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Abstract
We analyse the following random walk process inspired by the power-of-two-choice paradigm:

starting from a given vertex, at each step, unlike the simple random walk (SRW) that always moves
to a randomly chosen neighbour, we have the choice between two uniformly and independently
chosen neighbours. We call this process the choice random walk (CRW).

We first prove that for any graph, there is a strategy for the CRW that visits any given vertex in
expected time O(|E|). Then we introduce a general tool that quantifies by how much the probability
of a rare event in the simple random walk can be boosted under a suitable CRW strategy. We believe
this result to be of independent interest, and apply it here to derive an almost optimal O(n log logn)
bound for the cover time of bounded-degree expanders. This tool also applies to so-called biased
walks, and allows us to make progress towards a conjecture of Azar et al. [STOC 1992]. Finally, we
prove the following dichotomy: computing an optimal strategy to minimise the hitting time of a
vertex takes polynomial time, whereas computing one to minimise the cover time is NP-hard.
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1 Introduction

Motivation and Related Work. The power of choice paradigm is the phenomenon that
when a random process is offered a choice between two or more uniformly selected options,
as opposed to just being supplied with a uniformly random one, then a series of choices can
be made to improve overall performance [32]. The power of two choices was first considered
for balanced allocation of balls to bins [7, 11, 31]. Here the surprising discovery was made
that if each ball is offered two randomly selected bins and the bin containing fewer balls
is chosen then the maximum load when assigning n balls to n bins decreases significantly
from Θ

(
logn

log logn

)
to Θ(log logn). The power of choice was later studied for random graphs

under the broader class of rule-based random graph processes known as Achlioptas processes.
In the standard random graph process, a graph on a fixed vertex set is built up by adding
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random edges one by one. Achlioptas suggested that if instead an edge to add is chosen from
two random options, this may be done in such a way as to shift the position of the critical
window in which a giant component emerges. This is indeed the case and now much is known
about the effect of various rules on the phase transition [12, 13, 2, 36, 35]. The effect of the
power of choice on the degree distribution in the Preferential Attachment process has also
been studied [30, 25].

In this paper we apply the power of two choices to a random walk on a graph with the
hope of speeding up the cover and hitting times. One motivation behind this is to improve
the efficiency of random walks used in algorithmic applications such as searching, routing,
self-stabilization, and query processing in wireless networks, peer-to-peer networks and other
distributed systems. One practical setting where routing using the power of choice walk
may be advantageous is in relatively slowly evolving dynamic networks such as the internet.
For example, say a packet has a target destination v and each node stores a pointer to a
neighbour which it believes leads most directly to v. If this network is perturbed then the
deterministic scheme may get stuck in “dead ends” whereas a random walk would avoid this
fate. The choice random walk which prefers edges pointed to by a node may be the best of
both worlds as it would also avoid traps but may see a speed up over the simple random
walk when the original paths are still largely intact.

To the best of our knowledge, Avin and Krishnamachari [5] were the first to apply the
principle of power of choices to random walks. However, their version only considers a simple
choice rule where the vertex with fewer previous visits is always preferred, and ties are broken
randomly.

Their results are mainly empirical and suggest a decrease in the variance of the cover
time, and a significant improvement in visit load balancing. This is related to the greedy
random walk of Orenshtein and Shinkar [34], which chooses uniformly from adjacent vertices
that have not yet been visited (if possible). This model is well studied for expanders [10, 15].

Alon, Benjamini, Lubetzky and Sodin [4] studied the mixing rate and asymptotic number
of visits made to vertices by the non-backtracking walk. These authors mention the power of
two choices paradigm and ask if the number of visits to any vertex can be further reduced
by choosing between two independent non-backtracking walks at each step. Fitzner and van
der Hofstad [21] obtained more mixing time results and Bordenave, Lelarge and Massoulié
have also studied this process in relation to community detection [14].

Perhaps closest to our work, Azar, Broder, Karlin, Linial and Phillips [6] introduced the
ε-bias random walk where at each step with probability ε a controller can choose a neighbour
of the current vertex, otherwise one is uniformly selected. They obtained bounds on the
stationary probabilities and show that optimal strategies for max/minimising stationary
probabilities or hitting times can be computed in polynomial time (cf. Section 4.3).

Other related strategies for speeding up the hitting and cover times include degree-biased
random walk models [28, 1, 17] or performing multiple walks in parallel [3, 19, 20]. The
Power of two choices concept has also been studied in the context of deterministic variants
of random walks [16, 8].

Our Results and Techniques. Our first result is a general upper bound of O(|E|) = O(n2)
on the maximum hitting time of a vertex (Theorem 3). This is tight and improves considerably
over the well-known O(n|E|) worst-case bound for the simple random walk. This is achieved
by approximating the (not necessarily reversible) CRW by a suitable reversible walk.

In Section 4, we present bounds on hitting and cover times in terms of the spectral gap
of the lazy random walk. Our general cover time result (Theorem 4) constitutes a significant
improvement over the corresponding best possible bound for the simple random walk [33].
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In particular, it implies an almost-optimal O(n log logn) bound for any bounded-degree
expander. The same result also holds for a natural variant of the biased random walk of
[6]. Our hitting time result (Theorem 5) is quite different from Theorem 3 and shows that
for a large class of graphs that the hitting times of the choice and biased random walk are
sublinear. The main technical contribution to derive these bounds is Theorem 6, which
shows that any rare event in the simple random walk case can be amplified substantially
under a suitable choice (or time-biased) random walk strategy. If one thinks of a simple
random walk as running a program with random bits as input then the “tree gadget” used
to prove Theorem 6 is a novel way to quantify the effect of the non-determinism added by
the power of two choices. We apply the results of this section to a conjecture of Azar et al.
[6]; since our approach is orthogonal to theirs, we manage to confirm their conjecture for
class of graphs different to those previously treated. As our amplification result applies to
arbitrarily defined events and general stochastic processes, we believe this result may find
further applications in other areas.

