

of selection. The population differences were indicative of plasmid loss and 

instability in this host background.
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ISP5078 KmR population was resistant to kanamycin. However, by day 2 the 

proportion of the KmR strain recoverable on kanamycin had decreased 

significantly from the total population recovered on non-selective media 

(counts were 1 log lower). The log difference in the proportion of the 

population recoverable on kanamycin was maintained throughout the course of 

the experiment. This initial reduction was probably associated with the initial 

burst of germination, growth and sporulation that occurred following 

inoculation. The strain having exhausted the available nutrients, sporulated 

and remained in the soil as spores. To obtain a broader picture on the 

reversion of the mutation in soil it would be necessary to expose the strain to 

further rounds of germination, growth and sporulation. This could be achieved 

through the addition of nutrients and moisture or with a transfer to uncolonised 

soil to stimulate growth and activity (Cresswell et al., 1992). The growth and 

survival of the ISP5078 control appeared comparable to the total KmR 

population recoverable on R5 only. The KmR population differed 

morphologically from the original strain, the difference was most marked in 

the absence of selection.

6.3.5.3.2 ISP5078 harbouring pIJ673

Similar to the findings of the proceeding experiment a proportion of the 

ISP5078 (harbouring plJ673) population lost the plasmid at day 2. This co­

incided with germination and mycelial development and would be associated 

with segregation at cell division. The histogram illustrates the discrepancy 

between the total and plasmid containing population, which becomes greater 

between days 15 and 30 and was maintained throughout the course of the 

experiment. The scaled graph suggests that the transformed population have a 

higher growth rate than the original ISP5078 strain and obtain higher 

populations relative to day 0 at day 60. However, the control strain was
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introduced at a higher population density than the mutant, so that direct 

comparisons of growth rate are difficult. Both strains reached similar final 

populations in soil. Again, it is possible that the plasmid loss observed 

resulted of one round of growth and sporulation of the strain in soil and that 

the strain remained as spores in the soil for the duration of the experiment. 

Exposing the strain to several rounds of germination and sporulation and 

monitoring plasmid loss after each round might indicate a similar proportion of 

loss with each cycle.

6.3.S.4 Conclusions

The latter two experiments, do signify that both the kanamycin mutation and 

plasmid are unsuitable candidates as markers in ISP5078. The kanamycin 

mutation appeared to have a high reversion rate and the plasmid to be unstable 

in soil. Rates of reversion and stability were not investigated in vitro, which 

would be an important preliminary step in the evaluation of a promising 

mutation or plasmid. Both experiments resulted in reduced resistant 

populations after one round of germination and sporulation with populations 

an order of magnitude smaller than the total population. Thus it would be 

possible to lose the strain in certain dynamic environments after several rounds 

of germination and sporulation. However, since plJ673 appeared quite stable 

in the MP2 host background, it would be interesting to compare the growth of 

ISP5078 + pIJ673 and MP2 + plJ673 under the same growth conditions. This 

may allow further insights into the behaviour of the plasmid in different host 

backgrounds and under different environmental conditions.

General Conclusions

The microcosm experiments have allowed initial studies of specific scab- 

causing streptomycetes in association with potato plants and qualitative and
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quantitative measurement of the rhizosphere effect. They have also permitted 

the evaluation of several approaches to monitoring in sterile soil that might be 

applied to studies in situ. Studies under non-sterile conditions assisted in 

demonstrating the short-comings of viable plate count procedures for 

monitoring despite the culturability of the inoculant. They indicated the need 

for alternative approaches such as the direct extraction and characterisation of 

nucleic acids from environmental samples under these conditions. Approaches 

for marking genetically uncharacterised strains by transformation with 

plasmids and induced mutations for antibiotic resistance highlighted the 

problems that either of these strategies may result in unstable markers and that 

all strains that are generated should be rigourously tested for loss of markers 

and for comparable ecological fitness to the parent strain. The direct 

observation approaches of RNA in situ hybridization and scanning electron 

microscopy though not quantitative yielded most information about the growth 

and activity of inoculants in association with plants and soil.
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Chapter 7 Discussion

Confusion over the taxonomic status of Streptomyces scabies, the causal agent 

of common scab of potatoes developed when the type strain put forward by 

Waksman & Henrici (1948) did not match the original description of the strain 

(Thaxter, 1891). Confusion was compounded with the deposition of many 

taxonomically distinct strains found to be common scab pathogens, in culture 

collections under the name of Streptomyces scabies.

Attempts were made to clarify the taxonomic position of scab-causing strains 

using phenotypic variation (Lambert & Loria, 1989) and more recently on the 

basis of DNA homology (Healy & Lambert, 1991) [Chapter 3], Common 

scab strains have also been included in larger comprehensive studies on the 

organisation and taxonomy of the Streptomyces genus (Williams et al., 1983a, 

Kamper et al., 1991). Phenotypic characterizations by Lambert & Loria (1989) 

indicated that scab-causing streptomycetes formed a taxonomically defined 

group consistent with Thaxter’s original description of Streptomyces scabies. 

In contrast the DNA homology studies indicated the genetic distinctness of 

Streptomyces scabies strains conforming to the revived description of 

S.scabies Lambert & Loria (1989) from two other groups of plant pathogenic 

streptomycetes.

These current studies were initiated in response to the need for an integrated 

approach to clarify further, the taxonomic position of scab-causing 

streptomycetes. The aim was to take a diverse collection of plant pathogenic 

streptomycetes isolated and obtained from agricultural centres throughout the 

world, and to compare them on the basis of phenotype, pathogenicity in the 

glass house and hybridization with 16S rRNA targeted probes complimentary 

to sequences of Streptomyces scabies ISP5078 (Witt et al., 1989).
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These findings support the views of others that plant pathogenic 

streptomycetes form a taxonomically heterogeneous grouping (Wollenweber, 

1920; Millard & Burr, 1926; Corbaz, 1964; Labruyere, 1971; Archuleta & 

Easton, 1981) rather than a taxonomically defined group (Lambert & Loria, 

1989). The strains were clustered on the basis of phenotypic characters, rRNA 

hybridization signals and pathogenicity. Dendrograms were produced that 

were consistent with the phenotypic identification of isolates using the 

computer assisted probability matrix (Williams et al., 1983b). The pathogenic 

streptomycetes appeared to form three centres of variation, with the 

S.albidoflavus and S.atroolivaceus (cluster 1 and 3) strains clustering together, 

the S.rochei (cluster 12) strains clustering together and the S.cyaneus and 

S.diastatochromogenes (cluster 18 and 19) strains grouping together ( Fig.s 

8,9,10; Section 3.6). The well characterized strain that has been used 

throughout this study, ISP5078 clusters with the S.albidoflavus strains. Each 

group contained pathogenic isolates although a number of highly virulent 

isolates clustered with the strains identifying to S.cyaneus and 

S.diastatochromogenes. The recently designated type strain for S.scabies 

ATCC 49173 (Lambert & Loria, 1989) fell within this cluster.

These studies also highlighted the relative merits of 16S rRNA targeted probes 

in the characterization of streptomycetes. Hybridization signals obtained with 

16S rRNA probes complimentary to the cx (position 982 to 998, S.ambofaciens 

nomenclature) and 3 (position 1102 to 1122) variable regions (Stackebrandt et 

al., 1991) gave results consistent with the phenotypic identifications. These 

probes appeared useful in the identification of strains (pathogenic and non- 

pathogenic) taxonomically related to ISP5078. Hybridization results obtained 

with the probes were consistent with the findings Stackebrandt et al. (1991) on
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the distribution of these sequences among specific Streptomyces species 

groups. Stackebrandt et al. (1991) established that the presence of specific 

16S sequences correlated well with the taxonomic identity of strains (derived 

on the basis of phenotypic criteria). Phenotypic characterizations did however 

provide more information on the identity and relatedness of the isolates to each 

other and other streptomycetes in the genus, than probing with 16S rRNA 

targeted probes.

The variable regions of the 16S rRNA molecule contain only limited sequence 

variation, with 19 differences identifiable in the oc region and 12 in the 3 

region, from an analysis of 77 strains from 55 Streptomyces species 

(Stackebrandt et al., 1991). These differences were not sufficient to allow 

each described species to be distinguished from each other, although some 

sequence variations do appear unique for particular species (Witt et al., 1989; 

Stackebrandt et al., 1991). A third variable region has also been described and 

designated the Y region (positions 158 to 203). This region contains the 

greatest sequence variation on the 16S rRNA molecule and is considered to 

provide more reliable targets for oligonucleotide probes and primers than the ex 

and 3 regions (Stackebrandt et al., 1991).

While the approach may assist in the elucidation of taxonomic relatedness, 

sequence variation on the 16S rRNA molecule alone is insufficient for the 

identification of unknown isolates. Sequence data is currently being collected 

for the larger 23S rRNA molecule, which contains greater amounts of 

variation and promises to provide more species and strain-specific sequences.

This study also illustrated that optimal conditions for the use of these probes 

should be ascertained. Problems of poor binding were encountered in this
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study with the 0 probe and poor functioning of the 0  S.lividans probe were 

also found in another study (D.Hahn pers. comm.)* It is possible that these 

difficulties could have been overcome through rigorous experimenting with 

the hybridization methodology. Points to consider include strategies for 

denaturing the target RNA, the empirical determination of the Tm of probes 

and the optimisation of hybridization conditions (Hames & Higgins, 1987).

The approaches considered may be divided into those that rely on the isolation, 

cultivation and then enumeration of the inoculant from soil or plant material 

on specific isolation media. Such approaches require a selectable phenotype. 

Antibiotic resistance has been frequently used as it confers the advantage of 

being able to deselect the indigenous background contaminants. Alternative 

approaches involve the isolation of specific and diagnostic molecules, such as 

nucleic acids. Enumeration of inoculants in environmental materials is thus 

calibrated in terms of the relative strengths of hybridization signals from 

specific, diagnostic nucleic acid target sequences.

An initial investigation into the patterns of naturally occurring resistance and 

susceptibility to antibiotics was made for ISP5078. Particular resistances were 

evaluated alone and in combination for the selective recovery of strain 

ISP5078 from the indigenous streptomycetes in soil. The advantage of this 

approach was that the strain would not have been manipulated to obtain a 

characteristic phenotype. Strains marked via mutation or the introduction of 

plasmids and reporter genes may exhibit an altered physiology which may in 

turn affect their ecology. This approach proved unsuccessful as it appeared 

difficult to discriminate strain ISP5078 from phenotypically similar soil 

isolates harbouring similar patterns of antibiotic resistance and susceptibility. 

In addition, when several selective agents were combined in a minimal media
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synergistic, toxic effects occurred suppressing the growth of the inoculant and 

the indigenous streptomycetes in the soil. These findings emphasised the 

difficulties associated with the taxonomy and pathogenicity of scab-causing 

strains, as avirulent isolates appeared morphologically and physiologically 

undistingishable from virulent isolates.

Attempts were also made to mark the chromosome of ISP5078 with a 

construct containing the nptll and xylE reporter genes. The combination of the 

nptll gene conferring resistance to high levels of kanamycin and the xylE gene 

encoding the production of catachol 2,3 dioxygenase, an enzyme which 

catalyses the conversion of catechol into a distinctive yellow compound (2- 

hydroxy muconic acid), allows instant recognition of the inoculant. This 

system confers the advantage of selective isolation of the inoculant from 

environmental samples using antibiotic resistance and the catechol 2,3 

dioxygenase activity, which being restricted to pseudomonads harbouring Tol 

plasmids is absent from indigenous streptomycete populations. In addition the 

xylE system has been shown to work very efficiently in streptomycetes 

(Clayton & Bibb, 1989; Ingram et al., 1989). Despite obtaining the desired 

construct in E.coli DH5cx. Problems were encountered in delivering the 

construct to the chromosome of ISP5078, a genetically uncharacterized strain 

with no specific genetic vectors. The procedures that were used in this study 

utilised PEG mediated protoplast transformation (Hopwood et al., 1985). The 

protoplasting step induced widespread spontaneous kanamycin resistance in 

regenerants making the recognition of a low frequency chromosomal 

recombination event impossible. Induction of spontaneous kanamycin 

resistance via protoplasting has also been reported by Hotta et al. (1988a) in 

S.griseus, ie. strains with a similar identity to ISP5078. Hotta and colleagues 

have characterised this phenomenon and identified the production of a unique
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actyltransferase enzyme (AAC 3) in S.griseus protoplast regenerants. 

Strategies that obviate the need for transformation methods which incorporate 

a protoplast step, may overcome these difficulties. The induction of 

kanamycin resistance in protoplasted cells does prompt questions concerning 

the affects that protoplasting has on the physiology, morphology and fitness of 

strains that undergo this manipulation and consequently their value as marked 

strains in ecological investigations. Alternative strategies might focus on the 

application of phage delivery vectors to genetically uncharacterized strains 

such as ISP5078. These studies also drew attention to the fact that ISP5078 

and some other scab-causing streptomycetes are characterized by a distinctive 

yellow substrate mycelium, similar in colour to the xylE and catechol product, 

2-hydroxy muconic acid. This similarity in colour could cause confusion in 

the discrimination of xylE marked strains. Thus future attempts to mark these 

strains with reporter genes might consider alternative combinations of strains 

and markers.

Initial characterization studies with 16S rRNA targeted probes indicated that 

the 31 probe might be specific for common scab strain ISP5078. Although 

further investigations revealed this not to be the case. Studies were initiated to 

evaluate the application of a 16S rRNA targeted oligonucleotide probe for the 

detection and monitoring of scab inoculants in situ. Non-sterile microcosm 

work had revealed the difficulties associated with the study of these inoculants 

in the presence of a prolific background soil microflora using traditional plate 

count methods. An approach for detection utilising rRNA targeted probes was 

attractive as it obviated the need to deselect the indigenous background soil 

microflora. Furthermore the multiple copies of ribosomes estimated per cell 

(104 to 105) meant that an RNA approach would be more sensitive than 

probing genomic DNA (6 rDNA operons have been estimated per
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streptomycete cell).

Obtaining nucleic acids free of humic acid contamination was the greatest 

challenge in this type of approach. Humic acids are small negatively charged 

molecules that behave in a biochemically similar way to nucleic acids and 

hence will co-purify with them. Humic acid contamination of nucleic acids 

may affect the binding of the nucleic acids to hybridization membranes and the 

efficiency of hybridization. Some progress was made in the development of 

this approach as ribosomal RNA could be isolated fairly reproducibly from 

soil samples (as visualised by gel electrophoresis). However obtaining 

efficient hybridizations using a dot-blot approach where the nucleic acids and 

humic acids were concentrated together was more difficult. The concentration 

of nucleic acids into a small spot on a manifold was desirable in order to 

enhance sensitivity. Hybridization signals were obtained from RNA that had 

been recovered from inoculants spiked into soils using the methodology of 

Hughes & Galau (1988) and an additional extraction with chloroform saturated 

in TE buffer. However, hybridization signals were only recovered from 

samples that appeared to contain significant amounts of rRNA when examined 

visually using gel electrophoresis. It should be possible to increase sensitivity 

by one or two orders of magnitude. This indicated that samples were still 

considerably contaminated with humic acids and or hybridization procedures 

were very inefficient. Estimates of detection limits for streptomycete 

inoculants in soil, indicated that ribosomal RNA from 107 spores could be 

recovered from soil and visualised on an agarose gel. Detection limits may 

then be reduced 1 to 2 orders of magnitude with the application of a reliable 

and efficient hybridization system. However, if detection limits were brought 

down to 104 to 105 spores g-1 soil, then the rRNA approach does not actually 

offer enhanced sensitivity over traditional plate count approaches. Plate
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counts produce quantitative data that is amenable to statistical analysis and 

hence assuming the inoculant being investigated is amenable to cultural 

approaches, the plate count will provide more information. If the culturability 

assumption does not hold, methods involving the direct extraction of target 

nucleic acids may offer more ecological information on the strain under study.

With the advent of PCR technology, the combination of DNA extraction and 

PCR will undoubtedly offer enhanced sensitivity over the natural amplification 

of the ribosomal sequences. Furthermore PCR technology may also be applied 

to ribosomal RNA, with the incorporation of a reverse transcriptase step to 

produce cDNA which may then be amplified by PCR (Medlin et al„ 1989). 

