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Abstract

The main subject of this thesis is the long time behaviour o f strongly chaotic 

Hamiltonian systems and whether their behaviour ran be modelled with diffu­

sion processes. The problem of diffusion raused by chaos in a particular area 

preserving map on the torus, the web map is studied. The formalism is then 

generalised for the study o f diffusion in higher dimensional symplectir maps 

on the cylinder and general results are obtained. A numerical method for the 

calculation of diffusion coefficients for chaotic maps is described. Finally, the 

problem o f diffusion in phase space in the case where chaos coexists with struc­

tures such as stable islands is studied .
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Chapter 1

Statistical Description O f  

Dynam ical Systems.

1.1 Introduction

The main subject o f this thesis is the long time behaviour o f Hamiltonian dy­

namical systems, whether under certain conditions this behaviour can be ap­

proximated by a diffusion process and if so what is the appropriate value of 

the transport coefficients (diffusion coefficient). In this section a few important 

ideas about Hamiltonian systems, symplectic maps and chaotic behaviour are 

given.

A Hamiltonian dynamical system can be defined as a set o f  2D differential 

equations
dx .  OH

where J is the 2D  x 2D  dimensional matrix defined by

where 0 is the l )  x D  matrix o f zero elements and 1 is the I )  x l )  unit matrix,

x  is the 2D-dimensional vector x  =  ( q i ..... <tn P i . . P i> )■ where the p's are

generalised momentum coordinates and the q's are generalised position coor­

dinates and //(p .q ) is a real valued function. A Hamiltonian system has the
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property that it preserves the Lebesgue measure in the (p ,q ) spare, railed the 

phase spare. The evolution of the vector o f positions and momenta x in time 

ran he thought of as a flow in the phase spare.

The rontinuous time Hamiltonian dynamiral system of equation ( l . l )  is 

often replaced by a discrete time dynamiral system which is railed the Poinrar^ 

map. The Poinrar^ map ran generally he obtained by the following procedure. 

We rut the '¿D-dimensional phase spare by a (2D-1) dimensional manifold E 

chosen in such a way that the flow defined by the Hamiltonian dynamiral system 

is everywhere transverse to it (C»H MCI]. We then take the orbit o f each point in E 

and follow it until its first return to E with the same orientation with which it 

started off. The initial point is then mapper! to the point o f the first return and 

so on. This procedure then defines a map P  : E — E. This is a discrete time 

dynamiral system which is called the Poinrar^ map. The process of passing 

from the rontinuous time Hamiltonian system to the discrete time Poincarl 

map is shown in f ig .l.l. Another situation where a Poincare map is derivable 

is the case where we have a Hamiltonian system with a periodic dependence on 

time with a period say T. Then a Poincare map is defined by stroboscopically 

observing the flow at times which are multiples o f the period. It is the map 

that takes x (0 ) to x (T )  and then to x (2 T ) and so on.

The fact that the reduced discrete time dynamiral system originally comes 

from a Hamiltonian system is reflected in the fact that the Poincare map retains 

the symplectic property. That is. assuming that we have the Poincar^ map P  

from some manifold E to itself, then the Jacobian matrix P  of this map satisfies 

the condition

P J P T * J  (1 .3 )

where P r  denotes the transposed Jacobian matrix o f the Poinrar£ map and J 

is the matrix defined in equation (1.2).

O f special importance to the study o f Hamiltonian dynamiral systems are 

the periodic orbits. Periodic orbits are orbits that close on themselves after 

some time which is railed the period of the periodic orbit. The periodic orbits 

of the continuous Hamiltonian systems correspond to fixed points of some pe-
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riod (not nerrasarily tin- period o f the continuou« orbit) for the Poincare map 

o f  the syxtem. The periodir orbit« ran either be «table (elliptir) or unstable 

(hyperbolic). The elliptir orbit« art a« renter« in pha«e «pare around which the 

motion i« ordered (quaaiperkxlk), whereas the hyperbolir orbit« art a« scatter- 

er« in pha«e «pare, and nearby orbit« will diverge from them at an exponential 

rate in certain direction«. For hyperbolir orbit« we ran define the notion of 

«table and un«tahle manifolds. These are composed o f all the point« in pha«e 

«pare which for infinite time approach fir diverge from the hyperbolir orbit 

respectively. As we will see in the next paragraph the hyperbolir orbit« ami 

their «table and unstable manifolds are responsible for the emergence o f very 

romplicated, quasi-random. behaviour in Hamiltonian system« which is called 

chaotic behaviour.

A basic concept useful in the study o f  motion in Hamiltonian systems is that 

of a separatrix. One could generally say that a separatrix is a special orbit(s) o f 

the system which connect« the hyperbolir periodir orbits. In order to be able to 

give a more detailed idea of what a separatrix is we «hotild introduce the model 

o f the simple pendulum. This consists o f  a rigid and massle«« bar with a weight 

attached to the end. The upper part o f  the bar in fixed at some point and the 

system is allowed to move under the influence of the gravitational force. The 

Hamiltonian of the system is given by

H  = ^ p 1 -  Acoitl ( 1.4 )

where p is the momentum of the weight and 0 is the angle o f deviation from the 

vertical po«itioti and A is a constant depending on the mas« of the weight and 

the gravitational acceleration. It i« easy to see that the pendulum has three 

fixed point« (equilibrium states). One i« at p=0 and <9 = 0 which correspond« 

to the pendulum hanging down with no initial velocity. This is a «table fixed 

point since any «mall perturbation o f the pendulum from that «tate would be 

counterbalanced by the effect of the gravitational force and would bring the 

pendulum back to the «table equilibrium slate. The other two fixed point« are 

at p=0 and (9 =  ±ir corresponding to the upright position o f the pendulum. 

These two are unstable equilibrium point« since a «mall perturbation would
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drive this system away from this initial state and the system would not be able 

to ((ft bark there. We ran imagine two orbits connecting these two unstable 

(hyperbolic) fixed points. One is the orbit starting from the upright equilibrium 

(or better, arbitrarily close to it) at 0 =  - n  and then falling down, passing 

from the 0 = 0 point but with a large velocity, and continuing to go upwards 

(because o f having enough energy ) to approach the point 0 = w. O f course 

since it started with a momentum equal to zero as it approaches the point 

0 = w it is going to decelerate gradually ami in consequence it is going to 

approach this point at t —• oo. Hy the same reasoning it takes infinite time 

for the orbit to leave the point 0 = —>r. So this special orbit approaches 

one hyperbolic fixed point at t —» — oo and the other at t — oo. The other 

orbit o f the same kind is one with the same behaviour, only that it goes from 

left to right rather than from right to left. These two orbits are railed the 

separatrix orbits. In figure. 1.2 they are shown in a phase plane diagram. As is 

understandable, orbits having less energy than the separatrix orbit are going to 

correspond to oscillations o f different amplitudes and orbits with greater energy 

than the separatrix orbits correspond to rotations o f the pendulum. Therefore 

the separatrix orbits separate qualitatively different motions.

In the case o f the pendulum, the separatrix is formed by the smooth joining 

up o f the stable and unstable manifolds of the hyperbolic fixed points and is 

sometimes called homoclinic or heteroclinic orbit. This is generally the case in 

integrable systems, that is Hamiltonian systems where the number o f integrals 

o f motion (constants o f motion) is equal to the dimension of the momentum 

vector.

When a small, time dependent periodic perturbation is added to the pen­

dulum. destroying integrals of motion and making the system nonintegrable. 

the smooth separatrix orbit is disrupted (because of the transverse intersection 

o f the stable anti unstable manifolds that form it) and a chaotic layer is cre­

ated around the old separatrix solution (figure I.*2). Inside the chaotic layer 

the systems dynamics are very complicated and look as if they are generated 

hy a random process. The reason why such behaviour occurs near the separa-
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trix is that n«*ar the separatrix and especially near the hyperbolic fixed point, 

the force experienced by a particle from the unperturbed system is very small 

and so the time dependent perturbation becomes dominant. So the orbit can 

switch from librations to rotations under the influence o f  the perturbing force 

and back again. Since the periods o f the motions near the separatrix are be­

coming infinite (this can be obtained simply by studying more carefully the 

example o f the pendulum) the switches from one type of motion to another will 

be uncorrelated and so it will be very irregular [AXH].

This kind o f behaviour, described for the simple pendulum, ran arise locally 

in every Nonlinear Hamiltonian system. This can be sketched in a hand waving 

way by the following reasoning. The example of the pendulum is the prototype 

for any nonlinear resonance and it is seen that separatrires occur often in dy­

namical systems. Suppose that we have a nonlinear system which is integrable 

and is perturbed by some arbitrary perturbation which conserves the Hamilto­

nian property o f the system. It ran be proved that a new set of coordinates (I  

,0 ) for the system exists in which the Hamiltonian of the perturbed system ran 

be written in the form (see for example [ArH9])

/ !< ! , ♦ ) - I W D +  « ! > . « > ■ < » . * )  ( I " ’ )
u

where « is a small perturbation parameter and the perturbation is expanded in 

a Fourier series. This new set «if coordinates is such that in the unperturbed 

case the I's are constants o f the motion and 0 = uit -f c where and c

is a constant vector. This new set o f coordinates is called action-angle variables 

[ArMfl], [ ( JMO]. It is not hard to see and prove that if the perturbation is small 

enough then the most important term in the perturbation is the most slowly 

varying one (ArHO). This term is the one satisfying the condition u>.n =  0. We 

then say that this is a resonant term and the truncated Hamiltonian (retaining 

in the perturbation series only the slowly varying term ) is said to  describe a 

nonlinear resonance. It is not difficult to show (see for example [LLn:|]). that 

with the appropriate canonical transformation 1 the Hamiltonian for the non- 

'A transformation i» < ailed canonical if the equation* of million in thr new inordinate

• » ( ID  (<«")lyatrm are atill in Hi



linear resonance can be brought in the form o f the Hamiltonian describing the 

pendulum. In the case o f a nonlinear resonance a separatrix is the curve sepa­

rating islands (which correspond to trapped orbits in the resonance) from the 

rest o f phase space (which corresponds to untrapped orbits). So in analogy with 

the case o f the pendulum (now the role of the time dependent perturbation is 

played by the neglected quickly varying terms in the perturbation series), a 

chaotic layer where very complicated and quasi-random behaviour occurs, is 

created around the separatrix o f any nonlinear resonance. Since in a nonlinear 

system a large number of resonances can occur, the interaction o f those (reso­

nance r-.'erlap, see for example ( (7 9 )) can lead to widespread chaotic behaviour 

o f  the system.

A huge amount «»f analytical and theoretical work has been «lone on the 

issues of stability and how and when this is lost we are led to chaotic behaviour. 

Nowdays we have explicit results on when the constants o f motion (or Icjcal 

constants of motion) are destroyed and why (for example the several versions of 

the KAM theory to be mentioned in Chapter 2 or the renormalisation approach 

t«i the breakdown «»f tori in phase spare bearing regular orbits, corresponding to 

the survival «»f certain local integrals «jf motion under the perturbation [MK.r)]).

1.2 Statistical description of dynamical systems us­

ing the Fokker-Planck equation

It is well known that very simple low-dimensional dynamical models may sh«>w 

very complicated dynamics and this has been railed chaotic dynamics. Even 

though the underlying dynamical system is deterministic, the chaotic dynam­

ics, due to its complexity and t«i properties like the exponential instability of 

neighboring orbits, ran be modeled by statistical methods and in particular 

by kinetic equations. The idea is to a get a simpler description o f the chaotic 

motion by looking at the evolution o f a distribution of orbits in phase spare 

rather than the evolution c»f single orbits, (bring to such a description means 

that some information about the system is inevitably hist, at the gain of getting



a simpler coarse-grained description o f the chaotic' system which can then give 

us information about measurable quantities of the system.

The kinetic equations used are usually of the Fokker-Planck type. The 

Fokker-Planck equation is the simplest type of kinetic equation and corresponds 

to the coarse-grained description o f a stochastic system with the minimum 

amount of memory, that is, it is equivalent to a Markovian process. O f course 

it is readily understood that such a description is not exact hut in many cases 

it is a very good approximation.

Methods similar in nature to the ones used by Prigogine and the Brussels 

group [P62],[LM9] for the derivation o f kinetic equations from the Hamiltonian 

dynamics of infinite systems have been devised to show rigorously that under 

some conditions (strong enough stochasticity is the main one) the dynamics of 

a chaotic Hamiltonian system with as little as two degrees o f freedom can be 

modeled in the first approximation by a kinetic equation of the Fokker-Planck 

type for the evolution o f  a distribution function in momentum space (P85). 

Such rigorous methods complement the 'heuristic' derivation of the Fokker- 

Planck approximation to the dynamics in momentum space for Hamiltonian 

systems [LLK3]. It should be mentioned here that for Hamiltonian systems it is 

possible to have an even simpler kinetic description. As it has been shown by 

l.andau, for a Hamiltonian system, the Fokker-Planck equation ran be reduced 

to a diffusion equation (see for example [L lX i]).

Once we accept the idea o f approximating the chaotic dynamics with a 

kinetic equation of the Fokker-Planck type the next obvious problem is the 

calculation of the transport coefficients that enter the kinetir equation. Various 

analytical methods have been devise«! for the calculation. An attempt is made 

here to present briefly the most important o f these, namely the correlation 

function method, characteristic function method the path integral method, and 

the Fourier path method.

The Fokker-Planck equation in momentum spare is of the form

P . t )  m m ’ )  . i » ' ( / > / * )  
m --------------" • ‘ l

where p is a di.itribulion function in momentum space, pis a vector of momenta.
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I) is the diffusion tensor and B the friction tensor.

For a Hamiltonian system, the Fokker-Planck equation can be reduced to 

the diffusion equation

9 i P)
tfP (p .t )

Up (1.7)

In the case where the momentum or action space is one dimensional, the 

diffusion coefficient is defined by

l ) lim , < (Pi ~ Po)* > 
21

( I .K)

where p, is the momentum at time t and the angle bracket denotes an ensemble 

average over a number o f orbits in a part of phase space o f physical interest. 

It is also a good approximation for Hamiltonian systems with two degrees of 

freedom or equivalently for area preserving maps where now p is the action 

variable.

In the case o f higher dimensional systems, a diffusion tensor should be in­

troduced instead o f the diffusion coefficient. The diffusion tensor would be of 

the form

l> Inn, < (Pt ~ PoHpt ~ po) > 
21 (1.9)

and it gives the correlation between the different degrees o f  freedom. However 

we are going to look at the case of two-dimensional systems only for the time 

being. The case o f higher dimensional systems will be considered later.

Ill the next two sections we present the derivation o f the Fokker Planck 

equation as a means of describing the evolution of a chaotic dynamical system.

1.3 Derivation of the Fokker-Planrk equation for 

dynamical systems

III this section we sketch two different derivations o f the Fokker Planck descrip­

tion o f deterministic systems. The first is a derivation o f the Fokker Planck 

description for chaotic Hamiltonian maps (CRH I] and the second is a general 

isation of the l.iouville operator method used by Prigogine and others (see eg

H



[P62]) in irreversible statistical mechanics. The second method is formulated for 

continuous time systems but the results can be easily generalised to mappings.

We will first present the approach of Cohen and Rowlands for the derivation 

o f the Fokker-Planck equation.

Assume a mapping o f the form

Pn+t =  p,, +  m . . P » )  ( 1.10)

•«+1 =  * „ +<V (*„.Pn ) (1.11)

where p and 8 are action angle variables (see for example [(¿NO]). We wish to 

obtain a kinetic equation description for the evolution of the action variable 

p. Following Cohen and Rowlands [CRMI] we define a distribution function 

P (p ,9 ,t )  such that P{p ,8 ,t)iip48  is the number o f particles in the volume ele­

ment dpd8 o f the phase plane. In the original derivation a noise term was added 

to the map to help randomisation o f motion but here we omit it and assume 

that randomisation o f the motion and decay o f correlations is due only to chaos. 

We are going to look at the evolution of

JV(,,() .  J ( M l )

which is the number of particles per unit o f p.

In a time A f corresponding to ii iterations of the map. the particles which 

originally were in position (p.0) move to position (p '.#/) which is fully deter 

mined by the map. Then

W . C . I  + A I ) -  1‘tp' -  Ap.ir -  (1.11)

The second factor of the right hand side o f the above equation is the Jacobian of 

the map which gives the contraction of the initial volume o f phase space due to 

the dynamics o f the map. However, since we are dealing here with symplectic 

maps (area preserving) this Jacobian is always equal to I. This equation can 

be written, using the map. in the form

/*(*'.#',* +  A f )  «  J r iu d v l’i p ' -  u . f  -  v , l ) * { p '-  P -  u W  -  9 -  v ) (1.14) 
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where the initial values p.0 are regarded a* functions o f  the final values p ',t f  

In the above relation pf -  p  +  u and ! ' » !  +  »  after n iterations o f the map. 

Assuming that the changes in the action coordinate p are small we may Taylor 

expand the integrand of the previous equation in p and obtain

Since the Jacobian for the transformation defined by the map is one, we ran 

change variables from u,#' to p.# without changing the form o f  the integral. 

Finally we integrate over p to obtain

where A p = pf -  p is defined as a function of the initial p and 0.

Taking A t  small enough so that the change in the action during this interval 

is small but also large enough such that m I. we can truncate the series 

defined in the above equation to second order in A p  and replace .\ {p ,t + A t )  

with N (p ,t )  +  Ati$ j- to obtain

and r, is such that A t = nr,. It is easy to see that by assuming that the chaotic 

process results in a randomisation of the values of ft as a function of time, the 

distribution functions in phase space will not depend on the angle variables and 

so the above equation redures to the Fokker-Planck equation with well defined 

transport coefficients.

,V(pM + a d  = j  i\p f.e ’ . i +AD«»' -  £   ̂ I f  ^  f  <*«<»'«*/>((/,»', O i ls '- * )

(1 .1 «)

= J (1.17)

where

(1 .1»)

and

(1.20)
2m r,
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A similar approach has been adopted by Lieberinan and Lichtenberg [LLH3] 

in t heir derivation of the Fokker-PI&nrk equation for chaotic maps.

This approach depends heavily on the convergence o f the Taylor series in 

equation (1.17) and the randomisation o f the angle coordinate. These conditions 

are expected to be true for a fully chaotic region.

1.4 Alternative derivation of the Fokker-Planck equa­

tion

An alternative derivation o f the Fokker-I'lanck equation for nonlinear chaotic 

systems was obtained by Petrovsky [PH4),[PHR]. This derivation, gives more 

explicit results for the region of validity o f the Fokker-Planck equation and its 

connection with chaos. In his two papers he used a formal perturbation the­

ory o f the Liouville equation to study the asymptotic evolution of a distribution 

function near a perturbed separatrix in phase space. He proved that the asymp­

totic evolution o f such a distribution function is given by a kinetic equation of 

the Fokker-Planck type. His method of deriving the Fokker-Planck equation 

is analogous to that used by Prigogine and coworkers (see for example (P62] 

or [LM9]) for the derivation o f kinetic equations for the case o f non equilibrium 

statistical mechanics in an infinite system.

Here we sketch briefly the method and the results o f Petrosky [PH4],[P85]. 

Assume a nonlinear Hamiltonian system written in action-angle variables ;>i, p j. 0|. (fj 

in such a way that the periods of oscillations in tt\ are and respec­

tively. The system is nonlinear, so these periods depend on the actions.

Let us now introduce a distribution function /'(p,0.t )  o f orbits in the 

stochastic region. The evolution of this distribution function under the dy­

namics is given by Liouville's equation (see for example [P62]) which is of the 

form
■t f f ( p . » . D _  ¿ ,. ) p t l )  ( i . n )

f/t

where fj =  <[//,.] is the Liouville operator. The square brackets denote the 

Poisson bracket and the distribution function is normalised in the stochastic

II



region of phase spare.

If the Hamiltonian is written in the form // = Ho +  A’ l where K is a small 

perturbation parameter then the Lionville operator ran be written in the form 

L =  ¿o +  h'fiL where

where are the unperturbed frequencies of the system. The normalised

eigenfunctions of the unperturbed Uouville operator are given by

and form a complete orthonormal set in which we ran analyse the initial dis­

tribution function /’ ( p .0 .0 ). Petroaky (PH4],[P85] in analogy with the original 

work of Prigogine [P62], assumes a distribution function of the particular form

It is seen that this distribution function has a /»-singularity in k% in the Fourier 

representation. The existence o f  this singularity is essential for the derivation 

o f the kinetic equation [l‘H.r>]. Not all possible distribution functions have this 

property. For example a distribution function corresponding to a single trajec­

tory will not have the ¿-singularity. The existence of this singularity is related 

to the existence o f homoclinic points in the ensemble chosen. In [PHI] it was 

conjectured and checked with specific examples that a probability distribution 

containing hoinoclinic points possesses this ¿-function singularity in the Fourier 

representation. O f course, as is well known, homoclinic points are the skeleton 

o f chaos, so the assumption o f Petrosky [PHf>] is understandable since it just 

states that a kinetic equation can be obtained «»lily in the region o f phase space 

where homoclinic points exist, that is where chaotic behaviour occurs. Fur­

thermore, lie was able to show that the condition for the existence of nonzero 

kinetic operators (the operators that define the kinetic equation) is equivalent

( 1.22)

and

w  JL _ 2L *L
09 Op 1 Op ' 09 (1.2*)

i d ì l l i -exp IK M ! + k j9 j) (1.24)

/’(p .0 .0 ) = ^ ^ i J^ (P "ka( p ) +  Ak , ^Pk .ka ipJexpO M O JexpO M a)

< 1.2.1)
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to the condition that the stable and unstable manifolds o f  the hyperbolic point 

intersect transversely, that is. the Melnikov function (which defines the distance 

between the stable and the unstable manifolds of a hyperbolic fixed point) has 

a number o f non degenerate zeros.

We are interested in the evolution o f  the momentum (action) components 

o f the distribution function because usually diffusion in chaotic systems occurs 

in the actions. For this reason we define the projection operator

/*= f  / M ,d», (1.26)

which performs an averaging over the angle variables. W e now find the equa­

tions giving the asymptotic behaviour o f /*/’ .

The formal solution of the Liouville's equation is given by the resolvent 

operator o f the Liouvillian, (s  — ¿ ) -1 in a Laplace transform representation, 

and can be written as

=  M tp (- lt l)P (p ,i.O ) =  —  /  <l»-xp( -U t )— L rP lp .d .o ) (1.27) 
« 1  J r  z — L

where the contour T lies above the real axis o f  z and goes from -o o  to oo for 

t >  0. After some algebraic manipulations we can obtain a perturbation series 

for the evolution o f  P f .

/•Ptp.t.l) m J L  < U - X | > ( - i l ! »•(«))-IP + 6 (l))P (p .# ,0 ) (1.26)

where we define the operators

(1.29)

«•(.->= r i w — v u l . r (130 )
‘  -  <JL<J

(1.31)

In analogy with the theory of I’ rigogine et al (1*62] for infinite systems Petrosky 

[P84],[P8ft] called V’ the collision operator and I )  the destruction operator.

The asymptotic contribution in equation (1.28) for t —  oo is obtained by 

evaluating the singularities o f the integrand at z=0. Assuming that the singu­

larities o f pJjT are isolated from the singularities of the analytically continued

13



operators V*(* ),  /•*(-), an assumption which is shown by Petrovsky to be satis­

fied, the asymptotic solution for I - *  oo ran be obtained by finding the residue 

«if the integrand in equation ( l . ‘2H). The asymptotic solution then takes the 

form

/•('(p . « . t )  = E  i> ( « ) )H (p .# .0 ) )„ +il, (1.32)
H t  "• UZ

where z=+iO  means that the residue is taken for analytically continued kinetic 

operators from the upper half plane of z. This equation is equivalent to

^ / ' (p .# , t )  =  J '  d t ' v * ( p . » . t — K') (1.33)

where V’(<) is the Laplace transform of the collision operator \b{x) defined by 

the relation

< ( » ) ■ ( / ' J k *p (i« l )*< » ).  (1.33)

The integral in the right hand side o f equation (1.33) can be expanded in a 

perturbation series in K. the lowest order o f which gives the result

^ / • (p . » . t )  =  i K ^ j ^ . k A k ,  | Vk |1 i (k .w )k .^ A lc ,C (p .# . l )  (1.31)

where V'̂  are the Fourier components of the perturbation V in a Fourier series 

in the angles 8.

As the separatrix is approached, the period o f oscillation in «ine of the angles, 

say 0\ becomes infinite in which case AA| —* 0 and the summation over k\ may 

be replaced with an integral over k\ that is AJrt £ fc| — / dk\. Then, making 

the canonical coordinate transformation (p t .p j)  — (p |. H(t) the kinetic equation 

obtained can be transformed to  the Fokker-Planck equation

^ /■ ,(P ,. « „ . ! ) +  ^ ( - j / ) ( p , . H „ ) i d t , A ( p i . H „ . l ) ) -  0 (1.31)

whrrr /'|(P1 , W cl) »  /'(p,. p ,.t) u d  l)(p ,.H „)= 2 »A 1Ak, Ek I 1“ «(k.-.)

is the diffusion coefficient. The diffusion coefficient is well defined near the sep­

aratrix and can be calculated for particular models by changing the summation 

over k| to an integration.

The derivation given in this section depends explicitly on the existence of 

a broken separatrix and homoclinic points, and one expects the Fokker-Planck

14



*‘<|tiatioti to he good in the neighbourhood o f snrh points. It is a local derivation 

for the kinetic equation. The kinetic equation for a wider part o f  phase space 

can be obtained by a properly chosen averaging method over different patches 

o f phase space for which the method described above ran be properly used.

