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An Improved Algorithm for Incremental Cycle Detection and Topological
Ordering in Sparse Graphs∗

Sayan Bhattacharya† Janardhan Kulkarni‡

Abstract
We consider the problem of incremental cycle detection and
topological ordering in a directed graph G = (V,E) with
|V | = n nodes. In this setting, initially the edge-set E of the
graph is empty. Subsequently, at each time-step an edge gets
inserted into G. After every edge-insertion, we have to report
if the current graph contains a cycle, and as long as the graph
remains acyclic, we have to maintain a topological ordering
of the node-set V . Let m be the total number of edges that
get inserted into G. We present a randomized algorithm for
this problem with Õ(m4/3) total expected update time.

Our result improves the Õ(m · min(m1/2, n2/3)) total
update time bound of [5, 9, 10, 7]. In particular, for m =

O(n), our result breaks the longstanding Θ̃(n3/2) barrier on

the total update time. Furthermore, whenever m = o(n3/2),

our result improves upon the recently obtained Õ(m
√
n)

total update time bound of [6]. We note that if m = Ω(n3/2),

then the algorithm of [5, 4, 7], which has Õ(n2) total update

time, beats the performance of the Õ(m
√
n) time algorithm

of [6]. It follows that we improve upon the total update time
of the algorithm of [6] in the “interesting” range of sparsity

where m = o(n3/2).

Our result also happens to be the first one that breaks

the Ω(n
√
m) lower bound of [9] on the total update time of

any local algorithm for a nontrivial range of sparsity. Specif-

ically, the total update time of our algorithm is o(n
√
m)

whenever m = o(n6/5). From a technical perspective, we

obtain our result by combining the algorithm of [6] with the

balanced search framework of [10].

1 Introduction

Consider an incremental directed graph G = (V,E)
with |V | = n nodes. The edge-set E is empty in the
beginning. Subsequently, at each time step an edge
gets inserted into E. After each such update (edge
insertion), we have to report if the current graph G
contains a cycle, and as long as the graph remains
acyclic, we have to maintain a topological ordering in
G. The time taken to report the answer after an edge
insertion is called the update time. We want to design an
incremental algorithm for this problem with small total
update time, which is defined as the sum of the update
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times over all the edge insertions. Recall that in the
static setting there is an algorithm for cycle detection
and topological ordering that runs in linear time. Thus,
in the incremental setting, a naive approach would be to
run this static algorithm from scratch after every edge-
insertion in G. Let m be the number of edges in the final
graph. Then the naive incremental algorithm will have
a total update time of O(m× (m+ n)) = O(m2 +mn).
In contrast, we get the result stated in Theorem 1.1. In
Section 3, we also give instances which show that our
analysis of the update time of the algorithm referred to
in the theorem below is tight.

Theorem 1.1. There is a randomized algorithm for
incremental cycle detection with expected total update
time of Õ(m4/3).

1.1 Perspective Cycle detection and topological or-
dering in directed graphs are fundamental, textbook
problems. It is natural to ask what happens to the com-
plexity of these problems when the input graph changes
with time via a sequence of edge insertions. It comes as
no surprise, therefore, that a long and influential line of
work in the dynamic algorithms community, spanning
over a couple of decades, have focussed on this ques-
tion [6, 9, 10, 5, 4, 7, 2, 3, 12, 14, 15, 16].

Note that the problem is trivial in the offline
setting. Here, we get an empty graph G = (V,E) and
a sequence of edges e1, . . . , em as input at one go. For
each t ∈ [1,m], let Gt denote the status of G after the
first t edges e1, . . . , et have been inserted into E. We
have to determine, for each t, if the graph Gt contains
a cycle. This offline version can easily be solved in
O(m logm) time using binary search. In contrast, we
are still far away from designing an algorithm for the
actual, incremental version of the problem that has
Õ(m) total update time.1 This is especially relevant,
because at present we do not know of any technique
in the conditional lower bounds literature [1, 11, 13]
that can prove a separation between the best possible
total update time for an incremental problem and the

1Throughout this paper, we use the Õ(.) notation to hide
polylog factors.



best possible running time for the corresponding offline
version. Thus, although it might be the case that
there is no incremental algorithm for cycle detection and
topological ordering with near-linear total update time,
proving such a statement is beyond the scope of current
techniques. With this observation in mind, we now
review the current state of the art on the algorithmic
front. We mention three results that are particularly
relevant to this paper.

Result (1): There is an incremental algorithm with
total update time of Õ(n2). This follows from the work
of [5, 4, 7]. So the problem is well understood for dense
graphs where m = Θ(n2).

Result (2): There is an incremental algorithm with
total update time of Õ(m · min(m1/2, n2/3)). This
follows from the work of [5, 9, 10, 7].

Result (3): There is a randomized incremental al-
gorithm with total expected update time of Õ(m

√
n).

This follows from the very recent work of [6].

Significance of Theorem 1.1. We obtain a random-
ized incremental algorithm for cycle detection and topo-
logical ordering that has an expected total update time
of Õ(m4/3). Prior to this, all incremental algorithms
for this problem had a total update time of Ω(n3/2) for
sparse graphs with m = Θ(n). Our algorithm breaks
this barrier by achieving a bound of Õ(n4/3) on sparse
graphs. More generally, our total update time bound of
Õ(m4/3) outperforms the Õ(m

√
n) bound from result

(3) as long as m = o(n3/2). Note that if m = ω(n3/2)
then result (3) gets superseded by result (1). On the
other hand, result (3) is no worse than result (2) for all
values of m.23 Thus, prior to our work result (3) gave
the best known total update time when m = o(n3/2),
whereas result (1) gave the best known total update
time when m = Ω(n3/2). We now improve upon the
bound from result (3) in this “interesting” range of spar-
sity where m = o(n3/2).

We are also able to break, for the first time in the
literature, a barrier on the total update time of a certain
type of algorithms that was identified by Haeupler et
al. [10]. Specifically, they defined an algorithm to be
local iff it satisfies the following property. Suppose that

2Throughout this paper we assume that m ≥ n. This is
because if m = o(n) then many nodes remain isolated (with zero

degree) in the final graph, and we can ignore those isolated nodes

while analyzing the total update time of the concerned algorithm.
3It is easy to combine two incremental algorithms and get

the “best of both worlds”. For example, suppose that we want

to combine results (1) and (3) to get a total update time of
Õ(min(n2,m

√
n)), without knowing the value of m in advance.

