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Abstract 

 

Background  

A novel therapeutic peptide derived from FKBPL, ALM201, has completed a Phase I clinical 

trial and obtained FDA orphan drug status in ovarian cancer.  

 

Methods  

In vitro cancer stem cell (CSC) assays were conducted in a range of HGSOC cell lines and fresh 

patient samples. In vivo tumor initiation, growth delay and limiting dilution assays were utilized 

Signalling mechanisms determined using immunohistochemistry, ELISA, qRT-PCR, RNAseq 

and Western blotting. Endogenous FKBPL protein levels evaluated using tissue microarrays 

(TMA).  

 

Results  

ALM201 reduced CSCs in cell lines and primary patient samples in vitro by inducing 

differentiation. ALM201 treatment of the highly vascularized Kuramochi xenografts, resulted in 

a delay in tumor growth by disruption of angiogenesis and a 10-fold decrease in the CSC 

population. In contrast, ALM201 failed to elicit a strong anti-tumor response in non-vascularized 

OVCAR3 xenografts, due to high levels of IL-6 and vasculogenic mimicry. High endogenous 

tumor expression of FKBPL was associated with an increased progression free interval, 

supporting the protective role of FKBPL in HGSOC.  

Conclusion  

We show that FKBPL-based therapy can (i) dual target angiogenesis and CSCs (ii) target the 
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CD44/STAT3 pathway in tumours and (iii) is effective in highly vascularised HGSOC tumours 

with low levels of IL-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             



  

7 
 

Background 

 

Ovarian cancer affects one in 70 women in developed countries and high grade serous ovarian 

cancer (HGSOC) is the most common and aggressive subtype accounting for the majority of 

advanced cases (1,2). The ten year survival is lower than 30% and this has not improved 

substantially in 30 years, despite improved diagnostic and therapeutic intervention (3). The 

standard management consists of operative tumor debulking and administration of six cycles of 

paclitaxel and carboplatin chemotherapy (4). Approximately 80% of patients respond to first line 

treatment, however tumor recurrence and chemotherapy resistance eventually occurs in almost all 

patients within a median progression free interval of 15 months post diagnosis (4). 

 

Angiogenesis has a pivotal role in the pathogenesis of ovarian cancer by promoting tumor growth 

and progression through ascites formation and metastatic spread (5). Targeting angiogenesis in 

ovarian cancer has been an active area of research and bevacizumab, a monoclonal antibody 

against VEGF-A, has been approved by the EMA and recently the FDA as a first line therapy in 

combination with chemotherapy (6,7). This is based on the pivotal Phase III GOG-0218 trial in 

which those women who received bevacizumab in combination with chemotherapy had a median 

progression-free survival (PFS) of 18.2 months compared to 12.0 months in women who received 

chemotherapy alone (HR=0.64; 95% CI 0.54 - 0.77, p<0.0001) (8). However, concerns regarding 

toxicity and resistance remain major hurdles for the clinical use of anti-angiogenic therapy. Across 

all tumor types, bevacizumab is discontinued in 8.4% - 22% of all patients due to adverse reactions 

(9). Furthermore, anti-angiogenic resistance, at least in part, is attributed to hypoxia-driven cancer 

stem cell (CSC) enrichment (10). It is now recognised that CSCs have major roles in the 

etiopathogenesis, metastasis and chemo-resistance of ovarian cancer and their targeting is an 
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important therapeutic strategy (11). The successful elimination of CSCs could have unprecedented 

implications in the clinical management of patients (12).  

 

FK506-binding protein like (FKBPL) is a divergent member of the FK506-binding protein family 

first identified as having a role in the response of cells to radiation (13,14). At the intracellular 

level, and in a complex with Hsp90, FKBPL stabilizes p21 and regulates oestrogen receptor (ER), 

androgen receptor, and glucocorticoid receptor signalling (15–18). Furthermore, FKBPL 

demonstrated prognostic potential in a meta-analysis of five independent breast cancer TMA 

cohorts (19). FKBPL is also a secreted anti-angiogenic protein and the cell surface receptor, CD44, 

is a potential target for its activity (20,21). In support of a role for FKBPL in angiogenesis, FKBPL 

knockout mice are embryonically lethal and FKBPL heterozygous embryos display vascular 

irregularities; suggesting a critical role for FKBPL in developmental angiogenesis (22). In vitro 

and in vivo knockdown of FKBPL in breast cancer cell lines increases mammosphere formation 

accompanied by an increase in the pluripotency transcription factors (Nanog, Sox2 and Oct4) 

(23,24). Furthermore, FKBPL was identified using an shRNA genetic screen library as a regulator 

of breast cancer tumor initiation (25), and high tumor Fkbpl and low Nanog are associated with 

improved survival outcomes in breast cancer patients (n = 94) (23).  

 

The highly potent anti-angiogenic and anti-CSC activity of FKBPL is due to a unique sequence 

within the N-terminal region. A 24 residue peptide comprising amino acids 34-58 of FKBPL was 

developed and termed, AD-01. AD-01 has demonstrated potent anti-angiogenic and anti-CSC 

activity potentially through binding to CD44 (23,26). Furthermore, FKBPL and its peptide 

derivatives inhibit breast cancer metastasis through Notch signalling (27). Analysis of the 
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structure, activity and stability of AD-01 led to the selection of ALM201, a 23 residue peptide as 

the clinical drug candidate. ALM201 lacks cytotoxicity and displayed a very good safety profile 

in a Phase I, first in man, clinical trial (EudraCT number: 2014-001175-31) (28,29). Given that 

anti-angiogenic agents are demonstrating efficacy in the HGSOC setting, a disease of unmet 

clinical need, we assessed whether ALM201 could elicit dual anti-angiogenic and anti-stemness 

activity in this disease. Indeed, this would differentiate this drug from other agents targeting 

angiogenesis only.   