The success of the reverse transcriptase step will be determined by the 

secondary structure of the molecule surrounding the target sequence and the 

length of the target sequence. Since this approach utilises a short target 

sequence i.e. the length of an oligonucleotide probe this approach may be 

worth considering where the need for the most sensitive means of detection 

out weighs the need for rapid routine testing and minimum manipulations.

Perhaps the fact that approaches based on RNA have not been adopted widely 

by environmental scientists, who have instead focused on the direct probing or 

amplification of the DNA, emphasises the preference to work with DNA. 

DNA being more stable requires less vigilance in its preparation and handling 

and will consequently be more amenable to use in the routine detection and 

monitoring analyses required in environmental studies.

Strains (MP2 + pIJ673 and TK24) marked with a plasmid and a mutation were 

studied initially under near-environmental conditions in non-sterile soil
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(Section 6.3.1). These studies illustrated that S.lividans TK24 harbouring a 

streptomycin resistance mutation was less able to compete in this environment 

than the scab isolate MP2 harbouring plasmid pIJ673. Hence by day 120, 

TK24 was not detectable, while the scab strain MP2, harbouring pIJ673, was. 

Differences in survival and fitness were attributed to the presence of the 

debilitating streptomycin resistance mutation in TK24. However, there may 

also have been a selective advantage in the presence of the plasmid and 

therefore the antibiotic resistance determinants as in the rhizosphere 

environment which is characterised by intense microbial competition and 

antagonism (Fravel, 1988). While there may be some loss of the plasmid from 

the MP2 strain (which could not be assessed), a significant proportion of the 

population did maintain it and remain within detectable limits. Interestingly, 

the plasmid did not appear to represent a significant metabolic burden on the 

strain or its ability to secure a niche in an environment with an apparent 

prolific soil microflora (Fig. 30 & 31).

This study in non-sterile soil emphasised the difficulties of working under 

environmental conditions, as estimates of error based on minimum significant 

difference values were so high, that the analysis of trends in the data was 

compromised. These difficulties were due to the abundant indigenous soil 

microflora, a problem that appeared particularly exaggerated in the presence of 

a developing potato plant and decomposing mother tuber. It was concluded 

that in order to sensitively evaluate the growth and survival of scab inoculants 

under non-sterile conditions that methods for detection and monitoring had to 

be able to overcome the problems of the intense background soil microflora, 

that contributed to insensitive detection using the plate count even with very 

selective media. Under optimal conditions the sensitivity of the plate count is 

such that if 100 microbes are present in a soil sample only one may be detected
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once the soil has been diluted 1 : 10 and a 1/10 fraction of that plated out. The 

problems of microbial contamination make this count 2 to 3 orders of 

magnitude more insensitive. Difficulties like this prompted an enquiry into 

other methods of detection that are not dependent on cultivation such as 

nucleic acid based methodology. This is in addition to the difficulties 

associated with large error margins, which could be compensated for to some 

degree by increasing the amount of replication in the experiment. However, 

working with 1000 g soil pots, with and without plants was very time 

consuming and unfortunately imposed constraints on the amount of replication 

that could be included in the experiment.

For the reasons described above and in order to evaluate alternative 

methodology for monitoring and detection of inoculants it was considered 

necessary to focus on studies of the plant microbe interaction in sterile soil, 

under reproducible conditions. Once the system has been characterised and 

methodology evaluated in sterile soil, increasing complexity can be introduced 

until ultimately studies may be conducted in situ. By characterising the system 

in sterile soil and then introducing further complexity, such as competition etc. 

it is possible to assess the affect of these factors on the plant microbe 

interaction and hence gain more insight into the dynamics of microbial 

communities.

Studies therefore continued by focusing on the interaction between 

Streptomyces scabies ISP5078 and an axenic potato plant in 20 g sterile soil 

microcosms. These studies build upon the findings of Wellington et al. (1989) 

and other SEM studies of the streptomycete lifecycle in soil (Mayfield et a\„ 

1972). The same patterns of the germination of streptomycete spores, mycelial 

development followed by exhaustion of nutrients and moisture and sporulation
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were observed using scanning electron microscopy and in situ hybridization.

It was apparent that the potato rhizosphere did indeed provide a significant 

source of nutrients and amendment for inoculants, as scanning electron 

micrographs show the roots covered in mycelial filaments and streptomycete 

spore chains. This effect was localised and not detectable when the bulk soil 

including root material was sampled and enumerated using viable plating 

procedures. Enhanced population levels of inoculants in association with the 

roots were detectable by plate count methods when the roots and associated 

soil were sampled and enumerated. Furthermore the potato plant added an 

additional dynamic element to the microcosms as inoculants could be 

visualised in both the mycelial and spore growth forms at day 30. In contrast, 

our studies in amended soil indicated that after day 15 mycelial development 

was no longer visible, illustrating that the developing plant is supplying fresh 

sources of nutrients to the inoculants after those present in an amended soil 

would have been exhausted. SEM and in situ hybridization studies in the 

sterile unamended soil reveal little growth of inoculants (Fig.s 43 &44), while 

in sterile soils amended with 1 % starch and chitin the prolific development of 

streptomycete mycelium may be observed (Fig. 37a)

Under sterile conditions scanning electron microscopy and in situ 

hybridization studies were able to provide similar information about the 

activity and growth form of the inoculant in soil. Scanning electron 

microscopy has the advantage in sterile soil that higher magnification gives 

better resolution, where as in non sterile environments or mixed cultures, in 

situ hybridization when used in combination with specific probes offers the 

potential to visualise specific inoculants in the context of the background soil 

microflora. Its application to actinomycetes may be limited to nutrient rich
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environments like the rhizosphere where microbes may be observed in the 

mycelial state. Since streptomycete spores cannot be easily identified from the 

background autofluorescence of soil minerals. The technique may therefore be 

limited to the study of unicellular bacteria in bulk soil, as the cells are larger 

than spores and may appear distinctive from the autoflourescence of soil 

minerals.

The importance of the viable plate count to the monitoring of scab-causing 

streptomycetes in soil (it provides a base line for the comparison of alternative 

strategies and has been used for detection and monitoring in earlier studies of 

Streptomyces ecology) prompted the evaluation of a plasmid pIJ673 conferring 

resistance to thiostrepton, neomycin and viomycin and a kanamycin resistant 

mutation as selectable markers in strain ISP5078, in soil. Both the plasmid 

bearing and mutant strains exhibited significant rates of instability and 

reversion in sterile soil conditions. The kanamycin mutants also differed 

morphologically, suggesting the potential for other alterations to the fitness 

and ecology of the strain. These preliminary studies indicated that both 

markers would offer a problematic means of monitoring inoculants in situ, 

where it is not possible to assess the frequency of reversion or instability.

These findings place further pressure on the need to introduce reporter genes 

into microbes in order to use plate count methods of enumeration in non-sterile 

soils. Hence they enforce the need to find appropriate reporter genes and 

technology to deliver the constructs onto the chromosome of genetically 

uncharacterized strains. They also add further weight to the need to develop 

molecular methods of detection that are not dependent on the manipulation of 

the strain under study or the need to deselect it from the indigenous soil 

microflora.
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Probe target sequences for use in detection and monitoring studies may be 

derived from the catalogues of ribosomal RNA sequences that are currently 

being compiled. Significant data exists for the 16S rRNA molecule however, 

limited sequence variation is available for the separation of closely related 

taxa. Current 23S rRNA sequencing work may highlight more taxon, species 

and strain specific target sequences since the molecule is larger and contains 

longer stretches of variable sequences (Stackebrandt et al., 1991). The value of 

these approaches will be dependent on obtaining specific or well defined 

probes. Introduced reporter genes may also serve as unique target sequences 

for probes to a particular strain.

Perhaps the principal objective of microbial ecologists is to investigate and 

hence to acquire insight into the composition and dynamics of particular 

microbial communities. Those objectives more often than not are translated 

into the desire to follow the fate of introduced inoculants in specific 

environments. However, the information obtained on monitoring one 

individual strain, that has probably been subject to some type of manipulations 

in order to mark it distinctively may be all but irrelevant to the quest for 

answers about the character of specific ecosystems. Molecular approaches that 

include the cloning and sequencing of nucleic acids direct from environmental 

samples have begun to provoke questions about the validity of this type of 

study as these new approaches reveal previously undescribed centres of 

microbial diversity (Ward et al., 1990).

Of interest to this study and arising from the identification of the different 

pathogenic and taxonomic scab pathogens are the questions surrounding their 

relative contributions to common scab disease and prevalence in agricultural
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soils. Which strains are ubiquitous, most competitive and indeed most 

important to control or suppress in prevention of the disease? Until we have a 

handle on pathogenicity or some other means of discerning the virulent from 

the avirulent strains these questions will continue to elude us as we are unable 

to perform the most basic of analyses on community composition. In the mean 

time the best we can do is study marked strains with the hope that their 

ecology is representative of the group.

General Conclusions

Characterisation of a group of common scab strains revealed that isolates were 

phenotypically distinct. Isolates were found to identify to three centres of 

variation, identifying with the S.albidoflavus/ S.atroolivaceus strains (cluster 

1 and 3), the S.rochei (cluster 12) and the S.cyaneus/ S.diastatochromogenes 

(clusters 18 and 19) species groups (Williams et al., 1983a). Hybridizations 

withl6S rRNA targeted probes complimentary to the variable o  and |3 

sequences of strain ISP5078 (Witt et al., 1989) indicated that phenotypic 

differences were supported by genetic differences in the 16S rRNA sequences. 

These strains appeared phenotypically and genetically indistinguishable from 

avirulent strains of a similar taxonomic identity. The latter point was 

reaffirmed in attempts to selectively isolate strain ISP5078 on the basis of 

naturally occurring phenotypic traits from non-sterile soil. The suitability of a 

kanamycin resistant mutation induced by protoplasting and a multicopy 

plasmid conferring multiple resistances to antibiotics as suitable markers for 

following the fate of specific scab-causing strains were investigated in sterile 

soil. Both markers appeared unsuitable and demonstrated significant rates of 

reversion and instability. Attempts to develop methodology for the detection 

and monitoring of scab causing inoculants using the 16S rRNA targeted probes 

were made. Ribosomal RNA was recovered reproducibly from soil samples
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as monitored by agarose gel electrophoresis, however problems of 

contaminating humic acids prevented reproducible and efficient hybridization. 

Detection limits for the method were tentatively estimated (assuming efficient 

hybridisation can be achieved) to be of the order of 105 to 106 spores per gram 

soil. The two phase lifecycle of streptomycetes, the active mycelial form and 

dormant or resting spore growth form allow studies of the activity of the strain 

via microscopy. RNA in situ hybridization and scanning electron microscopy 

were applied to studies of the growth of ISP5078 in sterile soil with and 

without potato plants and also with and without chitin and starch amendments. 

Both approaches illustrated the abundance of the microorganism in the 

mycelial state in the presence of nutrients i.e. either with amendments or at the 

potato root surface. In contrast little mycelial development could be observed 

in sterile unamended soil.

Future Work

Of great relevance to studies of the epidemiology of the common scab strains 

are the findings of Lawrence and his colleagues on the production of a 

vivotoxin by pathogenic common scab strains. Since the present 

investigations highlight that common scab strains form a taxonomically 

heterogeneous grouping, with individual strains being indistinguishable 

(phenotypically and genetically) from non-pathogenic strains of a similar 

taxonomic identity. It would appear that that the only way of discriminating 

between strains would be in terms of a pathogenicity determinant. Lawrence's 

group have characterised the toxin (King et al., 1989) and hopefully it will not 

be long before the genes are cloned and sequenced. Probes and PCR primers 

may then be designed to complement specific regions of these gene sequences. 

The suitability of this approach would be dependent on identifying sequences 

that are unique to plant pathogenic streptomycetes harbouring genes conferring
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production of the toxin. Hence preliminary studies would have to compare 

scab toxin sequences against other available toxin sequences and also check 

for specificity by screening other streptomycetes and plant pathogenic 

streptomycetes for the presence of these sequences. In addition to the genetic 

methods of monitoring that may be used, it may also be possible to use an 

assay for the toxin in the same way that Morgan et al. (1989) use the product 

of the xylE gene for phenotypic detection of the strain. It may also be possible 

to raise antisera to the toxin and look for its production and hence to 

extrapolate to the activity of pathogenic strains in the potato-soil environment.

Experiments that develop upon the present studies might consider the 

introduction of further complexity into the basic axenic potato soil microcosm, 

in order to obtain further information about some of the interactions occurring 

in this plant microbe interaction. For instance it would be interesting to do 

various co-inoculation experiments with scab isolates that are representative of 

the three areas of variation identified in the dendrograms. Since the isolates 

come from three phenotypically distinct backgrounds it would be possible to 

distinguish between them on the basis of morphology, melanin pigment 

production, antibiotic resistances etc. Such studies might reveal any 

differences in the competitive ability and fitness of these strains in sterilised 

soils. Various moisture and amendment regimes might also be experimented 

with in order to assess how representatives from the three phenotypic groups 

respond to sudden flushes of moisture and nutrients. Studies that investigate 

the ability of inoculants to gain a niche in plant soil microcosm that have been 

preinoculated with a strain from one of the phenotypic groups and challenged 

15 to 30 days later (the period associated with optimal mycelial development 

in soil) with another inoculant.
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The lifecycle of the Streptomyces being characterised by an active mycelial 

component and dormant spores offers a valuable means of monitoring the 

activity of the inoculant in situ via microscopy. In co-inoculation studies in 

situ hybridizations in conjunction with probes that differentiate between the 

different taxonomic groups may be used to study colonisation of the soil, 

potato roots and developing tubers. Such an approach may offer information 

on the relative abilities of inoculants to compete for and colonise these niches. 

Although the 3 probe would not hybridize to fixed cells, for reasons that were 

not determined, the cx probe was not actually tested and therefore may offer a 

means to visually differentiate S.albidoflavus strains from S.cyaneusl 

S.diastatochromogenes strains in soil.

- 330 -





Abraham, T.A. & Herr, L.J. (1964). Activity of actinomycètes from 

rhizosphere and non-rhizospherte soils of com and soybean in four 

physiological tests. Canadian Journal o f Microbiology 10, 281-285.

Adams, M.J. (1975). Potato tuber lenticels: Development and structure. 

Annals o f Applied Biology 79, 265-273.

Adams, M.J. & Lapwood, D.H. (1978). Studies on the lenticel development, 

surface microflora and infection by common scab (Streptomyces scabies) of 

potato tubers growing in wet and dry soils. Annals of Applied Biology 90, 

335-343.

Agate, A.E. & Bhat, J.V. (1964). Microflora associated with the rhizosphere of 

Calotropis gigantea. Journal o f the Indian Institute fo r  Science 46, 1.

Alexander, M. (1982). Most probable number method for microbial 

populations. In: Methods o f Soil Analysis, part 2, 815-820. Edited by A.L. 

Page, R.H. Miller & D.R. Keeney. ASA & SSSA, Madison, WI.

Allen, S.E., Grimshaw, H.M., Parkinson, J.A. & Quarmby, C. (1974). 

Chemical analysis o f Ecological Materials. Blackwell Scientific Publications, 

Oxford, London, Edinburgh and Melbourne.

Amarger, N. (1988). Introduction of Rhizobium into soils. In: Risk Assessment 

for Deliberate Releases, pp.30-35. Edited by W. Klingmuller. Springer- 

Verlag Berlin, Heidelberg.

Amman, R.I., Binder, B.J., Olson, R.J., Chrisholm, S.W., Devereux, R. &

- 332 -



Stahl, D.A. (1990). Combination of 16S rRNA-targeted oligonucleotide 

probes with flow cytometry for analysing mixed microbial populations. 

Applied and Environmental Microbiology 56, 1919-1925.

Amman, R„ Springer. N., L udwig, W., Gortz, H-D. & Schleifer, K-H. (1991). 

Identification in situ and phylogeny of uncultured bacterial endosymbionts. 

Nature 351, 161-164.

Amman, R.I., Stromley, J., Devereux, R„ Stahl, D.A. (1992). Molecular and 

microscopic identification of sulphate-reducing bacteria in multispecies 

biofilms. Applied and Environmental Microbiology 58, 614-623.

Amner, W„ McCarthy, A.J. & Edwards, C. (1991). Survival of a plasmid­

bearing strain of Bacillus subtilis introduced into compost. Journal o f General 

Microbiology 137, 1931-1937.

Amy, P.S. & Hiatt, H.D. (1989). Survival and Detection of bacteria in an 

aquatic environment. Applied and Environmental Microbiology 55, 788-793.