In the above it has been demonstrated that the Fokker-Planrk equation can 

be used to describe systems where chaotic motion dominates. We now consider 

some methods that can be used to calculate the transport coefficients that enter 

the Kokker-Planck equation.

1.5 The correlation function method

We are interested in the calculation of the diffusion coefficient for chaotic area 

preserving maps o f the form

P«+l =  Ph +  /(*... Pn) (137 )

«..+1 =  • „ + » ( * . . . ? » ) (1.3H)

where f,g are functions periodic in both the variables 0,p or linear in the variable

P-

We first present a method given by Karney et al [KRWH2],[('MX|]. This 

method was originally proposed for doubly periodic area preserving maps with 

noise. The noise was introduced to ensure ergodicity. The case we are interested 

in are chaotic maps without noise terms, that is fully deterministic maps, so 

the method is presented in a form slightly different from its original version. 

The role of noise here is played by the extended stochasticity required for the 

method to work.

The diffusion coefficient given by equation ( I.X) can be rearranged as follows 

Define

au =  p,l+1 -  pn (1.39)

H—l
p« -  p»> -  2 -  a>

,m0
(1.40)
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.1-1 n-a n-a
(► .-m l1 -  E « , '  + a E  E  » , « ,  (1.41)jmO ImO ;, = /+!

Taking the ensemble average we got

« - I  n - a  n - J

< (ft. -  (to)“ > =  E  < « ;  > +a  E  E  < 0 ,0 ,  > . ((.42 )
J=«  /»O pml+t

Sinro tho average is taken over an invariant part o f  phase spare and the measures 

are conserved the average over initial conditions is time ranslation invariant and 

<  «,,«/ >  =  <  ap_/ao >. We ran rewrite the second term in the right hand side 

o f the sum as follows

n - a  n—1 n - l n - l
H  J2  < a,ap > =  £  £ ( u  - j )  <  OjOo >  (1.43)ImO pml+1 jmi pmO

where j  =  p — I. The diffusion coefficient is then given by

l )  = /imn_ <x>(~- £  < a* > +  < OjOo > (1.44)
in  o j - l  "

In the limit n—• oo the first part o f  the sum ran be taken in good approximation 

to be

; E < * J  > - < » ’ >  (1.45)

where a2 is the time average of a2= (A p )2 = f 2(0 ,p ). The second part becomes

¿ (  I -  -  ) < a,an > (146 )
j => "

and if < njOo > decays fast enough in j

E  < . (1.47)

The time averages through which the diffusion coefficient has been defined 

are difficult to handle analytically. In order to be able to use the expansion 

o f the diffusion coefficient given above to get analytical expressions we make 

the assumption o f ergodirity in which case time averages may be replaced by 

phase spare averages. These are easier to handle analytically. In this rase 

i  22j‘mo aj  ‘ an be approximated by < a (p.d ) > « = <  /(p.<?) > «  where

and
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the angle brackets now denote an average over the whole ergodir region of the 

phase spare. Similarly < am+pap > * = <  /(*,n,pm)/(#0 .Po) >#*.

The maps we are interested in are periodic in both coordinates (doubly 

periodic maps) and so they ran be thought o f as maps o f the torus. The 

ergodir region o f phase space R over which the phase spare averaging will be 

performed can be taken to be the unit torus, thus providing convergence of 

the phase space averages. According to the above assumptions the diffusion 

coefficient ran be written in the form

ar and a«) are functions of 0n.pn- It is then seen that the diffusion coefficient 

for a chaotic map is just the infinite sum o f all the momentum autocorrelation 

functions.

Some remarks are in order now. To obtain the above expression, which 

can be easily used for the analytical calculation of the diffusion coefficient of 

chaotic maps, the assumption that the dynamics in phase space is ergodic has 

been used. Such an assumption has not been proven except for a very limited 

number o f specially chosen ideal systems. In most cases it is nothing else but an 

approximation. The above method proposed relies heavily on the fart that the 

ergodic approximation is good enough and this is best achieved if the dynamics 

are strongly chaotic. This is why. for maps which are perturbations o f integrable 

maps, the method works only for large values o f the perturbation parameter, 

unless a noise term is introduced to help ensure the ergodic properties.

A second drawback to the calculation of I) is the actual convergence o f  the 

infinite series o f correlation functions defining the diffusion coefficient. The 

convergence o f this series requires fast enough (exponential) decay of the cor 

relation functions (  \  with r. This is equivalent to a fast enough memory loss 

for the system under consideration. In the original paper where this method 

was proposed (KRWM2], the fast enough decay of the correlation functions was

(I.4H)

where
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ensured by the introduction of a noise term. However if a  system is sufficiently 

chaotic , such a fast decay may be obtained from the local exponential instabil­

ity without the need for the introduction «if a noise term. This is not o f rourse 

always the case and slow algebraic «lecay o f the correlation functions, due for 

example t«i island structures in phase space, causes difficulties in the numer­

ical and analytical calculation o f the diffusion coefficient for chaotic systems 

[M0K6], Such difficulties are discussed in detail in Chapter ii o f this thesis.

Due to the drawbacks «if this meth«id, discussed above, the approxima- 

tions «if the diffusion coefficients obtained using correlation functions, must be 

checked by computations.

l.G Characteristic function method

A method similar in nature to the one proposed by Karney et al (KRVVX2) is the 

one proposed by Cary and Meiss [CMX|]. Cary and Meiss were interested in 

the calculation o f the diffusion c«iefficient for area preserving maps of the form

P..+I = Pn + K f ( 9 n) (150)

9u+t = 9„ + p„+i (1.51)

where f is a periodic function. These maps are also doubly periodic maps and 

can lie thought «if as maps «if the unit torus. The general class «if characteristic 

functions were defin«‘d

..... »»»*) = <  a r j H i £ ’» j 4 l+ j(4 i.fto )) >H (1.52)

where ti„+J is a function «if the initial conditions Po through the iterations 

of the map. The angle brackets denote an average over the region R o f phase 

space. R is supposed to be an invariant under the dynamics o f the map chaotic 

region «if phase space and because «if the double periodicity o f the class of maps 

under consideration the region R can lie taken to lie the whole unit torus.

These characteristic functions are the Fourier transforms o f the joint prob­

ability distribution /'^(w i. j/i ..... y*), which gives the probability o f finding a
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particle at y, at time j  ( j = 0 , l .... k) given that it was initially in the region R

o f phase space. It is then clear that the characteristic functions can give a 

complete statistical description o f the dynamics of the map. Here however we 

are only interested in the diffusion coefficient. As was shown in the previous 

section the diffusion coefficient can he written as the infinite sum o f correlation 

functions

; ' • +  ¿ C ,  (1.53)
r*|

where ( \  = <  /(Ao)/(#r )  >n  for the special class of maps considered by ('ary 

and Meiss.

Taking the Fourier decomposition o f f (9 )  to be

/ ( • ) »  i Z  (1.54)
lm-oo

the correlation functions can be expressed in terms o f the characteristic func­

tions as follows

C, -  ..... 0 . m) (1.55)

where the characteristic functions can be calculated from the recursion relation 

X?(m o,m ....... mk) = »/(»»»*A')x*_,(»«o. »*i......
lm-oo

( l « 6 )
and where

«1 (5 ) •  j ‘  —I t i le  -  .57(S))rf# (1.57)

Using this recurrence relation Meiss et al [M(XJ83] managed to get the principal 

terms in the diffusion coefficient, that is resum all the terms in (1.53) to a certain 

order in the perturbation parameter K.

We will review this method briefly since it can only be used for maps which 

are o f a rather simple form such as the standard map.

The diffusion coefficient is written as a sum o f all the correlation functions 

(see for example the previous section) and as was shown before, the correla­

tion functions can be expressed only in terms o f one particular class o f  the 

characteristic functions \r(m ,0 ..... 0.n). Iterating this recursion relation for
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t he characteristic functions for this particular class o f characteristic functions 

Meins et al [M('(tK:i] found the following relation

» i W o ..... 0 . it,) -  £  (I -W )
hJt..../ *-.--«•

where /_, =  0  and Vj =  -  21}  +  l j+ 1.

The maps under consideration are supposed to he o f such form that for 

^ I when (i/,/) ^  ( 0 . 0 ) in order to ensure the convergence

o f the series defining the characteristic functions. For the standard map for 

example the g ’s are just Bessel functions o f the first order and this condition is 

satisfied.

An approximate expression for the characteristic functions has been ob­

tained (for the particular case o f the standard map) by performing a summa­

tion o f the principal terms [MCCJ83]. The principal terms are those with the 

maximum number o f factors gv( l K ) equal to unity. For the case o f the standard 

map where these factors are Bessel functions this requires /, =  (/, =  0 for each 

such factor. Since l0 is fixed we set /t = </( =  0 and obtain (/¡.t'a) by the 

recursion relation for the I’s and the i/’s. Then we set all the remaining odd 

I’s and //’s equal to 0  and calculate the even ones according to the recursion 

relation. All the even I’s and i/’s are given in terms of the fixed value o f /0. 

This trajectory in (j,l) space, which should not be confused with the Fourier 

space trajectories used by Rechester et al [HHWh I], terminates at js k - 2  with 

lk - i  =  Ik- A nontrivial result can be obtained if /* 0 and this condition gives

us that k must be even and f* =  (  — 1 )*“ ?**fo* This principal term contributes 

to the characteristic function in question the term

Xk (Ak*0, . ..,/ o ) =  (g~ii0( lu l\ I)«*-*)/*/* ( 1.59)

where the superscript I* refers to the principal part. The principal contribution 

in the case where k is odd can be obtained similarly. Bowever for the rase of 

the standard map it turns out that in the rase o f k odd. not all odd order I 

and v *s must be zero. I f we assume that this is /,■„ for j p  odd, then it is easy 

to calculate I>„_| ami lJn In terms o f /<> and I*. The contribution from such 

principal paths ran then be written down [MCCiH.'}].
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Having obtained the principal term contributions to the characteristic func­

tions \, we can calculate the principal contribution to the force correlation 

functions ( '*  through which the diffusion coefficient can be defined. It is found 

that

< »  - <  / (* ,> / (« » ) > » -  j l l u d . o ..... 0 , - 1 ) -  « » ( 1 . 0 ......0 . 1 ) )  ( 1 .6 0 )

for the special case o f the standard map and then the principal term contribution 

to these are

A: even (1.61)

and

i i i i (_y,(* ) ) l* * " /> *  ,M  d-oo)
The diffusion coefficient can then be found by summing up the C'h'a for k=0 to 

oo. This is obtained as a geometric series and gives the final result

This result is more accurate than other results for the standard map (for ex­

ample [KKWn |],[('Hh 1]) since it has been obtained by taking into account an 

infinite number o f terms that add up to give a contribution of the order of 

O (jJr), which were not taken into account using the previous methods. As is 

rightly remarked by Howlands and Bland [BRM6 ] the expression given for I )/’ 

can be thought o f  as a Pad* approximation to the diffusion coefficient using the 

expansion given by Retchester et al (HRWM|).

The method of Meiss et al [MCiJK.'l] though efficient in calculating and 

resurnming an infinite number of correlations whose total effect is of a given 

order, can not be used in maps which are not doubly periodic (i.e maps o f the 

torus), at least in its original form, and becomes algebricailly complicated if 

the map is not of a simple form such as the standard map. However, it has 

recently been used in higher dimensional symplectic maps of the torus (KM90] 

with some success.
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1.7 The path integral method for the estimation of

the diffusion coefficient

Another interest mg method for the calculation o f  the diffusion roeffirient for 

chaotic dynatniral systems expressed as area preserving maps is the path in­

tegral method or Fourier spare path method formulateti hy Rerhester. Rosen- 

hluth and White [RWXO],[RRWX|], Cohen and Rowlands [CRH|] and others. 

The method was formulated initially for the standard map with a noise com­

ponent. Later a method similar in spirit to the Fourier spare path method 

has been formulated for unire general area preserving maps such aN the radial 

twist maps by llatori et al [HKlH.p>], In the latter approach a noise component 

was not introduced into the map. Here we briefly sketch these two approaches 

without introducing the noise term. The noise term was used to ensure the 

ergodic properties of the map so that a kinetic description would be appro­

priate. However here we assume that the role o f  the noise is played by the

intrinsic stochasticity o f the system caused by the strong rhaotir properties of 

the deterministic dynamical system in question.

We will start by introducing the approach o f Hatori et al [HKlN.ri]. A similar 

approach was also followed by Rowlands and Hland [HRXti] for the specific case 

o f the standard map.

Let us assume an area preserving map of the form

P»+l ■ Pn +  K f ( K )  (1-64)

•*♦ 1 = • » + • (* .♦ ! )  (1.65)

where f(0 ) is a periodic function o f period 2 » and a(p) is any function. The 

above area preserving map is called the radial twist map (R TM ). For general 

choices o f the function a(p ) the map in question is a map of the cylinder, that is, 

a map with periodicity only in the angle variable H. However for special choices 

o f the function a(p), for example if a is a linear function o f p, or a periodic 

function of p, the map can be thought of as a map of the torus, that is a map 

with periodicity in both the action and the angle variables. The well known 

standard map is an example of the latter case with f(0 )ssin(<?) and a(p)s=p.



Following Hatori et al (H K Ik.'i ) we define the diffuKion coefficient for the map

ax

D  -  >*- >  <1 .6« ,

whore the brackets denote an average over the initial angle Iterating the 

■nap N limes we get that

in  = <  Ip n - r o )1 > - J ‘  . . . j ( ‘ • ' • □ / ■ j i n J . V ' f ' j - « w m ,  (i.67)

where p j s  KE/^,|/(#/) and pn=0 is aMumed. Taking the Fourier deeonposi- 

tionx o f  the fi functions the above equation ran be written in the form

«> no . ] (  .)<< N - l
//v *  .. .  5̂  . . .  J d$Q.,.d§N-iPlrxp( «2y m d < . - # . , i - o ( / >.

(1.6M)

where the ■ / (  take integer valuex.

We ran now evaluate perturbatively the integral l/y. Sinre the exponential 

term in the integral ran be written ax a produrt o f N-l exponentials, whirh 

are always less or equal to one and rontain one n, the main rontribution to l\ 

comes from the part obtained by putting all the m/s equal to zero. This choice 

for the m/s then gives

In *  J . . . /  ’ dn,,. ,1% ( 1.66)

or equivalently

/ !» f t*  ^
I n - l  - J n M «..M n - , K , ( £  M ) )  ( 1.70)

This term gives the so railed random phase approximation, in whirh the 0's are 

supposed to be statixtirally independent, that is <  9„9,„ > ■ <  #* > This 

ix easily seen sinre taking all the m 's to lie zero is equivalent to replaring all 

the delta funrtions in the integral expression for l\ , equation (1.67) by unity. 

This means we assume that the values o f the angle 9, as a funrtion o f the time, 

are not related to earh other by the mapping equations, that is, the system 

loses its memory in one iteration. For the simple rase where f(9 ) =  sin# we 

readily obtain that = ^ -2 S  and this part o f l\  gives a finite contribution



to the diffusion coefficient Dq l  =  . Here the index QL means the quasilinear

approximation discussed above.

The higher approximations may be obtained by first taking m* =  0 for 

k î  j  and m , ft 0 for j= l,...,N -l then m j ft 0 ,mJ+) ^ 0 and m* =  0 for

• ft j< j  +  I and j = l .....N-2 and so on. This essentially means that we treat the

If  .t as independent after one iteration o f the map. two iterations of the map and 

so on. In order to calculate the contributions from these higher approximations 

the following Fourier decompositions will have to be used

ix p (iq a (p ))=  [  dk<t(k,q )txp(ikp) (1-71)
J —oo

and

t x p ( iq f (0 ) )=  F„,(q )<xp(im 0) (1.72)

The derivation o f  the contributions o f the higher approximations is cumber­

some and depends heavily on the particular properties of the functions rr{k ,q ) 

and Fm( f ) .  For example, for the standard map where a (p )=p  and f (0 )  =  nin0 

and consequently rt(k ,q ) =  6 (k - q ) and Fm(q ) =  Jm(q ) (where Jm is the Bessel 

function o f order m ) the first three corrections have been calculated explicitly 

and were shown to give the following result for the diffusion coefficient [CRNl], 

[HKIM5], [BRHfi]

"  = T ( 5 +  •'?<*)>  ( i . » >

For more general maps Hatori et al [IIKlMfi] proved that the corrections 

to the quasilinear result to l\  go off as iV i for N  - *  <x/ thus giving no finite 

corrections to the quasilinear result for the diffusion coefficient. The condition 

for this to happen is that (r (k ,q ) has no singular behaviour as a function o f k.

In the approach o f Rechester. Rosenbluth and White [RRWMI], Cohen and 

Rowlands [CRMl] (see also [MLLK5]) equation (1.67) was written for the evo­

lution o f a probability distribution /*(;>. 0 , t ) o f orbits in the phase space o f the 

map. under the iterations of the map. This equation was obtained starting from 

the conservation of the number of particles under the iteration o f the map. This 

property can be expressed as
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equivalently (1.75)o p  oeop o p o r
0t +  Ot 06 +  01 Op ~ °  

where in the integer time n in the map has been substituted by a continuous 

time t and the variables p and 0  ran be found as functions o f the time t by the 

iteration of the radial twist map.

The appropriate initial condition for the probability distribution is

1 ,
/‘ (p .0 . 0 ) =  -  Wj)

The solution to equation (1.76) is given by

P { p J , t )m  I * ” ( ¿ ( $ - f ) P ( * , p -  A s in f ' . t -  1 )d *
Jo

(1.76)

(1.77)

where (7(0 -  0 ',p ) is the (ireens function given in the form

tiie-f.p) =  i  £  ttpum c . ( , ) ) .  « »  -  e  - • ( , ) )  ( i .7m)
* *  ma-oo

Substitution o f this equation gives the following result for the probability dis­

tribution

fin
P { i , p , t )  S J  - a ( p ) ) p [ * , p - A sm # ',*-| ) (1.79)

The above equation just states that the particle being in position p,0 o f  phase 

space at time t is just the particle that was in position p'.fP .such that p = 

p' +  A c in i',  0  =  ff +  n(p), at time t-l.

bet us introduce the Fourier transform o f the probability function

/*(f».0.O *  f  4katm(k)etp(H m 9 +  kp) (M O )

Using this Fourier decomposition, equation (1.77) gives

oJ„(A:) *  J d&rxp(—im0/) j  d p tx p (- i(k p  +  m a (p ))P (9 >,p +  h 'n in O '.t -  1)

( M l )

I f a (p )=p , then we have the rase of the standard map and the analysis is 

tractable. In the more general case the analysis is difficult because o f the 

complicated form of the integral over p. However for intermediate times such



that th** action p has not changed much wp may linearis«* a(p ) around the initial 

value o f the momentum p<) and write

o (p ) = o(po) +  ( p - p o ) ^  I , .* ,  (1.82)

Therefore, from now on. f«»r simplicity, we will assume that a (p )=p . Then using 

the identity

rxp {±il1ain9) = ^ J m(/1)rxp(±itn9), ti > 0 (I.K.'f)
we can obtain from equation (1.79) the recursion formula for the Fourier am­

plitudes )

« ! „ w -  iz ( i .m )

where the following relations have to be fulfilled

a k + m and m ’  = tn — l«gnk' ( I.K5)

With the help o f this recursion formula «»ne ran in principle calculate the long 

time behaviour «if the «listribution function l’ (p,0,t). The diffusion «»efficient 

we are interest«! in can be calculated dir«*rtly from the «piantities «J,, in the 

following way. The diffusi«in c«ieffirient is define<| by

=  0 -H6 )

Tin* /'th moment o f the probability distribution P(p,0,t) can be given by

<  p* > ■  f  / • ( ? . « , )‘<£(k) ( 1S T )

so that

l )  = /•mfc_ 0> -  o ( * ) ( 1 .HH)

[CRM|).

Thus we see that in order to calculate the diffusion «»efficient we must 

calculate aft in the limit N  — no. This ran be done in a perturbative way.

Let us iterate that the recursion relation ( I .M ) N times, starting with the 

initial condition

«£ .(* ) = (1*8»)



corresponding to the probability distribution

= ¿ i l j t - p o t  (1.90)

Every iteration ran be thought o f  ax a path in the (m ,k) «pare. The iteration* 

will be performed backward* in time and *inre we are ¡nterexted in the limit 

k — 0 + and m =0 . all the path* we are ¡ntere*ted in should end at the point 

(m .k)= (0,0 ). There ¡n a large number o f *urh path*, each one o f tho*e giving 

a contribution to 0+ ). The *imp|e*t path i* the one that never leave* the

origin, that i* all the k’s and in'* are equal to zero. Thi* path rontribute* the 

term

« i ' l l )  =  (1.91)

and thi* give* the contribution to the diffusion coefficient

which is nothing but the quaxilinear approximation.

The correction* to this main contribution are obtained using path* in the 

Fourier spare that leave the origin. From the recursion relation (I.H4) we *ee 

that leaving or returning to the origin once give* factors o f J i ik k  ) and since we 

are interested in the limit k -• ()+ we only have a contribution to the diffusion 

coefficient from such part* o f a path if and only if / = ±1. Thi* i* because the 

second derivative* with respect to k of J ( (k k )  with f > 2 go to zero a* k — 0+ . 

For large K. because o f the He**el function contribution at each step, we can 

construct a series in a*cending power* of Kessel functions by considering paths 

with an increasing number o f step* spent away from the origin. This is in 

complete analogy with the approach used by Hland and Howlands (HKXfi] and 

Hatori et al [HKIM5] where the approximation was based on the number of 

iteration* of the map before randomisation of the angle variable*. The number 

of iterations allowed before randomisation of the angles is equal to the number 

of steps spent away from the origin. However in the way presented by Hland 

and Howlands [HRM6 ] or Hatori et al [H k lX .p>], the physical justification for the 

approximation used is more apparent.



The construction and the enumeration o f the appropriate graph* remain* 

to he done. We will not need to go through thi* in detail since the construction 

o f graph* depend* on the particular map considered. We just give the simplest 

corrections. The path with the fewer number of steps spent outside the origin 

is the path (0.0) - ( 0 .1 )  — — (0.0). (1.03)
This can he traversed in N steps in N-2 different ways, that is remaining at 

the origin before moving S=0,l,...N-:f iterations. The contribution of these N-2 

paths to a £ (k ) is

n i l * )  -  (/V -  i ) (M I ‘K ))N- , J .,(k K )J .,{k K )J M l+ li)K ) (1.94)

and this contributes to the diffusion coefficient a correction term o f —^-/¿( A'). 

Note that this result is the same as that o f Hatori et al ( IIK lH.r»].

1.8 Markov models for transport in phase space

All the models for transport in phase space considered up to now were more or 

less in the same spirit and were based on the calculation o f the various transport 

properties, such as the diffusion coefficient, in terms o f correlation functions 

which are obtained by averaging over parts of phase space. It is evident that 

such models can not give a very detailed description o f the transport processes 

throughout phase spare.

A different da*s of models which is based mainly on the geometrical charac­

teristic* of the dynamical system in question are the Markov models for trans­

port in phase space. These ran give more |ocali*ed information on transport 

through phase space, at the expense o f having to obtain detailed information on 

the characteristic* o f the particular dynamical system in question, such as posi­

tion of hyperbolic unstable orbits, stable and unstable manifold* etc. Model* of 

this sort have been proposed by Mackay et al [M M I‘K4], Hensimon and Kadanof 

(HKH4], Dana et al (DMI’M!)] ami Wiggins and coworkers (see for example themonograph (W92)).



The strategy o f Mirh models ran he summaris«‘«l as following. Snppotie that 

the transport between two disjoint parts o f phase spare R ( andR j  is to be 

studied. Two disjoint region* ran only rommunirate if a partial barrier exists 

between them. A partial barrier permits some (lux of phase spa«» through it 

and ran be either a rant or us (a  ran torus is just an invariant rurve «if the map 

that has an infinite number of holes in it and has the strurture o f a Cantor set) 

or a set «if stable and unstable manifolds «if a hyperbolic periodic orbit that 

intersect permitting a part of phase spare to be transported by the action of 

the map.

Before introducing models of this form we must give the basic mechanism 

«if transport. Assume that a hyperbolic fix«nl point for a map M exists in phase 

space and let us call it S. Then for this point there exists a stable and an unstable 

manifold which are the set o f points which if mapped to t —• <x approach S and 

if mapped by the inverse mapping to f —• — <x approach S respectively. These 

two manifolds, which we shall call W"(.V) and IVU(.S’ ) (the superscript s denotes 

the stable one and the superscript u denotes the unstable one), must ¡ntersm 

at an infinity o f points (each one o f which is the image of the other under 

M ) which are calle«| homorlinir points. The intersection «if these manifolds is 

equivalent to the nonintegrability of the system berause it has been proved 

that in the rase o f an integrable system the stable and the unstable manifolds 

«if the hyperbolic fixe«l point o f the map will have to be simaithly r«inn«*ct**<l. 

Suppose for simplicity that H'*(.V) and H,U(.V) intersect in such a way that 

there is only one homorlinir point q with the property that the segment of 

W*(.V) from S to q and the segment of H, " (.? ) from S to q intersect only at q 

(a  point with such properties is called a primary intersertitm point by Kaston 

[KMfi]). It is easy to prove that if M is a diffiMimorphism then the images and 

preimages of primary ¡nters«*ction points (pips) are again pips (see eg [W92]). 

