

Functional Thin Films in the Manufacture of Batteries

Jean. E. Marshall,¹ Eleni Fiamegkou,¹ Dinesha Dabera,¹ Scott Gorman,² Emma Kendrick,² Vannessa Goodship¹

1. WMG, University of Warwick, Coventry, CV4 7AL, UK
2. University of Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

Differences between Lithium-Ion and Lithium-Polymer Batteries

'Conventional' Li-ion battery

- As the battery is charged, electrons move from the Al current collector to the Cu current collector
- Li+ ions move from the metal oxide layer to the graphite layer in order to maintain charge neutrality
- A solid, porous separator keeps the two electrodes apart and prevents short circuit
- The flow of charge is reversed when the battery discharges, providing an electrical current to the connected circuit

Lithium Polymer Battery

- Instead of a liquid electrolyte, Li+ ions travel across a solid polymer electrolyte
- No separator is required due to the solid nature of the electrolyte layerthe two electrode layers are effectively separated
- NMC is Lithium Nickel Manganese Oxide, which provides a source of Li ions at the cathode

Lithium-Ion vs. Lithium-Polymer | Flighter Browner | Cherk by | C

Formulating an effective electrolyte layer

Requirements: mechanical robustness, high ionic conductivity, low electronic conductivity

- The first polymer electrolyte widely studied for Li batteries was polyethylene oxide (PEO)
- The electrolyte consists of a Li salt dissolved in a PEO matrix
- Li+ forms a complex between the electron-donating O atoms in the chain; ion conduction is by transfer of the Li+ between complexing sites

- Ion conduction occurs only within the amorphous regions of the polymer.
- To suppress crystallinity, a Li salt with a larger anion can be incorporated into the electrolyte.
- PEO mixed with LiClO₄ gives conductivities between 10⁻⁸ to 10⁻⁶ S cm⁻¹, while PEO with Li(CF₃SO₂)₂N (LTFSI) gives conductivities between 10⁻⁵ to 10⁻⁴ S cm⁻¹
- Other methods for the suppression of the formation of crystalline regions within the polymer include:
- The addition of low molecular-weight additives
- Blending a second polymer with the PEO
- Adding inorganic particles into the polymer matrix

Characterisation Techniques

Technique	Use
SEM-EDX	Structural information Cross sectional analysis of the interfaces Elemental analysis
XPS	Elemental analysis
EIS (Electrochemical Impedance Spectroscopy)	Ionic conductivity
Archimedes' method	Density analysis
Galvanostatic polarisation	Electrical conductivity
FIB-SIMS	Surface degradation
Raman spectroscopy	Presence of chemical groups
FT-IR spectroscopy	Presence of chemical groups
LIBS (Laser- Induced Breakdown Spectroscopy)	Elemental analysis

References

- 1. Yang, M., & Hou, J. (2012). Membranes in lithium ion batteries. *Membranes*, *2*(3), 367–383. doi:10.3390/membranes2030367
- 2. Lee, A., Koo, Y. (2019). The Effect of Active Material, Conductive Additives, and Binder in a Cathode Composite Electrode on Battery Performance. Energies, 12(4), 658. doi:10.3390/en12040658

Acknowledgements

We acknowledge IUK funding (project no. 104426, Multi optimal Solutions for Energy Storage Systems) for support.