Anderson, M.L.M. & Young, B.D. (1987). Quantitative filter hybridisation. 

In: Nucleic Acid Hybridisation. Edited by B.D. Hames and S.J. Higgins, 73- 

111.1RL Press, Oxford.

Anderson, E.S. (1968). The ecology of transferable drug resistance in the 

Enterobacteriaceae. Annual Review o f Microbiology 2, 131-180.

Archuleta, J.G. & Easton, G.D. (1981). The cause of deep-pitted scab of 

potatoes. American Potato Journal 58, 385-392.

i - 333 -



Armstrong, J.L., Knudsen, G.R. & Seidler, R.J. (1987). Microcosm method to 

assess survival of recombinant bacteria associated with plant and herbivorous 

insects. Current Microbiology 15, 229-232.

Atlas, R.M. & Baratha, R. (1981). Determination of microbial numbers, 

biomass and activities. In: Microbial Ecology: Fundamentals and 

Applications, 81-132. London: Addison-Wesley, Publishing Company.

Atlas, R.M. (1982). Enumeration and estimation of microbial biomass. In: 

Experimental Microbial Ecology. Edited by R.G. Bums & J.H. Slater, 84-102. 

Blackwell Scientific publications, Oxford.

Atlas, R.M. (1983). Use of microbial diversity measurements to assess 

environmental stress. In: Current Perspectives in Microbial Ecology, 540-545. 

Edited by M.J. Klug & C.A. Reddy, American Society for Microbiology, 

Washington, D.C.

Awong, J., Bitton, G. & Chaudhry, G.R. (1990). Microcosm for assessing 

survival of genetically engineered microorganisms in aquatic environments. 

Applied and Environmental Microbiology 56, 977-983.

Baecker, A.A.W. & Ryan, K.C. (1987). Improving the isolation of 

actinomycètes from soil by high-speed homogenization. South African Journal 

of Plant and Soil 4, 165-170.

Bailey, M.J. & Thompson, I.P. (1992). Detection systems for phylloplane 

pseudomonads. In: Genetic Interactions between Microorganisms in the

- 334 -



Natural Environment. Edited by E.M.H. Wellington & J.D. Van Elsas. 

Pergamon Press, Oxford.

Bakken, L.R. (1985). Separation and purification of bacteria from soil. 

Applied and Environmental Microbiology 49, 1482-1487.

Ball, D.F. & Williams, W.M. (1968). Variability of soil chemical properties in 

2 uncultivated brown earths. Journal o f Soil Science 19, 379-391.

Barkay, T., Fouts, D.L. & Olson, B.H. (1985). Preparation of a DNA gene 

probe for detection of mercury resistance genes in Gram-negative bacterial 

communities. Applied and Environmental Microbiology 49, 686-692.

Barkay, T. & Olson, B.H. (1986). Phenotypic and genotypic adaptation of 

aerobic heterotrophic sediment bacterial communities to mercury stress. 

Applied and Environmental Microbiology 52, 403-406.

Barkay, T. (1987). Adaption of microbial communities to Hg2+ stress. Applied 

and Environmental Microbiology 53, 2725-2732.

Barkay, T., Liebert, C. & Gillman, M. (1989). Hybridization of DNA probes 

with whole community genome for detection of genes that encode microbial 

responses to pollutants: mer genes and Hg2+ resistance. Applied and 

Environmental Microbiology 55, 1574-1577.

Barker, J.M., Mclnnes, J.L., Murphy, P.J. & Symons R.H. (1985). Dot-blot 

procedure with [32P] DNA probes for the sensitive detection of avocado sun 

blotch and other viroids in plants. Journal ofVirological Methods 10, 87-98.

- 335 -



Barry, T., Powell, R. & Gannon, F. (1990). A general method to generate 

DNA probes for microorganisms. Biotechnology 8, 233-236.

Baulcombe, D., Flavell, R.B., Boulton, R.E. & Jellis, G.J. (1984). The 

sensitivity and specificity of a rapid nucleic acid hybridization method for the 

detection of potato virus X in crude sap samples. Plant Pathology 33, 361-370.

Bayliss, H.A. & Bibb, M.J. (1988). Transcriptional analysis of the 16S rRNA 

gene of the rrnD gene set of Streptomyces coelicolor A3(2). Molecular 

Microbiology 2, 569-579.

Bej, A.K., Steffan, R.J., DiCesare J., Haff, L. & Atlas, R.M. (1990). Detection 

of coliform bacteria in water by polymerase chain reaction and gene probes. 

Applied and Environmental Microbiology 56, 307-314.

Belliveau, B.H., Starodub, M.E. & Trevors, J.T. (1990). Occurrence of 

antibiotic and metal resistance and plasmids isolated from marine sediment. 

Canadian Journal o f Microbiology 37, 513-520.

Bennet, R.A. & Lynch, J.M. (1981). Bacterial growth and development in the 

rhizosphere of gnotobiotic cereal plants. Journal o f General Microbiology 

125, 95-102.

Bentjen, S.A., Fredrickson, J.K., van Voris, P. & Li, S.W. (1989). Intact soil- 

core microcosms for evaluating the fate and ecological impact of the release of 

genetically engineered microorganisms. Applied and Environmental 

Microbiology 55, 198-202.

- 336 -



Berg, D.E., Davies, J., Allet, B. & Rochaix, J.D. (1975). Transposition of R- 

factor genes to the bacteriophage lambda. Proceedings o f the National 

Academy o f Science. USA 72, 3628-3632.

Bhuna, A.K. & Johnson, M.G. (1992). Monoclonal antibody-colony 

immunoblot methods specific for isolation of Pediococcus acidlactici from 

foods and correlation with pedicin (Bacteriocin) production. Applied and 

Environmental Microbiology 58, 2315-2320.

Bianchi, M.A.G. & Bianchi, A.J.M. (1982). Statistical sampling of bacterial 

strains and its use in bacterial diversity measurement. Microbial Ecology 8, 

61-69.

Biel, S.W. & Haiti, D.L. (1983). Evolution of transposons: natural selection 

for Tn5 in Esherichia coli K12. Genetics 103, 581-592.

Bjor, T. & Roer, L. (1980). Testing the resistance of potato vareties to 

common scab. Potato Research 23, 33-47.

Blackburn, J.W., Jain, R.K. & Sayler, G.S. (1987). Molecular microbial 

ecology of a napthalene-degrading genotype in activated sludge. 

Environmental Scientific Technology 21, 884-890.

Bleakley, B.H. & Crawford, D.L. (1989). The effects of varying moisture and 

nutrient levels on the transfer of a conjugative plasmid between Streptomyces 

spp. in soil. Canadian Journal o f Microbiology 35, 544-549.

- 337 -



Bloom, R.A., Lechevalier, M.P. & Tate, R.L. (1989a). Physiological, 

chemical, morphological and plant infectivity characteristics of Frankia 

isolates from Myrica pensylvanica: correlation to DNA restriction patterns. 

Applied and Environmental Microbiology 55, 2161-2166.

Bloom, R.A., Mullin, B.C. & Tate, R.L. (1989b). DNA restriction patterns and 

DNA-DNA solution hybridization studies of Frankia isolates from Myrica 

pensylvanica (bayberry). Applied and Environmental Microbiology 55, 2155- 

2160.

Bohool, B.B. & Schmidt, E.L. (1980). The immunofluorescence approach in 

microbial ecology. Advances in Microbial Ecology 4, 203-241.

Bolton, H.Jr., Fredrickson, J.K., Bentjen, S.A., Workman, D.J., Li S-M.W. & 

Thomas, J.M. (1991). Field calibration of soil-core microcosms : fate of a 

genetically altered rhizobacterium. Microbial Ecology 21, 163-173.

Bonde, M.R. & McIntyre, G.A. (1968). Isolation and biology of a 

Streptomyces species causing potato scab in soil below pH 5.0. American 

potato Journal 45, 273-279.

Bone, T.L. and Balkwill, D.L. (1986). Improved flotation technique for 

microscopy of in situ soil and sediment microorganisms. Applied and 

Environmental Microbiology 51, 462-468.

Booth, R.H. (1970). Testing varietal reaction of potatoes to common scab, 

(Streptomyces scabies) under controlled conditions. Journal o f the National 

Institute o f Agricultural Botany 12, 119-123.

- 338 -



Brauns, L.A., Hudson, M.C. & Oliver, J.D. (1991). Use of the polymerase 

chain reaction in detection of culturable and nonculturable Vibrio vulnificus 

cells. Applied and Environmental Microbiology 57, 2651-2655.

Brierly, J.A. (1985). Use of microorganisms for mining metals. In: 

Engineered Organisms in the Environment. Scientific issues, ppl41-145. 

Edited by H.O. Halvorson, D. Pramer and M. Rogul. American Society for 

Microbiology, Washington, D.C.

Brooker, J.D., Lockington, R.A., Attwood, G.T. and Miller, S. (1990). The use 

of gene and antibody probes in identification and enumeration of bacterial spp. 

In: Gene Probes for Bacteria, Edited by A.J.C. Macario & E.Conway de 

Macario, 389-415. Academic Press.

Brown, M.E. (1972). Plant growth substances produced by microorganisms of 

soil and rhizosphere. Journal o f Applied Bacteriology 35, 443-451.

Brown, M.E. (1974). Seed and root bacterization. Annual Review of 

Phytopathology 12, 181-195.

Bums, R.G. (1988). Experimental models in the study of soil microbiology. 

Handbook of laboratory model systems for microbial ecosystems. Volume III, 

51-98. CRC.

Buxton, E.W., Khalifa, O. & Ward, V. (1965). Effect of soil amendment with 

chitin on pea wilt caused by Fusarium oxysporum. f  pisi. Annals o f Applied 

Biology 55, 83-88.

- 339 -



Campbell, R. & MacDonald, R.M. (1989). Microbial Inoculation o f Crop 

Plants. IRL Press at Oxford University Press.

Cassida, L.E. (1988). Minireview: Nonobligate bacterial predation of bacteria 

in soil. Microbial Ecology 15, 1-8.

Chantier, S. & Mclllmurray, M.B. (1988). Labelled antibody methods for 

detection and identification of microorganisms. Methods in Microbiology 19, 

273-332.

Chao, L., Vargas, C., Spear, B.B., & Cox, E.C. (1983). Transposable elements 

as mutator genes in evolution. Nature (London) 303, 633-635.

Witt, D., Liesack, W. & Stackebrandt, E. (1989). Identification of 

streptomycetes by 16S rRNA sequences and oligonucleotide probes. In: 

Recent Advances in Microbial Ecology pp. 679-684. Edited by T. Hatori, Y. 

Ishida, R.Y. Monta & A. Uchida. Tokyo: Japan Scientific Society Press.

Chater, K.F. & Hopwood, D.A. (1984). Streptomyces genetics. In: The Biology 

of Actinomycètes. Edited by M. Goodfellow, M. Mordarski & S.T. Williams, 

229-286. Academic Press, London.

Chaudhry, G.R., Toranzos, G.A. & Bhatti, A.R. (1989). Novel method for 

monitoring genetically engineered microorganisms in the environment. 

Applied and Environmental Microbiology 55, 1301-1304.



Chehab, F.F. & Kan, Y.W. (1989). Detection of specific DNA sequences by 

fluorescence amplification: a colour complementation assay. Proceedings of 

the National Academy of Science 86, 9178-9182.

Church, G.M. & Gilbert, W. (1984). Genomic sequencing. Proceedings o f the 

National Academy of Science 81, 1991-1995.

Clarholm, M. (1981). Protozoan grazing of bacteria in soil - impact and 

importance. Microbial Ecology 7, 343-350.

Clayton, T.M. & Bibb, M.J. (1989). Streptomyces promoter-probe plasmids 

that utilise the xylE gene of the Pseudomonas putida. Nucleic Acids Research 

18,1077.

Cole, M.A. and Elkan, G.H. (1979). Multiple antibiotic resistance of 

Rhizobium japonicum. Applied and Environmental Microbiology 37, 867-870.

Colwell, R.R., Brayton, P.R., Grimes, D.J., Rosak, D.B., Huq, S.A. & Palmer, 

L.M. (1985). Viable but non-culturable Vibrio cholerae and related pathogens 

in the environment: implications for release of genetically engineered 

microorganisms. Biotechnology 3, 817-820.

Colwell, R.R. (1986). Release of genetically engineered microorganisms into 

the environment. MIRCEN Journal 2, 41-49.

Compeau, G., Al-Achi, B.J., Plastouka, E. & Levy, S.B. (1988). The survival 

of rifampicin-resistant mutants of Pseudomonas putida and Pseudomonas 

fluorescens in soil systems. Applied and Environmental Microbiology 54,

- 341 -



2432-2438.

Conway de Macarcio, E.A., Macarcio, J.L. & Kandler. O. (1982). Monoclonal 

antibodies for immunological analysis of methanogenic bacteria. Journal of 

Immunology 129, 1670-1674.

Cooper J.E., Bjourson A. J. & Thompson, J.K. (1987). Identification of Lotus 

rhizobia by direct DNA hybridization of crushed root nodules. Applied and 

Environmental Microbiology 52, 1705-1707.

Cooper, D.C., Stokes, G.W. & Riemann, G.H. (1954). Periderm development 

of the potato tuber and its relationship to scab resistance. American Potato 

Journal 31, 58-66.

Corbaz, R. (1964). Etude des streptomycetes provoquant la gale commune de 

la pomme de terre. Phytopathologishe Zeitschrift Band 51, 351-360.

Cox, K.L. & Baltz, R.H. (1984). Restriction of bacteriophage plaque formation 

in Streptomyces spp. Journal o f Bacteriology 159, 499-504.

Crameri, R., Hinterman, G. & Hutter, R. (1983). Deoxyribonucleic acid 

restriction endonuclease characterization of actinomycete strains. International 

Journal of systematic Bacteriology 33, 625-655.

Cresswell, N., Saunders, V.A. & Wellington, E.M.H. (1991). Detection and 

quantification of Streptomyces violaceolatus plasmid DNA in soil. Letters in 

Applied Microbiology 13, 193-197.

- 342 -



Cresswell, N„ Herron, P.R., Saunders, V.A. & Wellington, E.M.H. (1992). 

The fate of introduced streptomycete, plasmid and phage populations in a 

dynamic soil system. Journal of General Microbiology 138, 659-666.

Cross, T & Goodfellow, M. (1973). Taxonomy and classification of the 

actinomycetes. In: Actinomycetales: Characteristics and Practical 

Importance. Edited by G. Sykes & F.A. Skinner, 11-75.

Datta, A.R., Wentz, B.A. & Hill, W.E. (1987). Detection of hemolytic Listeria 

monocytogenes by using DNA colony hybridisation. Applied and 

Environmental Microbiology 53, 2256-2259.

Davies, J.R. & Gamer, J. (1978). Common scab of potato. University of Idaho, 

College of Agriculture. Current Information Series, 386.

De La Cruz, A.R., Poplawsky, A.R. and Wiese, M.V. (1992). Biological 

suppression of potato ring rot by fluorescent pseudomonads. Applied and 

Environmental Microbiology 58, 1986-1991.

De Long, E.F., Wickham, G.S. & Pace, N.R. (1989). Phylogenetic stains: 

ribosomal RNA-based probes for the identification of single cells. Science 

243, 1360-1363.

De Weger, L.A., Dunbar, P., Mahafee, W.F., Lugtenberg, B.J.J. & Sayler, G.S. 

(1991). Use of bioluminescence markers to detect Pseudomonas spp. in the 

rhizosphere. Applied and Environmental Microbiology 57, 3641-3644.

Devanas, M.A., Rafaeli-Eshkol, D. & Stotsky, G. (1986). Survival of plasmid

- 343 -



containing strains of Escherichia coli in soil: effect of plasmid size and 

nutrients on survival of hosts and maintenance of plasmids. Current 

Microbiology 13, 269-277.

Dijkstra, A.F., Scholten, G.H.N. & VanVeen, J.A. (1987). Colonization of 

wheat seedling (Triticum aestivium) roots by Pseudomonas fluorescens and 

Bacillus subtilis. Biology and Fertility o f Soils 4, 41-46.

Dobritsa, S.V. (1985). Restriction analysis of the Frankia spp. genome. FEMS 

Microbiology Letters 29, 123-128.