 

To begin addressing this, we investigated if ALM201 could target CSCs in a range HGSOC cell 

lines and patient samples. OVCAR3 cells were sensitive to ALM201 in vitro, however xenograft 

studies indicated no anti-tumor or anti-CSC efficacy in vivo. On the other hand, Kuramochi 

xenografts demonstrated significantly reduced tumor growth and CSC frequency following 

ALM201 treatment. Further studies indicated differences in tumor vascularization and cytokine 

levels between these two xenografts. OVCAR3 xenografts displayed extensive vasculogenic 

mimicry and limited CD31+ blood vessels whilst Kuramochi xenografts had an extensive blood 

vessel network. In addition, OVCAR3 cells dramatically increased the expression of IL-6 in vivo 

and we demonstrated that IL-6 could inhibit the ability of ALM201 to target CSCs.  
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Materials and Methods 

 

Tumorsphere assay 

 

Briefly, 250 cells/cm2 were seeded in 6-well dishes in non-adherent culture as described previously 

and treated once with ALM201 upon seeding (30). Tumorspheres > 50 µm were counted using a 

Nikon Eclipse TE300 (Japan) microscope under ×4 magnification after 3-4 days for cells lines and 

7 days for primary samples. 

 

Tumor Initiation Experiment  

 

A total of 1 x 106 OVCAR3 or 5 x 106 cells Kuramochi cells were resuspended in PBS and diluted 

1:1 in Matrigel (BD Bioscience, UK) and immediately implanted into female, 6 week old, female 

SCID mice (Harlan Laboratories, UK). PBS (vehicle control) or ALM201 (0.3 mg/kg/day) were 

administered daily (d1-d5), from day 1, by subcutaneous injection (n=5 mice/group). The mice 

were randomly allocated to experimental groups, with a weight range of 18g -22g. Tumor volume 

was calculated as described previously (23). For all in vivo experiments, mice were housed in 

individually ventilated cages according to EU Directive 2010/63 at constant temperature and 

humidity with 12 h light/dark cycle and fed standard chow. The welfare of the all mice were 

monitored daily and health screening carried out regularly as per policy of licensed establishment. 

No adverse events were noted for in vivo experiments. The experimental protocols were compliant 

with the UK Scientific Act of 1986 and ARRIVE guidelines (Supplementary Table 3) and Personal 

License Number 1598 under the Project License Number 2794.  
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In vivo limiting dilution assay 

 

SCID mice bearing Kuramochi xenografts from the above tumor initiation experiment were treated 

with PBS or ALM201 until tumors reached geometric mean diameter (GMD) of 12 mm3. Tumors 

were excised, disaggregated using a scalpel and added to a MACs C tube (Miltenyi Biotec, UK) 

containing collagenase type II (Invitrogen, UK), DNAase type 1 (Sigma-Aldrich, UK) in 

RPMI/1% penicillin/streptomycin (Invitrogen, UK). Tumors were minced using a gentleMACS 

dissociator (Miltenyi Biotec, UK) and incubated at 37°C in an orbital incubator for 45 min. The 

cell suspension was resuspended in red blood cell lysis buffer (Roche, UK) for 2-3 minutes. The 

cells were resuspended in ice cold PBS and counted using a haemocytometer. Cells were implanted 

intradermally, as described above, into secondary SCID mice at 2.5 x 106, 1 x 106, 5 x 105, 1 x 105, 

1 x 104 cells per mouse. Mice did not receive treatment and were observed for tumor initiation for 

six months. The tumor initiating cell frequency was calculated using ELDA software (31).    

 

In vivo tumor growth delay 

 

OVCAR3 and Kuramochi cells where implanted intradermally into SCID mice, as described 

previously. Established tumors (100 mm3) were then treated with PBS (vehicle control) or 

ALM201 (0.3 mg/kg/day) as described previously for 30 days or 56 days in the OVCAR3 or 

Kuramochi xenografts, respectively (n=5/group). Tumors were excised and used for downstream 

experiments.  
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Tissue Microarray 

 

Individual patient data from four HGSOC tissue microarray (TMA) cohorts were obtained and 

summarised in Supplementary Table 1. TMAs were constructed at the various centres using 

formalin–fixed, paraffin embedded tissue from primary HGSOC with a 0.6 mm diameter core 

(Cohort 1, 2, 3) or 1 mm (Cohort 4) diameter core taken from tumor areas. Tissue staining was 

carried out at the Northern Ireland Molecular Pathology Laboratory of Queen’s University Belfast 

as described (19). TMAs were scored fully by one ‘trained’ scorer (SA/GM), with a second, 

independent scorer (SA/GM) evaluating a minimum of 20% of the cohort. Two cohorts were 

further independently scored by a clinical gynaecological pathologist (GMcC). Each scorer was 

blinded to all pathological information, and slides were scored according to staining intensity; only 

cores which consisted of > 20% tumor were scored. A histoscore was calculated from the sum of 

(1 x % weakly positive tumor cells) + (2 x % moderately positive tumor cells) + (3 x % strongly 

positive tumor cells) with a maximum histoscore of 300 as described in (19) and sent to the 

independent statistics team at the University of Warwick for analysis.  
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Results 

 

The FKBPL derived therapeutic peptide, ALM201, targets CSCs in HGSOC cell lines and 

patient samples 

 

The tumorsphere assay was used to assess the ability of ALM201 to reduce ovarian CSCs in vitro 

and ex vivo. A significant reduction in tumorsphere forming efficiency (TFE) of 20 - 30% was 

obtained across all cells lines, PE01, PE04, OVCAR3 and OVCAR4 cells lines (Fig. 1A-D); 

similar to what we had observed in breast cancer cell lines with the preclinical peptide, AD-01 

