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Abstract We propose a multiple optimal stopping model where an investor can sell
a divisible asset position at times of her choosing. Investors have S-shaped reference-
dependent preferences, whereby utility is defined over gains and losses relative to a
reference level and is concave over gains and convex over losses. For a price pro-
cess following a time-homogeneous diffusion, we employ the constructive potential-
theoretic solution method developed by Dayanik and Karatzas (Stoch. Process. Appl.
107:173–212, 2003). As an example, we revisit the single optimal stopping model
of Kyle et al. (J. Econ. Theory 129:273–288, 2006) to allow partial liquidation. In
contrast to the extant literature, we find that the investor may partially liquidate the
asset at distinct price thresholds above the reference level. Under other parameter
combinations, the investor sells the asset in a block, either at or above the reference
level.
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1 Introduction

Prospect theory was proposed by Kahneman and Tversky [22] and extended by Tver-
sky and Kahneman [33]. Under prospect theory, utility is reference-dependent and
so is defined over gains and losses relative to a reference level, rather than over final
wealth. The utility function exhibits concavity in the domain of gains and convexity
in the domain of losses, and the function is steeper for losses than for gains, a fea-
ture known as loss aversion. Prospect theory was originally developed to better fit
decision making behaviour observed in experimental studies.

In recent years, optimal stopping models employing reference-dependent prefer-
ences have been developed in order to understand the dynamic behaviour of individ-
uals with such preferences and to see to what extent the theory can be used to explain
both experimental and empirically observed behaviour. A strand of this literature, be-
ginning with Kyle et al. [24], has considered problems of optimal sale timing of risky
assets under reference-dependent preferences. In this paper, we extend the model of
Kyle et al. [24] to consider the question of partial liquidation of assets. Indeed, [24,
p. 284] remark that “. . . it would be of interest to incorporate partial liquidation in
our model”.

We propose an infinite-horizon optimal stopping model where an investor with
S-shaped reference-dependent preferences can sell her divisible asset position at
times of her choosing in the future. She derives utility from gains and losses rela-
tive to a reference level, and utility is realised at the time she sells her last tranche of
asset. We first give a general result which allows a multiple stopping problem (where
stopping times are allowed to coincide) to be viewed as a sequence of standard opti-
mal stopping problems. This result is then applied to a model where utility is given
by piecewise exponential functions, steeper for losses than for gains, and the asset
price follows a Brownian motion with drift. These explicit calculations enable us to
compare to the paper of Kyle et al. [24] who solve the block-sale case under the same
modelling assumptions.

Our main finding is showing that in the extended Kyle et al. [24] model, the in-
vestor may engage in partial sales. This represents the first time it has been shown
that partial liquidation can occur under an S-shaped value function. Decisions de-
pend upon the Sharpe ratio of the asset together with the risk aversion, risk seeking
and loss aversion measures. We give a condition on parameters which distinguishes
whether an investor will sell at two distinct thresholds (partial sales) or sell both units
at a single threshold (block sale). In some circumstances, the investor liquidates at
exactly break-even, which captures the spirit of the break-even effect of Thaler and
Johnson [32]. In an experimental setting, the authors of [32] find that in the presence
of prior losses, gambles that offer a chance to break even are very attractive. There are
also parameter combinations which lead to the investor holding the asset indefinitely
or, in the other extreme, sell everything immediately. Finally, there is a parameter
regime where if the investor were restricted to block sales, she would not enter the
game. However, for the same parameter set, when partial sales are allowed, she will
enter and wait to sell both units of asset at a gain.

Researchers are interested in modelling investor trading behaviour under S-shaped
reference-dependent preferences (of prospect theory) to see if it can better explain
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stylised facts in the empirical and experimental data. In particular, reference-depen-
dence is a long-standing explanation of why individual investors tend to sell winners
too early and ride losers too long, a behaviour called the disposition effect (Shefrin
and Statman [31], Odean [28]). In this vein, Kyle et al. [24], Henderson [14], Bar-
beris and Xiong [4] and Ingersoll and Jin [20] contribute optimal stopping models
for an investor with reference-dependent preferences under differing assumptions.
Kyle et al. [24] and Henderson [14] treat one-shot or block-sale optimal stopping
problems under alternative assumptions on the S-shaped utility and price processes.
In particular, Henderson [14] (see also Ingersoll and Jin [20]) contributed a model
where the investor sells at a loss voluntarily. This provided a better match to the dis-
position effect. Henderson [14] also considers partial liquidation, but finds under the
Kahneman–Tversky S-shaped value function and exponential Brownian motion that
the agent did not choose to partially sell.

Evidence for reference-dependent loss aversion has been found using slot ma-
chine gambler’s decisions by Lien and Zheng [26]. Laboratory experiments of Mag-
nani [27] find that individual investors sell winners too early and ride losers too long.
Imas [19] studies how realised and paper losses affect behaviour in an experiment
where subjects make a sequence of investment decisions. In one of the treatments
of this experiment, subjects decide whether to realise the outcome of the investment
in the middle of the sequence and are found to be more likely to realise gains than
losses.

Barberis and Xiong [4], Ingersoll and Jin [20] (and also He and Yang [13]) con-
sider realisation utility models where investors treat their investing experience as a
series of investment episodes and receive utility from each individual sale at the time
of sale. Mathematically, they sum up the utility of each individual sale and use a
discount factor to model investors’ tendency to realise gains early and losses late.
Barberis and Xiong [4] assume a piecewise linear utility function and find that the
investors never voluntarily sell a stock at a loss. Ingersoll and Jin [20] extend the
model by assuming an S-shaped utility function and find that the investors voluntar-
ily sell a stock both at a gain and at a loss. Recently, He and Yang [13] extended the
model to include an adaptive reference point which adapts to the stock’s prior gain or
loss. However, each of these models is separable in the sense that multiple identical
units of assets would be sold simultaneously at the same threshold. None address the
question of partial liquidation.

Our aim in this paper is to give a simple, tractable optimal stopping model with
S-shape reference-dependent preferences where partial sales do arise as an optimal
behaviour. We employ the constructive potential-theoretic solution method devel-
oped by Dayanik and Karatzas [9] for optimal stopping of linear diffusions. This
approach is particularly useful for our problem as the smooth-fit principle does not
apply because of the non-differentiability of the utility function, making the usual
variational approach more challenging to apply. One-dimensional optimal stopping
problems have been analysed by exploiting the relationship between functional con-
cavity and r-excessivity (see Dynkin and Yushkevich [10, Chap. 3, Sect. 8]) which
has been applied by Dayanik and Karatzas [9]. See also Alvarez [1, 2] for related
techniques. A general approach for multiple optimal stopping is presented in Koby-
lanski et al. [23], and our separation of our original problem into N optimal stopping
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sub-problems is in the same spirit. We provide a direct construction and proof in our
setting as we have a natural ordering on the stopping times. Other work on multiple
optimal stopping has appeared in Carmona and Dayanik [7] who consider a problem
for a regular diffusion process in the context of American options when the holder has
a number of exercise rights. It is assumed there that the holder chooses the consec-
utive stopping times with a strictly positive break period called a random refraction
period (otherwise the holder would use all her rights at the same time). It is difficult
to explicitly determine the solution, and the authors of [7] describe a recursive algo-
rithm. The recent work of Christensen [8] offers an alternative approach to multiple
stopping with random refraction periods as a special case of a class of impulse con-
trol problems and employs harmonic function techniques. In contrast, in our problem
here, we do not wish to impose any breaks between stopping times, but rather for-
mulate a model setting where it may be optimal to have such breaks. Finally, direct
methods for optimal stopping have also been used in stochastic switching problems
(Bayraktar and Egami [5]), and similar ideas are employed by Henderson and Hob-
son [15] to solve a problem involving a perfectly divisible tranche of options on an
asset with a diffusion price process.