In Section 5, we investigate the complexity of computing optimal strategies for hitting
times, cover times and maximising stationary probabilities. Our main insight is a surprising
dichotomy, essentially saying that computing complete optimal strategies for hitting times is
easy (i.e., polynomial-time), while computing a sequence of optimal choices for cover times,
even in an on-line fashion, is NP-hard. To the best of our knowledge, this is the first negative
result for processes involving random walks with choice.

2 Notation and Preliminaries

Throughout this paper all graphs will be finite and connected.

Choice Random Walk. The Choice Random Walk (CRW) is a discrete time stochastic
process (Xt)t>0 on the vertices of a connected graph G = (V,E), influenced by a controller.
The starting state is a fixed vertex; at each time t ∈ N the controller is presented with two
neighbours {ct1, ct2} of the current state Xt chosen uniformly at random with replacement and
must choose one of these neighbours as the next state Xt+1. We assume that at each time t
the controller knows the graph G, its current position Xt ∈ V , and Ht =

(
Xi, {ci1, ci2}

)t
i=0 the

history of the process so far. The controller has access to arbitrary computational resources
and an infinite string of random bits ω in order to choose Xt+1 from {ct1, ct2}. A strategy for
a given task on G is a function which given any t, Ht and ω outputs a single vertex from
ct where ct = {ct1, ct2} ⊆ Γ(Xt) (here, as is usual, we write Γ(v) := {w : vw ∈ E} for the
neighbourhood of v).

The aim of the CRW is to make a sequence of choices which most effectively complete a
given objective. Examples of objectives may be as follows:
(1) to visit every vertex of the graph;
(2) to hit a given vertex or set of vertices;
(3) to maximise or minimise the stationary probability of a given vertex or set.
Efficacy in tasks (1) and (2) is determined by the expected number of steps taken. Note
that an optimal solution to task (1) will necessarily make use of the history of the process,
whereas task (3) only applies in the context of strategies which do not change over time. We
say that a CRW strategy is unchanging if it is independent of both time and the history of
the walk. As the walk has access to random bits the strategy may be randomised; we say a
strategy is deterministic if random bits are not used to make a choice.

ITCS 2020
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For a strategy α and for a vertex v and distinct neighbours i, j let αjv,i be the probability
that when the walk is at v it chooses i when offered {i, j} as choices, i.e.

αjv,i := P
[
Xt+1 = i | Xt = v, ct = {i, j}

]
(this probability is also conditional on Ht but we suppress this for notational convenience).
These are the only parameters we may vary, but we shall find it convenient to define
αiv,i := 1/2 for each i adjacent to v. Thus

for each v ∈ V : αjv,i ∈ [0, 1] and αiv,j = 1− αjv,i for all i, j ∈ Γ(v). (1)

The transition probabilities qv,i for the strategy α are then given by

qv,i =
2
∑
j∈Γ(v) α

j
v,i

d(v)2 . (2)

Note, any family of parameters αjv,i satisfying (1) gives a valid set of transition probabilities.
Let Ctwo

v (G) denote the minimum expected time (taken over all strategies) for the CRW to
visit every vertex of G starting from v, and define the cover time ttwo

cov(G) := maxv∈V Ctwo
v (G).

Analogously, let H two
x (y) denote the minimum expected time for the CRW to reach y, which

may be a single vertex or a set of vertices, starting from a vertex x and define the hitting
time ttwo

hit (G) := maxx,y∈V H two
x (y).

ε-Biased and ε-Time-Biased Random Walks. Azar et al. [6], building on earlier work [9],
introduced the ε-biased random walk (ε-BRW) on a graph G. Each step of the ε-B walk is
preceded by an (ε, 1− ε)-coin flip. With probability 1− ε a step of the simple random walk
is performed, but with probability ε the controller gets to select which neighbour to move to.
The selection can be probabilistic, but it is time independent. Thus if P is the transition
matrix of a random walk, then the transition matrix QεB of the ε-biased random walk is
given by

QεB = (1− ε)P + εB, (3)

where B is an arbitrary stochastic matrix chosen by the controller, with support restricted to
E(G). In both the ε-Biased and Choice random walks the controller has full knowledge of G.

Azar et al. focused on bias strategies for maximising stationary probabilities and min-
imising or maximising hitting times of vertices or sets. For each of these tasks one may
apply tools from Markov decision theory [18] to show there is a time-independent optimal
strategy, so the definition above is sufficient for their purposes. For us a time-dependent
version, where the bias matrix Bt may depend on the time t and the history of the process
up to time t, will be useful; we refer to this as the ε-time-biased walk (ε-TBRW). We shall
show that the ε-TBRW may be simulated, for suitable ε, by a CRW.

I Proposition 1. For any graph G of maximum degree dmax, and for any ε 6 1/dmax, the
CRW can simulate the ε-TBRW and ε-BRW on G.

I Remark 2. The dependence of ε on dmax in Proposition 1 is tight. In the reverse direction,
the ε-TB walk can only simulate the CRW if ε > 1− 1/dmax.
We write tεTB

cov for the cover time of the ε-TBRW under an optimal strategy. There is always a
time-independent optimal strategy for hitting a given vertex [6, Thm. 11], thus the maximum
hitting times of the ε-TBRW and ε-BRW are the same; we use tεB

hit to denote them. Any
unchanging strategy on a finite connected graph results in an irreducible Markov chain and
thus, when appropriate, we refer to its stationary distribution as π.
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3 A Tight Upper Bound on the Hitting Time in General Graphs

Our first result is the following asymptotically tight bound on the maximal hitting time:

I Theorem 3. For any graph G we have ttwo
hit (G) < 3e(G) and ttwo

hit (G) < n2.

