

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/130159

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/266992462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/130159
mailto:wrap@warwick.ac.uk

GraphM: An Efficient Storage System for High Throughput of
Concurrent Graph Processing

Jin Zhao
Huazhong University of Science and

Technology, China∗
zjin@hust.edu.cn

Yu Zhang
Huazhong University of Science and

Technology, China∗
zhyu@hust.edu.cn

Xiaofei Liao
Huazhong University of Science and

Technology, China∗
xfliao@hust.edu.cn

Ligang He
University of Warwick, United

Kingdom
ligang.he@warwick.ac.uk

Bingsheng He
National University of Singapore,

Singapore
hebs@comp.nus.edu.sg

Hai Jin
Huazhong University of Science and

Technology, China∗
hjin@hust.edu.cn

Haikun Liu
Huazhong University of Science and

Technology, China∗
hkliu@hust.edu.cn

Yicheng Chen
Huazhong University of Science and

Technology, China∗
yichengchen@hust.edu.cn

ABSTRACT
With the rapidly growing demand of graph processing in the real
world, a large number of iterative graph processing jobs run concur-
rently on the same underlying graph. However, the storage engines
of existing graph processing frameworks are mainly designed for
running an individual job. Our studies show that they are inef-
ficient when running concurrent jobs due to the redundant data
storage and access overhead. To cope with this issue, we develop
an efficient storage system, called GraphM. It can be integrated
into the existing graph processing systems to efficiently support
concurrent iterative graph processing jobs for higher throughput
by fully exploiting the similarities of the data accesses between
these concurrent jobs. GraphM regularizes the traversing order
of the graph partitions for concurrent graph processing jobs by
streaming the partitions into the main memory and the Last-Level
Cache (LLC) in a common order, and then processes the related
jobs concurrently in a novel fine-grained synchronization. In this
way, the concurrent jobs share the same graph structure data in
the LLC/memory and also the data accesses to the graph, so as to
amortize the storage consumption and the data access overhead.
To demonstrate the efficiency of GraphM, we plug it into state-of-
the-art graph processing systems, including GridGraph, GraphChi,

∗ Jin Zhao, Yu Zhang (Corresponding author), Xiaofei Liao, Hai Jin, Haikun Liu, and
Yicheng Chen are with National Engineering Research Center for Big Data Technol-
ogy and System, Services Computing Technology and System Lab, Cluster and Grid
Computing Lab, School of Computer Science and Technology, Huazhong University
of Science and Technology, Wuhan, 430074, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’19, November 17–22, 2019, Denver, CO, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/10.1145/3295500.3356143

PowerGraph, and Chaos. Experiments results show that GraphM
improves the throughput by 1.73∼13 times.

CCS CONCEPTS
• Computer systems organization → Multicore architectures;
• Information systems → Hierarchical storage management; •
Computing methodologies→ Parallel computing methodologies.

KEYWORDS
Iterative graph processing; concurrent jobs; storage system; data
access similarity
ACM Reference Format:
Jin Zhao, Yu Zhang, Xiaofei Liao, Ligang He, Bingsheng He, Hai Jin, Haikun
Liu, and Yicheng Chen. 2019. GraphM: An Efficient Storage System for
High Throughput of Concurrent Graph Processing. In Proceedings of the
2019 International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC ’19), November 17–22, 2019, Denver, CO, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3295500.3356143

1 INTRODUCTION
A massive number of concurrent iterative graph processing jobs
are often executed on the same cloud platform, e.g., the Facebook
Cloud [2] and the Huawei Cloud [3], to analyze their daily graph
data for different products and services. For example, Facebook [2]
adopts Apache Giraph [16] to support many different iterative
graph algorithms (e.g., the variants of PageRank [29] and label
propagation [8]) that are used by various applications running on
the same underlying graph, e.g., social networks. However, existing
solutions [13, 20–22, 25, 27, 37, 38] mainly focus on optimizing the
processing of individual graph analysis jobs. In order to achieve the
efficient execution of concurrent iterative graph processing jobs,
the following two key challenges need to be addressed.

First, there is much unnecessary data access cost when the con-
current jobs running on the same underlying graph do not take
into account the similarities of their data accesses. It eventually
induces low throughput. Specifically, concurrent iterative graph

https://doi.org/10.1145/3295500.3356143
https://doi.org/10.1145/3295500.3356143

SC ’19, November 17–22, 2019, Denver, CO, USA Jin Zhao, Yu Zhang, Xiaofei Liao, et al.

(a) Existing systems (b) Existing systems integrated with GraphM

Graph

copy

Graph

copy

Graph

copy

Memory

LLC

Memory

LLC
Secondary

storage

Graph

data

Job-specific
data

Job-specific
data

Job-specific
data

Job-specific
data

Job-specific
data

Job-specific
data

Data Access Synchronization. Runtime

Job 1 Job 2 Job 3 Job 1 Job 2 Job 3

Secondary
storage

Graph

data Graph

copy
Sharing & Dividing

 Plugin

Figure 1: Execution of concurrent iterative graph process-
ing jobs on (a) existing graph processing systems and (b) the
ones integrated with GraphM

processing jobs usually traverse the same graph structure repeat-
edly and a large proportion of the graph data accessed by them
is actually the same. However, as shown in Figure 1 (a), with the
graph storage engines highly-coupled with existing graph process-
ing frameworks [13, 20, 22, 25], multiple copies of the shared graph
data are maintained in the Last-Level Cache (LLC)/memory and are
individually accessed by the concurrently running jobs. It results in
inefficient use of data access channels and storage resources (e.g.,
the LLC/memory). There is a clear trend of running more and more
iterative graph processing applications on the same platform. For
example, DiDi [1] carries out more than 9 billion path planing [7]
daily in 2017. The highly redundant overhead discussed above in-
curs low throughput of concurrent iterative graph processing jobs.

Second, diverse graph processing systems, which are highly cou-
pled with their own storage engines, are developed, because it is
important to employ suitable graph processing schemes for better
performance according to their own requirements [26]. It is desired
to decouple the graph storage system from graph processing to
allow different graph processing systems to share a single opti-
mized graph storage system, i.e., one storage system for all. Then,
an optimized storage system can integrate with these graph pro-
cessing engines to enable the concurrent and efficient execution
of existing iterative graph processing applications while imposing
little programming burden on the users.

To address these challenges, a novel and efficient storage sys-
tem, called GraphM, is proposed in this paper. It is a lightweight
runtime system which can be run in any existing graph processing
system and enables the system to support the concurrent execution
of iterative graph processing jobs. In GraphM, we design a novel
Share-Synchronize mechanism to fully exploit the similarities in
data access between concurrently running jobs. The graph struc-
ture data is decoupled from the job-specific data to be shared by
multiple graph processing jobs, while only the job-specific data is
maintained for each individual job. Then, GraphM regularizes the
traversal paths of the graph partitions for the concurrent jobs by
streaming the partitions into the LLC/memory in a common order
and concurrently processing multiple jobs related to a common
graph partition in novel fine-grained synchronization. Then, there
is only a single copy of the graph structure data in the LLC/memory
for multiple concurrent jobs, and the data access cost is amortized
by them. More importantly, the existing graph processing systems
residing above GraphM can still run with their own execution
model, because the traversal path of the systems are regularized
transparently in each iteration by GraphM. The idea is illustrated
in Figure 1 (b), where only one copy of the common graph (rather

35

30

25

20

15

10

5

0
0 20 40 60 80 100 120 140 160

N
u
m

b
e
r

o
f

c
o

n
c
u
rr

e
n

t
jo

b
s

Times(hours)

Figure 2: Number of jobs traced on a social network

than several copies in the existing systems) is maintained to serve
multiple concurrent jobs and the concurrent jobs can share the stor-
age of the common graph and the data access to it. When writing
the graph processing applications, the programmers only need to
call a few APIs provided by GraphM to achieve higher performance
for the concurrent execution of these applications. Moreover, in
order to further improve the throughput, a scheduling strategy is
designed in GraphM to specify the loading order of graph partitions
to maximize the utilization ratio of the graph partitions loaded into
the main memory.

This paper has the following main contributions:

• The redundant data access overhead is revealed when exist-
ing graph processing system handles multiple concurrent
jobs over a common graph, and the similarity between data
accesses of the jobs is investigated.
• A novel and efficient storage system is developed to improve
the throughput of existing graph processing systems for
handling concurrent jobs while little programming burden
is imposed on programmers.
• An efficient scheduling strategy is developed to fully exploit
the similarities among the concurrent jobs.
• We integrate GraphM into existing popular graph process-
ing systems, i.e., GridGraph [50], GraphChi [24], Power-
Graph [14], and Chaos [32], and conduct extensive experi-
ments. The results show that GraphM improves their perfor-
mance by 1.73∼13 times.

The rest is organized as follows. Section 2 discusses our motiva-
tion. GraphM is presented in Section 3 and the scheduling strategy
is described in Section 4, followed by experimental evaluation in
Section 5. The related work is surveyed in Section 6. This paper is
concluded in Section 7.

2 BACKGROUND AND MOTIVATION
Most existing systems [6, 13, 20, 22, 25] are inherently designed to
optimize the performance of individual iterative graph processing
job. In fact, however, with the increasing demand for graph analyt-
ics, various iterative graph algorithms are often run concurrently
on a common platform. Figure 2 shows the variation of the number
of concurrent graph processing jobs within one week traced from
a real Chinese social network. We find that more than 30 jobs are
executed concurrently at the peak time, and the average number of
concurrent jobs is about 16. In particular, these concurrent jobs are
often handled on a common underlying graph. The data accesses
related to the graph occupy a large proportion of their memory
overhead during the execution, which varies from 71% to 83% for
different datasets [43].

