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Computing and Relaying : Utilizing Mobile Edge
Computing for P2P Communications

Min Qin, Li Chen, Nan Zhao, Senior Member, IEEE,
Yunfei Chen, Senior Member, IEEE, F. Richard Yu, Fellow, IEEE, Guo Wei

Abstract—Besides increasing the computing capacity of edge
devices, mobile edge computing (MEC) can also be utilized to help
communication. This paper proposes an MEC-assisted computing
and relaying scheme to enhance the throughput of uncompressed
data for mobile peer-to-peer (P2P) communications. We assume
that the target data has a dynamic compression rate during the
transmission from one mobile device to another through a relay
node with MEC. In order to obtain the optimal transmission
and compression strategy for the mobile devices and the relay
node, a cost function that defines the tradeoff between energy
consumption and latency time is investigated first. Then a closed-
form solution is derived by minimizing the cost function with
respect to practical constraints. Compared with conventional
P2P communications without MEC, the proposed model breaks
the bottleneck of P2P communications by decoupling the data
compression rates at the two sides of MEC server. Numerical
results verify the effectiveness of the proposed scheme.

Index Terms—Computation offloading, computing and relay-
ing, mobile edge computing, P2P communication.

I. INTRODUCTION

With the fast growth of mobile devices and connections,
monthly Internet traffic will reach 44 GB per capita by 2022,
up from 13 GB per capita in 2017 [1]. This trend will
generate a huge burden on the existing centralized network
architecture, since all the resource-limited devices rely on
the computation support from remote clouds. To solve this
problem, decentralized mobile edge computing (MEC) has
attracted great research interest [2–5]. It focuses on integrating
the computing and communication resources at the edge of
networks to consume the user data locally.

The MEC theory, first proposed by Cisco [6] and ETSI [7],
has been applied in many scenarios, such as video stream
analysis [8], intelligent video acceleration [9], computing
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assistance [10] and IoT gateway [11]. In these scenarios, the
computing tasks of edge devices are offloaded to MEC servers
or the data streams are adjusted by MEC servers to accelerate
the transmission. For example, moving the video analysis away
from the video camera reduces the equipment cost and saves
the core network load of transporting large data video to re-
mote clouds [8]. Also, intelligent video acceleration is realized
by caching and processing multi-bit-rate video collaboratively
in MEC servers [9]. Therefore, both computation offloading
and communication acceleration are key research issues in
MEC.

In the literature, computation offloading has been widely
investigated, including the task partition strategy and the al-
location of computing and communication resources. For task
partition, Wang et al. in [12] considered the minimization of
the energy consumption for the users with fixed tasks subject
to offloading delay constraints. Mao et al. in [13] adopted
both the execution delay and task failure as the performance
metrics with dynamic voltage and frequency scaling (DVFS)
[14] and energy harvesting techniques [15]. An offloading
policy from a single user to multiple MEC servers with multi-
tasks was proposed by Dinh et al. in [16] by minimizing the
maximum execution delay. You et al. in [17] exploited the
CPU-state information of non-causal helpers, such as powerful
laptops, to design energy-efficient computing policies via peer-
to-peer (P2P) links for sharing computation resources at peer
mobiles. For resource allocation, You et al. in [18] developed
an energy-efficient allocation policies for a multiuser MEC
system, in which TDMA and OFDMA were considered.
Computation offloading and resource allocation for indivisible
tasks in wireless cellular networks with a single MEC server
were investigated by Wang et al. in [19, 20]. Tan et al. in
[21] proposed a virtual MEC framework that served multiple
users with both edge computing and caching. In our previous
work [22], we proposed a computation offloading model to
maximize the processing capacity of power-constrained IoT
devices with the assistance of an MEC server.

All the aforementioned research works focus on the compu-
tation offloading strategy to enhance the computing capacity of
edge devices via the communication links to MEC servers or
device helpers, i.e., use communication to boost computation.
However, there are very few research considering the use
of computation to accelerate communication. In this paper,
we will utilize MEC for the P2P communications among
edge devices, i.e., use computation to promote communication.
Accelerating wireless communication by leveraging sufficient
computing resource of MEC servers has many realistic ap-
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plications. On the one hand, wireless communication as an
essential component of mobile computing has quite low energy
efficiency since the energy required for transmission of a
single bit has been measured to be over 1000 times greater
than that for a single 32-bit computation [23]. Therefore,
this idea can significantly reduce the energy consumption in
wireless communication systems. On the other hand, some
existing works, such as the adaptive multimedia streaming
over wireless networks [24, 25], are effective by promoting
communication via computation. In the adaptive streaming
applications, the multimedia contents are encoded at multiple
bit-rates and layered video chunks in remote clouds. The cross-
layer optimizer selects the optimal values of the media bit-
rate, the time slot allocation, and the modulation scheme to
maximize the video quality perceived by users. To reduce the
access delay, P2P communications instead of current content
distribution network (CDN) techniques [26] will be widely
adopted in the future intelligent video applications, such as
real-time VR and AR applications [27, 28]. Since the P2P data
streams do not go through the centralized clouds, conventional
adaptive data streaming approaches will not be available.

Motivated by these observations, this paper utilizes MEC
servers deployed at APs to accelerate P2P communications
and proposes a novel computing and relaying model to model
the accelerating process. While the wireless relaying models
focus on increasing the communication capacity of wireless
channels in the physical layer [29], the proposed model has a
similar architecture but is devoted to improve the throughput of
uncompressed data in P2P communication systems through a
joint computation and transmission design in both the physical
and application layers. By leveraging the joint strategy, the
proposed computing and relaying model breaks the commu-
nication bottlenecks caused by the resource asymmetry of
mobile devices in computation and communications.

The main contributions of the paper are summarized as
follows.

• A novel computing and relaying model is proposed to an-
alyze the MEC-assisted P2P communications. By repre-
senting the APs and the core network with a virtual relay
node, a computing and relaying model is established and
endowed with a cost function that conveys the tradeoff
between the latency during the communication processing
and the energy consumption in mobile devices.

• The optimal transmission and compression strategy for
the proposed model is derived by utilizing Lambert W
function [30]. Compared with the conventional P2P com-
munications, the proposed model significantly reduces the
system cost (latency and energy consumption) especially
while the channel state and the computing capacity of the
devices are asymmetric.