One strand of the recent literature has concerned itself with portfolio optimisa-
tion (optimal control) under prospect theory, and examples of this work include Jin
and Zhou [21] and Carassus and Rásonyi [6]. Another focus of the recent literature
is on the probability weighting of prospect theory. However, probability weighting
leads to a time-inconsistency and thus a difference in behaviour of naive and sophisti-
cated agents; see Barberis [3]. Henderson et al. [17] (building on seminal work of Xu
and Zhou [34]) study agents who can pre-commit to a strategy and show that under
some assumptions (satisfied by the models of interest including the Kahneman and
Tversky [22, 33] specification), this consists of a stop-loss threshold together with
a continuous distribution on gains. However, recent results (Ebert and Strack [11],
also Henderson et al. [16]) have shown that naive prospect theory agents never stop
gambling. We focus in this paper on reference-dependent S-shaped preferences in the
absence of probability weighting and extend the literature in the direction of holding
a quantity of asset rather than just one unit.

2 General framework

2.1 The partial liquidation problem

Consider an investor who is holding N ≥ 1 units of claim on an asset with current
price Yt , where we denote by F = (Ft ) the natural filtration of Y . The investor is able
to liquidate or sell the position in the asset at any time in the future. She can choose
F-stopping times τi, i = 1, . . . ,N , at which to liquidate her N units of the claim, and
hence is able to partially liquidate her divisible position. We write τ1 ≥ · · · ≥ τN so
that τi denotes the sale time when there are i units remaining in the portfolio. For each
sold unit i, the investor receives the payoff hi(Yτi

), where the hi(·) are nondecreasing
functions, and compares this amount to a corresponding reference level hi

R . As is
often the case in the literature, an interpretation of hi

R is the break-even level or the
amount paid for the claim on the asset itself, and we later specialise to this choice.



Partial liquidation under reference-dependent preferences 339

We should like a formulation in which the potential partial sales are not inde-
pendent (so delaying a partial sale will impact on future sales), and so our investor
considers her position as an investment episode which is closed and valued only once
the final partial sale takes place. This might be appropriate for institutional investors
who are more likely to view investments in terms of overall portfolio position. Under
this interpretation, the investor’s problem can be written as

VN(y,0) = sup
τ1≥···≥τN

E

[
U

( N∑
i=1

(
hi(Yτi

) − hi
R

))∣∣∣∣Y0 = y

]
, (2.1)

where the utility function U is an increasing function. Later we specialise to the
reference-dependent S-shaped function U given in the next section. Furthermore, we
set f (Yτ (ω)) = 0 on {τ = +∞} for any Borel function f (·).

While later we assume a linear payoff function for each partial sale, i.e., hi(y) = y

for all i, the methodology can be used to treat more complex payoffs. For exam-
ple, take N = 2 and call options h1(y) = (y − k1)

+, h2(y) = (y − k2)
+ with strikes

k1 > k2. Denote by h1
R,h2

R two different reference levels, with one interpretation
being the price paid for each option. Using a general ordering result in Henderson
et al. [18], we know that the options are exercised in increasing strike order, and
hence our solution method applies.

Finally, to close this section, we comment on alternative specifications. First note
that in common with Kyle et al. [24], we do not include a discount term in the speci-
fication above. Although it would be possible to do so, it is questionable whether this
is desirable when losses are involved. Discounting gives an incentive to stop sooner
on gains but delay losses, a feature which we, and others, are trying to explain by us-
ing S-shaped reference-dependent preferences. Second, as shown in Henderson [14]
and Barberis and Xiong [4], if the investor instead considered each partial sale as an
independent investment episode, then she would consider

sup
τ1≥···≥τN

E

[ N∑
i=1

U
(
hi(Yτi

) − hi
R

)∣∣∣∣Y0 = y

]
.

While this captures the spirit of Barberis and Xiong’s [4] realisation utility where
investors consider a series of investing ‘episodes’, mathematically, this formulation
splits into N independent stopping problems and thus does not capture the interde-
pendency we desire.

2.2 Reference-dependent preferences

When we present results for a specific model, we take the S-shaped, two-piece expo-
nential utility function used by Kyle et al. [24], i.e.,

U(x) =
{

φ1(1 − e−γ1x), if x ≥ 0,

φ2(e
γ2x − 1), if x < 0,

(2.2)

where φ1, φ2, γ1, γ2 > 0. Above the reference point, the agent’s utility function is
a concave exponential function, with γ1 measuring the local absolute risk aversion.
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Below the reference point, the value function is a convex exponential function, with
γ2 measuring the local absolute risk loving level. In addition, we assume φ1γ1 < φ2γ2

to ensure that the agent is loss averse, that is, more sensitive to losses than to gains
around the reference point, i.e., U ′(0−) > U ′(0+).

2.3 The price process

Consider a complete probability space (�,F ,F,P) supporting a Brownian motion
W = (Wt )t≥0 and let Y = (Yt )t≥0 be a one-dimensional time-homogeneous diffusion
process solving

dYt = μ(Yt )dt + σ(Yt )dWt (2.3)

for Borel functions1 μ : I → R and σ : I → R+, where I = (aI , bI) ⊆ R is the state
space of Y with endpoints −∞ ≤ aI < bI ≤ ∞. Assume Y is regular in (aI , bI).
Let τY

(a,b) = inf{t : Yt /∈ (a, b)} be the first time Y leaves the interval (a, b). Consider
the continuous, strictly increasing scale function S(·) of the diffusion Y , satisfying

DS(x) := 1

2
σ 2(x)

d2S

dx2
(x) + μ(x)

dS

dx
(x) = 0, x ∈ I,

and ensuring that the process S(Yt∧τY
(aI ,bI )

) is a local martingale; see Revuz and Yor

[30, Proposition VII.3.5].
Specifically, we specialise to the model used in Kyle et al. [24] and hence take

dYt = μdt + σdWt, (2.4)

where μ and σ > 0 are constants and I = (−∞,∞). Under these assumptions, the
scale function is given by S(y) = eηy if μ < 0, −eηy if μ > 0 and S(y) = y if μ = 0,
where η = −2μ/σ 2. Note that η depends solely on the return-for-risk ratio or Sharpe
ratio μ/σ 2.

3 Solution to the partial liquidation problem

3.1 The general problem

An approach towards solving the optimal stopping problem in (2.1) is outlined in
Kobylanski et al. [23]. This approach breaks down the original optimal stopping
problem into N sub-problems. In Proposition 3.1 below, we provide an alternative
construction and proof of how such a decomposition can be achieved. However, it
is worth noting that the result is in the same spirit as the discussion presented in
Kobylanski et al. [23], particularly Theorem 3.1 there.