Then we can initially start with the algorithm from result (3) and

then switch to the algorithm from result (1) when m becomes
Ω(n3/2).

currently the graph G is acyclic, and the algorithm
maintains a topological ordering ≺ on the node-set V
such that x ≺ y for every edge (x, y) ∈ E. In other
words, every edge is a forward edge under ≺. At this
point, a directed edge (u, v) gets inserted into the graph
G. Then the algorithm updates the topological ordering
after this edge insertion only if v ≺ u. Furthermore,
if v ≺ u, then the algorithm changes the positions
of only those nodes in this topological ordering that
lie in the affected region, meaning that a node x
changes its position only if v � x � u just before
the insertion of the edge. Haeupler et al. [10] showed
that any local algorithm for incremental cycle detection
and topological ordering must necessarily have a total
update time of Ω(n

√
m). Interestingly, although the

algorithms that lead to results (1) and (3) are not local,
prior to our work no algorithm (local or not) was known
in the literature that beats this Ω(n

√
m) lower bound

for any nontrivial value of m. In sharp contrast, our
algorithm (which is not local) has a total update time
of Õ(m4/3), and this beats the Ω(n

√
m) lower bound of

Haeupler et al. [10] when m = o(n6/5).

Our Technique. We obtain our result by combining
the framework of Bernstein and Chechik [6] with the
balanced search procedure of Haeupler et al. [10]. We
first present a high level overview of the algorithm in [6].
Say that a node x is an ancestor (resp. descendant)
of another node y iff there is a directed path from
x to y (resp. from y to x) in the current graph G.
The algorithm in [6] is parameterized by an integer
τ ∈ [1, n] whose value will be fixed later on. Initially,
each node v ∈ V is sampled with probability Θ(log n/τ).
Bernstein and Chechik [6] maintain a partition of the
node-set V into subsets {Vi,j}, where a node v belongs
to a subset Vi,j iff it has exactly i ancestors and j
descendants among the sampled nodes. A total order
≺∗ is defined on the subsets {Vi,j}, where Vi,j ≺∗ Vi′,j′
iff either i < i′ or {i = i′, j > j′}. Next, it is shown
that this partition and the total order satisfies two
important properties. (1) If G contains a cycle, then all
the nodes in that cycle belong to the same subset in the
partition. (2) As long as G remains acyclic, every edge
(u, v) ∈ E is either an internal edge or a forward edge
w.r.t. the total order ≺∗; this means that the subset
containing u is either the same as or appears before the
subset containing v. Intuitively, these two properties
allow us to decompose the problem into smaller parts.
All we need to do now is (a) maintain the subgraphs
Gij induced by the subsets Vij , and (b) maintain a
topological ordering within each subgraph Gi,j . Task
(a) is implemented by using an incremental algorithm
for single-source reachability and a data structure for
maintaining an ordered list [8].



For task (b), consider the scenario where an edge
(u, v) gets inserted and both u and v belong to the same
subgraph Gi,j . Suppose that u appears after v in the
current topological ordering in Gi,j . We now have to
check if the insertion of the edge (u, v) creates a cycle,
or, equivalently, if there already exists a directed path
from v to u. In [6] this task is performed by doing a
forward search from v. Intuitively, this means exploring
the nodes that are reachable from v and appear before u
in the current topological ordering. If we encounter the
node u during this forward search, then we have found
the desired path from v to u, and we can report that
the insertion of the edge (u, v) indeed creates a cycle.
The time taken to implement this forward search is
determined by the number of nodes x that are explored
during this search. Bernstein and Chechik [6] now
introduce a crucial notion of τ -related pairs of nodes
(see Section 2.1 for details), and show that for every
node x explored during the forward search we get a
newly created τ -related pair (x, u). Next, they prove
an upper bound of O(nτ) on the total number of such
pairs that can appear throughout the duration of the
algorithm. This implies that the total number of nodes
explored during forward search is also at most O(nτ),
and this in turn helps us fix the value of τ (to balance
the time taken for task (a)) and bound the total update
time.

We now explain our main idea. Inspired by the
balanced search technique from [10], we modify the
subroutine for implementing task (b) as follows. We
simultaneously perform a forward search from v and a
backward search from u. The forward search proceeds
as in [6]. The backward search, on the other hand,
explores the nodes y such that u is reachable from y and
y appears after v in the current topological ordering. We
alternate between a forward search step and a backward
search step, so that at any point in time the number of
nodes respectively explored by these two searches are
equal to one other. If these two searches meet at some
node z, then we have found a path from v to u (the
path goes via z), and we accordingly declare that the
insertion of the edge (u, v) creates a cycle. The time
taken to implement task (b) is again determined by the
number of nodes explored during the forward search,
since this is the same as the number of nodes explored
during the backward search. Now comes the following
crucial observation. For every node x explored during
the forward search and every node y explored during the
backward search after the insertion of an edge (u, v),
we get a newly created τ -related pair (x, y). Thus, if
λ nodes are explored by each of these searches, then
we get Ω(λ2) newly created τ -related pairs; although
we still explore only 2λ nodes overall. In contrast, the

algorithm in [6] creates only O(λ) many new τ -related
pairs whenever it explores λ nodes. This quadratic
improvement in the creation of new τ -related pairs leads
to a much stronger bound on the total number of nodes
explored by our algorithm, because as in [6] we still
can have at most O(nτ) many newly created τ -related
pairs during the entire course of the algorithm. This
improved bound on the number of explored nodes leads
to an improved bound of Õ(m4/3) on the total update
time.

2 Our Algorithm: Proof of Theorem 1.1

This section is organized as follows. In Section 2.1 we
recall some useful concepts from [6]. In Section 2.2 we
present our incremental algorithm, and in Section 2.3
we analyze its total update time.

2.1 Preliminaries Throughout the paper, we as-
sume that the maximum degree of a node in G is at
most O(1) times the average degree. It was observed
in [6] that this assumption is without any loss of gener-
ality.

Assumption 1. [6] Every node in G has an out-degree
of O(m/n) and an in-degree of O(m/n).

We say that a node x ∈ V is an ancestor of another
node y ∈ V iff there is a directed path from x to y in G.
We let A(y) ⊆ V denote the set of all ancestors of y ∈ V .
Similarly, we say that x is a descendant of y iff there is
a directed path from y to x in G. We let D(y) ⊆ V
denote the set of all descendants of y. A node is both
an ancestor and a descendant of itself, that is, we have
x ∈ A(x) ∩ D(x). We also fix an integral parameter
τ ∈ [1, n] whose exact value will be determined later on.
Note that if there is a path from a node x to another
node y in G, then A(x) ⊆ A(y) and D(y) ⊆ D(x). Such
a pair of nodes is said to be τ -related iff the number of
nodes in each of the sets A(y) \ A(x) and D(x) \D(y)
does not exceed τ .

Definition 2.1. [6] We say that an ordered pair of
nodes (x, y) is τ -related in the graph G iff there is a
path from x to y in G, and |A(y) \ A(x)| ≤ τ and
|D(x) \ D(y)| ≤ τ . We emphasize that for the ordered
pair (x, y) to be τ -related, it is not necessary that there
be an edge (x, y) ∈ E.