Both bounds are best possible up to the implied constants: for the path, ttwo
hit is about twice

the number of edges, and for a clique with a pendant path, where the length of the path is
growing much slower than the size of the clique, it is about 3n2/8.

We say that an unchanging strategy is reversible if it can be realised as a random walk on
a weighted graph. The main idea used to prove Theorem 3 is that on any graph the CRW
can implement a reversible strategy with a strong drift towards the target vertex. We can
then employ tools from reversible Markov chains to bound the hitting time. See Appendix
A.2 for a proof. While the reversible strategy constructed gives a bound on the optimal
strategy, the latter need not be reversible; for an example, see Appendix A.2.

4 Hitting and Cover Times in Expanders

In this section we prove the following bounds on the cover and hitting times of the ε-TBRW
and CRW on a graph G in terms of n, its extremal and average degrees dmax, dmin and davg,
and its relaxation time trel := 1

1−λ2
, where λ2 is the second largest eigenvalue of the transition

matrix of the lazy random walk (LRW) on G with loop probability 1/2.

I Theorem 4. For any graph G, and any ε ∈ (0, 1), we have

ttwo
cov(G) = O

(
n · dmax ·

davg
dmin

·
√
trel ·

(
1 + log trel

log logn

)
· log logn

)
;

tεTB
cov (G) = O

(
n · ε−1 · davg

dmin
·
√
trel ·

(
1 + log trel

log logn

)
· log logn

)
.

In particular, the CRW cover time of a bounded degree (not necessarily regular) expander is
O(n log logn), significantly less than that of the SRW, which is Θ(n logn).

I Theorem 5. For any graph G, and any ε ∈ (0, 1), we have

ttwo
hit (G) 6 12

(
n · davg
dmin

)1−1/dmax

· trel · lnn and tεB
hit(G) 6 12

(
n · davg
dmin

)1−ε
· trel · lnn;

these bounds hold also for return times.

Theorems 4 and 5 will follow from Theorem 6. Let G, t > 0 and S be a set of trajectories of
length t. In the following we use bold characters to denote trajectories in G and if u ∈ V (G)
then u will denote the length 0 trajectory from u. Let px,S denote the probability that
extending a trajectory x to length t according to the law of a SRW results in a member of
S. Let qx,S(ε) and q̃x,S denote the corresponding probabilities under the ε-TBRW or CRW
laws respectively; the values of these probabilities will depend on the particular strategies
used. These functions can encode probabilities of many events of interest such as “the graph
is covered by time t”, “the walk is in a set X at time t” or “the walk has hit a vertex x by
time t” for example. However, let us emphasise that our result in fact applies to any possible
event.

I Theorem 6. Let G be a graph, u ∈ V , t > 0, 0 6 ε 6 1 and S be a set of trajectories of
length t from u. Then there exist strategies for the ε-TBRW and the CRW such that

qu,S(ε) > (pu,S)1−ε and q̃u,S > (pu,S)1−1/dmax .

ITCS 2020
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By Proposition 1, the results for the CRW in Theorems 4, 5 and 6 follow immediately
from those for the ε-TBRW by taking ε = 1/dmax. We shall therefore only consider the
ε-TBRW. After stating a technical lemma in Section 4.1, we then explain an alternative
way of considering the ε-TBRW in Section 4.2, which enables the proof of Theorem 6 to be
completed. The proof of Theorems 4 and 5 via Theorem 6 is given in Appendix A.3.

4.1 The ε-Max/Average Operation
For 0 < ε < 1 define the ε-max/average operator MAε : [0,∞)m → [0,∞) by

MAε (x1, . . . , xm) = ε · max
16i6m

xi + 1− ε
m
·
m∑
i=1

xi.

This can be seen as an average which is biased in favour of the largest element, indeed it is a
convex combination between the largest element and the arithmetic mean.

For p ∈ R \ {0}, the p-power mean Mp of non-negative reals x1, . . . , xm is defined by

Mp(x1, . . . , xm) =
(
xp1 + · · ·+ xpm

m

)1/p

,

and

M∞(x1, . . . , xm) = max{x1, . . . , xm} = lim
p→∞

Mp(x1, . . . , xm).

Thus we can express the ε-max/ave operator as MAε(·) = (1− ε)M1(·) + εM∞(·). We use a
key lemma, Lemma 7, which could be be described as a multivariate anti-convexity inequality.

I Lemma 7. Let 0 < ε < 1, m > 1 and δ 6 ε/(1− ε). Then for any x1, . . . , xm ∈ [0,∞),

M1+δ (x1, . . . , xm) 6 MAε (x1, . . . , xm) .

A proof of this Lemma may be found in [26].
I Remark 8. The dependence of δ on ε given in Lemma 7 is best possible. This can be seen
by setting x1 = 0 and xi = 1 for 2 6 i 6 m, and letting m tend to ∞.

4.2 The Tree Gadget for Graphs
In this section we prove Theorem 6. To achieve this we introduce the Tree Gadget which
encodes walks of length at most t from u in a rooted graph (G, u) by vertices of an arborescence
(Tt, r), i.e. a tree with all edges oriented away from the root r. Given (G, u) we represent
each walk of length i 6 t started from u in G as a node at distance i from the root r in the
tree Tt. The root r represents the walk of length 0 from u. There is an edge from x to y in
Tt if x is obtained from y by deleting the final vertex.