We ran see that between the pip q and M ~ l (q ) we have an s-shaped region 

o f finite area (which is defined by the stable and unstable manifolds o f S) that 

was railed a turnstile by Mackay et al [MMI'H4]. If we call L ja the part «if the 

turnstile between M ~ l {q ) and t ( see figure |.:|) and Lt\ the part o f the turnstile



between t and q (where t is a homorlinir point hut not a pip) then we see that 

under the action o f the map the area in L u  is mapped to an intersection o f the 

manifolds lying 'outside’ the area enclosed by [Sq]“ and [qS]* which we will call 

for simplicity Hi ((.Vf)* denotes the segment o f the unstable manifold between 

S and q). The same thing applies for the area in Lj\ which starts ’outside’ the 

area H| (that is in K j) and under the action of the map M is mapped inside it 

(see figure 1.3) . So we see that through the turnstiles, that are formed by the 

broken separatrix. we can have communication between two distinct areas of 

phase space. This is the basic mechanism o f transport between two regions of 

phase space which are distinct but are connected by partial barriers. It is easily 

seen that the afore mentioned mechanism is present in the rase o f hyperbolic 

orbits o f  period greater than one. We can then define the flux o f phase space 

out o f region Hi and into region Hj which is nothing else but the area o f L u . 

This area can be obtained for area preserving maps using the action formalism 

[MMI'M4] or using the Melnikov function [W92].

We are now able to formulate the transport problem. In order to study the 

transport through the phase space of an area preserving map we have to break 

the phase space into disjoint areas that rover the whole of phase space, that 

is we have to generate a Markov partition for the map. These disjoint regions 

ran com in unirate through partial barriers like turnstiles or overlap o f turnstiles 

formed by stable and unstable manifolds of different hyperbolic periodic orbits. 

Suppose that each of the disjoint areas forming the Markov partition has area 

A, which can be calculated. If the flux between two such regions is A W |;, which 

is given by the common area o f the appropriate turnstiles, then a Markov model 

can be obtained for the transport process through phase spare with transition 

probabilities p%) =  from region i o f the partition to region j. This Markov 

model ran then lie solved giving information about how different parts o f phase 

space ran communicate. O f course the problem o f rhoosing the right partition 

remains. Markay et al got round this problem by choosing a partition o f phase 

space in terms o f resonances. A resonance is a region o f phase space hounded 

by pieces o f stable and unstable manifolds of a hyperbolic ordered periodic





orbit Then the turnstile o f the res»»nanre in the total area (flux)

exchanged by thin resonance and the rest o f phase space. It can be proved 

that with the right choice o f  boundaries for each resonance, two resonances will 

not overlap while for a given region bounded by two KAM curves the total 

area o f  the resonances is equal to the area. That means that the resonances 

form a complete partition o f phase space and all chaotic orbits except a set of 

measure 0 must lie in this partition. Two resonances can only communicate 

through overlaps o f their turnstiles. In choosing such a partition the areas of 

the different regions can be obtained quite easily (though with considerable 

numerical effort) through the action formalism o f area preserving maps and 

same goes for the turnstiles area.

Markov models are very interesting and can give detailed results for trans­

port in parts o f phase space where the formalism presented in the previous sec­

tions is not appropriate. They can be used in cases when we have weak chaos, 

such as when we are close to the critical value of the perturbation parameters 

for the onset o f transport, that is when a KAM curve is just beginning to break 

up. On the other hand the methods described up to now need the existence of 

strong chaos and are valid for large values o f the perturbation parameters.

Markov models have been used successfully by several authors for simple 

maps such as the standard map and the sawtooth map and for the latter ex­

act results have been obtained (see for example [|)MI'M9], [I>0 0 ] , [MMPH4], 

[W92]). The above presentation o f such models is certainly incomplete but a 

more complete presentation is beyond the scope o f  this thesis since our work 

is based on the class of models based on correlation function methods. We 

think that such models should be used to get an overall idea of the transport 

through phase space and then the Markov models which require a great deal 

o f  numerical work should be used for the parts o f phase spare or regions in pa­

rameter space that the correlation function models are seen to be inadequate. 

Furthermore since the Markov models are not yet sufficiently well formulated 

for systems of dimension greater than 2 (except perhaps for some partial results 

by Wiggins (W92j) we have to use the techniques o f the previous sections which

:<l



have already been shown to work successfully.

In the present thesis, as mentioned above, we focus on the investigation of 

correlation function models for the study o f diffusion in strongly chaotic maps. 

In such cases correlation function methods are appropriate since for strongly 

chaotic motions the effect o f ordered structures such as islands is small and 

more detailed or refined descriptions are not urgently necessary at least in the 

stage of getting some basic information on the system. As a final remark here 

we can see that combinations o f the two models can be made. For example 

Markov models that are appropriate in certain parts o f phase space can be used 

to obtain the proper boundary conditions to be used in the description o f the 

system in question by a diffusion equation.

1.9 Motivation for this Work.

As mentioned earlier, the main subject o f  this thesis is the long time behaviour 

o f chaotic Hamiltonian dynamical systems. In this section I want to present 

the main motivations for undertaking such a study, by mentioning some of the 

applications o f such a problem.

Hy now it is well understood that a great number o f the dynamical systems 

that appear in nature can become chaotic, so being able to quantify observables 

for a chaotic system is o f  great importance for applications.

One o f the most important problems o f  this sort is that of charged particle 

confinement. If we consider charged particles in an axisymmetric magnetic 

mirror, or for example the earth’s magnetic Held, then these are dynamical 

systems o f two degrees o f freedom, and the details o f the particle trajectories 

give information about the confinement o f particles by the fields. Depending 

on the geometry and strength o f  the applied fields, there ran be a transition 

from regular motion to global storhastirity. The presence of stochastic motion 

leads to an enhancement of particle losses either out o f the mirror machine or to 

the poles in the rase of the earth’s magnetic field. The long time behaviour of 

this dynamical system will give us information on the leakage rate o f particles 

from the field, information o f paramount importance for the design o f magnetic



mirrors and tlm entry of charged particles into the earth's ionosphere.

Another important class o f problems where this study is o f relevance, is 

the problem o f charged particle heating. The motion of charged particles in 

specially selected electromagnetic field configurations can become chaotic. This 

chaotic motion, which comes from the modification or destruction o f invariants 

o f motion due to the interaction of resonances may lead to a more effective 

transfer o f energy from the electromagnetic field to the particles, that is more 

effective heating of the charged particles. One o f the most common schemes 

is the use o f the resonance between the gyrofrequency and the electromagnetic 

wave. An example of such a heating scheme is the web map. proposed by 

Zaslavskii et al (ZZSK6 ] where electrons rotating in a magnetic field interact 

with an electrostatic wave packet propagating perpendicularly to the magnetic 

field. The long time evolution o f a probability distribution in the momenta (or 

actions) gives important information on the evolution of the kinetic energy of 

an initial ensemble o f particles and the effectiveness of this scheme as a heating 

mechanism. Thus the construction of kinetic equations for the evolution o f  such 

probability distributions in the case where motion becomes chaotic will be of 

great practical importance.

Last, but not least, in this small indicative list o f problems related to the 

study o f the long time properties of chaotic Hamiltonian systems, is the problem 

of chaotic advection. It was found recently, that the motion o f tracer particles, 

even in a two dimensional, incompressible laminar flow, can become chaotic if 

the laminar flow is time dependent [OHO). The equations o f motion for the tracer 

particles can be written in Hamiltonian form. The long time behaviour for such 

a system will give information on the dispersion o f passive tracers in the flow 

and on how effective mixing due to chaos is. There is a wide range o f problems 

related to that, such as the dispersion o f contaminants in the atmosphere or 

the oceans, or effective mixing o f reacting substances in the chemical industry.

The contents o f this thesis, are not going to deal with any specific applica­

tions. except for Chapter 'l where the study of transport in a particular system, 

associated with charge particle heating, the web map, is presented. The rest



o f it is devoted to the slmlv o f some general problem« that appear when the 

problem o f transport rauseil by chaos in Hamiltonian dynamical system« is 

considered.



Chapter 2

Diffusion in the W e b  M ap.

2.1 Introduction

We have seen in Chapter 1 that a deterministic dynamical system can give rise 

to complicated, irregular motion which looks very similar to noise. This kind 

o f  motion is called chaotic motion. Importantly, unlike noise chaotic motion is 

perfectly deterministic. This irregular motion is extremely sensitive to initial 

conditions as applied to the deterministic system. In a more formal language, 

this corresponds to an exponential divergence o f nearby orbits, a property which 

is quantified bv the introduction o f the Lyapunov numbers [LLH.'I], Chaotic so­

lutions o f a dynamical system have (maximal) Lyapunov exponents which are 

positive, while regular or periodic solutions have negative maximal Lyapunov 

exponents. Another point which should be made, is that usually the corre­

lation functions for chaotic motion are more structured than those for noise, 

particularly white noise.

The chaotic behaviour first arises near the separatrix solution. As men­

tioned already in section l. l  a separatrix is a special orbit(s) o f the system 

which passes from the hyperbolic periodic orbits. In the integrable case (where 

no chaos is possible) like for example the pendulum, the separatrix is formed 

by the smooth joining up of the stable and unstable manifolds of the hyperbolic 

fixed points and is sometimes called homoclinic or heteroclinic orbit. The sep­

aratrix separate qualitatively different orbits. For example in the case o f the



h h |»«*rt ii r Ix'tl pendulum whose phase portrait is shown in figure 1 . 2  the sepa- 

ratrix solution is the solution separating oscillatory from rotating orbits that 

joins up the hyperbolic fixed points corresponding to the unstable equilibrium 

points o f the pendulum. The example o f the pendulum is the prototype for any 

nonlinear resonance and it is seen that séparatrices occur often in dynamical 

systems. In the case o f a nonlinear resonance a separatrix is the curve separat­

ing islands (which correspond to trapped orbits in the resonance) from the rest 

of phase space (which corresponds to untrapped orbits).

When a small, time dependent periodic perturbation is added to the pen­

dulum. the smooth separatrix orbit is disrupted (because o f the transverse in­

tersection o f the stable and unstable manifolds that form it) and a chaotic layer 

is created around the old separatrix solution (figure 2.1) . Inside the chaotic 

layer the systems dynamics are very complicated and look as if they are gen­

erated by a random process. The reason why such behaviour occurs near the 

separatrix is that near the separatrix and especially near the hyperbolic fixed 

point, the force experienced by a particle from the unperturbed system is very 

small and so the time dependent perturbation becomes dominant. So the or­

bit can switch from librations to rotations and back again under the influence 

of the perturbing force. Since the periods o f  the motion near the separatrix 

approach infinity (this can be obtained simply by studying more carefully the 

example o f the pendulum) the switches from one type of motion to another will 

be uncorrelated and so it will be very irregular (AMH).

A stochastic web appears when many stochastic layers intersect in phase 

spare. The existence o f  stochastic webs in Hamiltonian systems o f more than 

two degrees o f freedom has been known since 1060 (a phenomenon called Arnold 

diffusion, see for example [LL.M3]) However it is only recently that such stochastic 

webs have been reported for lower dimensional Hamiltonian systems namely 

systems o f I 1  degrees o f freedom ( that is one degree of freedom plus a time 

periodic perturbation) in the physical context o f charged particles rotating in 

a steady and homogeneous magnetic field interacting with electrostatic waves

[ZSUII9].
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F igu re  2.1. Chaotic region around the separatrix area.



2.2 Spider webs.

T h f standard system for such web« is that o f a linear osrillator perturbed by 

a time periodic perturbation as is discussed in detail in the next sections. The 

simplest model for a stochastic web is a linear oscillator with a sinusoidal wave. 

Such a system is said to produce a spider web and is described by the Hamil­

tonian [CSZHH]

H = y  +  +  h 'co*(kx  - u i t )  (2.1)

A physical situation described by such a Hamiltonian is that o f the motion 

of a charged particle in a homogeneous static magnetic field (this is equivalent 

t<i a harmonic oscillator o f frequency u*i. the Larmour frequency) perturbed by 

an electrostatic wave propagating perpendicularly to the magnetic field. We 

can easily go to action angle variables (.I,®) for the harmonic oscillator. Then 

the nonlinear perturbation when, expanded in a Fourier series, introduces into 

the motion a series o f resonances between the unperturbed motion and the 

perturbation. The resonance condition is

( 2 .2 )

When we have a resonance a stochastic web appears in phase space that 

has a rotational symmetry (see figure 2.2) . It is clear from the figures that the 

phase space consists o f 2 m concentric rays along which the chaotic layers are 

aligned and in between the rays we have elliptic islands corresponding to stable 

motion. More details about how the structure o f the spider web is obtained are 

given later.

The width o f the chaotic layer of the web depends exponentially on the 

perturbation parameter (<'Nl*K7]

A// S T ' " « — I T ' (2.3)

The constant is independent o f K but depends on the part o f phase plane we 

are in. The exact expression for A// shows that the width o f the stochastic 

layer becomes smaller as we move out in the phase plane. Hearing in mind that 

diffusion o f orbits through the channels o f the stochastic web to reunite regions
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o f phase spare is possible, one readily sees that the reduction in the width of 

the stochastic layer as we move out in the phase plane corresponds to the fact 

that high energy paticles have less probability to diffuse to high kinetic energies 

than low energy particles. This is not true for all kinds of stochastic webs. It 

is possible to construct stochastic webs with chaotic layers having a uniform 

width all over the phase space (see section 2.3).

To study the structure of the spider web in more detail we first take an 

appropriate canonical transformation, namely

x  =  (Q "L )\ c o a (—  -  u>f) (2.4)
u*) »0

p = (2no/Mo)i*in(—  -  u>f). (2.5)

Then in the case of exart resonance rtoû i =  u  .the Hamiltonian o f the system 

reduces to

H = H„ +  V  (2.6)

(2.7)

v  =  ~ r ~  ¿  +  ( — -  \ )u t) ( 2 .M)
*  “ to «O «O

where J„ is the Hessel function of order n.

With this canonical transformation we have changed to action-angle vari­

ables for the harmonic oscillator and changed to a moving coordinate frame 

rotating with the frequency of the oscillator. In this way we may separate slow 

and fast variables, and thus set a formal framework for the use of perturbation 

theory.

The part / / 0 o f the Hamiltonian is the integrable part (unperturbed hamil- 

tonian). Under certain conditions, namely that the pertubation is on a much 

faster time scale than the unperturbed motion, the Hamiltonian Ho provides a 

good approximation to the full motion. This part of II generates in the phase 

plane a separatrix network that is extended all over the phase plane. Infor­

mation concerning the form o f the separatrix network generated by Hu ran be 

gained from the hyperbolic singular points of H». According to Chernikov et



al [CSZHM] the separatrix network consist)« o f concentric circles that are crossed 

l>y 2 » 0  rays.

The time-dependent part o f the Hamiltonian , V, plays the role o f the per­

turbation that disrupts the separatrix network created by //„ and is responsible 

for the formation o f stochastic layers (chaotic layers) about lines defined by the 

separatrices o f the unperturbed system. This is the way a stochastic web is cre­

ated and these features are illustrated in figure 2.2. The width of the stochastic 

web can be found by approximating the particle motion near a separatrix by a 

mapping (separatrix mapping) and taking the local phase instability condition 

for the occurence o f stochasticity as proposed by Zaslavskii and Chirikov [ZC72] 

and is given by equation ( 2 ..T).

The existence o f an infinite connected stochastic web at first sight looks 

incompatible with the KAM  theorem (named after Kolmogorov Arnold and 

Moser who first proved versions o f it). According to this theorem some of the 

invariant tori o f  the unperturbed system (those not carying resonant or equiv­

alently periodic orbits) should survive under the perturbation for small enough 

values o f the perturbation (see for example [LL83]) These tori should then be 

barriers for the communication o f the chaotic layers along the resonances thus 

ruling out the posibility for the existence of an infinite connected stochastic 

web. An important condition for the KAM theorem to hold is that the unper­

turbed system is not degenerate, that is the determinant of the Hessian matrix 

o f the unperturbed Hamiltonian (written in the action angle variables) should 

not be zero. This condition states that for the KAM theorem to hold, a reso­

nance condition should be localised in phase space. According to Chernikov et 

al [CSZXX] one o f the important reasons that the infinite stochastic web exists 

for the linear oscillator, when perturbed by the resonant perturbation, is that 

the unperturbed system is degenerate, thus making the KAM  theorem inappli­

cable in some parts o f phase spare. The degeneracy arises from the fart that 

the unperturbed system is linear.

This degenerary o f the unperturbed system is immediately removed by con­

sidering a nonlinear oscillator (in which case the frequency of oscillations de­
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pends on the energy or momentum o f the oscillator) in the place o f the harmonic 

one. Then, the KAM  theorem is applicable and this makes the existence o f a 

stochastic web infinitely extended in phase space impossible. The theorem im­

plies that for some finite K there will be an invariant curve in the phase spare 

that impedes stochastic diffusion across it. In this rase stochastic layers are 

separated by K A M  surfaces (due to the low dimensionality o f the system) and 

consequently cannot intersect. It is however possible that certain finite seg­

ments o f  the stochastic web may remain in certain parts o f phase space. This is 

more probable in the parts o f phase spare where oscillations are small and the 

nonlinear oscillator ran well be aproximated by a linear oscillator. This idea is 

supported by numerical calculations [<'NI'H7].

2.3 The web map.

According to Chernikov et al [CSZH8] there is the possibility o f the existence 

of an infinite stochastic web with a uniform width as distinct to the case of the 

spider web. where the width o f  the stochastic web decreases exponentially as 

we move away from the origin in the phase plane. An appropriate model o f this 

kind is a linear oscillator perturbed by a force E which consists o f  an infinite 

number o f  sinusoidal forces with a harmonically related frequencies, namely

E ( z , t ) = A  £  ain(kx  -  n u t) ( ’¿.9)

Importantly this can be re-expressed in the form

£ ( « , ! ) ■  A * in (k x ) £  A ( t - n T )  (2.10)

where T  =

The corresponding Hamiltonian takes the form«  -  Y  +  Sr~ (»») J T  1(1 -  nT) (2.11)
This Hamiltonian describes the motion of a charged particle in a homogeneous 

and static magnetic field , perturbed by an electrostatic wave packet propagnl 

ing perpendicularly to the magnetic field.
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The equations o f motion o f  the particle between two actions o f the f>- 

functions at time t =  nT~  and t =  (n  +  1)T”  (where the minus sign denotes 

just before this time instant) are linear and hence admit a full analytic solu­

tion. The action o f the perturbation is to impose an impulse at time t= n T  

that changes the momentum o f the particle by a known factor that depends 

<m the position o f the particle at the time it experience the impulse. Hence, 

the motion o f the particle described by this Hamiltonian can be described by 

a difference equation relating the momentum and the position o f the particle 

before and after the nth kick by the delta function that is at time t =  nT~  and 

t =  ( « +  1 )T ~  respectively. The corresponding mapping is exact and is [ZZSH6 ] 

u„+ ) =  ( u„ +  A'sint),, )co*n +  n„sinn (2.12)

w»+l =  - (u „  +  A'sifit>n)strm +  vncosa (2.13)

where a = 2 ff/q . v„ =  v(t =  n T ~ ),  u„ =  u(n = n T ~ )  and h  =  A k ll _ por 

brevity we are going to call this map, the web map M„.

In the case o f  exact resonance where q a integer, this map has some re­

markable properties (the case o f resonance means that during one period o f the 

harmonic oscillator exactly q delta pulses act on it). It is the generator o f  a 

tiling o f the whole phase plane with a stochastic web which has uniform thick 

ness. It also has some interesting symmetry properties. For certain resonances 

the stochastic web exhibits a novel kind of symmetry, the so called quasicrys- 

tal symmetry. This is the symmetry observed recently in some materials like 

Mn-AI for example that are crystals with five-fold or seven-fold rotational and 

translational quasisymmetry [SB(J('H4].

Along the stochastic layers o f  the web the particle motion resembles a ran­

dom walk and at least according to Zaslavskii et al [ZZSKfi] particles can diffuse 

through this stochastic network to high kinetic energies, while the motion of 

the particles inside the tiles is regular. The properties o f the web have been 

studied both numerically and analytically. Here its most important properties 

are reviewed briefly.

The Hamiltonian of the system consists of two parts. The first part is a linear 

oscillator. This part of the Hamiltonian has n degenerate rotational symmetry.
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The second part of the Hamiltonian describes the interartion o f partirles with 

the wave packet. This part o f the Hamiltonian has a translational symmetry 

(symmetry with respect to translation x  - »  *  +  These two symmetries

compete. Normally the interaction of the two symmetries should lead to a 

destruction o f both. However when the linear oscillator is in resonance with 

the perturbation it is possible that the degenerate rotational symmetry breaks 

into a rotational symmetry with respect to angles o f rotation a =  & .  The 

coexistence o f rotational symmetry and translational symmetry is only possible 

if q= 1,2,3,4,6 . The cases where q= l,2  are trivial. q = l  corresponding to the so 

called cyclotron resonance and q= 2  corresponding to the half-integer cyclotron 

resonance and lead to uniform acceleration without diffusion as readily seen 

from the map. The cases q=3,4.(i correspond to the formation of a stochastic 

web exhibiting the well known crystal symmetries. In the rase of q=4 the 

stochastic web is a square mesh. In the case of q=3,6 the stochastic web has a 

kagome structure [ZSIIH9] and consists o f hexagonal and triangular cells. In the 

case where q=.r>,7,N... the coexistence o f rotational and translational symmetries 

is no longer possible. In this rase exact symmetry gives place to quasisymmetry 

( at least for small values of K ) and the stochastic web exhibits quasirrystal 

symmetry. For example the rase q = .r> corresponds to a five-fold quasisymmetry, 

q=7 corresponds to a seven fold quasisymmetry. In figure 2.3 some pictures of 

the stochastic web for various symmetries are shown.

Quasirrystal symmetries are much more complicated than ordinary symme­

tries. One way o f studying their properties is by using the mapping M„ and 

is the «me to be used in the following. Alternative ways have been used in the 

past such as I’eurose partitions or the l.andau theory [ZSIJH9].

In the following we sketch briefly how the above results concerning the 

structure o f a stochastic web ran be obtained quantitatively :

Hy writing the map in the form

M„ «  Hn( I +  AW) (2.14)

[ZZSKfl] where H„ is the rotation operator with respect to an angle a  and 

S<t> =  (* in v ,0 )r  where 0  =  (t>, u )T , one ran show that for the exact resonance
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condition a =  2* . if the point in the phase spare is a fixed point of M n, then

the points ......are also fixed points o f the mapping M „. This

result is true to an accuracy of 0 ( K 2). This is not the case when we do not 

hnve an exact resonance. Intuitively we can understand that the structure of 

the web may be approximated for small values of K by the separatrix network 

created in the unperturbed system. It is then easy to see that because the 

unstable fixed points of the mapping M „  have rotational symmetry, with angle 

of rotation a  =  2* .  the separatrix network created by the system, and in turn 

the stochastic web, must possess the same symmetry

By taking appropriate canonical transformations similar to those used in

the case of the spider web ([CSZMM], [ZSUH9]) we can write the Hamiltonian

( ' ¿ . 1 1 ) in the form

H  =  +  V, ( 2 . 1 » )

where

» . — 7  t - c , (2.16)

with

=  i>cos( ) +  usin( ) (2.17)

and
'2h ,  ,2w m (r

Yq = - —  2 _  2 -  co*ZjCo.h( ---------
V m— <*>,«1 1

( 2 . IM)

(ieometrically ( j  = Rcj where K is a state vector in phase space and e, is a 

unit vector which defines a vertex o f a regular polygon. //,, plays the role o f the 

hamiltonian o f the averaged motion o f  the particle over the Larmour period and 

is an integrable hamiltonian. It forms a .separatrix net in the phase plane that 

gives the basic structure o f the stochastic web. For example in the case q=4, 

II i gives a separatrix network that has square symmetry. In the rase q=:i,(i, 

//.» =  Hu gives a triangular and hexagonal separatrix network. The separatrix 

network for q=ij,7,N... gives more complicated structures.

The role o f the perturbation V , is to disrupt the separatrix network and 

form narrow stochastic layers along the separatrices. The instability of mo­

tion near the separatrix network of the unperturbed system that is caused by



the perturbation leads to the occurence o f the stochastic layer. This may be 

illustrated in the following way, for the particular case o f four-fold symmetry. 

The full equations o f motion are linearised about the separatrix solution corre­

sponding to the Hamiltonian H<. As a result in the long time limit a Mathieu 

equation is obtained for the deviation from the unperturbed separatrix motion 

whose solution is found to be unstable for the parameter values appropriate to 

the problem (details are given in Appendix 2.1).

Zaslavskii et al [ZZSMfi] made an estimate o f  the width o f  the stochastic layer 

keeping only two terms in the perturbation. According to their estimate the 

width o f the stochastic layer is proportional to r x p ( -  ) where the constant 

is independent of the position in phase plane. The stochastic web then has a 

uniform width over all the phase plane. The thickness o f the web increases as 

K is increased and for K  > 1 the width o f  the channels o f the web becomes 

comparable to the size of the cells o f the web.

An important set of properties of the hamiltonian //,, is related to the sin­

gular points o f the hamiltonian. In the case where q=3,4,6 l.e when the web 

has a crystal symmetry, the hyperbolic singular points o f the hamiltonian are 

located on surfaces o f constant energy E. Thus if we plot the distribution p(E ) 

o f the hyperbolic singular points o f Hq versus E (p (E ) is the averaged number 

o f hyperbolic singular points with energy E «»ver a part o f phase spare) we ran 

see that this distribution exhibits some delta function peaks for some values of 

E. This fart is responrible for the existence o f a connected separatrix network 

for the unperturbed problem in the rase o f the full crystal symmetry. In the 

case o f quasirrystal symmetry the set of hyperbolic points o f the hamiltonian 

/ / 9 is no longer located on a constant energy surface hut they are distributed 

over a large energy range [CSU87). As a consequence the hyperbolic singular 

points density as a function o f the energy is blurred with certain maxima at 

certain energy values. This indicates an element o f disorder associated with 

quasirrystal symmetry. Similar results hold for the elliptic singular points.

