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Abstract

Background: There is widespread concern across the clinical and research communities that clinical trials, powered
for patient-reported outcomes, testing new surgical procedures are often expensive and time-consuming, particularly
when the new intervention is shown to be no better than the standard. Conventional (non-adaptive) randomised
controlled trials (RCTs) are perceived as being particularly inefficient in this setting. Therefore, we have developed an
adaptive group sequential design that allows early endpoints to inform decision making and show, through
simulations and a worked example, that these designs are feasible and often preferable to conventional non-adaptive
designs. The methodology is motivated by an ongoing clinical trial investigating a saline-filled balloon, inserted above
the main joint of the shoulder at the end of arthroscopic debridement, for treatment of tears of rotor cuff tendons.
This research question and setting is typical of many studies undertaken to assess new surgical procedures.

Methods: Test statistics are presented based on the setting of two early outcomes, and methods for estimation of
sequential stopping boundaries are described. A framework for the implementation of simulations to evaluate design
characteristics is also described.

Results: Simulations show that designs with one, two and three early looks are feasible and, with appropriately
chosen futility stopping boundaries, have appealing design characteristics. A number of possible design options are
described that have good power and a high probability of stopping for futility if there is no evidence of a treatment
effect at early looks. A worked example, with code in R, provides a practical demonstration of how the design might
work in a real study.

Conclusions: In summary, we show that adaptive designs are feasible and could work in practice. We describe the
operating characteristics of the designs and provide guidelines for appropriate values for the stopping boundaries for
the START:REACTS (Sub-acromial spacer for Tears Affecting Rotator cuff Tendons: a Randomised, Efficient, Adaptive
Clinical Trial in Surgery) study.
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Background
New surgical procedures are usually introduced based
on what a surgeon believes might benefit patients and
nothing more. Whilst pharmaceuticals undergo rigorous
clinical trials before introduction, this is not the case for
surgical procedures, which are often introduced based
purely on basic science (such as cadaveric testing) or small
case series data only. There is a need to develop new
processes and methodology to introduce surgical proce-
dures safely [1–3], with early randomised controlled trials
(RCTs) in specialist centres used to determine whether a
treatment is likely to be safe, clinically effective and cost
effective prior to widespread uptake. Large clinical tri-
als powered for patient-reported outcomes are typically
expensive and often take more than 5 years from award
to completion. Ineffective, unsafe and costly treatments
may be used for many years before they are removed from
practice. This is clearly unacceptable and unethical. Con-
versely, very effective treatments may be withheld from
widespread practice until trials are complete, leading to
long delays in the delivery of worthwhile treatments for
patients. Trial designs are required which can efficiently
and rapidly determine that a procedure is ineffective or
harmful, but will also adapt to demonstrate superiority if
the technique is a genuine improvement on standard care.
There is a growing awareness amongst both funders and
researchers that conventional clinical trial designs are not
the best option in many settings, and that novel adaptive
design methods offer the potential to undertake clinical
trials in a much more flexible manner, whilst retaining
trial integrity.
An adaptive clinical trial allows for prospectively

planned changes to be made to some aspects of the
design as it proceeds, using data collected from partic-
ipants recruited into the study. These types of designs
have grown in popularity in recent years [4], provid-
ing flexibility for trialists to, for instance, refine sample
sizes, drop interventions (or doses of a drug), identify and
focus recruitment on responsive subgroups (enrichment)
or stop studies early [5]. For trials of new surgical inter-
ventions, the option to potentially stop the study early has
particular appeal. The advantages of stopping a trial early
are twofold. First, in many widely encountered settings it
is likely to make the trial design more efficient [5, 6]. For
instance, if a test treatment is in truth much less effec-
tive than initially anticipated (or is totally ineffective), then
the expected sample size and duration of a design that
allows early stopping will be less than those of a compara-
ble conventional fixed sample size (non-adaptive) design.
Second, stopping a study early because an intervention
is shown to be ineffective (under the null hypothesis) or
conversely is shown to be effective (under the alterna-
tive) is clearly ethically beneficial, as it allows people to
receive better treatments faster. Adaptive designs offer

the potential of considerable advantages when compared
to more conventional fixed designs; however, there are
often barriers to their implementation [7] and disadvan-
tages, such as the requirement to use or develop more
complex statistical tools, the additional pressures on data
monitoring and collection and the maintenance of trial
integrity [8].
In surgical trials, participants are often routinely fol-

lowed up at a number of occasions (e.g. 3, 6 and 12
months) and the main study outcome(s) are collected at
each occasion. Therefore, at an interim analysis there will
be some participants with 3-month data, some with 3-
and 6-month data and some with 3-, 6- and 12-month
data. If interim analyses are limited to only those partic-
ipants with 12-month data (primary outcome), then the
opportunities for early stopping if there is evidence to
support either treatment futility or efficacy may well be
severely limited due to time constraints; i.e. recruitment
may well have completed before enough 12-month out-
come data are available for reliable decision making. If
early endpoints are correlated with the definitive (final)
study endpoint, then clearly an analysis that ignores the
early endpoints for interim decision making is likely to
be inefficient. Stallard [9] showed that using short-term
(or what others often call early endpoint) data, in the set-
ting of a seamless phase II/III clinical trial with treatment
selection with a single early endpoint, leads to increases in
statistical power when these data are correlated with the
primary endpoint.
As a consequence of the perceived lack of efficiency