If two nodes x, y ∈ V are part of a cycle, then clearly
A(x) = A(y) and D(x) = D(y), and both the ordered
pairs (x, y) and (y, x) are τ -related. In other words, if
an ordered pair (x, y) is not τ -related, then there is no
cycle containing both x and y. Intuitively, therefore,
the notion of τ -relatedness serves as a relaxation of the



notion of two nodes being part of a cycle. Next, note
that the graph G keeps changing as more and more
edges are inserted into it. So it might be the case that an
ordered pair of nodes (x, y) is not τ -related in G at some
point in time, but is τ -related in G at some other point
in time. The following definition and the subsequent
theorem becomes relevant in light of this observation.

Definition 2.2. [6] We say that an ordered pair of
nodes (x, y) is sometime τ -related in the graph G iff
it is τ -related at some point in time during the entire
sequence of edge insertions in G.

Theorem 2.1. [6] The number of sometime τ -related
pairs of nodes in G is at most O(nτ).

Following [6], we maintain a partition of the node-
set V into subsets {Vi,j} and the subgraphs {Gi,j =
(Vi,j , Ei,j)} induced by these subsets of nodes. We
sample each node x ∈ V independently with probability
log n/τ . Let S ⊆ V denote the set of these sampled
nodes. The outcome of this random sampling gives
rise to a partition of the node-set V into (|S| + 1)2

many subsets {Vi,j}, where i, j ∈ [0, |S|]. This is
formally defined as follows. For every node x ∈ V , let
AS(x) = A(x) ∩ S and DS(x) = D(x) ∩ S respectively
denote the set of ancestors and descendants of x that
have been sampled. Each subset Vi,j ⊆ V is indexed
by an ordered pair (i, j) where i ∈ [0, |S|] and j ∈
[0, |S|]. A node x ∈ V belongs to a subset Vi,j iff
|AS(x)| = i and |DS(x)| = j. In words, the index
(i, j) of the subset Vi,j specifies the number of sampled
ancestors and sampled descendants each node x ∈ Vi,j
is allowed to have. It is easy to check that the subsets
{Vi,j} form a valid partition of the node-set V . Let
Ei,j = {(x, y) ∈ E : x, y ∈ Vi,j} denote the set of
edges in G whose both endpoints lie in Vi,j , and let
Gi,j = (Vi,j , Ei,j) denote the subgraph of G induced by
the subset of nodes Vi,j . We also define a total order
≺∗ on the subsets {Vi,j}, where we have Vi,j ≺∗ Vi′,j′
iff either {i < i′} or {i = i′, j > j′}. We slightly abuse
the notation by letting V (x) denote the unique subset
Vi,j which contains the node x ∈ V . Consider any edge
(x, y) ∈ E. If the two endpoints of the edge belong
to two different subsets in the partition {Vi,j}, i.e., if
V (x) 6= V (y), then we refer to the edge (x, y) as a cross
edge. Otherwise, if V (x) = V (y), then the edge (x, y) is
an internal edge.

Lemma 2.1. [6] Consider the partition of the node-
set V into subsets {Vi,j}, and the subgraphs {Gi,j =
(Vi,j , Ei,j)} induced by these subsets of nodes. They
satisfy the following three properties.

• If there is a cycle in G = (V,E), then every edge
of that cycle is an internal edge.

• For every cross edge (x, y) ∈ E, we have V (x) ≺∗
V (y).

• Consider any two nodes x, y ∈ Vi,j for some i, j ∈
[0, |S|]. If there is a path from x to y in the subgraph
Gi,j, then with high probability the ordered pair
(x, y) is τ -related in G.

The first property states that the graph G contains a
cycle iff some subgraph Gi,j contains a cycle. Hence,
in order to detect a cycle in G it suffices to only
consider the edges that belong to the induced subgraphs
{Gi,j}. The second property, on the the other hand,
implies that if the graph G is acyclic, then it admits a
topological ordering ≺ that is consistent with the total
order ≺∗, meaning that x ≺ y for all x, y ∈ V with
V (x) ≺∗ V (y). Finally, the last property states that
whenever a subgraph Gi,j contains a path from a node x
to some other node y, with high probability the ordered
pair (x, y) is τ -related in the input graph G.

2.2 The algorithm Since edges never get deleted
from the graph G, our algorithm does not have to do
anything once it detects a cycle (for the graph will
continue to have a cycle after every edge-insertion in
the future). Accordingly, we assume that the graph G
has remained acyclic throughout the sequence of edge
insertions untill the present moment, and our goal is
to check if the next edge-insertion creates a cycle in G.
Our algorithm maintains a topological ordering ≺ of the
node-set V in the graph G that is consistent with the
total order ≺∗ on the subsets of nodes {Vi,j}, as defined
in Section 2.2. Specifically, we maintain a priority k(x)
for every node x ∈ V , and for every two nodes x, y ∈ V
with V (x) ≺∗ V (y) we ensure that k(x) ≺ k(y). As long
as G remains acyclic, the existence of such a topological
ordering ≺ is guaranteed by Lemma 2.1.

Data Structures. We maintain the partition {Vi,j} of
the node-set V and the subgraphs {Gi,j = (Vi,j , Ei,j)}
induced by the subsets in this partition. We use
an ordered list data structure [8] on the node-set V
to implicitly maintain the priorities {k(x)} associated
with the topological ordering ≺. This data structure
supports each of the following operations in O(1) time.

• INSERT-BEFORE(x, y): This inserts the node y
just before the node x in the topological ordering.

• INSERT-AFTER(x, y): This inserts the node y
just after the node x in the topological ordering.

• DELETE(x): This deletes the node x from the
existing topological ordering.

• COMPARE(x, y): If k(x) ≺ k(y), then this returns
YES, otherwise this returns NO.



The implementation of our algorithm requires the cre-
ation of two dummy nodes xi,j and yi,j in every subset
Vi,j . We ensure that k(xi,j) ≺ k(x) ≺ k(yi,j) for all
x ∈ Vi,j . In words, the dummy node xi,j (resp. yi,j)
comes first (resp. last) in the topological order among
all the nodes in Vi,j . Further, for all nodes x ∈ V with
V (x) ≺ Vi,j we have k(x) ≺ k(xi,j), and for all nodes
x ∈ V with Vi,j ≺ V (x) we have k(yi,j) ≺ k(x).

Handling the insertion of an edge (u, v) in G. By
induction hypothesis, suppose that the graph G cur-
rently does not contain any cycle and we are maintain-
ing the topological ordering ≺ in G. At this point, an
edge (u, v) gets inserted into G. Our task now is to first
figure out if the insertion of this edge creates a cycle,
and if not, then to update the topological ordering ≺.
We perform this task in four phases, as described below.

1. In phase I, we update the subgraphs {Gi,j}.

2. In phase II, we update the total order ≺ to make
it consistent with the total order ≺∗.

3. In phase III, we check if the edge-insertion creates
a cycle in G. See Section 2.2.1 for details.

4. If phase III fails to detect a cycle, then in phase IV
we further update (if necessary) the total order ≺
so as to ensure that it is a topological order in the
current graph G. See Section 2.2.2 for details.