Domsch, K.H., Driesel, A.J., Goebel, W., Andersch, W„ Lundenmaiser, W., 

Lotz, W., Reber, H. & Schmidt, F. (1988). Considerations on release of gene- 

technogically engineered microorganisms in the environment. FEMS 

Microbial Ecology 53, 261-272.

Donegan, K., Fieland, V., Fowles, N., Ganio, L. & Siedler, R. (1992). 

Efficacy of burning, tillage and biocides in controlling bacteria released at 

field sites and effects on indigenous bacteria and fungi. Applied and 

Environmental Microbiology 58, 1207-1214.

Dovey, S. & Towner, K.J. (1989). A biotinylated DNA probe to detect 

bacterial cells in artificially contaminated food stuffs. Journal o f Applied 

Bacteriology 66, 43-47.

Dowley, L.J. (1972). Reliability of methods of assessing the degree of tuber 

attack by common scab of potatoes. Potato Research 15, 263-265.

- 344 -



Drahos, D.J., Hemming, B.C. & McPherson, S. (1986) Tracking recombinant 

organisms in the environment: as a selectable marker for fluorescent 

pseudomonads. Biotechnology 4, 439-444.

Dwyer, D.F., Rojo, F. & Timmis, K.N. (1988). Bacteria with new pathways 

for the degradation of pollutants and their fate in model ecosystems. In: Risk 

Assessment for Deliberate Releases, 100-109. Edited by W. Klingmuller. 

Springer-Verlag Berlin, Heidelberg.

Echeverria, P., Seriwatana, J., Chityothin, O., Chaicumpa W. & Tirapat, C. 

(1982). Detection of enterotoxigenic E.coli in water by filter hybridization 

with 3 enterotoxin gene probes. Journal o f Clinical Microbiology 16, 1086- 

1090.

Embley, T.M., Smida, J. & Stackebrandt, E. (1988). Reverse transcriptase 

sequencing of 16S ribosomal RNA from Faenia rectivirgula, Pseudonocardia 

thermophila and Saccharopolyspora hirsuta, three wall type IV actinomycètes 

which lack mycolic acids. Journal o f General Microbiology 134, 961 -966.

Emilsson, B. & Gustafsson, N. (1953). Scab resistance in potato varieties. Acta 

Agric. Scand. 3, 33-52.

Emilsson, B. (1953). The relation between content of chlorogenic acid and 

scab resistance in potato varieties. Acta. Agric. Scand. 3, 328-333.

Engler, G., Holsters, M„ Van Montagu, M., Schell, J., Heinalsteens, J.P. & 

Schilperoort, R. (1975). Agrocin 84 sensitivity: a plasmid determined property 

of A.tumefaciens. Molecular and General Genetics 138, 345-349.

- 345 -



Entwhistle, P.F., Cory, J.S. & Doyle, C. (1988). An overview of insect 

baculovirus ecology as a background to field release of a genetically 

manipulated nuclear polyhedrosis virus. In: Risk Assessment for Deliberate 

Releases, 72-79. Edited by W. Klingmuller. Springer-Verlag Berlin, 

Heidelberg.

Faegri, A., Torsvik, V.L., & Goksoyr, J. (1977). Bacterial and fungal activities 

in soil: separation of bacteria and fungi by a rapid fractionation centrifugation 

technique. Soil Biology and Biochemistry 9, 105-112.

Fahrlander, P.D. (1988). Amplifying DNA probe signals: a Christmas tree 

approach. Biotechnology 6, 1165-1168.

Falkenstein, H„ Bellemann, P., Walter, S., Zeller, W. & Geider, K. (1988). 

Identification of Erwinia amylovora, the fireblight pathogen, by colony 

hybridization with DNA from plasmid pEPA29. Applied and Environmental 

Microbiology 54, 2798-2802.

Fellows, H. (1926). Relation of grwoth in the potato tuber to the potato scab 

disease. Journal of Agricultural Research 32, 757-781.

Ferguson, R.L., Buckley, E.N. & Palumbo, A.V. (1984). Response of marine 

bacterioplankton to differential centrifugation and confinement. Applied and 

Environmental Microbiology 47, 49-55.

Festl, H., Ludwig, W. & Schliefer, K-H. (1986). DNA hybridization probe for 

the Pseudomonas fluorescens group. Applied and Environmental

- 346 -



Microbiology 52, 1190-1194.

Fitch, W.M. & Margliash, E. (1967). Construction of phylogenetic trees: a 

method based on mutational distances as estimated from cytochrome c 

sequences is of general applicability. Science 155, 279.

Fitts, R., Diamond, M., Hamilton, C. & Neri, M. (1983). DNA-DNA 

hybridization assay for the detection of Salmonella spp in foods. Applied and 

Environmental Microbiology 46, 1146-1151.

Flores, R. (1986). Detection of citrus exortis viroid in crude extracts by dot 

blot hybridization: conditions for reducing spurious hybridization results and 

for enhancing the sensitivity of the technique. Journal ofVirological Methods 

13, 161-169.

Ford, D.H. & Taylor, C.B. (1949). The influence of the composition of the 

medium on the growth of bacteria from water. Proceedings for the Society o f 

Applied Bacteriology 1, 11-17.

Ford, S.F. & Olsen, B. (1988). Methods for delecting genetically engineered 

microorganisms in the environment. Advances in Microbial Ecology 10, 45- 

79.

Foster, R.C., Rovira, A.D. & Cook, T.W. (1981). Ultastructure o f the root soil 

interface. American Phytopathology Society, St Paul, Minnesota, USA.

Fox, G.E., Stackebrandt, E., Hespell, R.B., Gibson, J., Maniloff, J., Dyer, T.A., 

Wolfe, R.s., Balch, W.E., Tanner, R„ Magrum, L.J., Zablen, L.B., Blakemore,

I - 347 -



R., Gupta, R., Bonen, L„ Lewis, B.J., Stahl, D.A., Luehrsen K.R., Chen, K.N. 

& Woese, C.R. (1980). The phylogeny of prokaryotes. Science 209, 457-463.

Fox, G.E. & Stackebrandt, E. (1987). The application of 16S rRNA 

cataloguing and 5S rRNA sequencing in bacterial systematics. Methods in 

Micrbiology 19,404-458.

Fravel, D.R. (1988). Role of antibiosis in the biocontrol of plant diseases. 

Annual Review of phytopathology 26, 75-91.

Fredrickson, J.K. & Elliott, L.F. (1985). Colonization of winter roots by 

inhibitory rhizobacteria. Soil Science Society of America Journal 49, 1173- 

1177.

Fredrickson, J.K., Bezdicek, D.F., Brockman, F.J. & Li, S.W. (1988). 

Enumeration of Tn5 mutant bacteria in soil by using a most-probable-number- 

DNA hybridization proceedure and antibiotic resistance. Applied and 

Environmental Microbiology 54, 446-453.

Fredrickson, J.K., Bentjen, S.A., Bolton, H. Jr., Van Voris, P. (1989). Fate of 

Tn5 mutants of growth-inhibiting Pseudomonas sp. in intact soil-core 

microcosms. Canadian Journal o f Microbiology 35, 867-873.

Fuhrman, J.A., Compeau, D.E., Hagstrom, A. & Chan, A.M. (1988). 

Extraction of DNA from natural planktonic microorganisms suitable for 

molecular biological studies. Applied and Environmental Microbiology 54, 

1426-1429.

- 348 -



Fuhrman, J.A. & Lee, S.H. (1989). Natural microbial species variation studied 

at the DNA level. In: Recent Advances in Microbial ecology. Edited by

T.Hatori, Y. Ishida, R.Y. Morita & A.Uchida, 687-692. Tokyo: Japan 

Scientific Society Press.

Gannon, J.T., Maniai, V.B. & Alexander, M. (1991) Relationship between cell 

surface properties and transport of bacteria through soil. Applied and 

Environmental Microbiology 57, 190-193.

Gardener, S. & Jones, J.G. (1984). A new solidifying agent for culture media 

which liquifies on cooling. Journal of General Microbiology 130, 731-733.

Gause, G.F., Maksimova, T.S. & Olkhovatova, O.L. (1981). Resistance of 

actinomycètes to their own antibiotics and its possible significance to ecology. 

In: Actinomycètes. Edited By K.P. Schaal & G. Pulverer, 181-184. Gustav 

Fischer-Verlag, Stuttgart-New York.

Giovannoni, S.J., DeLong, E.F., Olsen, G.J. & Pace, N.R. (1988a). 

Phylogenetic group-specific ologonucleotide Drobes for identification of single 

microbial cells. Journal o f Bacteriology 170, 720-726.

Giovannoni, S.J., Turner, S., Olsen, G.J., Bams, S., Lane, D.J. and Pace, N.R. 

(1988b). Evolutionary relationships among cyanobacteria and green 

chloroplasts. Journal of Bacteriology 170, 3584-3592.

Giovannoni, S.J., Birtschgi, T.B., Moyer, C.L. & Field, K.G. (1990). Genetic 

diversity in the Sargasso sea bacterioplankton. Nature 345, 60-63.

- 349 -



Giovannoni, S. (1991). The polymerase chain reaction. In: Nucleic Acid 

Techniques in Bacterial Systematics. Chapter 7. Edited by E.Stackebrandt & 

M.Goodfellow. John Wiley and Sons Ltd.

Gladek, A., Mordarski, M„ Goodfellow, M & Williams, S.T. (1985). 

Ribosomal ribonucleic acid similarities in the classification of Streptomyces. 

FEMS Microbiology Letters 26, 175-180.

Godwin, D. & Slater, J.H. (1979). The influence of the growth environment on 

the stability of a drug resistance plasmid in Escherichia coli K 12. Journal of 

General Microbiology 111, 201-210.

Goodfellow, M & Williams, S.T. (1983). The ecology of actinomycètes. 

Annual Review o f Microbiology 37, 189-216.

Goodfellow, M & Simpson, K.E. (1985). Ecology of streptomycetes. In: 

Frontiers in Applied Microbiology, volume II, 97-125.

Goodfellow, M. Williams, S.T. & Alderson, G. (1986a). Transfer of 

Actinosporangium violaceum Krasil'nikov and Yuan, Actinosporangium 

vitaminophilum Shomura et al. and Actinopycnidium caeruleum Krasil'nikov 

to the genus Streptomyces, with amended descriptions of the species (1986a). 

Systematic and Applied Microbiology 8, 61-64.

Goodfellow, M. Williams, S.T. & Alderson, G. (1986b). Transfer of Chainia 

species to the genus Streptomyces with amended descriptions of the species. 

Systematic and Applied Microbiology 8, 55-60.

- 350 -



Goodfellow, M. Williams, S.T. & Alderson, G. (1986c). Transfer of 

Elytrosporangium brasiliense Falcao de Morais et al., Microellobosporia 

cinerea Cross et al., Microellobosporia flavea Cross et al., Microellobosporia 

grisea (Konev et al.) Pridham and Microellobosporia violacea (Tsyganov et 

al.) Prodham to the genus Streptomyces with amended descriptions of the 

species. Systematic and Applied Microbiology 8, 48-54.

Goodfellow, M. Williams, S.T. & Alderson, G. (1986d). Transfer of Kitasatoa 

purpurea Matsumae and Hat a to the genus Streptomyces as Streptomyces 

purpureus comb. nov. Systematic and Applied Microbiology 8, 65-66.

Goss, R.W. & Ajansiev, M.M. (1938). Influence of rotations under irrigation 

on potato scab, Rhizoctonia solani and Fusarium wilt. Nebraska Agricultural 

Experimental Station Bulletin 317, 18.

Gowland, P.C. & Slater, J.H. (1984). Transfer and stability of drug resistance 

plasmids in Esherichia coli K12. Microbial Ecology 10, 1-3.

Grunstein, M. & Hogness, D.S. (1975). Colony hybridization: a method for the 

isolation of cloned DNAs that contain a specific gene. Proceedings o f the 

National Academy o f Science USA 72, 3961-3965.

Gunn, R.E., Jellis, G.J., Webb, P.J. & Starling, N.C. (1983). Comparison of 

the three methods for assessing varietal differences in resistance to common 

scab disease (S.scabies) of potato. Potato Research 26, 175-178.

Habili, N., Mclnnes, J.L. & Symons, R.H. (1987). Nonradioactive, photobiotin 

labelled DNA probes for the routine diagnosis of barley yellow dwarf virus.

- 351



J o u r n a l  o f V i r o l o g i c a l  M e t h o d s  16, 225-237.

Habte, M. & Alexander, M. (1977). Further evidence for the regulation of 

bacterial populations in soil by protozoa. Archives o f Microbiology 113, 181- 

183.

Habte, M. & Alexander, M. (1978a). Protozoan density and the coexistence of 

protozoan preditors and bacterial prey. Ecology 59, 140-146.

Habte, M. & Alexander, M. (1978b). Mechanisms of persistence of low 

numbers of bacteria preyed upon by protozoa. Soil Biology and Biochemistry 

10, 1-6 .

Hahn, D., Kester, R„ Starrenburg, M.J.C. & Akkermans, A.D.L. (1990a). 

Extraction of ribosomal RNA from soil for detection of Frankia with 

oligonucleotide probes. Archives o f Microbiology 154 p329-335.

Hahn, D., Starrenbug, M.J.C. & Akkermans, A.D.L. (1990b). Oligonucleotide 

probes that hybridise with rRNA as a tool to study Frankia strains in root 

nodules. Applied and Environmental Microbiology 56, 1342-1346.

Hahn, D. (1990c). 16S rRNA as molecular marker in ecology of Frankia. 

Ph.D. thesis. The Agricultural University, Wageningen, NL.

Hall, G.H., Jones, J.G., Pickup, R.W. & Simon, B.M. (1990). Methods to study 

the bacterial ecology of freshwater environments. Methods in Microbiology 

23, 181-210.

- 352 -



Hames, B.D. & Higgins, S.J. (1987). Nucleic Acid Hybridisation. IRL press, 

Oxford. Washington D.C.

Harrison, M.D. (1962). Potato russet scab, its cause and factors affecting 

development. American Potato Journal 39, 368-387.

Healy, F.G. & Lambert, D.H. (1991). Relationships among Streptomyces spp. 

causing potato scab. International Journal of Systematic Bacteriology 41, 

479-482.

Heijen, C.E. & Van Veen, J.A. (1991). A determination of protective 

microhabitats for bacteria introduced into soil. FEMS Microbial Ecology 85, 

73-80.

Henis, Y., Sneh, B. & Katan, J. (1967). Effect of organic amendments on 

Rhizoctonia and acompanying microflora in soil. Canadian Journal of 

Microbiology 13, 643-650.

Herron, P.R. & Wellington, E.M.H. (1990). New method for extraction of 

streptomycete spores from soil and application to the study of lysogeny in 

sterile amended and non sterile soil. Applied and Environmental Microbiology 

56, 1406-1412.

Herron, P. (1991). Interactions between actinophage and streptomycetes in 

soil. Ph.D. Thesis. Warwick University.

Hill, W.E., Payne, W.L., & Aulisio, C.C.G. (1983). Detection and enumeration 

of virulent Yersinia enterocolitica in food by DNA colony hybridization.

- 353 -



A p p l i e d  a n d  E n v i r o n m e n t a l  M i c r o b i o l o g y  46, 636-641.

Hilleman, D., Puhler, A. & Wohlleben, W. (1991). Gene disruption and gene 

replacement in Streptomyces via single stranded DNA transformation of 

integration vectors. Nucleic Acids Research 19, 727-731.

Hintermann, G., Crameri, R., Kieser, T. & Hutter, R. (1981). Restriction 

analysis of the Streptomyces glaucescens by agarose gel electrophoresis. 

Archives in Microbiology 130, 218-222.

Hirsh, P.R. & Spokes, J.R. (1988). Rhizobium leguminosarum as a model 

system for investigating gene transfer in soil. In: Risk Assessment for  

Deliberate releases, ppl0-17. Edited by W. Klingmuller. Springer-Verlag 

Berlin, Heidelberg.

Ho, W.C. & Ko, W.H. (1982). Characteristics of soil microbiostasis. Soil 

Biology and Biochemistry 14, 595-635.

Hobbie, J.E., Daley, R.J. & Jasper, S. (1977). Use of nuclepore filters for 

counting bacteria by fluorescence microscopy. Applied and Environmental 

Microbiology 33, 1225-1228.

Hodgson, A.L.M. & Roberts, W.P. (1983). DNA colony hybridization to 

identify Rhizobium strains. Journal o f General Microbiology 129, 207-212.