1We assume that μ(·) and σ(·) are sufficiently regular so that there exists a weak solution to the SDE
which is unique in the sense of probability law, so that the scale function S(·) exists. See Revuz and Yor
[30, Proposition VII.3.2].
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Denote by x the total gains or losses from previous sales. Define

VN(y, x) = sup
τ1≥···≥τN

E

[
U

(
x +

N∑
i=1

(
hi(Yτi

) − hi
R

))∣∣∣∣Y0 = y

]

= sup
τ1≥···≥τN

E

[
E

[
U

(
x +

N∑
i=1

(
hi(Yτi

) − hi
R

))∣∣∣FτN

]∣∣∣∣Y0 = y

]
. (3.1)

We are primarily interested in (2.1), i.e., x = 0. The following result will facilitate
the decomposition of (3.1) into N sub-problems.

In order to be able to solve (3.1), we assume that the usual integrability condition
holds (see for example Peskir and Shiyaev [29, Eq. (2.1.1)] for the one-dimensional
case, or Kobylanski et al. [23, Theorem 2.3]), namely

E

[
sup

0≤tN≤···≤t1<∞

∣∣∣∣U
(

x +
N∑

i=1

(
hi(Yti ) − hi

R

))∣∣∣∣
]

< ∞. (3.2)

Proposition 3.1 Let (�,F ,P) be a probability space, Y a time-homogeneous diffu-
sion process with respect to its natural filtration F and f (·) any increasing continuous
function with f (0) = 0. If

E

[
sup

0≤tn≤···≤t1<∞

∣∣∣∣f
( n∑

i=1

hi(Yti )

)∣∣∣∣
]

< ∞, (3.3)

then

sup
τn≤···≤τ1

E

[
E

[
f

( n∑
i=1

hi(Yτi
)
)∣∣∣Fτn

]∣∣∣∣Y0 = y

]

= sup
τn

E

[
ess sup

τn−1≤···≤τ1:τn−1≥τn

E

[
f

( n∑
i=1

hi(Yτi
)
)∣∣∣Fτn

]∣∣∣∣Y0 = y

]
.

Proof The result follows if we show that

sup
τn≤···≤τ1

E

[
E

[
f

( n∑
i=1

hi(Yτi
)
)∣∣∣Fτn

]∣∣∣∣Y0 = y

]

≥ sup
τn

E

[
ess sup

τn−1≤···≤τ1:τn−1≥τn

E

[
f

( n∑
i=1

hi(Yτi
)
)∣∣∣Fτn

]∣∣∣∣Y0 = y

]
(3.4)

since the reverse inequality is trivial. Given an arbitrary stopping time τn, consider
the random variable

Z(τn−1,...,τ1) := E

[
f

( n∑
i=1

hi(Yτi
)

)∣∣∣∣Fτn

]
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and the family 	 = {Zα : α ∈ I}, where I is the set of all (n−1)-tuples of F-stopping
times (ξn−1, . . . , ξ1) satisfying τn ≤ ξn−1 ≤ · · · ≤ ξ1 almost surely. As shown in
Lemma A.1, the family 	 has the lattice property and hence there exists a countable
subset J = {αj : j ∈ N} ⊆ I such that

Z∗ := ess sup
α∈I

Zα = lim
j→∞Zαj

with Zα1 ≤ Zα2 ≤ · · · , P-a.s.

It follows by using (3.3) and Jensen’s inequality that

E[|Z∗|] = E

[∣∣∣ lim
j→∞Zαj

∣∣∣] = E

[
lim

j→∞|Zαj |
]

= E

[
lim

j→∞

∣∣∣∣E
[
f

(
hn(Yτn) +

n−1∑
i=1

hi(Y
α

j
i

)
)∣∣∣Fτn

]∣∣∣∣
]

≤ E

[
lim

j→∞E

[∣∣∣f (
hn(Yτn) +

n−1∑
i=1

hi(Y
α

j
i

)
)∣∣∣|Fτn

]]

≤ E

[
E

[
ess sup

(ξn−1,...,ξ1)∈I

∣∣∣f (
hn(Yτn) +

n−1∑
i=1

hi(Yξi
)
)∣∣∣|Fτn

]]

≤ E

[
sup

tn≤···≤t1

∣∣∣f ( n∑
i=1

hi(Yti )
)∣∣∣

]
< ∞.

Hence by monotone convergence, the right-hand side of (3.4) becomes

sup
τn

E

[
ess sup

α∈I
Zα

]
= sup

τn

lim
j→∞E[Zαj ] ≤ sup

τn

sup
τn−1≤···≤τ1:τn−1≥τn

E[Z(τn−1,...,τ1)]. �

Assuming that condition (3.2) applies, Proposition 3.1 implies that for 1 ≤ n ≤ N ,

Vn(y, x) = sup
τn≤···≤τ1

E

[
U

(
x +

n∑
i=1

(
hi(Yτi

) − hi
R

))∣∣∣∣Y0 = y

]

= sup
τn

E

[
sup

τn−1≤···≤τ1:τn−1≥τn

E

[
U

(
x +

n∑
i=1

(
hi(Yτi

) − hi
R

))∣∣∣Fτn

]∣∣∣∣Y0 = y

]

= sup
τn

E
[
Vn−1

(
Yτn, x + hn(Yτn) − hn

R

)∣∣Y0 = y
]
,

where V0(y, x) = U(x).
Given the time-homogeneity of the problem, the structure of the solution must be

to stop when the price process Y exits an interval. Thus the approach is to consider
stopping times of this form and choose the ‘best’ interval. We first transform the
problem into natural scale—this simplifies calculations as we then work with (local)
martingales. Define �t = S(Yt ) to transform the process into natural scale and let
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�0 = θ0 = S(Y0). We can map exit times of the price Y from an interval to exit times
of � from a transformed interval, i.e.,

τY
(a,b) = inf{t : Yt /∈ (a, b)} = inf

{
t : �t /∈ (

S(a), S(b)
)}

= inf{t : �t /∈ (φ,ψ)} = τ�
(φ,ψ),

where S(a) = φ, S(b) = ψ .
Define gn(θ, x) to be the value of the problem with initially 1 ≤ n ≤ N units

remaining, current gains and losses x from previous sales, current value of the trans-
formed price θ , and sell one unit immediately so that n−1 remain. Then by definition,

gn(θ, x) = Vn−1

(
S−1(θ), x + hn

(
S−1(θ)

) − hn
R

)
. (3.5)

We now give some intuitive arguments to describe the solution when we consider
a bounded interval and then follow this with more cases in Proposition 3.2. Consider
first any fixed interval (a, b) ∈ I such that (S(a), S(b)) is bounded, and with n units
remaining, compute

E

[
Vn−1

(
YτY

(a,b)
, x + hn(YτY

(a,b)
) − hn

R

)∣∣∣Y0 = y
]

= E

[
gn(�τ�

(φ,ψ)
, x)

∣∣∣�0 = θ
]

= gn(φ, x)
ψ − θ

ψ − φ
+ gn(ψ,x)

θ − φ

ψ − φ
,

where we use the probabilities of the (bounded) martingale (�t )t≤τ�
(φ,ψ)

hitting the

ends of the interval. We then choose the ‘best’ interval (φ,ψ), i.e., consider

sup
φ<θ<ψ

(
gn(φ, x)

ψ − θ

ψ − φ
+ gn(ψ,x)

θ − φ

ψ − φ

)
= ḡn (θ, x) , (3.6)

where ḡn(·, x) is the smallest concave majorant of the function gn(·, x) for any
fixed x.