and inflexibility of traditional RCTs, the UK National
Institute for Health Research (NIHR) [10] is funding a
surgical RCT that will use a novel adaptive study design
approach, developed specifically for the evaluation of new
surgical procedures (Efficacy and Mechanism Evaluation
Programme: 16/61 Evaluation of new surgical procedures
through the use of novel study designs). This RCT pro-
vides the motivation for the work outlined here. In this
paper we adapt the approach previously described by
Stallard [9], which used a single early endpoint in a treat-
ment selection design. Here we generalise to the setting
with more than one early endpoint for comparing two
treatment groups [11], and outline how the methodol-
ogy can be used for interim decision making using an
ongoing study of sub-acromial spacers for rotator cuff
tendon tears as an exemplar. We start by providing the
clinical context and then develop a model for the dis-
tribution of the outcomes, and give an expression for
an appropriate test statistic and describe how inferences
and decisions about stopping are made in the chosen
setting. Simulations are undertaken and operating char-
acteristics are illustrated for a wide range of design
options. The aim of the work described here is to out-
line the process undertaken to develop a design for the
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specific trial that motivated this work. The final selec-
tion of the design options for that study will be made by
and remain confidential within the study team. A prac-
tical worked example, using synthetic data, is used to
explain how the selected design would work in practice.
Although the focus here is on a particular surgical inter-
vention and a specific trial, we believe that the method-
ology described will have wider application for many
other clinical procedures in areas outside of the chosen
setting.

Clinical context
The rotator cuff is a group of muscles around the shoul-
der that help to stabilise the joint and initiate movement.
Tears of the tendons of the rotator cuff, typically where
they attach onto the humerus, are very common. Patients
may present with persisting pain, loss of movement and
substantial limitations in their activities of daily living.
Treatment often consists of physiotherapy, but if this is
not successful then surgery to repair the tear may be
required. Sometimes the tears cannot be repaired, and
there are very few effective treatments in this situation.
Arthroscopic debridement has traditionally been used in
this setting; it is an operation to clear space around the
tendons and shoulder to allow it to move more freely
and with less pain. There are concerns that this opera-
tion has little benefit over non-operative care [12], lead-
ing to calls for innovative solutions to treat this painful
and disabling condition [13]. A newly available treat-
ment option is a saline-filled balloon inserted above the
main joint of the shoulder at the end of an arthroscopic
debridement: the InSpace balloon device [14]. It is sim-
ple to deploy and adds less than 10 min to the operation.
However, it is costly, and evidence for efficacy is scant
[15]. It provides a cushion inside the shoulder joint that
should improve biomechanics and hence reduce pain and
improve shoulder function. We are running an adaptive,
patient-assessor-blinded RCT across multiple centres in
the UK, comparing standard arthroscopic debridement to
standard arthroscopic debridement plus insertion of the
InSpace balloon.

Methods
START:REACTS study
The START:REACTS study [16] (Sub-acromial spacer
for Tears Affecting Rotator cuff Tendons: a Randomised,
Efficient, Adaptive Clinical Trial in Surgery) com-
menced recruitment in autumn 2018; ISRCTN registra-
tion ISRCTN17825590 [17]. Recruitment is expected to
take 24 months. In the following sub-sections we discuss
important issues that motivated and determined the final
study design, and provide a mathematical description of
the methods that will be used to allow the possibility of
early stopping.

Study outcomes
The primary outcome for the START:REACTS study is
the Constant-Murley (C-M) shoulder score at 12 months
[18, 19], which is widely used in trials, accepted by sur-
geons and has good reliability and responsiveness [20–23];
early outcomes will also be collected at 3 months and 6
months post-operation. Based on a recent meta-analysis,
it is expected that the C-M score reaches a plateau by 12
months after intervention for a rotator cuff tear [24]. The
scoring system consists of four sub-scales (pain, activi-
ties of daily living, strength and range of motion) that are
combined to give a score out of 100 (perfect function).

Sample size
A minimum clinically important difference (MCID) for
the Constant-Murley (C-M) score of 10 units has been
widely used for other trials [12, 25, 26]. For purposes
of analysis, the C-M score is considered to be approxi-
mately normally distributed with a standard deviation of
20, giving a moderate standardised mean difference of
0.5 [12, 27]. A recent meta-analysis [24] reported that
standard deviations did not differ much between 3, 6
and 12 months, which is consistent with our own more
detailed analysis of data available from another study
reporting C-M scores [26]. For a costly invasive proce-
dure of this nature, an effect size smaller than 10 units
is unlikely to be considered worthwhile. For a power of
90% to detect an effect of this size and a two-sided type
I error rate of 5%, a study without early stopping would
require 170 participants (85 in each intervention group).
The START:REACTS study was initially powered on this
basis, with a 20% allowance for some loss to follow-up,
giving a maximum sample size of 212.
Recruitment is planned to take 24 months at 15 centres;

recruitment will begin with a single centre at month 1,
increasing to 2 centres at 2 months, 3 centres at 3 months,
6 centres at 4 months, 9 centres at 5 months, 12 centres
at 6 months and 15 centres at 7 to 24 months. There will
be a total of 303 months of recruitment, which, assum-
ing a constant recruitment rate at each centre, for a target
of 170 participants means a rate of (approximately) 0.56
participants per centre per month.
Pilot work from a survey of shoulder surgeons, under-

taken immediately prior to the start of the study, indi-
cated that a treatment difference in the range 7.5–10
points on the C-M scale provided moderate to strong
evidence in favour of the balloon intervention. There-
fore, when considering options for stopping boundaries
for the adaptive design, we would want to set these bound-
aries such that we had a low probability of stopping for
futility for effect sizes of this magnitude, whilst at the
same time stopping with high probability (for futility) for
treatment differences in the range 0–2.5 points on the
C-M scale.
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Correlations between early and long-term outcomes
The best available evidence for correlations between early
endpoints and the variance of the C-M shoulder score at
3, 6 and 12 months comes from a study undertaken in
an analogous setting but in a different population to that
planned for the START:REACTS study [26]. These data
give estimates for the correlation between C-M shoulder
scores at 3 and 6 months as ρ3m,6m = 0.51, between
6-month and 12-month scores as ρ6m,12m = 0.59 and
between 3-month and 12-month scores as ρ3m,12m = 0.46.
Therefore, for the purposes of the simulations exploring
the characteristics of the adaptive designs, we will assume
a uniform correlation model (i.e. correlations between 3-,
6- and 12-month data are equal) with a value of 0.5.