• The optimal solution is further analyzed with respect to
practical constraints and some insights are summarized.

The rest of the paper is organized as follows. We introduce
the computing and relaying model in Section II. Section
III presents the performance metric of the proposed model.
In Section IV, the optimal transmission and compression
strategies are derived for both MEC-assisted and conventional
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Fig. 1: The MEC-assisted P2P communication system.

systems. In Section V, the optimal strategies are analyzed in
practical scenarios and some insights are summarized based on
the analysis. The performance of the proposed model is eval-
uated numerically in Section VI, followed by the conclusions
in Section VII.

II. SYSTEM MODEL

Fig. 1(a) illustrates the P2P wireless communication sce-
narios with and without MEC between mobile devices. In the
conventional scenario, the application data, such as images or
videos, are captured by the transmitting device. Then the data
are compressed by the local CPU module and uploaded to the
AP which serves the source device via wireless links. The AP
sends the compressed data via the core network to the other AP
that serves the receiving device. Finally, the receiving device
decompresses it into the original application data. When the
MEC servers at APs are used in the P2P communication, the
compression operation in the transmitter can be offloaded to
the corresponding AP, and the decompression operation in the
receiver can also be performed by its AP before the downlink
transmission.

The whole P2P communication architecture in Fig. 1(a) can
be divided into two layers: the network layer that acts as a
communication pipeline and the edge device layer that consists
of mobile devices. If we assume that the transmission cost
between the APs is fixed, the network layer can be modeled
as a relay node. The transmitting and receiving devices are
the UEs acting as the source node and the destination node,
respectively. Therefore, the above P2P communication can be
modeled as a computing and relaying model, as shown in Fig.
1(b). The system is described in detail as follows.

UE 1: A mobile device equipped with a computation mod-
ule and a transmitting RF module. D bits of original data are
collected and compressed at a compression ratio of ρ1 using
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the local computation module by UE 1. Then the compressed
data are transmitted to the relay node.

Relay Node: A wireless relay with RF and computation
modules. For the conventional scenario without MEC, the
relay node does not have any computing capacity in the appli-
cation layer. For the MEC-assisted scenario, the compressed
data are re-compressed in the relay node according to the
relaying strategy. The energy of the relay node is supplied
by the power grid.

UE 2: A mobile device equipped with a computation mod-
ule and a receiving RF module. UE 2 receives the compressed
data with a compression ratio of ρ2 from the relay node. Then
the compressed data is decompressed to recover the original
data D.

Note that the compression ratio is defined as the ratio of the
uncompressed data to the compressed data. The computation
and communication in the relaying system are assumed as
follows.

Computation: The amount of computation (in CPU cycles)
in the UEs is related to the amount of original data D and
the compression ratio. According to [31], the CPU cycles to
compress or decompress 1 bit data can be approximated as an
exponential function of the compression ratio ρi, i ∈ 1, 2 as

U(ρi) = ξi(e
ερi − eε), (1)

where ε and ξi, i ∈ 1, 2, denote constants depending on the
compression method, ρ1 is the compression ratio of UE 1
and ρ2 is the decompression ratio of UE 2. Note that ρi ∈
[1, ρmax,i],∀i ∈ 1, 2, and ρ1 may restrict the feasible solution
of ρ2 for some compression algorithms.

Communication: The compressed data D/ρi are trans-
mitted via the communication link in Hop i, i ∈ {1, 2},
assumed to be a single carrier link with bandwidth B. The
wireless channels are flat fading and the channel information is
perfectly known. Let gi = |hi|2/N0 denote the channel gain of
each hop with hi being the channel response and N0 being the
power spectral density of the noise. Then the communication
rates (in bits/s) of each hop is given by

Ri = B log2(1 + pigi), (2)

where pi is the transmitting power. Since the energy of the
relay node is unconstrained, p2 is assumed to be fixed.

The computation and communication in the proposed sys-
tem are related via compression and decompression. In the
conventional scenario without MEC, the data transmitted by
the transmitter and the data received by the receiver have the
same compression ratio, i.e., ρ1 = ρ2. However, in the MEC-
assisted scenario, the compression ratios ρ1 and ρ2 can be
different, i.e., ρ1 6= ρ2.

III. PERFORMANCE METRIC

In P2P communications, users are sensitive to energy
consumption and delay. This section presents the analytical
expressions of energy consumption and delay based on the
computation and communication models. Then, a cost function
that describes the tradeoff between energy consumption and
delay, is defined to assess the system performance.

A. Energy Consumption

The energy costs of all the mobile devices including UE 1
and UE 2 affect the system performance. According to (1),
the energy consumption of UE 1 to compress D bits of data
at a ratio of ρ1 is given as

Ec(ρ1) = qcDU(ρ1), (3)

where qc (in Joule/cycle) denotes the energy consumption for
each CPU cycle. Note that DU(ρ1) (in cycles) denotes the
computation required to compress D bits of data at ρ1.

Let tTx denote the transmitting time in Hop 1. According
to (2), the energy consumption in Hop 1 is

ETx (ρ1, tTx) = p1tTx =
tTx

g
f

(
D

ρ1tTx

)
, (4)

where f(x) =
(

2
x
B − 1

)
.

Similarly, the energy consumption for the decompression in
UE 2 is given by

Ed(ρ2) = qdDU(ρ2), (5)

where qd (in Joule/cycle) denotes the energy consumption for
each CPU cycle in UE 2. According to [32], the receiving
energy consumption in UE 2 is given as

ERx(ρ2) = qRx
D

ρ2
, (6)

where qRx is the energy consumption for receiving each bit in
UE 2.

Other energy consumption of circuits in the UEs is assumed
to be constant. Since the MEC server is connected to the power
grid, its energy consumption is not taken into account here.

B. Delay

According to (1), the computing delay for the compression
of D bits with compression ratio ρ1 in UE 1 is

tc(ρ1) = DU(ρ1)/fc, (7)

where fc (in cycles/s) is the CPU frequency of UE 1. The
transmission delay in Hop 1 is tTx, which depends on the
transmitting power.

Similarly, the computing delay for decompressing the re-
ceived data with a ratio of ρ2 in UE 2 can be written as

td(ρ2) = DU(ρ2)/fd, (8)

where fd (in cycles/s) is the CPU frequency of UE 2. The
reception delay in Hop 2 is

tRx(ρ2) =
D

ρ2R2
. (9)

Adaptive downlink power control is adopted in the relay node,
therefore the communication rate of Hop 2 R2 is controlled
by the relay node.