Remark. We follow the framework developed in [6]
while implementing Phase I and Phase II. We differ
from [6] in Phase III and Phase IV, where we use the
balanced search approach from [10].

Implementing Phase I. In the first phase, we update
the subgraphs {Gi,j} such that they satisfy the prop-
erties mentioned in Lemma 2.1. The next lemma fol-
lows from [6]. The key idea is to maintain incremental
single-source reachability data structures from each of
the sampled nodes. Since at most Õ(n/τ) many nodes
are sampled in expectation, and since each incremental
single-source reachability data structure requires Õ(m)
total update time to handle m edge insertions, we get
the desired bound of Õ(mn/τ).

Lemma 2.2. [6] In phase I, the algorithm spends
Õ(mn/τ) total update time in expectation.

Implementing Phase II. In this phase we update the
total order ≺ on the node-set V in a certain manner.
Let G− and G+ respectively denote the graph G just
before and just after the insertion of the edge (u, v).
Similarly, for every node x ∈ V , let V −(x) and V +(x)
respectively denote the subset V (x) just before and just
after the insertion of the edge (u, v). At the end of this
phase, the following properties are satisfied.

Property 2.1. [6] At the end of phase II the total
order ≺ on V is consistent with the total order ≺∗
on {Vi,j}. Specifically, for any two nodes x and y, if
V (x) ≺∗ V (y), then we also have k(x) ≺ k(y).

Property 2.2. [6] At the end of phase II the total
order ≺ on V remains a valid topological ordering of
G−, where G− denotes the graph G just before the
insertion of the edge (u, v).

The next lemma bounds the total time spent by the
algorithm in phase II.

Lemma 2.3. [6] The total time spent in phase II across
all edge-insertions is at most Õ(n2/τ).

Proof. (Sketch) Let C be a counter that keeps track of
the number of times some node moves from one subset
in the partition {Vi,j} to another. Recall that a node
x ∈ V belongs to a subset Vi,j iff |AS(x)| = i and
|DS(x)| = j. As more and more edges keep getting
inserted in G, the node x can never lose a sampled
node in S as its ancestor or descendent. Instead,
both the sets AS(x) and DS(x) can only grow with
the passage of time. Since |AS(v)|, |DS(v)| ∈ [0, |S|],
each node x can move from one subset in the partition
{Vi,j} to another at most 2 · |S| times. Thus, we have

C ≤ |V | · 2|S| = O(n|S|). Since E[|S|] = Õ(n/τ), we
conclude that E[C] = Õ(n2/τ). Now, phase II can
be implemented in such a way that a call is made to
the ordered list data structure [8] only when some node
moves from one subset of the partition {Vi,j} to another.
So the total time spent in phase II is at most C, which
happens to be Õ(n2/τ) in expectation.

2.2.1 Phase III: Checking if the insertion of
the edge (u, v) creates a cycle. Let G− and G+

respectively denote the graph G before and after the
insertion of the edge (u, v). Consider the total order
≺ on the set of nodes V in the beginning of phase III
(or, equivalently, at the end of phase II). Property 2.1
guarantees that ≺ is consistent with the total order
≺∗ on {Vi,j}, and Property 2.2 guarantees that ≺ is
a valid topological ordering in G−. We will use these
two properties throughout the current phase. The
pseudocodes of all the subroutines used in this phase
appear in Section 2.4.

In phase III, our goal is to determine if the insertion
of the edge (u, v) creates a cycle in G. Note that if
k(u) ≺ k(v), then ≺ is also a valid topological ordering
in G+ as per Property 2.2, and clearly the insertion of
the edge (u, v) does not create a cycle. The difficult
case occurs when k(v) ≺ k(u). In this case, we first
infer that V (u) = V (v), meaning that both u and v



belong to the same subset in the partition {Vi,j} at the
end of phase II. This is because of the following reason.
The total order ≺ is consistent with the total order ≺∗
as per Property 2.1. Accordingly, since k(v) ≺ k(u), we
conclude that if V (v) 6= V (u) then V (v) ≺∗ V (u). But
this would contradict Lemma 2.1 as there is a cross edge
from u to v.

To summarize, for the rest of this section we assume
that k(v) ≺ k(u) and V (v) = V (u) = Vi,j for some
i, j ∈ [0, |S|]. We have to check if there is a path
Pv,u from v to u in G−. Along with the edge (u, v),
such a path Pv,u will define a cycle in G+. Hence, by
Lemma 2.1, every edge e in such a path Pv,u will belong
to the subgraph Gi,j = (Vi,j , Ei,j). Thus, from now on
our task is to determine if there is a path Pv,u from v to
u in Gi,j . We perform this task by calling the subroutine
SEARCH(u, v) described below.

SEARCH(u, v). We conduct two searches in order
to find the path Pv,u: A forward search from v, and
a backward search from u. Specifically, let F and
B respectively denote the set of nodes visited by the
forward search and the backward search untill now. We
always ensure that F ∩ B = ∅. A node in F (resp.
B) is referred to as a forward (resp. backward) node.
Every forward node x ∈ F is reachable from the node
v in Gi,j , whereas the node u is reachable from every
backward node x ∈ B in Gi,j . We further classify
each of the sets F and B into two subsets: Fa ⊆ F ,
Fd = F \ Fa and Ba ⊆ B, Bd = B \ Ba. The nodes
in Fa and Ba are called alive, whereas the nodes in Fd

and Bd are called dead. Intuitively, the dead nodes have
already been explored by the search, whereas the alive
nodes have not yet been explored. When the subroutine
begins execution, we have Fa = {v} and Ba = {u}. The
following property is always satisfied.

Property 2.3. Every node x ∈ Fa ∪ Fd is reachable
from the node v in Gi,j, and the node u is reachable from
every node y ∈ Ba∪Bd in Gi,j. The sets Fa, Fd, Ba and
Bd are pairwise mutually exclusive.

A simple strategy for exploring a forward and alive
node x ∈ Fa is as follows. For each of its outgoing edges
(x, y) ∈ Ei,j , we check if y ∈ B. If yes, then we have
detected a path from v to u: This path goes from v to
x (this is possible since x is a forward node), follows
the edge (x, y), and then from y it goes to u (this is
possible since y is a backward node). Accordingly, we
stop and report that the graph G+ contains a cycle. In
contrast, if y /∈ B and y /∈ F , then we insert y into the
set Fa (and F ), so that y becomes a forward and alive
node which will be explored in future. In the end, we
move the node x from the set Fa to the set Fd. We

refer to the subroutine that explores a node x ∈ Fa as
EXPLORE-FORWARD(x).

Analogously, we explore a backward and alive node
x ∈ Ba is as follows. For each of its incoming edges
(y, x) ∈ Ei,j , we check if y ∈ F . If yes, then there is
a path from v to u: This path goes from v to y (this
is possible since y is a forward node), follows the edge
(y, x), and then from x it goes to u (this is possible
since x is a backward node). Accordingly, we stop and
report that the graph G+ contains a cycle. In contrast,
if y /∈ F and y /∈ B, then we insert y into the set Ba

(and B), so that y becomes a backward and alive node
which will be explored in future. In the end, we move
the node x from the set Ba to the set Bd. We refer to the
subroutine that explores a node x ∈ Ba as EXPLORE-
BACKWARD(x).