GraphM: An Efficient Storage System for Concurrent Graph Processing SC ’19, November 17–22, 2019, Denver, CO, USA

0

100

200

300

400

500

600

1 2 4 8
Number of concurrent jobs

PageRank
WCC
BFS
SSSP

(d) Average execution time

0

2

4

6

8

1 2 4 8

M
em

o
ry

 u
sa

g
e

(G
B

)

Number of concurrent jobs

Pagerank
WCC
BFS
SSSP

(a) Total memory usage

0

2

4

6

8

1 2 4 8

M
em

o
ry

 u
sa

g
e

(G
B

)

Number of concurrent jobs

Pagerank
WCC
BFS
SSSP

(a) Total memory usage

0

20

40

60

80

100

120

1 2 4 8

L
L

C
 m

is
se

s
(B

il
li

o
n
s)

Number of concurrent jobs

PageRank
WCC
BFS
SSSP

(b) Total last-level cache misses

0.006

0.007

0.008

0.009

0.010

1 2 4 8

N
u
m

b
e
r

o
f

 L
P

I

Number of concurrent jobs
(c) Average number of LPI

PageRank
WCC
BFS
SSSP

E
x

e
cu

ti
o

n
 t

im
e

(S
ec

o
n

d
s)

Figure 3: Performance evaluation of concurrent iterative
graph processing jobs executed on GridGraph

2.1 Redundant Data Access Overhead
With the storage engines highly-coupled with existing graph pro-
cessing systems [13, 20, 22, 25], the common graph is individually
accessed by concurrent iterative graph processing jobs. It generates
excessive unnecessary overhead in storage resource and data access
channel, and thus significantly increases the data access cost. This
eventually results in low system throughput because the data access
cost usually dominates the total execution time of iterative graph
processing [36]. To demonstrate it, we evaluated the performance
of concurrent jobs on GridGraph [50] over Twitter [23], where the
platform is the same as that introduced in Section 5.

We observe that more data access cost is generated with the
increase of the number of concurrent jobs. It is because that mul-
tiple copies of the common underlying graph are loaded into the
storage by its storage engine for the concurrent jobs. For example,
as depicted in Figure 3(a), the total amount of memory usage for
the processing of each partition significantly increases due to re-
dundant memory usage as the number of jobs increases. Figure 3(b)
describes the total number of LLC misses for different number of
concurrent graph processing jobs over GridGraph [50], which rep-
resents the size of the graph data loaded into the LLC. It can be
seen that much redundant graph data is also swapped into the LLC.

In addition, with more concurrent jobs, more serious contention
for storage resources and data access channels occurs in a resource-
limited machine, thereby causing more page faults, LLC misses,
etc. As shown in Figure 3(c), the average number of LLC misses per
Instruction (LPI) increases when more concurrent jobs are executed
over GridGraph [50], due to the intense cache interference caused
by the fact that multiple copies of the same graph partition are
being individually loaded into the LLC. For example, when there are
eight concurrent jobs, the average number of the LPI of these jobs
increases by about 10% comparing with that of one job, because the
graph data required for the execution of the instructions of different
jobs is usually the same for these concurrent jobs. It exacerbates
the above challenges. To show the impact of resource contention,
Figure 3(d) shows the average execution time of each job as the
number of jobs increases. It can be observed that the execution time
of each job significantly increases as the number of jobs increases.

2.2 Our Motivation
Figure 4(a) depicts the percentage of the graphs that are shared by
different number of concurrent jobs traced from a social network,

60

70

80

90

100

1 2 3 4 5 6
Time (hours)

(a) Percentage of shared graph

#>1 #>2 #>4 #>8

0

20

40

60

80

100

120

1 2 4 8

N
u

m
b
er

 o
f

 L
P

I

Number of concurrent jobs

PageRank
WCC
BFS
SSSP

(b) Average number of LPI

0

20

40

60

80

100

120

1 2 4 8

L
L

C
 m

is
se

s
(B

il
li

o
n
s)

Number of concurrent jobs

PageRank
WCC
BFS
SSSP

(b) Total last-level cache misses

P
e
rc

e
n
ta

g
e

sh
a
re

d
 b

y
 #

 j
o
b

s
(%

)

5

6

7

8

9

1 2 3 4 5 6

A
v
er

ag
e

d
at

a
ac

ce
ss

 t
im

es

Time (hours)
(b) Average data access times

Figure 4: Information traced on the social network

and Figure 4(b) indicates the average number of accessed times
of the graph partitions which have been repeatedly accessed by
different jobs in each time period (one hour). It can be observed from
Figure 4 that there are strong similarities between the data accesses
of many concurrent jobs, because the same graph is repeatedly
traversed by them.

Observation 1. Most proportion of the same graph is shared by
multiple concurrent jobs during the traversals, which is called the
spatial similarity. As shown in Figure 4(a), more than 82% of the
same underlying graph is concurrently processed by the concurrent
jobs during the traversals. Unfortunately, in most existing systems,
the intersection of the graph data handled by the concurrent jobs
is not shared in the LLC/memory, and it is accessed by these jobs
along different graph paths individually, which results in a large
amount of redundant data access overhead. Ideally, it only needs to
maintain a single copy of the same graph data in the LLC/memory
to serve the concurrent jobs in each traversal.

Observation 2. The same graph data may be accessed by different
concurrent jobs over a period of time, which is called the temporal
similarity. In detail, since the same underlying graph is individu-
ally handled by the concurrent jobs, the shared graph data may be
frequently accessed by multiple jobs within their repeated traver-
sals (about 7 times on average as shown in Figure 4(b)). However,
the existing systems are not aware of this temporal similarity, so
that the graph data frequently accessed by different jobs may be
swapped out of the LLC/memory, which leads to the rise of the data
access cost. Therefore, the accesses to the shared graph data for
the concurrent jobs should be consolidated so that the same graph
data is only loaded into the LLC/memory once to be handled by
the concurrent jobs in each traversal for once.

The strong spatial and temporal similarities motivate us to de-
sign a storage system, which can integrate with existing graph
processing engines to manage the data accesses of concurrent iter-
ative graph processing jobs for higher throughput while imposing
little programming burden on the users.

3 OVERVIEW OF GRAPHM
The storage system developed in this work is called GraphM. It
is designed as a runtime system and can be plugged into the ex-
isting graph processing systems to manage the data access to the
shared graph stored in the storage resources (e.g., the memory and
disk). The key idea of our system is to enable concurrent jobs to
share a single copy of the common graph and traverse the graph
synchronously along the same graph path. To achieve this goal,
an efficient Share-Synchronize mechanism and the corresponding
pre-processing method are proposed in GraphM. Further, several
lightweight APIs are provided for the existing graph processing
systems to use.

SC ’19, November 17–22, 2019, Denver, CO, USA Jin Zhao, Yu Zhang, Xiaofei Liao, et al.

Graph processing job queue

CPU cores

Original graph data

Chunk

tables

Secondary storage

Chunk

tables

Memory

LLC

Synchronizing Profiling

Chunk 1

GraphM Architecture

Load

Suspended job

Profiled job

Unprofiled job

Control flow

Data flow

Executable ones

 Suspended ones

Load

②

③

④

①

Graph Partition

Chunk 1 Chunk 2

Chunk 3 Chunk 4

②

Graph Partition

Chunk 1 Chunk 2

Chunk 3 Chunk 4

Graph partition

Chunk 1 Chunk 2

Chunk 3 Chunk 4

Specific graph

representation

Graph preprocessor

Graph sharing controller

S
y
n

ch
ro

n
iz

at
io

n
 m

a
n

ag
er

Chunk 1Chunk 1

Figure 5: System architecture of GraphM

3.1 System Architecture
Generally, the data needed by an iterative graph processing job is
composed of the graph structure data (i.e., the graph represented
byG=(V , E,W)), job-specific data (e.g., ranking scores for PageR-
ank [29], and the component ID for Connected Components [19]),
marked as S. During the execution, each job needs to update its
S through traversing the graph structure data until the calculated
results converge. Specifically, in existing systems [12, 24, 44, 50],
G and S are stored separately. GraphM enables G to be shared
by the concurrent jobs, thereby fully exploiting the strong spa-
tial and temporal similarities between these jobs. Figure 5 shows
the architecture of GraphM. It consists of three main components:
graph preprocessor, graph sharing controller, and synchronization
manager, which are overviewed in the following subsections.

Graph Preprocessor. The graph formats and the preprocessing
methods can be different for various graph processing systems.
Thus, before the graph processing, the original graph stored in
GraphM needs to be converted to the graph representation format
specific to the graph processing system (which needs to handle this
graph) using user defined function Convert(). For example, the orig-
inal graph data is converted to the grid format for GridGraph [50],
the shard format for GraphChi [24], the CSR/CSC format for Pow-
erGraph [14], and the edge list format for Chaos [32]. After that,
as existing graph processing systems [12, 24, 44, 50], the graph is
divided into partitions for parallel processing and the operations of
the concurrent jobs are still performed on the specific graph rep-
resentation of the related system. Meanwhile, the graph structure
partitions are further logically divided and labelled as a series of
chunks according to the common traversing order of the graph
of the jobs for the purpose of fine-grained synchronization as the
following described. In addition, it can exploit the cache locality
because the chunks can be fit in the LLC. When dividing a partition,
a chunk_table array is generated to describe the key information
of each logical chunk for the purpose of regular accessing of the
graph partition shared by multiple jobs, where the specific graph
representation is not modified.