Although the energy consumption of the relay node can be
ignored, the computing delay Tr in the relay node needs to be
considered. Note that Tr only relies on the architecture and
the computing capacity of MEC servers.
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C. Cost Function

By considering both the computation and communications,
the energy consumptions of the UEs can be written as

E1 = Ec(ρ1) + ETx (ρ1, tTx) + C1, (10)

E2 = Ed(ρ2) + ERx (ρ2) + C2, (11)

where C1 and C2 are constants, denoting other energy con-
sumption of circuits in UE 1 and UE 2, respectively. The total
latency for the transmission of D bits is given by

T = tc(ρ1) + tTx + Tr + tRx(ρ2) + td(ρ2). (12)

Note that E1, E2 and T all depend on the transmission and
compression strategy (tTx, ρ1, ρ2). Define the whole set of the
strategies as

S={S=(tTx, ρ1, ρ2) : tTx>0, ρi∈ [1, ρmax,i],∀i∈1, 2}. (13)

Based on the expressions of E1, E2 and T , we have the
achievable energy-delay region, i.e.,

R = {(E1, E2, T )S : S ∈ S}. (14)

The energy consumptions E1, E2 and the delay T are all
determined by the strategies. Therefore, there is a tradeoff
which implies that transmitting at a higher rate with low
compression rates requires more energy but reduces the delay,
and vice versa. However, the optimal boundary of the energy-
delay region is too complicated to obtain due to the jointly
mapping from S to R in the multi-objective problem. But
some useful boundary points can be obtained by minimizing
the weighted sum over the energy consumptions and the
delay, as illuminated in Fig. 2. The weighted sum represents
an intrinsic energy-delay tradeoff for the proposed system.
Therefore, we have the following definition.

Definition 1 (Cost Function). The cost to transmit D bits
uncompressed data from UE 1 to UE 2 in the proposed
computation relay system is defined as the weighted sum over
the energy consumptions and the delay, i.e.,

L(tTx, ρ1, ρ2) = α1E1 + α2E2 + γT, (15)

where α1, α2, γ ∈ [0, 1] are scalar weights.

According to Definition 1, the cost function can be ex-
pressed by

LMEC(tTx, ρ1, ρ2)=A1(eερ1 − eε) +A2tTxe
C0
ρ1tTx +

A3

ρ2
+A4(eερ2−eε)+(γ −A2)tTx +A5,

(16)

where A1 = α1qcDξ1 + γDξ1/fc, A2 = α1/g,A3 =
α2qRxD + γD/R2, A4 = α2qdDξ2 + γDξ2/fd, A5 = γTr +
αC1 + αC2, C0 = D ln 2/B.
A1 is related to the computing capacity of the transmitter,

A2 is related to the channel state information of Hop 1, A3

is related to the communication condition of Hop 2, A4 is
related to the computing capacity of the receiver and C0 is a
constant related to D and bandwidth B. Note that A1−A4 are
inversely proportional to the capacities, i.e., with an increasing
computing capacity or a stronger communication condition,
the corresponding parameter decreases. The cost function is
related to the transmission and compression strategy, which
consists of the transmission time tTx and the compression rates
ρ1, ρ2.

Similar, the cost function for the scenario without MEC is
given by

LnoMEC(tTx,c, ρ) =(A1 +A4)(eερ−eε) +A2tTx,ce
C0
ρtTx,c

+
A3

ρ
+ (γ −A2)tTx,c +A5,

(17)

where tTx,c is the transmitting time and ρ is the compression
ratio in the scenario without MEC.

IV. OPTIMAL STRATEGIES

In this section, the optimal transmission and compression
strategies for both the MEC-assisted and conventional scenar-
ios are derived by minimizing the cost function.

A. MEC-assisted Scenario

Although the cost function is simplified as Equation (16),
it is still complicated to analyze due to the uncertainty in Tr
and the restrictive relationship between ρ1 and ρ2. Relaxing
these constraints by setting Tr = 0 and ρ1, ρ2 ∈ [1,+∞), the
optimization problem of minimizing the cost function is given
by

P1 : min
tTx∈R+,ρ1,ρ2∈[1,+∞)

LMEC(tTx, ρ1, ρ2). (18)

We have following proposition.

Proposition 1. The optimization problem P1 is jointly convex
in (tTx, ρ1, ρ2).

Proof. The Hessian Matrix of f(t, ρ) = te
α
ρt is given by

H =

[
α2

ρ2t3
α2

ρ3t2

α2

ρ3t2
2α
ρ3 + α2

ρ4t

]
e
α
ρt . (19)

The determinant det(H) = 2α3

ρ5t3 e
α
ρt is positive in the support

range. Therefore, f(t, ρ) = te
α
ρt is jointly convex in (t, ρ).

Since A1e
ερ1 , A4e

ερ2 and A3

ρ2
are all convex and (γ−A2)tTx
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is linear, the objective function is convex. The constraints are
linear. Thus the problem is convex.

Since the problem is convex, there is an optimal point
(t∗Tx, ρ

∗
1, ρ
∗
2) to obtain the minimum cost. The necessary and

sufficient Karush-Kuhn-Tucker (KKT) conditions for the op-
timal point is given by

∂L

∂t∗Tx
= A2e

C0
ρ1tTx − A2C0

ρ1tTx
e

C0
ρ1tTx + γ −A2 = 0 (20)

∂L

∂ρ∗1
= A1εe

ερ1 − A2C0

ρ21
e

C0
ρ1tTx =

{
> 0, ρ∗1 = 1

= 0, ρ∗1 > 1
(21)

∂L

∂ρ∗2
= A4εe

ερ2 − A3

ρ22
=

{
> 0, ρ∗2 = 1

= 0, ρ∗2 > 1
(22)

which leads to the following proposition.

Proposition 2. The optimal solution for P1 is given by

ρ∗1 = max(1,
2

ε
W

(
ε

2

√
A2C0C1

A1ε

)
) (23)

ρ∗2 = max(1,
2

ε
W

(
ε

2

√
A3

A4ε

)
) (24)

tTx
∗ =

C0/ρ
∗
1

W
(
γe−1

A2
− e−1

)
+ 1

(25)

where C1 = e
C0

(ρ1tTx)
∗ and W (·) is Lambert W function.