Stoppingwindow
The likely pattern of recruitment suggests that the window
of opportunity for early stopping for the START:REACTS
study will be relatively short. Presuming collection of pri-
mary 12-month outcome data commences promptly and
proceeds to plan, and as we will not want to take an
interim look before some 12-month data are available, it
is likely that only after 18 months of recruitment could
early looks at the data begin. Early looks at the data will
need to complete by the end of recruitment at 24 months.
Therefore, in practice, there will likely be a period of
approximately 6 months when early looks at the data are
possible. If this is the case, then the feasible number of
early looks at the data will be small. Therefore, for the
simulations exploring the characteristics of the adaptive
designs, we will assume that there are either one, two or
three early looks at the data.

Statistical model
In the START:REACTS study the early endpoints at 3
and 6 months are monitored in addition to the primary
12-month endpoint. At the time of an interim analysis,
before recruitment is complete, many more participants
will have early endpoint data than 12-month (primary)
endpoint data. Although the 3- and 6-month early end-
point data are useful for monitoring purposes, participant
retention and safety issues, from a clinical perspective a
treatment effect observed at 3 or 6 months will not nec-
essarily translate to a treatment effect at the definitive
12-month endpoint; i.e. early benefit for the active inter-
vention may not be sustained to the primary (clinically
relevant) 12-month endpoint. Therefore, at the early looks
we wish to gain information on the final 12-month end-
point from the early endpoints based on their expected
within-participant correlations, irrespective of any early
treatment effects. Stallard [9] shows that using early end-
point data, in a treatment selection (phase II/III) setting,
leads to increases in power when these data are corre-
lated with the primary endpoint, even if treatment effects

on endpoints are unrelated. In the following sections we
briefly outline the methods developed by Stallard [9] to
control the familywise error rate in this setting and pro-
vide explicit expressions to estimate test statistics when
there are two early endpoints.

Distribution of outcomes
Suppose participants in a study are followed up and data
are collected on the same endpoint at a number of occa-
sions; then let XijK be the final long-term outcome and
Xij1 . . .Xij(K−1) be K − 1 early (short-term) outcomes for
participant i in intervention arm j. We assume outcomes
are independent for different participants and that the
distribution of outcomes (Xij1, · · · ,XijK ) is multivariate
normal, with mean (μ1j, · · · ,μKj) and variance

⎛
⎜⎜⎜⎝

σ 2
1 σ1σ2ρ12 · · · σ1σKρ1K

σ2σ1ρ21 σ 2
2 · · · σ2σKρ2K

...
...

. . .
...

σKσ1ρK1 σKσ2ρK2 · · · σ 2
K

⎞
⎟⎟⎟⎠ ,

where σ 2
k is the variance of the outcome Xk and ρkk′ is the

correlation between endpoints Xk and Xk′ .

Test statistic
For a two-arm study, participants are randomised to either
the control (j = 0) or active intervention (j = 1) arms,
and at an interim analysis, long-term (final) outcomes are
available from NK subjects and early (short-term) out-
comes fromN1 . . .NK−1 subjects in each arm of the study.
For our settings of interest, we assume that, at any time
during follow-up, N1 ≥ N2 ≥ · · · ≥ NK ; i.e. there are
always more or equal numbers of subjects providing data
for the earlier outcome Xk−1 than the later outcome Xk .
The parameter of primary interest is the effect of the test
intervention on the long-term (primary) outcomeXK . Fol-
lowing Galbraith andMarschner [11], the treatment effect
B, which uses all the available early endpoint data for
two short-term outcomes (X1 and X2), for instance at 3
and 6 months such as in our chosen setting, and a single
long-term outcome X3 (at 12 months) is given by:

B = 1
N3

[ N3∑
i=1

(Xi13 − Xi03)

+ ρ13
σ3
σ1

N1∑
i=N3+1

(
Xi11 − Xi01 − 1

N1

N1∑
m=1

(Xm11 − Xm01)

)

+ ρ23
σ3
σ2

N2∑
i=N3+1

(
Xi12−Xi02− 1

N2

N2∑
m=1

(Xm12 − Xm02)

)⎤
⎦ ,

(1)
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with variance:

var(B) = 2σ 2
3

N3

[
1 − ρ2

13
N1 − N3

N1
− ρ2

23
N2 − N3

N2
+

2ρ13ρ23ρ12
(
1 − N3

N2

)]
.

(2)

Estimates B̂ and var(B̂) follow from estimates of the cor-
relations ρ13, ρ23 and ρ12 and standard deviations, σ1, σ2
and σ3, obtained from the appropriate regression models,
using all available data. Expressions (1) and (2) are pre-
sented for the special case of equal numbers of subjects
in each arm of the study. However, they can be modified
easily for the case of unequal numbers in the study arms.
These and more general expressions for B and var(B) for
K − 1 early outcomes are provided in Additional file 1.
From expressions (1) and (2) it is clear that if long-term
outcome X3 is uncorrelated with short-term outcomes X1
and X2 (i.e. if ρ13 = ρ23 = 0), then B and var(B) sim-
plify to conventional expressions we would use to estimate
the mean treatment effect (and variance) for X3 alone,
without reference to the early endpoints. As correlations
between X3 and X1 and X2 increase in magnitude, then
var(B) decreases, provided that the two early outcomes X1
and X2 are not themselves strongly correlated. In general,
var(B) is minimised as both ρ13 → 1 and ρ23 → 1, and
ρ12 → 0; i.e. X1 and X2 are strongly correlated with X3,
but are themselves uncorrelated.