(23). FKBPL levels were assessed in all cell lines, with highest expression observed in OVCAR4 

cells and lowest expression in PE01 cells (Fig. 1E).  There was no difference between endogenous 

FKBPL levels and the response of the cell lines to ALM201 in the tumoursphere assay (Fig. 1 E, 

Supplementary Fig 1). RBCK1 is an FKBPL-interacting protein, which regulates FKBPL stability 

at the post-translational level via ubiquitination (32). RBCK1 was also measured in the ovarian 

cancer cell lines, Again, there was no correlation between RBCK1, USP19 and FKBPL in the 

ovarian cancer cell lines (Fig. 1 E, Supplementary Fig 1). The Kuramochi cell line, reported to 

closely resemble HGSOC (33), did not form tumorspheres (Fig. 1F). However, polypoid giant 

cancer cells (PGCCs) were routinely observed in the Kuramochi monolayer. PGCCs are induced 

by hypoxia or chemotherapy and they generate daughter cells with CSC-like properties through an 

evolutionary conserved, asymmetric budding mechanism. Zhang et al, reported that spheroids 

derived from PGCCs are positive for CSC markers and a single PGCCs spheroid from the ovarian 

HEY cell line was able to form tumors in vivo (34). Encouragingly, ALM201 (100 nmol/L) 

significantly reduced the number of spheroids formed, suggesting a reduction in the tumor 

initiating population in the Kuramochi cell line (Fig. 1G). The anti-CSC activity was further 
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evaluated using clinically relevant fresh primary HGSOC tissue directly from patients. Treatment 

with ALM201 (1 and 100 nmol/L) was able to reduce the number of tumorspheres representative 

of CSCs in three chemo-naive samples by approximately 40% (Fig. 1H). Neo-adjuvant 

chemotherapy is reserved for patients with aggressive tumors for whom optimal tumor debulking 

is not possible (35). Patients who received neoadjuvant chemotherapy demonstrated an 

approximately 10-fold increase in the TFE compared to chemo-naive patients (Fig. 1H and II). 

However, ALM201 also reduced CSCs in the neoadjuvant patients, albeit with a lower average 

reduction of approximately 20% TFE (Fig. 1I).  Upon grouping the patient samples, treatment with 

ALM201 significantly inhibited tumoursphere formation in chemo-naive patients that did not 

receive chemotherapy, but not in the neoadjuvant patients (Supplementary Fig. 2) . On the whole, 

ALM201 appears to effectively reduce tumoursphere formation in chemo-naive HGSOC 

indicating it may be more effective as a first line agent. ALM201 demonstrates a mixed anti-CSC 

response in other subtypes of ovarian cancer, with clear activity in the A2780 cell line, an 

endometrioid patient, adenocarcinoma patient, clear cell patient and a serous borderline patient 

(Supplementary Fig. 3).  

 

To validate the tumorsphere assays, we used flow cytometry to quantitate the ALM201-mediated 

reduction in ovarian CSCs using well-characterised ovarian CSC surface markers, CD44+/CD117+ 

(36). There was a significant decrease in the CD44+/CD117+ subpopulation in OVCAR3 cells 

following ALM201 (100 nmol/L) treatment (Fig. 2 A-B). The Kuramochi cell line had no 

detectable CD44+/CD117+ subpopulation. The ALDEFLUOR assay was also used to analyse the 

effect of ALM201 on the ALDH+ subpopulation, which is also representative of ovarian CSCs 

(37). There was a significant decrease in OVCAR3 ALDH+ cells following ALM201 (1 nmol/L 
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and 100 nmol/L) treatment (p<0.05; n=5) and a decrease of Kuramochi ALDH+ cells following 

ALM201 treatment but this was not significant (n=4) (Fig. 2 C - E). There was an average of 15.1% 

ALDH+ cells in the OVCAR3 cell line compared to 3.46% in the Kurmaochi cell line (Fig. 2 D, 

E). Together, this indicates that the stem cell like population is small in the Kuramochi in vitro 

population given the lack of ability to form tumorspheres, no detectable CD44/+CD117+ 

subpopulation and a small ALDH+ subpopulation.    

 

In order to investigate the fate of CSCs following treatment with ALM201, we assessed colony 

morphology using a clonogenic assay. Using this assay, we have previously reported that the 

preclinical peptide, AD-01, was not cytotoxic but rather differentiated breast CSCs into a more 

mature phenotype (23). Similar to what was observed with AD-01, ALM201 was not cytotoxic 

(Fig. 2F) and it significantly, reduced holoclone formation and increased meroclone and paraclone 

formation (Fig. 2 G - H). These results further support the hypothesis that ALM201 differentiates 

CSCs into more ‘mature’ cancer cells.  

 

ALM201 does not target CSCs or angiogenesis in OVCAR3 xenografts  

To validate the anti-tumor activity of ALM201 in vivo, a tumor initiation experiment was 

performed using the OVCAR3 xenograft model. Mice were treated with ALM201 (0.3 mg/kg/day) 

from day 1 of implantation. Surprisingly, ALM201 did not delay tumor initiation of the OVCAR3 

xenografts (Fig 3A). We then used a tumor growth delay model to investigate the ability of 

ALM201 to inhibit angiogenesis. Established (100 mm3) OVCAR3 xenografts were treated with 

ALM201 (0.3 mg/kg/day; d1- d5). No significant delay in tumor growth was observed, suggesting 

that ALM201 does not inhibit angiogenesis in this model (Fig 3B). Following 30 days of treatment, 
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tumors were excised and dissociated. The dissociated OVCAR3 xenograft cells were assessed in 

an ex vivo tumorsphere assay, and no decrease in TFE was observed in the ALM201 treatment 

group (Fig. 3C). In addition, flow cytometry was conducted and ALM201 treated xenografts 

demonstrated no significant decrease in the CD44+CD117+ CSC-like subpopulation (Fig. 3D). 