Proof. See Appendix A.

Proposition 2 presents the optimal transmission and com-
pression strategy to achieve the best performance for the MEC-
assisted computation relay. The succinct solution indicates that
the optimal transmitting delay t∗Tx and the optimal compression
rate of the transmitter ρ∗1 are tightly coupled with each other.

Remark 1. By rearranging (25), we can find that (ρ1tTx)
∗

only depends on C0 and A2. This implies that the product of
compression rate and transmitting delay is a constant which
is related to the channel state and the amount of transmitted
data.

This remark indicates that the transmitting delay is inversely
proportional to the compression rate, which agrees with the
intuition that the larger the compression rate is, the fewer data
the transmitter sends and the smaller the transmitting delay
is. There is an optimal strategy, as shown in Proposition 2, to
balance the energy consumption and the delay.

Remark 2. The optimal compression rate of Hop 2 ρ∗2 is
independent of (t∗Tx, ρ

∗
1), neither the energy status and the

channel state of Hop 1. In other words, the relay node
decouples the compression ratios of transmitted data in the
two hops, which means that the compression ratios ρ1 and ρ2
can be set based on the channel and energy states of the two
hops respectively.

This remark indicates a fundamental fact in the computing
and relaying model that the relay node with MEC servers

breaks the communication bottleneck caused by the asymme-
try of the UEs in communication and computing resources by
decoupling the computation rates of the hops. However, this
property may not be fully achievable due to the relationship
among the compression rates, which will be further discussed
in the next section.

B. Comparing with the Conventional Scenario

To further understand the computation relay, the conven-
tional scenario without MEC is investigated in this subsection.
Since the relay doesn’t possess the recompression ability, the
compression rates of the two hops are same. The optimization
problem for the conventional system is given by

P2 : min
tTx,c∈R+,ρ∈[1,+∞)

LnoMEC(tTx,c, ρ). (26)

By solving the KKT conditions of this problem, the following
proposition is obtained.

Proposition 3. The problem P2 is convex. The optimal solu-
tion of the system without MEC is given by

ρ∗ = max

(
1,

2

ε
W

(
ε

2

√
A2C0C1 +A3

(A1 +A4)ε

))
, (27)

tTx,c
∗ =

C0/ρ
∗

W
(
γe−1

A2
− e−1

)
+ 1

. (28)

Proof. Refer to the proof of Proposition 2.

In this solution, the product of the transmitting delay and
compression rate is the same as that of the MEC-assisted sys-
tem. However, the compression rate depends on the parameters
of both two hops. Notice that the optimal compression rate
without MEC relies on the resource status of both hops, while
the compression rates in the MEC-assisted system rely on the
parameters of their own hop. We have the following lemma.

Lemma 1. The number (a + c)/(b + d) always lies between
a/b and c/d, where a, b, c, d are both rational and positive.

Proof. Lemma 1 is obvious.

By leveraging Lemma 1, we have the following proposition.

Proposition 4. (a) We always have

ρ∗1 ≤ ρ∗ ≤ ρ∗2 or ρ∗2 ≤ ρ∗ ≤ ρ∗1. (29)

In other words, the conventional compression rate always
lies between the two compression rates of the MEC-assisted
system.

(b) With the same channel state information and energy
status, the optimal cost of the MEC-assisted system is always
less than the optimal cost of the conventional system, namely

LnoMEC(t∗Tx,c, ρ
∗) ≥ LMEC(t∗Tx, ρ

∗
1, ρ
∗
2). (30)

Proof. (a) Since the Lambert W function monotonically in-
creases in domain R+, f(x) = 2

εW ( ε2
√
x) also monotonically

increases in domain R+. Combining with Lemma 1, the
proposition holds.
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(b) This proposition easily follows by contradiction since
the optimization problem P2 can be rewritten as

min
tTx∈R+,ρ1,ρ2∈[1,+∞)

LMEC(tTx, ρ1, ρ2)

s.t. ρ1=ρ2,
(31)

which is the optimization problem P1 with an equality con-
straint.

Proposition 4 (a) reveals that the MEC server decouples
the compression rates of the two hops. Via recompressing in
the MEC server, the computing and relaying model releases
the restriction on the compression rates caused by the limited
computing and communication resources in the opposite hop.
The restriction brings the extra cost in the conventional system,
which is significantly slacked by the computing and relaying
model. Proposition 4 (b) shows the original intention of the
computing and relaying model , i.e., reducing the cost in P2P
communications.

C. Special Cases

The above analysis gives some general solutions to the
MEC-assisted and conventional P2P communication systems.
Furthermore, it is valuable to investigate when the available
computing and communication resources turns to extremely
poor. To discuss these special cases, we have the following
definition first.

Definition 2 (Cost Difference). The cost difference between
the conventional and MEC-assisted systems is defined as

Gdiff = LnoMEC(tTx,c, ρ)− LMEC(tTx, ρ1, ρ2). (32)

Then the cost differences for various special cases are
written as follows.

Case 1 (Poor Computing Capacity in UE 1): When the
computing capacity in UE 1 is extremely insufficient, i.e., the
CPU frequency is low and the energy consumption for each
cycle is high, UE 1 should not compress the original data.
Therefore, we have ρ1 = ρ = 1 and tTx = tTx,c. The cost
difference is given by

Gdiff = A3

(
1− 1

ρ2

)
+A4(eε − eερ2). (33)

In practice, UE 1 represents the IoT devices like sensors
with simple circuit configurations and powered by low-energy
batteries. The sensed data are supposed to be transmitted to
the MEC servers for postprocessing such as compression.

Case 2 (Poor Computing Capacity in UE 2): The expected
decompression rate of UE 2 reaches 1, when the computing
capacity of UE 2 is very insufficient. Then we have ρ2 = ρ =
1. The cost difference is given by

Gdiff = (γ−A2 +A2C1)X

(
1− 1

ρ1

)
+A1(eε−eερ1), (34)

where X = (ρtTx,c) = (ρ1tTx) = C0

W
(
γe−1

A2
−e−1

)
+1

. This

case will be common in the future since lighter terminal is

the development tendency and all major computation will be
offloaded to the MEC servers.