Figure 1 gives a stylised representation of θ �→ gn(θ, x) for fixed x. We can use the
graph to explain intuitively why the solution to the ‘best’ interval problem above is
indeed the smallest concave majorant. We want to choose endpoints φ,ψ to maximise
the expression in brackets in (3.6). If we start at the point θA on the graph, then the
expression in the curly brackets in (3.6) is maximised by taking φ = ψ = θA (all other
pairs of endpoints give values beneath gn(θA, x)). This corresponds to immediate
stopping since we stop when we exit the interval (φ,ψ). However, if we start at the
point θB , the quantity in brackets is maximised if we take φ = φB and ψ = ψB . In
fact, for any starting point in the interval (φB,ψB), the endpoints φB,ψB are best.
Thus, for any θ ∈ (φB,ψB), the solution is to stop when the transformed price �

reaches either endpoint of the interval. Outside the interval (φB,ψB), the solution is
to stop immediately. So the solution is the smallest concave majorant, which is equal
to the function gn itself for θ outside the interval (φB,ψB) and the dashed straight
line joining the endpoints for values of θ inside the interval. This intuition lies behind
the following result.
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Fig. 1 Stylised representation
of the function θ �→ gn(θ, x) for
fixed x, where θ = S(y). The
function gn(·, x) represents the
value of the problem to the
investor holding 1 ≤ n ≤ N

units of asset if she sells
immediately. The smallest
concave majorant ḡn(·, x) is
formed by taking the straight
dashed line for θ ∈ (φB,ψB)

and the function gn(·, x) itself
for θ ≤ φB and θ ≥ ψB .

Proposition 3.2 Consider the optimal stopping problem defined in (2.1) with U(·)
an increasing bounded function, Y = (Yt )t≥0 a one-dimensional time-homogeneous
diffusion process with dynamics given in (2.3) and state space I = (aI , bI) ⊆ R

in which Y is regular. On the interval (S(aI), S(bI)), let ḡn(·, x) be the smallest
concave majorant of gn(·, x) for any fixed x, where 1 ≤ n ≤ N .

(i) If S(aI) = −∞, then Vn(y, x) = Vn−1(bI , x + hn(bI) − hn
R) for y ∈ (aI , bI).

(ii) If S(aI) > −∞, then Vn(y, x) = ḡn(S(y), x) for y ∈ (aI , bI).

We prove the result specifically for our problem in the appendix. Alternative con-
ditions to characterise nondegenerate solutions of an optimal stopping problem are
also discussed in Dayanik and Karatzas [9, Proposition 5.10]. In particular, they as-
sume the conditions

λaI = lim sup
y↓aI

g+
n

(
S(y), x

)
< ∞ and λbI = lim sup

y↑bI

g+
n (S(y), x)

S(y)
< ∞.

From Proposition 3.2, denoting the smallest concave majorant of gn(·, x) by
ḡn(·, x), it follows that for 2 ≤ n ≤ N ,

gn(θ, x) = ḡn−1

(
θ, x + hn

(
S−1(θ)

) − hn
R

)
.

This implies that the value function at the nth step can be obtained by first solving
for the value function at the (n − 1)th step.

3.2 Piecewise exponential utility and drifting Brownian motion

Having obtained a characterisation for the value function under partial liquidation, we
apply the above methodology to the price process and preference function defined in
Sects. 2.3 and 2.2, respectively. We limit our discussion to the case when N = 2. The
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solutions for N > 2 can be obtained through the same approach, but become rather
unwieldy. Since our aim is to show that the investor may partially liquidate, we only
need consider N = 2 to show this.

We specialise to the case when the investor is selling or liquidating the asset itself;
so we consider hi(y) = y for i = 1, . . . ,N , with the common reference price hR = yR

for i = 1, . . . ,N . We also interpret the reference price yR as the price at which the
asset was purchased in the past. Before stating the main result, we first re-state the
results obtained by Kyle et al. [24] and Henderson [14] for the case N = 1, that is,
when only block sales are allowed. [24] use a variational approach which is challeng-
ing due to the S-shaped utility function. Note that [24] do not include case (ii) below
as they rule it out by an additional assumption on parameter values, perhaps because
this assisted in the ease of their calculations.

Proposition 3.3 (Kyle et al. [24], Henderson [14]) Consider the optimal liquida-
tion problem (2.1) with N = 1, h1(y) = y and h1

R = yR . Suppose the price process
(Yt )t≥0 is given by a Brownian motion with drift, dYt = μdt + σdWt as in (2.4), and
the utility function U is the S-shaped piecewise exponential given by (2.2). Define
η = −2μ/σ 2. The solution is given by the following four cases:

(i) If η ≤ 0, the investor waits indefinitely and never liquidates.
(ii) If 0 < η < γ1φ1/φ2, the investor always sells at a level ȳ

(1)
u > yR or above.

The level ȳ
(1)
u is given by

ȳ(1)
u = yR − 1

γ1
ln

(
φ1 + φ2

φ1

2μ

2μ − γ1σ 2

)
. (3.7)

(iii) If 0 < γ1φ1/φ2 ≤ η < γ2, the investor sells the first time the price process is
equal to or exceeds the break-even level yR .

(iv) If η ≥ γ2, the investor sells immediately at any price level.

We see from the above proposition for the block-sale problem that there are four
cases depending upon the relative parameter values. Two cases are degenerate. If
μ ≥ 0 as in case (i), the investor waits indefinitely regardless of price. Conversely, if
the Sharpe ratio μ/σ 2 is negative and sufficiently large compared to the risk seeking
parameter γ2, the investor sells immediately. The interesting situations arise between
these extremes where we have two possibilities depending on where η lies in the
interval 0 <

γ1φ1
φ2

< γ2. In (iii) when the Sharpe ratio is relatively poor such that η

is in [ γ1φ1
φ2

, γ2), the investor waits below the break-even level and liquidates at the

break-even level yR itself. The width of the interval [ γ1φ1
φ2

, γ2) reflects the strength of
loss aversion in this model. If the investor is more loss averse, this interval is larger
and a greater range of Sharpe ratios will fall into this case. In (ii) when the Sharpe
ratio is better and η ∈ (0,

γ1φ1
φ2

), the investor waits beyond the break-even level and
will not liquidate until the investment is in gains. Note that in (iii) and (iv), given
our interpretation of the reference level as the price paid, liquidation will only occur
at the break-even level itself. Effectively, the investor never holds the asset in these
scenarios. Note also that the investor never waits to sell at a loss in this model.

Our interest in this paper is how the above generalises to partial liquidation. We
can now state our extension to N = 2 units.
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Proposition 3.4 Consider the optimal partial liquidation problem (2.1) with N = 2,
h2(y) = h1(y) = y and h2

R = h1
R = yR . Suppose the price process (Yt )t≥0 is given by

a Brownian motion with drift, dYt = μdt + σdWt as in (2.4), and the utility function
U is the S-shaped piecewise exponential given by (2.2). Define η = −2μ/σ 2. The
solution consists of five cases depending on the relative parameter values:

(i) If η ≤ 0, the investor waits indefinitely and never liquidates.
(ii) If 0 < η < γ1φ1/φ2, the investor sells first at ȳ

(2)
u and then at ȳ

(1)
u . (If

ȳ
(2)
u ≥ ȳ

(1)
u , the investor sells both assets at ȳ

(2)
u .)