Implementation for a two-arm trial
For a two-arm study, with two short-term outcomes, study
participants are randomised to either the control or active
intervention arms. Data collection proceeds until the first
interim analysis when N31 long-term data and N11 and
N21 short-term data are available per arm; N3w, N2w and
N1w are the number of study participants with long and
short-term data available at early look w. Expressions
(1) and (2) are used to obtain the test statistic S1 =
B̂1/sd

(
B̂1

)
and observed information Î1 = 1/var

(
B̂1

)
,

using estimates σ̂ 2
3 , ρ̂12, ρ̂13 and ρ̂23 obtained from the

observed data. The observed test statistic is then com-
pared to pre-defined lower and upper stopping bound-
aries l1 and u1, which are determined by the expected
information I1 at the first look, and either the trial is
stopped, for futility or efficacy, or it continues to the next
interim analysis. At each subsequent interim analysis, the
test statistic Sw = B̂w/sd

(
B̂w

)
is calculated in the same

way as in the first analysis, using all available data on
short-term and long-term outcomes, and compared to
stopping boundaries uw and lw that determine whether
the study is stopped early. If the trial is stopped early at
an interim analysis, then long-term data will continue to
be collected on all those recruited up to that point, and

these data will be used for final (definitive) inferences in
an overrunning analysis [28].
The timing of the first and subsequent looks is typi-

cally specified at the commencement of the study via the
selected values for N3w, N2w and N1w at each early look
w. These values are used, together with expected values
of σ 2

3 , ρ12, ρ13 and ρ23, to give the expected information
Iw at each planned early look w, using expression (2). The
observed information Î = 1/var

(
B̂
)
is monitored dur-

ing data accrual, and interim analysis w occurs when the
observed information equals the expected information at
look w (see later Worked example).

Sequential stopping boundaries
We are interested in a sequential trial with two short-term
endpoints where a series ofW interim analyses (looks) are
undertaken to compare the two groups. The number of
study participants increases in the two groups, and thus
the long-term and short-term data available for analysis
also increase through the course of the trial. Tests are per-
formed at each of a series of interim analyses in order to
make inferences about the superiority of the active inter-
vention group (over the control) in terms of the long-term
endpoint. The tests are undertaken at interim analysis w,
using test statistic Sw, and must control the type I error
rate across the W interim analyses. For a one-sided alter-
native at overall level α, with possible stopping for futility,
the type I error rate spent is such that α∗

U(1) < · · · <

α∗
U(W ) = α and α∗

L(1) < · · · < α∗
L(W ) = 1 − α, where

α∗
U(w) is the probability of stopping and rejecting H0 in

favour of B > 0 at look w (efficacy), and α∗
L(w) is the prob-

ability of stopping without rejectingH0 at look w (futility).
The type I error rates spent are determined by α∗

U(w) and
α∗
L(w), which are specified in advance of the study begin-

ning. Stallard [9] proposes a method for construction of
stopping boundaries in this scenario for the more general
setting of T intervention arms and a single control arm.
For a two-arm study, standard group sequential methods
and widely available software allow one to calculate the
lower and upper stopping boundaries (lw and uw) at each
look w [29].

Simulations
The statistical methodology described here provides a
framework for how decisions about early stopping will
be made. In order to understand how our assumptions
about the likely size of the treatment effect, settings for
nuisance parameters and the number of planned interim
analyses will affect design characteristics (e.g. how often
we stop early for futility), we simulate data from the full
multivariate distribution of outcomes (Xij1, · · · ,XijK ) for
each of the i study participants and undertake interim and
final analyses many times. A Poisson model [30] is used to
simulate the likely pattern of participant recruitment into
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the study. A constant monthly recruitment rate at each
centre is assumed, with a smooth increase up to the target
number of centres during the first 6months of the planned
24 months of recruitment. The pattern of follow-up data
collection at 3, 6 and 12 months is assumed to mirror that
for recruitment. The timing of the interim looks are set at
the start of a study using selected (feasible) values for N3
and, based on the expected patterns of early data accrual,
N2 and N1. These together with the expected values of
ρ12, ρ13, ρ23 and σ3 determine the expected information
content of the data at each look Iw = 1/var(Bw), using
expression (2). The pre-specified stopping boundaries fol-
low directly from Iw, α∗

L and α∗
U . The temporal pattern

of participant recruitment, data collection and ultimately
information are simulated for a single realisation of the
study. For each simulation, a series of estimates for ρ12,
ρ13, ρ23 and σ3 are calculated using progressively increas-
ing amounts of data as each new participant is recruited
into the study. The pattern of (simulated) information
accrual follows from these estimates and the temporal
pattern of data collection, using expression (2).
Interim looks at the data occur when the simulated

information is equal to the information content at the pre-
specified stopping boundaries. The estimated test statis-
tics are compared to stopping boundaries, with decisions
on stopping following directly from these comparisons.
Thus, the simulations emulate how the study would have
evolved, and how decisions about stopping would have
been made in a manner as close to a real-life setting as we
can feasibly create. Undertaking these simulated analyses
many times allows us to estimate expected stopping prob-
abilities and overall power (to reject the null hypothesis)
that inform our decisions about the overall study design.