Overall, these results indicate that ALM201 does not target CSCs or angiogenesis in OVCAR3 

xenografts. We had previously shown that the preclinical peptide, AD-01, significantly decreased 

the mRNA expression of pluripotency markers Oct4, Nanog and Sox2 in breast cancer xenografts, 

consistent with the differentiation of the CSCs (23). Likewise, Sox2 mRNA levels were 

significantly reduced in OVCAR3 monolayer cells after 24 h in vitro treatment with ALM201 (1 

nmol/L and 100 nmol/l) (Fig 3E). However, Oct4, Nanog and Sox2 mRNA levels were 

significantly increased in the ALM201 treated xenografts; consistent with the lack of anti-CSC 

activity in the tumor xenograft setting (Fig 3F). The OVCAR3 xenografts were sectioned and 

stained for CD31+ blood vessels. Not surprisingly, given the lack of any significant anti-tumor 

efficacy in this xenograft model, there were very few CD31+ blood vessels in the OVCAR3 

xenografts (Fig. 3G &H) and so we considered that other methods of vascularisation were driving 

growth. The xenografts were dual stained with CD31+/PAS+, a marker for vasculogenic mimicry 

(VM). An extensive network of PAS+ vessels were observed in the xenografts; suggesting a non-

angiogenic tumor phenotype (Fig 3F). An in vitro model of VM was the evaluated, by inducing 

tubule formation in OVCAR3 cells. There was no difference in tubule formation after ALM201 

(100 nmol/L) treatment in OVCAR3 cells (Fig. 3I). Together this data indicates that OVCAR3 

xenografts induce VM channels for tumor growth and this cannot be inhibited by ALM201 (Fig. 

3). The Kuramochi cells do not form tubules in vitro (Supplementary Fig. 4).  
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ALM201 targets CSCs and angiogenesis in Kuramochi xenografts  

 

A tumor initiation experiment was performed using Kuramochi cells and a significant 28 delay in 

tumor initiation and subsequent delay in tumor growth was observed in the ALM201 (0.3 

mg/kg/day) treatment group (n>5) (Fig. 4 A & B). This was also reflected in the Kaplan Meier 

survival curves (Fig 4 C). Kuramochi xenografts from mice treated with PBS or ALM201 (0.3 

mg/kg/d) were then stained for CD31+ blood vessels. Unlike the OVCAR3 xenografts, Kuramochi 

xenografts demonstrated a robust vascular network and there was a significant decrease in CD31+ 

vessels after treatment with ALM201; indicating a reduction in angiogenesis (Fig. 4D). 

Interestingly, the Kuramochi tumour cells also stained positive for CD31 (Fig. 4D). The in vivo 

limiting dilution assay is the gold standard for assessing agents that target the tumor initiating 

potential of CSCs. Kuramochi xenografts were treated with ALM201 (0.3 mg/kg/day) until a GMD 

= 12. Tumors were then disaggregated and implanted into second generation mice at defined cell 

numbers (2.5 x 106, 1 x 106, 5 x 105, 1 x 105, 1 x 104 cells/mouse; Fig. 4E). The second generation 

mice did not receive ALM201 treatment and extreme limiting dilution analysis (ELDA) software 

was used to estimate the frequency of tumor initiating cells in the xenografts (31). There was a 

greater than 10-fold decrease in the tumor initiating frequency (TIF) in untreated second generation 

xenografts derived from primary ALM201 treatment mice compared to the PBS controls (TIF; 

PBS 1.36 x105 v ALM201 1.59 x 106;  p=8.77 x 105, n>4) (Fig. 4 F; Supplementary Fig. 5). In 

addition, there was a dramatic 131.5 day delay in tumor initiation between mice implanted with 

2.5 x 106 cells previously treated with ALM201 and mice implanted with 2.5 x 106 cells from PBS 

treated xenografts (Fig. 4 G). These results strongly indicate that ALM201 is highly effective at 
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targeting both the CSC subpopulation and angiogenesis in the highly vascularised Kuramochi 

xenografts.  

 

The Kuramochi cell line displays a pro-angiogenic genotype compared to OVCAR3 cell line 

 

RNA sequencing was performed to investigate gene expression differences between the untreated 

Kuramochi and OVCAR3 cell lines. The Kuramochi cell line demonstrated a positive correlation 

to angiogenesis gene regulation, including an upregulation of VEGFA, compared the OVCAR3 

cell line (Fig. 5A & B). Other pathways that had differential expression between Kuramochi and 

OVCAR3 included p38MAPK, TGFβ, MTOR and NOD like receptor signalling (Supplementary 

Fig. 6). This data supports the well-vascularised phenotype observed when Kuramochi cells were 

grown as xenografts and the distinct lack of angiogenesis when OVCAR3 cells were grown as 

xenografts. 

 

The OVCAR3 cell line up-regulated inflammatory cytokines in vivo which inhibited anti- 

stem cell activity of ALM201 

 

A previous study, using unsupervised hierarchical clustering of HGSOC patients treated with 

bevacizumab, a VEGF inhibitor, identified three major subgroups; two with angiogenic gene 

upregulation and one subgroup with immune gene upregulation (38). The OVCAR3 and 

Kuramochi in vitro monolayers had similar mRNA expression of the pro-inflammatory cytokines 

IL-6 and IL-8 (Fig. 5C). However, there was a dramatic 150-fold increase in IL-6 and 12.5-fold 

increase in IL-8 mRNA levels when OVCAR3 cells were grown as xenografts (Fig. 5C). Notably, 
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there was no change in IL-6 and IL-8 mRNA levels between the Kuramochi cell line cultured as a 

monolayer or as xenografts (Fig. 5C). The levels of both mouse and human IL-6 and IL-8 (Kc) in 

the OVCAR3 and Kuramochi xenografts were measured by ELISA. Mouse IL-6 or IL-8 was 

undetectable, indicating that the source of the cytokines was tumor derived rather than being from 

stromal tissue. The Kuramochi xenografts had low levels of IL-6 (17 pg/µg) while the OVCAR3 

xenografts had 51-fold more IL-6 (871 pg/µg;Fig. 5D). The OVCAR3 xenografts also had 

approximately 6-fold more IL-8 (Kc) protein than the Kuramochi xenografts (Fig. 5D). This 

suggests that the OVCAR3 cell line is more representative of an immune subgroup whilst the 

Kuramochi cell line is representative of an angiogenic subgroup of HGSOC.  