Case 3 (Poor Communication Condition in Hop 1): When the
wireless channel of Hop 1 experiences a deep fade, UE 1 must
make its best effort to compress the original data to decrease
the communication burden. Then we have ρ1 = ρ = ρmax,1
and tTx = tTx,c. The cost difference is given by

Gdiff = A3

(
1

ρ
− 1

ρ2

)
+A4(eρε − eερ2). (35)

Due to the uncertainty of the wireless environment, Case 3 is
likely to occur and so is Case 4.

Case 4 (Poor Communication Condition in Hop 2): When the
wireless channel of Hop 2 experiences a deep fade and the
energy consumption of UE 2 for receiving each bit is large,
the data stream of Hop 2 should be compressed with the best
effort of the system. Thus, the compression ratios of the MEC-
assisted and conventional systems are assumed to be set to the
largest and same value, namely ρ2 = ρ = ρmax,2. The cost
difference is given by

Gdiff = (γ−A2 +A2C1)X

(
1

ρ
− 1

ρ1

)
+A1(eερ−eερ1). (36)

In these cases, only one of the compression rates affects the
cost difference. Therefore, we can derive the optimal solutions
by maximizing Gdiff. According to (33) (34) (35) and (36), a
universal formula is concluded as

g(x) = a− b

x
− ceεx, (37)

which has the following closed-form optimal solution.

Lemma 2. If x ∈ R+, then g(x) is concave. The maximum
value is obtained when

x∗ =
2

ε
W

(
ε

2

√
b

εc

)
. (38)

Proof. Since − b
x and −eεx are both concave in x ∈ R+, the

linear sum g(x) is concave. Then solving g′(x) = 0 leads to
the lemma.

Thus we have the following proposition.

Proposition 5. The cost difference for Case 1 and 3 reaches
the maximum when

ρ∗2 = max

(
1,

2

ε
W

(
ε

2

√
A3

A4ε

))
. (39)

The compression rate ρ1 equals 1 or ρmax, respectively. For
Case 2 and 4, the cost difference reaches the maximum when

ρ∗1 = max(1,
2

ε
W

ε
2

√
(γ −A2 +A2C1)X

A1ε

). (40)

The compression rate ρ2 equals 1 or ρmax, respectively.

Proof. According to Lemma 2, the solution to the problem

P3 : max
ρ1(2)∈[1,+∞)

Gdiff (41)
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Gdiff

0 1 ρ1(ρ2)
ρ

ρ
∗

1
(ρ∗

2
)

Case 1, 2

Case 3, 4
x∗

(a) Solution when the communication cost dominates.

Gdiff

0 1 ρ1(ρ2)ρ

ρ
∗

1
(ρ∗

2
)

Case 1, 2

Case 3, 4
x∗

(b) Solution when the computing cost dominates.

Fig. 3: Solutions to the special cases.

Case Poor Parameter ρ1 ρ2 ρ
1 fc 1 ρ∗2 1
2 fd ρ∗1 1 1
3 g1 ρmax,1 ρ∗2 ρmax,1
4 g2 ρ∗1 ρmax,2 ρmax,2

TABLE I: Solutions to the special cases.

is easy to obtain.

The solution is illuminated in Fig. 3. When the communica-
tion cost dominates, x∗ is obtained in the feasible region. But
when the computing cost dominates, x∗ is located before 1
and ρ∗1(ρ∗2) = 1 is the optimal solution. The proposed solution
is summarized in Table I. By rearranging (40), we find that
the above result gives the same solution as Proposition 2.
In the four special cases, the transmission and compression
strategy for the conventional system is fixed due to the poor
parameters. According to (33) and (35), the cost difference
will be larger if the communication condition of Hop 2 is
worse and the computing capacity of UE 2 is stronger in Case
1 and Case 3. According to (34) and (36), the cost difference
will be larger if the communication condition of Hop 1 is
worse and the computing capacity of UE 1 is stronger in Case
2 and Case 4. Note that A1 − A4 are inversely proportional
to their corresponding capacities as mentioned in Section III.
Therefore, we have the following remark.

Remark 3. The improvement provided by the MEC-assisted
relay node is determined by the strength of the computation
and communication asymmetry of the UEs. For example,
if A1 << A2 and A3 << A4, we will see a massive
improvement.

V. ANALYSIS IN PRACTICAL SCENARIOS

A general solution for the MEC-assisted P2P communi-
cation is presented in the last section. In this section, some
practical scenarios are further analyzed, including the restric-
tive relationship among the compression ratios, the DVFS
technique probably adopted in the UEs and the computing
delay in the MEC server.

A. Compression Ratio Constraints

Some compression algorithms are lossless and others are
lossy. For example, most video compression algorithms are

lossy. A lossy compression algorithm leads to loss of infor-
mation, thus only a small compression rate is available in the
MEC server.

For the lossless compression, there is no restrictive relation-
ship among compression ratios. Hence, the optimal solution
for the lossless compression is given by

ρ∗∗1 = min(ρ∗1, ρmax,1)

ρ∗∗2 = min(ρ∗2, ρmax,2)

t∗∗Tx = X/ρ∗∗1

, (42)

where ρmax,i,∀i = 1, 2 is the maximum compression rate of
UE i depending on its computing capacity, ρ∗∗i ,∀i = 1, 2 is the
optimal compress rate, t∗∗Tx is the optimal transmitting strategy
after considering the maximum compression rates.

For lossy compression, ρ2 is required to be not less than
ρ1. Hence ρ∗1∗ is the lower boundary of ρ∗2, i.e., ρ∗2 =
max(ρ∗∗1 , ρ

∗
2). To access the quality of experience (QoE)

influence of lossy compression, different metrics have been
proposed for different types of media data. But to derive a
more universal conclusion, the perceiving quality of users for
lossy compression in the proposed model is simply bounded
by the maximum compression rate ρmax. If the compression
rate is larger than ρmax, the perceiving quality is unacceptable
at the receiver. Note that the solution degrades into Case 1 if
ρmax,1 equals 1 and degrades into Case 2 if ρmax,2 equals 1.