Hoffman, G.M. (1959). Untersuchungen zur physilogischen spezialisierung 

von Streptomyces scabies (Thaxt.) Waksman et Henrici. Zentrabl. f. 

Bakteriologie, Parasitenkunde, Infekionshrankheiten u Hygiene, II. Abt: 112.

- 354 -



Holben, W.E. & Tiedje J.M. (1988). Applications of nucleic acid hybridization 

in microbial ecology. Ecology 69, 561-568.

Holben, W.E., Jansson, J.K., Chelm, B.K. & Tiedje, J.M. (1988). DNA probe 

method for the detection of specific microorganisms in the soil bacterial 

community. Applied and Environmental Microbiology 54, 703-711.

Hooker, W.J. (1956). Survival of Streptomyces scabies in peat soil planted 

with various crops. Phytopathology 46, 677-681.

Hooker, W.J. & Page, O.T. (1960). Relation of potato tuber growth and skin 

maturity to infection by common scab Streptomyces scabies. American Potato 

Journal 37, 414-423.

Hopkins, D.W., Macnaughton, S.J. & O'Donnell, A.G. (1991a). A dispersion 

and differential centrifugation technique for representatively sampling 

microorganisms from soil. Soil Biology and Biochemistry 23, 217-225.

Hopkins, D.W., Macnaughton, S.J. & O'Donnell, A.G. (1991b). Evaluation 

and élutriation for sampling soil microorganisms. Soil Biology and 

Biochemistry 23, 227-232.

Hoppe, H.G. (1978). Relationships between active bacteria and heterotrophic 

potential in the sea. Netherlands Journal of Sea Research 12, 78-98.

Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, 

H.M., Lydiate, D.J., Smith, C.P., Ward, J.M. & Schrempf, H. (1985). Genetic

- 355 -



Manipulation of Streptomyces, A laboratory manual, John Innes Foundation, 

Norwich.

Hopwood, D.A., Kieser, T., Lydiate, J. & Bibb, M.J. (1986). Streptomyces 

plasmids: their biology and use as cloning vectors. In: The Bacteria, vol. IX: 

The Antibiotic Producing Streptomyces pl59-229. Edited by S.W. Queener & 

L.E. Day. Academic Press, Orlando.

Hotta, K. & Ishikawa, J. (1988). Strain and species-specific distribution of the 

streptomycin gene cluster and kan-related sequences in Strepiomyces griseus. 

Journal o f Antibiotics 41, 1116-1123.

Hotta, K., Ishikawa, J & Mizuno, S. (1988a). Activation of cryptic kanamycin- 

resistance gene in Streptomyces griseus. In: Biology of Actinomycetes 1988. 

Edited by T.Beppu & H.Ogawara, 380-385. Japan Scientific Societies Press.

Hotta, K., Ishikawa, J., Ichihara, M„ Nagahawa, H. & Mizuno, S. (1988b). 

Mechanism of increased kanamycin-resistance generated by protoplast 

regeneration of S.griseus. I. Cloning of a gene segment directing a high level 

of an aminoglycoside 3-N Acetyltransferase activity. Journal o f Antibiotics 

41,94-103.

Howie, W.J. & Echandi, E. (1983). Rhizobacteria: influence of cultivar and 

soil type on plant growth and yield of potatoes. Soil Biology and Biochemistry 

15, 127-132.

Howie, W. & Cook, R.J. (1985). The effect of motility on wheat root 

colonization by fluorescent pseudomonads antagonistic to take-all of wheat.

- 356 -



P h y t o p a t h o l o g y  75, 1344.

Hughes, V.M. & Datta, N. (1983). Conjugative plasmids in bacteria in the pre­

antibiotic era. Nature 302, 725-726.

Hughes, D.W. & Galau, G. (1988). Preparation of RNA from cotton leaves 

and pollen. Plant Molecular Biology Reporter, volume 6, 253-257.

Ingram, C., Brawner, M., Youngman, P. & Westpheling, J. (1989). xylE 

functions as an efficient reporter gene in Streptomyces spp: use for the study of 

the gal PI, a catabolite-controlled promoter. Journal of Bacteriology 171, 

6617-6624.

Ishikawa, J., Koyama, Y., Mizuno, S. & Hotta, K. (1988). Mechanism of 

increased kanamycin-resistance generated by protoplast regeneration of 

Streptomyces griseus. The Journal o f Antibiotics 41, 104-112.

Jacquard, P. (1908). Nouvelles recherches sur la distribution florales. Bull.

Soc. vaud. Sci. nat. 44, 223.

Jain, R.K., Sayler, G.S., Wilson, J.T., Houston, L. & Pacia, D. (1987). 

Maintenance and stability of introduced genotypes in ground water aquifier 

material. Applied and Environmental Microbiology 53, 996-1002

Jain, R.K., Burlage, R.S. & Sayler, G.S. (1988). Methods for detecting 

recombinant DNA in the environment. CRC Citical Reviews in Biotechnology 

8, 33-84.

- 357 -



Jefferson, R.A. (1989). The gus reporter gene system. Nature 342, 835-837.

Jellis, G. J. (1975). The use of polythene tunnels in screening potatoes for 

resistance to common scab (Streptomyces scabies). Plant pathology 24, 241- 

244.

Jellis, G. J. (1977). The relative importance of host and environment in 

determining the incidence and severity of lesions on common scab 

(Streptomyces scabies) on potato. Potato Research 20, 205-301.

Jensen, P.R., Dwight, R. & Fenical, W. (1991). Distribution of actinomycetes 

in near-shore tropical marine sediments. Applied and Environmental 

Microbiology 57, 1102-1108.

Johnston, A.W.B. & Beringer, J.E. (1975). Identification of the Rhizobium 

strains in pea root nodules using genetic markers. Journal of General 

Microbiology 87, 343-350.

Jones, A.P. (1931). The histogeny of potato scab. Annals o f Applied Biology 

18.313-333.

Jones, D. & Sackin, M.J. (1980). Numerical methods in the classification and 

identification of bacteria with especial refemce to the Enterobacteriaceae. In: 

Microbial Classification and Identification, 73-106. Academic Press, London.

Jones, J.G. (1977). The effect of environmental factors on estimated viable and 

total populations of planktonic bacteria in lakes and experimental enclosures. 

Fresh Water Biology 7, 61-97.

- 358 -



Kamper, P. & Kroppenstedt, R.M. (1991). Probabilistic identification of 

streptomycetes using minaurized physiological tests. Journal o f General 

Microbiology 137, 1893-1902.

Kamper, P„ Kroppenstedt, R.M. & Dott, W. (1991). A numerical 

classification of the genera Streptomyces and Streptoverticillium using 

minaturized physiological tests. Journal o f General Microbiology 137, 1831- 

1891.

Kanazawa, S., Takeshima, S. & Ohta, K. (1986). Effect of waring blender 

treatment on the counts of soil microorganisms. Soil Science and plant 

Nutrition 32, 81-89.

Kasper, C.W. & Tartera, C. (1990). Methods for detecting pathogens in food 

and water. Methods in Microbiology 22, 497-534.

Keating, S.T., Burand, J.P. & Elkington, J.S. (1989). DNA hybridization assay 

for detection of a gypsy moth nuclear polyhedrosis virus in infected gypsy 

moth larvae (Lymantria dispar L.). Applied and Environmental Microbiology 

55, 2749-2754.

Kelch, W.J. & Lee, J.S. (1978). Antibiotic resistance patterns of Gram­

negative bacteria isolated from environmental sources. Applied and 

Environmental Microbiology 36, 450-456.

Keniath, A.P. & Loria, R. (1989). Population dynamics of Streptomyces and 

other actinomycetes as related to common scab of potato. Phytopathology 79,

- 359 -



681-687.

Keniath, A.P. & Loria, R. (1990). Melanin-producing Streptomyces spp. 

respond to potato plant growth and differentially to potato cultivars. Canadian 

Journal o f Microbiology 36, 279-285.

Kieser, T„ Hopwood, D.A., Wright, H.M. & Thompson, C.J. (1982). pIJlOl, a 

multi-copy broad host range Streptomyces plasmid, functional analysis and 

development of DNA cloning vectors. Molecular and General Genetics 185, 

223-238.

Kieser, T. & Hopwood, D.A. (1991). Genetic manipulation of Streptomyces : 

New integrating vectors and methods for gene replacement. Methods in 

Enzymology

King, A. & Chater, K.F. (1986). The expression of the Escherichia coli lacZ 

gene in Streptomyces. Journal o f General Microbiology 132, 1739-1752.

King, R.R., Lawrence, C.H., Clark, M.C. & Calhoun, L.A. (1989). Isolation 

and characterisation of phytotoxins associated with Streptomyces scabies. 

Journal o f the Chemical Society, Chemical Communications 13, 849-850.

Kirstein, J.D., Paerl H.W. & Zehr, J. (1991). Amplification, cloning and 

sequencing of a nifH segment from aquatic microorganisms and natural 

communities. Applied and Environmental Microbiology 57, 2645-2650.

Kloepper, J.W., Leong, J., Teintze, M. & Schroth, M.N. (1980). Enhanced 

plant growth by siderophores produced by plant growth-promoting

- 360 -



rhizobacteria. Nature 286, 885-886.

Kloepper, J.W., Lifshitz, R. & Zablotowicz, R.M. (1989). Free living bacterial 

inocula for enhancing crop biotechnology. Trends in Biotechnology 7, 39-44.

Knosel, D. (1970). Untersuchangen zur cellulytischen und pektolytischen 

aktivitat pflanzenschadiene: actinomyceten. Phytopath. Z. 67, 205-213.

Kogure, K., Simidu, U. & Taga, N. (1979). A tentative direct microscopic 

method for counting living marine bacteria. Canadian Journal o f 

Microbiology 25,415-420.

Kokjohn, T.A., Sayler, G.S. & Miller, R.V. (1991). Attachment and replication 

of P .aeuriginosa bacteriophages under conditions simulating aquatic 

environments. Journal o f General Microbiology 137, 661-666.

Kramer, J.G. & Singleton, F.L. (1992). Variations in rRNA content of marine 

Vibrio spp. during starvation- survival and recovery. Applied and 

Environmental Microbiology 58, 201-207.

Kraus, J., Ludwig, W. & Schliefer, K-H. (1986). A cloned 23S rRNA gene 

fragment of Bacillus subtilis and its use as a hybridization probe of conserved 

character. FEMS Microbiology Letters 3, 89-93.

Kuchenbuch, R. & Jungk, A. (1982). A method for determining concentration 

profiles at the soil-root interface by thin slicing rhizopheric soil. Plant and 

Soil 85,291-293.

- 361



Kundu, P.K. & Nandi, B. (1985). Control of Rhizoctonia disease of 

cauliflower by competitive inhibition of the pathogen using organic 

amendments in soil. Plant and Soil 33, 357-362.

Kuritza, A.P., Getty, C.E., Shaughnessy, P., Hesse, R. & Salyers, A.A. (1986). 

DNA probes for the identification of a clinically important Bacteriodes 

species. Journal of Clinical Microbiology 23, 343-349.

Kutzner, H.J. (1981). The family Streptomycetae. In: The Prokaryotes - a 

Handbook on Habitats, Isolation and Identification of Bacteria. Edited by 

M.P. Starr, H. Stolp, H.G. Truper, A. Balows & H.G. Schegel., 2028-2090. 

Springer-Verlag, Berlin.

Labeda, D.P. & Lyons, A.J. (1992). DNA relatedness among strains of sweet 

potato pathogen Streptomyces ipomea (Pearson & Martin 1940) Waksman and 

Henrici 1948. Applied and Environmental Microbiology 58, 532-535.

Labruyere, R.E. (1965). Aardappelschurftbestrijding door beregening. (Control 

of scab by means of overhead irrigation) Mered. Landb. Hogesch. Opzoekstns 

Gent 30, 1670-82.

Labruyere, R.E. (1971). Common scab and its control in seed-potato crops. 

Agricultural Research Reports. (Wageningen) 767, 71.

Lacy, G.H., Stromberg, V.K. & Canon, N.P. (1984). Erwinia amylovora 

mutants and in planta derived transconjugants resistant to oxytetracycline. 

Canadian Journal o f Plant Pathology 6, 33-39.

- 362 -



Lacey, J. (1973). Actinomycetes in soils, composts and fodders. In: 

Actinomycetales: Characteristics and Practical Importance. Edited by G. 

Sykes & F.A. Skinner. Society for Applied Bacteriology, Symposium series 

no. 2, 231-251.

Laksham, D.K., Hiruki, C., Wu, X.N. & Leung, W.C. (1986). Use of [32P] 

RNA probes for the dot-hybridization detection of potato spindle tuber viroid. 

Journal ofVirological Methods 14, 309-319.

Lambert, D.H. & Loria, R. (1989). Streptomyces scabies sp. nov., nom. rev. 

International Journal o f Systematic Bacteriology 39, 387-392.

Langham, C.D., Williams, S.T., Sneath, P.H.A. & Mortimer, A.M. (1989). 

New probability matrices for identification of Streptomyces. Journal o f 

General Microbiology 135, 121-133.

Langton, F.A. (1972). Screening potato clones for resistance to common scab 

(iStreptomyces scabies) in the field. Journal o f Agricultural Science, 

Cambridge 79, 75-81.

Lapwood, D.H. & Dyson, P.W. (1966). An effect of nitrogen on the formation 

of potato tubers and the incidence of common scab (Streptomyces scabies). 

Plant pathology 15, 9-14.

Lapwood, D.H. & Lewis, B.G. (1967). Observations on the timing of irrigation 

and the incidence of potato common scab (Streptomyces scabies). Plant 

Pathology 16, 131-135.

- 363 -



Lapwood, D.H. & Hering, T.F. (1970). Soil moisture and the infection of 

young potato tubers by Streptomyces scabies (common scab). Potato 

Research 13, 296-304.

Lapwood, D.H. (1972). The relative importance of weather, soil and seed- 

borne inoculum in determining the incidence of common scab (Streptomyces 

scabies) in potato crops. Plant Pathology 21, 105-108.

Lapwood, D.H. (1973). Streptomyces scabies and potato scab disease. In: 

Actinomycetales: Characteristics and Practical Importance. Society for  

Applied Bacteriology Symposium Series. Volume 2. Edited By G. Sykes & 

F.A. Skinner, 253-260.

Large, E.C. & Honey, J.K. (1955). Survey of common scab of potatoes in 

Great Britain, 1952 and 1953. Plant Pathology 4, 1-8.

Lauer, F.I. & Eide, C.J. (1963). Evaluation of parent clones of potato for 

resistance to common scab by the highest scab method. European Potato 

Journal 6,35-44.

Lawrence, C.H. & Barker, W.G. (1963). Pathogenicity of Streptomyces 

scabies on potato tubers cultured in vitro. Nature 199, 509-510.

Lawrence, C.H., Clark, M.C. & King, R.R. (1990). Induction of common scab 

symptoms in asceptically cultured potato tubers by the vivotoxin, thaxtomin. 

Phytopathology 80, 606-608.

Leach, J.G., Krantz, F.A., Decker, P. & Mattson, H. (1938). The measurement

- 364 -



and inheritance of scab resistance in selfed and hybrid progenies of potatoes. 

Journal o f Agricultural Research 56, 843-853.

Lechevalier, M.P. & Lechevalier, H.A. (1970). Chemical composition as a 

criterion in the classification of aerobic actinomycètes. International Journal 

of Systematic Bacteriology 20, 435-443.

Lechevalier, H.A., Lechevalier, M.P. & Gerber, N.N. (1971). Chemical 

composition as a criterion in the classification of actinomycètes. Advances in 

Applied Microbiology 14, 47-72.

Lechevalier, M.P. (1981). Ecological associations involving actinomycètes. 

In: Actinomycètes. Edited by K.P. Schaal & G. Pulverer. pl59-166. Gustav 

Fischer Verlag. Stuttgart-New York.

Lechevalier, M.P., Stem, A.E. & Lechevalier, H.A. (1981). Phospholipids in 

the taxonomy of actinomycètes. In: Actinomycètes. Edited by K.P. Schaal & 

G. Pulverer, 111-116. Gustav Fischer Verlag, Stuttgart-New York.

Lechevalier, M.P. (1988). Actinomycètes in agriculture and forestry. In: 

Actinomycètes in Biotechnology. Edited by Academic Press, London.

Lee, S. & Fuhrman, J.A. (1990). DNA hybridization to compare species 

compositions of natural bacterioplankton assemblages. Applied and 

Environmental Microbiology 56, 739-746.