Graph Sharing Controller. After graph preprocessing, the specific
graph structure data needs to be loaded into the memory to serve
concurrent jobs. This functionalmodule is used to assign the loading
order and also load the graph structure partitions, which will be
shared by concurrent jobs. The module is designed as a thin API to
be plugged into the existing graph processing systems. The API can
be expressed as: P ij ← Sharinд(G , Load()).G is the name of the graph
to be loaded and is used to identify the range of shared memory

Table 1: GraphM Programming Interface

APIs Description
Init() Initialization of GraphM
GetActiveVertices() Get active vertices in each iteration
Sharinд() Load the shared graph data
Start()/Barrier () Notify GraphM to start or end fine-

grained synchronization

which contains the shared graph structure partition. Load() is the
original load operation of the graph processing system integrated
with GraphM for the loading of graph data, and P ij denotes a loaded
graph structure partition P i shared by the jth job. When the jobs
need to be concurrently executed (the step 1○), the loaded graph
structure data is only shared by active jobs, while inactive jobs
are suspended and wait for their active graph vertices/edges to be
loaded into the memory (the step 2○). In addition, the mutations
and updates of the shared graph structure data are isolated among
concurrent jobs to ensure the correctness of the processing. In this
way, only one copy of the shared graph structure data needs to be
loaded and maintained in the memory to serve concurrent jobs.
Thus, the redundant cost of the memory resource and the amount
of disk data transfers are reduced.

Synchronization Manager. When the graph structure partition
is shared by concurrent jobs, it is individually accessed by them
in a consistent logical order according to its programming model.
However, since some jobs may skip the inactive vertices for them
and the computational complexity of the processing of the streamed
data is usually different for various jobs, these jobs may process
the shared graph partitions in different orders. Hence, the shared
graph data is irregularly streamed into the LLC by concurrent jobs,
resulting in unnecessary data access cost. To solve this problem,
we use a novel and efficient fine-grained synchronization way to
fully exploit the temporal similarity between these jobs.

This module enables the chunks of the shared graph data to
be regularly streamed into the LLC by traversing the same graph
path in fine-grained synchronization. In detail, each job needs to
be profiled to determine the computational load of each chunk
before each iteration (the step 3○). The computing resources are
then unevenly allocated to the jobs for their concurrent execution
based on the skewed computational load of these jobs (the step 4○),
so as to synchronize the graph traversals with low cost. By such
means, each chunk typically only needs to be loaded into the LLC
once and be reused by concurrent jobs in each iteration. Thus, it
significantly reduces the data access cost by fully exploiting the
similarities of these jobs.

Programming APIs. To invoke GraphM in graph analysis pro-
grams, the user only needs to insert our APIs shown in Table 1 into
existing graph processing systems. Note that it does not need to
change the graph applications above these graph processing sys-
tems. In detail, Init() is used to initialize GraphM by preprocessing
the graph as described in Section 3. Sharing() function is inserted
in existing graph processing systems to replace the original data
load operation for the efficient load of the shared graph data. Note
that the parameter in the function Sharing() is various for different
graph processing systems, e.g., the parameter is the function Load()
for GridGraph and is the function LoadSubдraph() for GraphChi.

GraphM: An Efficient Storage System for Concurrent Graph Processing SC ’19, November 17–22, 2019, Denver, CO, USA

GraphM.Init() /*Initialization of GraphM*/
StreamEdges(){
 … /*Setup the active partitions*/
 GraphM.GetActiveVertices()
 for(each active partition){
 partition GraphM.Sharing(G, load())
 /*Notify GraphM to start synchronization*/
 GraphM.Start()
 for(each edge partition)
 … /*Process the streamed edges*/
 /*Notify GraphM to end synchronization*/
 GraphM.Barrier()
 }
}

/*Edge streaming function in GridGraph*/

StreamEdges(){

 … /*Setup the active partitions*/

 for(each active partition){

 /* The original data load operation*/

 partition load()

 for(each edge partition)

 … /*Process the streamed edges*/

 }

}

(a) Pseudocode of GridGraph (b) Pseudocode of GridGraph integrated with GraphM

Figure 6: An example to illustrate how to integrate GraphM
into existing graph processing system

Meanwhile, two notification functions (i.e., Start() and Barrier())
are inserted at the beginning and the end of the procedure that
traverses the shared graph structure partition for the graph pro-
cessing systems, respectively. Note that GetActiveVertices() is also
provided to get the active vertices before each iteration, because
some graph processing systems (e.g., GridGraph [50]) allow to use
this operation to skip the processing of inactive vertices. Figure 6
takes GridGraph [50] as an example to show how to integrate exist-
ing graph processing systems with GraphM to efficiently support
concurrent graph processing jobs, where Load() is the graph loading
operation of GridGraph [50].

3.2 Graph Preprocessing
The CPU utilization ratio and the cache locality may be influenced
by the chunk size, denoted by Sc . Setting it too large may increase
the data access cost. This is because when only a part of a chunk
can be loaded into the LLC, this part has to be swapped out when
the rest of the chuck is loaded into the LLC. Since a chunk will be
accessed by different concurrent jobs, the part of the chunk that
has been swapped out has to be loaded into the LLC again, which
increases the overhead. On the contrary, setting the chunk size too
small may lead to frequent synchronization among the concurrent
jobs that are processing this chunk since only when concurrent
jobs have finished processing this chuck can they move to process
the next one.

The suitable chunk size Sc is determined in the following way.
N denotes the number of CPU cores, and CLLC denotes the size
of the LLC. Sc is set to be such a maximum integer that satisfies
Formula 1, where SG is the size of the graph data, |V | is the number
of vertices in the graph, Uv is the data size of each vertex, and r is
the size of the reserved space in the LLC. The first term on the right
of the formula represents the LLC size required to accommodate
the chunks which are concurrently processed by the threads of a
running job (the number of threads usually equals to the number
of CPU cores in the computer, hence we have Sc × N). The second
term represents the size required to store the job-specific data in
the LLC. Note that the size of a chunk is also a common multiple of
the size of an edge and the size of a cache line for better locality.

Sc × N +
Sc × N

SG
× |V | ×Uv + r ≤ CLLC (1)

With this setting, the same chunk only needs to be loaded into
the LLC once and is then reused by all concurrent jobs with low
synchronization cost. Only the job-specific data need to be replaced
by different jobs, where the jobs are triggered to handle the loaded
data in a round-robin way.

Note that the graph is not physically divided into the chunks of
the size discussed above. Rather, in the preprocessing phase, the

Algorithm 1 Partition Labelling Algorithm

1: function Label(P i , Set ic)
2: edдe_num ← 0
3: c_table ← null
4: for each edge e ∈ P i do
5: if es ∈ c_table then
6: c_table .N+(es)← c_table .N+(es) + 1
7: else
8: c_table .InsertEntry(⟨es , 1⟩)
9: end if
10: /*Count the number of edges labelled in c_table*/

edдe_num ← edдe_num + 1
11: if edдe_num × SG

|E | ≥ Sc or P i is visited then
12: Set ic .Store(c_table)
13: /*Prepare to store information of next chunk*/

Clear(c_table , edдe_num)
14: end if
15: end for
16: end function

graph is traversed so that each graph partition is labelled as a series
of chunks in the order in which the graph data is streamed into
the LLC. The labelling information of each chunk is stored in a
key-value table, called chunk_table. Each entry of the chunk_table
is a key-value pair, in which the key is the ID of a source vertex
in the chunk (denoted by v) and the value is the number of this
vertex’s outgoing edges in the chunk (denoted by N+(v)).

Algorithm 1 shows how to label a partition, e.g., P i . When an
edge is traversed, N+(v) of the edge’s source vertex (i.e., es) is
incremented by one in the corresponding entry of chunk_table (i.e.,
c_table) (Line 6). If the source vertex of the edge is not found in
c_table , a new entry (i.e., a key-value pair) is created with the value
being 1 and inserted into the table (Line 8). When the number of
edges in c_table makes the chunk size to be the value determined
by Formula 1 or all edges of P i are visited (Line 11), these edges
are treated as a chunk and the c_table is stored as an element of
an array, i.e., Set ic (it holds the information of all chunks in P i)
(Line 12). c_table is then cleared and used to store the information
of the next labelled chunk, where the value of edдe_num is reset to
zero (Line 13). Note that this procedure only runs once for a graph
processing system, although it incurs extra cost.

3.3 Memory Sharing of Graph Structure
3.3.1 Sharing the Graph Structure. Generally, the graph structure
data is divided into a series of partitions for parallel processing. A
partition is loaded into the memory only when it is needed by some
jobs (we call such partitions active partitions). Note that the active
partitions for different jobs are usually different, because the jobs
may traverse the graph along different paths. Such information
can be directly obtained from the graph processing system (e.g.,
the should_access_shard array in the GridGraph [50]) because the
set of partitions to be processed by each job in the next iteration
can be gotten through tracing the partitions activated within the
current iteration. A global table is created to gather this information.
Each entry in the global table is a linked list to store the process

SC ’19, November 17–22, 2019, Denver, CO, USA Jin Zhao, Yu Zhang, Xiaofei Liao, et al.