Also for x ∈ V (Tt) let Γ+(x) = {y ∈ V (Tt) : xy ∈ E(Tt)} be the offspring of x in T ; as
usual we write d+(x) for the number of offspring. Write |x| for the length of the walk x. To
prove Theorem 6 we shall need to discuss simple random walk paths; let Wu(k) :=

⋃k
i=0{Xi}

be the trajectory of a simple random walk Xi on G up to time k, with X0 = u.

Proof of Theorem 6. To each node x of the tree gadget Tt we assign the value qx,S under
the the ε-TB strategy of biasing towards a neighbour in G which extends to a walk y ∈ Γ+(x)
maximising qy,S . This is well defined because both the strategy and the values qx,S can be
computed in a “bottom up” fashion starting at the leaves, where if x ∈ V (Tt) is a leaf then
qx,S is 1 if x ∈ S and 0 otherwise.
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Figure 1 Illustration of a (non-lazy) walk on a non-regular graph starting from u with the
objective of being at {y, z} at step t = 2. The probabilities of achieving this are given in blue (left)
for the SRW and in red (right) for the 1

3 -TBRW.

Suppose x is not a leaf. Then with probability 1− ε we choose the next step of the walk
uniformly at random in which case the probability of reaching S from x is just the average
of qy,S over the offspring y of x, otherwise we choose a maximal qy,S . Thus the value of x is
given by the ε-max/average of its offspring, that is

qx,S = MAε

(
(qy,S)y∈Γ+(x)

)
. (4)

We define the following potential function Φ(i) on the ith generation of the tree gadget T :

Φ(i) =
∑
|x|=i

q1+δ
x,S · P [Wu(i) = x ] ; (5)

note that the sum ranges over all walks of length i. Notice that if xy ∈ E(Tt) then
P [Wu(|y|) = y ] = P [Wu(|x|) = x ] /d+(x). Also since each y with |y| = i has exactly one
parent x with |x| = i− 1 we can write

Φ(i) =
∑
|x|=i−1

∑
y∈Γ+(x)

q1+δ
y,S ·

P [Wu(i− 1) = x ]
d+(x) . (6)

We now show that Φ(i) is non-increasing in i. By combining (5) and (6) we can see that the
difference Φ(i−1) − Φ(i) is given by

∑
|x|=i−1

q1+δ
x,S −

1
d+(x)

∑
y∈Γ+(x)

q1+δ
y,S

P [Wu(i− 1) = x ] .

Recalling (4), to establish Φ(i−1) − Φ(i) > 0 it is sufficient to show the following inequality
holds whenever x is not a leaf:

MAε

(
(qy,S)y∈Γ+(x)

)1+δ
>

1
d+(x)

∑
y∈Γ+(x)

q1+δ
y,S .

By taking (1 + δ)th roots this inequality holds for any δ 6 ε/(1− ε) by Lemma 7, and thus
for δ in this range Φ(i) is non-increasing in i.

Observe Φ(0) = q1+δ
u,S . Also if |x| = t then qx,S = 1 if x ∈ S and 0 otherwise, it follows

that

Φ(t) =
∑
|x|=t

q1+δ
x,S · P [Wu(t) = x ] =

∑
|x|=t

1x∈S · P [Wu(t) = x ] = pu,S .

ITCS 2020
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Thus since Φ(t) is non-decreasing q1+δ
u,S = Φ(t) > Φ(0) = pu,S . The result for the ε-TBRW

follows by taking δ = ε/(1− ε). If we let ε = 1/dmax we can apply the bound on qu,S for the
ε-TBRW to the CRW by Proposition 1. J

4.3 A Conjecture of Azar et al. for the ε-Biased Walk
Azar, Broder, Karlin, Linial and Phillips [6] make the following conjecture for the ε-BRW.

I Conjecture ([6, Conjecture 1]). In any graph, a controller can increase the stationary
probability of any vertex from p to p1−ε.

They prove a weaker bound of p1−O(ε) for bounded-degree regular graphs. As a corollary
of Theorem 5 we obtain a slightly weakened form of the conjecture for any graph where
dmax/dmin and trel are both subpolynomial in n. Our techniques are different and allow us
to cover a larger class of graphs, including dense graphs as well as sparse ones, as well as
getting closer to the conjectured bound.

I Corollary 9. For any family of graphs such that log(trel ·dmax/dmin) = o(logn), a controller
can increase the stationary probability of any vertex from p to p1−ε+on(1).

The corollary follows from Theorem 5 and can be found in [26].

I Remark 10. As proven in Theorem 16, the optimal strategy is computable in polynomial
time; thus a strategy achieving the above performance bound is also computable in polynomial
time.

The original conjecture fails for the graph K2, as no strategy for the ε-BRW can increase
the stationary probability over that of a simple random walk. This motivates weakening the
conjecture by replacing p1−ε by p1−ε+on(1), as in Corollary 9, however this fails for the star
on n vertices, and non-bipartite counterexamples may be obtained by adding a small number
of extra edges to the star. While these counterexamples have large degree discrepancy, their
relaxation time is bounded. We believe the following should hold.

I Conjecture 11. For any family of graphs such that dmax/dmin = o(n), a controller can
increase the stationary probability of any vertex from p to p1−ε+on(1).

5 Computing Optimal Choice Strategies

In this section we focus on the following problem: given a graph G and an objective, how
can we compute a series of choices for the walk which achieves the given objective in optimal
expected time? In particular we consider the following computational problems related to our
main objectives of max/minimising hitting times, cover times and stationary probabilities πv.