Levy, S.B. (1985). Ecology of plasmids and unique DNA sequences. In: 

Engineered Organisms in the Environment. Edited by H.O. Halvorson, D.

- 365 -



Pramer & M. Rogul, 180-190. American Society for Microbiology, 

Washington, D.C.

Lewis, B.G. (1962). Host-Parasite relationships in the common scab of 

potatoes. Ph.D. Thesis, Nottingham University.

Lewis, B.G. (1970). Effects of water potential on the infection of potato tubers 

by Streptomyces scabies in soil. Annals o f Applied Biology 66, 83-88.

Liang, I.N., Sinclair, J.L., Mallory, L.M. and Alexander, M. (1982). Fate in 

model ecosystems of microbial species of potential use in genetic engineering. 

Applied and Environmental Microbiology 44, 708-714.

Lindow, S.E. (1985). Ecology of Pseudomonas syringae relevant to the field 

use of ice- deletion mutants constructed in vitro for plant frost control. In: 

Engineered Organisms in the Environment. Edited by Halvorsen, H.O., 

Pramer, D. and Rogul, M. Scientific issues, 23-35. American Society for 

microbiology, Washington, D.C.

Lloyd, A.B., Noveroske, R.L. & Lockwood, J.L. (1965). Lysis of fungal 

mycelium by Streptomyces spp. and their chitinase systems. Phytopathology 

55,871-875.

Lloyd, A.B. (1969). Behaviour of streptomycetes in soil. Journal o f General 

Microbiology 56, 165-170.

Locci, R. (1988). Comparative morphology of actinomycetes in natural and 

artificial habitats. In: Biology of Actinomycetes. Edited By Y. Okami, T.

- 366 -



Beppu Si H. Ogawa. Japan Scientific Societies Press.

Lovell, C.R. & Hui, Y. (1991). Design and testing of a functional group- 

specific DNA probe for the study of natural populations of acetogenic bacteria. 

Applied and Environmental Microbiology 57, 2602-2609.

Lowlings, P.H. & Ridgman, W.J. (1959). A spot-sampling method for the 

estimation of common scab on potato tubers. Plant Pathology 8, 125-126.

Lynch, J.M. (1976) The rhizosphere. In: Ultrastructure o f the Root-Soil 

Interface. Edited by Foster, R.C., Rovira, A.D. & Cook, T.W., 395-411. 

American Phytopathology Society, St Paul, Minnesota, USA.

Lynch, J.M. (1982). The rhizosphere. In: Experimental Microbial Ecology. 

Edited by R.G. Bums & J.H. Slater. Blackwell Scientific Publications, Oxford.

MacDonald, R.M. (1986). Sampling soil microfloras: dispersion of soil by ion 

exchange and extraction of specific microorganisms from suspension by 

élutriation. Soil Biology and Biochemistry 18, 399-406.

Macnaughton, S.J., Rose, D.A. and O'Donnell, A.G. (1992). Persistence of a 

xylE marker in Pseudomonas putida introduced into soils of differing texture. 

Journal of General Microbiology 138, 667-673.

MacNeil, D.J. (1987). Introduction of plasmid DNA into Streptomyces lividans 

by electroporation. FEMS Microbiology Letters 42, 239-244.

Makins, J.F. & Holt, G. (1981). Liposome mediated transformation of

- 367 -



streptomycetes by chromosomal DNA. Nature 293, 671-673.

Manceau, C., Gardan, L. & Devaux, M. (1986). Dynamics of RP4 plasmid 

transfer between Xanthomonas campestris pv. corylina and Erwinia herbicola 

in hazelnut tissues in planta. Canadian Journal o f Microbiology 32, 835-841.

Manchester, L., Pot, B„ Kersters, K. & Goodfellow, M. (1990). Classification 

of Streptomyces and Streptoverticillium species by numerical analysis of 

electrophoretic protein patterns. Systematic and Applied Microbiology 13, 

333-337.

Maniatis, T., Fritsch, E.F. & Sambrook, J. (1982). Molecular Cloning: A 

Laboratory Manual. Cold Spring Harbour, New York.

Marais, L. & Vorster, R. (1988). Evaluation in pot and field trials of resistance 

of potato cultivars and breeding lines to common scab caused by Streptomyces 

scabies. Potato Research 31, 401-404.

Martensson, A.M., Gustafsson, J.G. & Ljunggren, H.D. (1984). A modified, 

highly sensitive enzyme-linked immunosorbent assay (ELIZA) for Rhizobium 

meliloti strain identification. Journal of General Microbiology 130, 247-253.

Matsushima, P., Cox, K.L. & Baltz, R.H. (1987). Highly transformable 

mutants of Streptomyces fradiae defective in several restriction systems. 

Molecular and General Genetics 206, 393-400.

Matsushima, P., McHenney, M.A. & Baltz, R.H. (1989). Transduction and 

transformation of plasmid DNA in Streptomyces fradiae strains that express

- 368 -



different levels of restriction. Journal o f Bacteriology 171, 3080-3084.

Mayfield, C.I., Williams, S.T., Ruddick, S.M. & Hatfield, H.L. (1972). Studies 

on the ecology of actinomycètes in soil. IV. Observations on the growth and 

form of streptomycetes in soil. Soil Biology and Biochemistry 4, 79-91.

McCarthy, A.J. & Williams, S.T. (1990). Methods for studying the ecology of 

actinomycètes. Methods in Microbiology 22, 533-563.

McCormick, D. (1986). Detection technology: the key to environmental 

biotechnology. BiolTechnology 4, 419-422.

McHenney, M.A. & Baltz, R.H. (1988). Transduction of plasmid DNA in 

Streptomyces spp. and related genera by bacteriophage FP43. Journal of 

Bacteriology 170, 2276-2282.

McKee, R.K. (1958). Assessment of the resistance of potato vareties to 

common scab. European Potato Journal 1, 65-80.

McQueen, D.A.R., Anderson, N.A. & Schottel, J.L. (1985). Inhibitory 

reactions between natural isolates of streptomycetes. Journal o f General 

Microbiology 131, 1149-1155.

McQueen, D.A.R. & Schottel, J.L. (1987). Purification and characterization of 

a novel extracellular esterase from pathogenic Streptomyces scabies that is 

inducible by zinc. Journal of Bacteriology 169, 1967-1971.

Medlin, L., Elwood, H.J., Stickel, S. & Sogin, M.L. (1989). The

- 369 -



characterization of enzymatically amplified eukaryotic 16S rRNA coding 

regions. Gene 71, 491-499.

Melton, D.A., Kreig, P.A., Rebagliata, M.R., Maniatis, T., Zinn, K. & Green, 

M.R. (1984). Efficient in vitro synthesis of biologically active RNA and RNA 

hybridisation probes from plasmids containing a bacteriophage SP6 promoter. 

Nucleic Acids Research 12, 7035-7056.

Miliotis, M.D., Galen, G.E., Kaper, J.B., & Morris, J.G. Jr. (1989). 

Development and testing of a synthetic oligonucleotide probe for the detection 

of pathogenic Yersinia strains. Journal o f Clinical Microbiology 27, 1667- 

1670.

Millard, W.A. & Burr, S.A. (1926). A study of twenty four strains of 

Actinomyces and their relation tp types of common scab of potato. Annals o f 

Applied Biology 13, 580-644.

Minnikin, D.E., Alshamaony, L. & Goodfellow, M. (1975). Differentiation of 

Mycobacterium, Nocardia and related taxa by thin-layer chromatographic 

analysis of whole organism methanolysates. Journal o f General Microbiology 

88, 200-204.

Minnikin, D.E. & Goodfellow, M. (1981). Lipids in the classification of 

actinomycètes. In: Actinomycètes. Edited By K.P. Schaal and G. pulverer, 99- 

109. Gustav Fisheer Verlag, Stuttgart-New York.

Misaghi, I.J., Olsem, M.W., Billotte, J.M. & Sonoda, R.M. (1992). The 

importance of rhizobacterial mobility in biocontrol of bacterial wilt of tomato.

- 370 -



S o i l  B i o l o g y  a n d  B i o c h e m i s t r y  24, 287-293.

Moore, L.W. (1985). Considerations for the use of Agrobacterium radiobacter 

K84 in agricultural ecosystems. In: Engineered Organisms in the Environment. 

Scientific Issues. Edited by H.O., Halvorsen, D„ Pramer, and M., Rogul, 122- 

128. American Society for Microbiology.

Mordarski, M., Szyba, K„ Pulverer, G. & Goodfellow, M. (1976). 

Deoxyribonucleic acid reassociation of the ‘rhodochrous’ complex and allied 

taxa. Journal o f General Microbiology 94, 235-245.

Mordarski, M., Goodfellow, M„ Syzba, K., Pulverer, G. & Tkacz, A. (1977). 

Classification of the rhodochrous complex and allied taxa based upon 

deoxyribonucleic acid association. International Journal o f Systematic 

Bacteriology 27, 30-35.

Mordarski, M., Goodfellow, M„ Tkacz, A., Pulverer, G. & Schaal, K.P.

(1980) . Ribosomal ribonucleic acid similarities in the classification of 

Rhodococcus and related taxa. Journal o f General Microbiology 118, 313- 

319.

Mordarski, M., Tkacz, A., Goodfellow, M., Schaal, K.P. & Pulverer, G.

(1981) . Ribosomal ribonucleic acid similarities in the classification of 

actinomycetes. In: Actinomycetes. Edited by K.P. Schaal & G. Pulverer, 79-85. 

Gustav Fischer Verlag, Stuttgart-New York.

Mordarski, M., Goodfellow, M., Williams, S.T., & Sneath, P.H.A. (1986). 

Evaluation of species groups in the genus Streptomyces. In: Biological,



Biochemical and Biomedical Aspects o f Actinomycètes, Part B. edited By 

G.Szabo, S. Biro & M. Goodfellow, 517-525. B. Budapest: Akademiai Kiado.

Morel, J.L., Bitton, G., Chaudhry, G.R. & Awong, J. (1989). Fate of 

genetically modified microorganisms in the com rhizosphere. Current 

Microbiology 18, 355-360.

Morgan, J.A.W., Winstanley, C., Pickup, R.W., Jones, J.G. & Sanders, J.R.

(1989). Direct phenotypic and genotypic detection of a recombinant 

pseudomonad population in lake water. Applied and Environmental 

Microbiology 55, 2537-2544.

Morgan, J.A.W., Winstanley, C., Pickup, R.W. & Saunders, J.R. (1991). The 

rapid immunocaptue of Pseudomonas putida cells from lake water using 

bacterial flagella. Applied and Environmental Microbiology 57, 503-509.

Nakano, M.M. & Ogawara, H. (1986). Isolation and characterization of 

ribosome resistance gene from Streptomyces kanamyceticus. In: 5 th 

International Symposium on the Genetics o f Industrial Microorganisms, 177- 

183.

Nortermans, S., Chakraborty, T., Leimeister-Wachter, M., Dufrenne, J., 

Heuvelman, K.J., Maas, H., Jansen, W„ Wemars, K., & Guinee, P. (1989). 

Specific gene probe for detection of biotyped and serotyped Listeria strains. 

Applied and Environmental Microbiology 55, 902-6.

O'Donnell, A. (1988). Recognition of novel actinomycètes. In: Actinomycètes 

in Biotechnology. Edited by M. Goodfellow, S.T. Williams & M. Mordarski,

- 372 -



69-88. Academic Press, London.

Ogram, A., Sayler, G.S. & Barkay, T. (1987). The extraction and purification 

of microbial DNA from sediments. Journal o f Microbiological Methods 7, 57- 

66 .

Ogram, A.V. & Sayler, G.S. (1988). The use of gene probes in the rapid 

analysis of natural microbial communities. Journal o f Industrial Microbiology 

3, 281-292.

Ogram, A., Sayler, G.S. & Barkay, T. (1988). DNA adsorption to soils and 

sediments. Environmental Science and Technology 22, 982-984.

Ogunseitan, O.A., Sayler, G.S. & Miller, R.V. (1992). Application of DNA 

probes to analysis of bacteriophage distribution patterns in the environment.

Applied and Environmental Micorbiology 58, 2046-2052.

Okanishi, M., Akagawa, H. & Umezawa, H. (1972). An evaluation of 

taxonomic criteria in streptomycetes on the basis of deoxyribonucleic acid 

homology. Journal of General Microbiology 72, 49-58.

Old, K.M. & Nicolson, T.H. (1979). The root cortex as part of a microbial 

continum. In: The Soil-Root Interface. Edited by J.L. Hartley & R.S. Russell. 

Academic Press, London, New York & San Francisco.

Olsen, G.J., Lane D.J., Giovanonni, S.J. & Pace, N.R. (1986). Microbial 

ecology and evolution: a ribosomal RNA approach. Annual Review of 

Microbiology 40, 337-365.

- 373 -



Olsen, G.J. (1990). Variation among the masses. Nature 345, 20-21.

Olsen, P.E. & Rice, W.A. (1991). Use of monoclonal antibodies in a colony 

immunoblot analysis of viable Rhizobium cell numbers in legume innoculants 

and on preinoculated seed. Canadian Journal o f Microbiology 37, 430-432.

Owens, R.A. & Denier, T.O. (1981). Sensitive and rapid diagnosis of potato 

spindle tuber viroid disease by nucleic acid hybridization. Science 213, 670- 

672.

Pace, N.R., Stahl, D.A., Lane, D.J. & Olsen, G.J. (1986). The analysis of 

natural microbial populations by ribosomal RNA sequences. Advances in 

Microbial Ecology 9, 1 -56.

Page, S. & Bums, R.G. (1991). Flow cytometry as a means of enumerating 

bacteria introduced into soil. Soil Biology and Biochemistry 23, 1025-1028.

Parkes, R.J. (1987). Analysis of microbial communities within sediments using 

biomarkers. In: Ecology of Microbial Communities. Edited by M.Fletcher, 

T.R.G. Gray & J.G.Jones, 147-177. University Press, Cambridge.

Paul, E.A. & Clark, F.E. (1989). Soil Biochemistry and Microbiology. 

Academic Press.

Person, L.H. & Martin, W.J. (1940). Soil rot of sweet potatoes in Louisiana. 

Phytopathology 30, 913-926.

- 374 -



Peterson, R.G. (1985). Design and Analysis o f Experiments. In: Statistics: 

Textbooks and Monographs, volume 66, 72-111. Marcel-Dekker Incorporated, 

New York and Basel.

Pettigrew, C.A. & Sayler, G.S. (1986). The use of DNA-DNA colony 

hybridization in the rapid isolation of 4-chlorophenyl degradative bacterial 

phenotypes. Journal o f Microbiological Methods 5, 205-213.

Phillips, L., Wellington, E.M.H., Rees, S.B. & King, G. (1992). The 

distribution of antibiotic resistance patterns within streptomycetes and their 

use in secondary metabolite screening. Journal o f Industrial Microbiology, In 

Press.

Pickup, R.W., Simon, B.M., Jones, J.G., Saunders, V.A., Carter, J.K., Morgan, 

J.A.W., Winstanley, C. & Raitt F.C. (1990). Survival of laboratory and 

freshwater bacteria carrying an extrachromosomal xylE gene in fresh water 

microcosms. In: Bacterial Genetics in Natural Environments. Edited by J.C. 

Fry & M.J. Day. Chapman and Hall, London.

Pickup, R.W. (1991). Development of molecular methods for the detection of 

specific bacteria in the environment. Journal o f General Microbiology 137, 

1009-1019.

Piepersberg, W. (1991). Antibiotic resistance: present state and prospects. In: 

Genetics and Product Formation in Streptomyces, pp 153-159. Edited by S. 

Baumberg, H. Krugel & D. Noack. Plenum Press, New York.

Pillai, S.D., Josephson, K.L., Bailey, R.L., Gerba, C.P. & Pepper, I.L. (1991).

- 375 -



Rapid method for processing soil samples for polymerase chain reaction 

amplification of specific gene sequences. Applied and Environmental 

Microbiology 57, 2283-2286.

Pimentel, D. (1985). Using genetic engineering for biological control. 

Reducing ecological risks. In: Engineered Organisms in the Environment. 

Edited by H.O. Halvorsen, D. Pramer and M. Rogul, Scientific Issues, pp. 129- 

140. American Society for Microbiology, Washington, D.C.

Postma, J., Hok-A-Hin, C.J., & Van Veen, J.A. (1990). The role of 

microniches in protecting introduced Rhizobium leguminosarum biovar trifoli 

against competition and predation in soil. Applied and Environmental 

Microbiology 56, 495-502.