Algorithm 2 Graph Sharing Algorithm

1: function Sharing(G, Load()) /*Triggered by job j*/
2: /*Get an active partition P i that needs be loaded*/

P i ← GetActivePartition()
3: /*Get the set of jobs that need to handle P i */

J i ← GetJobs(P i)
4: Resume(J i) /*Resume the suspended jobs in J i */
5: if j < J i then /*j does not need to handle P i */
6: Suspend(j) /*Suspend the job j*/
7: end if
8: if P i is not in the memory then
9: /*Create a shared buffer to store P i */

Bu f ← CreateMemory(G, P i)
10: Bu f ← Load(P i) /*Load P i into Bu f */
11: else /*Job j gets P i in the shared buffer*/
12: Bu f ← Attach(G) /*Attach Bu f to j*/
13: end if
14: Remove(j, J i) /*Remove j from J i */
15: return Bu f
16: end function

IDs (PIDs) of the active jobs of the corresponding graph partition.
Each job needs to update the global table in real time. Particularly,
the order of the entries in the global table is determined by the
loading order of their corresponding graph partitions by default.
After that, a lightweight API (i.e., the function Sharinд() described
in Algorithm 2) is designed to extend the graph loading operation
in the existing systems, allowing the job (e.g., the job j) to share
the loaded graph partitions.

In detail, when the job j calls the function Sharinд(), it first
gets the ID of an active partition P i assigned by GraphM (Line 2),
where the loading order of the partitions to be loaded is assigned
by GraphM along the order of their corresponding entries in the
global table. The set of jobs (e.g., J i) that need to handle P i are
then obtained from the global table (Line 3). After that, the active
jobs recorded in J i are popped from suspended_queue and their
executions are resumed (Line 4), if these jobs are suspended. If the
current job j is not in J i (i.e., j does not need to handle P i), it is
suspended to release its computing resources for the execution of
the jobs that need to handle P i , and is pushed into suspended_queue
(Lines 5-7). If P i is not in the shared memory, a buffer Bu f is created
to store it (Lines 9-10). Otherwise, the job j is assigned to share the
loaded graph partition P i in the memory with the other concurrent
jobs (Line 12). Then, the PIDs of the job j is removed from the
J i (Line 14) and the job j begins to handle the graph partition P i

referenced by the returned results (Line 15).
3.3.2 Ensuring of Consistent Snapshots. The shared graph may be
updated or mutated by some jobs over time, resulting in incorrect
results or runtime errors. Hence, a storage management technique
is further designed to ensure the consistency of snapshots among
the concurrent jobs.

When the shared graph structure data needs to be modified, e.g.,
removing or adding edges/vertices, users need to call our API to
handle the evolving graph. In detail, GraphM first copies the cor-
responding chunks of the graph data that need to be modified to

Phys ical address
Virtual address

of Job 2

Shared memory

 Mutation 2

Chunk 1

Virtual address
of Job 1

copy

copy

low

high

Graph Structure
of Job 1

Shared Graph
Structure

 Update 3

Graph Structure
of Job 2

Copy 3 Chunk 4

 Mutation 2

Chunk 4

Chunk 3
Chunk 2

Chunk 1
Chunk 4

 Update 3

Chunk 2

Chunk 1

Figure 7: Consistent snapshots for concurrent jobs
other shared memory space. If it is mutated by a job, the modifica-
tion will be applied to the copied chunks, and alter the mapping of
the virtual address of the corresponding chunks in the job to the
copied chunks. Thus, the shared graph structure is not changed,
it can be shared by other jobs. Besides, the copied chunks will be
released when the corresponding job is finished. Different from
graph mutation, which is only visible to its corresponding job, the
graph update is only available to the jobs submitted after the update.
Therefore, the shared graph structure will be updated to serve the
newly submitted jobs, and previous jobs can refer to the copied
chunks to continue their calculation. Note that when all previous
jobs are completed, these copied chunks will be released. By do-
ing so, the shared graph structure is always visible and shared by
the newly submitted jobs. Note that Set ic also needs to be updated
accordingly when the shared graph is updated.

As shown in Figure 7, two jobs are submitted, where job 1 is
submitted before job 2. If a graph update arrives after the submission
of job 1, it will create a copy (e.g., copy 3) for the corresponding
graph structure data (e.g., chunk 3) for job 1 to use, and chunk 3 is
going to be updated. Besides, the copied data will be released when
job 1 is finished. Then, a new graph structure chunk (i.e., update 3)
is constructed before job 2 is submitted. If job 2 needs to modify a
chunk (e.g., copy 2) of the graph structure, the mutation is applied
to the copied data to generate mutation 2, which is only visible
to job 2. Note that the graph mutations and updates usually only
happen to a small fraction of graph data, and thus a majority of
the graph structure data can be shared by concurrent jobs and the
update cost of the Set ic is also small.

3.4 Fine-grained Synchronization for Regular
Streaming

This section discusses the details of the fine-grained synchroniza-
tion way for efficient execution of concurrent jobs.
3.4.1 Mining the Similarities between Concurrent Jobs. This fine-
grained synchronization scheme mines the chunks of the shared
graph that can be concurrently handled by the jobs in each iteration.
Moreover, the similarities are dynamically changed because the
vertices in the chunks may be activated or converged in some
jobs during the iteration, which therefore needs to be dynamically
updated before each iteration.

First, we monitor the chunks that need to be processed by each
job in the current iteration, i.e., some vertices in these chunks are
active for the job, especially the job that needs to skip the useless
streaming. For example, in each iteration, SSSP [28] may only need
to process a part of the graph data, whereas PageRank [29] usually
has to traverse the entire graph structure. This information can be

GraphM: An Efficient Storage System for Concurrent Graph Processing SC ’19, November 17–22, 2019, Denver, CO, USA

procured by tracing the change of vertices states after each itera-
tion. In general, a vertex needs to be processed within the current
iteration only when its value has been updated by the neighbours
within the previous iteration. Note that the active vertices in the
first iteration are designated by the user for each job. To express
the active vertices succinctly, a bitmap is created for each job. If
some jobs do not skip the useless streaming, all of their vertices are
active by default. Then, the active chunks of concurrent jobs can be
obtained by their bitmaps and the chunk_table arrays. Finally, the
similarities between the data accesses of the concurrent jobs can be
rapidly obtained based on the intersection of their active chunks.
3.4.2 Fine-grained Synchronization of Traversals. To fully exploit
the temporal similarity between the data access of the concurrent
jobs, it enables the chunks loaded into the LLC to be processed
by these jobs in a regular way. In detail, the computing resources
are unevenly allocated to the concurrent jobs to synchronize their
data accesses, because the computational loads of different jobs are
usually skewed when processing each chunk. Generally, the load
of each job j for a chunk is determined not only by the amount
of edges that need to be processed, but also by the computational
complexity of the edge processing function of this job, denoted
as T (Fj). In addition, the average data access time for each edge,
indicated as T(E), affects the execution time of the jobs. Thus, for
each job, the fine-grained synchronization has two phases, i.e., the
profiling phase and the syncing phase.

Profiling Phase. This phase is to profile the needed information
(i.e., T(Fj) and T(E)) of the jobs. When a new job (e.g., the job j) is
submitted, the profiling phase of this job traverses the shared graph
partition (e.g., P i) and captures its execution time, denoted by T ij ,
which is composed of the graph processing time and the graph data
access time. Thus, T ij is represented as the following formula:

T (Fj) ×
∑
k ∈C i

∑
v ∈Vk∩Aj

N+k (v)+

T (E) ×
∑
k ∈C i

∑
v ∈Vk

N+k (v) = T
i
j

(2)

whereCi is the set of chunks in the partition P i , andVk is the set of
vertices in the kth chunk. Aj is the set of active vertices for the job
j within the current iteration, which can be easily obtained via its
bitmap. N+k (v) is the number of out-going edges of the vertex v in
the kth chunk. Vk and N+k (v) are stored in the corresponding Set ic .
According to Formula 2, after the processing of the first two active
partitions of each job j , the needed information, i.e.,T (Fj) andT (E),
of the job j can be obtained, where T (E) is a constant for the same
graph and only needs to be profiled once for different jobs.

Syncing Phase. After obtaining T (Fj) of the concurrent jobs, the
computational load of the jobs in each chunk is easily acquired
before each iteration. In detail, the computational load of the jth

job for the processing the kth chunk (i.e., Lkj) can be determined
by the following equation:

Lkj = T (Fj) ×
∑

v ∈Vk∩Aj

N+k (v) (3)

Each partition may be handled by the threads of different con-
current jobs. To achieve fine-grained synchronization and better
locality, the threads of different jobs handling the same partition
need to be migrated to the same CPU core to synchronize their

Partition 2 Partition 3Job 1 Partition 1 Partition 4

Partition 3 Partition 1 Partition 4Partition 2

 iteration x iteration x+1

 iteration y

Job 2

Suspended

Suspended

Resumed

1 1/2 1/3 1/3Pri(P)

Partition 1 Partition 2Job 1 Partition 3 Partition 4

Partition 2 Partition 3 Partition 4Partition 1

 iteration x

 iteration y

Job 2

Suspended

Suspended

Resumed

(a) The original loading order of the default strategy

(b) The loading order based on our scheduling strategy

Suspended

Figure 8: An example to illustrate the scheduling of loading
order of graphpartitions,wherepartition 1 is activated by the
other partitions of job 1 and can be handled at the (x + 1)th
iteration for job 1

data access by scheduling their CPU time slices. Usually, only a
small amount of migrations are generated, because these threads
access a series of chunks synchronously each time in the partition.
After that, the computing resources need to be allocated unevenly
to the threads of the concurrent jobs according to the skewed com-
putational load. Each thread monopolizes the CPU time to finish
processing the current chunk. Apparently, the execution time of
the chunk for each thread can be represented by its corresponding
computational load according to Formula 3, except the thread that
first processes the chunk. It is because that the graph data needs to
be loaded into the LLC by this thread and its execution time Fkj for
the kth chunk can be obtained by the following equation:

Fkj = Lkj +T (E) ×
∑
v ∈Vk

N+k (v) (4)

After the corresponding execution times of all threads have
elapsed, the jobs will process the next chunk concurrently with the
reallocated computing resources.