Stat (G,w): Find a CRW strategy min/maximising
∑

v∈V
wvπv for vertex weights wv > 0.

Hit (G, v, S): Find a CRW strategy minimising H two
v (S) for a given S ⊆ V (G) and v ∈ V (G).

Cov (G, v): Find a CRW strategy minimising Ctwo
v (G) for a given v ∈ V (G).

We restrict the strategy in Stat to be unchanging so the stationary distribution is well
defined. The analogous problems to Stat (G,w) and Hit (G, v, S) were studied in [6] for the
biased random walk. While Stat is not one of our primary objectives, we include it here
both as a natural problem to consider but also because of its relationship to Hit in the case
where w is the indicator function of a set S; we shall abuse notation by writing Stat(G,S)
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for this case. Clearly for Stat we must restrict ourselves to unchanging strategies for the
stationary probabilities πv to be well-defined; we shall show that Hit also has an unchanging
optimal strategy.

For Hit and Cov, there are two possible interpretations of what it means to “find” a CRW
strategy. Perhaps the most natural is to compute a sequence of optimal choices in an on-line
fashion, that is at each time step to compute which of the two offered choices to accept.
For any particular walk, with suitable memoisation, at most a polynomial number of such
computations will be required for either problem: which choice to accept depends only on
the current vertex, the two choices, and in the case of Cov the vacant set, which can change
at most n times. We might alternatively want to compute a complete optimal strategy
in advance; for Hit this requires only a polynomial number of single-choice computations,
but for Cov the number of possible situations our strategy must cover will be exponential.
However, we shall show that Cov is hard even for individual choices.

5.1 A Polynomial-Time Algorithm for Stat and Hit

First, we show how the (unknown) optimal values H two
x (v) determine an optimal strategy

for Hit(G, ·, v). In the following two lemmas we will need to work with a multigraph F ; in
this context the choice offered at each stage is between two random edges from the current
vertex.

I Lemma 12. Let F be a multigraph and fix a vertex v. Let v = v0, v1, . . . be an ordering of
the vertices such that for all i < j we have H two

vi
(v) 6 H two

vj
(v). Let β be the deterministic

unchanging strategy given by βvk
vi,vj

= 1 whenever j < k. Then β is optimal (among all
strategies) for Hit(F, x, v) for every x 6= v, and also for the problem of minimising Ev [ τ+

v ].

I Remark 13. In particular, recalling that for an unchanging strategy πv = 1/Ev [ τ+
v ], it

follows that β is an optimal strategy for Stat(F, {v}). However, this is true in a somewhat
stronger sense, since optimality for Stat only requires minimising Ev [ τ+

v ] among unchanging
strategies, whereas Lemma 12 shows that β minimises this quantity among all strategies; we
shall need this extra strength.

Note that there may be other deterministic unchanging optimal strategies for Hit(F, x, v).
For example, if there are multiple vertices with the same optimal hitting time, we may choose
between them arbitrarily, and in particular may have a cyclic order of preference which is
not consistent with any single ordering. The following lemmas will enable us to show that a
good enough approximation to an optimal strategy must itself be optimal.

I Lemma 14. Let F be a multigraph with at most n vertices and at most
(
n
2
)
edges, and fix

a vertex v. Let α be any unchanging strategy for Stat(F, {v}). Suppose there exist vertices
x, y, z with y, z ∈ Γ+(x), H two

y (v) < H two
z (v) and αzx,y 6 1/2. Then παv differs from the

optimal value by at least n−4(n+1)(H two
z (v)−H two

y (v)).

I Lemma 15. For any simple graph G of order n and every pair of vertices x, y with
H two
x (S) < H two

y (S) we have H two
y (S)−H two

x (S) > n−2n2 .
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For any graph G, v ∈ V and weighting w : V → [0,∞) on the vertices of G we can phrase
Stat (G,w) as an optimisation problem as follows, where we shall encode our actions using
the probabilities αzx,y = P [Xt+1 = y | Xt = x, c = {y, z} ] from Section 2.

maximize:
∑
v∈V

wvπ(v)

subject to: π(x) =
∑

y∈Γ(x)

π(y) ·
2
∑
z∈Γ(y) α

z
y,x

d(x)2 , ∀x ∈ V

∑
x∈V

π(x) = 1,

αyx,z ∈ [0, 1], ∀xz, xy ∈ E
αyx,z = 1− αzx,y, ∀xz, xy ∈ E

(7)

For minimising the stationary probabilities we maximise −1 times the objective function.

I Theorem 16. For any multigraph G and weight function w : V → [0,∞) a policy solving the
problem Stat (G,w) to within an additive ε factor can be computed in time poly(|E|, log(1/ε)).

To prove Theorem 16 the quadratic terms in (7) can be eliminated using the same
substitution as [6], we can then solve (7) as a Linear Program.

I Theorem 17. For any graph G and any S ⊂ V , a solution to Hit (G, x, S) for every
x ∈ V \ S can be computed in time poly(n).