Property 2.4. Once a node x ∈ Fa (resp. x ∈ Ba)
has been explored, we delete it from the set Fa (resp.
Ba) and insert it into the set Fd (resp. Bd).

While exploring a node x ∈ Fa (resp. x ∈ Ba), we
ensure that all its outgoing (resp. incoming) neighbors
are included in F (resp. B). This leads to the following
important corollary.

Corollary 2.1. Consider any edge (x, y) ∈ Ei,j. At
any point in time, if x ∈ Fd, then at that time we also
have y ∈ Fa ∪ Fd. Similarly, at any point in time, if
y ∈ Bd, then at that time we also have x ∈ Ba ∪Bd.

Two natural questions arise at this point. First,
how frequently do we explore forward nodes compared
to exploring backward nodes? Second, suppose that we
are going to explore a forward (resp. backward) node at
the present moment. Then how do we select the node
x from the set Fa (resp. Ba) that has to be explored?
Below, we state two crucial properties of our algorithm
that address these two questions.

Property 2.5. (Balanced Search) We alternate
between calls to EXPLORE-FORWARD(.) and
EXPLORE-BACKWARD(.). This ensures that
|Bd| − 1 ≤ |Fd| ≤ |Bd| + 1 at every point in time. In
other words, every forward-exploration step is followed
by a backward-exploration step and vice versa.

Property 2.6. (Ordered Search) While deciding which
node in Fa to explore next, we always pick the node x ∈
Fa that has minimum priority k(x). Thus, we ensure
that the subroutine EXPLORE-FORWARD(x) is only
called on the node x that appears before every other node
in Fa in the total ordering ≺. In contrast, while deciding
which node in Ba to explore next, we always pick the
node y ∈ Ba that has maximum priority k(y). Thus, we



ensure that the subroutine EXPLORE-BACKWARD(y)
is only called on the node x that appears after every
other node in Ba in the total ordering ≺.

An immediate consequence of Property 2.6 is that
there is no gap in the set Fd as far as reachability from
the node v is concerned. To be more specific, consider
the sequence of nodes in Gi,j that are reachable from v
in increasing order of their positions in the total order
≺. This sequence starts with v. The set of nodes
belonging to Fd always form a prefix of this sequence.
This observation is formally stated below.

Corollary 2.2. Consider any two nodes x, y ∈ Vi,j
such that k(x) ≺ k(y) and there is a path in Gi,j from
v to each of these two nodes. At any point in time, if
y ∈ Fd, then we must also have x ∈ Fd.

Corollary 2.3 is a mirror image of Corollary 2.2,
albeit from the perspective of the node u.

Corollary 2.3. Consider any two nodes x, y ∈ Vi,j
such that k(x) ≺ k(y) and there is a path in Gi,j from
each of these two nodes to u. At any point in time, if
x ∈ Bd, then we must also have y ∈ Bd.

To complete the description of the subroutine
SEARCH(u, v), we now specify six terminating condi-
tions. Whenever one of these conditions is satisfied, the
subroutine does not need to run any further because it
already knows whether or not the insertion of the edge
(u, v) creates a cycle in the graph G.

(C1) Fa = ∅.
In this case, we conclude that the graph G remains
acyclic even after the insertion of the edge (u, v). We
now justify this conclusion. Recall that if the insertion
of the edge (u, v) creates a cycle, then that cycle must
contain a path Pv,u from v to u in Gi,j . When the
subroutine SEARCH(u, v) begins execution, we have
Fa = {v} and Ba = {u}. Hence, Property 2.4 implies
that at the present moment v ∈ Fd ∪ Fa and u ∈
Bd ∪ Ba. Since the sets Fd, Fa, Bd, Ba are pairwise
mutually exclusive (see Property 2.3) and Fa = ∅, we
currently have v ∈ Fd and u /∈ Fd. Armed with this
observation, we consider the path Pvu from v to u, and
let x be the first node in this path that does not belong
to Fd. Let y denote the node that appears just before
x in this path. Then by definition, we have y ∈ Fd

and (y, x) ∈ Ei,j . Now, applying Corollary 2.1, we get
x ∈ Fd ∪ Fa = Fd, which leads to a contradiction.

(C2) Ba = ∅.
This is analogous to the condition (C1) above, and we
conclude that G remains acyclic in this case.

(C3) While exploring a node x ∈ Fa, we discover that
x has an outgoing edge to a node x′ ∈ Ba ∪Bd.

Here, we conclude that the insertion of the edge (u, v)
creates a cycle. We now justify this conclusion. Since
x ∈ Fa, Property 2.3 implies that there is a path Pv,x

from v to x. Since x′ ∈ Ba ∪ Bd, Property 2.3 also
implies that there is a path Px′,u from x′ to u. We get a
cycle by combining the path Pv,x, the edge (x, x′), the
path Px′,u and the edge (u, v).

(C4) While exploring a node y ∈ Ba, we discover that
y has an incoming edge from a node y′ ∈ Fa ∪ Fd.

Similar to condition (C3), in this case we conclude that
the insertion of the edge (u, v) creates a cycle.

(C5) minx∈Fa
k(x) � miny∈Bd

k(y).

If this happens, then we conclude that the graph G
remains acyclic even after the insertion of the edge
(u, v). We now justify this conclusion. Suppose that
the insertion of the edge (u, v) creates a cycle. Such a
cycle defines a path Pv,u from v to u. Below, we make
a claim that will be proved later on.

Claim 1. The path Pv,u contains at least one node x
from the set Fa.

Armed with Claim 1, we consider any node x′ in
the path Pv,u that belongs to the set Fa. Let y′ =
arg miny∈Bd

{k(y)}. Note that k(y′) = miny∈Ba
k(y) ≺

minx∈Fa k(x) � k(x′). In particular, we infer that
k(y′) ≺ k(x′). As y′ ∈ Bd, the node u is reachable
from y′ (see Property 2.3). Similarly, as the node x′

lies on the path Pv,u, the node u is also reachable from
x′. Since the node u is reachable from both the nodes
y′ ∈ Bd and x′, and since k(y′) ≺ k(x), Corollary 2.3
implies that x′ ∈ Bd. This leads to a contradiction, for
x′ ∈ Fa and Fa ∩Bd = ∅ (see Property 2.3). Hence, our
initial assumption was wrong, and the insertion of the
edge (u, v) does not create a cycle in G. It now remains
to prove Claim 1.