(iii) The investor sells both units of asset at the price level ȳ
(2)
u > yR if

(a) 0 < η/2 < γ2 ≤ η and η/2 < γ1φ1/φ2, or
(b) 0 < η < γ2 and η/2 < γ1φ1/φ2 ≤ η.

(iv) If 0 < η/2 < γ2 and η/2 ≥ γ1φ1/φ2, the investor sells both units of asset
at yR .

(v) If 0 < γ2 ≤ η/2, the investor sells immediately at all price levels.

The threshold ȳ
(2)
u in (ii) and (iii) is given by

ȳ(2)
u = yR − 1

2γ1
ln

(
φ1 + φ2

φ1

μ

μ − γ1σ 2

)
. (3.8)

Similarly to the case when only block sales are allowed (Proposition 3.3), the
above proposition shows that under partial liquidation, the behaviour of the investor
still depends on where the value of η lies in comparison with scaled versions of the
key quantities γ1φ1

φ2
and γ2. Thus again, decisions rely on the Sharpe ratio μ/σ 2 of

the asset together with the investor’s risk aversion, risk seeking and loss aversion
measures.

A first observation is that while we require γ1φ1
φ2

< γ2 for loss aversion to hold,

we may have either ordering of γ2 and 2γ1φ1
φ2

, with the ordering 2γ1φ1
φ2

< γ2 reflecting
stronger loss aversion. We observe that the extreme cases where the investor waits
indefinitely (see (i)) and sells immediately (see (v)) are still present when the asset can
be partially sold. However, the Sharpe ratio of the asset needs to be worse compared
to the block-sale model to put the investor in the ‘sell immediately’ case, since we
now require η ≥ 2γ2.

The situation we are most interested in occurs when 0 < η <
γ1φ1
φ2

(see (ii) above).
This is the parameter regime when the Sharpe ratio, while negative, is better than all
the other cases with η > 0. In this parameter regime, the investor sells one unit of
asset at the threshold ȳ

(2)
u and the other unit of asset at the threshold ȳ

(1)
u . We have

the following result.

Corollary 3.5 Let 0 < η < γ1φ1/φ2. If the parameters are such that

φ2

φ1

2η

γ1

(
1 + η

2γ1

)
< 1, (3.9)

then we have ȳ
(2)
u < ȳ

(1)
u and the asset will be sold at two distinct thresholds. Other-

wise, ȳ
(2)
u ≥ ȳ

(1)
u and both units of asset are sold together at the threshold ȳ

(2)
u .
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Fig. 2 Optimal liquidation of two units of asset under the model of Proposition 3.4, case (ii). Panels
(a)–(c) use the parameters φ1 = 0.5, φ2 = 0.9, γ1 = 3, γ2 = 2 and η = 0.66. Condition (3.9) is satisfied,

giving ȳ
(2)
u = 1.213 < ȳ

(1)
u = 1.227. Panels (d)–(f) use the parameters φ1 = 0.2, φ2 = 0.9, γ1 = 3, γ2 = 1

and η = 0.66. Condition (3.9) is not satisfied for this choice; hence both units are sold at ȳ
(2)
u = 1.101. All

panels use a reference level (per unit) of yR = 1. Set x = 0
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Fig. 3 Optimal liquidation of two units of asset under the model of Proposition 3.4, cases (iii)(a) and (iv).
Panels (a) and (b) illustrate case (iii)(a) with φ1 = 0.5, φ2 = 1.3, γ1 = 2.5, γ2 = 1 and η = 1.65. Both

units are sold at ȳ
(2)
u = 1.022 > yR . Panels (c)–(e) illustrate case (iv) with φ1 = 0.5, φ2 = 1.3, γ1 = 1,

γ2 = 2 and η = 1.64. Both units are sold at ȳ
(1)
u = ȳ

(2)
u = 1 = yR . All panels use a reference level (per

unit) of yR = 1. Set x = 0
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The condition in (3.9) splits the relevant region of parameters into two sub-regions.
If the parameters are such that 0 < η < γ1(

√
1/2 + φ1/φ2 − 1), we have ȳ

(2)
u > ȳ

(1)
u

and the asset is sold at two distinct thresholds. This sub-region of parameters is the
slightly better one, where the value of η is small and positive and hence the expected
return is negative but small in magnitude. This is the regime where the investor is
willing to wait and sell at different thresholds, as the risk of waiting is not too great to
bear relative to returns. Otherwise, γ1(

√
1/2 + φ1/φ2 − 1) < η < γ1φ1/φ2 and then

the units of asset are sold together at the threshold ȳ
(2)
u . In this sub-region, the value

of η is a little larger and hence the expected return is worse. Hence here, the investor
would prefer to sell both units of asset at once as the risk of waiting longer to reach
a higher threshold is too great relative to the weaker returns. Finally, we can also
remark that for stronger loss aversion, the region of parameters where the investor
sells at two distinct thresholds shrinks.

Figure 2 illustrates the results from case (ii). All panels use a reference level (per
unit) of yR = 1. Panels (a)–(c) use the parameters φ1 = 0.5, φ2 = 0.9, γ1 = 3, γ2 = 2
and η = 0.66. Condition (3.9) is satisfied, giving ȳ

(2)
u = 1.213 < ȳ

(1)
u = 1.227. Panels

(d)–(f) use the parameters φ1 = 0.2, φ2 = 0.9, γ1 = 3, γ2 = 1 and η = 0.66. Condition
(3.9) is not satisfied for this choice; hence both units are sold at ȳ

(2)
u = 1.101.

The remaining cases (iii) and (iv) involve selling both units of asset simulta-
neously, either at a gain threshold ȳ

(2)
u (case (iii)) or at the break-even level yR

(case (iv)). Figure 3 illustrates the results from cases (iii)(a) and (iv). Again, all panels
use a reference level (per unit) of yR = 1. Panels (a) and (b) illustrate case (iii)(a).
The parameters are φ1 = 0.5, φ2 = 1.3, γ1 = 2.5, γ2 = 1 and η = 1.65. We see both
units are sold at ȳ

(2)
u = 1.022 > yR . Panels (c)–(e) illustrate case (iv). The param-

eters are φ1 = 0.5, φ2 = 1.3, γ1 = 1, γ2 = 2 and η = 1.64. Both units are sold at
ȳ

(1)
u = ȳ

(2)
u = 1 = yR .

To demonstrate the difference between the solutions in the block-sale and partial-
sale models, consider an example where η ∈ (

γ1φ1
φ2

, γ2). If only block sales are al-
lowed, Proposition 3.3 (iii) says that the investor sells the first time the price process
is equal to or exceeds the break-even level yR and hence, under our assumptions,
effectively never enters the problem in this parameter regime. Once we allow partial
sales, there are two possibilities. The investor may still sell at yR (and thus effec-
tively never enter), but only if the loss aversion is relatively strong in that we have
2γ1φ1

φ2
< η < γ2 (see Proposition 3.4, case (iv)). The other possibility is that the in-

vestor sells both units of asset at a gain, at the threshold ȳ
(2)
u ; see Proposition 3.4,

case (iii)(b).