Proof. Contract S to a single vertex v to obtain a multigraph F ; where a vertex x has
more than one edge to S in G, retain multiple edges between x and v in F . Note that F
has at most n vertices and at most

(
n
2
)
edges. Provided that the CRW on G has not yet

reached S, there is a natural correspondence between strategies on G and F with the same
transition probabilities, and it follows that H two

x (S) for G and H two
x (v) for F are equal for any

x ∈ V (G)\S. We compute an optimal strategy to Stat(F, {v}) to within an additive error of
ε := n−10n2 ; note that log(1/ε) = o(n3) and so this may be done in time poly(n) by Theorem
16. Applying Lemma 14 to F and Lemma 15 to G, using the equality of corresponding
hitting times, implies that this strategy has αzx,y > 1/2 whenever H two

y (v) < H two
z (v), and so

rounding each of the probabilities αzx,y to the nearest integer gives an optimal strategy (on
F ) for every x, which may easily be converted to an optimal strategy for G. J

5.2 A Hardness Result for Cov (G, v)
We show that in general even the on-line version of Cov (G, v) is NP-hard. To that end we
introduce the following problem, which represents a single decision in the on-line version.
The input is a graph G, a current vertex u, two vertices v and w which are adjacent to u,
and a visited set X, which must be connected and contain u.

NextStep (G, u, v, w,X): Choose whether to move to v or w so as to minimise the expected
time for the CRW to visit every vertex not in X, assuming an
optimal strategy is followed thereafter.

Any such problem may arise during a random walk with choice on G starting from any
vertex in X, no matter what strategy was followed up to that point, since with positive
probability no real choice was offered in the previous walk.

I Theorem 18. NextStep is NP-hard, even if G is constrained to have maximum degree 3.
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Proof. We give a (Cook) reduction from the NP-hard problem of either finding a Hamilton
path in a given graph H or determining that none exists. This is known to be NP-hard even
if H is restricted to have maximum degree 3 [22].

We shall find it more convenient to work with the following problem, which takes as input
a graph G, a current vertex u and a connected visited set X containing u.

BestStep (G, u,X): Choose a neighbour of u to move to so as to minimise the expected
time for the CRW to visit every vertex not in X, assuming an
optimal strategy is followed thereafter.

We may solve BestStep(G, u,X) by computing NextStep(G, u, v, w,X) for every pair
v, w of neighbours of u; since all optimal neighbours must be preferred to all others, this
will identify a set of one or more optimal choices for BestStep(G, u,X). Consequently, it is
sufficient to reduce the Hamilton path search problem to BestStep.

Given an n-vertex graph H, construct the graph G as follows. First replace each edge of
H by a path of length 2cn2 through new vertices. Next add a new pendant path of length
n3 starting at the midpoint of each path corresponding to an edge of H. Finally, add edges
to form a cycle consisting of the end vertices of these pendant paths (in any order). Note
that if H has maximum degree 3, so does G.

Fix a starting vertex u and a non-empty unvisited set Y ⊆ V (H) \ {u}, and set X =
V (G) \ Y . (The purpose of the second and third stages of the construction is to make X
connected without affecting the optimal strategy.) Suppose that H contains at least one path
of length |Y | starting at u which visits every vertex of Y ; in particular if Y = V (H) \ {u}
this is a Hamilton path of H. We claim that any optimal next step is to move towards the
next vertex on some such path. Assuming the truth of this claim, an algorithm to find a
Hamilton path starting at x, if one exists, is to set u = x and Y = V (H) \ {x}, then find
the vertex y such that moving towards y is optimal, set u = y and remove y from Y , then
continue. If this fails to find a Hamilton path, repeat for other possible choices of x.

To prove the claim, first we argue by induction that there is a strategy to visit every
vertex in |Y | in expected time (4cn2 +O(n))|Y |, where the implied constant does not depend
on c. This is clearly true for |Y | = 0. Let y be the next vertex on a suitable path in H,
and let z be the middle vertex of the path corresponding to the edge uy. Attempting to
reach z by a straightforward strategy, the distance to z evolves as a random walk with
probability 3/4 of decreasing unless the current location is a branch vertex. We thus reach
z in expected time 2cn2 plus an additional constant time for each visit to u, of which we
expect O(d(u)) = O(n), giving a total expected time of 2cn2 +O(n) (if the walker is forced
to a different branch vertex first, the expected time to return from this point is polynomial
in n, but this event occurs with exponentially small probability). Similarly, the time taken
to reach y from z is 2cn2 +O(1). Once y is reached, there is (by choice of y) a path of length
|Y | − 1 in H starting from y and visiting all of Y \ {y}. Thus, by induction, the required
bound holds. Secondly, suppose that an optimal first step in a strategy from u moves towards
a vertex y′ of H which is not the first step in a suitable path. Since the expected remaining
time decreases whenever an optimal step is taken, two successive optimal steps cannot be
in opposite directions unless the walker visits a vertex of Y in between. Thus the optimal
strategy is to continue in the direction of y′ if possible, and such a strategy reaches y′ before
returning to u with at least constant probability p, and this takes at least 2cn2 steps. Note
that the expected time taken to reach another vertex of H from a vertex in H, even if the
walker is purely trying to minimise this quantity, is at least 4cn2, and from either u or y′ at
least |Y | such transitions are necessary to cover Y . Thus such a strategy, conditioned on the
first step being in the direction of y′, has expected time at least 4cn2 + 2pcn2, which, for
suitable choice of c, proves the claim. J
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5.3 Computing Cov (G, v) via Markov Decision Processes

To compute a solution for Cov (G, v) we can encode the cover time problem as a hitting time
problem on a (significantly) larger graph. For a proof of the following lemma see [23].

I Lemma 19. For any graph G = (V,E) let the (directed) auxiliary graph G̃ = (Ṽ , Ẽ) be
given by Ṽ = V × P(V ) and Ẽ = {((i, S), (j, S ∪ j)) | ij ∈ E}. Then solutions to Cov (G, v)
correspond to solutions to Hit

(
G̃, ṽ,W

)
and vice versa, where W = {(u, V ) | u ∈ V }.