Results
Recruitment and data accrual
Simulating data from the recruitment model suggested
that within the window of opportunity for early stop-
ping (between 18 and 24 months from commencement
of recruitment), 12-month data will be available from
between 15 and 40 participants per intervention arm (N3).
Figure 1 shows the expected patterns of recruitment, data
and information accrual during follow-up for our chosen
correlation model ρ12 = ρ13 = ρ23 = 0.5, obtained
from the simulations. The figure also shows information
accrual (i.e. 1/var(B)) for two extreme scenarios, where
(1) ρ12 = ρ13 = ρ23 = 0 and (2) ρ12 = ρ13 =
0 and ρ23 = 1, that represent the patterns of accrual
when the early outcomes (3 months and 6 months) pro-
vide no information on the final 12-month outcome and
when the 6-month outcome is exactly the same as the 12-
month outcome. In these two scenarios the patterns of
information accrual are for scenario (1) exactly as would
be observed if the 12-month outcome only provided all

the relevant information, and in scenario (2) exactly as
would be observed if all the information were provided by
the 6-month data alone. For purposes of motivating the
simulations, it is useful to divide the likely recruitment
numbers available in the window of opportunity for early
stopping interval (a period of 6 months) equally. Figure 1
indicates the likely patterns of data accrual at six potential
interim looks for 12-, 6- and 3-month data to be approx-
imately as follows: at the first possible look N3 = 15,
N2 = 35 and N1 = 50, at the second look N3 = 20,
N2 = 40 and N1 = 55, at the third look N3 = 25,
N2 = 45 and N1 = 60, at the fourth look N3 = 30,
N2 = 50 and N1 = 65, at the fifth look N3 = 35,
N2 = 55 and N1 = 70 and at the sixth look N3 = 40,
N2 = 60 and N1 = 75. Under the expected correlation
model ρ12 = ρ13 = ρ23 = 0.5 and expected standard devi-
ation of the 12-month outcome (σ1 = 20), the information
at each of these possible looks at the data is 21.4%, 28.0%,
34.4%, 40.8%, 47.1% and 53.3%, expressed as a percentage
of the expected information at the study endpoint given
by N/2σ 2

3 = 85/800 = 0.106. If ρ12 = ρ13 = ρ23 = 0,
then this reduces to 17.6%, 23.5%, 29.4%, 35.3%, 41.2% and
47.1%; a correlation of 0 implies there is no information,
on 12-month outcomes, from the early 3- and 6-month
outcomes.

Type I error rate
As a prelude to simulations exploring overall study power
and as a check of the software implementation, a number
of simulations were undertaken to explore study charac-
teristics under the null hypothesis (no treatment effect).
The results of these simulations, for a selection of three
likely data accrual patterns, are shown in Table 1. It is
apparent from Table 1 that the estimated type I error
rates for the three selected settings (1) one early look
N1 = 60,N2 = 45,N3 = 25, (2) two early looks
N1 = (55, 70),N2 = (40, 55),N3 = (20, 35) and (3)
three early looks N1 = (50, 65, 75),N2 = (35, 50, 60),
N3 = (15, 30, 40) are well controlled at the 2.5% level.
Also, the estimated cumulative probabilities of stopping
for futility at early looks pw,F are equal (within simulation
error) to the pre-specified lower error spending values, α∗

L .

Power
Overall study power and stopping probabilities were esti-
mated for a range of plausible 12-month treatment differ-
ences for the C-M score scale (0, 2.5, 5, 7.5 and 10); these
corresponded to standardised effect sizes, for the selected
value of σY = 20, of 0, 0.125, 0.25, 0.375 and 0.5. A range
of values for the lower bounds α∗

L were tested for one, two
and three early looks at the data, using the same values
for N, N3, N1 and N2 as described previously for type I
error rate estimation, using the uniform correlationmodel
(ρ = ρ13 = ρ23 = ρ12) with a value of ρ = 0.5. Efficacy
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Fig. 1 Recruitment, data and information accrual during follow-up. Expected recruitment, data and information accrual during 24 months,
estimated from simulations. Information accrual is plotted for three possible correlation models: ρ12 = ρ13 = ρ23 = 0.5, ρ12 = ρ13 = ρ23 = 0 and,
ρ12 = ρ13 = 0 and ρ23 = 1

Table 1 Estimated type I error rates, where pw,F is the cumulative
probability of stopping for futility at look w or earlier, pE is the
probability of stopping early for efficacy and p12m is the
probability of stopping for efficacy at the end of the study;
N = 85, for (a) one look N1 = 60,N2 = 45,N3 = 25, (b) two looks
N1 = (55, 70),N2 = (40, 55),N3 = (20, 35) and (c) three looks ,
N1 = (50, 65, 75),N2 = (35, 50, 60),N3 = (15, 30, 40),
ρ = ρ13 = ρ23 = ρ12 and σ 2

1 = σ 2
2 = σ 2

3 = 20 (10,000
simulations)

Futility bound (α∗
L ) ρ pE p1,F p2,F p3,F p12m

(a) One look; α∗
U = (0.001, 0.025)

(0.0, 0.975) 0.0 0.002 0.000 - - 0.025

(0.5, 0.975) 0.0 0.002 0.504 - - 0.023

(0.0, 0.975) 0.5 0.002 0.000 - - 0.026

(0.5, 0.975) 0.5 0.002 0.504 - - 0.026

(b) Two looks; α∗
U = (0, 0.001, 0.025)

(0.0, 0.0, 0.975) 0.0 0.001 0.000 0.000 - 0.025

(0.2, 0.5, 0.975) 0.0 0.001 0.202 0.499 - 0.025

(0.0, 0.0, 0.975) 0.5 0.001 0.000 0.000 - 0.024

(0.2, 0.5, 0.975) 0.5 0.002 0.199 0.505 - 0.025

(c) Three looks; α∗
U = (0, 0, 0.001, 0.025)