4 THE SCHEDULING STRATEGY FOR
OUT-OF-CORE GRAPH ANALYSIS

The loading order of graph partitions in the out-of-core graph pro-
cessing systems may cause the similarities between the data access
of concurrent jobs not to be fully exploited due to the following
reasons. First, some jobs may only need to handle a few of parti-
tions in the current iteration, but more partitions will be activated
in the next iteration. For example, in BFS [11] and SSSP [28] only
one or a few vertices are active at the beginning, but then a large
number of vertices will be activated by these vertices. Second, the
activated partitions may be accessed by other jobs in the current
iteration, e.g., PageRank [29] andWCC [35]. Hence, a partition may
be repeatedly loaded into the memory to serve different jobs in
contiguous iterations, resulting inefficient usage of the partitions
that are loaded into the memory.

Because loading the partitions in different orders does not influ-
ence the correctness of the final results [44], a scheduling strategy is
proposed to fully exploit the similarities across different iterations.
The key idea is to load the partitions that are handled by the jobs

SC ’19, November 17–22, 2019, Denver, CO, USA Jin Zhao, Yu Zhang, Xiaofei Liao, et al.

Table 2: Graph datasets used in the experiments

Datasets Vertices Edges Data sizes
LiveJ [5] 4.8 M 69 M 526 MB
Orkut [5] 3.1 M 117.2 M 894 MB

Twitter [23] 41.7 M 1.5 B 10.9 GB
UK-union [9] 133.6 M 5.5 B 40.1 GB
Clueweb12 [4] 978.4 M 42.6 B 317 GB

with the least number of active partitions. Other partitions may be
activated in these jobs, which can then advance to next iteration
to process the activated partitions, as shown in Figure 8. In this
way, the strategy enables the partitions loaded into the memory
to serve more concurrent jobs, further amortizing the data access
cost, especially when the size of the graph is very large.

To achieve the goal described above, each partition is assigned
a priority. The partitions with the higher priority are loaded first
into the memory to serve the related jobs, so that these jobs can
complete current iteration as quickly as possible to activate other
partitions. Two rules are applied when setting the priority. First, the
partitions are given a higher priority when they are handled by the
jobs with fewer active partitions. Second, a partition is given the
highest priority when it is processed by most jobs. In summary, the
priority Pri(P i) of each partition P i is set using Equation 5, where
J i denotes the set of jobs to handle P i in the next iteration, Nj (P)
denotes the number of active partitions of the jth job (i.e., a job of
the set J i), and N (J i) denotes the number of jobs in the set J i .

Pri(P i) = MAX j ∈J i
1

Nj (P)
× N (J i) (5)

The values of Nj (P) and N (J i) are directly obtained from the
global table. The priority is calculated before each complete tra-
versal over all the partitions. After that, the entries in the global
table are sorted according to the priority of their corresponding
partitions and determine the loading order of the partitions. From
Figure 8, we can observe that the partition 1 can serve more con-
current jobs when it has been loaded into the memory via this
scheduling strategy. Then, the similarities between concurrent jobs
are fully exploited.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
The experiments are conducted on a server with two 8-core Intel
Xeon E5-2670 CPUs (each CPU has 20MB last-level cache) operating
at the clock frequency of 2.6 GHz, a 32 GB memory and a 1 TB
hard drive, running Linux kernel 2.6.32. All codes are compiled
with cmake version 3.11.0 and gcc version 4.9.4. Table 2 shows the
properties of the five real-world graphs used in our experiments,
where LiveJ, Orkut, and Twitter can be stored in the memory, while
the size of UK-union and Clueweb12 are larger than the memory
size. Four representative graph processing algorithms are used as
benchmarks, including weakly connected component (WCC) [35],
PageRank [29], single source shortest path (SSSP) [28], breadth-first
search (BFS) [11]. These algorithms have different characteristics
in the data access and resource usage. For example, PageRank and
WCC are network-intensive [40], which need to frequently traverse
the majority of the graph structure, whereas SSSP and BFS only
traverse a small fraction of the graph at the beginning.

Table 3: Preprocessing time (in seconds)
LiveJ Orkut Twitter UK-union Clueweb12

GridGraph 20.89 35.07 439.59 2,312.11 19,267.28
GridGraph-M 21.86 35.76 463.65 2,681.04 22,401.90

To evaluate the performance, we submit WCC, PageRank, SSSP,
and BFS in turn in a sequential or concurrent manner until the
specific number of jobs are generated, where the parameters are
randomly set for different jobs although these jobs may be the same
graph algorithm. In detail, the damping factor is randomly set by a
value between 0.1 and 0.85 for each PageRank job. The root vertices
are randomly selected for the BFS jobs and the SSSP jobs. The total
number of iterations is a randomly selected integer between one
and the maximum number of iterations for each WCC job. For
the concurrent manner, the time interval between successive two
submissions follows the poisson distribution [15] with λ = 16 by
default. All benchmarks are run for ten times and the experimental
results are the average value.

To evaluate the advantages of GraphM,we integrate GridGraph [50]
with GraphM (called GridGraph-M in the experiments) to run multi-
ple concurrent graph processing jobs. We then compare GridGraph-
M with two execution schemes of the original GridGraph, called
GridGraph-S and GridGraph-C. GridGraph-S sequentially processes
the jobs, whileGridGraph-C concurrently handles the jobs (but each
job runs independently without sharing the underlying graph struc-
ture data as in GridGraph-M). In GridGraph-C, the concurrent jobs
are managed by the operating system. We choose GridGraph [50]
since it is a state-of-the-art one and outperforms other out-of-core
graph processing systems [24, 33].

In addition, we also finally integrate GraphM into the other popu-
lar systems (i.e., GraphChi [24], PowerGraph [14], and Chaos [32])
and evaluate their performance. There, Eigen (version 3.2.10) is
needed byGraphChi. OpenMPI (version 2.1.6), boost (version 1.53.0),
zookeeper (version 3.5.1), bzip2 (version 1.0.6), gperftools (version
2.0), hadoop (version 1.0.1), and libevebt (version 2.0.18) are required
by PowerGraph. Boost (version 1.53.0) and zmq (version 4.3.1) are
needed by Chaos. The experiments of PowerGraph and Chaos are
done on a cluster with 128 nodes, which is connected via 1-Gigabit
Ethernet. Each node is the same as the above described. Because
PowerGraph and Chaos may not get the best performance due to
high communication cost when all nodes are used to handle all
jobs for some graphs, the nodes are divided into groups and each
group of nodes are used to handle a subset of jobs so as to make the
jobs executed over PowerGraph and Chaos in a high throughput
mode, where the newly submitted jobs are assigned to the groups
in turn. Note that, when some jobs need to be executed on Power-
Graph/Chaos over a group of nodes, the graph is only loaded into
the distributed shared memory consisting of the memory of this
group of nodes. In the experiments, for high throughput of 64 jobs
over LiveJ, Orkut, Twitter, UK-union, and Clueweb12, the suitable
number of groups is set to 8, 8, 4, 1, 1 for PowerGraph and 8, 4, 2, 1,
1 for Chaos, respectively.
5.2 Preprocessing Cost
Table 3 shows the preprocessing cost of GridGraph and GridGraph-
M. We can observe that GridGraph-M takes little additional time
than the original system GridGraph, so as to create the chunk_table
and label the graphs by traversing the graphs once. When the size

GraphM: An Efficient Storage System for Concurrent Graph Processing SC ’19, November 17–22, 2019, Denver, CO, USA

L i v e J O r k u t T w i t t e r U K - u n i o n C l u e w e b0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8

No
rm

aliz
ed

exe
cut

ion
 tim

e

D a t a s e t s

 G r i d G r a p h - S G r i d G r a p h - C G r i d G r a p h - M

Figure 9: Total execution time for the 16
jobs with different schemes

L i v e J O r k u t T w i t t e r U K - u n i o n C l u e w e b0 . 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0
2 . 4
2 . 8
3 . 2

Gr
idG

rap
h-M

Gr
idG

rap
h-C

Tim
e c

ons
um

pti
on

rat
io

D a t a s e t s

 G r a p h p r o c e s s i n g t i m e D a t a a c c e s s i n g t i m e

Gr
idG

rap
h-S

Gr
idG

rap
h-S

Gr
idG

rap
h-C

Gr
idG

rap
h-M

Gr
idG

rap
h-S

Gr
idG

rap
h-C

Gr
idG

rap
h-M

Gr
idG

rap
h-S

Gr
idG

rap
h-C

Gr
idG

rap
h-M

Gr
idG

rap
h-S

Gr
idG

rap
h-C

Gr
idG

rap
h-M

Figure 10: Execution time breakdown of
jobs with different schemes

L i v e J O r k u t T w i t t e r U K - u n i o n C l u e w e b0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