There are also some important properties o f //,, associated with the Van 

Hove singularities in the density o f states p (E ). These are singularities assori-
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ate«| with the singular point» o f Hq. In the rase o f crystal symmetries there 

exist sharp singularities in the density o f states. These sharp singularities are 

associated with the delta functions in the distribution o f the singular points. 

In the case o f the «juasirrystal symmetries such singularities are considerably 

smoothed. The position of these smoothed features corresponds exactly to 

the position o f the maxima for the distribution of the singular points o f H q. 

The smoothing of the singularities in the case of cpiasicrystal symmetry is a 

distinctive property «if this kind of symmetry and is an indication o f a more 

disordered structure than a normal crystal symmetry [CSUH7]. Results for th«‘ 

density o f states for q=.'l,4.f> can be obtained analytically whereas for q=5,7,H... 

the calculation is possible only numerically [ZSU89].

2.4 Study of Diffusion in the web map.

As was mentioned in the previous section for a large range of values o f the 

perturbation parameter K a connected web o f stochastic layers o f a certain 

symmetry exists in phase space through which transport o f orbits to remote 

parts o f phase space is possible. For sufficiently large K the mapping becomes 

chaotic over most o f the phase plane an«l motion on the phase plane is describ- 

able by a diffusion process. In this section the method of Karney.Rechester and 

White (K R W ) [KKWM2], already described in detail in the introduction «if the 

thesis, is used to obtain the analytical form for this diffusion ronstant [YR91] 

as a function o f  K for q=:i,4,f> where the crystal symmetry can be invoked,» 

necessary condition for the application o f  the KHW method. According to this 

method the diffusion ronstant I) can be expressed in terms o f the correlation 

functions such that:

l )  =  InnM_.
< t»a >

=  f  'o +  2  5Z (n ( 2 .1 ®)

where

( 2.20 )

4.r>



ami

«... = -  vm ( 2 21 )

and the integration is over all initial values u<> and v«. The infinit«* series con­

verges provided the correlation functions decay rapidly enough (exponen­

tially),an assumption which is valid for large enough values o f the stochasticity 

parameter K.The quantities a,,, are given as functions o f  Uo and Vo by successive 

iterations o f the map.This method o f calculation o f the diffusion coefficient can 

be only used for maps which are doubly periodic,period ‘l ir  so that the averaging 

used.namely over tin anil v0, o f the correlation functions is valid. Thus in order 

to use this approach for the present problem it is first necessary to eliminate 

the highly correlated rotation o f the particles around the tiles that constitute 

the phase plane. This is done by removing the twist out o f the map which is 

accomplished by iterating the map q times. This new map is then used for the 

calculation o f the diffusion coefficient.

We present below the calculation o f the diffusion coefficient for each o f  the 

cases o f the hexagonal symmetry (q = 3 ) and the square symmetry (q=4 ).

2.4.1 H ex a g o n a l s y m m e t ry  ( q = 3 )

Iterating the map 3 times to remove the twist we obtain exactly

( 2.22)

»’«+■» =  +  K«iun(MnAn -  *inH„) (2.23)

where:

A„ =  -u „ « in n  — K/*ina»invn + (2.24)

H„ = unAt'rm + »>,,cosa +  h  AtnnsinVn — K sinn»inAn (2.25)

In terms o f v and A this map reduces to

*’«+ ! =  +  RrinA*  +  R*in(vu +  A„ +  K*m A„) (2.26)

4,l+| -  An -  Rnin(vn +  A„ +  h'*inA„) -  Rsinv„+i (2.27)
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where A' =  Ksinn and n+3 is replaced by n+l.This map is doubly periodic in 

[0,2r]xf9,2r]

The method o f KRW [KRWH2] may now be applied directly to the above 

map and we find to first order

o - ( C .  +  a r , ) j  ( > . » )

(The l/.'f factor is the appropriate scaling factor to allow for the fact that the 

web map is iterated three times for each iterate o f (2.26) and (2.27) ) where:

f i i  ■  K ‘  ( 2 .M )

<\ = ^ J - , ( A |  + A ”J‘ (A ) -A ‘Ji(A) +

- j -  +

i - E - M / f W - , - . « »  +  ■ > * > * ♦ .< - * >  ( 2 .:«0 )

Neglecting terms o f O (KT^) we finally obtain (Note J „ (K )~ K t L) :

D m T ~ T + <l , , )

The value o f ^  as a function o f K is shown as a continuous line in Fig.2.4 . Also 

shown are numerical values obtained by iterating the mapping for 1 0 * times and 

taking an ensemble average over 10;* different initial conditions. We observe that 

the analytical calculations give an oscillatory form o f . T h e  numerical results 

verify this oscillatory behaviour and particularly good agreement is found for 

the values o f K near where the diffusion coefficient is a minimum.

2.4.2 E x is ten ce  o f  a c c e le ra to r  m od es  and th e ir  e f fe c t  on  d iffu ­

sion .

The discrepancy between the numerical and the analytical results can be at­

tributed to the presence o f accelerator modes (see for example [LLM3]). For

this particular map these exist for K = 2 lir (I integer) at the lattice points 

( ) • (  ) * ( f **¥ )«(*? *§ ) Plr ( n 'H anv integer). Trajectories which pass
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F igure 2.4. The diffusion coefficient divided by as a function of the pa­

rameter K for the case of hexagonal symmetry.



cl«»se to these points, experience an acceleration for a number o f iterates.This 

gives rise to an enhancement in the effective diffusion hence the maxima as 

calculated analytically.Since the particle is undergoing an acceleration its mo­

tion is highly correlated.This gives rise to the discrepances between the analytic 

and numerical results as the present method for the calculation o f the diffusion 

coefficient depends on the sufficiently rapid decay o f the correlation functions. 

Furthermore as particles move in and out o f the acceleration region in phase 

space they give rise to oscillations in the value of I) as a function o f time 

(or the number o f iterates).This behaviour has been observed in the numer­

ics.Importantly these oscillations in I) are responsible for the scatter o f the 

numerical results for I) around the simple curve obtained from the analytical 

results .apparent in figure 2.4 for K values about 2lir.

When A‘ = (2 l+ l) ir  , I »in teger the accelerator modes that existed for A’ = 2 lir 

are replaced by period-2 fixed points.Therefore we expect a decrease in the 

diffusion coefficient near this value of K and indeed this is what we observe. 

Furthermore the agreement between the numerical and the analytical results for 

these values of K is surprisingly good.This is expected since near these values 

o f K .most o f the information on the dynamics is contained in two iterations 

o f the map whereas the analytic value of I) obtained here was found by taking 

into account exactly the first two correlation functions, that is essentially taking 

into account the randomisation o f v only after two iterations.Thus the analytical 

method used in calculating the diffusion coefficient for these particular values 

of K is perfectly adequate to capture the dynamical behaviour of the system.

2.4.3 S q u are  s y m m e t ry  ( q = 4 )

In the case o f the four fold symmetry we proceed in an analogous way. We 

remove the twist from the map by iterating four times and change from n+4 to 

n+ 1 to obtain the doubly periodic map:

u„+| *  u„ +  A'sint’,, +  A'.»i»i(»>„ -  A‘ jm» ( u„  +  K sinvn) )  (2.32)

«n+t =  v„ -  K a in (u„  +  K sinvn) -  K sinC n (2.33)
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where:

( 'n  =  +  K sinv h +  A 's in (n „ -  A'.«h m ( m„  +  A 'sint>„)) (2.» 4)There is no need to  perform  a change o f  variable» in th is m ap an we did in the ca se  q = A since it is a lready doub ly periodic in [0,2ir ] x (0,2*] in th e original variables u and v.
The diffusion constant is still o f the form o f (2.2M) (only that the scaling 

factor o f  2 must now be replaced by a scaling factor of 4 allowing for the fact 

that four iterates of the original map correspond to one iterate of the map(2.32M 2. J 3)) with
c . .  if*  + jr*jw«n (u s )

and

c , = ~ M K ) +  K, ' £ j J K  )J-,i(K )M n K )- K ‘ ^ J i(K )J,(« h ) +

I T  - » ' ) * • ) ■ / - » ( ( »  + I)S  I J . « ( - *  ) -

* - _ ( ( •  +  (U S )

Neglecting terms of order 0 (  K T 1) we finally obtain:

o  =  ^  ^  (2.37)

This same analytical expression for I) has been obtained using a different 

method by Afanasiev et al [ACSZ90].

The analytic and numerically obtained values of I) as function of K are 

shown in Kig.2 .r> . By analogy with the discussion o f  the q=3  case we associate 

the general behaviour o f I) with K as due to the presence o f accelerator modes 

and periodic orbits.

Kurthermore one ran observe that the agreement between the numerical and 

analytical results in the case of the square symmetry is much better than in the 

case o f the hexagonal symmetry. This may be due to the fart that in the rase 

o f hexagonal symmetry the fixed points and separatrix net have a much more 

complicated structure than for the square symmetry.
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Figure 2.5. The diffusion coefficient divided by .is a function of the pa­

rameter K for the case o f the square symmetry.



2.4.4 S ix -fo ld  s y m m e try  ( q = 0 )

For this case the analytic form for the diffusion constant is :

"  -  ^  +  j J i ( K )  -  — J } ( K )  -  ^ J i ( k )  (2 .3 «)

The variation o f D/K^ with K shows the characteristic oscillatory behaviour as 

found in the cases of q=:t or 4.

2.4.5 T w o - fo ld  s y m m e try  ( q = 2 )

In the case where q=2 the map is an accelerator mode (over the whole phase 

space) and a diffusion approximation to the motion is no longer applicable. The 

map in that case can be readily solved every two iterates to give un = U o + t iv0 
and vn =  v,i where n is an even integer. This is readily seen since the series 

defining I) for the u variable diverges for all K.

2 .4.6  Q u a s ir ry s ta l s ym m etr ie s

The case o f the quasicrystal symmetries o f  the web (q=5,7,8...) presents fun­

damental difficulties since it is not possible to manipulate the map into a dou­

bly periodic form where KWH method is applicable. New numerical methods 

have to be developed since ensemble averaging over initial conditions must now 

include the whole of phase space and can no longer be reduced by invoking 

periodicity to averaging over the region [0 ,2 * ]  x  [0 ,2 * ].

Such problems, in a more general context, will be considered in Chapters 3 

and 4.

2.5 Conclusions

In this chapter a short introduction to the properties o f the web map has been 

given. Tile wel) map was chosen as a subject o f  study because it is a map which 

presents many interesting dynamical properties which are inherent in linear 

dynamical systems which are resonantly driven or dynamical systems which 

can be closely approximated by such a model. The diffusion coefficients for the
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wel» map in the raw o f the crystal symmetries have been obtained analytically 

ami shown to compare well with numerical results. The symmetry o f  the web is 

found to play a significant role in the value o f the diffusion constant describing 

the motion o f particles through phase spare.

51



C h a p t e r  3

Diffusion Coefficients For 

Higher Dimensional 

Symplectic M aps on the 

Cylinder.

3.1 Introduction.

One o f the important methods for the calculation o f the diffusion coefficient 

of area preserving; maps is the correlation function method [KRWH2]. The 

correlation function method has been used successfully for the calculation of the 

diffusion coefficient of chaotic maps which were doubly periodic i.e for maps o f 

the torus. For such maps the correlation functions which are ensemble averages 

over the whole phase space can be written as an ensemble average over the unit 

torus thus ensuring the convergence o f the integrals defining them. Maps o f this 

form are the standard map or the web map for which the correlation function 

method has been used successfully for the calculation o f  the diffusion coefficient 

(see for example [KRWM2], Chapter 2 and [YR91]).

The study of diffusion in higher dimensional symplectic maps is a relatively 

new subject. However the correlation function method has been used in higher



dimensional maps of the generalised torus S d x S d [KM90] such as the gener­

alised Froeschle map (F72) to yield values for the diffusion tensor.

Symplectir maps on the unit torus, that is doubly periodir symplertir maps 

are just particular cases o f symplectic maps which arise in physical problems. 

In general a symplectic map arising from a physical situation such as a wave 

particle interaction or a plasma confinement problem will not be periodic in the 

action variables. A doubly periodic map is usually the result o f a local approx­

imation to the full map which is a map o f  the generalised cylinder. For such 

maps the correlation function method as formulated by Karney et al [KRWM2] 

can no longer be used. The double periodicity o f the map is broken and the en­

semble averages over the whole phase spare which is supposedly rhaotir can no 

longer be reduced to ensemble averages over the unit torus. The latter averages 

being convergent are relatively easy to calculate.

In this chapter the correlation function method is extended to the calcula­

tion o f the diffusion tensor for symplectic maps on the generalised cylinder. In 

the next section the method as applied to symplectic maps of arbitrary dimen­

sion on the cylinder is introduced. In sections 3.3 and 3.4 this method is applied 

to symplectir maps of two (d = 1 ) and higher dimensions respectively to obtain 

analytic forms for the approximate diffusion coefficients and in particular their 

variation with parameters that define the symplectir maps. These estimates 

are compared, in section 3.5, with values obtained numerically.

3.2 Extension of tlie Correlatimi Function Method 

to Maps on thè Cylinder.

Assume a symplertir map o f thè forni:

P »+ l «  K P u .V K )  (3.1)

#u>l = G (P ...# ..K ) (3.2)

where ( pu ,ttu )i H‘'* x .V^.which implies tliat thè map is periodir in thè angle 

variables U, and K  is a set of parameters. For a range o f values o f K . it is



assumed that the map becomes chaotic. Furthermore the chaotic regions cover 

a substantial part, o f  the phase space whilst KAM surfaces are well separated 

and islands o f coherent motion are not large. The simple standard map with

satisfies these conditions for K  > 6 .

For such cases a statistical description o f  the motion is more appropriate. 

The dynamics is often approximated by a diffusion process and described by a 

Fokker-Planck equation o f  the form (see Chapter I )

where P is a probability distribution in the momenta in phase space. Such 

a description is complete once the diffusion coefficient or the diffusion tensor 

IK K )  is known. The diffusion tensor is defined to be the asymptotic rate of 

spread o f the second moment o f the momentum distribution:

where A p „  is the momentum change after n iterations o f the map. The possi­

bility o f the existence of a nonzero diffusion tensor for general maps is discussed 

in appendix 3.2. The averages are taken over a set o f initial conditions set up 

on an area o f phase space K which is invariant under the dynamics o f  the map. 

I) is taken to be independent o f  this initial set. If H is taken to be a connected 

ergodic region o f phase space, that is a region o f phase space where time aver­

ages and space averages exist and are equal, the diffusion tensor can easily be 

rewritten in terms o f the momentum autocorrelation functions following Karney 

et al [KKWH2], Kook and Meiss [KMUO]

F’(p.O) =  p + K.sniff (3.3)

and

d ( p . « ) = # + F ( p ,9)

i > = ............ r. A P“ A >>"  > » (3.6)

(3.7)

where

('r * <  (P i  PO) (P r+ l -  P r ) >K (3.M)



ThU method was used by Kook and Meiss [KM90] for maps o f the higher 

dimensional torus S'* X .S'rf, where the averages on R were redured, due to 

periodirity in both the angle and the momentum variables to averages on the 

unit (2d dimensional) torus. Thus convergence o f  the integrals defining the 

ensemble averages is ensure«!.

The maps we are interested in can not be written as maps o f  the torus since 

they are not doubly periodic (that is periodic in both the momentum and the 

angle variables as for example the standard map in the case where d = l or the 

Froeschl«4 map in the case where d=2 ). To study the behaviour o f the diffusion 

tensor for such maps the correlation function method has to be extended to 

maps which are only singly periodic.

The invariant connected erg«»«lic region K is taken to be the whole cylinder 

H'* x SH. This approximation is true for maps where the chaotic dynamics 

extend over the whole o f phase space. Then to ensure convergen<e we define 

the averaging over phase spa«-e in the following manner:

If the map is periodic with period T  in the Hth direction one can break the 

interval from 0 to « into units of width T. Then because of the periodicity one 

can write

(where the explicit dependence o f the observable function on the other coor- 

dinates has been suppressed) . giving the usual definition o f the phase space 

average used by Karney et al (KRWH2).

To illustrate this generalisation we first consider the case of one dimensional 

cylinder maps.

3.3 One Dimensional Cylinder Maps.

Assume a symplectic map of the cylinder of the form:

<  A (p .0) > h =  U til,-.«,
in in *  A (p . ).lpdtf

<*rO J
(J.9)

Pn+t =  P„ +  fiPnJn) ( » . I I )



+  giPu.o») (3.12)

(For this map to b « symplectir on« must hav« f p +  g0 +  f pSt -  gpf 9 = o .where 

the subscript denotes partial derivative with respect to that variable.) The 

functions f  and g are assumed to be periodic in the angle variable 9. We assume 

that the motion is chaotic over the whole phase space.

It is convenient to introduce the following Fourier decompositions:

f ( P '* )  = Y f  n ,„(k )rxp (im 9 +  ikp)dk (3.13)

c x p ( ia f { p , 9 ) )m j r J  am(k.s)exp(im 0  +  ikp)dk (3.14)

' * r t * * f ( M ) ) »  Y j  6,„(k .s)exp(im « +  ikp).lk (3.15)

The quasilinear approximation to the diffusion coefficient o f maps is given 

by Co, and we may write

( 'o = <  (pi -  p,,)* > h = <  f\ p o ,9 0) > «  (3.16)

where H is the whole cylinder RxS . Introducing the Fourier decompositions we 

have

f  o =  < Y f  *m {k)an(k ')e .xp (i(m  +  n )9 )rxp (i(k  +  k')p)dkdk' >n  (3.17)

=  l i m \  ¡ Y  am(k )a _ n (k '),T p O (k  +  k, )p)dkdk'dp ( 3 . 1 K) 

For ('o  to be non-zero it is necessary that the integral

^2 f  J  a «>n (k )a -m{k ')rx p (i (k  +  k')pdkdk'dp =  0 (< )  (3.19)

which implies that

Y f  >tm(k)a-m(k ')rxp (i(k  +  k')p)dkdk' (3.20)

is independent of p or equivalently that the Fourier amplitudes a„,(k ) are of 

singular nature such that

Y  am{k )a .Ht(k , )<% * ( *  +  * ' )  (3.21)
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The solution to this functional equation is am(k )  =  amfi(k ) in which case the 

quasilinoar diffusion coefficient is

= j Gd «= ^ (3.22)

A simple example o f such a map is the well studied standard map.

To consider corrections to the quasilinear result it is nessecary to look at 

the higher correlation functions: The rth correlation function is defined by:

CV =< fiPr.»r)f(Po.«o) >h (3.23)

Using the Fourier decompositions for f  we have:

fiPr.Or) = '£, I  amo(ko)rr]t{itii{i0T +  ¡k0pT)dko (3.24)m0 J ~°°

and then using the map

/ (P r .< M  =  Emo / - «  “ m o (^okxp ( I +  ÿ (/ »r - I . * r -|  )) )

'* p { ik 0\pt _ x +  / ( * _ „ # , _ , ) ] * * *  =
(3.25)

Emo..... f-o o  “ moi^oïin^Si.nioJimtki.koJexpiKnio +  n, + nj)é»r_|)x

txp iU k o  + *, + k t )pr_, ldkodk.dk,
(3.26)

Iterating this relation r  times we find that

/ ( * . * , )  = / flm0 (^‘i»)l*ni(h|. nio)
I. J-oo

r - \  r —I
n«1(k|.k,,)...bWr(kr.mo+ £ (n .  +  n.))a„,(kr. k„ + J jk .  + k.)) 

e*p {i(m o  +  ¿ ( » .  +  m.))# o)
*=i

• Tp{i(ko + ¿ ( * .  4- &.))po)dkndk|dk|...dkrdk, (3.27)
*=i

The general correlation function ( ' ,  is then o f the form

c ,  .  /ill.----- i  /  £  /  k ,,m „)
Jo ....................nrA tJ- ° 0

r - l T-l
® M i(k |.kn)...b*r ( k r . i i iu 4  £ ( n .  +  f t . ) ) * « ,(k „ , . k „  + J j k .  +  k .) )

•=i »= i

' * * • ( *  +  *o +  ¿ ( * .  +  A-, ))p0 )dkdkodk|dk| ...dkrdkrdpo (3.28)
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The sum is taken over all the integers satisfying the relation

»0 +  n*o + A« + »¡.) = 0 (3.29)

The only rase where C T is nonvanishing is when the integral over all the k's is 

independent o f p0 that is when

£  ano(fc)amo(fc0)ini(it|,mo)
...................Hr.Hr

r-1
rtii,(ki,ko)...bn,(k r ,ni0 +  £ ( n ,  +  n .))

»=i

fl..,(l(r.l(0  + ¿ ( k .  + It.))
» 1

oc t (k  + k0 + ¿ (fc *  + i , ) )  (3.30)
»» I

where the sum is again taken over all the integers satisfying the condition 

(3.29). An obvious solution to this functional equation is where the Fourier 

decompositions a ,„ (k ),«m(k,A,,')A n (M ,/) are themselves singular. In fact it is 

plausible that this is the only possible solution.

Importantly we may conclude that the only area preserving maps o f  the 

cylinder that show corrections to the quasilinear result for the diffusion coef­

ficient are those maps for which the Fourier decompositions of exp(ifc'f) and 

exp(ifc'g) have a singular part in the reciprocal o f p, that is k. Such maps are 

for example those that have f  and g which are periodic in p or are linear in p, 

in which case they can be written as maps o f  the torus. This result extends the 

work o f  llatori et al [IIK|M.P>] who. using a different method, studied a special 

form o f area preserving maps o f the cylinder namely the radial twist maps

* ♦ ,  - * ,  +  «r/(4 ,) (3.31)

+ 0( 1̂ , )  (3.32)

They found that the only map of this form that gives corrections to the quasi 

linear result is the standard map, that is the map where a is linear in p.



3.4 Higher Dimensional Symplectic Maps

In this section we use the method given in section 2 to study diffusion in higher 

dimensional aymplectir maps but restricted to radial twist maps. We then have:

Pu+l =  Pu +  K f(#u ) (3.33)

* » + l  - * »  +  • (  p„+|) (3.34)

where (p ,0)cRd x Sd.

A simple example o f such maps is the Froeschli map [F72] which due to a 

special form o f the coupling can be written as a map o f the torus Sd x S*. This

map is the following

Pl.n+l =  P i,n +  0 |Sin(#i,„+i ) +  6 s i ? < ( 0 , +  ®2 ,n + l ) (3.35)

®l.n+l =  ®l,n +  Pl.n (3.36)

Pl.n+1 =  Pl.n +  ) +  &sin(0|,n+l +  ®2 ,n+l ) (3.37)

•i.n+t = *2.» + Pj.n (3.3«)

Let us assume the following Fourier decompositions

/ '(* ) = (3.39)

expfioa'f p )) = J  *‘(lc, <r)exp(ik.p)dk (3.40)

where /' and n1 are the it h components o f the vector functions f  and a respec 

tively.

The quasilinear approximation to the diffusion tensor , namely may then 

be written in the form:

c j f  •  K 9 <  >R (3.41)

=  A J < 53 flmfluf):P ('(«n  +  n).0o ) >R (3.42)
in.ii

-  (3.43)
III

For radial twist maps of any dimension the quasilincar result is non zero.
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Let us now look at the higher order correlation functions:

r y  *  > r <3.44)

As before the region It on which the averaging is performed is assumed to he 

the whole cylinder.

Using the Fourier decompositions introduced above and defining f ' (k .m )  

by the following relation:

e zp (ik .t($ )) = F (k. m)exp(itn.0)

/’ (• r ) =  X )  all»0OXP̂  im 0-®r ) (3.46)
m0

= 53®in0«P (»n »o< ,r - i )n i . lexp(ini5V(pT)) (3.47)
m0

= y  /  «!ii0cxp(»mo.«r-i)Mi_,a*(k".mS)exp(ik",.pr)dko (3.48)
m0 J- ° °

where mo =  (nto, ...,mjj). The above equation ran be written as

/•(•r) =  Ern, / . r  » i.V xp (im o .8 ,-i)x  49

H « ,a , (k".m^)exp(iKkS.f(8r_|))exp(ikS.p,_i )dkg

=  Eiuo.n i! / - ^  °ln0 H K (E i . i I k o ))• m i)exp (i(m 0  +  m l ).#r. 1)x  

f*P (« (E i- i kJJ.Pr-iJIliLjtMcJ.iiiSJdkJ 

Iterating this relation r  times we get:

f'(0r) = ^2 f  «in0^ (K (^ k o ) .m 1). . .F (K (^  k fj.m ,)
,M0 m l ...m» J~°° oal 0= 1 1 = 1

r - 1
1 1 « i « ’* ( ko • "• o ) • • • 11tmi a"( k" _ |, ( £  m 1 )*) 

l=o
r .1 r —I

«• *P (*£ m 1.«b)Mcp(l(2C *‘ f).Pon,r.-0,n i.,dkr (3.51)
/= 0  0=1 |=(l

Then the r  th correlation function ran be written in the form

cy -
J0 IIIq .111! . .Ulr.U■,~'x, OKI

60



(3.52)

• * ' (K (£  k f).  m r)IIlL 1a’,(lc!». in,

n i.,d ,(k *_1.^ m ,) ')e x p (i (5 ^  Y1 kl> Po)

where llio sum is taken over all tin* integer vectors satisfying the relation

The averaging over p0 would give a nonvanishing result only in the case where 

the a"s are of a form such that:

where the summation is again taken over all the integer vectors satisfying the 

relation (3.53).