We had previously shown that ALM201 targets the CSC subpopulation in the OVCAR3 cells in 

in vitro assays (Fig. 2) but had no anti–CSC activity in in vivo OVCAR3 xenografts (Fig. 3). We 

decided to evaluate whether the increased IL-6 and IL-8 in OVCAR3 xenografts could explain the 

lack of response to ALM201. Recombinant IL-6 and IL-8 was added to in vitro OVCAR3 

tumorsphere assays in the presence of ALM201. IL-6 significantly abrogated the ability of 

ALM201 to decrease tumorsphere formation at concentrations > 10 ng/ml (Fig. 5E). However, 

ALM201 was still able to reduce tumorsphere formation in the presence of IL-8 (Fig.5F), 

suggesting that IL-6, a known antagonist of other anti-CSC and anti-angiogenic drugs, might be 

responsible for the lack of ALM201 anti-CSC efficacy in OVCAR3 xenografts (39,40). 

 

ALM201 decreases phosphorylation of STAT3 in OVCAR3 cells 

 

The principle signalling mechanism for IL-6 is via the JAK/STAT pathway. Here we addressed 

whether IL-6 could abrogate ALM201 activity via inhibiting this pathway. We first investigated 
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whether ALM201 could inhibit phosphorylation of STAT3; a pathway also associated with CD44 

signalling (41). Indeed, ALM201 decreased p-STAT3(Tyr705) in OVCAR3 cells, whilst 

recombinant IL-6 abrogated its activity post treatment with ALM201 (Fig. 5G, H). We have 

previously reported that FKBPL and its peptide derivatives might exert their activity though the 

cell surface receptor, CD44. STAT3 forms a complex with CD44 in the cytoplasm and acts as a 

linker molecule to NFκB signalling to promote the CSC phenotype (41,42). Therefore, to further 

support a role for FKBPL in this pathway, we demonstrate that transient knockdown of Fkbpl in 

OVCAR3 cells resulted in the transient upregulation of Nfĸb1 and the pluripotency factor Nanog 

(Fig. 5I; Supplementary Fig. 7).  

 

High FKBPL expression in ovarian cancer is associated with an increase in progression free 

survival  

 

A meta-analysis of five breast cancer TMA cohorts has previously indicated that FKBPL is an 

independent marker of good prognosis in breast cancer (19); not surprising given its anti-

angiogenic and anti-CSC activity in this setting (19,21,23). Here we have demonstrated that the 

FKBPL peptide mimetic, ALM201, has anti-tumor activity in HGSOC and therefore postulated 

that FKBPL might also be a prognostic marker in this setting. The association of FKBPL 

expression with overall survival was assessed within publically available data sets. Analysis of 

1582 ovarian cancer patients of all subtypes and treatments demonstrated that low FKBPL 

expression was significantly associated with reduced overall survival (p=0.021) (Fig. 6A). This 

preliminary data suggested a significant correlation between reduced mRNA FKBPL expression 

and reduced overall survival; correlating with what was observed in breast cancer (16). We then 
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used four TMA cohorts from HGSOC patients to determine if FKBPL levels were associated with 

prognosis in this tumor type. The patient clinic-pathological variables for all four cohorts are 

shown in Supplementary Table 2. Receiver Operative Characteristics (ROC) analysis was carried 

out on cohort I and II and a histoscore of 190 was determined to be the optimum cut-off 

(Supplementary Fig. 8). A histoscore of 190 was also previously used as the cut-off in five breast 

cancer TMAs (19) and was therefore considered a suitable cut-off for this analysis. In cohort I, 

there was a significant association between high FKBPL and progression free survival (PFS; 

p=0.03, HR=1.44, 95% CI=1.04-2.00;Fig. 6B). However, whilst there was a trend for high FKBPL 

levels demonstrating improved PFS, this was not significant in cohorts II (Fig. 6C), III (Fig. 6D) 

and IV (Fig. 6E). An individual patient meta-analysis of the four cohorts (n= 649) was performed 

and there was no heterogeneity between the cohorts (χ2= 3.5, p=0.32). Patients with higher FKBPL 

levels had a significantly longer PFS from diagnosis (HR= 1.22, 95% CI 1.03 – 1.44, p=0.02) in 

the unstratified analysis (Fig. 6F), but significance was not reached in the stratified analysis 

(p=0.07). The median FKBPL histoscore value over the four cohorts was 165 (interquartile range 

146 – 186) however cohort III had a significantly higher median at 190 and had a large number of 

censored events and thus was considered an outlier. Therefore, a second meta-analysis of cohort I, 

II and IV was conducted (n=550). There was a significant association between higher FKBPL 

levels and PFS from diagnosis in both the stratified (HR=1.23, 95% CI 1.02, 1.47, p = 0.03) and 

unstratified analysis (HR=1.27, 95% CI 1.06, 1.52, p = 0.009; Fig. 6G). 
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 Discussion 

 

 The majority of ovarian cancer patients relapse after standard treatment and this has been partially 

attributed to the CSC subpopulation. HGSOC therefore remains a disease of unmet clinical need 

and here, for the first time, we evaluate a FKBPL peptide fragment, ALM201, to dual target 

HGSOC stem cells and tumor angiogenesis.  