Proof of Claim 1. Applying the same argument used
to justify condition (C1), we first observation that v ∈
Fa∪Fd and u ∈ Ba∪Bd. As the subsets Fa, Fd, Ba and
Bd are pairwise mutually exclusive (see Property 2.3),
we have u /∈ Fa ∪ Fd. Note that if v ∈ Fa, then there
is nothing further to prove. Accordingly, for the rest of
the proof we consider the scenario where v ∈ Fd. Since
v ∈ Fd and u /∈ Fd, there has to be at least one node in
the path Pv,u that does not belong to the set Fd. Let
x be the first such node, and let y be the node that
appears just before x in the path Pv,u. Thus, we have
y ∈ Fd, x /∈ Fd and (y, x) ∈ Ei,j . Hence, Corollary 2.1
implies that x ∈ Fa. So the path Pv,u contains some
node from the set Fa.



(C6) maxy∈Ba
k(y) ≺ maxx∈Fd

k(x).

Similar to condition (C5), here we conclude that the
graph G remains acyclic.

We now state an important corollary that follows
from our stopping conditions (C5) and (C6). It states
that every node x ∈ Fd appears before every node
y ∈ Bd in the total order ≺ in phase III.

Corollary 2.4. We always have maxx∈Fd
{k(x)} ≺

miny∈Bd
{k(y)}.

Proof. Suppose that the corollary is false. Note that
initially when the subroutine SEARCH(u, v) begins
execution, we have Fd = Bd = ∅ and hence the corollary
is vacuously true at that time. Consider the first
time-instant (say) t when the corollary becomes false.
Accordingly, we have:

(2.1) max
x∈Fd

{k(x)} ≺ min
y∈Bd

{k(y)} just before time t.

One of the following two events must have occurred at
time t for the corollary to get violated.

(1) A node x′ ∈ Fa was explored during a call to the
subroutine EXPLORE-FORWARD(x′). The subrou-
tine EXPLORE-FORWARD(x′) then moved the node
x′ from the set Fa to the set Fd, which violated the corol-
lary. Note that a call to EXPLORE-FORWARD(.) can
only be made if k(x′) ≺ miny∈Bd

{k(y)} just before time
t (see stopping condition (C5) and Property 2.6). Thus,
from (2.1) we conclude that the corollary remains sat-
isfied even after adding the node x′ to the set Fd. This
leads to a contradiction.

(2) A node y′ ∈ Ba was explored during a call
to EXPLORE-BACKWARD(x′). The subroutine
EXPLORE-BACKWARD(x′) then moved the node y′

from the set Ba to the set Bd, which violated the corol-
lary. Applying an argument analogous to the one ap-
plied in case (1), we again reach a contradiction.

The proof of Lemma 2.4 follows immediately from
the preceding discussion. Next, Lemma 2.5 bounds
the time spent in any single call to the subroutine
SEARCH(u, v).

Lemma 2.4. The subroutine SEARCH(u, v) in Figure 1
returns YES if the insertion of the edge (u, v) creates a
cycle in the graph G, and NO otherwise.

Lemma 2.5. Consider any call to the subroutine
SEARCH(u, v). The time spent on this call is at most
Õ(m/n) times the size of the set Fd at the end of the
call.

Proof. (Sketch) Each call to EXPLORE-FORWARD(x)
or EXPLORE-BACKWARD(x) takes time proportional
to the out-degree (resp. in-degree) of x in the subgraph
Gi,j . Under Assumption 1, the maximum in-degree
and maximum out-degree of a node in Gi,j are both
at most O(m/n). Thus, a single call to EXPLORE-
FORWARD(x) or EXPLORE-BACKWARD(x) takes
O(m/n) time.

According to Property 2.6, whenever we want to
explore a node during forward-search (resp. backward-
search), we select a forward-alive (resp. backward-alive)
node with minimum (resp. maximum) priority. This
step can be implemented using a priority queue data
structure in Õ(1) time.

So the time spent by procedure SEARCH(u, v) is
at most Õ(m/n) times the number of calls to the
subroutines EXPLORE-FORWAD(.) or EXPLORE-
BACKWARD(.). Furthermore, after each call to the
subroutine EXPLORE-FORWAD(.) or EXPLORE-
BACKWARD(.), the size of the set Fd or Bd respec-
tively increases by one. Accordingly, the time spent on
one call to SEARCH(u, v) is at most Õ(m/n) times the
size of the set Fd∪Bd at the end of the call. The lemma
now follows from Property 2.5.

Total time spent in phase III. We now analyze the
total time spent in phase III, over the entire sequence
of edge insertions in G. For l ∈ [1,m], consider the lth

edge-insertion in the graph G, and let tl denote the size
of the set Fd at the end of phase III while handling this
lth-edge insertion. Lemma 2.5 implies that the total
time spent in phase III is at most Õ ((m/n) ·

∑m
l=1 tl).

We now focus on upper bounding the sum
∑m

l=1 tl.

Lemma 2.6. We have
∑m

l=1 t
2
l = O(nτ).

Proof. For any l ∈ [1,m], let F
(l)
d and B

(l)
d respectively

denote the sets Fd and Bd at the end of phase III while
handling the lth edge-insertion in G. Furthermore, let

G(l) and G
(l)
i,j respectively denote the input graph G and

the subgraph Gi,j after the lth edge-insertion in G.
Suppose that the edge (u, v) is the lth edge to be

inserted into G. We focus on the procedure for handling
this edge insertion. During this procedure, if we find
k(u) ≺ k(v) in the beginning of phase III, then our
algorithm immediately declares that the insertion of the
edge (u, v) does not create a cycle and moves on to phase

IV. In such a scenario, we clearly have F
(l)
d = B

(l)
d = ∅

and hence tl = 0. Accordingly, from now on we assume
that k(v) ≺ k(u) in the beginning of phase III. Consider

any two nodes x ∈ F
(l)
d and y ∈ B

(l)
d . The nodes x

and y belong to the same subgraph G
(l)
i,j . Property 2.3

guarantees that there is a path Py,x from y to x in G
(l)
i,j



– we can go from y to u, take the edge (u, v) and then
go from v to x. Hence, by Lemma 2.1, the ordered
pair (y, x) is τ -related in G(l) with high probability. We
condition on this event for the rest of the proof. We
now claim that there was no path from y to x in G(l−1):
this is the graph G just before the lth edge-insertion,
or equivalently, just after the (l − 1)th edge-insertion.
To see why this claim is true, we recall Property 2.2.
This property states that in the beginning of phase III
(after the lth edge-insertion) the total order ≺ on the
node-set V is a topological order in the graph G(l−1).

Since y ∈ B
(l)
d and x ∈ F

(l)
d , Corollary 2.4 implies

that x appears before y in the total order ≺ in phase
III (after the lth edge-insertion). From these last two
observations, we conclude that there is no path from
y to x in G(l−1). As edges only get inserted into G
with the passage of time, this also implies that there is
no path from y to x in the graph G(l′), for all l′ < l.
Accordingly, the ordered pair (y, x) is not τ -related in
the graph G(l′) for any l′ < l.