That means that for a finite contribution to the correlation functions all the 

functions o' have to be o f a singular form that is o f the form

where k\ is a scalar function o f the components o f the vector kj. If the a’s 

are such that this condition does not hold then the quasilinear result for the 

diffusion coefficient will be valid for all values o f K where the motion is chaotic 

over large regions o f the whole phase spare.

I.et us now see what this condition means for the allowed form o f the func­

tions a (p ). It essentially means that all the n''s have to be linear nr periodic  

functions of the momenta. Some examples will make this remark more clear. 

E xam p le l First let us assume that the a's are linear functions of the momenta:

n +  m 0 +  m i +  .,. +  m , =  0 (3.53)

(3.54)

« ’ (k j, m1) <x A(k| — in') (3.55)

«'(P >  ¿ « • il * . (3.56)

Then

trp (i(tn J( p ) )  =  nj*„|*xp(ic{pi)
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where k, and p, are the ith components o f k and p respectively. Thus

¿ (k . f f )  = n f.,4 (k i -  <rcj) (3.58)

and is o f a sinp;ular nature, and if the force functions are chosen appropriately 

so that

k i + k2  +  ... +  kp =  0  (3.59)

then for such a map there are finite corrections to the the quasilinear value for 

the diffusion tensor. Since all the force functions are linear there is a proper 

coordinate change so that the map can l»e written as a map on the torus and the 

averaging over the cylinder is then equivalent to averaging over the torus S'* x S'* 

which is properly defined and convergent. This is the rase for the Froeschle 

map where corrections to the quasilinear result for the diffusion tensor, o f an 

oscillatory form were found both numerically and analytically [KM90]. 

Exam ple 2. I.et us now suppose that there is a nonlinearity in one o f the force 

functions n '(p ). Take for example

« ' (P )  = |»i+Pa (3.60)

Its Fourier decomposition would then be

n‘(k ‘ .fT)r: j  exp(kr(pi4-Pa))exp(-ikl,p i- ik !i p3)dpidpa =  A(k*, — crJAiki,,<r)

(3.61)

where k‘t is the ith component of k* and A is a non singular function o f k'2. 

Fourier amplitudes o f such form will not have a contribution k i -f- ... +  kp 0  

and so the corrections to the quasilinear results for the diffusion coefficient will 

be zero.

As mentioned above the linear case is not the only one that gives corrections 

to the quasilinear result. A singular Fourier decomposition for n '(p ) is obtained 

in the case where u (p ) is a periodic function of p. or a sum o f periodic and linear 

functions. This is clearly shown in the following examples.

Exam ple 3.Suppose n '(p ) = asin(pi +  pa).Then

« ‘(k 1 .CT) =  J c*p(ia<Tsin(p, +  p i)c zp (-ik \ p , -  ik‘2p3 )dp,dp-j 

= £  JH(a(T)ti{k\ +  n)i(Arj + n ) (3.62)



The Fourier decomposition is then o f a singular form so that corrections to  the 

quasilinear result for the diffusion tensor o f such a map are possible.

E xam ple 4.Suppose a '(p ) =  asinpi +  pj.Then

n‘(k.rr) = J  exp{ia(aainpx + Pa)e*p(-«*iPi -  »*.ip3)dpidp3 

=  51  -A d «"W * i ~ n )t{k 3 -  n -  tr) (3.63)

The Fourier decomposition is still o f a singular form and corrections to  the 

quasilinear results are again possible.

E xam ple 5.Suppose n '(P ) = Minpi +  pj. Then

is a non singular function o f ifcj.

Since the function a (p ) does not have a singular Fourier decomposition in

the diffusion tensor. Thus it can he seen that a small nonlinearity in one o f  the 

force functions makes the diffusion tensor for the map equal to the quasilinear 

result.

3.5 Numerical Experiments.

To check the results obtained in the previous sections we have obtained numer­

ically the diagonal terms of the diffusion tensor o f a generalised Froeschle map 

which is a four dimensional symplectic map (d=2 ). The map is o f the following 

form

= 5Z  / Jn(aa)rxp(inp\)exp(iap\)etp(-ik\px -  i* 3l 
»  J-°°

= ^Jn (a<r)6 (k\  -  n )A (k \ ,n )

•kjpi )dp\ <tP2

CI.64)

all the k* coordinates there will be no corrections to the quasilinear result for

Pl.n+I =  P i,*  +  C|sin0|,n +  C3S»'n(tfl,n +  P j.n) 

•l.n+t = *l.a + 0(,,(Pl.»+l*Pa.a+t) (.1.67)



Pi.n+l =  Pa.« +  ca« » i ( * i , «  +  02.n) 

®a.»+i = ®a.n +  a(a)(Pi.»+i.Pa.n+,)

(3 .M )

(3.69)

If the a’s arc liiu*ar functions and specifically a^(P l.a+i.Pa.n+0 — pi,„+i 

an<l a (3>(pi,n+, ,p a,n+l) =  Pa,».+i the above map is just the Froeschle map stud 

iod numerically and analytically by Kook and Meiss [KM90]. The diffusion 

tensor is obtained numerically by direct iteration o f  1 0 a x 1 0 a orbits o f the map 

for time T =50 and using the definition given in section 3.2. The calculated 

quantity is the diagonal term o f the diffusion tensor associated with the second 

degree o f freedom. /)aa This has been «lone for a number of functions a ^ ,a *a* 

among which is the linear rase where the results o f  K«»ok and Meiss [KM90] 

are reproduced. Other choices were a ^ ^ p i.p j) = p\ +  tp f, a ^ (P t 'P a ) = Pa for 

various choices o f the parameter «, «j***(pi .p j )  =  Pfstripj, o ^ (p i .p j )  =  p-j, and 

« (, , (P i.Pa ) =  P i. o(i , (P i.Pa ) =  P2*inpt and aC ^p i.p j) =  O.lpJ, a(a,(p i.pa ) = 

Pi

The r«>sults are shown in figures 3.1,3.2,3.3 and 3.4 in the form of plots of 

the ratio o f  the numerically calculated diffusion coefficient to the theoret¡rally 

calculated quasiliimar value as a function of the parameter ca. The results 

in figure 3.1 show that as the nonlinear parameter « increases the diffusion 

coefficient rapidly approaches the «piasilinear result. Figures 3.2,3.3 and 3.1 

illustrate how f«»r other nonlinear force functions corrections to the «piasilinear 

value are negligible.

3.G Conclusions.

The correlation function method for the calculation «>f the «lifrusion coefficient «if 

chaotic maps has been extend«*«! so that it may be used for maps on the cylind«*r. 

I'sing this method we have shown that for a I) dimensional symplertir map 

there exist corrections t«> the (piasilinear result only if all the force functions 

n (p )o r more generally g (p ,0 ) have purely singular Fourier decompositions in 

the coordinates reciprocal to the p variables. By purely singular we mean that 

the coefficients * ( k) as defined by (3.14) are singular in every single coordinate
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Figure 3.2. Plot o f the ratio of the numerirallv calculated value for the dif­

fusion coefficient to the theoretically calculated quasilinear value for the 

generalised Froeschl* map with ■ < " (*  .p , )  -  p ^ m p , and o,a,(p , .p , ) -  p, 

( * )  and for the generalised Froeschl* map with linear force functions (.).





o f till» vector k . This means that the functions a will either have to he linear 

functions of the momenta or periodic functions of the momenta or a mixture 

o f the two. Any nonlinearity in any o f  the functions a (which is not periodic ) 

result in the higher order correlation functions becoming zero. In this case the 

quasilinear result for the diffusion tensor is exact.

These results are in agreement with those obtained by Hatori et al [HKlK.ri] 

for the two dimensional radial twist map. Our results apply to more general 

maps and further give forms for the force functions a(p) that give corrections 

to the quasilinear value.

An interesting problem that remains is what is the essential difference that 

makes a map satisfying the conditions o f linearity or periodicity o f the force 

functions (that is a map on the torus ) have corrections to the quasilinear value 

whereas for a map on the cylinder (not periodic in the momenta) the quasilinear 

value for the diffusion tensor is exact. Since the corrections to the quasilinear 

value arise from correlation effects (memory) as a particle moves through phase 

space, a possible reason would be that in the case of maps o f the torus the 

structures that may cause memory effects are repeated regularly on a ‘ lattice’ 

throughout phase space whereas for the general map of the cylinder such struc­

ture« are localised in parts o f phase space. (Those structures could be remnants 

o f periodic orbits, islands or even accelerator modes which can be shown to exist 

only in the case of maps periodic in the momenta coordinates as well.) That is 

the existence o f a regular lattice o f such structures is expected to have a greater 

effect on the motion through phase space than the case where such structures 

are localised in parts o f phase space. So the existence o f corrections to the 

quasilinear value in the case of double periodicity, that is when regular lattices 

o f such structures exist is expected. A formal proof o f this intuitive result is 

given in appendix .'1 . 1 .

Also using the results o f Mackav and Meiss [MM‘»2) on the anti-integrable 

limit we show in Appendix that chaotic orbits formally exist for some class 

o f  radial twist maps for perturbation parameters smaller than in the case of 

the standard map. While this is not a proof it serves as an indication that in
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radial twist maps wo ran have fully rhaotir trajortorios for smaller values o f 

the perturbation parameter and thus the correlation function method for the 

calculation o f the diffusion coefficients converges faster for radial twist maps 

and hence gives results closer to the quasilinear result.



C h a p t e r  4

Calculation o f Diffusion  

Coefficients for Chaotic M aps

4.1 Introduction

The advantages o f the Fokker-Planck description o f a chaotic dynamical system 

is that it provides an easy to handle description o f the complicated dynamical 

process and can he used to give estimates for measurable quantities such as 

the kinetic energy o f a distribution o f particles or loss rates from particular 

parts o f phase space. Thus, an important problem is the numerical or analyt­

ical calculation of the transport coefficients that enter into the Fokker-Planck 

description. In the present context the Fokker-Planck equation is equivalent to 

the time dependent diffusion equation and the only transport coefficient is the 

diffusion coefficient.

In the past, several methods for the calculation o f  the diffusion coefficient for 

maps have been proposed. These are based on the calculation of the diffusion 

coefficient I), making use of the well known formula for such a process I ) = 

where | is an action variable whose time evolution is modeled 

by the diffusion process,< >  denotes a suitable average and t the time (see for 

example [M ('(iN:i], [KRWH2], [(*79])

In this chapter, a new numerical method is proposed for the calculation of 

diffusion coefficients for chaotic maps. In this method the number o f particles



remai ning in a rlosed domain as a function nf time is rairulated using tli«* map 

ami is rom pand with that rairulated analytirally using the diffusion équation. 

The comparinoti is used to ohtain the beat estimate o f  thè diffusimi roeffirient 

that appears in the diffusion équation. The method presenta advantages over 

previous inet hods in that it ran he used for a wider rlass o f  maps, for example 

niaps for whirh the rhaotir région is hoiinded. Also wliere the usual methods 

give values o f  I )  whirh are osrillatory in time [YR9 I] . Furthermore, it ran he 

used in the ralriilation o f diffusion roeffirients for rases wliere these roeffirients 

are funrtions o f  position in phase xpare. In the examples studied below, the 

présent method uses an order o f magnitude less computer time thau previous 

methods.

4.2 Description of the method

The basir idea o f  the method o f ralriilation o f a diffusion roeffirient is as follows:

A volume o f  phase spare with a suit alile geometry is rhosen. (For example 

for a map whirh is already written in action-angle forni, surh as the standard 

map. the suitahle geometry is that o f  an infinite slah , thè infinite direction 

rorresponding to the periodir variable and the other direction correspondit^ to 

tho action variable.) A uniform distribution o f initial points is then taken in the 

rhosen volume and by itération using the map the évolution o f tliese points is 

followed until they leave the domain. The number o f points that remain in the 

volume as a function o f the number o f  itérations, whirh is équivalent to time, 

is rairulated. Typiral residís are shown in figure 4.1 .

For the same geometry the time dépendent diffusion équation is solved an 

alytirally and the total density that remains inside the given volume obt ai ned 

as a funrtion o f  time. Tliis funrtional dependente is pararne!rised by the value 

o f the diffusion coefficient.

The value o f  the diffusion roeffirient appropriate to the map is then fourni 

by fittiug the niimeriral residís for the probability o f points remaining iu the 

domain as a function o f time to the density obtained by solving analytirally the 

diffusion équation. The value of the diffusion constant used in the analytiral



Figure 4.1. Probability that particles remain in the slab as a function o f time 

for the standard map for different values o f the parameter K. The solid 

line represents the values obtained by iterating the map whilst the broken 

line is the analytical result given by formula (4.6).



solution is treated as the fitting parameter. The 'best' value of I) is obtained 

by making a least square fit.

I lie method is applied below to three well known rhaotir maps, namely the 

standard map [<70],the web map [ZSU89] and the Fermi map [MLL85J. The 

results obtained are comparable to those obtained in earlier treatments o f  the 

various problems.

4.3 Standard Map

The standard map is o f the form

For large enough values of the parameter K the dynamics o f the standard map 

is chaotic and can be modeled by a diffusion process (see for example [C’7 9 ] or 

[RRWMI]). As was mentioned before the appropriate geometry for the standard 

map is that o f the infinite slab o f width L. The diffusion equation takes the form

where P (p ,t ) is the probability density o f points in the slab and it is assumed 

that the diffusion coefficient I) is constant. The solution of the diffusion equa­

tion in the geometry with the boundary condition that I* is zero on the boundary 

of the slab is [(M59]

Assuming a homogeneous initial density o f points in the slab, the probability 

distribution becomes

The probability that particles remain in the slab as a function of time is then 

given by the expression:

P ..+ I =  Pn +  K»in9n (4.1)

0 .1 + 1 = 0 .i +  p..+i (4.2)

o ' l ' i p j )  
9 i W (4.:i)

(4.4)

f iu (0  = J  j  /’(/». I)dl>= £ ¡5 2
I , l ) (  2 / + l ) Jtr*l

am»*"*- i ,j
(4.6)



In figuro 4.1 this probability is shown as a function o f time as calculated from 

a numerical simulation using the map and also from using the analytical formula 

given above. A comparison is shown between such analytical and numerical 

results for a particular value o f  K and two different values of I) in figure 4.2 

. The best value of I) for a particular value of K is easily obtained and it is 

clear that the analytic solution then fits the numerical «lata very closely once 

sufficient time is allowed for transients to decay. The found value of |) agrees to 

within a few per cent with that obtained in [RWMO]. Such a difference is within 

the usual computational errors associated with numerical simulations.

4.4 Web map

As discussed in detail in Chapter 2, the web map is the Poincarl map for a 

harmonic oscillator which is periodically kicked by a sinusoidal force [ZSIJXO]. 

It is expressed in terms of the x.p coordinates, which are the position and the 

momentum o f the oscillator respectively. The map can be written in the form

u„+i = ( « , ,  +  K*invn)co*a +  vnst'nn (4.7)

•’n + l =  — (U„ +  Àsini',. )slHO +  ('„COSO (4.H)

where o=2ir/q and K is proportional to thè strength o f thè force. The variables 

u and v are proportional to x and p and defined by u =  &  ami v =  - k r  where 

k ami ufc are thè wavelength and frequency, respectively of thè centrai mode of 

thè wave packet. Por thè weh map. thè appropriate geometry is that o f a disc 

siine difrusion occurs in thè action coordinate which is proportional to « *  +  v2. 

The diffusion equation takes thè forni

m r , i )  _
(4.9)

and is to be solved for a disc o f radius r» with thè boundary condition that 

l’ (ro,t)=0. for all t. In thè ahove equation r is thè square root o f thè action. 

The solution o f  this diffusion equation is of thè forni

/ '(r, I ) = £  A,lJ„(anr )c - ,, , ì ' (4.10)
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Figure 4.2. Probability that particles remain in the slab as a function o f time. 

The numerical results (solid line) are for the standard map with K=20 and 

the analytical results (broken lines) for two different diffusion coefficients 

D=100 and D=120 are shown for comparison.



where the a „ ’s satisfy tin* equation

•/o(«r0) =  0 (4.11)

If we start with a uniform density o f points in tin* disc the appropriate form of 

the probability density is

The density of points remaining in the disr as a function o f time is given by

A comparison between the numerics and the analytic value given by equation 

(4.13) is shown in figure 4.3 . The numerical simulations were done using the 

web map exhibiting four-fold symmetry (q=4 ). First o f all it is clearly seen 

that the dynamics o f the web map are well approximated by a diffusion process 

in action space. The graphs on the right o f figure 4.3 give an estimate of 

the error E as a function diffusion coefficient I), where E is defined such that

E (D )  =  — '—J?-------— where |’ „ is the density o f particles in the disc after

n iterations o f the map. The value of I ) for which this error is minimum is the 

chosen one.

It is seen that the value o f the diffusion coefficient obtained as above for the 

same value o f K depends on the radius o f  the disc. r0 . This is unlike the results 

obtained for the standard map where the diffusion coefficients were independent 

o f the thickness o f the slab chosen. This dependency on r„ reflects the fact that 

the dynamics for the web map is not well approximated by a constant diffusion 

coefficient as in the case o f the standard map. This dependency on ro can be 

interpreted as due to the diffusion coefficient being a function o f the action 

variable. This observation agrees with the results o f Zaslavskii et al [ZSllHfl], 

who. using the quasilinear approximation showed that I) was action dependent 

and o f the form

where a is some constant. It is worth noting that the quasilinear diffusion 

coefficient for the standard map is equal to a constant [I.I.K3],

auJ,(r„au)
•A i(«„r)

(4.12)

(4.14)
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The method is found to work sufficently well for a range o f values o f  the per­

turbation parameter K. However one must he careful to choose K large enough 

so that the transport through phase spare does not resemble an anomalous dif­

fusion because o f the presence o f islands and accelerators modes. In that case 

fitting to a different analytical diffusion equation may he necessary [BRNfi],

|rt»|.

The method as described above has also been applied to the rase o f the 

quasi-crystal symmetries o f the web map which are exhibited when q=5,7,8,... 

. It has been found that in these rases as well, the dynamics in phase spare can 

well be approximated by a diffusion process with diffusion coefficient very close 

to the quasilinear value even for moderate values of the perturbation parameter 

confirming the analysis given in Chapter :t and [YR92].

An interesting point which arises from this investigation is the following: For 

the special values of q=:i,4,(i the web map ran be written ill doubly periodic 

form ami can be considered as a map on (a  properly defined) unit torus. Now 

consider keeping the perturbation parameter K fixed but allowing q to take 

real values. Then we find for q=3,4,6 a periodic arrangement o f thin stochastic 

layers which allow diffusion in phase space. Whereas if q changes to non-integer 

real values, the chaotic regions become wider and have no clear periodicity, thus 

allowing easier diffusion through phase space. This phenomenon is revealed in 

the values o f the diffusion coefficient. Our numerical method has been applied 

to the study of the diffusion coefficient for constant K but allowing q to vary in 

the neighbourhood o f  the values of q where crystal symmetry is present. The 

results obtained for K =4 and q in the vicinity o f 4 are shown in figure 4.4 . It 

will be seen that there is a quirk transition from the diffusion coefficient value 

equal to :f as appropriate for q=4 to a constant value approximately equal to H 

as q is changed from the value q = 4. The behaviour away from q=4 agrees well 

with the value for I) (namely A‘ a/'2 for the particular case of the web map) as 

calculated in Chapter (or [YR0‘2]) as expected for a non doubly periodic map. 

Similar behaviour is found for q=:t,4,fi, though because there in no symmetry 

we di> not get this behaviour around q «5 . For all values near q=5 quasilinear
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Figure 4 .4 . Diffusion coefficient for the web map for K=4 and for values o f q 

around q=4 .



theory is valid.

The value o f the diffusion coefficient at q=3,4,6 can he higher or lower than 

the quasilinear value depending on the value o f K. This phenomenon is due for 

example to the presence o f accelerator modes and is discussed in Chapter 2 and

[YH9IJ.

Finally, the boundary condition needed in the analytical solution o f  the 

diffusion equation is not the only one which could have been used. This con­

dition depends crucially on the numerical procedure used. For example in the 

numerical procedure discussed in the paper, an ensemble of partirles was ini­

tially started in a large disc and these particles were followed under iterations 

o f the map until they left the disc and then they were taken out of the ensem­

ble. This procedure corresponds to an absorbing boundary condition on the 

boundary o f the disc. In the case of the web map with q=3,4,6, where the 

map is periodic, the problem could be formulated in a different but equivalent 

way. An ensemble o f  particles can now be initiated in a smaller disc but one 

contained in the fundamental unit torus. The diffusion equation must now be 

solved analytically using periodic boundary conditions on the unit torus. Now 

the whole initial ensemble will have to be traced for all times since we are not 

allowed to remove a particle from it as soon as it crosses the boundary o f  the 

disc. (Since we can no longer impose the absorbing boundary rontition a parti­

cle that leaves the disc can now re-enter.) Changing our algorithm in this way 

both boundary conditions (that is ignoring periodicity but imposing absorb­

ing boundary condition or taking into account the periodic boundary condition 

but necessarily ambadoning the absorbing boundary condition) should give the 

same result for the diffusion coefficient. However the disadvantage of using the 

second method is that the numerical part of the method will now take longer 

than before since we are not allowed to remove partirles that leave the disc 

from our initial ensemble, and we now have to trace the full ensemble (which 

is usually a large one to minimise the statistical errors associated with the ran­

dom distribution o f initial conditions, of the order o f 10 0 0 0  partirles) for the 

time required. Importantly, by not rhosing the periodic boundary conditions.
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wp have a more general method valid for a wider class o f  maps, which arisp in 

many applications [LL83],[HKl8r>].

4.5 W KB solution of the diffusion equation with 

slowly varying diffusion coefficient.

Our numerical results and subsequent parameter fitting and the quasi-linear 

results of [ZSliXO], suggest that the diffusion coefficient must be considered 

to be dependent on the action. However, it is apparent from the variation of 

I) with To. found numerically, that the variation of I )  with action should be 

relatively slow. In this section we extend our method for the calculation of 

diffusion coefficients to allow for such slow variation o f  the diffusion coefficient 

with space.

Thus, we write our model diffusion equation in cylindrical coordinates in 

the following form

where « is a small parameter allowing I) to have a slow variation with space. A 

full solution to this problem ran be obtained only for special forms o f the difTu- 

sion coefficient . To be able to give more general results we use an approximate 

solution to this equation based on the VVKH method (see for example [Mb.Vf]).

Separating variables we obtain the solution to equation (4 .IS) in the form

(assuming a discrete eigenvalue spectrum) where the functions and the num­

bers A„ satisfy the eigenvalue equation.

I'or a general D ( t r )  it is not possible to obtain an analytic solution to this 

equation and hence it is necessary to introduce an approximate procedure. In 

the case of a constant diffusion coefficient the eigenvalue equation reduces to 

Bessel’s equation «if order «ero ami then by imposing the condition that the

/•(r./) (4 .1«)

(4.17)
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probability distribution remains finite at the origin, the solution is given in 

terms of the Itos.sel functions o f zero order and of the first kind, namely Jo(r). 

In the rase of a slowly varying diffusion coefficient we assume a solution to the 

eigenvalue problem o f  the form

•Hr) =  M (< r)J „(| / (fr )) (4.18)

where for convenience we have dropped the subscripts n labeling the eigenvalues 

and the eigenfunctions.

Substituting this form into the eigenvalue equation we get 

A<2A ~ i< r )D (< r )M » )  +

+ ./ ) ( . r ) ^ ' ( . r ) ^ ( , ) / ' ( . r )  -  D ( i r ) A ( , r ) M . « / ( . , ) ) '

+  7 ^ 0 <<r M (*rX / ,< « r » V , ( » )

where dashes denote differentiation with respert to thè argument o f thè funrtion 

and s =  ¿te i. We assume that i r —y is Of I ) (o f  order I in our ordering srheme) 

and t lieti if in thè ahove equation we separate terms of different order to get

2<r 2 P ( t r ) M (« r )  =■ i j^ r ) ì r w

The ()( I ) equation (4.20) is readily integrated to givi

(4.21)



(where y = « r )  which is readily integrated lu Rivr

(4.24)

whom f(< r) is given by equation (4.22).

In the case where I) is a constant the W KB  solution obtained here reduces 

to the exact Bessel functions solution.

The approximate eigenfunctions obtained by the W KH method are orthog­

onal and this is demonstrated as follows. Imposing the boundary condition 

•Hro) =  0  on the eigenfunctions (which is the boundary condition used in the 

numerical evaluation o f  the diffusion coefficient) we get a discrete spectrum of 

eigenvalues A„ defined by the relation

where a„ denotes the roots of J » ( t ) =  0. So the eigenfunctions for our problem 

are

losing the properties o f llessel functions [AS70] and the fact that J„( "V*/(,ro )) = 

0  we find that

(4.25)

(4.26)

l,et us now check orthogonality with respect to the inner product

(4.27)

The inner product o f two eigenfunctions is given by

/«"I = <  > ■  J  ° (A hAm

(4.26)

and the inner product can then lie written in the form

Lm m h L { i :M)

(4.31)
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showing that th« eigenfunctions generated by the approximate method outlined 

above are orthogonal.