Postma, J., Hok-A-Hin, C.J., Schotman, J.M.T., Wijffelman, C.A. & Van 

Veen, J.A. (1991). Population dynamics of Rhizobium leguminosarum Tn5 

mutants with altered cell surface properties introduced into sterile and non- 

sterile soils. Applied and Environmental Microbiology 57, 649-654.

Pridham, T.G., Hesseltine, C.W. & Benedict, R.G. (1958). A guide to the 

classification of streptomycetes according to selected groups. Placement of 

strains in morphological sections. Applied Microbiology 6, 52-79.

Quiros, L.M., Parra, F„ Hardisson, C. & salas, J.A. (1989). Structural and 

functional analysis of ribosomal subunits from vegetative mycelium and 

spores of Streptomyces antibioticus. Journal of General Microbiology 135, 

1661-1670.

- 376 -



Rafii, F. & Crawford, D.L. (1988). Transfer of conjugative plasmids and 

mobilization of a non-conjugative plasmid between Streptomyces strains on 

agar and in soil. Applied and Environmental Microbiology 54, 1334-1340.

Rafii, F., Crawford, D.L., Bleakley, B.H. & Wang, Z. (1988). Assessing the 

risks of releasing recombinant Streptomyces in soil. Microbiological reviews 

volume 5, 12 358-361.

Rattray, E.A.S., Prosser, J.I., Killham, K. & Glover, L.A. (1990). 

Luminescence-based nonextractive techniques for in situ detection of 

Escherichia coli in soil. Applied and Environmental Microbiology 56, 3368- 

3374.

Recorbet, G., Givaudan, A., Steinberg, C., Bally, R., Normand. P. & Faurie, G. 

(1992). Tn5 to assess soil fate of genetically marked bacteria: screening for 

aminoglycoside-resistance advantage and labelling specificity. FEMS 

Microbial Ecology 86, 187-194.

Roberts, M.C., Moncla, B. & Kenny, G.E. (1987). Chromosomal DNA probes 

for the identification of Bacteriodes species. Journal o f General Microbiology 

133, 1423-1430.

Rodicio, M.R. & Chater, K.F. (1982). Small DNA-free liposomes stimulate 

transfection of Streptomyces protoplasts. Journal of Bacteriology 151, 1078- 

1085.

Rollo, F.A., Amice, A., Francisco, F. & di Silvestro, I. (1987). Construction 

and characterization of a cloned probe for the detection of Phoma tracheiphila

- 377 -



in plant tissues. Applied Microbiology Biotechnology 26, 352-357.

Roszak, D.B. & Colwell, R.R. (1987). Survival strategies of bacteria in the 

natural environment. Microbiological Reviews 51, 365-379.

Rouatt, J.W. & Atkinson, R.G. (1950). The effect of the incorporation of 

certain cover crops on the microbiological balance of the potato scab infested 

soil. Canadian Journal o f Research 28, 140-152.

Rovira, A.D. (1979). Biology of the soil-root interface. In: The Soil Root 

Interface, pl45-160. Edited by J.L. Hartley & R.S. Russell. Academic Press.

Rowe, R., Todd, R. & Waide, J. (1977). Microtechnique for most-probable- 

number analysis. Applied and Environmental Microbiology 33, 675-680.

Roy, B.P., Haidear, A., Sit, M.G. & Alexander, A. (1988). Construction and 

use of cloned cDNA biotin and 32P labelled probes for the detection of papaya 

mosaic potexvirus RNA in plants. Phytopathology 78, 1425-1429.

Ruddick, S.M & Williams, S.T. (1972). Studies on the ecology of 

actinomycetes in soil. V. Some factors influencing the dispersal and adsorption 

of spores to soil. Soil Biology and Biochemistry 4, 93-103.

Saddler, G.S., O’Donnell, A.G., Goodfellow, M. & Minnikin, D.E. (1987). 

SIMCA pattern recognition in the analysis of streptomycete fatty acids. 

Journal o f General Microbiology 133, 1137-1147.

Sagik, B.P. (1988). Land disposal of municipal wastewater and sludge. In:

- 378 -



Risk Assessment for Deliberate Releases, pp.147-151. Edited by W. 

Klingmuller. Springer-Verlag Berlin, Heidelberg.

Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.S., Higuchi, R„ Horn, G.T., 

Mullis, K.B. & Erlich, H.A. (1988). Primer directed enzymatic amplification 

of DNA with thermostable DNA polymerase. Science 239, 487-491.

Sala-Trepat, J.M. & Evans, W.C. (1971). The meta cleavage of catechol by 

Azotobacter species. European Journal o f Biochemistry 20, 400-413.

Sanford, G.B. (1923). The relation of soil moisture to the development of 

common scab of potato. Phytopathology 13, 231-236.

Saunders, J.R., Morgan, J.A.W., Winstanley, C., Raitt, F.C., Carter, J.P., 

Pickup, R.W., Jones, J.G. & Saunders, V.A. (1990). Genetic Approaches to the 

Study of Gene Transfer in Microbial Communities. In: Bacterial Genetics in 

Natural Environments, Edited by J.C. Fry and M. Day, 3-21, Chapman and 

Hall, London.

Sauvaigo, S., Fouque, B., Roget, A., Livache T., Bazin, H., Chypre C. and 

Teoule, R. (1990). Fast solid support detection of PCR amplified viral DNA 

sequences using radioiodinated or hapten labelled primers. Nucleic Acids 

Research 18, 3175-3183.

Sayler, G.S., Shields, M.S., Tedford, E.T., Breen. A., Hooper, S.W., Sirotkin, 

K.M. & Davies, J.W. (1985). Application of DNA-DNA colony hybridization 

to the detection of catabolic genotypes in environmental samples. Applied and 

Environmental Microbiology 51, 1295-1303.

- 379 -



Sayler G.S. & Layton, A.C. (1990). Environmental application of nucleic acid 

hybridization. Annual Review of Microbiology 44, 625-648.

Sayler, G.S., Fleming, J.T., Applegate, B. & Werner C. (1992). Nucleic acid 

extraction and analysis: detecting genes and their activity in the environment. 

In: Genetic interactions between Microorganisms in the Natural Environment. 

Edited by E.M.H. Wellington and J.D. Van Elsas, 237-257. Pergamon Press, 

Oxford.

Schaal, L.A., Johnson, G. & Simonds, A.O. (1953). Comparison of scab 

resistance of potato tubers as indicated by the ferric chloride test. American 

Potato Journal 30, 257-262.

Schauer, A., Ranes, M., SantaMaria, R., Guijarro, J., Lawlor, E„ Mendez, C., 

Chater, K. & Losick, R. (1988). Visualising gene expression in time and space 

in the filamentous bacterium Streptomyces coelicolor. Science 240, 768-772.

Schesser, K., Luder, A. & Henson, J.M. (1991). Use of polymerase chain 

reaction to detect the take-all fungus Gaeumannomyces graminis in infected 

wheat plants. Applied and Environmental Microbiology 57, 553-556.

Schlif, W. & Klingmuller, W. (1983). Experiments with Esherichia coli on the 

dispersal of plasmids in environmental samples. Recombinant DNA 

Technology Bulletin 6, 101-102.

Schmidt, E.L. (1974). Quantitative autecological study of microorganisms in 

soil by immunofluorescence. Soil Science 118, 141-149.

- 380 -



Schofield, P.R., Gibson, A.H., Dudman, W.F. & Watson, J.M. ( 1987). 

Evidence for genetic exchange and recombination of Rhizobium symbiotic 

plasmids in a soil population. Applied and Environmental Microbiology 53, 

2942-2947.

Scholte, K. & Labruyere, R.E. (1985). Netted scab : a new name for an old 

disease in Europe. Potato Research 28, 443-448.

Scholte, K., Veenbaas-Rijks, J.W. & Labruyere, R.E. (1985). Potato growing 

in short rotations and the effect of Streptomyces spp., Colletotrichum 

coccodes, Fusarium tabacinum and Verticillium dahliae on plant growth and 

tuber yield. Potato Research 28, 331-348.

Scholter, M., Bode, W., Hartman, A. & Besse, F. (1992). Sensitive 

chemoluminesence- based immunological quantification of bacteria in soil 

extracts with monoclonal antibodies. Soil Biology and Biochemistry 24, 399- 

405.

Scroth, M.N., Thompson, S.V. & Weinhold, A.R. (1979). Behaviour of plant 

pathogenic bacteria in rhizosphere and non-rhizosphere soils. In: Ecology of 

Root Pathogens, Edited by Krupa, S.V. & Dommergues, Y.R. Elsevier, New 

York.

Scroth, M.N. & Hancock, J.G. (1982). Disease-suppressive soil and root 

colonising bacteria. Science 216, 1376-1381.

Shirling, E.B. & Gottlieb, D. (1966). Methods for the characterization of

-  381 -



Streptomyces species. International Journal o f Systematic Bacteriology 16, 

313-340.

Silvestri, L., Turn, M., Hill, L.R. & Gilardi, E. (1962). A quantitative 

approach to the systematics of actinomycetes based on overall similarity. In: 

Microbial Classification. 12th Symposium fo r  the Society o f General 

Microbiology. Edited by G.C. Ainsworth & P.H.A. Sneath, 333-360. 

Cambridge University Press, Cambridge.

Simonet, P., Thi Le, N.T., Teissier Du Cros, E. & Bardin, R. (1988). 

Identification o f Frankia strains by direct DNA hybridization of crushed 

nodules. Applied and Environmental Microbiology 54, 2500-2503.

Sneath, P.H.A. (1957a). Some thoughts on bacterial classification. Journal o f 

General Microbiology 17, 184-200.

Sneath, P.H.A. (1957b). The application of computers to taxonomy. Journal 

of General Microbiology 17, 201-226.

Sneath, P.H.A. & Cowan, S.T. (1958). An electro-taxonomic survey of 

bacteria. Journal o f General Microbiology 19, 551-565.

Sneath, P.H.A. (1962). The construction of taxonomic groups. In: Microbial 

Classification. 12th Symposium for the General Society for Microbiology. 

Edited by G.C. Ainsworth & P.H.A. Sneath, 289-331. Cambridge University 

Press, Cambridge.

Sneath, P.H.A. & Sokal, R.R. (1973). Numerical Taxonomy: The principles

-  382 -



and Practice of Numerical Classification. San Francisco: W H Freeman.

Sokal, R.R. & Michener, C.J). (1958). A statistical method for evaluating 

systematic relationships. Kansas University Scientific Bulletin 38, 1409.

Sommerville, C.C., Knight, I.T., Straube, W.L. & Colwell, R.R. (1989). 

Simple rapid method for direct isolation of nucleic acids from aquatic 

environments. Applied and Environmental Microbiology 55, 548-554.

Sorheim, R., Torsvik, V.L. & Goksoyr, J. (1989). Phenotypical divergences 

between populations of soil bacteria isolated on different media. Microbial 

Ecology 17, 181-192.

Spooner, R.A., Bagdasarian, M. & Franklin, F.C.H. (1987). Activation of the 

xylDLEGF promoter of the TOL Toluene-Xylene degradation pathway by 

over-production of the xylS regulatory gene producy. Journal o f Bacteriology 

169, 3581-3586.

Stackebrandt, E., Wunner-Fussl, B., Fowler, V.J. & Schleifer, K-H. (1981). 

Deoxyribonucleic acid homologies and ribosomal ribonucleic acid similarities 

among sporeforming members of the order Actinomycetales. International 

Journal o f Systematic Bacteriology 31, 420-431.

Stackebrandt, E., Ludwig, W„ Seewaldt, E. & Schleifer, K-H. (1983). 

Phylogeny of sporeforming members of the order Actinomycetales. 

International Journal o f Systematic Bacteriology 33, 173-180.

Stackebrandt, E. (1988). Phylogenetic relationships vs phenotypic diversity:

- 383 -



How to achieve a phylogenetic classification system of the eubacteria. 

Canadian Journal o f Microbiology 34, 552-556.

Stackebrandt, E. & Charfreitag, O. (1990). Partial 16S rRNA primary 

structure of five Actinomyces species: phylogenetic implications and 

development of an Actinomyces israelii specific oligonucleotide probe. 

Journal o f General Microbiology 136, 37-43.

Stackebrant, E., Witt, D., Kemmerling, C., Kroppenstedt, R. & Liesack, W. 

(1991). Designation of streptomycete 16S and 23S rRNA-based target regions 

of oligonucleotide probes. Applied and Environmental Microbiology 57, 

1468-1477.

Stahl, D.A., Lane, D.J., Olsen, G.J. & Pace, N.R. (1985). Characterization of a 

Yellowstone hot spring microbial community by 5S ribosomal RNA 

sequences. Applied and Environmental Microbiology 49, 1379-1384.

Stahl, D.A., Flesher, B., Mansfield, H.R. & Montgomery, L. (1988). Use of 

phylogenetically based hybridization probes for studies of ruminal microbial 

ecology. Applied and Environmental Microbiology 54, 1079-1084.

Stahl, D.A. & Amman, R. (1991). Development and application of nucleic 

acid probes. In: Nucleic acid techniques in Bacterial Systyematics, Chapter 8. 

Edited by E. Stackebrandt & M. Goodfellow. John Wiley and Sons Ltd.

Starnbach, M.N., Falkow, S. & Tompkins, L.S. (1989). Species - specific 

detection of Legionella pneumophilia in water by DNA amplification and 

hybridization. Journal of Clinical Microbiology 27, 1257-1261.

- 384 -



Steffan, R.J., Goksoyr, J„ Bej, K.A. & Atlas, R.M. (1988). Recovery of DNA 

from soils and sediment. Applied and Environmental Microbiology 54, 2908- 

2915.

Steffan, R.J. & Atlas, R.M. (1988). DNA amplification to enhance detection of 

genetically engineered bacteria in environmental samples. Applied and 

Environmental Microbiology 55, 2185-2191.

Steffan, R.J., Breen, A., Atlas, R.M. & Sayler, G.S. (1989). Application of 

gene probe methods for monitoring microbial populations in fresh water 

ecosystems. Canadian Journal o f Microbiology 35, 681-685.

Steffan, R.J. & Atlas, R.M. (1991). Polymerase chain reaction: applications in 

environmental microbiology. Annual Review o f Microbiology 45, 137-161.

Stevenson, F.J., Schall, L.A., Clark, C.F., Akeley, R.V. and Cooperators, 

(1942). Potato-scab gardens in the United States. Phytopathology 32, 965- 

971.

Stotsky, G. & Bums, R.G. (1982). The soil environment: clay-humus-microbe 

interactions. In: Experimental Microbial ecology, chapter 7, pl05-133. Edited 

by R.G. Bums & J.H. Slater. Blackwell, Oxford.

Stotsky, G. & Babich, H. (1986). Survival and genetic transfer by genetically 

engineered bacteria in natural environments. In: Advances in Applied 

Microbiology, volume 33, p93-138. Edited by A.I. Laskin. Academic Press, 

Inc.

- 385 -



Stotsky, G., Zeph, L.R. & Devanas, M.A. (1991). Factors affecting the transfer 

of genetic information among microorganisms in soil. In: Assessing 

Ecological Risks in Biotechnology, chapter 6 p.95-122. Edited by L.R. 

Ginzburg. Butterworth-Heineman.

Strzelczyk, E. & Pokojska-Burdziej, A. (1984). Production of auxins and 

gibberellin-like substances by mycorrhizal fungi, bacteria and actinomycètes 

isolated from soil and the mycorrhizosphere of pine (Pinus Silvestris L.). Plant 

and Soil 81, 185-194.

Strzelczyk, E. & Leniarska, V. (1985). Production of auxins and gibberellin- 

like substances by mycorrhizal fungi, bacteria and actinomycètes isolated from 

soil and the mycorrhizosphere of pine (Pinus silvestris L.) Plant and Soil 81, 

185-194.

Suzucki, Y., Ono, Y., Nagata, A. & Yamada, T. (1988). Molecular cloning and 

characterization of an rRNA operon in Streptomyces lividans TK21. Journal o f 

Bacteriology lift, 1631-1636.

Talbot, H.W., Yamamoto, D.K., Smith, M.W. & Seidler, R.J. (1980). 