4 Discussion and conclusions

Researchers have studied multiple optimal stopping problems under standard concave
utility functions in other settings. For example, Grasselli and Henderson [12], Leung
and Sircar [25] and Henderson and Hobson [15] consider the exercise of American
options under concave utilities and demonstrate that the solution involves exercising
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a tranche of (identical) options over different asset price thresholds. Intuitively, a risk-
averse investor wants to spread the risk of continuing to hold the options by exercising
them separately. Similarly, intuition would tell us that an investor who is risk-seeking
with convex utility would prefer to engage in a block sale. What might we expect from
an S-shaped reference-dependent utility? Since there are concave and convex parts to
the utility, we could reasonably expect that either might be dominant, depending on
parameters. Somewhat surprisingly, Henderson [14] showed that under a Tversky and
Kahneman [33] S-shaped function and exponential Brownian motion, the investor’s
optimal strategy, when not degenerate, always involved selling both units of asset
together. In this paper, we demonstrate that with piecewise exponential S-shaped
functions and drifting Brownian price dynamics, it is possible to obtain a situation
where the investor chooses to sell her asset gradually rather than in a block.

Our results suggest that it would be worthwhile for experimental tests of optimal
stopping under reference-dependent preferences to extend their focus to consider the
question of how individuals sell a divisible quantity of asset. Potential further theo-
retical work may examine the additional feature of an exogenous end of game, where
the asset is liquidated upon arrival of the first jump of a Poisson process (see Kyle
et al. [24], Barberis and Xiong [4] for examples). This would improve the applicabil-
ity of the model, as it would mean that an investor would sometimes sell, rather than
hold, when the Sharpe ratio is positive. While injecting realism, this addition would
be at the expense of tractability of the solution method, and for this reason, we do not
pursue it here.
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Appendix A

Lemma A.1 Let τn be an F-stopping time and f an increasing continuous function
satisfying f (0) = 0. Then the family 	 = {Zα : α ∈ I} of Fτn -measurable random
variables defined in the proof of Proposition 3.1 has the lattice property.

Proof Let α,α′ ∈ I so that α = (ξn−1, . . . , ξ1) and α′ = (ξ ′
n−1, . . . , ξ

′
1) satisfy

τn ≤ ξn−1 ≤ · · · ≤ ξ1 and τn ≤ ξ ′
n−1 ≤ · · · ≤ ξ ′

1.
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Recall that

Zα = E

[
f

(
Yτn +

n−1∑
i=1

Yξi

)∣∣∣∣Fτn

]
and Zα′ = E

[
f

(
Yτn +

n−1∑
i=1

Yξ ′
i

)∣∣∣∣Fτn

]
.

Consider ᾱ = (ξ̄n−1, . . . , ξ̄1) ∈ I defined by2

ξ̄i = ξiI{Zα≥Zα′ } + ξ ′
i I{Zα<Zα′ }.

Then it follows that

Zᾱ = E

[
f

(
Yτn +

n−1∑
i=1

Yξi

)
I{Zα≥Zα′ } + f

(
Yτn +

n−1∑
i=1

Yξ ′
i

)
I{Zα<Zα′ }

∣∣∣∣Fτn

]

= Zα
I{Zα≥Zα′ } + Zα′

I{Zα<Zα′ } = max(Zα,Zα′
). �

Proof of Proposition 3.2 Both results are proved for n = 1 as the same arguments
can be easily extended for general n.

(i) Fix Y0 = y and consider a sequence bn ↑ bI with y ≤ bn. Furthermore, consider
the local martingale � = S(Y ) and let τn = τY

(aI ,bn) = τ�
(−∞,S(bn)). As U is increasing

in y, we have V1(y, x) ≤ limn→∞ U(h1(bn) − h1
R + x) for all y ∈ I .

Let θ = S(y) and take a ∈ R such that −∞ < a ≤ θ . Since the local martingale
� is in natural scale, � starting at θ leaves the interval (S(a), S(bn)) at S(bn) with
probability S(θ)−S(a)

S(bn)−S(a)
. By taking a ↓ −∞, it follows that P[τ�

(−∞,S(bn)) < ∞] = 1.
This in turn implies that

V1(y, x) = sup
τ

Ey

[
U

(
h1(Yτ ) − h1

R + x
)]

≥ Ey

[
U

(
h1(Yτn) − h1

R + x
)]

= U
(
h1(bn) − h1

R + x
)
,

where the last equality follows from the fact that � exits from the interval
(−∞, S(bn)) at S(bn) almost surely, as shown above. But this is true for all n ∈ N

and hence by taking limits in n, we have V1(y, x) ≥ U(h1(bI) − h1
R + x), giving the

result.
(ii) Hold x constant. By definition, we have

V1(y, x) = sup
τ

E
[
U

(
h1(Yτ ) − h1

R + x
)∣∣Y0 = y

] = sup
τ

E[g1(�τ , x)|�0 = θ ],

where g1(θ, x) = U(S−1(θ) − yR + x) as in (3.5). Since U(·) is increasing, also
g1(·, x) is increasing and we let g̃1(·, x) be any increasing, concave majorant of
g1(·, x). But for every stopping rule τ ,

E[g1(�τ , x)|�0 = θ ] ≤ E[g̃1(�τ , x)|�0 = θ ] ≤ g̃1(E[�τ |�0 = θ ], x)

2The fact that each ξ̄i is a stopping time follows from the fact that Zα and Zα′
are Fτn -measurable.
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where we use the fact that g̃1(·, x) is a concave majorant of g1(·, x) and Jensen’s
inequality. Finally, because � ≥ S(aI) > −∞ is a local martingale bounded below
and hence a supermartingale, we obtain

g̃1(E[�τ |�0 = θ ], x) ≤ g̃1(θ, x).

The arbitrariness of the stopping time τ gives V1(y, x) ≤ ḡ1(θ, x), where ḡ1(·, x)

is the smallest concave majorant of g1(·, x). Note that because U(·) = g1(·, x) is
increasing, so is its smallest concave majorant ḡ1(·, x). Thus we have shown that we
cannot do better than ḡ1(·, x) when allowing general stopping rules. It remains to
show that there is a stopping rule which attains this bound.

Suppose first that lim supψ↑S(bI )
g1(ψ,x)

ψ−S(aI )
= ∞, implying that ḡ1(θ, x) = ∞ for

θ ∈ (S(aI), S(bI)). Then there exists a sequence bn ↑ bI such that g1(S(bn),x)
S(bn)−S(aI )

↑ ∞
as n ↑ ∞. Given θ ∈ (S(aI), S(bI)) and S(aI) < φ̂ < θ , define the sequence
of stopping rules τ ∗

n = τ�

(φ̂,S(bn))
= τY

(S−1(φ̂),bn)
which converges almost surely to

τ ∗ = τ�

(φ̂,S(bI ))
= τY

(S−1(φ̂),bI )
. (This follows easily from the definition of the stop-

ping times). Then by using the transformation in (3.5) and the fact that the process �

is in natural scale, we have

E
[
U

(
h1(Yτ∗

n
) − h1

R + x
)∣∣Y0 = S−1(θ)

]
= E[g1(�τ∗

n
, x)|�0 = θ ]

= g1(φ̂, x)
S(bn) − θ

S(bn) − φ̂
+ g1

(
S(bn), x

) θ − φ̂

S(bn) − φ̂
.