The full solution of the diffusion equation is then a linear combination o f 

all the eigenfunctions and can be written in the form

f* (M )  = = E  " *
XÍ

(< r )s  l ) * ( t r )  <

where the A „ ’s are determined by the initial condition P (r,0 )= g (r) in the fol­

lowing way

K  =  -  J ° r<t>n(r )g (r )d r  (4.33)

Let us assume that we start with a homogeneous particle distribution on 

the disc

/ » (r ,0 )= / ’o (4.34)

The number o f particles in the disc as a function o f time is then given by

''■* L̂’rnrni’
=  E J0 A" '•¿ »(r )e “ A" ,dr

* E (4.35)

Using the properties of Bessel functions we obtain

( j  r& Jr)dr)2 =  ^ r 0/ (t /(<r0) (/ '( « r ) )a (4.36)

Then the probability that particles remain in the disc as a function o f time, for 

the case of a uniform initial distribution function, is

where we have used the fact that

/ ( . r ) =  O - t ( . r )  

In the case where I) is a constant

(4.3M)

/<«r) « r / W (4.39)
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anil all tho formulas obtained by the W K II method for the probability distri­

bution l*(r,t) and the probability that partirles remain in the disc reduce 

to the formulas obtained in the case o f constant I).

The probability that particles are in the disc at t= 0  is equal to / ’0 (or 1 if 

appropriate units are chosen). The approximate W K B  solution gives

which follows from (4.13) by putting t=0, where n„ are the roots o f Jq( x ) =  0. 

It can be seen that equation (4.41) is not true for every function f(« r ) given by 

formula (4.22), except for the one obtained in the case o f a constant diffusion 

coefficient. Equation (4.41) should then be seen as an approximate relation, 

with the nearness o f the value o f the left hand side to unity giving an indication 

o f the accuracy o f our solution o f equation (4.15).

We now use the approximate solution obtained above to get information on 

how the diffusion coefficient varies with action.

Motivated by the general functional form o f the quasilinear diffusion coeffi­

cient given above we assume that the diffusion coefficient can be written in the 

form

with D ¡  and • negative. This diffusion coefficient approximates well the general 

features of the theoretically predicted diffusion coefficient as given by ( 4 . l4 )(see 

fig.4.5 ). The advantage o f a diffusion coefficient o f this form is that it is easy 

to calculate analytically the function f  giving

(4.40)

or equivalently

(4.41)

where we have used the identity

(4.42)

n  =  +  n 2c 'r (4.43)
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F igure 4.5. Approximation of the analytical quasilinear diffusion coefficient 

of equation (4.14) by the exponential law of equation (4.45).





The eigen valúes and thè eigenfunrtions for thè pari ¡rular forni o f  the diffusimi 

roeffirient are then ohtained by the ecpiations given ahove with the substitiition 

o f this sperifir forni for the funrtion f.

The» fremi a romparison o f  thè analytic forili and simulatimi results for 

the prohahility thai partirles reuiaiu in the disr as a funrtion o f time we get 

estimates for the valúes o f  /J|,I)j and « needed to model properly the web 

map. This has been done in the rase o f the web map exhibiting finir-folci 

symmetry (see lig .l.(i) . The valué for D\, whirh is the asymptotir valué of 

thè diffusimi roeffirient for large enmigh radii, rail be found from compari son 

o f numerica and our analytir formula (4..'I7) ohtained for thè rase o f Constant 

diffusion roeffirient. We find that |)|=2f>(>. Then by taking smaller valúes of 

• he radius r*» going clown to ra =  500 we filici that the evolution o f the web map 

is we|| approximated by a difTiision proress with a diffusimi roeffirient o f the 

forni

D (r )  =  ¿fifi -  20c °°ar (4.45)

Throughoiit these raleulations the parameter K appearing in ecpiations (4.7) 

and (4.8) was kept Constant and ecpial to 20. A Constant diffusion roeffirient is 

not good enotigh to model the system. Importantly other fiinrtional forms for 

the dependenre of I) un r ran be fìtteci using the present method.

4.6 The Fermi map

The method has been appliecl to a map for whirh thè whole o f phase sparo is 

not rhaotir and where rcinfining KAM curves exist. A we|| known example of 

sudi a map is thè fermi map whirh is o f thè forili

Pn+I =  Pn + s in#„ (4 .4 6 )

*..♦1 =  • «  +
2tr 1#

/>« + !
(4 .47 )

where p is the artion variable and M is a parameter.

In thè Fermi map, the phase plañe is rhaotir for artions p < pi, and above 

lilis rritiral artion p,,, tho phase spare is foliated by KAM  tori (fig 4.7 ) . As
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is evident, particles starting in parts of phase space with p <  po are confined 

to stay in this region by the existence o f the KAM tori. In this rase the mean 

square displacement o f those particles can not grow linearly as a function «if 

time because of the trapping by the first KAM curve encountered. In this 

case the usual asymptotic method for the calculation o f the diffusion coefficient 

namely D  =  will give a zero value for large values of t which is not really

appropriate. This is because the dynamics is controlled by the KAM  surface 

ami not by the chaotic motion.

However the method proposed in this paper gives finite values for the diffu­

sion coefficient. The appropriate geometry for the Fermi map is the geometry 

o f the slab as in the case o f  the standard map. The expression for P ,n to be 

used for the Fermi map is the same as for the standard map and is given by 

(4.6).

The variation o f l\ „ (t )  with t for the Fermi map calculated directly using 

the map and using the diffusion equation (4.3) are shown in figure 4.X. The 

fit is very good, but it is found that the value o f  I) depends on r0. This 

dependency is shown in figure 4.X . The diffusion coefficient obtained is more 

or less constant if the thickness o f the slab is smaller than some critical value r,- 

(which itself depends on the parameter M ) and then starts to decrease abruptly 

as the thickness o f the slab is increased to include the first KAM curve and the 

island structure around it. It should be noted here that since the variation of 

the diffusion coefficient for the Fermi map is steep, because o f the KAM surface, 

the WKH method proposed in the previous section is not appropriate but the 

approximation of a constant I )  for p < p,, is good.

The values o f the diffusion coefficient for the Fermi map obtained here are 

to be compared to the ones obtained by Murray. Liebenuan and Lichtenberg 

[MI.I.Hi») using a more complicated method and shown in their figure 4.10 . 

The complicated oscillations shown in this figure and due to the presence of 

small scale structure in the phase space, are not present in figure 4.9 because 

our method is designed to g ive an average value for the diffusion coefficient in 

such cases. Note also that the values for the diffusion coefficient obtained by

K0





F igure 4.9. The calculated diffusion coefficient for the Fermi map as a function 

of the thickness of the slab ro.

F igure 4.10. The results for the diffusion coefficient as a function o f the mo­

mentum (action) after Murray, Lieberman and Lichtenberg (MLL85J.



Murray. Lieberman anil I.ichtenberg [MLL85] an* twotimps larger than the ones 

wi* obtain but this is «In«* to the fart that they write their «liffusion equation in 

the form (4.3) but with 1 ) = ^  anil in their figure they plot D|.

The long tail on the variation o f I) with r« as shown in figure 4.9 is clue to 

the fart that the straight line boundaries we take in our analytic calculations 

do not coincide with a KAM  surface.

4.7 Conclusions

The advantages o f the method described above and used for the determination 

o f diffusion coefficient are:

1) It works for systems where the chaotic part o f phase space is bounded. 

Such systems often occur in a number o f  physical problems (c.g. Fermi map) 

[MLLM5]. For such systems the calculation o f the diffusion coefficient using the 

expression D  =  Unit— ¡» difficult since D  — 0  because the chaotic region 

is bounded by KAM  curves.

2 ) The calculation o f the diffusion coefficient using the present method is 

easier because one avoids the problem o f dealing with the oscillations o f  the 

diffusion coefficient as a function of time which are due to the fine structure 

of the phase space (islands etc) [YR91]. The present method averages over 

these effects and reveals the gross variation of the diffusion coefficient in phase 

space. The method also gives information on the behavior o f the phase flow 

for intermediate times which can be used to calculate loss rates and other such 

quantities.

.'!) Any variation o f the diffusion coefficient with position in phase space is 

revealed as a variation o f the calculated diffusion coefficient as a function o f  the 

radius or the slab thickness used in the calculation.

Such a dependence though revealed by time oscillations in I). cannot be 

easily obtained using other methods since it would involve calculations initiated 

in different regions of phase space.

In the two examples given, this effect was shown to exist for the web map, 

but not for the standard map. This is consistent with results obtained aualyti-

M|



rally.

4) It is fast and efficient. Results obtained for tin* standard map show that 

til«* method is alxnit an order of magnittule faster than other methods used 

previously.

5) Finally the main error in the present method arises from the fart that 

the numerical simulation uses a random number generator to rreate the initial 

uniform probability distribution of partirles in the bounded domain used. As 

a result the initial probability distribution is different for different realisation 

o f the numeriral simulation and this introdures a statistiral error in the mea­

surements of the diffusion coefficient. This error ran be rontrolled by taking 

a sufficiently large number «if initial conditions. For example in the rase of 

the web map in the expression for I) as given by (4.45) the constant term was 

found t«i lie 26618. It is found that the error is comparable to the errors in the 

diffusion coefficients as ralrulat«>d by other methods and revealed by the fart 

that the diffusion coefficient oscillates with time.
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C h a p t e r  5

A  M odel for the Coexistence 

of Diffusion and Accelerator 

M odes in a Chaotic 

Area-Preserv ing M ap

5.1 Introduction.

( 'onsider an area preserving chaotic map in x.y which can he brought into a 

doubly periodic form, that is. can be written a« a map o f the unit torus 

T  = (0. 2tr] x [0,2tr]. For such maps there exist parts o f  phase space called 

accelerator modes [LL83] where ordered motion occurs rather than stochastic 

motion. This ordered motion corresponds to constant acceleration o f  particles 

to remote parts o f phase space and this leads to anomalous enhancement o f the 

diffusion coefficient as calculated for such maps (<’79],[KRWH2]. Kxainples of 

maps where such behaviour occurs are the well known standard map [('79] or 

the web map (ZSUH9],[YR9l).

Our aim is to investigate the effect of the existence of such accelerator 

modes on the transport through phase space for an area preserving map (two 

dimensional symplertic map). The motivation for investigating such a situation



¡m the need to explain the flurtuatioiiH observed in the nmnerirally calculated 

value o f the ratio o f the square o f the displacement, p, divided by twice the 

number o f iterates (tim e) o f  the map namely *•■*'*>. Usually the asymptotic 

value for large n of this ratio is a constant and is identified with the diffusion 

constant. However for many maps and in particular the maps considered in 

this paper the ratio shows oscillatory behaviour and/or variation proportional 

to »i° even for large n. We shall refer to this ratio as the diffusion coefficient 

l> =  S f c  bill we now allow it to he a function o f  n. A typical example o f the 

variation of I) with n, for the web map [ZSUH9],[YR91] is shown in Fig..r>.l . 

O f course the times o f interest are longer than the time needed for the effect of 

initial conditions to he damped away.

5.2 Formulation of the Problem.

The variation o f the diffusion coefficient I) with ii for systems under consid­

eration show very complicated behaviour. This behaviour we associate with 

the presence of accelerator modes and with regions of non-chaotic behaviour 

in the phase space. The exact structure o f  phase space is extremely compli­

cated. In order for an analytical treatment to be feasible, some simplifications 

are necessary.

The phase space is modelled as follows. It is assumed to be infinite and 

two dimensional. In the space there exists a periodic array o f points which 

corresponds to accelerator modes. For simplicity we assume that the accelerator 

modes form an infinite orthogonal lattice o f points in the space. Whenever a 

particle reaches such a point it can make a finite jump to another point o f the 

lattice (that is to another accelerator mode) rather than diffuse to neighboring 

points in the space.

liesides the accelerator modes we also take into account the effects o f the 

existence of islands surrounding stable periodic points. Whenever a particle 

approaches a stable fixed point of the map we assume that it stays there for 

a certain number of iterations before continuing to diffuse. Thus the stable 

periodic points act as traps in the diffusion process through phase space. For
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Ill«1 sake <*f simplicity, we also assume that the stable periodic points form an 

infinite orthogonal lattice in phase space. The infinity o f the lattices o f both 

I lie accelerator modes and the traps arises because o f the double periodicity of 

the original map.

On every other part of phase spare, the motion is assumed to be well ap­

proximated by a uniform diffusion process having a constant diffusion coefficient

I).

In our model we allow particles to diffuse through phase spare until they 

reach the vicinity o f an accelerator mode or a stable island (trap). There they 

ran be trapped with certain trapping probabilities and start performing finite 

jumps to other points o f the lattice or remain trapped, according to whether 

the lattice point is an accelerator mode or a stable island. Trapping at lattice 

points occur for a finite number of iterations of the map m, with a probabil­

ity distribution t/’( » » ) .  Then detrapping occurs and the particles are allowed 

to diffuse again until they are brought by diffusion to the vicinity of another 

accelerator mode or island.

The trapping in the accelerator modes is equivalent to a diffusion process 

intermingled with the particle having long jumps at certain times. This is 

similar to the situation described by a Levy random walk, a concept which may 

alternatively be used to model such a chaotic system [ZS('H9],[ASZ01]. The 

relation between this and our model is discussed later.

Half the accelerator modes correspond to orbits for which p — oo as n —• oo 

and the other half correspond to orbits for which p —• -<x  as n —» oo. To 

distinguish between these two types o f accelerator modes we will call the second 

type ret ardor modes. The coexistence o f these two types o f inodes is found for 

example in the web map.

The accelerator modes exist on the points the retardor modes

exist on the points (rifyt, I//A) and the stable islands (traps) exist on the points 

(na-r./rr) ° f  phase space where n.l are integers. For simplicity we allow jumps 

between the accelerator modes to be only ill one direction, say the x direction, 

(•eneralization of the model to allow for jumps in all directions is straightfor



ward.

5.2.1 A  D is c re te  M o d e l.

A suitable start inn point to got a mathematical description of the random walk 

situation outlined above, is a discrete time - discrete space random walk model. 

The usual random walk model is assumed on a lattice o f points so that the 

probability o f  motion to the left or to the right is equal to J. On this lattice 

there is embedded a second lattice which is the lattice of accelerator modes 

(retardor modes or traps). When a particle first reaches such a point it is 

reinjected in the normal lattice with probability ( l - o )  or stays trapped there 

performing correlate«! jumps with probability n. The number o f correlated 

jumps, m, performed by the particle at such a mode is distributed with a 

probability distribution i/’(» « )•

Let us assume that the accelerator modes (or traps) are situated at a dis­

tance o f / lattice points apart, where / must be large enough. Then on the 

normal lattice the usual random walk e«|uation

H».i) = j p f »  -  I.«  -  D +  j * »  +  I . I - I )  (5.1)

is valid where p(n,t) is the probability that a particle is at lattice site n at time 

t. where n,t«Z. This equation simply states that a point of the normal lattice 

can be reach«*d only from its nearest neighbours and that it takes a time unit 

for a particle at n +  1 or n- 1  to  hop to n.

This e«piation is not valid on the accelerator modes and their nearest neigh­

bours. An accelerator mode cannot only be reached from its nearest neighbours 

but also front particles which were on other accelerator modes.

Any particle that just got into the accelerator mode (N  -  «)/ by «liffusion 

and is going to spend more than s iterations in this mode is going to end up in 

s time units at N l. This is a process that takes s time units to be completed, so 

the rateof particles into the accelerator mode N l  at time t, due to contributions 

from «»ther accelerator modes is

n  • M - e -  1 ) + p (A / - * / +  1,1 — a — I))  (5.2)
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where «</’( * )  ■* the probability that a particle stayR in an accelerator mode for 

more than r iterations. For brevity o f presentation let ur define the operator 

T\ which acts on the probability function in the following way:

7’iP(m, 0 =  ^ (P ( » +  M -  l )  +  p (n -  l , < -  I ) )  (5.3)

where by I we denote the unit length o f the normal lattice. The quantity 

T\p ((N  -  m )/,f -  m ) is the number o f particles which just diffused in to the 

mode (¿V -  m)/ from the normal lattice at time t-m.

At time t, at most t accelerator modes can contribute to N/ because particles 

in accelerator modes (N -s)/ with a >  / have not had sufficient time to reach N l. 

However at time t. particles which just entered (N -s)f at time t-s for a <  t and 

are going to be trapped there for m iterates, where m >  t, can contribute to 

Nl at t.

The total rate o f particles into the point N l  at t, from the other accelerator 

modes is then

»= 1

The rate out o f an accelerator mode is equal to p [N I , t -  1), since everything 

that was in the accelerator mode will have to leave in one iteration (either to 

go to some «»ther accelerator mode or back to the diffusion lattice).

From the previous arguments we see that the probability that a particle is 

found in the mode N l  at time t, is given by the equation

MNi.t)- 7, * * « , o  +  n £  * ( . ) ? , > < # / ( . vs)

Where ♦ ( * )  =  V'(e)/e.

Now let us look at the particles that reach the nearest neighbours «»f the 

accelerator modes.

First o f all it is important t<» realise that not all the particles which were at 

N l  at time t-l can contribute to N/+I and N/-I at time t. Only those which 

have finished their sojurn in the accelerator modes lattice are allow«*«! t«» get 

back into the normal lattice. The rate o f particles into the normal lattice from



ill«1 site N l  at time t is is Riven by

r l H I . t -  I > -  AT/_  _  1 )/ . ! - , ) .  (5.6)

Notire that the term RiviiiR the 'loss’ o f particles from the nearest neiRhhours 

•if the accelerator modes is the same as the one Riving the 'gain* o f particles to 

the accelerator mode itself only translated to the right by /. To see this, take, 

for example, the term j ^ t i p ( N I  -  ( m — I )/,/— » » )  , which is contained in 

the sum which appears in the previous equation. This term corresponds to the 

particles which got into ( N  -  (m  -  1))/ at time t-m and will be at N/ at time 

t, but will still be in an accelerator mode since they have to get to N l  +  / at 

t+ l .  Such particles are considered as a loss for the nearest neighbours of the 

lattice site \ l ,  and thus are attributed a minus sign in the above equation. Of 

course they are not a real loss because they are regained at the next accelerator 

mode. The term ♦  (* )7 ’ip( N l — (a — 1)1,1 —t )  just takes the contribution 

o f all such terms for various trapping times in the same spirit as was done for 

the site Nl.

Half o f the particles given by equation (.r>.6 ) will go to site N/+1 and half 

to site N/-1. The contribution to its nearest neighbours from the accelerator 

mode N/ will then be

' p i M . I -  m . l - , I  (5.7)
1 ..= 1

for each one o f  these sites. Apart from that, the sites N/+1 (N l -1) can be visited 

by normal random walk from sites N/+2 (N 1-2) respectively.

According to the above reasoning, the probability o f being in sites N l +  I 

(JV/-I) at time t is given by the equation

r fJ V f+ I .O -  jp(JV/+2 , f - l ) + 5 p ( J V / . l - l ) - o ^ t ( a ) f lp (JV / -(-- l)/ ,< -a ).

(5.H)

The same equation applies for p ( N I -  l./ )on ly  that ,V/ +  2isthen replaced by 

N l  -  2 .

The random walk situation we are interested in, can now be described by 

the usual random walk equations plus an effective source term localised on the
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lattice o f accelerator inodes and tlieir nearest neighbours, that is

I * « . » ) *  j9 < «  +  M -  l )  +  j i K » -  l . i -  l )  +  S< (.1.9)

where

■1» = « £ * * < »  -  A T O C - i * ( * ) í i H «

- 5ZnH«- "I-  1)5:1-, * ( . ) f ir t» - (» -  IK - I ,« - .)  (1.10)
- j e * * ! » -  s i +  t ( * ) A f ( » - ( * -  I S +  M - * ) .

This random walk model conserves the number of particles as is demanded 

by the physics o f the problem. This ran be easily shown as follows. Adding the 

equations (5.9*5.10) over all the lattice sites n we get

D ' Z S *.  ( M l )n n n

However,

= " £ ¿ * i « ) # i p ( . v / - » / . i - i ) - . . ^ ¿ * ( » ) r 1p ( , v / - ( . - i ) i ,  i - d  =  o
»  V ..= 1 N .= 1

(5 1 2 )

because the accelerator modes lattice is considered to be infinite. Thus p (n ,t )  

p (n ,f -  1 ) for every t and the total number o f  particles is conserved.

The source term associated to the retardor modes, S r , is similar to the 

one for the accelerator modes, only that it would be concentrated on a different 

infinite lattice, and the terms containing p (n -.n l) in S ,« will have to be replaced 

by p(n  +  s/) in Sr . This is due to the fact that particle in th< retardor modes 

essentially stream in the opposite direction than particles in the accelerator 

modes. It is also straightforward to see that particle are conserved if we include 

in the normal random walk equations the source term S r .

The source term corresponding to the effect o f traps on the random walk, 

Sr. is going to be o f a slightly different form. If a particle is caught in a trap, 

then it has to spend a finite time in the trap before it is released back into the 

normal random walk. For example, a particle that is driven into a trap by the 

random walk, will stay in this site for m time units, with probability a r (m ) and 

then leave the trap to get back to the random walk. The parameter o  does not



have to he the same for the traps and the accelerator modes, eventhough here 

it is considered to he the same. Note that the relevant probability distribution 

here is the first exit probability distribution r(s) which is related to the survival 

probability V’i " )  (that is the probability that a particle starting in a trap at t = 0  

is still in the trap at t= s ) by the simple relation r (s )= -^ J ^ . The probability 

distribution that a particle spends more than time t in the trap (or accelerator 

mode) is simply the integral o f

The rate into the trap at time t, is simply what gets into the trap via 

diffusion and is given by T ijHm t .O- What is important to find is the rate 

out o f a trap site. I f a fraction a  o f all the particles that landed in the trap 

are detained there for an infinite amount of time, then the rate out at time 

t would just be a fraction ( l - o )  o f what was in the trap at time t- l,  that is 

( I  — «  )p( f* 7", I — 1). However, we allow the possibility for particles that were 

trapped at time t-m, to be released from the trap, back to normal diffusion, 

at some later time t. Such particles will enhance the rate «if particles out «if 

the trap at time t. A particle first caught in the trap at time t-s, is going to 

lie released from the trap with probability o r (s ), and get bark into the normal 

diffusion. The contribution to the rate out o f the trap at time t from such 

particles, this is going to be or(*)7'ip(n 'r.< -  a). Then the total rate out o f the 

trap is going to be

(I  -  o)p(nT,f -  1) +  o ^ 2  r ( A ) i \ p ( u T , l  -  s). (5.13)

For particles that are forever trapped into the traps, the first exit probability 

is just a delta function at infinity, and the sum in the previous relation is 

identically zero.

The rate into the nearest neighbours to the trap site t l f  +  I(»17- -  I )  will 

be the normal rate roresponding to diffusion from »17- +  ’¿ (n r  -  2 ) plus half the 

rate out of the trap site. The rate out of the neighbouring sites is p (nr +  l,t-1 )

( P (*•-/• -  I , t - l )) since everything tin these sites will have to leave in one iteration.

Following the same reasoning as in the case of the accelerator modes, we



see that the source term Sr  will be o f the form



whore by H(s-t) we denote the Heaviside function and s is taken to be an integer.

In the above derivation we tacitly assumed that the normal random walk, or 

diffusion, takes place on a two dimensional lattice but the accelerator modes 

make particles stream only in the x direction. In this equation xA and yA denote 

the distance between two accelerator modes.

The form o f the equation is that o f a diffusion equation in space with a 

localised source term on the accelerator mode lattice. Note that the discrete 

model had a source term localised on the accelerator mode lattice and the 

nearest neighbours but here because these lattice sites are thought of as one, the 

source term is replaced by one localised on the accelerator modes only. Formally 

the continuous source term is obtained by Taylor expanding the discrete source 

term in a small parameter which is the lattice length scale.

It is easy to see that the continuous model also conserves probability. Inte­

grating over all space we get

(5.17)

Hut

I  S .\tirdy =  V ( . * )m * - t ) ( p (N T A-A X A. LyA, t - * ) - p ( N x A- ( s - \ ) x A, LyA, t - * ) )
J N,L»rn l

(5.18)

which is equal to 0, since the summation over N is a doubly infinite summation 

and we can shift N by s in the first sum of the right hand side of equation

(5.18) and by ( s + l )  in the second, essentially getting the same result. Hence 

/ inlxtly = const, which implies that the number of particles in the continuous 

model is conserved.

The continuous form o f the source term for the retardor modes, S « , is 

obtained in a straightforward way from the discrete one, and is found to be 

such that probability is conserved.

The continuous analogue o f  the source term for the traps, Sr, is o f a slightly 

different form

s't  =  £ / v x V 3( i ( *  -  N x t - xo)S (v -  Lyr -  V o )(p (x ,y ,t ) ^  ^

“  E l - i  r ( A) p ( x . y , t - * ))]
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Summarizing. we so*« that, both in tho discrete and in the continuous raxo, 

our basic model is to consider that over the whole o f phase space a diffusion 

c<|uation with a constant diffusion coefficient is applicable to capture the dy­

namics, except on the accelerator modes and in the stable islands. To model 

the transfer o f particles from one accelerator mode to another and the effect of 

the trapping o f particles in the stable islands we add effective sources to the 

diffusion equation, localised on the lattice o f structures. Treating these sources 

as a series o f delta functions is o f course an approximation but the complexity 

due to finite size regions can reasonably be absorbed into the definition o f the

♦<m ) V

Our equations are in the form o f a delay equation because o f the terms 

p(x,y,t-m ) that appear in the source terms. The existence o f such terms is 

expected on quit« general grounds due to the fact that a particle takes a finite 

time to make a jump from one accelerator mode to another and spends a finite 

time in the vicinity of a stable island.