 

One of the challenges with studying new therapeutics for HGSOC is determining the 

histopathological origin of the most commonly used cell lines. OVCAR3 and Kuramochi cells 

contain the major oncogenes and tumor suppressor genes associated with HGSOC and are most 

likely to resemble the disease and were therefore used for the majority of the in vitro and in vivo 

experiments (33). ALM201 clearly demonstrated in vitro anti-CSC efficacy, using both 

tumorsphere assays and flow cytometry in the OVCAR3 cell line monolayer (Fig.1D; Fig. 2A-D). 

The Kuramochi cell line did not form tumorspheres or contain a CD44+/CD117+ cell population 

and also had a reduced ALDH+ subpopulation, thus indicting a lower CSC subpopulation in vitro. 

However, following treatment with ALM201 there was a decrease in spheres produced from 

PGCCs in vitro and a significant reduction in the ALDH+ population in the Kuramochi cell line 

(Fig.1G; Fig. 2E).  

 

FKBPL and its peptide derivatives have previously shown potent anti-angiogenic activity resulting 

in a tumor growth delay in a range of xenografts studies, potentially through the cell surface 

receptor CD44 (20,22,24). However, for the first time, we observed no tumor growth delay in the 

OVCAR3 xenografts after treatment with ALM201 (Fig. 3B). Ex vivo analysis of the xenografts 
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by IHC revealed limited blood vessels and extensive vasculogenic mimicry (Fig. 3 G - I). In vitro 

tubule formation assays suggested that ALM201 had no effect on inhibiting VM channels in the 

OVCAR3 cells (Fig. 3J). In summary, the paucity of blood vessels and the high level of 

vasculogenic mimicry within the OVCAR3 xenografts, is a likely explanation for ALM201’s lack 

of anti-angiogenic efficacy in this xenograft model. 

 

Angiogenesis is regarded as an essential hallmark of cancer, however non-angiogenic tumors have 

been reported to occur in brain (43), liver metastasis (44,45) and lymph node metastasis (46,47). 

Gene expression analysis in angiogenic and non-angiogenic non-small lung cancer (NSLC) 

samples suggests that in non-angiogenic tumors, hypoxia leads to an increased activation of the 

mitochondrial respiration chain and rapid tumor growth (48). Indeed, the OVCAR3 xenografts had 

a more rapid tumor growth, compared to the angiogenic Kuramochi xenografts (Fig. 3B; Fig 4A). 

Moreover, there is emerging evidence in the literature that the non-angiogenic growth of tumors 

is responsible for both the intrinsic or acquired resistance to anti-angiogenic treatment (49,50). 

Here, for the first time, we describe an ovarian cancer xenograft that is dependent upon VM as 

opposed to classical angiogenesis. On the other hand, the Kuramochi cell line formed well-

vascularised xenografts in vivo and treatment with ALM201 resulted in a significant tumor growth 

delay (Fig. 4C). Analysis of the xenografts showed an extensive blood vessel network consistent 

with high expression of angiogenesis related genes in Kuramochi cells (Fig. 5A). Kuramochi 

xenografts treated with ALM201 had decreased CD31+ blood vessels (Fig. 4D); in line with our 

previous studies with recombinant FKBPL and AD-01 (24,26). Furthermore, the in vivo gold 

standard limiting dilution assay clearly demonstrated that ALM201 significantly decreased the 

tumor initiating potential by 10-fold in Kuramochi xenografts (Fig. 4F). This result has significant 
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clinical relevance since therapies against CSCs are a very active area of research and there are 

comparatively very few agents that specifically target HGSOC stem cells. Overall, ALM201 had 

a potent anti-CSC efficacy in the Kuramochi cells in vivo and no effect on the OVCAR3 CSC 

population. This suggests micro-environmental components are drastically different between the 

two different tumor xenografts; not surprising given the dramatic differences in tumor 

vascularization in these tumor types. 

 

These results further highlight the clinical need to stratify patients even within the same subtype 

of ovarian cancer. Four molecular subtypes within the umbrella of HGSOC (C1/mesenchymal, 

C2/immune, C4/differentiated and C5/proliferative) have been identified by gene expression 

profiling (51). Survival is statistically different between the subtypes; best in the immunoreactive 

type and worst in the proliferative or mesenchymal subtypes (52). The OVCAR3 and the 

Kuramochi cell lines are both indicative of the HGSOC subtype although the main drivers of in 

vivo tumor growth are clearly very different. In the clinic, treatment with ALM201 or any other 

anti-angiogenic therapy, in patients with HGSOC tumors with similar properties to the OVCAR3 

subtype are likely to be ineffective. On the other hand, highly vascularized tumors, similar to the 

Kuramochi xenografts, are more likely to respond well to anti-angiogenic therapies and 

encouragingly, ALM201 also exhibited a potent anti-CSC effect. Bais et al recently demonstrated 

that higher microvessel density was predictive for response to bevacizumab in a Phase 3 clinical 

trial (GOG-0218) (53). This may prove to be a simple and effective way to stratify patients likely 

to respond to anti-angiogenic therapy in HGSOC.   
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Intriguingly, ALM201 inhibited OVCAR3 CSCs in vitro, however, there was no effect on the CSC 

subpopulation in the OVCAR3 xenograft (Fig.1D; Fig. 2A-D; Fig. 3C-D). Analysis of the 