In light of Lemma 19 it may appear that we can solve Cov(G, v) by converting it to an
instance of Hit

(
G̃, ṽ,W

)
and appealing to Theorem 17. This is unfortunately not the case

as G̃ is a directed graph and Theorem 17 cannot handle directed graphs. Lemma 19 is still
of use as we can phrase Hit in terms of Markov Decision processes and then standard results
tell us that an optimal strategy for the problem can be computed in finite time.

A Markov Decision Process (MDP) is a discrete time finite state stochastic process
controlled by a sequence of decisions [18]. At each step a controller specifies a probability
distribution over a set of actions which may be taken and this has a direct affect on the
next step of the process. Costs are associated with each step/action and the aim of the
controller is to minimise the total cost of performing a given task, for example hitting a
given state. In our setting the actions are orderings of the vertices in each neighbourhood
and the cost of each step/action is one unit of time. Hit

(
G, u, v) is then an instance of the

optimal first passage problem which can be solved as a linear program. In our setting actions
are orderings of neighbourhoods and so the linear program has

∑
x 6=v d(x)! many constraints

[18, page. 58]. Since, by the construction in Lemma 19, the out degrees of vertices in the
directed graph G̃ are the same as those of the corresponding vertices of G we obtain.

I Corollary 20. For any graph G and v ∈ V an optimal policy for the problem Cov (G, v)
can be computed in exponential time.

I Remark 21. Applying the LP from [18, page. 58] to graphs with degrees of order higher
than poly(logn) will not result in a polynomial time algorithm for Hit. This is why we took
a different approach to find a polynomial time algorithm in Section 5.1.

6 Summary and Future Work

In this paper we proposed a new random walk process inspired by the power-of-two-choices
paradigm. We derived several quantitative bounds on the hitting and cover times, and also
presented a surprising dichotomy with regards to computing optimal strategies. Some tools
we developed were also applicable to ε-biased walks and we made progress on a long standing
conjecture [6].

While we were able to show that on expanders, the CRW significantly outperforms the
SRW in terms of its cover time, it is natural to ask whether the cover time is Θ(n). In fact,
it might even be possible for this bound to apply to any bounded-degree graph.

We have shown that Cov ∈ EXP and that the problem is NP-Hard, it would be interesting
to find a complexity class for which the problem is complete.

Our focus here was on hitting and cover times, as well as maximising stationary probabil-
ities, but another natural question is whether we can define a meaningful notion of mixing
time and analyse the speed-up achieved by a CRW in comparison to a simple random walk.
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A Appendix

A.1 Proofs Omitted from Section 1
Proof of Proposition 1. It is sufficient to provide a strategy to simulate a given bias matrix,
since we may then vary the strategy depending on t and Ht in order to simulate the ε-TBRW.
Fix a bias matrix B with elements bx,y and let the weights αzx,y for the CRW be given by

αzx,y = 1
2 [1 + εd(x) (bx,y − bx,z)]

for each x ∈ V (G) and y, z ∈ Γ(x). Since ε 6 1/dmax 6 1/d(x), these weights satisfy (1), so
this gives a valid CRW strategy.

For adjacent vertices x and y, let qtwo
x,y and qεBx,y denote the transition probabilities of the

CRW and ε-biased walks respectively. By (3) we have

qεBx,y = 1− ε
d(x) + εbx,y,

and
∑
y∈Γ(x) bx,y = 1 by definition of B. Also, by (2) we have

qtwo
x,y = 2

d(x)2

∑
z∈Γ(x)

αzx,y

= 1
d(x)2

∑
z∈Γ(x)

(1 + εd(x) (bx,y − bx,z))

= 1
d(x) + εbx,y −

ε

d(x)
= qεBx,y,

as required. J

A.2 Proof of Theorem 3
We first need a lemma establishing that the CRW can simulate random walks on a suitable
weighting of G.

I Lemma 22. Fix a vertex v, and partition its neighbours into two sets, A and B. There
is an unchanging strategy for the CRW such that whenever the walker is at v it moves to
a random neighbour according to the probability distribution in which every vertex in B is
twice as likely as every vertex in A.

By considering the strategy at each vertex separately, we immediately obtain the following
consequence.

I Corollary 23. Let G be a weighted graph with weight function w, having the property that
for any two incident edges xy, xz either w(xy) = w(xz), w(xy) = 2w(xz) or 2w(xy) = w(xz).
Then there is an unchanging strategy for the CRW on G which simulates a random walk
according to the weights w.

For a weighted graph (G,w), write w(G) =
∑
e∈E(G) w(e). We need an additional result

on edge-crossing times of weighted graphs.

I Lemma 24. Let (G,w) be a weighted graph, and let x be a vertex such that every edge
incident with x has weight 1. Then for any vertex y adjacent to x, Hy(x) 6 w(G) +w(G \x).
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Proofs of the three Lemmas above can be found [23, Sec. 3]. We are now ready to prove the
main result of this section.

Proof of Theorem 3. We have to show that the above bounds apply to H two
y (x) for two ar-

bitrary vertices x, y. Define a weight function w : E(G)→ Q+ by w(uv) = 2−min(d(u,x),d(v,x)).
Note that w satisfies the requirements of Corollary 23, so we can bound H two

y (x) by the
corresponding hitting time of the random walk on (G,w). We will bound that hitting time
now.

Write d for the maximum distance of a vertex from x, and Vk for the set of vertices at
distance exactly k from x. Note that if y ∈ Vk+1 then

Hy(x) 6 Hy(Vk) + max
z∈Vk

Hz(x),

and consequently

max
y∈V (G)

Hy(x) 6
d−1∑
k=0

max
z∈Vk+1

Hz(Vk).