Taking limits in n, it hence follows that for some constant K > 0,

E
[
U

(
h1(Yτ∗) − h1

R + x
)∣∣Y0 = S−1(θ)

]

= lim
n→∞

(
g1(φ̂, x)

S(bn) − θ

S(bn) − φ̂
+ g1

(
S(bn), x

) θ − φ̂

S(bn) − φ̂

)

≥ K + (θ − φ̂) lim
n→∞

g1(S(bn), x)

S(bn) − S(aI)

= ∞,

and hence τ ∗ attains the bound.
Now suppose that lim supψ↑S(bI )

g1(ψ,x)
ψ−S(aI )

< ∞. In this case, ḡ1(·, x) is a finite-
valued function. Fix θ and let ϒ = {υ : ḡ1(υ, x) = g1(υ, x)}. Suppose θ ∈ ϒ . Then
with τ = 0, by again applying the transformation in (3.5), we are done because

E
[
U

(
h1(Y0) − h1

R + x
)∣∣Y0 = y

] = g1(θ, x) = ḡ1(θ, x).

Otherwise, define φ∗ = sup{ξ < θ : ξ ∈ ϒ}, ψ∗ = inf{ξ > θ : θ ∈ ϒ} with φ∗ = S(aI)

if {ξ < θ : θ ∈ ϒ} = ∅ and ψ∗ = S(bI) if {ξ > θ : θ ∈ ϒ} = ∅.
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Suppose ψ∗ < ∞. Then θ �→ ḡ1(θ, x) is linear on the interval (φ∗,ψ∗) and
(�t∧τ(φ∗,ψ∗)

) is a martingale. Letting τ ∗ = τ�
(φ∗,ψ∗) = τY

(S−1(φ∗),S−1(ψ∗)), we have

E
[
U

(
h1(Yτ∗) − h1

R + x
)∣∣Y0 = y

] = E
[
g1

(
�τ�

(φ∗,ψ∗)
, x

)]

= g1(φ
∗, x)

ψ∗ − θ

ψ∗ − φ∗ + g1(ψ
∗, x)

θ − φ∗

ψ∗ − φ∗

= ḡ1(θ, x).

On the other hand, if ψ∗ =∞, then ḡ1(·, x), the smallest concave majorant of g1(·, x),
is constant over (φ∗,∞). Consider the stopping time τ ∗ = τ�

(φ∗,∞) = τY
(S−1(φ∗),∞)

and
an increasing sequence (θn) with θ1 > θ and θn ↑ ∞. Since both g1(·, x) and ḡ1(·, x)

are finite-valued functions and ψ∗ = ∞, we have

E
[
U

(
h1(Yτ∗) − h1

R + x
)∣∣Y0 = y

] = lim
n→∞

(
ḡ1(φ

∗, x)
θn − θ

θn − φ∗ + ḡ1(θn, x)
θ − φ∗

θn − φ∗

)

= lim
n→∞ ḡ1(φ, x)

θn − φ∗

θn − φ∗

= ḡ1(φ, x) = ḡ1(θ, x). �

Proof of Proposition 3.3 Consider first the case when μ > 0 (i.e., η < 0). The state
space I = (−∞,∞) of Y has natural endpoints and S(I) = (−∞,0). Then by
Proposition 3.2, V1(y, x) = U(x + bI − h1

R) = ∞. This gives case (i).
Now consider the case when μ < 0 (i.e., η > 0). Then we have S(I) = (0,∞),

S(yR) = exp(−2μyR/σ 2) and hence S−1(θ) = −(σ 2/(2μ)) ln θ for θ ∈ (0,∞).
Fix x. Then the stopping problem translates into finding the function ḡ1(·, x), the
smallest concave majorant of the function g1(·, x). Using the definition of U(·) in
(2.2) and the fact that g1(θ, x) is given by

g1(θ, x) = U
(
S−1(θ) − yR + x

)

as in (3.5), we have

g1(θ, x) =
⎧⎨
⎩

φ1(1 − exp(−γ1(yR − x))θ
γ1

σ2
2μ ) for θ ≥ exp(η(yR − x)),

φ2(exp(γ2(yR − x))θ
−γ2

σ2
2μ − 1) for θ < exp(η(yR − x)).

By differentiating g1(·, x) and observing the behaviour of g′
1(θ, x) at θ = 0, it follows

that for γ2 ≤ η, g1(·, x) is concave on both (0, θ̂ ) and (θ̂ ,∞), where θ̂ = exp(ηγR).
Furthermore, since lim

θ↑θ̂
g′

1(θ,0) < lim
θ↓θ̂

g′
1(θ,0), it follows that g1(·, x) is con-

cave over (0,∞). This implies that ḡ1(·, x) = g1(·, x) and hence the stopping region
coincides with the whole state space I . This gives case (iv).

When γ2 > η, it follows that θ �→ g1(θ, x) is convex for θ < exp(ηyR) and con-
cave otherwise. Thus the smallest concave majorant ḡ1(·, x) of g1(·, x) is obtained
by considering the chord from the point (0,−φ2) to a point (θ̄u, g1(θ̄u, x)) at which
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the slope of the chord is equal to the slope of g1(·, x) for θ ≥ S(yR). Since we are
after V1(y,0), setting x = 0 gives

ȳ(1)
u = yR − 1

γ1
ln

(
φ1 + φ2

φ1

2μ

2μ − γ1σ 2

)
. (A.1)

Since ȳ
(1)
u ≥ yR , it follows from (A.1) that ȳ

(1)
u > yR for 0 < η < (φ1/φ2)γ1

(case (ii)) and ȳ
(1)
u = yR otherwise (case (iii)). �

Proof of Proposition 3.4 Suppose μ > 0 (i.e., η < 0). Similar arguments as for
case (i) in Proposition 3.3 show that under this assumption, the investor will wait
indefinitely and never liquidate their position (case (i)).

Henceforth we assume that η > 0 so that μ < 0. As described in Sect. 3.1, the
solution of this problem can be found by first characterising V1(y, x) through the
transformed reward function g1(·, x) and its smallest concave majorant ḡ1(·, x). We
then use the relation

gn(θ, x) = Vn−1

(
S−1(θ), x + hn

(
S−1(θ) − hn

R

)) = ḡn−1
(
θ, x + S−1(θ) − yR

)
(A.2)

to characterise V2(y, x) and the corresponding optimal stopping region. Given that
N = 2, setting x = 0 gives V (y) = V2(y,0) and we are done. Given that the problem
characterising V1(y, x) is identical to that described in Proposition 3.3, we know that

g1(θ, x) =
⎧⎨
⎩

φ1(1 − exp(−γ1(yR − x))θ
γ1

σ2
2μ ) for θ ≥ exp(η(yR − x)),

φ2(exp(γ2(yR − x))θ
−γ2

σ2
2μ − 1) for θ < exp(η(yR − x)).

Suppose η ≥ γ2. From the proof of Proposition 3.3, case (iv), we know that this
assumption implies ḡ1(θ, x) = g1(θ, x). By applying (A.2), we have

g2(θ, x) = ḡ1
(
θ, x + S−1(θ) − yR

) = g1
(
θ, x + S−1(θ) − yR

)
,

and using S−1(θ) = −(σ 2/(2μ)) ln θ gives

g2(θ, x) =
⎧⎨
⎩

φ1(1 − exp(−γ1(2yR − x))θ
γ1

σ2
μ ) for θ ≥ θ̂ (2)(x),

φ2(exp(γ2(2yR − x))θ
−γ2

σ2
μ − 1) for θ < θ̂(2)(x),

where θ̂ (2)(x) = exp(
η
2 (2yR − x)). By differentiating g2(·, x) with respect to θ and

setting x = 0, we find that

(a-i) g′
2(θ,0) ↓ 0 as θ ↑ ∞;

(a-ii) g′
2(θ,0) ↑ ∞ as θ ↓ 0 if η/2 > γ2;

(a-iii) g′
2(θ,0) ↑ −φ2γ2σ

2

μ
e−γ2(2yR−x) as θ ↓ 0 if η/2 = γ2;

(a-iv) g′
2(θ,0) ↓ 0 as θ ↓ 0 if η/2 < γ2.