Kuramochi and OVCAR3 xenografts showed there were substantial differences in IL-6 and IL-8 

both mRNA and protein level. Analysis of the xenografts using mouse and human ELISA revealed 

only human IL-6 and IL-8 could be detected thus suggesting their source is tumor-derived, rather 

than being from the endogenous mouse microenvironment. IL-6 and IL-8 levels were significantly 

elevated in vivo in the OVCAR3 xenografts compared to the monolayer and no difference was 

observed between Kuramochi cells grown as monolayers or xenografts (Fig. 5 C-D). We 

hypothesise that enrichment of the cytokines in OVCAR3 xenograft is a possible contributing 

factor to the inability of ALM201 to decrease stemness in vivo, whilst being effective in vitro 

where levels were substantially lower. Indeed, addition of recombinant IL-6 to in vitro OVCAR3 

tumorsphere assays abrogated the ability of ALM201 to decrease TFE (Fig. 5E).  The principle 

signalling pathway of IL-6 is STAT3, and for the first time we demonstrated that ALM201, reduces 

activation of STAT3 in OVCAR3 cells. Future studies using fresh clinical samples are required to 

further investigate the role of IL-6 mediated resistance to FKBPL based therapies.  

 

We have provided evidence that FKBPL’s clinical peptide, ALM201, is a novel anti-CSC agent 

and a potent angiogenic inhibitor in vascularized HGSOC via STAT3 signalling. The current study 

will greatly enhance the clinical utility of this agent during its subsequent clinical development. In 

particular, we would suggest that well-vascularised tumors, with low IL-6, might be most 

responsive to its dual anti-angiogenic and anti-CSC activity. Although this will need to further 

validated in fresh clinical samples. Furthermore, we have demonstrated that high FKBPL levels 

were associated with an increase in PFS. This data indicates that FKBPL has potential as a novel 
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prognostic biomarker in HGSOC; a cancer with no universally accepted biological prognostic 

biomarkers. Finally, we have provided further evidence that a number of different subtypes exist 

under the remit of HGSOC; with Kuramochi xenografts displaying extensive vascularization and 

the OVCAR3 xenografts representative of ‘immune’ subtypes.  
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Figure Legends 

Figure 1: FKBPL and its clinical peptide derivative, ALM201, reduce tumorsphere formation in 

ovarian cancer cell lines and high grade serous patient samples.  

 

The effect of ALM201 treatment on the primary TFE in the (A) PE01, and (B) PE04, and (C) 

OVCAR3, and (D) OVCAR4 after treatment with 1 nmol/L and 100 nmol/L ALM201 treatment.  

(E) Protein expression of FKBPL, USP19, RBCK1 was analysed in ovarian cell lines (OVCAR3, 

OVCAR4, Kuramochi, PE01, PE04, A2780) were by western blot (n=3)  (F) The kuramochi cell 

line does not form tumorspheres (top picture) and Kuramochi PGCCs were isolated by 

incubation with cobalt chloride (450 μM) for 72 h (bottom picture). (G)  The Kuramochi PGCCs 

were trypsinised and seeded into Matrigel and tumorsphere media and treated with PBS or 

ALM201 (100 nmol/L). A representative image of spheroid formed from a PGCC (inset). Cells 

were incubated for 3 weeks, with fresh ALM201 added weekly and the number of spheroids > 50 

μM counted manually.  (H) Tumorsphere formation of cancer cells derived from primary 

chemonaïve high grade serous ovarian tumors (n= 3) and (I) primary high grade serous ovarian 

tumors which received neo adjuvant chemotherapy (n = 3). Data points are mean ± SEM. n ≥ 3. 

*, P < 0.05; **, P < 0.01; ***, P < 0.001 (one-way ANOVA or two way student t test). TFE, 

tumorsphere forming efficiency  

 

Figure 2 ALM201 reduces the CD44
+
/CD117

+
 and ALDH

+
 cell subpopulation by differentiating 

the CSCs to more ‘mature’ cancer cells 
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(A) Representative flow cytometry images demonstrating a reduction in the CD44
+
/CD117

+
 

subpopulation following 72 h ALM201 treatment of OVCAR3 monolayers. (B) Percentage 

CD44+/CD177+  OVCAR3 cells after treatment with ALM201 compared to PBS treated controls. 

(C) Representative flow cytometry images demonstrating a shift in the ALDH+ cell population in 

OVCAR3 cells after treatment for 72 h  with ALM201 (1 and 100 nmol/L). (D)  Percentage 

reduction in the ALDH
+
 cell population was quantified in OVCAR3 and (E) Kuramochi cell 

lines following treatment for 72 h with ALM201 (1 and 100 nmol/L). (F) ALM201 treatment 

does not affect total number of colonies formed. (G) Representative images of OVCAR3 

colonies; holoclones, meroclone and paraclones; Different colonies were manually counted and 

expressed per 100 cells seeded. (H) A reduction in the number of holoclones formed and a 

concomitant increase in the number of more differentiated, meroclone and paraclone colonies, 

following ALM201 treatment was observed in OVCAR3 cells. Data points are mean ± SEM. n ≥ 

3. *, P < 0.05; **, P< 0.01 (one-way ANOVA or two way student t test). SSC, side scatter. 

 

 

Figure 3 ALM201 does not target CSCs or inhibit angiogenesis in OVCAR3 xenografts.  