Though equations (5.15),(5.16)and (5.19) or their discrete analogues can be 

solved exactly the solution is extremely complicated. A full solution in terms 

o f a formal series in «» is given in Appendix 5.3. Below we give an iterative 

scheme based on the smallness of o , which is a reasonable procedure for the 

case where most o f the phase plane is chaotic. This is particularly useful when 

combined with the fact that we are only interested in the low moments o f the 

distribution function, which are all that is necessary for the calculation o f the 

effective diffusion coefficient. The perturbation scheme given below, is equally 

valid for the continuous and the discrete case. For brevity it is given here for 

the continuous case but it is the same for the discrete one, only that the discrete 

(Jreen function will have to be used. More details ran be found in Appendix 

5.2.

We write our equation in the more compart operator form

P \ * (x ,y ,i) =  *L p (x ,y ,t ) +  t>(x -  x0)* (y  -  yo) (5.20)

where we have introduced a real source of particles at the point *o, j/„ . Here 

¿ P (x ,y , t )  represents the effective source term and * a small parameter asso-



ciated with o. For < =  0 the solution of (.r).20) whirh is the solution for the 

diffusion equation with the point source is just the Careen's function and is given 

by

[MaS.'f] where ll(t-t0) is the lleavyside function. Then by writing p  = p °  +  < p l + 

0 ( « a) and going tc» order < we have

0 p ( , ) (x ,y , t )  =  R (x ,y ,t )  (5.22)

where R (x,y ,t)=£p ,0)(x .y . t )  is a known function o f x,y,t. The solution to this 

equation is given by

P(,) =  J G ( * , y , t  I * \ y ' , t ' ) R ( x \ y ' , t ' ) d x ,d y 'd t ' (5.23)

where ( ¡ (x ,y , t  | x ',y ', t ' )  is the Green’s function for the operator D  and is given 

by (5.22) with x \ y \ t' replacing Xo.yoJu- The integrations with respect to x ' 

and y ' are over the whole space and the integration with respect to t '  is from 0 

to t. Then to first order, the correction to the distribution function is given by

p { ' \ r , y , t )  = J ( ! ( x ' %y ' , t '  \ * , y , t ) ( S A M ( p l 0 \ x \ y \ t ' ) ) + S T ( p { o ) ( x \ y \ t ' ) ) ) d x ' d y ' d t '

(5.24)

where by we denote the sum o f the source terms corresponding to the

accelerator modes and the retardor modes.

5.3 Calculation of the Diffusion Coefficient.

The quantities we are primarily interested in are the moments o f  the probability 

distribution p(x,y,t). We define two effective diffusion coefficients D r  and D y

by

D A O  -  " ¡ y "  «..J  0 ,(1 ) -
Mj,A t )  

t Mu
(5.25)

where

=  J x 2 p ( x , y , t ) d x d y m < x*> (5.26)

M i,A t) *  f y 2 p { x , y . l ) d x d y  = < V* > (5.27)
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Mo(x) = J p { x , y j ) d x d y  (5.28)

and tin* m igrations aro over all spam. These diffusion coefficients character­

ise tin* motion over the whole o f phase spare whirh may now be taken to be 

uniform. Importantly D m( t )  and l ) y( t ) are the diffusion coefficients which are 

to be compared with values o f and obtained by iterating the maps

in numerical experiments. In particular we are interested in the behaviour of 

l )x( f )  and /■>„(/) as functions o f time for our simple storhastir model.

After some cumbersome algebra we can express the moments in the form

M i A l )  *  D t +  A, +  A j +  A t  (5.29)A#j.,(l) = D t  (5.at)
where the functions A\,A t, At  whirh are functions o f t, are given explicitly 

in Appendix 5.1. The zeroth moment M 0 is always equal to 1, because o f the 

fart that our model preserves the number o f particles. In Appendix 5.2 this 

perturbation method is briefly sketched for the discrete model, and is shown to 

give essentially the same results.

5.4 Results.

The diffusion coefficients in x and y are calculated using the analytical formulas 

obtained and given in Appendix 5.1 or Appendix 5.2. In the numerical results 

presented below the trapping time distribution is taken to be a delta function 

law o f the form

K m ) =  Ai6(m  -  M , )  (5.81)

For the sake o f simplicity we assume that the trapping probability in an accel­

erator mode is the same as the trapping probability in a ret ardor mode or a 

trap. The value «if the parameter a is taken to be small enough, so that the 

perturbative approach for the solution of the model presented here is valid. In 

the numerical results presented here it is taken to  be o f the order 10“ ’ . We 

observe first that the diffusion coefficient D r ( t )  shows fluctuations in time in
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the form o f big bumps which correspond to the effect o f  trapping in the accel­

erator mode for a finite time (see flg.5.2) . The number o f  the bumps is equal 

to the number o f peaks in the distribution function After such jumps

the diffusion coefficient /) T( I ) relaxes slowly to a constant value D, larger than 

I), so that the effect o f the particle being trapped in an accelerator mode for 

a finite number of iterations leads to the enhancement o f the effective diffusion 

coefficient measured at infinite times. This is explained using an asymptotic 

analysis o f  the model, in Appendix 5.4.

If the effect of the accelerator modes is switched off (a  =  0) then what we 

find is a dip in the diffusion coefficient. This is entirely due to the presence of 

traps (that is the stable islands in the particle dynamics). This is illustrated in 

figure 5.3 .

The oscillations (fluctuations) observed in D , ( t )  are similar to the ones 

found in the calculated diffusion coefficients obtained from numerical simula­

tions o f  maps (see figure 5.1 where such diffusion coefficients are plotted as 

functions o f time for the standard and the web map). The multiple trapping in 

an accelerator mode which is assumed in our model in order to get more than 

one 'bump' in our theoretical diffusion coefficient can be observed in maps, 

figure 5.4 for example shows an orbit o f the web map which is trapped in an 

accelerator mode for a number o f iterates then it is detrapped and diffuses for 

a long time and then it is trapped again in an accelerator mode for a long num­

ber o f iterates. Therefore the multiple delta function type trapping distribution 

considered here models, at least qualitatively, the true particle dynamics.

The behaviour of I>„(f) does not show any significant fluctuations and this 

is expected since we only allowed the accelerator modes to be connected in the X direction. In P v( t )  we just see the efTect o f traps.

Before dosing this section, a comparison o f our results with the results of a 

different model for a similar situation is appropriate. Ishizaki et al [IIIKMfM] 

using a method based on a statistical mechanics formalism o f dynamical systems 

tried to get an estimate o f the long time behaviour o f the diffusion coefficient 

as a function of time ill the case of repeated sticking to an accelerator mode.
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Figure 5.2. Diffusion coefficient calculated from the results o f our model in 

the case o f accelerator modes and a delta function trapping probability 

distribution.
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Figure 5.3. Diffusion coefficient calculated from the results of our model in 

the case of traps only, with a delta function trapping probability. The 

dashed line is the diffusion coefficient in the case o f no traps. The bump 

is due to the release of particles from the trap after a time lag.





Assuming; that the probability for an orbit to stick in an accelerator inode longer 

than n is o f the power law form V’( ” ) ~  for n >  1, they found that

the diffusion coefficient calculated for orbits that may stick to the accelerator 

modes is I )  ~  n2~0. faking into account these orbits, as well as orbits that 

diffuse without getting trapped at all. the diffusion coefficient should be of the 

form D (n )  =  D | +  where 2 >  $  >  I.

We will show ill At our model can cover this case as well, giving the same 

asymptotic results. Assume that in our model instead o f a trapping distribution 

function o f a delta function form as in (6.31), we take a power law form, that 

is. assume that «/’( « )  — n~fi for n >  1. By definition V’( " )  =  / * V ’(«)d n  and 

here il '(n ) ~  namely the form used by Ishizaki et al (IIIKM91]. A short

note on the and t/'1»  used is o f relevance here. As mentioned above in the 

formulation of the model, r (m ) is the probability distribution that a particle 

that enters an accelerator mode at time t=0  stays there for m time units and 

is released on the m + l time unit. The probability that a particle which was 

in an accelerator mode at time t=0 is still In the accelerator mode at time 

t = m Is equal to V»(m) where r(rn) =  [MOX6]. Then the probability

that a particle stays in an accelerator mode for time greater than m is just

The major difference between our delta function like distribution function 

and this power law is that in our model the «letrapping is ensured whereas using 

the power law distribution function the possibility o f trapping for an infinite 

number o f iterations is not excluded.

The asymptotic behaviour «if our model is studied in Appendix 5.3. Using 

the results «if Appendices 5.3 and 5.4 we find that D r ( t )  =  P\ +  D%t~ ° + 2 as 

I — <Xj which is identical to the result obtained by Ishizaki et al [I IIK MO I ]. 

The second moment and the diffusion coefficient as calculated by our model, 

taking into account the accelerator modes, in the case «if a p«iwer law trapping 

distribution are shown in figure 5.5 . Our results are in remarkable agreement 

with the results «if Ishizaki et al [IIIKMfM] obtained by direct iteration of the 

standard map.
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Figure 5.5. (a ) Second moment and (b )  Diffusion coefficient for the case of 

accelerator modes, considering a distribution function for the trapping 
times with a power law decay.



Ill the case where only the trap terms are present, the asymptotic time 

dependence is o f the form l ) , ( t )  =  I)\ +  which corresponds to a diffusion

coefficient decaying to the constant one. Note that the constant terms I)\ in 

the above expressions, are not equal to I) the background diffusion constant.

The present model can also predict another interesting result concerning 

the effect of the form o f the trapping distribution in the accelerator modes on 

the asymptotic time behaviour of the random walk. This is a result giving a 

connection between the microscopic properties o f the random walk, which is 

actually an approximation o f motion in the connected chaotic regions o f the 

phase space, (trapping distribution in the lattice sites o f the accelerator modes) 

with its macroscopic and easily measurable properties, that is the asymptotic 

time behaviour o f the diffusion coefficient. Namely an exponentially decaying 

trapping distribution function o f the form t/•(»») = Aezp(— Am) results in a 

diffusion coefficient independent of time. That is the accelerator modes show no 

observable effects on the asymptotic time dependence of the effective diffusion 

coefficient. The details o f the calculation, which is in the same spirit as that for 

the case o f the power law distribution function, are presented in Appendix 5.4. 

This is o f course in contrast to the rase o f a power law trapping distribution in 

the accelerator modes where the diffusion coefficient has a power law asymptotic 

behaviour in time and then the effect o f the accelerator modes is shown in the 

asymptotic behaviour o f the random walk.

In a recent paper /.aslavskii and Tippet [ZT9I] studied the statistical be­

haviour of a dynamical system that ran present long flights in certain parts 

of phase space, and focused their attention on the effect of the Poincare recur 

rence statistics on the asymptotic behaviour o f the diffusion through phase spare 

caused by the chaotic properties o f the motion. According to their extensive nu 

merical results, for certain parameter values, for which the Poincar^ recurrence 

statistics follow an exponential law, the diffusion coefficient for the dynamical 

system in question, approaches a constant value for large time. In contrast, in 

the case where parameter values were chosen such that the Poincare recurrence 

statistics follow a power law. the diffusion coefficient diverges asymptotically in



time also following »  power law.

We ran ¡«l«*ntify the integral o f the Poincare recurrence probability distribu­

tion function in the parts o f phase space associated with the existence o f long 

Mights with the trapping time distribution in the accelerator modes used

in the present model. Hence, the results that Zaslavskii and Tippet [ZT91) ob­

tained by extensive numerical calculations ran be explained analytically by the 

use o f  the theoretical model proposed in this paper. Namely when the Poincare 

recurrence statistics follow a power law. * (m )  and I) also follow power laws. 

When the Poincari* recurrence statistics follow an exponential law then ♦ ( » » )  

also follows an exponential law but I) is now constant.

5.5 Conclusions.

We have constructed a simple stochastic model describing the coexistence of 

accelerator modes and diffusion for area preserving chaotic maps. The analyti­

cally predicted forms for the effective diffusion coefficient o f this simple model 

show the (pialitative behaviour obtained by direct numerical integration. The 

different asymptotic time behaviour found in various numerical simulations can 

be calculated in terms o f the trapping probability function ♦ ( « » ) .

Our model is shown to be consistent in the asymptotic time behaviour with 

the work o f  Ishizaki et al [IIIKM91], that studied the asymptotic behaviour 

of the diffusion coefficient in the presence of accelerator modes. However, our 

t reat ment o f the problem using rate equations enables us to obtain intermediate 

time results whereas the treatment in [IIIKM 9I] is purely asymptotic.

Furthermore, the asymptotic results o f our model are shown to coincide 

with the numerical observation« o f Zaslavskii and Tippet [ZT91], in the case of 

a chaotic How with occurence o f jets, in which it was shown that there is a link 

between the microscopic properties o f a chaotic motion ( Poincari reccurence) 

and the macroscopic properties (tim e dependence o f the diffusion coefficient).

Finally, event hough our model has been formulated for a very simple rect­

angular lattice having a periodic infinite array o f  structures (accelerator modes 

or traps), which is the situation that corresponds to an area preserving map
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o f tin* torus, the generalisation to more general lattires is in principle possible 

and straightforward. Also generalisation to three dimensions is straightforward, 

but the asymptotir results are expected to be different since for random walks 

o f  dimensions higher than two. the probability that a diffusion particle reaches 

any particular point, for example a trapped site, is no longer equal to I.



C h a p t e r  6

Conclusion.

6.1 Conclusions.

In this thesis the possibility o f studying the statistiral properties of strongly 

chaotic Hamiltonian systems using well known results from the theory o f diffu­

sion processes has been investigated.

In Chapter 2, the asymptotic statistical properties o f a certain dynamical 

system, the web map. were studied. In particular, the diffusion coefficient for 

the momentum coordinates o f the web map was calculated as a function o f the 

perturbation parameter, using an analytical approach based on the assumption 

of ergodicity for the chaotic motion and the quick fall o f velocity autocorrela­

tion functions. The general form of the results obtained was that the diffusion 

coefficient depended in an oscillatory manner as a function o f the perturbation 

parameter and relaxed to a monotonic value for large values o f this parame­

ter. The analytical results obtained agreed very well with those obtained by 

direct iteration o f the map except at some particular values o f the perturbation 

parameter. These discrepancies were shown to be due to the existence of struc­

tures in the phase space of the map. These structures were either accelerator 

modes which resulted in an increase o f the diffusion coefficient, or stable islands 

which resulted in a decrease. It is worth mentioning, that the analytical results 

show an increase or decrease for these values of the perturbation parameter, 

although this might be smaller than the one numerically observed. This effect
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iii shown in thr* anal.vtiral results since short time correlations are incorporated 

in the analytical method.

The web map is a map having a special symmetry. In particular it is a map 

symmetric in both action and angle variables and so it can be written as a map 

of the torus. Other maps with the same symmetry are the standard map or the 

FVoeschW map. However, general maps employed in physical models may not 

have this special symmetry, which is called double periodicity, flood examples 

of such maps are the Fermi map and Chirikov's separatrix map. These maps 

are only periodic in the angle coordinate and ran be thought o f as maps on the 

cylinder.

In Chapter .'I, the diffusion coefficient in the action (momentum) o f such 

maps was studied, in order to see whether the same fluctuations observed in 

the diffusion coefficient of maps o f the torus, as a function o f the perturbation 

parameter due to correlations, would be observed in such maps. The maps that 

were studied were symplertir maps o f  dimension n >  2 for which the chaotic 

region was supposed to be infinite.

An analytical method was formulated for the calculation o f the diffusion 

coefficient o f maps o f the cylinder in the same spirit as the method used by 

Harney, Rochester and White for maps o f the torus. Importantly it was proved, 

for maps which are not doubly periodic that t he «piasilinear value o f the diffusion 

coefficient, that is the one obtained if all the correlations are neglected, is the 

correct one. This is in contrast to what happens in the case o f maps with 

a double periodicity where our method predicts fluctuations o f the diffusion 

coefficient as a function o f  the perturbation parameter around the «piasilinear 

result. All these results are supported by numerical investigations, where maps 

o f the cylinder, which are obtained by a perturbation o f doubly periodic maps, 

have been user!.

The resemblance o f the evolution o f a chaotic system with a diffusion process 

has been checked using more elaborate criteria than the existence o f a diffusion 

coefficient defined by the relation In Chapter 1 the evolution of

an initial distribution o f particles in a bounded domain o f phase space under



a chaotic map was studied and compared to the evolution o f the same initial 

distribution under a diffusion process. It was shown that physical quantities 

such a* the average number of particles in the hounded domain as a function 

o f  time, obtained from the evolution of the chaotic system can he very well 

approximated by those obtained from the diffusion equation.

This resemblance was used as a means o f calculating the appropriate diffu­

sion coefficient for chaotic systems. A numerical method for the extraction of 

the diffusion coefficient for a chaotic system, using the procedure described in 

the previous paragraph, was formulated and checked for three different maps, 

the standard map. the web map and the Fermi map. The results were very 

satisfactory, and it was shown that

1) The method is faster and more accurate than the usual way o f calculating 

the diffusion niefficient as lim t_00 ■

2 ) It can work for systems for which the chaotic part o f phase space is hounded 

such as the Fermi map.

•I) It can predict changes of the diffusion coefficient with position in phase space. 

In particular, this has been tested on the web map where the diffusion «»»effi­

cient is known to he space dependent. A W KB  procedure based on the slowness 

o f  the variation o f the diffusion coefficient with position in phase space was used 

to  extract the functional form of the position «lependent diffusion coefficient of 

the weh map.

•1) Finally, using this method further numerical results, in favour of the theory 

suggested in Chapter If were obtained. In particular the web map was studied 

f«»r various symmetry's, where a crossover from double periodicity t«» single pe­

riodicity occurs. It was shown that there is a sharp transition to the <|uasilin«‘ar 

value for the diffusion coefficient as we pass from the doubly periodic case to 

t he singly periodic case.

In Chapter 2. where the web map was studied, the importance «if structures 

in the diffusion through phase space in a chaotic system was noted. Some 

general r«<sults on the effect «if such structures in the transport through phase 

space would be desirable. As a starting point on this problem, a random walk



model in the presence o f structure* was formulated, that would serve as a model 

o f a strongly chaotic system. In parts of phase spare where chaos is dominant, 

motion is well approximated by a random walk (which is the discrete spare 

and time version o f the diffusion process). The particles are driven by the 

random walk to parts of phase spare where structures exist, such as periodic 

orbit islands and accelerator modes. In such parts o f phase space long time 

correlations exist and the simple random walk model is no longer sufficient. 

The motion there will have to be approximated differently. For example the 

particle will have to stop for a time interval if it lands on a stable island or it 

will make correlated jumps in one direction if it lands on an accelerator mode. 

The full motion o f the particle then modelled assuming a normal random walk 

with some properly chosen source functions on the points where the structures 

exist.

This random walk model has been used to calculate the quantities that 

are usually computed for chaotic maps, such as the second moment o f  the 

displacement o f the particle. The results obtained were seen to be in accordance 

with the results obtained for chaotic systems. The important feature of such a 

model is that it has incorporated the correlation effects that are observe«! in real 

chaotic systems, thus giving a better statistical description than an ordinary 

random walk (or simple diffusion equation). For instance, using this model the 

behaviour o f the diffusion coefficient in the presence «»f accelerator modes has 

been predicted, as well as the connection between the form of the I'oincare 

recurrence statistics and the long time asymptotic statistical behaviour o f  the 

system in terms o f moments.

G.2 Further Work.

A number of problems meriting further investigation arose during the prepara­

tion of this thesis.

As a starting point it would be very interesting to conduct more detailed 

studies o f the transport properties «if maps on the cylinder for more general 

cases, relaxing the conditions we assumed in Chapter .'I. The comparison of
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tho transport properties of syniplectir maps on the cylinder and on the torus, 

Imtli in the regions o f weak chaos and strong chaos promises interesting results 

not only from the theoretical point o f view but also from the point o f  view of 

applications.

More detailed studies o f the transport through phase space when chaos 

coexists with regular structures such islands or accelerator modes can be made. 

More elaborate kinetic equations in the spirit o f those given in Chapter .r* may 

be written, providing a more complete description of a chaotic system with a 

divided phase space. To this end, Markov models can be used locally, near the 

structures, for the determination of the proper boundary conditions and the 

source terms that have to be inserted in the kinetic equations.

Finally it would be «if interest to apply our results or extend them, consider­

ing specific physical systems, where transport due to Hamiltonian chaos occurs, 

such as the advection o f passive scalars or passive vectors in laminar flows. The 

study o f such systems could be o f use to a great number o f applications rang­

ing from the study «if mixing o f tracers in laminar flows (chaotic advection) to 

dynamo theory.



C h a p t e r  7

Appendices

7.1 APPEND IX  2.1

The unperturbed hainiltonian for the q=4  web map is Riven by

//< =  - n 4(c o « v +  rosti) (7.1)

where »4  = fo . Keeping only two terms in the time dependent perturbation 

corresponding to the two closer to resonance with the oscillator harmonics of 

the wave packet the time dependent perturbation is written in the form

V  =  - ilic os u cos i )  ( 7 .2 )

For small values o f  the perturbation parameter K it is valid to take the 

solution o f the set o f  equations generated by the Hamiltonian H = H 4 +  V  as 

written in the form

u =  uo +  t>u (7.3)

=  +  (7.4)

where no and i*o is a solution o f the unperturbed equations o f motion generated 

by the Hamiltonian H 4 and fiu and An are considered as small deviations from 

the unperturbed ac'ntions. Substituting equations (7.3) and (7.4) Into the full 

equations o f motion and linearising in 6u and 6v we obtain the following set of 

equations for the evolution of the deviations

flu  = i l 4nt.«i<ltf>v (7.5)



6 v  =  -(U4C0.MU0 +  ‘2il4ro.suoro.il ^  ) ) i u  -  2il.|.ur»u„ro.s( ^ ) (7 .6 )

In tin* above set o f equations n„ andt\, are functions o f time which can be 

computed. So the above system is a linear equation for the deviations from the 

unperturbed solutions with time varying coefficients.

It is important to see how iu  and it» behave when Uo and i>o is the separatrix 

solution for the Hamiltonian H4 . For the separatrix solution where 1( 4 = 0  we 

have

< « » ( y )  =  " r t * 11«* ) (7.7)

te»( j ) » e » j K ± n 4<) (7.M)

Substituting those expressions in the equation for the evolution o f iu  and it» 

we obtain the following set o f equations

bit =  ^U4tanhHl4t)dv  (7.9)

i f  =  ^ il4tanh({l4t ) ( l  + 2 r o s ( ^ ) ) i u -  2 1 (4 —_ J _ ^ r o s ( ! j )  ( 7 . 1 0 )

In the limit t — 00 the above set o f equations becomes

and

bit -  » J d  +  2CCM(y ) ) iu  = 0 (7.11)

bit =  t n 4bv (7.12)

The first o f the above two equation is a Mathieu equation [McL64] which can 

be brought in the canonical form

d*bu
+  (a -  'iqcaa'ir )b tt = (7.13)

by the transformation T =  . Then for the values o f a and q obtained the

Mathieu equation (for small K ) has alway »unstable solutions (unbounded) and 

this is a manifestation o f the instability leading to chaos near the unperturbed 

separatrix solution.
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7.2 A P P E N D IX  3.1.

Ill this appendix we show that a regular lattice o f coherent structures has a 

greater effect on the diffusion through phase space than a disordered one. To 

do this we use a simple random walk model which simulates the chaotic motion

and introduce the effect o f  islands o f coherent motion on the diffusion through 

phase space by considering a lattice o f perfect traps (absorbing points). The 

effect o f the presence o f a trap on the random walk (diffusion through phase 

space) is quantified by calculating the probability that a particle is not trapped 

as a function of time. We consider the case o f  a regular lattice o f traps and also 

a slightly disordered lattice o f traps. The first case corresponding to diffusion 

through phase space for doubly periodic maps, the second corresponding to dif­

fusion for maps on the cylinder close to the doubly periodic case. For simplicity 

we present here the case o f  the one dimensional random walk but our results 

hold in any dimension.

The model was originally introduced by Halagurov and Vaks [HV74] in a 

different physical context. They solved the diffusion equation in one dimension 

on a lattice of traps situated at the points x, and found that the probability a 

particle is not trapped to be of the form:

I V )  t "/ '(
D ( 2n +  I )al /,

(7.14)

where I) is the diffusion coefficient,/, =  x,+ | -  x, is the distance between two 

subsequent traps, and L is the length o f the chain.

We use this result to study the difference between the case of a regular lat­

tice o f traps and a disordered lattice o f traps.

A.Regular lattice.

Assume that the traps are situated on the periodic lattice x, =  x0 +  iLo . Then 

/, =  ¿o for every i and

/’*<<) ^  I , + l ) * f .  Lo
’ 2 -  r ' * -------- T i------ ) ( 2 i i + l  )«»>

where N is the total number o f  traps in the lattice.

(7.15)
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H.l)is«>rdered lattice.

For the case of a disordered lattice of traps, with the probability distribution 

for the distance between two traps equal to /(/)

An appropriate distribution function for the distance between two traps for the 

physical situation we are studying is a top hat distribution where /(/) = for 

Lo — a <  l  <  Lh +  a and zero elsewhere. Thus a is a measure of the disorder 

of the lattice o f traps. This probability distribution goes to the delta function 

distribution /(/) =  A (/ - ¿ (l), which corresponds to a periodic lattice o f  traps in 

the limit a — 0. Using the top hat distribution, the probability that a particle 

is not trapped becomes

for functions such that f ( r ) > 0 and / " (* 0) > 0. If we take / „ (* )  to be

we find that every term in the stim defining P n (t )  is greater than the corre- 

sponding term in the sinn defining /’/<(<) if the condition

holds. For large enough time, which is the case we are interested in, this is 

always true. Moreover this holds for small times as long as the mean free path 

of the particle is greater than the average distance between the traps. This 

is a very reasonable condition since in this case the particle can distinguish 

between the case «if a disordered lattice «>f traps and a regular lattice o f  traps. 