Let θ̂ (2) = θ̂ (2)(0). If η/2 ≥ γ2, the results above show that θ �→ g2(θ,0) is con-
cave for θ ∈ (0, θ̂ (2)] and θ ∈ [θ̂ (2),∞). Furthermore, it is also possible to show that
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lim
θ↑θ̂ (2) g

′
2(θ,0) < lim

θ↓θ̂ (2) g
′
2(θ,0). From these two properties, we can conclude

that ḡ2(·, x) = g2(·, x) and hence the stopping region coincides again with all of I ,
giving case (v).

If η/2 < γ2, (a-iv) implies that for constant x, θ �→ g2(θ, x) is convex for
θ < θ̂(2)(x) and concave otherwise. This implies that ḡ2(θ,0) is obtained by con-
sidering a chord from (0,−φ2) to a point (θ̄

(2)
u , g2(θ̄

(2)
u ,0)) satisfying

g2(θ̄
(2)
u ,0) + φ2

θ̄
(2)
u

= ∂g2

∂θ
(θ,0)

∣∣∣∣
θ=θ̄

(2)
u

,

where θ̄
(2)
u ≥ θ̂ (2) since θ �→ g2(θ,0) is convex over (0, θ̂ (2)]. Since S−1(θ̂ (2)) = yR ,

a similar argument to the proof of cases (ii) and (iii) of Proposition 3.3 gives

(b-i) ȳ
(2)
u > yR for φ1γ2

φ2
>

η
2 ,

(b-ii) ȳ
(2)
u = yR for φ1γ2

φ2
≤ η

2 ,

where ȳ
(2)
u = S−1(θ̄

(2)
u ). From (b-i) above, we see that when φ1γ2

φ2
>

η
2 , the investor

first stops and sells at the level ȳ
(2)
u > yR . However, since we are under the parameter

regime where η/2 < γ2 ≤ η under which the stopping region of the second sale coin-
cides with the whole space (as seen in the first part of the proof3), the investor then
stops directly after selling the first unit of asset, giving case (iii)(a). A similar argu-
ment partially gives case (iv) from (b-ii) above. (In order to complete case (iv), it is
also necessary to show that the investor also sells both assets at yR when 0 < η < γ2;
this case is considered in the next part of the proof below.)

Having gone through all the cases for η ≥ γ2, consider now the situation where
0 < η < γ2 and suppose η <

φ1γ1
φ2

. From the proof of Proposition 3.3, we know that
under this parameter regime, ḡ1(θ, x) is determined by a chord connecting (0,−φ2)

to (θ̄u, g1(θ̄u, x)) for θ ≤ θ̄ (1)(x) and ḡ1(θ, x) = g1(θ, x) otherwise. This gives

ḡ1(θ, x) =

⎧⎪⎪⎨
⎪⎪⎩

φ1(1 − exp(−γ1(yR − x))θ
γ1

σ2
2μ ) for θ ≥ θ̄ (1)(x),

(φ1(1 − δ) + φ2)δ
−(2μ/γ1σ

2)

× exp(
2μ

σ 2 (2yR − x))θ − φ2 for θ < θ̄(1)(x)),

where

δ = φ1 + φ2

φ1

2μ

2μ − γ1σ 2
, θ̄ (1)(x) = exp

(−2μ

σ 2
(yR − x)

)
δ(2μ/γ1σ

2).

The solution to V1(y, x) under this parameter regime is described by the optimal stop-
ping region 	 = [ȳ(1)

u ,∞), where ȳ
(1)
u is given by (3.7). This can be observed from

the results obtained in the proof of Proposition 3.3 (since V1(y, x) captures the same
problem as described in Proposition 3.3). The next step is to use the transformation in

3Recall that we have τ2 ≥ τ1 and hence the problem described by the analysis of g1(θ, x) relates to the
second partial sale.
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(A.2) to solve for V2(y, x). By letting g2(θ, x) = ḡ1(θ, x + S−1(θ) − yR), we obtain

g2(θ, x) =
{

φ1(1 − exp(−γ1(2yR − x))θ
γ1

σ2
μ ) for θ ≥ θ̂ (2)(x),

K exp(
2μ

σ 2 (2yR − x))θ2 − φ2 for θ < θ̂(2)(x),

where

K = (φ1(1 − δ) + φ2)δ
−(2μ/γ1σ

2), θ̂ (2)(x) = exp

(−μ

σ 2
(2yR − x)

)
δ(μ/γ1σ

2).

From our assumption that η > 0, it is possible to show that g′
2(θ,0) ↓ 0 as θ ↓ 0

and g′
2(θ,0) ↓ 0 as θ ↑ ∞ and hence g2(·,0) is concave for θ > θ̂(2)(x) and convex

for θ < θ̂(2)(x). The smallest concave majorant ḡ2(·,0) can be obtained by a chord
joining two points on the graph of g2(·,0), replicating the same methodology as in
the case above when η/2 < γ2 < η. The stopping region, which corresponds to the set
{y ∈ R : V1(y,0) = V2(y,0)} = {θ > 0 : ḡ2(θ,0) = g2(θ,0)}, is given by [ȳ(2)

u ,∞),
where

ȳ(2)
u = yR − 1

2γ1
ln

(
φ1 + φ2

φ1

μ

μ − γ1σ 2

)
.

Since η < φ1γ1/φ2, it is in fact possible to show that ȳ
(2)
u > yR .

This proves that the investor will sell the first asset at the level ȳ
(2)
u and the second

at any level at or above ȳ
(1)
u , proving case (ii). We now compare ȳ

(2)
u and ȳ

(1)
u . It is

straightforward to show that the condition

φ2

φ1

2η

γ1

(
1 + η

2γ1

)
< 1

is equivalent to the ordering ȳ
(2)
u < ȳ

(1)
u , and hence in this case, the asset is sold at

two distinct thresholds. If ȳ
(2)
u ≥ ȳ

(1)
u , then both units are sold together at ȳ

(2)
u . This

proves Corollary 3.5.
Finally, we examine the case when 0 < η < γ2 and φ1γ1

φ2
≤ η. By using the charac-

terisation of ḡ1(·, x) obtained when proving Proposition 3.3 (iii) and using the rela-
tion described in (A.2), the following results can be obtained:

1) If 0 < η < γ2 and η
2 <

γ1φ1
φ2

< η, the investor liquidates the first asset at the

level ȳ
(2)
u > yR , where ȳ

(2)
u is given by (3.8), and the second asset at any level at or

above yR . This implies that both assets are sold at ȳ
(2)
u (case (iii)(b)).

2) If 0 < η < γ2 and γ1φ1
φ2

≤ η
2 , the investor liquidates both assets at the reference

level yR . This completes the proof for case (iv). �
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