B. DVFS Technique

Assume that the DVFS technique is utilized in the proposed
MEC-assisted P2P communication model. The UEs can dy-
namically adjust the CPU’s computational frequency to adopt
the power consumption and execution latency. For UE i, the
computational power pi can be modeled as

pi = fκi ζi, (43)

where fi, in unit of Hz, is the CPU’s computational frequency
of user i and ζi > 0 is the effective capacitance coefficient
depending on chip architecture. The value κ (κ ≥ 2) is a
constant [33]. For simplicity, we set κ = 2 and assume that
the local CPU is a single core architecture with a frequency
upper bound of fmax,i. Thus, the computational power satisfies
0 ≤ pi ≤ f2max,iζi.
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Thus, the energy consumption of UE 1 to compress D bits
of data at a ratio of ρ1 is given by

Ec(ρ1) = qcDU(ρ1) = p1tc(ρ1)

= f2c ζ1
DU(ρ1)

fc
= Dζ1fcU(ρ1),

(44)

where fc is the dynamic frequency of UE 1, U(ρ1) is the
CPU cycles to compress or decompress 1 bit data at ρ1.
Therefore, the energy consumption for each CPU cycle qc(d)
(in Joule/cycle) can be rewritten as

qc(d) = fc(d)ζ1(2). (45)

Therefore, we have

A1 = α1ζ1Dξ1fc +
γDξ1
fc

,

A4 = α2ζ2Dξ2fd +
γDξ2
fd

.

(46)

Since the function f(x) = ax+ b
x reaches the minimum 2

√
ab

when x =
√

b
a , the minima of A1 and A4 are easy to derive.

Note that the dynamic frequencies don’t affect the optimization
problem of minimizing the cost function LMEC(tTx, ρ1, ρ2),
therefore the optimal solution in Proposition 2 still applies.

C. MEC Server Constraint

In practical scenarios, Proposition 4 (b) doesn’t always
hold. The optimal cost of the MEC-assisted system isn’t
always less than the conventional P2P communication due
to the existence of computing delay in the MEC server.
The computing capacity of the server is higher than that of
devices but is still limited. Hence the computation in servers
occupies time and causes delay to the P2P communication.
The MEC server may decompress the transmitted data and re-
compress it or may just compress it directly to the target ratio
and the computing process may occupy one thread or multi-
thread. Therefore, the computing delay in the server is quite
complicated. Here, the influence of the computing delay in the
server is analyzed by comparing it with the cost difference
offered by the optimal relaying strategy. The desired solution
with Tr is written as

(ρ∗∗1 , ρ
∗∗
2 , t

∗∗
Tx) =

{
(ρ∗1, ρ

∗
1, t
∗
Tx) γTr < G∗diff

(ρ∗, ρ∗, t∗Tx,c) γTr ≥ G∗diff,
(47)

where G∗diff = LnoMEC(t∗Tx,c, ρ
∗)− LMEC(t∗Tx, ρ

∗
1, ρ
∗
2).

D. Energy and Delay Constraints

In many practical scenarios, the energy consumption or the
latency of the P2P communication system is limited. When
the system delay is constrained, the optimal strategy can be
obtained by minimizing the energy consumption, which is
written as

min
tTx,ρ1,ρ2

α1E1 (ρ1, tTx) + α2E2(ρ2)

s.t. T (tTx, ρ1, ρ2) ≤ TC ,
(48)

where TC is the delay constraint for the transmission of data
D. When the energy consumption of the UEs is constrained,
the optimization problem degrades into

min
tTx,ρ1,ρ2

T (tTx, ρ1, ρ2)

s.t. E1 (ρ1, tTx) ≤ ES,

E2(ρ2) ≤ ER,

(49)

where ES and ER are the energy constraints in the UEs to
transmit the D bits data from UE 1 to UE 2.

As proved in Proposition 1, the Hessian Matrix of f(t, ρ) =
te

α
ρt is positive in the support range, thus it is jointly convex

in (t, p). Therefore (4) is jointly convex in (tTx, ρ1). Since
(5), (6), (7), (8) and (9) are all convex in ρ1 or ρ1, the energy
consumption E1(tTx, ρ1), E2(ρ2) and the delay T (tTx, ρ1, ρ2)
are all convex functions. Therefore, (48) and (49) are convex
problems.

The two problems have a mutual Lagrange function, which
is given by

L(tTx, ρ1, ρ2, γ, α1, α2) = α1E1 + α2E2 + γT + C. (50)

Note that for (48) the Lagrange multipliers α1 and α2 are
fixed to 1 and C = γ(Tr − T ), and for (49) the Lagrange
multiplier γ is fixed to 1 and C = Tr −α1ES −α2ER. It can
be found that the mutual Lagrange function L is very similar
with the cost function L, and solving L with the necessary and
sufficient KKT conditions leads to Proposition 2. However, the
unfixed Lagrange multipliers in the optimal solution need to
be updated according to the dual problems. The dual problems
are written as

max D1(γ)

s.t. γ ≥ 0,
(51)

max D2(α1, α2)

s.t. α1 ≥ 0, α2 ≥ 0,
(52)

where D1(2) = min
tTx,ρ1,ρ2

L. Since the objective function of the

dual problem is linear in the Lagrange multipliers, the dual
problem is convex, and the Lagrange multipliers can be solved
by subgradient projection method. The Lagrange multipliers
are updated as follows:

∆γ = T − T (t∗Tx, ρ
∗
1, ρ
∗
2),

∆α1 = ES − E1 (ρ∗1, t
∗
Tx) ,

∆α2 = ER − E2(ρ∗2),

γ(t+ 1) = [γ(t)− τ1(t)∆γ(t)]
+
,

αi(t+ 1) = [αi(t)− τ2(t)∆αi(t)]
+
, ∀i ∈ {1, 2},

(53)

where t is the iteration index, τ1(t), τ2(t) are step sizes. By
updating γ and αi using the above equations, the specific
algorithm for this problem is summarized as Algorithm 1.

The algorithm gives an iterative framework to solve the
energy (or delay) minimization problems with fixed delay (or
energy) constraints. The general solution for the computation
relay is utilized directly to deal with these practical scenarios
after considering the computing delay in the server and the
restriction among the compression rates. Although the optimal
solution (ρ∗1, ρ

∗
2, t
∗
Tx) is calculated according to Proposition
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Algorithm 1 Iterative algorithm for the computing and relay-
ing model with energy or delay constraints

1: Initialize:
Set t = 0 and tmax is the maximum number
of iterations. Set γ(t) (or α1(t), α2(t)) and
allowable error δ.