Assuming this condition is satisfied we have that /*/>(<) >  / '«(/) for every 

t. Thus correlation effects are more pronounced f«»r a regular array of traps 

and hence corrections to the quasilinear value for the diffusion coefficient are 

expected to be larger than f«ir a disordered array.

It is easy to prove that

(7.IH)

0 ( 2 » +  I ) * » 1! > L i
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7.3 A P P E N D IX  3.2.

Another important point that arises is whether the diffusion coefficient as de­

fined i« equation (.'1.6) can take nonzero values for the more general raw* o f maps 

on the cylinder. To answer this problem it is necessary first to be able to prove 

that the maps can have chaotic orbits which are unbounded in the momenta. 

To do this we us«» the results obtained by Aubry and Abramovicci [AAffO] in 

the anti-integrable limit. According to a theorem proved by these authors, a 

particular aymplectic map in one dimension defined by a Frenkel-Kontorowa 

model which has an energy functional of the form

where L (x ,y ) is the interaction term between the different atoms in the chain and 

V (x ) is a potential with which the atoms interact and satisfies several conditions 

that make it close enough to the potential V (x )=  l-cos(x), chaotic trajectories 

with unbounded momenta exist for large enough values o f the perturbation 

parameter if

(7.22)
d*dy

is hounded for every value o f x and y. We will use this theorem to show that 

this is the case for example in the one dimensional radial twist map o f the form

P ..+ I =  P„ + « I» *,. (7.2.1)

0.. + I =  K  +  «(/»„ + ! ) (7.24)

This map is given by an energy functional of the form given in equation (7.21) 

with V (# ) =  I -  ran» and ¿ ( « . O  =  f*~ * ' a~l (0  -  0 ')d (0 -  O') , where n~l is 

I lie inverse function o f a (p ) and ■  |. For such a map. after a little algebra

we obtain.

which is equal to

0 * H i ,y )  “ 1 ( y — r )
(7.2ft)Oxdy i)y

H 'H t.y ) 1
(7.26)

OrOy da(p)fdp'
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ami p is defined by the relation

y =  T +  a (p ) (7.27)

If we choose a(p ) to be a inonotonir function of p, such as for example a (p ) = 

p + \ p \ for proper values of the parameter A, or a(p) =  p+Xp2 an we concentrate 

on orbits with positive p, then we get that

(7.28)

is a bounded function for all x and y. So for certain radial twist maps there exist 

chaotic orbits with unbounded momenta and the diffusion coefficient defined as 

in equation (3.6) is non vanishing. Similar results are expected to hold for the 

higher dimensional cases and hence the diffusion tensor for higher dimensional 

symplectic maps on the cylinder is defined as in equation (3.6) and is nonzero. Ill
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7.4 A P P E N D IX  3.3

III this appendix we use the results obtained by Markay and Meiss [MM92] 

on the miiiiiniiin perturbation parameter for which one can formally prove the 

existence o f  chaotic orbits coming from the anti-intégrable limit for the case of 

the standard map and a standard like map with some nonlinear perturbation in 

the force function a(p). Using a Frenkel-Kontorowa model like the one defined 

in Appendix 3.2 the orbits of the symplectic map that corresponds to this 

energy functional are given by sequences u, that make this energy functional 

stationary. Let us choose a stationary sequence in the anti-integrable limit u, 

and define

6(u) =  .Hupi,N | +  D t £ ( « , ,u ,+ i )  | (7.29)

Let us denote by E# ail the sequences u, for which 6(u) <  H. According 

to a theorem proved by Markay ami Meiss [MM92] given H > 0 there exists 

«h(N )  >  0 such that all stationary states o f E/i persist for « < «0 and remain 

nondegenerate.

The usual perturbation parameter K we use in the definition of the sympler 

tic maps in the text is inversely proportional to the « mentioned in the theorem. 

An upper bound on <u is given by the authors as <0 < where the param­

eters in the above formula are defined by | u, -  u f1 |< ¿,| |< o _ l ,

II l|< /* and || (i'(0 ) ||< H where (1 is the operator defined by (7(u,) = 

-  A>|£(u,,u1+|). In the previous relation l)\ a n d l)t denote dif­

ferentiation with respect to the first and the second argument of the function 

respectively.

We take two maps with the same potential function V so that the stationary 

sequences for both maps in the anti-integrable limit are the same and we change 

L in such a way that in the first case we have the standard map and in the 

second case we have a perturbation to the standard map with a nonlinear force 

function. In this case the values o f  o  ami b for the two maps are the same but 

H and /1 are different.

The maximum estimate for « »  will be given If in the inequality that gives
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thr upper bound for <0 we substitute the minimum estimates for B and /J. This 

would then Rive the minimum estimate for K, #imjn such that if K  > h'm,n 

the stationary sequence from the anti-integrahlp limit persists and remains non 

degenerate. That is for K  >  h 'm,„ we have well defined chaotic orbits A-close 

to the »ines we had in the auti-integrable limit.

We study maps o f the form

Pn+ 1 =  P„ +  K f (0 n ) (7.30)

* «  + l = d n + a (P n + l) (7.31)

which are given by an action o f  the form

with

¿ ( * . * '1 - / , ( * - » ' )  =  (7. x i )

and h ,„in ~  jL. For such maps B depends on the value o f  a~l(0 -  01) on the 

sequence chosen and ti depends on the value o f on the

sequence chosen. The inverse function of a is nothing else than p as a function 

of «,1+| and 0„ that is a ~ l (0u+i — 0„ ) = p„+i(fl,1+i -  0„).

We will now compare the values o f /< and B for a map o f  this form with a(p) 

linear in p and a more general map on the cylinder.

A. a (p )=p  (Standard map)

In this case n_ l (d,l+| -  0U) =  0„+, -  0„ and =  1.

B. a(p) =  p +  X f (p )

Then a(p,l+ l ) •  -  0„. while Differentiating the

previous equation for #,1+| -  0„ we get that

Oa 1 1

= TTaJ (7.:»4)

where $£ is now a function of 0n+t -  0„. If we chose maps for which > 0 

then < I and we may chose /1 <  I so that f i S M  > f f * ™ . A concrete 

example o f that is the case where a (p ) = p +  \p l.

II.I



B depends on the value of a- , (0..+i -  9„) -  a~l (9n -  0 „_ i =pn+l -  p„ for a 

Riven sequence. Suppose a(p) = p +  A/(p). This is a deviation o f the standard 

map force function if A jt 0. For the standard map the minimum estimate for 

the value o f B can he given as the maximum o f | 9„+t +  0„_| -  20„ | for a given 

anti-integrahle sequence. For a general HTM map the value «if B can lie given 

as the maximum «if | p,1+l - p „  | where the p’s are related to the anti-integrahle 

9 sequence by the relation

» « » (p » * , )  (7.35)

It is easy to see that | p,l+| -  p,, |<| #,1+) +  0„_, -  29,, | in the above equation 

considered as a mapping o f p t«i 9 is expanding. This is equivalent to taking 

the function a(p) t«i be an increasing function «if p. So for a HTM with a force 

function which is an increasing function o f p, such as for example n(p) = p+Ap3 

for A positive the following inequality is true HSM >  Hh™  .

Using the above results we find that t%M < <(J ™  . that is .

This means that the existence o f chaotic orbits coming from the anti-integrable 

limit can lie rigorously proved for a general radial twist map (H IM ) for smaller 

values of the perturbation parameter K than for the standard map. This is 

an indication that a RTM becomes chaotic more easily than the standard map 

(the first being a map «if the cylinder the latter being a map o f the torus) which 

may be one more reason why the correlation function method converges faster 

t«i the quasilinear result for maps on the cylinder than f«ir maps o f the torus.

O f course one might argue that the Lehesgue measure o f  the chaotic orbits 

t he existence «if which can be rigorously proved is zero as conjectured by Aubry 

and Abrainovirri [AAftO]. Even if this conjecture is true, these chaotic orbits 

originating from the anti-integrable limit form a skeleton (a  web) supporting 

the full set o f chaotic orbits so their existence is basic to  the chaotic behaviour 

ill the phase space.
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7.5 A P P E N D IX  5.1

In this appendix we give explicitly the algebraic forms o f the functions involved

in the calculations o f the diffusion coefficients.

ft
■ / " T E

¡1. -  to )»  +  (| -  m )“
)H ( I ' - r n )  (7 .:«i)

where xo and t/o are the starting points o f the particle. If we assume that 

( * ii. JMi) / (0 .0 ) then the above expression can be simplified to

=  £  E E L . ♦ (  •" I

+JS££Li*Kf<¥-i>
(7717)

where K is the complete elliptic integral and the following relation hold

q a  m ) =  e x p ( - ^ - ) .  (7.38)

The term A* for the retardor mode« is similar.
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7.6 A P P E N D IX  5.2.

In this appendix the first order perturbative solution is obtained for the discrete 

random walk model presented in section 5.2.1. and is shown to agree well with 

the results obtained from the first order perturbative solution o f the continuous 

model.

The probability distribution for the discrete model to first order in a  is Riven 

by

P1"  -  £ '• ' ( »  -  » '. I  -  l')(.V<(p|0,( » ,.l, )) + .ir (p<°>(i,'.('))) (7.39)

where

« ( »  J  '  .;*■ (: (, I -  » ') ) (r  H i ) ) |MU  (7.40)

is the (¿reen function for the simple random walk on a lattice and

(7.41)

The correction to the probability distribution of the normal random walk, 

due to the accelerator modes, to first order in a is then

p t 'H n .t ) =  E n 'I' f ”w rit/(ro*q),- ,'rj-p (H n  -  N l ) q ) ^ ml -  * l , t ' -  s)

~ E a/.I'I I w dq(co*q),~1'co*qvxp(t (fl -  JVOflOE«, * ( * )7 ip (N l -  (a -  !)/,<' -  a)

(7.42)

From this equation it is obvious that the Fourier transform of this correction 

term is

W > )  -  /<*) =  l i ) EH.I

-  E/V.I'( cot,q ),~t'< 'o «q rx p (- iN lq ) , ♦ (a )7 ip (A r/ -  (a -  l ) / , f '-  a)

(7.43)

and since we are interested in first order in o  we will substitute the source terms 

appearing in this expression by

Ttp (* ,t ) = f  dk(coskyexp(ikx). (7.44)

The correction to the zeroth moment which is the total number of particles 

due to the existence o f the accelelator modes is Riven by

AA/„ = / (0 ) «0  (7.45)
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as expected l>y particle conservation. The correction to the second moment, due 

to the existence o f the source term related to the accelerator modes is given by

A W , -  -/ " (0 ) (7.46)

where the double dashes denote differentiation with respect to q. Performing 

the differentiations we get that

= ¿ < l - l ' )M , ( l '> - S , < < ' ) ) + 2 A r , /J(.41(l')-/4 l< l, ) > - £ M , ( l ' )  (7.47)

A l t « ' )  -  A , ( l ' )  -  £ * ( » )  / ,/ )) ( l  - r r r f iM ) ) .
.4=1

(7.4ft)

Using the identity

£  £  * « r - ^ )  (7.491
Nm-oo /V = -oo 1

we can do the summations over N in the equation giving AA/a and thus get 

AA/j =  - E i 'E U i  * ( « ) / * ,  ^ i ( co»k)t'~, rxp(~ ikgl)(\ - exp(ikl))b(k --  EJ* «'•(*)£'£_,„ ros( U fi )lf  -  •).
(7.50)

We finally get for the real part «if AA/j

A.M, -  ' ' . ¿ £ > * ( * M ( i '  5 2 5 ;  * (»)/4 (l' - « )  (7.51)

A H ' - . ) .  £  r o - ( i i i  , « '■ -)
//a 1

and

r ,  = i/a 

r a - / * + i .

The function A (t ' — />) is bounded

(7.54)
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for all values o f t ' — a. A calculation of A(t‘ -  a) shows that it can take hoth 

positive and negative values, hut they are distributed in such a way that AM? 

is always a positive quantity. Furthermore for I -•  oo

The behaviour o f the second moment can now he calculated, by use o f the 

discrete relation (7..r» l )  without having to go to the continuous limit. It is also 

seen, that the discrete model gives the same results with the continuous one 

as far as asymptotic in time results are concerned. This ran be easily seen 

comparing the discrete relation (7..r>.r») with the relation for obtained for

t he continuous case, which is given in Appendix 5.1, or even better its Fourier- 

l.aplare transform given in Appendix .r>.:f.

The correction to the normal random walk, due to the presence of the source 

term corresponding to traps is calculated in a similar way. The final result is

The function H {t' -  a) has similar properties as the function A (t ' -  a) defined 

above. It is such that the correction to the second moment due to the trap 

terms is always negative, thus giving rise to a decrease in the effective diffusion 

coefficient as expected. Furthermore for t — oo

It can be easily seen that this is just the discrete counterpart o f the continuous 

relation for the rase of traps, given in Appendix .r»..'l.

A.W, * <’t ¿ £  *•<*> (7.55)

where

(7.57)

(7.56)

A W j 2i -O f (7.58)



7.7 A P P E N D IX  5.3.

In this appendix we Rive the complete solution o f the continuous diffusion model 

Riven in section 5.2.2 in Fourier-Laplace space. Even though this solution is not 

easily transformed back into real space and used to give results for intermediate 

times, it can be illuminating as far as asymptotic results for the second moment 

o f the probability distribution are concerned.

We start by taking into account only the accelerator modes term. If we take 

the Fourier transform o f the diffusion equation proposed in section 5.2.2 we get 

l)k‘ p(k, I ) .
E v  E l 'l i  * ( - K S N ’ a -  - a , » M i l -  « )  ( 1 M )

- p iU t A  - ( • -  l | » | , » W , l -  » ) )  +  « < )

Manipulating the sum in the right hand side o f  the above equation we get

§ ¡ ^ , 1 ) +  M ‘ H k . i )  =

(1 -  r t f { —ikr N  t  a ) )  El'll *(A k A M 'k .A A A )A  (7.80)

E n  * xin 'k 'N x *  ) p ( N x a ,  N y*. t -  ■) +  « ( I )  

where p (k ,t ) is the Fourier transform o f p (x,t). Since the above model is for­

mally two dimensional, k is considered as a two dimensional vector, and because 

the communication o f  the accelerator modes is done in the x direction only, it is 

the x-coordinate o f k that enters the multiplicative factor in front o f the Fourier 

transform of the source term.

Writing

p ( N z A, t - s )  =  J d q r x p ( - i N z Aq)p(q, t  -  a ) (7.61)

and using the fact that

£ r * p ( i ( *  -  q )xAN )  =  f i((k -  q ) xA -  2>tN )  (7.62)
N

we can rewrite equation (7.60) in the formA#(M)+ D k*H k,t)m

( I  -  exp{- i k rx A)  + ( * ) r x p ( i k t » x A) E jq f t k  +  jff N . t  -  *) +  A(t).

(7.6.1)



(7.64)

We now take the Laplace transform o f  this equation. This gives

« # * ,  • )+ / > * * # * .  • ) «

a ( l  -  i f p i - i k r * A)iH u  -  it ,*/ «) £ n  P<k +  jf^ N .u )+  I 

where the convolution sum has been replaced by an integral. In the above 

equation. ♦ (• ! )  in the Laplace transform o f  the function ♦  . and p {k ,u ) is the 

Fourier-Laplace transform o f p(x,y,t). The approximation o f the convolution 

sum by an integral doea not introduce new behaviour in the system, since 

the full dispersion relation o f the discrete model using the discrete Fourier 

transform and the z-transform, where one makes no approximations o f this 

sort, is analogous to the h i p  obtained here for the continuous model and gives 

similar asymptotic results. The derivation of the dispersion relation for the 

discrete model is similar to the one presented here, only that it does not involve 

any of the approximations necessary to be done in the continuous case.

We solve the operator equation for p(A\ •<) using the iteration scheme

/ ¡'" ’ (k .u ) = <¡ " (k . i i ) +  nf(k)<iu(k , i i ) ♦ ( ii -  ik .*A )5 ' (> l” ' ' l( k +  — N .u )
N  * *

(7.6S)

where

r n a »  <7 “ '

and

/ (* )  *  I -  r * p ( - i k mxA)  (7.67)

As the zeroth order approximation we use pl\ k ,u ) =  (7°(A\ u) which is the 

Fourier-Laplace transform o f the diffusion equation in the rase of no source*(o  = 0).
It is clear that this iterative scheme is just the Fourier Laplace space version 

of our perturbative solution of the diffusion equation employed in section .VS. 

The advantage o f using this method in Fourier Laplace space for the solution of 

the dispersion relation, is that, we can get iterations of this scheme up to any 

order we like, thus getting a formal series in n for the complete solution o f the 

problem. The full solution to the problem is then

p (k .u ) m i . '0( k , M i +  ¿ o " f c . ( * , i 0  (7.6X)
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where

* .(* ,« ) « /(*H»°(*. •«)•(•* -  n ^ í / ( *  + AE?-i »*.)
0 ° ( *  +  -4 J3*., m,, M)♦ ( «  -  ikr r A -  iA  E ? . i n ii)( t° (k  +  A 23”- ,  m,, u)

(7.69)

anil A =

It is easy to nee that the full solution to the problem gives

# 0 , « ) « ^  (7.70)

which is equivalent to the conservation o f particles.

We now use equation (7.68) to get the Laplace transform for the second 

moment o f the probability distribution. As is well known second moments are 

given by

lk-0 (771 )

Differentiating ;i(k ,u ) twice we get

to ur‘k‘ . *  (k.ii)
Ilk« (u + Iik‘ \‘ *  ( «  + D 1-1)1 + i .  "  dkj

where

^ ¡ ¡ ¡ ^  = •» )♦( u — ikrxA, u)Fi(k, u)

+ f {k Y .« (k ,  . )♦ (  «  -  ik ,xA, m)Ft(k , u)

+/'(AK»°(*. «)♦’(«* -  ikrTA,u )F i (k\u)

+/ (*K*°(*. •»)♦(•* -  ikrxA,u\(ii(k .a )  (7.73)

+f\k)(S°(k,u)4r(u -  ikr xA,u )(ii(k ,u )

■k f'(kY i°(k ,u )^u  -  ikr t A,u )U 3{k,u)

+ f '(k )(, '° (k ,u )t (u  -  ¡krKA,u )(i4(k,it) 

and

* !< * . «>  «  H £|/<* +  4 ^ . 1  +  4 J 3 . ,  « » . . * )  ^

♦(« -  ixAkm -  iA 23?,i m,K*°(* + A 23”. i »»,, u)

-  Ezr-'. l i . . „ . / ,i * + 4 2 : : i a e * ,  »»,>

♦ (  u -  i f  Akr -  iA  E £ ,  »»*■)+ A Ef.1 "b K*°(* + A 23?-. "»..«)
♦ ( «  -  -  iA  E?.| m<Kf°(fc +  A EZ-I »» !• “ )

(7.7.%)
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(• 'i ik .u ) is the flame as the above but with ( l i>‘ instead o f / ', ( i 3(k ,u )  is again 

the same as the above but with instead «if /’ and finally (»«(¿t, u) is the same 

as F\ but the last ( i °  function is differentiated with respect to k. that is, it is 

substituted by a ( i °  . It is obvious that the terms containing f '  and are non 

zero only if «lerivatives with respect to kT are taken.

The asymptotic behaviour o f  the second moment, is given in the limit u — 0 

and k = 0. The terms diverging as m —• 0 are those which are o f inter­

est. Terms «if the form ( i ° ( k  +  /I » » « . * )  are going to diverge as u —• 0. 

«inly if ni| =  0. H«iwever, because o f the presence o f terms o f  the form 

/ (I !* » ii « * » )  series giving the Laplace transform «if the second moment as

k=0, and of the property f(0 )= (), we are not fr«*e to have as many (J°’s diverg­

ing at u —* 0 as we like. Observing the structure of the series and taking into 

account that f ' (0 )  ±  0 and f » ° ,(0 ) =  0 we see that the only possible diverging 

terms a s u - 0  are such that

wher«’as M ju( i i ) is just e«pial to Jj. The first term in the above sum is just the 

normal «liffusive behaviour A/j =  t. The second term, in real space corresponds 

to a behaviour «if the form

where * denotes the convolution product.

Thus the full solution to the diffusion model for the second moment in x, is 

given by equations (7.76-7.7H).

In the case where the trap term ifl introduced into the system, the same 

procedure should be followed. Hy taking the Kourier-Laplace transforms o f the 

continuous equations we get

• * * . « ) +  / » ' * * . • )  -  5 * * "  “  * • • » £ < “ “ • # * + * • • ! +  1 «7 .7»!
^ V

(7.76)

(7.77)

and the third term in a behaviour «if the form

N
i n



w Ih t »* R (u ) ¡n tin* Laplace transform o f r (s ) and we have assumed that the traps 

are situated on a periodic lattice which without loss o f generality can be taken 

o f the form «o  +  2 » N .

This is an equation for p (k ,u ) which can be solved using the following 

iterative scheme= r;°(*,«)+2*a(| -  R(u))(.'0{k ,u )2 2 r*p rN-lt~ > {k  +  N ,u )

(7.H0)
where

<V°( * .«• ) =
1

(7.MI)a + Dk*
is the Fourier-Laplace transform o f the (Jreen function for the diffusion process 

when a  =  0. In the above may be considered as a vector or a scalar according 

to the dimension o f the diffusion process. Since the trapping process does not 

create a prefered direction, as in the case o f the accelerator modes where the 

streaming was defining a prefered direction, it is not o f  great importance to 

think o f k as a vector.

Starting with p,0,(A.\ u) = iï°(fc , u) we get the full solution

Mk, ii) s  <V°(*, u) +  -  ¿2  '** *2( I -  H( « ) )7 V ° (* . u)F.(k, u) (7.H2)

F .(k . u) =  E«,...,,. r rp iU n t  +  ... +  nt )x0)(k  +  n , )2( i ° ( k  +  n „  u)...

(k + « ,  +  « ,_ i  +  ... +  n3)3(i°(k +  n, + n,_i + ... +  n2, uK»°(A; -f n, + ... + u)
(7.83)

The second nioment we are interested in, is equal to - p " (0 ,u )  which is

¿ n ‘ ( l  -  (7.K-I)
«■1

We are interested in terms diverging as u — 0, because these are the terms 

which give asymptotic contributions in time. It can be seen that the only case 

where F ,(0, u) can diverge is when nt +  ... +  « ,  =  0 while all the other sums 

+  . . .  +  I I , /  0 where m >  2. This gives a divergence o f  1/ti which is due to 

the f i° (0 , m) term.



So, p (0, u) diverges as

I , f '  t d  -  K (* ) ) ‘

" 2 ¿ 1

The correction o f the second moment due to the trap terms is then

a * , . - g y t 1

This gives a contribution

(7.M.-,)

(7.H«)

where A , are constant terms that can be obtained from the expansion o f (1 -  

*(•»))*.

Transforming back to time, this relation becomes

A A / jd ) -  +  £  A . j '  j \ r ( r ) ) " J r d l '  (7 .1 «)

where f** denotes the convolution o f f, s-times with itself.



7.8 APPEND IX  5.4.

In this appendix, the asymptotic results for M jZ  are obtained for various forms 

of the waiting time probability distribution V’(* )- 

I. Power law

Assume the the trapping probability distribution in the accelerator modes be- 

haves asymptotically in time like a power law

V’(0  ~  I” * " * ,  t — oo, I <  H <  2. (7.H9)

Then, from the definition of ♦ (< ) we see that

* ( 0 ~ * “ * .  t — oo. (7.90)

In the previous appendix it was shown that in the presence o f accelerator modes, 

the second moment has the following corrections as t— oo

£  f '  (7.911

and

« I 1*  • ♦(«)</«. (7.92)

where rc and /,. are times for which our asymptotic forms for ♦ (/ ) are valid. 

For ♦ (/ ) ~  l~ a as I — oo it is easy to see that

« i " ( 0 ~  e - ° .  (7.9:l)

I he convolution ♦  * ♦  will behave asymptotically as for r — oo so that

AA/J1,(I )  ~  (7.99)

For I <  (1 <  2 the dominant contribution as t —• oo is that o f A/]1’ .

In the case where trap terms are introduced the asymptotic behaviour for 

the corrections to  the second moment is

9i — I (7.M)

13ft



and

(7.96)which for r(<) ««• m  t —* oo behaves like
A fi( l )  — (7.97)

which for every a >  I decays to 0 as / —• oo.

2.Kxponential form

If the distribution function V»(l) decays exponentially then in general y>(/) will 

decay as exp(—\t) as t —• oo.

In that case

trapping distribution. The same happens with the term A A fja*. If V>(t) ~  

t~ nr x p ( - X t )  then f ( t )  < f ( t )  *  c * j (-A l )  for t > I and *  * ♦(<) < / * / ( ! )  = 

U x p ( -\ t ) .  Then

and this last integral decays exponentially to zero as t — oo. So AA/ja'  again 

will not contribute to the second moment for t — oo in the case o f  an exponential 

t rapping distribution.

The same is true for the correction term due to the presence o f traps.

*•xp(-\t>)d/>dt — exp (—\ t) (7.9H)

Si» the term A A / j1 will not contribute for t — oo in the case o f an exponential

AA/j,) < j  ( t -  m)JH4xp(-Xu)du (7.99)
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