(0.0, 0.0, 0.0, 0.975) 0.0 0.001 0.000 0.000 0.000 0.024

(0.1, 0.3, 0.5, 0.975) 0.0 0.002 0.110 0.306 0.503 0.025

(0.0, 0.0, 0.0, 0.975) 0.5 0.001 0.000 0.000 0.000 0.025

(0.1, 0.3, 0.5, 0.975) 0.5 0.001 0.108 0.307 0.506 0.025

stopping boundaries were set to α∗
U = (0.001, 0.025),

α∗
U = (0, 0.001, 0.025) and α∗

U = (0, 0, 0.001, 0.025), at
one, two and three early looks respectively. The main ini-
tial clinical focus of our design is to determine whether the
balloon procedure is ineffective or harmful. Therefore, the
emphasis in the simulations and in the planned designs
will be on early stopping for futility, which is determined
by α∗

L . The chosen settings for the upper (efficacy) bound-
aries α∗

U favour collecting as much information as possible
if there is emerging evidence of efficacy. Early stopping for
efficacy will only be considered at the last interim look,
with boundaries set such that only if there is very strong
evidence that the balloon procedure is superior to stan-
dard care will early stopping be considered. Figure 2 shows
results for one early look at the data, Fig. 3 for two early
looks at the data and Fig. 4 for three early looks at the data.
There are strong trends for increasing power as the

treatment difference increases from 0 to 10 points on the
C-M score scale and corresponding decreases in the futil-
ity stopping probabilities. Estimates for early stopping for
efficacy from the simulations, which were planned for the
last of the interim looks only, increased from approxi-
mately 10% for one early look to 20% for two early looks
and 25% for three early looks, for a treatment difference of
10 points. This was due to more data being available at the
look when stopping for efficacy can occur (n = 15 for one
look, n = 35 for two looks and n = 40 for three looks).
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Fig. 2 Design characteristics for one early look. Estimated probabilities of stopping for futility and efficacy at the first look, expected sample size (ESS)
and overall study power, for effect sizes in range 0 to 10 for a α∗

L = (0.24, 0.975), b α∗
L = (0.48, 0.975), c α∗

L = (0.72, 0.975) and d α∗
L = (0.96, 0.975).

Here α∗
U(1) = 0.001, ρ = 0.5; other settings are as in Table 1

Four options for futility stopping were investigated for
α∗
L that represented a sequence of increasingly aggres-

sive options, from a low probability of stopping, labelled
as (a), to a high probability, labelled as (d), with (b) and
(c) intermediate to these. For one early look at the data,
α∗
L was set to either (a) (0.24, 0.975), (b) (0.48, 0.975),

(c) (0.72, 0.975) or (d) (0.96, 0.975), for two early looks
to either (a) (0.08, 0.24, 0.975), (b) (0.16, 0.48, 0.975),
(c) (0.24, 0.72, 0.975) or (d) (0.32, 0.96, 0.975) and for
three early looks to either (a) (0.08, 0.16, 0.24, 0.975), (b)
(0.16, 0.32, 0.48, 0.975), (c) (0.24, 0.48, 0.72, 0.975) or (d)
(0.32, 0.64, 0.96, 0.975).
Under the null hypothesis (C-M treatment difference

equal to 0), α∗
L represented the expected stopping proba-

bilities (for futility) at each look. For the largest treatment
differences (10 on C-M score scale) and the most aggres-
sive stopping options, the futility stopping rates were
44.4% for one early look (Fig. 2d), 31.9% for two early looks
(Fig. 3d) and 27.1% for three early looks (Fig. 4d). For this
most aggressive futility stopping setting, study power was
lowered significantly due to (incorrect) early stopping.

Power was reduced to only 55.5%, 68.0% and 72.7%, in
these three settings, rather than the 90% we would expect
for a non-adaptive design. The least aggressive futility
stopping option (Figs. 2a, 3a and 4a) showed good power
(89.5%, 89.7% and 89.7%) but poor early stopping under
the null hypothesis (24.3%, 25.1% and 26.7%). The two
extreme futility stopping options (Figs. 2a, d 3a, d and
4a, d), therefore, do not have the characteristics we are
seeking in the design.
The intermediate options (Figs. 2b, c 3b, c and 4b,

c), however, have more desirable characteristics, as they
have reasonable power for a strong treatment effect
(C-M treatment difference of 10) whilst retaining the abil-
ity to stop early for futility, with high probability, under
the null hypothesis. For example, for two early looks when
α∗
L = (0.24, 0.72, 0.975) (Fig. 3c), overall power was 87.6%

for a treatment difference of 10, with a stopping rate of
24.5% at the first look and 72.9% at the first or second look
combined.
The expected sample size (ESS), calculated from the

expected stopping probabilities and expected pattern of
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Fig. 3 Design characteristics for two early looks. Estimated probabilities of stopping for futility and efficacy at the first and second looks, expected
sample size (ESS) and overall study power, for effect sizes in range 0 to 10 for a α∗

L = (0.08, 0.24, 0.975), b α∗
L = (0.16, 0.48, 0.975), c

α∗
L = (0.24, 0.72, 0.975) and d α∗

L = (0.32, 0.96, 0.975). Here α∗
U(1) = 0 and α∗

U(2) = 0.001, ρ = 0.5; other settings are as in Table 1

patient and data accrual, provides a useful summary of
the design characteristics that complements study power.
The right-hand y-axes of Figs. 2, 3 and 4 are annotated to
provide a useful informal comparator to the fixed study
design with a sample size of 170; this provides 90% power
to detect a C-M score treatment difference of 10 points
between intervention arms, at the 5% level. The ESS
decreases, for all numbers of early looks, from the least
(a) to the most aggressive (d) futility stopping options;
increasing the probability of stopping early, for either futil-
ity or efficacy, lowers the overall study sample size from
that we would need for the non-adaptive (fixed) study
design (sample size 2N = 170). The pattern of vari-
ation for ESS, across treatment differences, reflects the
dominance of either futility stopping (for zero and small
differences) or efficacy (for large differences). In select-
ing a good design, we aim to find settings of the stopping
boundaries that maintain overall power at or as close as
possible to the nominal (non-adaptive) 90% level, whilst
at the same time lowering the expected sample size across
the range of treatment effects we might expect to see in
the study.