No
rm

aliz
ed

me
mo

ry
usa

ge

D a t a s e t s

 G r i d G r a p h - S G r i d G r a p h - C G r i d G r a p h - M

Figure 11: Memory usage for the 16 jobs
with different schemes

of graph is larger than the memory size, the labelling procedure of
the graph increases the preprocessing time by an average of 16.1%,
because these graph needs to be reloaded into the memory. When
the graph can be stored in the memory, the labelling procedure of
the graph only increases the preprocessing time by an average of
4%. As evaluated, the extra storage cost of GraphM is also small and
occupies 5.5%-19.2% of the space overhead of the original graph, i.e.,
70.6 MB (13.4%), 49.2 MB (5.5%), 2.09 GB (19.2%), 4.5 GB (11.2%), and
19.9 GB (6.3%) for LiveJ, Orkut, Twitter, UK-union, and Clueweb12,
respectively. In general, when the graph has larger maximum out-
degree and lower average out-degree, the ratio of its extra space
overhead to the space overhead of the original graph is higher. It is
because that the vertices with larger out-degree have more replicas
stored in different chunks and the extra space overhead is also
usually proportional to the ratio of the number of vertices to the
number of edges. For example, the maximum out-degree and the
average out-degree are 2,997,469 and 35 for Twitter, respectively,
while they are 7,447 and 48 for Clueweb12, respectively. Thus, the
space overhead ratio of Twitter is higher than that of Clueweb12.
Note that, although GraphM needs such extra space overhead, more
storage overhead can be spared by GraphM because only one copy
of the graph structure data (instead of multiple copies) needs to be
maintained by existing systems for multiple jobs when they are
integrated with GraphM.

5.3 Overall Performance Comparison
Figure 9 shows the total execution time of 16 concurrent jobs with
different schemes. It can be observed that GridGraph-M achieves
shorter execution time (thus higher throughput) than the other
two schemes for all graphs. Comparing with GridGraph-S and
GridGraph-C, GridGraph-M improves the throughput by about
2.6 times and 1.73 times on average respectively when the graphs
can be stored in the memory, and by 11.6 times and 13 times on
average respectively in the case of out-of-core processing. The
throughput improvement is achieved for the lower data access cost
in GridGraph-M.

To evaluate data access cost, we further break down the total exe-
cution time in Figure 10. It can be observed from this figure that less
graph data accessing time is required in GridGraph-M compared
with the other two schemes, especially when the size of the graph
is very large. For example, for UK-union, the data accessing time
is reduced by 11.48 times and 13.06 times in GridGraph-M in com-
parison with GridGraph-S and GridGraph-C. The reasons for the
lower data access cost of GraphM are two-fold: 1) only a single copy
of the same graph data needs to be loaded and maintained in the

memory to serve the concurrent jobs, reducing the consumption of
memory and disk bandwidth and the intense resource contention;
2) the graph data is regularly streamed into the LLC to be reused
by the jobs, which avoids unnecessary memory data transfer by
reducing LLC miss rate and minimizes the volume of data swapped
into the LLC.

Figure 11 shows the usage of main memory during the execution.
As observed, GridGraph-M consumes less memory than GridGraph-
C, but more than GridGraph-S. This is because the graph structure
data is shared in the memory for concurrent jobs by GraphM (thus
GridGraph-M consumes less memory than GridGraph-C), and the
job-specific data of all concurrent jobs as well as the chunk_table of
the loaded graph data is loaded into the memory at the same time
(thus GridGraph-M consumes more memory than GridGraph-S).
Note that as the number of vertices in the graph increases, the
job-specific data for concurrent jobs need more memory resource.
For example, the memory usage of GridGraph-M over UK-union is
8.2 times bigger than that of GridGraph-S because the job-specific
data of the 16 jobs is stored in the memory. However, it is still only
71% of the memory usage of GridGraph-C. Hence, the memory
resource is efficiently utilized in GraphM since redundant memory
consumption regarding the common graph data is eliminated.

In Figure 12, we evaluate the total I/O overhead of these 16 jobs
over three schemes. As observed, the I/O overhead is significantly
reduced in GridGraph-M when the size of the graph data is larger
than the memory size. It is because that the same graph data only
needs to be loaded into the memory once in each iteration for
concurrent jobs. However, when the graph can be fitted in the
memory, there is no much difference in the I/O overhead among
these three schemes, since this graph is cached in the memory via
memory mapping and only needs to be read from disks once. Thus,
GraphM brings better performance improvement for the out-of-
core graph processing for less I/O cost. More specifically, when
processing UK-union, the I/O overhead is reduced by 9.2 times
and 10.1 times compared with GridGraph-S and GridGraph-C. In
addition, GridGraph-C usually performs more I/O operations than
GridGraph-S, because there is intense contention for using the
memory resource among the jobs, which causes the graph data to
be swapped out of the memory.

Next, we evaluate the LLC utilization of the different schemas
and show the results in Figure 13. As observed, the LLC miss
rate of GridGraph-M is lower than that of both GridGraph-S and
GridGraph-C. For example, for UK-union, the LLC miss rate of
GridGraph-M is only 15.69%, while the rates are 45.3% and 43.3% for
GridGraph-S and GridGraph-C, respectively. It is mainly because

SC ’19, November 17–22, 2019, Denver, CO, USA Jin Zhao, Yu Zhang, Xiaofei Liao, et al.

L i v e J O r k u t T w i t t e r U K - u n i o n C l u e w e b0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

No
rm

aliz
ed

I/O
 ov

erh
ead

D a t a s e t s

 G r i d G r a p h - S G r i d G r a p h - C G r i d G r a p h - M

Figure 12: Total I/O overhead for 16
jobs with different schemes

L i v e J O r k u t T w i t t e r U K - u n i o n C l u e w e b0
2 0
4 0
6 0
8 0

1 0 0

LL
C m

iss
 ra

te (
%)

D a t a s e t s

 G r i d G r a p h - S G r i d G r a p h - C G r i d G r a p h - M

Figure 13: LLC miss rate for 16 jobs
with different schemes

L i v e J O r k u t T w i t t e r U K - u n i o n C l u e w e b0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

No
rm

aliz
ed

Vo
lum

e

D a t a s e t s

 G r i d G r a p h - S G r i d G r a p h - C G r i d G r a p h - M

Figure 14: Volume of data swapped into
the LLC for 16 jobs

LiveJ Orkut Twitter UK-union Clueweb
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o

rm
al

iz
ed

 e
x

ec
u

ti
o

n
 t

im
e

Data sets

 GridGraph-S GridGraph-C GridGraph-M

Figure 15: Performance of the jobs for the real-trace

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

Value of

 GridGraph-S GridGraph-C GridGraph-M

Figure 16: Performance of GraphM for various λ
only a single copy of the graph structure data is loaded into the
LLC and the access to this data is shared by the jobs. The graph
structure data loaded into the LLC can serve more concurrent jobs
in GridGraph-M, resulting in better data locality for these jobs.

Moreover, we traced the total amount of data swapped into
the LLC for these 16 jobs. Generally, GridGraph-C needs to swap
a larger amount of graph data into the LLC than GridGraph-S,
because there is more redundant memory data transfer caused by
the intense cache interference among concurrent jobs. As shown in
Figure 14, when processing UK-union, the amount of data swapped
into the LLC in GridGraph-S is 65% of GridGraph-C. Nevertheless,
we observe that the amount of swapped data in GridGraph-M is
still much less than GridGraph-S (e.g., only 55% for UK-union). This
is because the data access similarities among concurrent jobs are
fully exploited by GraphM.

We also evaluate the performance of GraphM via submitting the
jobs according to the real trace shown in Figure 2, where different
number of jobs are submitted at various point of time according
to the real trace. In Figure 15, the results show that GridGraph-M
improves the throughputs of GridGraph-S and GridGraph-C by
1.5–7.1 times, and 1.48–9.8 times, respectively, for the real trace,
because of lower graph storage overhead and less data access cost.

In addition, we evaluate the impacts of job submission frequency
on GraphM over UK-union in Figure 16 by using different value of λ.
The results show that higher speedup is obtained by GraphM when
the jobs is more frequently submitted (i.e., larger λ). Figure 17 shows
the performance of 16 BFS or SSSP jobs with randomly selected root
vertices within the range of different number of hops over LiveJ.

(a) BFS (b) SSSP

1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

Number of hops

 GridGraph-S GridGraph-C GridGraph-M

1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

Number of hops

 GridGraph-S GridGraph-C GridGraph-M

Figure 17: Impacts of the distance between the root vertices
of BFS or SSSP jobs
Table 4: Execution time (in seconds) for other systems (i.e.,
GraphChi [24], PowerGraph [14], and Chaos [32]) inte-
grated with GraphM, where “−”means it cannot be executed
for memory errors

LiveJ Orkut Twitter UK-union Clueweb12
GraphChi-S 2,348 2,248 43,032 149,352 >1 week
GraphChi-C 776 696 10,580 38,760 >1 week
GraphChi-M 344 468 6,128 12,436 248,840
PowerGraph-S 92 144 1,408 7,183 −

PowerGraph-C 83 111 1,153 6,653 −

PowerGraph-M 43 75 795 3,820 −

Chaos-S 224 159 4,668 29,538 487,272
Chaos-C 516 588 12,011 30,943 >1 week
Chaos-M 121 106 2,261 10,614 156,881

We find that higher speedup is achieved by GraphM for stronger
spatial/temporal similarities of the data accesses when the root
vertices of the BFS or SSSP jobs are closer to each other.