(A) Tumor initiation in vivo assay following implantation of OVCAR3 cells and treatment with 

PBS or ALM201 (0.3 mg/kg/d) subcutaneous from day 1 (inset experimental design; n = 5). (B) 

OVCAR3 cells were implanted into mice and established until 100 mm
3
 then treated with PBS or 

ALM201 (0.3 mg/kg/d) for 30 days (inset experimental design; n =5). (C) OVCAR3 tumour 

xenografts were excised and dissociated and the CSC subpopulation analyzed by tumorsphere 

assay (n=3) or (D)  flow cytometry by quantifying CD44
+
CD117

+
 cell population (n=3).  (E) 
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OVCAR3 monolayers were treated with ALM201 (1 nmol/L and 100 nmol/L) for 24 h and 

expression levels of the pluripotency transcription factors (SOX2, OCT4, NANOG) analyzed by 

q-PCR. (F) Expression of pluripotency transcription factors in OVCAR3 xenografts following 

treatment with PBS or ALM201 (0.3 mg/kg/d) for 30 days. (G) OVCAR3 xenografts were 

sectioned and immunohistochemistry staining for CD31
+
 blood vessels conducted. A small 

number of blood vessels (red arrow) were observed at 2.5 x magnification and no CD31
+
 vessels 

(H) in the majority of the xenograft at 20 x magnification (I) CD31
+
/PAS dual 

immunohistochemistry staining of OVCAR3  indicated extensive vascogenic mimicry networks 

in OVCAR3 xenografts. (J) Treatment with ALM201 (100 nmol/L) does not inhibit OVCAR3 

tubule formation (representative image in inset; n=3). Each dot represents a single mouse. Data 

points are mean ± SEM. n ≥ 3. *, P < 0.05; **, P< 0.01 (one-way ANOVA or two way student t 

test). 

 

Figure 4 ALM201 targets CSCs and angiogenesis in the Kuramochi xenografts 

(A) In vivo tumor initiation assay following implantation of Kuramochi cells into SCID mice and 

subcutaneous treatment with PBS or ALM201 (0.3 mg/kg/d) from day 1; days to tumor initiation 

was calculated (inset experimental design; n = 5) (B) and tumor growth monitored. (C) 

Kuramochi cells were implanted into mice established until 100 mm3 and treatment with PBS or 

ALM201 (0.3 mg/kg/d) for 56 days (inset experimental design; n =5). ALM201 treatment 

increased survival; as determined by time to tumor quadrupling. (D)  Kuramochi xenografts were 

sectioned and immunohistochemistry staining for CD31+ blood vessels conducted and ALM201 

significantly decreased the number of blood vessels (E) Tumor cells dissociated from ALM201 
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or PBS treated Kuramochi xenografts were reimplanted in a limiting dilution assay into second 

generation mice. The second generation mice did not receive further treatment and were 

observed for tumor initiation . (F) The number of mice that developed tumors after six months 

observation is tabulated. Tumor initiating frequency (TIF) was calculated using ELDA software 

(p = 8.77 x 10-5; n>4/group) (G) 2.5 x 106 cells were reimplanted into second generation mice 

and tumors from first generation ALM201 treated mice demonstrated a 118 day delay in  tumor 

initiation.  Each dot represents one mouse. Data points are mean ± SEM. n ≥ 3. *, P < 0.05; 

**, P< 0.01 (Two way, unpaired t test or One way ANOVA). 

 

Figure 5 OVCAR3 xenografts upregulate inflammatory cytokines and ALM201 anti-CSC 

activity is abrogated by IL-6  

(A) Heat map and (B) enrichment plot of angiogenesis-related genes upregulated (red) in 

Kuramochi cell line compared to the OVCAR3 cell line by RNAseq analysis. (C) IL-6 and IL-8 

mRNA is upregulated in vivo compared to in vitro in the OVCAR3 cells but not in the 

Kuramochi cells (n>3). (D) Human IL-6 and IL-8 protein is significantly higher in the OVCAR3 

xenografts compared to the Kuramochi xenografts; mouse IL-6 and IL-8 (Kc) was not detected.  

(E) Addition of recombinant IL-6 to OVCAR3 tumorsphere assay abrogated the ability of 

ALM201 to decrease tumorspheres (n=3). (F) ALM201 decreases OVCAR3 tumorspheres in the 

presence of IL-8. (G) Representative western blot demonstrating that ALM201 decreases 

phosphorylation of STAT3 and this is effect is abrogated by addition of IL-6. (H) Densitometric  

analysis of  western blots using ImageJ  n ≥ 3  (I) Diagram summarizing effect of ALM201 on 

OVCAR3 cancer cells.  Data points are mean ± SEM. n ≥ 3. *, P < 0.05; **, P< 0.01 (Two way 
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ANOVA).  

 

Figure 6 High FKBPL expression increased progression free survival  

(A) FKBPL expression was analyzed using microarray data from publically available data sets 

(http://www.kmplot.com/ovar). Kaplan-Meier survival curves of ovarian cancer patients were 

generated, showing that those with low mRNA FKBPL expression showed a significantly 

reduced overall survival (p< 0.05). FKBPL expression Kaplan-Meier estimates of HGSOC PFE 

from diagnosis in cohort I (n = 177;B), cohort II (n = 193;C),  cohort III (n = 99 ;D)  and cohort 

IV (n = 180; E). Kaplan-Meier estimates were determined with average FKBPL score for PFS, 

where FKBPL protein expression has been separated by histoscore of 190; high >190 (blue) and 

low <190 (red). (F) Hazard ratio plot of high grade serous ovarian cancer progression free 

survival from diagnosis against FKBPL levels by cohorts I, II, III, IV (n=639) . (G) Hazard ratio 

plot of HGSOC PFS from diagnosis against FKBPL levels by cohort from cohorts I, II, and IV 

(n = 549). 

  

http://www.kmplot.com/ovar
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Abbreviations  

CSC -  cancer stem cell 

EMA – European Medicines Agency 

FDA – Food and Drug Administration  

FKBP - FK506 binding protein  

GMD – Geometric mean diameter 

HGSOC - high grade serous ovarian cancer  

MTA - material transfer agreements  

PGCC - polyploid giant cancer cell  

PFS - progression-free survival  

ROC - receiver operator curve  

STR - short tandem repeat  

SCID - Balb – c severe compromised immune deficient   

TIF - Tumor initiating frequency  

TFE – tumorsphere forming efficacy  

TMA – tissue microarray 

VM -  Vasculogenic mimicry  

 

 

 

 

 

 

 

 

 