The number of study participants required to reach the
required information levels at the early looks was also
assessed in the simulations. The expected (mean) num-
bers were very close to the sample sizes used to motivate
the simulations, as we would expect, i.e. N3 = 25 for
one early look, N3 = (20, 35) for two early looks and
N3 = (15, 30, 40) for three early looks. The simula-
tions were set up such that early looks at the data took
place even if recruitment had been completed, whereas
in reality, the early looks would have been abandoned.
Recruitment had been completed at the final early look at
the data for (approximately) 0%, 3% and 12% of the simula-
tions for one, two and three early looks. The high value for
three early looks reflects the fact that the final early look
at the data occurs when approximately 40 participants in
each arm of the study have 12-month outcome data, which
is quite close to 50, the point when the recruitment model
expects that recruitment will have completed.

Worked example
In order to illustrate how the design will work in practice,
we briefly work through the necessary calculations, using
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Fig. 4 Design characteristics for three early looks. Estimated probabilities of stopping for futility and efficacy at the first, second and third looks,
expected sample size (ESS) and overall study power, for effect sizes in range 0 to 10 for a α∗

L = (0.08, 0.16, 0.24, 0.975), b
α∗
L = (0.16, 0.32, 0.48, 0.975), c α∗

L = (0.24, 0.48, 0.72, 0.975) and d α∗
L = (0.32, 0.64, 0.96, 0.975). Here α∗

U(1) = 0, α∗
U(2) = 0 and α∗

U(3) = 0.001,
ρ = 0.5; other settings are as in Table 1

purely synthetic data, for a much smaller and simpler
example than those used in the simulations. The data and
R code [31] for implementation are provided in Additional
file 1.
A study is planned with α∗

L = (0.200, 0.600, 0.975)
and α∗

U = (0.000, 0.001, 0.025) for two early looks, with
group sample sizes of N3 = (10, 15), N2 = (15, 20),
N1 = (20, 25) and N = 30; we assume equal group sizes,
and two early outcomes and a final outcome as previously,
for ease of exposition. Let us suppose that data available
from a pilot study suggest correlations between outcomes
of ρ13 = ρ23 = 0.5 and ρ12 = 0, with σ3 = 18. Using
these values in expression (2) indicates that the expected
information at the early looks will be I1 = 0.019 and
I1 = 0.028, and at the final analysis IFinal = N/2σ 2

Y =
30/648 = 0.046 (for σY = 18). Expressed as a per-
centage of the information available at the final analysis,
this corresponds to 42% and 60%, for the two early looks.
The boundaries can be calculated using widely available
software, for instance the gsDesign [32] package in R.
For our selected values for α∗

L and α∗
U and the expected

information at our planned looks, the function gsBound
provides the following boundaries for decision making: at
look 1, l1 = −0.842 (lower boundary) and u1 = ∞ (upper
boundary), at look 2 l2 = 0.247 and u2 = 3.09, and at the
final analysis lFinal = uFinal = 1.96.
Data collection proceeded as planned, with information

monitored during follow-up. After the twentieth partic-
ipant had provided final outcome data, the estimated
information (0.02) reached the pre-set value for the first
look (0.019). Figure 5 shows the distributions of outcome
data at the first look. The estimate of the mean treatment
difference (in favour of the test group) for the final out-
come (X3) was –10.2; i.e. the outcome score for the test
intervention was considerably lower than that for the con-
trol intervention. Estimates of the correlations between
outcomes and the standard deviation of the final outcome
were as follows: ˆρ13 = 0.45, ˆρ23 = 0.20, ˆρ12 = 0.04 and
σ̂3 = 16.8. Calculating B and var(B), using expressions (1)
and (2)), provides estimates of the mean treatment differ-
ence for the outcome of –9.77, with variance 50.18 (see
Additional file 1). Therefore, the test statistic at look 1,
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Fig. 5 Outcome score data at the first look. Boxplots and means with 95% confidence intervals of early (X1 and X2) and final (X3) outcome data by
intervention group at the first interim analysis

S1 = −1.38, is less than the lower boundary (–0.842),
indicating that the study should be stopped for futility.
Continuing to follow up all those in the study, after the

decision to stop at look 1, in an overrunning analysis [28]
provides estimates of B = −3.70 and var(B) = 20.5
(p = 0.419). This confirms that the decision made to
stop at look 1 appears to have been correct and leads us
to conclude that there is no evidence that the test group
performs better than the control group.
If different settings for α∗

L had been selected, then the
study may have proceeded in a different manner. For
instance, if a less aggressive lower stopping criterion had
been used at the first look (e.g. α∗

L = (0.080, 0.600, 0.975)),
then the lower boundary at the first look would be l1 =
−1.41, and the study would not have stopped for futility.

Discussion
This manuscript describes work to develop an adaptive
clinical trial design motivated by a trial for testing a novel
surgical approach for repair of rotator cuff tendon tears.
The design, which builds and expands on previously pub-
lished methodology [9, 11], uses early observations of the
primary outcome at 3 months and 6 months to augment
12-month outcome data to inform decision making on
early stopping. The main focus in the development of the
design is on futility stopping, rather than efficacy stopping;
i.e. stopping for efficacy in the simulations is limited to the

last interim look at the data and is such that very strong
evidence is required to stop. This reflects the clinical per-
spective that if a new intervention shows promise, then it
is prudent, within reason, to continue to collect data to the
planned study sample size, rather than stop early, in order
to provide more precise effect estimates and increase the
chances of detecting any adverse events.
The simulations showed that with more looks at the