2: repeat
3: Calculate (ρ∗1, ρ

∗
2, t
∗
Tx) according to Proposition 2.

4: Update γ(t+ 1) (or αi(t+ 1)∀i ∈ 1, 2) from (53).
5: if ‖γ(t+ 1)− γ(t)‖2 < δ

(or ‖αi(t+ 1)− αi(t)‖2 < δ) then
6: Close.
7: end if
8: t = t+ 1.
9: until t > tmax.

2, it can be unconditionally replaced by (ρ∗1, ρ
∗
2, t
∗
Tx) if the

compression ratio constraints or MEC server constraints are
given.

Although the proposed computing and relaying system is
analyzed under several strong assumptions, some valuable in-
sights can be obtained for using MEC in practical applications.
First, it is suitable to utilize the MEC server to promote
the data throughput capacity in P2P communication systems,
especially when the communication and computing resources
in the two relaying hops are asymmetric. Second, when the
computation operation, such as compression, is dividable, we
can obtain a remarkable transmission gain by distributing the
computation among the communication components that have
enough computing capacity. Even if considering the possible
energy and delay cost in the MEC server, the gain is available
and affordable. Third, to better deal with the data computation
and transmission problems, the computing and communication
resources distributed among the networks should be properly
integrated.

-20 -15 -10 -5 0 5 10 15 20

Channel Gain of Hop 2 (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

C
o

s
t 

D
if
fe

re
n

c
e

f
c
 = 500 MHz, f

d
 = 200 MHz

f
c
 = 10 MHz, f

d
 = 1 GHz

Fig. 4: Cost difference with the increasing channel gain of
Hop 2.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we evaluate the performance of the proposed
computing and relaying model. To better show the system
performance, the cost gain is defined as the ratio of the cost
functions of the MEC-assisted system and the conventional
system, i.e.,

Cost Gain =
LMEC

LnoMEC
, (54)

which is always less than 1 according to Proposition 4. Note
that a smaller gain ratio represents better performance. The
cost gain is more appropriate for the numerical evaluation than
the cost difference defined by (32), since the cost difference
varies dramatically with different parameters, as shown in Fig.
4. The computing and relaying model comprises one MEC
relay node and two UEs, where UE 1 transmits D bits data
to UE 2 through the MEC relay node. The amount of data D
is set to 1024 bits and the bandwidth is 15kHz to simulate
the peer-peer communication between IoT devices. The utility
weights of the cost function are γ = 0.5 /Sec, α1 = 0.25 /Joul
and α2 = 0.25 /Joul. The energy consumption for receiving
each bit in the receiver is qRx = 0.42× 10−6 J/bits according
to Tale 1 of [32]. For the data compression, the required
numbers of CPU cycles for compression and decompression
ξ1, ξ2 belong to [0, 3000] cycles/bit respectively, the CPU-
cycle frequency is fc(d) ∈ [100, 1000] MHz, and the energy
consumption per cycle is qc(d) = 1×10−13 Joul/bit by default.
We set the maximum compression ratio ρmax = 5, ε = 0.5,
and other energy consumptions C1 and C2 to 0.

Fig. 5 illustrates the performance gain with different channel
gains of the Hops or different CPU frequencies of the UEs. In
the figure, the left y-axis represents to the gain provided by the
computing and relaying model and the right y-axis represents
to the optimal compression rates. Note that the compression
rate is limited to [1, 5] and the transmitting power of the relay
node is set to 1 W. In these figures, we find that there is
always a balance point where the performance gain equals 1
and ρ = ρ1 = ρ2. At this point, the MEC server doesn’t
work at all, and the computing and communication resources
before the relay node and after the relay node are symmetric
and balanced. When the channel state or the CPU frequency
varies, the balance is broken and the MEC server participates
in the communication. However, the cost gain line doesn’t
always turn down forward or backward from the balance point
due to the maximum and minimum limits to the compression
rate. Furthermore, it is observed that ρ is always between ρ1
and ρ2 in all the figures, which verifies Proposition 4. Notice
that the performance gains in Fig. 5 are quite small, because
the evaluation parameters are selected to show the balanced
points.

Fig. 6 shows the performance gain of the proposed system
with the channel gains of Hop 1 and Hop 2. In Fig. 6 (a),
the parameters of UE 1 and Hop 1 are investigated while
the parameters of UE 2 and Hop 2 are fixed, i.e. fd = 1
Ghz, qd = 1 × 10−13 and g2 = −10 dB. It indicates that
the computing and relaying model obtains better gain when
the computing capacity of UE 1 is lower, the energy efficient
parameter of UE 1 qc is worse but Hop 1 has a better channel
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Fig. 5: The performance gain with the increasing channel gains and CPU frequencies.
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Fig. 7: The latency and the energy consumption of the P2P communication with increasing γ/α. Frequency of UE 1 2.3GHz,
frequency of UE 2 200MHz, average channel gain of Hop 1 -10dB, average channel gain of Hop 2 10dB, size of D 1024bits.

gain. In Fig. 6 (b), the parameters of UE 1 and Hop 1 are
fixed to fc = 100 Mhz, qd = 1 × 10−13 and g2 = 10 dB.
It is observed that, when the computation parameter of UE
2 turns better and the channel gain of Hop 2 turns worse,
the performance gain increases before reaching the boundary
of compression rate. This figure verifies that the MEC server
makes a great contribution to the P2P communication system
especially when the computing and communication resources
are imbalanced among hops, which always exists in mobile
scenes.

Fig. 7 gives the latency and the energy consumption with
increasing γ/α in a practical P2P communication scenario,
where a wearable sensor sends a message to a remote mobile
phone. The message size D is fixed to 1024bits. The CPU
frequency of the sensor CPU is set to 200MHz and that of the
mobile phone is set to 2.3GHz. The other parameters are set
as default. The average channel gain from the sensor to the AP
node is -10dB and the average channel gain from the AP node
(different from the one that serves the sensor) to the mobile
phone is set to 10dB. γ and α = α1 = α2 are weights of time
cost and energy consumption respectively. A larger ratio γ/α
represents less delay but more energy consumption. Monte
Carlo simulation results with 10000 channel realizations are
given in the figure. As we can see, the computing and relaying
strategy obtains less time cost compared to the conventional
strategy in Fig. 7 (a). In Fig. 7 (b), although our strategy brings
less energy consumption for the sensor (UE 1), but results
in more energy consumption for the mobile phone (UE 2).
However, since the sensor is much more sensitive in energy
than the mobile, the computing and relaying strategy can
significantly extend the battery life of sensors and meanwhile
reduce the latency of P2P communications.