5.4 Performance of Scheduling Strategy
We also evaluate the impacts of our scheduling strategy on the
performance of GraphM when it is integrated with GridGraph.
GridGraph-M andGridGraph-M-without are the versions of GridGraph-
M with our scheduling strategy (Section 4) and without our sched-
uling strategy, respectively. In Figure 18, we traced the total execu-
tion time of the above 16 jobs on GridGraph-M and GridGraph-M-
without. We can observe that GridGraph-M always outperforms
GridGraph-M-without. The execution time of GridGraph-M is only
72.5% of GridGraph-M-without over Clueweb12. It is because the
graph partitions loaded into the memory can serve as many con-
current jobs as possible, minimizing the data access cost.

5.5 Integration with Other Systems
Table 4 shows the total execution time of 64 concurrent jobs with
different schemes, where the experiments for different schemes of
both PowerGraph and Chaos are done on a cluster with 128 nodes

GraphM: An Efficient Storage System for Concurrent Graph Processing SC ’19, November 17–22, 2019, Denver, CO, USA

L i v e J O r k u t T w i t t e r U K - u n i o n C l u e w e b0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

No
rm

aliz
ed

exe
cut

ion
 tim

e

D a t a s e t s

 G r i d G r a p h - M - w i t h o u t G r i d G r a p h - M

Figure 18: Total execution time with-
out/with our scheduling

1 2 4 8 1 60
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0

Ex
ecu

tio
n t

im
e (

hou
rs)

N u m b e r o f j o b s

 G r i d G r a p h - S G r i d G r a p h - C G r i d G r a p h - M

Figure 19: Total execution time for dif-
ferent number of jobs

1 2 4 8 1 60 . 0
0 . 2
0 . 4
0 . 6
0 . 8

Ex
ecu

tio
n t

im
e (

hou
rs)

N u m b e r o f C P U c o r e s

 G r i d G r a p h - S G r i d G r a p h - C G r i d G r a p h - M

Figure 20: Total execution time on dif-
ferent number of CPU cores

(a) PowerGraph (b) Chaos

64 80 96 102 128
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
p
ee

d
u
p

Number of nodes

 PowerGraph-S PowerGraph-C PowerGraph-M

64 80 96 102 128
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
p

ee
d

u
p

Number of nodes

 Chaos-S Chaos-C Chaos-M

Figure 21: Scalability of different distributed schemes

as described in Section 5.1. We can observe that all systems get
better speedups after integrating GraphM into them. Diverse graph
processing systems get various performance improvements after
using GraphM, because the ratios of the graph access time to the
total execution time are different for them. In general, when the
ratio of data access time to the execution time is higher for the
original system, the greater performance improvement is gotten by
GraphM via reducing the redundant graph structure data storage
overhead and access cost.
5.6 Scalability of GraphM
Figure 19 shows the performance of various number of concurrent
PageRank jobs on different schemes of GridGraph over Clueweb12.
Better performance improvement is achieved by GraphM when the
number of jobs increases. GridGraph-M gets speedups of 1.79, 3.04,
4.92, and 5.94 against GridGraph-S when the number of jobs is 2, 4,
8, and 16, respectively. It is because that more data access and stor-
age cost is spared by GraphM through amortizing it, as the number
of jobs increased. Note that the fine-grained synchronization oper-
ation of GraphM does not occur when there is only one job, and
thus there is no much difference in the execution time among the
three schemes at this moment. The synchronization cost occupies
7.1%–14.6% of the total execution time of the job on GraphM for
our tested instances. In addition, as the contention for resources
(e.g., memory and bandwidth) gets more serious, the performance
of GridGraph-C becomes much worse than that of GridGraph-M,
even GridGraph-S. Thus, simply adopting existing graph processing
systems to support concurrent jobs may be a terrible choice.

We then evaluate the scaling out performance of GraphM. For
this goal, we first evaluate the execution time of 16 jobs on different
schemes of GridGraph for Twitter on a single PC by increasing the
number of CPU cores. From Figure 20, we find that GridGraph-M
performs better than other ones under any circumstances, especially
when the number of cores is more, because the storage and access
of the graph structure data is shared by the concurrent jobs in
GridGraph-M, while the other schemes have a higher data access
cost. Second, we evaluate the performance of 64 jobs on different

schemes of PowerGraph and Chaos over UK-union in Figure 21 by
increasing the number of nodes from 64 to 128. We can observe
that better scalability is also achieved by integrating GraphM with
them because of less communication cost. Because the scalability
of GraphM is greatly decent in most situations, we believe it can
efficiently support concurrent graph processing in industry.

6 RELATEDWORK
Recently, many graph processing systems have been proposed.
GraphChi [24] and X-Stream [33] achieve efficient out-of-core
graph processing through sequentially accessing storage. Hao et
al. [39] keep frequently accessed data locally to minimize the cache
miss rate. TurboGraph [18] fully exploits the parallelism of multi-
core and FlashSSD to overlap CPU computation and I/O operation.
FlashGraph [49] adopts a semi-external memory graph engine to
achieve high IOPS and parallelism. PathGraph [41] designs a path-
centric method to acquire better locality. By using the novel grid for-
mat and the streaming-apply model, GridGraph [50] improves the
locality and reduces I/O operations. HotGraph [44], FBSGraph [45],
DGraph [47], and DiGraph [46] accelerate graph processing via
faster state propagation. However, these systems mainly focus on
optimizing individual graph processing, which lead to redundant
storage consumption and data access cost as handling multiple con-
current graph processing on same graph. Hence, Seraph [40] tries
to decouple the data model and computing logics for less consump-
tion of memory. CGraph [43, 48] proposes to reduce the redundant
data accesses in the concurrent jobs. Nevertheless, they are tightly
coupled to their own programming models and graph processing
engines, which cause re-engineering burden of various applica-
tions for users while using these engines. Compared with them,
GraphM transparently improves the throughput of concurrent jobs
on existing graph processing systems.

Meanwhile, some storage optimization methods are also pro-
posed to support efficient iterative graph processing. Graphene [25]
supports graph processing on disks via fine-grained I/O manage-
ment. GraFBoost [20] uses sort-reduce accelerator to reduce the
number of I/O accesses to flash storage. V-Part [13] optimizes GraF-
Boost [20] using a new graph partition scheme. GraphOne [22]
proposes a storage system for evolving graph using a data abstrac-
tion to enable data access at different granularities with only a small
data duplication. However, these storage systems still suffer from
high redundant data access cost for concurrent iterative graph jobs
without the consideration of the data access similarities. Note that
some graph storage and querying systems [10, 17, 30, 31, 34, 42] are
recently devised for concurrent graph queries. However, they are

SC ’19, November 17–22, 2019, Denver, CO, USA Jin Zhao, Yu Zhang, Xiaofei Liao, et al.

dedicated to graph queries which usually only access different small
subsets of a graph for exactly once, and can not efficiently support
iterative graph processing which needs to frequently traverse the
whole graph.

7 CONCLUSION
This paper proposes a storage system GraphM to integrate with
existing graph processing systems for efficient execution of multi-
ple concurrent graph processing jobs. The key mechanisms are an
efficient Share-Synchronize method to enable multiple jobs to share
the graph structure data in the LLC/memory, and a scheduling strat-
egy to maximize the utilization ratio of the graph structure data
loaded into the memory. Experimental results show that GraphM
brings a performance improvement up to 13 times. In future, we
will first exploit the use of new hardware to accelerate data ac-
cesses of concurrent jobs for higher throughput. Second, we will
further optimize GraphM for distributed platforms. Third, we will
also optimize it for evolving graphs. Finally, we will also research
the security problems of GraphM because it may be attacked by
some jobs when they share a common graph and some private
information may also be leaked.

ACKNOWLEDGMENTS
We would like to thank our shepherd and anonymous reviewers
for their constructive comments. Yu Zhang (zhyu@hust.edu.cn) is
the corresponding author of this paper. This paper is supported by
National Key Research and Development Program of China under
grant No. 2018YFB1003500, National Natural Science Foundation of
China under grant No. 61832006, 61825202, 61702202, and 61929103.

REFERENCES
[1] 2019. didi. http://www.didiglobal.com/.
[2] 2019. facebook. http://www.facebook.com/.
[3] 2019. huawei. http://www.huawei.com/.
[4] 2019. LAW. http://law.di.unimi.it/datasets.php.
[5] 2019. SNAP. http://snap.stanford.edu/data/index.html.
[6] Abanti Basak, Shuangchen Li, Xing Hu, Sang Min Oh, Xinfeng Xie, Li Zhao,

Xiaowei Jiang, and Yuan Xie. 2019. Analysis and Optimization of the Mem-
ory Hierarchy for Graph Processing Workloads. In Proceedings of the 25th IEEE
International Symposium on High Performance Computer Architecture. 373–386.

[7] Johannes Blum, Stefan Funke, and Sabine Storandt. 2018. Sublinear Search Spaces
for Shortest Path Planning in Grid and Road Networks. In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence. 6119–6126.

[8] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered
label propagation: a multiresolution coordinate-free ordering for compressing
social networks. In Proceedings of the 20th International Conference on World Wide
Web. 587–596.

[9] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2008. A Large Time-Aware
Graph. ACM SIGIR Forum 42, 2 (2008), 33–38.