To summarize, for every node x ∈ F
(l)
d and every

node y ∈ B
(l)
d the following conditions hold. (1) The

ordered pair (y, x) is τ -related in the graph G(l). (2)
For all l′ < l, the ordered pair (y, x) is not τ -related
in the graph G(l′). Let C denote a counter which keeps
track of the number of sometime τ -related pairs of nodes
(see Definition 2.2). Conditions (1) and (2) imply that

every ordered pair of nodes (y, x), where y ∈ B(l)
d and

x ∈ F
(l)
d , contributes one towards the counter C. A

simple counting argument gives us:

(2.2)

m∑
l=1

∣∣∣F (l)
d

∣∣∣ · ∣∣∣B(l)
d

∣∣∣ ≤ C = O(nτ)

In the above derivation, the last equality follows from
Theorem 2.1. We now recall Property 2.5, which says
that our algorithm in phase III explores (almost) the
same number of forward and backward nodes. In

particular, we have
∣∣∣F (l)

d

∣∣∣ · ∣∣∣B(l)
d

∣∣∣ = O

(∣∣∣F (l)
d

∣∣∣2) = O(t2l )

for all l ∈ [1,m]. This observation, along with (2.2),
implies that

∑m
l=1 t

2
l = O(nτ). This concludes the proof

of the lemma.

Corollary 2.5. We have
∑m

l=1 tl = O(
√
mnτ).

Proof. We partition the set of indices {1, . . . ,m} into
two subsets:

X =
{
l ∈ [1,m] : tl ≤

√
nτ/m

}
.

Y =
{
l ∈ [1,m] : tl >

√
nτ/m

}
.

It is easy to check that
∑

l∈X tl ≤ |X| ·
√
nτ/m ≤

m ·
√
nτ/m =

√
mnτ . Accordingly, for the rest of the

proof we focus on bounding the sum
∑

l∈Y tl. Towards
this end, for each l ∈ Y , we first express the quantity
tl as tl =

√
nτ/m+ δl, where δl > 0. Now, Lemma 2.6

implies that:

(2.3)
∑
l∈Y

t2l =
∑
l∈Y

(√
nτ/m+ δl

)2
= O(nτ)

We also note that:∑
l∈Y

(√
nτ/m+ δl

)2
≥

∑
l∈Y

(
δl ·
√
nτ/m

)
(2.4)

=
√
nτ/m ·

∑
l∈Y

δl.

From (2.3) and (2.4), we get
√
nτ/m·

∑
l∈Y δl = O(nτ),

which in turn gives us:
∑

l∈Y δl = O (
√
mnτ). This

leads to the following upper bound on the sum
∑

l∈Y tl.∑
l∈Y

tl =
∑
l∈Y

(√
nτ/m+ δl

)
=

∑
l∈Y

√
nτ/m+

∑
l∈Y

δl

≤ m ·
√
nτ/m+O

(√
mnτ

)
= O

(√
mnτ

)
.

This concludes the proof of the corollary.

We are now ready to upper bound the total time
spent by our algorithm in phase III.

Lemma 2.7. We spend Õ
(√

m3τ/n
)

total time in

phase III, over the entire sequence of edge-insertions.

Proof. Lemma 2.5 implies that the total time spent in
phase III is O ((m/n) ·

∑m
l=1 tl). The lemma now follows

from Corollary 2.5.

2.2.2 Phase IV: Ensuring that ≺ is a topological
ordering for G+ (only when G+ is acyclic) As in
Section 2.2.1, we let G− and G+ respectively denote the
graph G just before and after the insertion of the edge
(u, v). If in phase III we detect a cycle, then we do
not need to perform any nontrivial computation from
this point onward, for the graph G will contain a cycle
after every future edge-insertion. Hence, throughout
this section we assume that no cycle was detected in
phase III, and as per Lemma 2.4 the graph G+ is acyclic.
Our goal in phase IV is to update the total order ≺ so
that it becomes a topological ordering in G+. Towards
this end, note that ≺ does not change during phase



III. Furthermore, if k(u) ≺ k(v) in phase III, then the
first three paragraphs of Section 2.2.1 imply that ≺
is already a topological ordering of G+, and nothing
further needs to be done. Thus, from now on we assume
that k(v) ≺ k(u) and V (u) = V (v) = Vi,j for some
i, j ∈ [0, |S|] in phase III.

Recall the six terminating conditions for the sub-
routine SEARCH(u, v) used in phase III (see the dis-
cussion after Corollary 2.3). We have already assumed
that we do not detect any cycle in phase III. Hence, the
subroutine SEARCH(u, v) terminates under one of the
following four conditions: (C1), (C2), (C5) and (C6).
How we update the total order ≺ in phase IV depends
on the terminating condition under which the subrou-
tine SEARCH(u, v) returned in phase III. In particular,
there are two cases to consider.

Case 1. The subroutine SEARCH(u, v) returned
under condition (C2) or (C6) in phase III.

In this scenario, we update the total order ≺ by calling
the subroutine described in Figure 4 (see Section 2.4).
In this subroutine, the symbols Fd and Bd respectively
denote the set of forward-dead and backward-dead
nodes at the end of phase III. Similarly, we will use
the symbols Fa and Ba respectively to denote the set
of forward-alive and backward-alive nodes at the end of
phase III. The subroutine works as follows.

When the subroutine SEARCH(u, v) begins execu-
tion in phase III, we had v ∈ Fa and u ∈ Ba. Since
SEARCH(u, v) returned under conditions (C2) or (C6),
Property 2.4 implies that v ∈ Fd and u ∈ Bd at
the end of phase III. Thus, when phase IV begins, let
v, x1, . . . , xf be the nodes in Fd in increasing order of
priorities, so that k(v) ≺ k(x1) ≺ · · · ≺ k(xf ). Simi-
larly, let y1, · · · , yb, u be the nodes in Bd in increasing
order of priorities, so that k(y1) ≺ · · · ≺ k(yb) ≺ k(u).
By Corollary 2.4, we have k(xf ) ≺ k(y1). Now that the
edge (u, v) has been inserted, we need to update the
relative ordering among the nodes in Fd ∪Bd.

Steps 1-8 in Figure 4 update the total order ≺ in
such a way that it satisfies the following properties.
(1) We still have k(v) ≺ k(x1) ≺ · · · ≺ k(xf ). So
the relative ordering among the nodes in Fd does not
change. (2) Consider any two nodes x, y ∈ V such that
k(x) ≺ k(xf ) ≺ k(y) at the end of phase III. Then
we still have k(x) ≺ k(xf ) ≺ k(y) at the end of step
8 in Figure 4. So the relative position of xf among
all the nodes in V does not change. (3) The nodes in
Fd occur in consecutive positions in the total order ≺.
Thus, at the end of step 8 it cannot be the case that
k(x′) ≺ k(x) ≺ k(x′′) if x /∈ Fd and x′, x′′ ∈ Fd.