Antibiotic resistance and its transfer among clinical and nonclinical Klebsiella 

strains in botanical environments. Applied and Environmental Microbiology 

39,97-104.

Taylor, J. & Parkes, R.J. (1983). The cellular fatty acids of the sulphate- 

reducing bacteria, Desulfobacter sp. Desulfobulbus sp. Desulfovibrio 

desulfurricans. Journal o f General Microbiology 129, 3303-3309.



Taylor, J. & Parkes, R.J. (1985). Identifying different populations of sulphate- 

reducing bacteria within marine sediment systems, using fatty acid biomarkers. 

Journal of General Microbiology 131, 631-642.

Thaxter, R. (1891). The potato scab. Conneticut Agricultural Experimental 

Station Report 1890, 81-95.

Thompson, I.P., Cook, K.A., Letheridge, G. and Bums, R.G. (1990). Survival 

of two ecologically distinct bacteria (Flavobacterium and Arthrobacter) in 

unplanted and rhizosphere soil: laboratory studies. Soil Biology and 

Biochemistry 22, 1029-1037.

Tiedje, J.M., Colwell, R.K., Grossman, Y.L., Hodson, R.E., Lenski, R.E., 

Mack, R.N. & Regal, P.J. (1989). The planned introduction of genetically 

engieneered organisms: ecological considerations and recommendations.

Ecology 70, 298-315.

Torsvik, V.L. & Goksoyr, J. (1978). Determination of bacterial DNA in soil. 

Soil Biology and Biochemistry 10, 7-12.

Torsvik, V.K. (1980). Isolation of bacterial DNA from soil. Soil Biology and 

Biochemistry 12, 15-21.

Torsvik, V., Goksoyr, J. & Daae, F.L. (1990a). High diversity in DNA of soil 

bacteria. Applied and Environmental Microbiology 56, 782-787.

Torsvik, V., Salte, K., Sorheim, R. & Goksoyr, J. (1990b). Comparison of

- 387 -



phenotypic diversity and DNA heterogeneity in a population of soil bacteria. 

Applied and Environmental Microbiology 56, 776-787.

Tresner, H.D., Davies, M.C. & Backus, E.J. (1961). Electron microscopy of 

Streptomyces spore morphology and its role in species differentiation. Journal 

o f Bacteriology 81, 70-80.

Tresner, H.D. & Bakus, E.J. (1963). System of colour wheels for 

streptomycete taxonomy. Applied Microbiology 16, 1134-1136.

Trevors, J.T. (1988). Use of microcosms to study genetic interactions between 

microorganisms. Microbiological Sciences 5, 132-136.

Trevors, J.T. & Van Elsas, J.D. (1989). A review of selected methods in 

environmental microbial genetics. Canadian Journal o f Microbiology 35, 895- 

902.

Tsai, Y-L, Park, M.J. & Olson, B.H. (1986). Rapid method for direct 

extraction of mRNA from seeded soils. Applied and Environmental 

Microbiology 57, 765-768.

Tsai, Y-L, Park, M.J. & Olson, B.H. (1991). Rapid method for direct 

extraction of mRNA from seeded soils. Applied and Environmental 

Microbiology 57, 765-768.

Tsai, Y-L, & Olson, B.H. (1992). Detection of low numbers of bacterial cells 

in soils and sediments by polymerase chain reaction. Applied and 

Environmental Microbiology 58, 754-757.

- 388 -



Turco, R.F., Moorman, T.B. & Bezdicek, D.F. (1986). Effectiveness and 

competitiveness of spontaneous antibiotic-resistant mutants of Rhizobium 

leguminosarum and R.japonicum. Soil Biology and Biochemistry 18, 259-262.

Urdea, M.S., Warner, B.D., Running, J.A., Stempien, M., Clyne, J. & Horn, T.

(1988). A comparison of non-radioisotopic hybridization assay methods using 

fluorescent, chemiluminescent and enzyme labelled synthetic 

oligodeoxyribonucleotide probes. Nucleic Acids Research 16, 4937-4956.

Van Elsas, J.D., Dijkstra, A.F., Govaert, J.M. and van Veen, J.A. (1986). 

Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two 

soils of different texture in field microplots. FEMS Microbial Ecology 38, 151- 

160.

Van Elsas, J.D., Govaert, J.M. & Van Veen, J.A. (1987). Transfer of plasmid 

pFT30 between bacilli in soil as influenced by bacterial population dynamics 

and soil conditions. Soil Biology and Biochemistry 19, 639-647.

Van Elsas, J.D., Trevors, J.T. and Stardoub, M.E. (1988). Bacterial 

conjugation between pseudomonads in the rhizosphere of wheat. FEMS 

Microbiology Ecology 53, 299-306.

Vining, L.C. (1990). Functions of secondary metabolites. Annual Review of 

Microbiology 44, 395-427.

Vruggink, H. (1970). The effect of chitin amendment on actinomycetes in soil 

and on the infection of potato tubers by Streptomyces scabies. Netherlands

-  389 -



Journal o f Plant Pathology 76, 293-295.

Vruggink, H. (1976). Influence of agricultural crops on the actinomycète flora 

in soil. Plant and Soil 44, 639-654.

Waksman, S.A. and Henrici, A.T. (1948). Family II. Actinomycetae 

Buchanan and family Streptomycetae Waksman and Henrici. In: Bergey’s 

Mannual of Determinative Microbiology, pp.892-980. Edited by R.S. Breed, 

E.G.D., Murray and A.P. Hitchens, 6th edition Baltimore: Edited by S.T. 

Williams and Wilkins.

Waksman, S.A. (1961). The Actinomycètes, vol 2. Baltimore: Edited by S.T. 

Williams and Wilkins.

Wang, Z„ Crawford, D.L., Pometto III & Rafii, F. (1989). Survival and effects 

of wild-type, mutant and recombinant Streptomyces in a soil ecosystem. 

Canadian Journal of Microbiology 35, 535-543.

Ward, D.M., Weller, R.M. & Bateson, M.M. (1990). 16S rRNA sequences 

reveal numerous unculuted microorganisms in a natural community. Nature 

345, 63-65.

Ward, J.M., Janssen, G.R., Reiser, Y. Bibb, M.J. & Buttner, M.J. (1986). 

Construction and charcterisation of a series of multi-copy promotor-probe 

vectors for Streptomyces using the aminoglycoside phosphotransferase gene 

from Tn5 as indicator. Molecular and General Genetics 203, 468-478.

Watrud, L.S., Perlack, F.J., Tran, M-T., Kusano, K., Mayer, E.J., Miller-

- 390 -



Wideman, M.A., Obukowicz, M.G., Nelson, D.R., Kreitinger, J.P. & 

Kaufman, R.J. (1985). Cloning of the Bacillus thuringiensis subsp. kurstaki 

delta-endotoxin gene into Pseudomonas flourescens: molecular biology and 

ecology of an engineered microbial pesticide. In: Engineered organisms in the 

environment. Edited by H.O., Halvorson, D. Pramer and M. Rogul. Scientific 

issues, pp 40-46. American Society for Microbiology, Washington, D.C.

Watson, E.T. & Williams, S.T. (1974). Studies on the ecology of 

actinomycètes in soil. VII. Actinomycètes in a coastal sand belt. Soil Biology 

and Biochemistry 6, 43-52.

Weller, D.M. & Cook, R.J. (1983). Suppression of take-all of wheat by seed 

treatments with fluorescent pseudomonads. Phytopathology 73, 463-469.

Weller, D.M. (1984). Distribution of a take-all suppressive strain of 

Pseudomonas fluorescens on seminal roots of wheat. Applied and 

Environmental Microbiology 48, 897-899.

Weller, D.M. (1988). Biological control of soilbome plant pathogens in the 

rhizosphere with bacteria. Annual Review of Phytopathology 26, 379-407.

Weller, R„ Weller, J.W. & Ward, D.M. (1991). 16S rRNA sequences of 

uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly 

primed cDNA. Applied and Environmental Microbiology 57, 1146-1151.

Wellington, E.M.H. & Williams S.T. (1981). Host ranges of phages isolated to 

Streptomyces and other genera. In: Actinomycètes. Edited by K.P. Schaal & G. 

Pulverer, 93-98. Gustav Fischer Verlag. Stuttgart. New York.

- 391



Wellington, E.M.H. & Cross, T. (1983). Taxonomy of antibiotic-producing 

actinomycètes and new approaches for their selective isolation. In: Progress in 

Industrial Microbiology, volume 17. Edited by M. Bushell, 7-36. Elselvier, 

Amsterdam.

Wellington, E.M.H., Saunders, V.A., Cresswell, N. & Wipat, A. (1988). 

Plasmid transfer between streptomycetes in soil. In: Biology o f Actinomycètes, 

301-305. Edited by Y. Okami, T. Beppu & H. Ogawara. Tokyo: Japan 

Scientific Societies Press.

Wellington, E.M.H., Cresswell, N. & Saunders, V.A. (1990). Growth and 

survival of streptomycete inoculants and extent of plasmid transfer in sterile 

and non-sterile soil. Applied and Environmental Microbiology 56, 1413-1419.

Wellington, E.M.H., Stackebrandt, E., Sanders, D., Wolstrup, J. & Jorgensen, 

N.O.G. (1992). Taxonomic status of Kitasatosporia, and proposed unification 

with Streptomyces on the basis of phenotypic and 16S rRNA analysis and 

emendation of Streptomyces Waksman and Henrici 1943 33 0 ^ . International 

Journal of Systematic Bacteriology 42, 156-160.

Weyland, H. (1981). Distribution of actinomycètes on the sea floor. In: 

Actinomycètes, pl85-193. Edited by K.P. Schaal and G. Pulverer. Gustav 

Fischer Verlag Stuttgart, New York.

Weyland, H. & Helmke, E. (1988). Actinomycètes in the marine environment. 

In: The Biology o f Actinomycètes Edited by T. Beppu & H. Ogawara, p294- 

299. Japan Scientific Societies Press.

- 392 -



Whaley, J.W. & Boyle, A.M. (1967). Antibiotic production by Streptomyces 

species from the rhizosphere of desert plants. Phytopathology 57, 347-351.

Williams, S.T. (1967). Sensitivity of streptomycetes to antibiotics as a 

taxonomic character. Journal o f General Microbiology 46, 151-160.

Williams, S.T., Shameemullah, M., Watson, E.T. & Mayfield, C.I. (1972). 

Studies on the ecology of actinomycètes in soil. VI. The influence of moisture 

tension on growth and survival. Soil Biology and Biochemistry 4, 215-225.

Williams, S.T. (1978). Streptomycetes in the soil ecosystem, in: Nocardia and 

Streptomyces. Edited by M. Mordarski, W. Kurylowicz & J. Jeljaszewicz, 

137-144. Fischer-Verlag, Stuttgart-New York.

Williams, S.T. & Wellington, E.M.H. (1980). Micromorphology and fine 

structure of actinomycètes. In: Microbial Classification and Identification. 

Edited by M. Goodfellow & R.G. Board, 139-165. Academic Press, New 

York.

Williams, S.T. & Robinson, C.S. (1981). The role of streptomycetes in the 

decomposition of chitin in acidic soils. Journal o f General Microbiology 127, 

55-63.

Williams, S.T., Wellington, E.M.H., Goodfellow, M., Alderson, G., Sackin, 

M. & Sneath, P.H.A. (1981). The genus Streptomyces - a taxonomic enigma. 

In: Actinomycètes. Edited by K.P. Schaal & G. Pulverer, 47-57. Gustav Fischer 

Verlag, Stuttgart-New York.

- 393 -



Williams S.T. (1982). Are antibiotics produced in soil. Pedobiologia 23, 427- 

435.

Williams, S.T. & Wellington, E.M.H. (1982). Actinomycetes. In: Methods of 

Soil Analysis, part 2. Chemical and Microbiological Properties 2nd Edition. 

A.L. Page, R.H. Miller & D.R. Keeney, 969-987. American Society of 

Agronomy and Soil Science Society of America, Madison, Wisconsin.

Williams, S.T., Goodfellow, M., Alderson, G., Wellington, E.M.H., Sneath, 

P.H.A. & Sackin, M.J. (1983a). Numerical classification of Streptomyces and 

related genera. Journal of General Microbiology 129, 1743-1813.

Williams, S.T., Goodfellow, M., Wellington, E.M.H., Vickers, J.C., Alderson, 

G., Sneath, P.H.A., Sackin, M.J. & Mortimer, A.M. (1983b). A probability 

matrix for identification of some streptomycetes. Journal of General 

Microbiology 129, 1815-1830.

Williams, S.T. & Vickers, J.C. (1986). The ecology of antibiotic production. 

Microbial Ecology 12, 43-52.

Williams, S.T., Goodfellow, M. & Alderson, G. (1989). Genus Streptomyces 

Waksman and Henrici 1943, 339AL In: Bergey’s Mannual of Systematic 

Bacteriology, Volume 4 pp. 2452-2492. Edited by S.T. Williams, M.E. Sharpe 

& J.G. Holt. Baltimore: Williams and Wilkins.

Wimpee, C.F., Nadeau, T-L. & Nelson, K.H. (1991). Development of species- 

specific hybridization probes for marine luminous bacteria by using in vitro

-  394 -



DNA amplification. Applied and Environmental Microbiology 57, 1319-1324.

Winstanley, C., Morgan, J.A.W., Pickup, R.W., Jones, J.G. & Saunders, J.R.

(1989). Differential regulation of lambda pL and pR promotors by a cl 

repressor in a broad-host-range thermoregulated plasmid marker system. 

Applied and Environmental Microbiology 55, I l l - I l l .

Wipat, A., Wellington, E.M.H. & Saunders, V.A. (1991). Streptomyces 

marker plasmids for monitoring survival and spread of streptomycetes in soil. 

Applied and Environmental Microbiology 57, 3322-3330.

Witt, D., Liesack, W. & Stackebrandt, E. (1989). Identification of 

streptomycetes by 16S rRNA sequences and oligonucleotide probes. In: 

Recent Advances in Microbial Ecology pp. 679-684. Edited by T. Hatori, Y. 

Ishida, R.Y. Monta & A. Uchida. Tokyo: Japan Scientific Society Press.

Witt, D. & Stackebrandt, E. (1990). Unification of the genera 

Streptoverticillium and Streptomyces and amendation of Streptomyces 

Waksman and Henrici 1943, 339AL. Systematic and Applied Microbiology 

13, 361-371.

Woese, C.R. (1987). Bacterial Evolution. Microbiological Reviews 51, 221- 

271.

Wollenweber, H.W. (1920). Der Kartoffelschorf. Arb. Forschlnst. KartoffBau 

Heft 2.

Zar, J.H. (1984). Biostatistical Analysis, Second Edition, Prentice-Hall

I
- 395 -



International, Inc.

Zehr, J. & McRenolds, L.A. (1989). Use of degenerate oligonucleotides for 

amplification of the nifH gene from the marine cyanobacterium 

Trichodesmium thiebautii. Applied and Environmental Microbiology 55, 

2522-2526.

- 396 -



I
3 9 7



Ra
w d

ata
 fro

m 
stre

pto
my

cet
e id

en
tific

atio
ns

S47 + + • • + + + • + + • + + + • • + • • +

I + + a • + + + + + + + ■ + + + • • + 1 +

ISS + + • + + + + + + + • • + + + + a • + •

AS
S81

12 + + + + • + + • • + + + + 1 + • • • + +

AT
CC

102
46

+ a • • + + + • • • + • + + +

ATC
C 1

548
5

+ + • ■ + • + * + • ■ • + • + « • • + t

ATC
C 3

352 + + • • • + + • + • • + + + + 1 • • + •

ISP
507

8
+ + • 1 + + + + a • • + + + • • • + +

7 1 J
L-R

ham
nos

e
D-R

affin
ose

Me
so-

ino
sito

l
NaA

zide
 0.0

1%
D-M

arm
itol

D-x
ylos

e
sz Phe

nol 
0.1

% «
t 3

8 Rifa
mp

icin
Ne

om
ycin

Arb
uin

Xan
thin

e
Ala

nto
in

Inf
*, o

f An
ige

r
Inh

to. 
of S

.mu
rinu

s
Nitr

ate
 red

uct
ion

H2S
 pro

duc
tion

Pec
tin h

yro
lysi

s



Ta
ble

 lb



Tab
le 2

a



Ra
w d

ata
 fro

m 
stre

pto
my

cet
e id

en
tific

atio
ns

Tab
le 2

b



•ewL



Tab
le 3

b