[10] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry C. Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkateshwaran
Venkataramani. 2013. TAO: Facebook’s Distributed Data Store for the Social
Graph. In Proceedings of the 2013 USENIX Annual Technical Conference. 49–60.

[11] Aydin Buluç and Kamesh Madduri. 2011. Parallel Breadth-first Search on Dis-
tributed Memory Systems. In Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis. 1–12.

[12] Jiefeng Cheng, Qin Liu, Zhenguo Li, Wei Fan, John C. S. Lui, and Cheng He.
2015. VENUS: Vertex-centric streamlined graph computation on a single PC.
In Proceedings of the 31st IEEE International Conference on Data Engineering.
1131–1142.

[13] Nima Elyasi, Changho Choi, and Anand Sivasubramaniam. 2019. Large-Scale
Graph Processing on Emerging Storage Devices. In Proceedings of the 17th USENIX
Conference on File and Storage Technologies. 309–316.

[14] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: distributed graph-parallel computation on natural graphs.

In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation. 17–30.

[15] James Goulding, Simon Preston, and Gavin Smith. 2016. Event Series Prediction
via Non-Homogeneous Poisson Process Modelling. In Proceedings of the 16th
IEEE International Conference on Data Mining. 161–170.

[16] Minyang Han and Khuzaima Daudjee. 2015. Giraph unchained: Barrierless asyn-
chronous parallel execution in pregel-like graph processing systems. Proceedings
of the VLDB Endowment 8, 9 (2015), 950–961.

[17] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han.
2019. Efficient Subgraph Matching: Harmonizing Dynamic Programming, Adap-
tive Matching Order, and Failing Set Together. In Proceedings of the 2019 Interna-
tional Conference on Management of Data. 1429–1446.

[18] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,
Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: a fast parallel graph engine
handling billion-scale graphs in a single PC. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 77–
85.

[19] Sungpack Hong, Nicole C. Rodia, and Kunle Olukotun. 2013. On fast parallel
detection of strongly connected components (SCC) in small-world graphs. In
Proceedings of the 2013 International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–11.

[20] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, and Arvind. 2018.
GraFBoost: Using Accelerated Flash Storage for External Graph Analytics. In
Proceedings of the 45th ACM/IEEE Annual International Symposium on Computer
Architecture. 411–424.

[21] Seongyun Ko and Wook-Shin Han. 2018. TurboGraph++: A Scalable and Fast
Graph Analytics System. In Proceedings of the 2018 International Conference on
Management of Data. 395–410.

[22] Pradeep Kumar and H. Howie Huang. 2019. GraphOne: A Data Store for Real-
time Analytics on Evolving Graphs. In Proceedings of the 17th USENIX Conference
on File and Storage Technologies. 249–263.

[23] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In Proceedings of the 19th International
Conference on World Wide Web. 591–600.

[24] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation. 31–46.

[25] Hang Liu and H. Howie Huang. 2017. Graphene: Fine-Grained I/O Management
for Graph Computing. In Proceedings of the 15th USENIX Conference on File and
Storage Technologies. 285–300.

[26] Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. 2014. Large-scale distributed
graph computing systems: an experimental evaluation. Proceedings of the VLDB
Endowment 8, 3 (2014), 281–292.

[27] Jasmina Malicevic, Baptiste Joseph Eustache Lepers, and Willy Zwaenepoel. 2017.
Everything You Always Wanted to Know about Multicore Graph Processing
but Were Afraid to Ask. In Proceedings of the 2017 USENIX Annual Technical
Conference. 631–643.

[28] Ulrich Meyer. 2001. Single-source shortest-paths on arbitrary directed graphs in
linear average-case time. In Proceedings of the 12th Annual ACM-SIAM Symposium
on Discrete Algorithms. 797–806.

[29] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1998. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
Digital Library Technologies Project.

[30] Peitian Pan and Chao Li. 2017. Congra: Towards Efficient Processing of Con-
current Graph Queries on Shared-Memory Machines. In Proceedings of the 2017
International Conference on Computer Design. 217–224.

[31] Vicky Papavasileiou, Ken Yocum, and Alin Deutsch. 2019. Ariadne: Online
Provenance for Big Graph Analytics. In Proceedings of the 2019 International
Conference on Management of Data. 521–536.

[32] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
2015. Chaos: Scale-out graph processing from secondary storage. In Proceedings
of the 25th ACM Symposium on Operating Systems Principles. 410–424.

[33] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric Graph Processing Using Streaming Partitions. In Proceedings of the 24th
ACM Symposium on Operating Systems Principles. 472–488.

[34] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. 2016. Fast and
Concurrent RDF Queries with RDMA-Based Distributed Graph Exploration. In
Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation. 317–332.

[35] Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming. 135–146.

[36] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Helen Li, and Yiran Chen. 2018.
GraphR: Accelerating Graph Processing Using ReRAM. In Proceedings of the
24th IEEE International Symposium on High Performance Computer Architecture.
531–543.

[37] Keval Vora. 2019. LUMOS: Dependency-Driven Disk-based Graph Processing. In
Proceedings of the 2019 USENIX Annual Technical Conference. 429–442.

http://www.didiglobal.com/
http://www.facebook.com/
http://www.huawei.com/
http://law.di.unimi.it/datasets.php
http://snap.stanford.edu/data/index.html

GraphM: An Efficient Storage System for Concurrent Graph Processing SC ’19, November 17–22, 2019, Denver, CO, USA

[38] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani.
2017. Graspan: A single-machine disk-based graph system for interprocedural
static analyses of large-scale systems code. In Proceedings of the 22nd International
Conference on Architectural Support for Programming Languages and Operating
Systems. 389–404.

[39] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup Graph Process-
ing by Graph Ordering. In Proceedings of the 2016 International Conference on
Management of Data. 1813–1828.

[40] Jilong Xue, Zhi Yang, Zhi Qu, Shian Hou, and Yafei Dai. 2014. Seraph: an efficient,
low-cost system for concurrent graph processing. In Proceedings of the 23rd
International Symposium on High-performance Parallel and Distributed Computing.
227–238.

[41] Pingpeng Yuan, Wenya Zhang, Changfeng Xie, Hai Jin, Ling Liu, and Kisung Lee.
2014. Fast Iterative Graph Computation: A Path Centric Approach. In Proceedings
of the 2014 International Conference for High Performance Computing, Networking,
Storage and Analysis. 401–412.

[42] Qizhen Zhang, Akash Acharya, Hongzhi Chen, Simran Arora, Ang Chen, Vincent
Liu, and Boon Thau Loo. 2019. Optimizing Declarative Graph Queries at Large
Scale. In Proceedings of the 2019 International Conference on Management of Data.
1411–1428.

[43] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Ligang He, Bingsheng He, and Haikun
Liu. 2018. CGraph: A Correlations-aware Approach for Efficient Concurrent
Iterative Graph Processing. In Proceedings of the 2018 USENIX Annual Technical
Conference. 441–452.

[44] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Guang Tan, and Bing Bing Zhou. 2017.
HotGraph: Efficient Asynchronous Processing for Real-World Graphs. IEEE Trans.
Comput. 66, 5 (2017), 799–809.

[45] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, and Bing Bing Zhou. 2018. FBSGraph: Ac-
celerating Asynchronous Graph Processing via Forward and Backward Sweeping.
IEEE Transactions on Knowledge and Data Engineering 30, 5 (2018), 895–907.

[46] Yu Zhang, Xiaofei Liao, Hai Jin, Bingsheng He, Haikun Liu, and Lin Gu. 2019.
DiGraph: An Efficient Path-based Iterative Directed Graph Processing System on
Multiple GPUs. In Proceedings of the 2019 Architectural Support for Programming
Languages and Operating Systems. 601–614.

[47] Yu Zhang, Xiaofei Liao, Xiang Shi, Hai Jin, and Bingsheng He. 2018. Efficient Disk-
Based Directed Graph Processing: A Strongly Connected Component Approach.
IEEE Transactions on Parallel and Distributed Systems 29, 4 (2018), 830–842.

[48] Yu Zhang, Jin Zhao, Xiaofei Liao, Hai Jin, Lin Gu, Haikun Liu, Bingsheng He,
and Ligang He. 2019. CGraph: A Distributed Storage and Processing System for
Concurrent Iterative Graph Analysis Jobs. ACM Transactions on Storage 15, 2
(2019), 10:1–10:26.

[49] Da Zheng, Disa Mhembere, Randal C. Burns, Joshua T. Vogelstein, Carey E. Priebe,
and Alexander S. Szalay. 2015. FlashGraph: processing billion-node graphs on an
array of commodity SSDs. In Proceedings of the 13th USENIX Conference on File
and Storage Technologies. 45–58.

[50] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large scale
graph processing on a single machine using 2-level hierarchical partitioning. In
Proceedings of the 2015 USENIX Annual Technical Conference. 375–386.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Redundant Data Access Overhead
	2.2 Our Motivation

	3 Overview of GraphM
	3.1 System Architecture
	3.2 Graph Preprocessing
	3.3 Memory Sharing of Graph Structure
	3.4 Fine-grained Synchronization for Regular Streaming

	4 The Scheduling Strategy for Out-of-core Graph Analysis
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Preprocessing Cost
	5.3 Overall Performance Comparison
	5.4 Performance of Scheduling Strategy
	5.5 Integration with Other Systems
	5.6 Scalability of GraphM

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