Claim 2. Consider any edge (x, y) in G−i,j where y ∈
Bd and x /∈ Bd. Then k(x) ≺ k(v) at the end of step 8

in Figure 4.

Proof. Since y ∈ Bd, x /∈ Bd and there is an edge
from x to y, Corollary 2.1 implies that x ∈ Ba. Hence,
the subroutine SEARCH(u, v) returned under condition
(C6), and not under condition (C2). By condition (C6),
we have k(x) ≺ k(xf ) at the end of phase III. Since
steps 1-8 in Figure 4 ensure that the nodes in Fd occur
in consecutive positions in ≺ and they do not change
the relative position of xf among all the nodes in V , we
get k(x) ≺ k(v) at the end of step 8 in Figure 4.

Steps 9-15 in Figure 4 further update the total order
≺ in such a way that it satisfies the following properties.
(4) We still have k(y1) ≺ · · · ≺ k(yb) ≺ k(u). In words,
the relative ordering among the nodes in Bd does not
change. (5) The node u is placed immediately before the
node v in the total order ≺. This is consistent with the
fact that the edge (u, v) has been inserted into the graph
G. (6) The nodes in Bd occur in consecutive positions
in the total order ≺. In other words, at the end of step
15 we cannot find any node y /∈ Bd and any two nodes
y′, y′′ ∈ Fd such that k(y′) ≺ k(y) ≺ k(y′′).

To summarize, at this point in time, in the total
order ≺ the nodes y1, . . . , yb, u, v, x1, . . . , xf occur con-
secutive to one another, and in this order. Accordingly,
Corollary 2.2, Corollary 2.3 and Claim 2 ensure that the
total order ≺ remains a topological order in G− at this
point in time. Since u appears before v in ≺, we also
conclude that at this point in time≺ is also a topological
order in G+.

Case 2. The subroutine SEARCH(u, v) returned
under condition (C1) or (C5) in phase III.

This case is completely analogous to case 1 above, and
we omit its description.

Lemma 2.8. We spend Õ (
√
mnτ) time in phase IV,

over the entire sequence of edge-insertions in G.

Proof. (Sketch) Steps 7 and 14 in Figure 4 can be
implemented in O(1) time using the ordered list data
structure [8]. Hence, the time spent in phase IV after
a given edge-insertion is proportional to the sizes of
the sets Fd and Bd at the end of phase III, and by
Property 2.5, the sizes of the sets Fd and Bd are (almost)
equal to one another. For l ∈ [1,m], let tl denote the size
of the set Fd at the end of phase III while handling the
lth edge-insertion in G. We conclude that the total time
spent in phase IV, during the entire sequence of edge-
insertions in G, is given by O (

∑m
l=1 tl). The lemma now

follows from Corollary 2.5.

2.3 Bounding the Total Update Time of Our
Algorithm We simply add up the total time spent by



our algorithm in each of these four phases, throughout
the entire sequence of edge-insertions in G. In particu-
lar, we invoke Lemma 2.2, Lemma 2.3, Lemma 2.7 and
Lemma 2.8 and conclude that the total expected update
time of our algorithm is at most:

Õ
(
mn/τ + n2/τ +

√
m3τ/n+

√
mnτ

)
(2.5)

= Õ
(
mn/τ +

√
m3τ/n

)
.

In the above derivation, we have made the assumption
that m = Ω(n). Now, setting τ = n/m1/3, we get a
total expected update time of Õ(m4/3). This concludes
the proof of Theorem 1.1.

2.4 Pseudocodes for the subroutines in Phase
III and Phase IV The relevant pseudocodes for the
subroutines in Phase III and Phase IV appear in Fig-
ures 1, 2, 3 and 4.

3 Tight Instances For Our Algorithm

We give a brief description of the instance which shows
the tightness of our analysis. Before we present the in-
stance, we recall the instance in [10] which shows a lower
bound of Ω(n

√
n) on the total work done by the bal-

anced greedy algorithm. In this instance there are
√
n

directed paths P1, P2, ..., P√n, each of length
√
n. We

will ignore the work done by the balanced greedy al-
gorithm while the adversary constructs P1, P2, ..., P√n.
We assume without loss of generality that all the ver-
tices in Pi precede the vertices in Pi+1, for all i =
1, 2, ...

√
n. The adversary’s strategy consists of

√
n− 1

rounds. In the first round, the adversary inserts a se-
quence of

√
n − 1 edges e1, e2, ...e√n−1 as follows: The

first edge e1 is from the last vertex of path P2 to the first
vertex of path P1. Upon the insertion e1, the balanced
greedy algorithms moves the entire path P1 ahead of
P2. The adversary repeats this strategy where the edge
ei is from the last vertex of path Pi to the first ver-
tex of path P1. Again it is easy to see that at the end
of insertion of edge ei, the path P1 is between paths
Pi+1 and Pi+2. Hence after the insertion of last edge
e√n−1, the path P1 moves in front of the all paths.
It is easy to see that the total work done by the bal-
anced greedy algorithm during the insertions of edges
e1, e2, ...e√n−1 is Ω(

√
n) ·
√
n = Ω(n), as each edge ei

makes all the vertices of path P1 to move. This com-
pletes the description of the first round. In the remain-
ing rounds, the adversary repeats this strategy on the
paths P2, P3, ...P√n. It is not hard to see that in each
of the first

√
n/2 rounds, the balanced greedy algorithm

does Ω(n) amount of work. This implies that the total
work done by the balanced greedy algorithm is Ω(n

√
n).

The instance to show that the analysis of our
algorithm is tight is a simple generalization of the above
instance. In our instance m = n and τ = n2/3. Let
k = n1/3. In the beginning, we partition the vertex
set into k groups S1, S2, . . . Sk, each group consisting
of exactly n/k vertices. The adversary constructs the
lower-bound instance for the balanced greedy on each of
the partitions S1, S2, . . . Sk separately. Recall that our
algorithm partitions the vertex set into n2/τ bins based
on the number of ancestors and descendants a vertex
has. Within each bin, our algorithm uses the balanced
greedy strategy. Now notice that the maximum number
of ancestors or descendants of a vertex in each group
Si is at most n/k = τ = n2/3. Therefore, all the
vertices from each group Si for i ∈ [n/τ ] fall in the
same bin. Hence, the total work done until this stage
is k · Ω((n/k)

√
n/k) = Ω(n4/3), which is simply the

cost of balanced greedy algorithm on the subgraphs
induced by the sets S1, S2, . . . Sk. In the next stage,
the adversary repeats the lower bound strategy for the
balanced greedy on vertices across groups S1, S2, . . . Sk.
(Think of each group Si as a meta vertex.) During this
phase, each vertex switches exactly n/τ bins. Therefore
the total work done by our algorithm in moving vertices
across the bins is Ω(n/τ)·n = Ω(n4/3). Thus, we observe
that the total work done by our algorithm in moving the
vertices across the bins is equal to the total work done
within the bins, which is the quantity our algorithm
balances. As m = n in our instance, we complete the
proof.
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