data the chance of recruitment completing before the final
look increased; recruitment completed before the final
look in 3% and 12% of simulations for two and three
early looks. More looks offer more possibilities for early
decision making, but at a greater risk of not completing
the planned early looks before the end of recruitment.
The estimated rates of recruitment completing before
the last early look are clearly in part at least dependent
on the veracity of the recruitment model. If recruitment
was much higher or faster than expected at times during
recruitment, then this could be problematic for the design.
For instance, a rapid unexpected rise in the recruitment
rate could cause recruitment to be completed before the
early looks at the data had happened. We do not think this
will happen in our setting, as there are structural (study-
based) limitations in the number of centres, clinicians
and timings of clinics which make this highly unlikely.
However, recruitment will be monitored closely. In the
START:REACTS study it is likely that early looks will
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be dropped if recruitment completes much more rapidly
than expected. However, it may be desirable in other set-
tings to close centres or temporarily suspend recruitment
if this were feasible.
As with conventional sample size calculations, the

results of the simulations are dependent on assumptions
made about the variance of the primary outcome (12-
month C-M score) and the correlations between the early
3- and 6- and 12-month scores.We have good evidence on
these nuisance parameters from a recently published sys-
tematic review [24] and relevant data [26]. A larger than
expected value has been deliberately selected for the 12-
month C-M score standard deviation (σ3 = 20); close
inspection of the data from [24] suggests that the standard
deviation is likely to be nearer to 15 than 20. Conserva-
tively, a value of 20 was chosen for the simulations. If σ3 is
lower than 20, then we will reach the planned study infor-
mation points, which determine the timings of the early
looks at the data, sooner than the simulations indicate.
The simulations assume a relatively moderate correla-

tion model for the study outcomes: ρ13 = ρ23 = ρ12 =
0.5. If the correlation model were stronger than expected
(e.g. ρ13 = ρ23 = ρ12 = 0.9), and all other things were
unchanged, we would reach the information thresholds
for the early looks sooner than planned (i.e. with fewer
participants) and potentially gain more from the adaptive
design than we estimate from the simulations. Conversely,
if the correlations are such that the early outcomes tell us
nothing about the definitive outcome (i.e. ρ13 = ρ23 =
ρ12 = 0), then we would accumulate information more
slowly than the simulations suggest, and recruitment is
likely to have completed before the information required
for the first look at the data is reached. In such a setting the
design would proceed to the fixed recruitment target in
the conventional manner. The loss in such a setting would
be the increase in sample size, relative to the fixed design,
that we would need for the adaptive design, For exam-
ple, for the START:REACTS study described previously,
the sample size would need to increase from 170 partic-
ipants to between 180 and 188, dependent on the choice
of boundaries and early looks. This is a relatively modest
increase in sample size for this study, given the poten-
tial gains from early stopping, but in other application
areas this may be an unacceptable increase in sample size
if there is little evidence for even moderate associations
between the early and final study outcomes.
The simulations show that the error rate is controlled

at the specified rate, provided that the stopping rules are
binding [33]. Here, by binding we mean that stopping for
futility at the early look is essential whenever the futil-
ity boundaries are crossed; irrespective, for instance, of
reasons external to the study, such as new or emerg-
ing evidence on the interventions. The simulations show
study power based on a sample size of 170 (85 in each

group). This provided 90% power for the non-adaptive
design. For the adaptive designs with appealing operat-
ing characteristics discussed here, the power is somewhat
lower than 90%. For the definitive adaptive study design,
the overall sample size will be increased to provide 90%
power. The final selection of overall sample size, stop-
ping boundaries and number of looks will be made by the
START:REACTS data and safety monitoring committee
(DSMC) and confirmed by the trial steering committee
(TSC). The boundaries, timings of the interim looks and
agreement on binding will be incorporated into the DSMC
charter and will be kept confidential within the study
team.
The work described here is focussed primarily on the

design of the START:REACTS study, and this is reflected
in the set-up of the simulations and data generating
model. For instance, we have assumed that the corre-
lations between the outcomes are the same within the
intervention arms. This need not be the case in other
applications, and it would be relatively straightforward to
modify the set-up of the simulations to allow different
correlations in the intervention arms or different vari-
ances for each of the early outcomes. We believe that
the designs discussed will have much wider application
in many analogous settings, particularly when trials are
undertaken to assess new surgical and other interven-
tions where outcomes are assessed over a long period of
time. Typically in studies of this type designs are non-
adaptive, and early outcomes, usually available as part of
routine monitoring of patients, are simply reported as sec-
ondary outcomes. This is both inefficient and wasteful.
With increased methodological understanding and avail-
ability and ease of use of software tools for implementing
adaptive designs, we believe that this situation will change
in the future.

Conclusions
In this manuscript we present a methodology for the
design of an adaptive clinical trial motivated by test-
ing a novel surgical approach for repair of rotator cuff
tendon tears. The design uses early observations of the
12-month primary outcome at 3 months and 6 months
to augment 12-month outcome data to inform decision
making on early stopping. We derive estimators for the
treatment effect and test statistics based on the setting of
two early outcomes, and present methods for estimation
of sequential stopping boundaries. Simulations are under-
taken for one, two and three early looks with a range of
options for stopping boundaries. We show that a design
with two early looks is feasible and, with appropriately
chosen futility stopping boundaries, has appealing design
characteristics. A number of possible design options are
described that have good power and a high probability of
stopping for futility if there is no evidence of a treatment
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effect at early looks. A worked example provides a prac-
tical demonstration of how the design might work in a
real study. In summary, the work shows that an adap-
tive design is feasible and could work in practice, and it
provides some guidelines for appropriate values for the
stopping boundaries for the START:REACTS study.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s13063-019-3708-6.

Additional file 1: General expressions for B and var(B) for K − 1 early
outcomes. Expressions B and var(B) for unequal group sizes for two early
outcomes. R code for the worked example.
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