VII. CONCLUSION

In this paper, we have proposed a novel computing and
relaying model, in which an MEC server plays the role
of the relay node to enhance the data throughput of P2P

communications. By minimizing the cost function that consists
of the energy consumption and latency, the optimal trans-
mission and compression strategies for the MEC-assisted and
conventional systems have been derived respectively. Then
we have further considered some practical scenarios and have
presented a specific algorithm for the systems with energy or
delay constraints. Numerical results verify the efficiency of the
proposed system. Our analysis indicates that the MEC theory
can be utilized to promote P2P communications, and a lower
latency and higher energy-efficiency P2P communication sys-
tem can be achievable by jointly dispatching the computing
and communication resources distributed in the network.

APPENDIX A
The relation in (20) can be rearranged as(

C0

ρ1tTx
− 1

)
e

C0
ρ1tTx

−1
=

(
γ

A2
− 1

)
e−1, (55)

which has the form of x = W (x)eW (x). Therefore, we have

C0

ρ1tTx
− 1 = W

(
γe−1

A2
− e−1

)
, (56)

where W (·) is Lambert W function. Then we obtain

(ρ1tTx)
∗

=
C0

W
(
γe−1

A2
− e−1

)
+ 1

. (57)

Set C1 = e
C0

(ρ1tTx)
∗ , and (21) can be rearranged in the W

function form as
ερ1
2
e
ερ1
2 =

ε

2

√
A2C0C1

A1ε
. (58)

By solving the combined equations of (57) (58), we can obtain
tTx∗ and ρ∗1.

Similarly, the relation in (22) leads to

ερ2
2
e
ερ2
2 =

ε

2

√
A3

A4ε
, (59)

which finally gives ρ∗2.



12

REFERENCES

[1] V. Cisco, “Cisco visual networking index: Forecast and trends,
2017–2022,” White Paper, Nov. 2018.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Commun. Surv.
Tutorials, vol. 19, no. 3, pp. 1628–1656, Mar. 2017.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief,
“A survey on mobile edge computing: The communication
perspective,” IEEE Commun. Surv. Tutorials, vol. 19, no. 4, pp.
2322–2358, 4th Quart. 2017.

[4] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet Things J., vol. 5, no. 1,
pp. 450–465, Feb 2018.

[5] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang,
“A survey on mobile edge networks: Convergence of computing,
caching and communications,” IEEE Access, vol. 5, pp. 6757–
6779, Mar 2017.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proc. ACM Workshop
on Mobile Cloud Computing (MCC). ACM, Aug. 2012, pp.
13–16.

[7] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal
et al., “Mobile-edge computing introductory technical white
paper,” White Paper, Mobile-edge Computing (MEC) industry
initiative, Sep. 2014.

[8] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,
“Mobile edge computing - a key technology towards 5G,” ETSI
white paper, vol. 11, no. 11, pp. 1–16, 2015.

[9] T. X. Tran, P. Pandey, A. Hajisami, and D. Pompili, “Collab-
orative multi-bitrate video caching and processing in mobile-
edge computing networks,” in Proc. 13th Annual Conference
on Wireless On-demand Network Systems and Services (WONS),
Feb 2017, pp. 165–172.

[10] S. Mangiante, G. Klas, A. Navon, Z. GuanHua, J. Ran, and
M. D. Silva, “VR is on the edge: How to deliver 360 videos in
mobile networks,” in Proc. the Workshop on Virtual Reality and
Augmented Reality Network. ACM, Aug. 2017, pp. 30–35.

[11] H. Rahman, R. Rahmani, and T. Kanter, “The role of mobile
edge computing towards assisting IoT with distributed intel-
ligence: A smartliving perspective,” in Mobile Solutions and
Their Usefulness in Everyday Life. Springer, 2019, pp. 33–45.

[12] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-
edge computing: Partial computation offloading using dynamic
voltage scaling,” IEEE Trans. Commun., vol. 64, no. 10, pp.
4268–4282, Oct. 2016.

[13] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation
offloading for mobile-edge computing with energy harvesting
devices,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp.
3590–3605, Dec. 2016.

[14] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O.
Wu, “Energy-optimal mobile cloud computing under stochastic
wireless channel,” IEEE Trans. Wireless Commun., vol. 12,
no. 9, pp. 4569–4581, Sep. 2013.

[15] S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover,
and K. Huang, “Energy harvesting wireless communications:
A review of recent advances,” IEEE J. Sel. Areas Commun.,
vol. 33, no. 3, pp. 360–381, Mar. 2015.

[16] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading
in mobile edge computing: Task allocation and computational
frequency scaling,” IEEE Trans. Commun., vol. 65, no. 8, pp.
3571–3584, Aug. 2017.

[17] C. You and K. Huang, “Exploiting non-causal cpu-state in-
formation for energy-efficient mobile cooperative computing,”
IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4104–4117,
June 2018.

[18] C. You, K. Huang, H. Chae, and B. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading,”
IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1397–1411,
Mar. 2017.

[19] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, “Joint com-
putation offloading and interference management in wireless
cellular networks with mobile edge computing,” IEEE Trans.
Veh. Technol., vol. 66, no. 8, pp. 7432–7445, Aug. 2017.

[20] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Com-
putation offloading and resource allocation in wireless cellular
networks with mobile edge computing,” IEEE Trans. Wireless
Commun., vol. 16, no. 8, pp. 4924–4938, Aug. 2017.

[21] Z. Tan, F. R. Yu, X. Li, H. Ji, and V. C. M. Leung, “Virtual
resource allocation for heterogeneous services in full duplex-
enabled SCNs with mobile edge computing and caching,” IEEE
Trans. Veh. Technol., vol. 67, no. 2, pp. 1794–1808, Feb. 2018.

[22] M. Qin, L. Chen, N. Zhao, Y. Chen, F. R. Yu, and G. Wei,
“Power-constrained edge computing with maximum processing
capacity for IoT networks,” IEEE Internet of Things Journal,
pp. 1–1, 2018, early access.

[23] K. C. Barr and K. Asanović, “Energy-aware lossless data
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