For each 0 6 k 6 d− 1 let Gk be the simple weighted graph obtained by deleting
⋃
i<k Vi

and identifying vertices in Vk to give a vertex vk; if a vertex in Vk+1 has multiple edges to Vk,
delete all but one of them to leave a simple graph. Since removing edges between Vk+1 and
Vk cannot reduce the hitting time of Vk, we have for any z ∈ Vk+1 that HG

z (Vk) 6 HGk
z (vk).

Note that the latter hitting time is unchanged by multiplying all weights by 2k, and since every
z ∈ Vk+1 is adjacent to vk in Gk, by Lemma 24 we have HGk

z (vk) 6 2k(w(Gk) +w(Gk \ vk)).
Thus

max
y∈V (G)

Hy(x) 6
d−1∑
k=0

2k(w(Gk) + w(Gk \ vk)).

If e is an edge between Vj and Vj+1 then the contribution of e to the kth term of the above
sum is 2k−j+1 if k < j, at most 1 if k = j and 0 otherwise, so its total contribution is less
than 3, and is less than 2 if e is one of the edges deleted to make Gj simple. If e is an edge
within Vj then its contribution to the kth term is 2k−j+1 if k < j and 0 otherwise, so its
total contribution is less than 2. The first bound follows. Note that of the edges of the first
type which are not deleted, there is exactly one from each vertex (other than x) to a vertex
in a lower layer of G, and so these edges form a tree. Thus there are n− 1 such edges, whose
contribution is bounded by 3, and at most

(
n
2
)
− (n− 1) other edges, whose contribution is

bounded by 2, giving a bound of 2
(
n
2
)

+ n− 1 = n2 − 1. J

A.3 Deducing Theorems 4 & 5 from Theorem 6
To prove Theorems 4 & 5 from Theorem 6 we need some elementary lemmas concerning
random walks. The Proofs of Lemmas 25 & 26 can be found in [23].

I Lemma 25. Let U(t) be the number of unvisited vertices at time t by a SRW on a graph
and let Tn/2x be the number of SRW steps taken before U 6 n/2x. Then

E [U(2x · thit) ] 6 n

2x and E
[
Tn/2x

]
6 4(x+ 1)thit.

Theorems 4 & 5 bound the hitting/cover times in terms of trel = 1/(1− λ2), where λ2 is the
largest non-trivial eigenvalue of the transition matrix of the lazy random walk (LRW). The
relaxation time of LRW is more commonly studied than that of the simple random walk
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(SRW) since laziness ensures that the walk is an aperiodic Markov chain, and hence the
relaxation time is well defined. This provides a further obstacle to overcome since Theorem
6 uses the SRW rather than the LRW; our next lemma resolves this issue.

Let p(t)
x,· be the distribution of the simple random walk after t steps, and write π(S) for

the stationary probability of a set S.

I Lemma 26. For any graph G, S ⊂ V and x ∈ V there exists t 6 4trel lnn such that

p
(t)
x,S > π(S)/3.

Proof of Theorem 4. We first let a simple random walk cover all but α =
⌊
n/ logC n

⌋
vertices, for some C to be specified later. By Lemma 25 if we let a simple random walk
run for 4thit · C log2 logn steps then the expected size of the unvisited set will be at most
n/ logC n as required. For a simple random walk thit = O

(
davg
dmin

n
√
trel

)
by [33, Thm. 1]. Thus

it follows that the expected time τ1 to complete the first phase is O
(
C(log logn) · davg

dmin
n
√
trel

)
.

We then have α different phases, labelled α, α− 1, . . . , 1, where in each phase we reduce
the number of uncovered vertices by one. Consider any phase i where a set of i vertices
are still uncovered; call this set Si ⊆ V . By Lemma 26 there is some T 6 4trel logn and
t 6 T such that p(t)

x,S > π(S)/3 > dmin · i/(3ndavg) and thus q(t)
u,Si

> (dmin · i/(3ndavg))1−ε by
Theorem 6. By considering independent trials with walks of length T the expected time until
at least one vertex in Si is visited is at most

O

((
n · davg
i · dmin

)1−ε
· trel · logn

)
.

Hence the expected time τ2 to complete all α phases satisfies

τ2 =
n/ logC n∑
i=1

O

((
ndavg
idmin

)1−ε
trel logn

)

= O
((

ndavg
dmin

)1−ε
trel logn

)
n/ logC n∑
i=1

iε−1.

Then, since
∑n/ logC n
i=1 iε−1 6

(
n/ logC n

)ε
·
∑n/ logC n
i=1 i−1 6

(
n/ logC n

)ε
· logn,

τ2 = O
((

ndavg
dmin

)1−ε
trel logn

)
· O
((

n

logC n

)ε
· logn

)

= O
(
n ·
(
davg
dmin

)1−ε
· trel ·

log2 n

logCε n

)
.

Now if we let C =
(

2 + log trel
log logn

)
/ε then logCε n = trel · log2 n and thus τ2 = o(τ1). It follows

that the contribution from the first phase dominates the second. Thus the total time is O(τ1)
and for C above this is given by τ1 = O

(
n · ε−1 · davg

dmin
·
√
trel ·

(
2 + log trel

log logn

)
· log logn

)
. J

Proof of Theorem 5. Let T = 4 · trel · lnn then for any x, v ∈ V there exists some t 6 T

such that p(t)
x,y > π(y)/3 by Lemma 26. By Theorem 6 for any x, y ∈ V there exists an ε-TB

strategy and some t 6 T such that q(t)
x,y > (π(y)/3)1−ε > (dmin/ndavg)1−ε

/3. Thus for any
target vertex y and start vertex x we need in expectation at most 3 (ndavg/dmin)1−ε attempts
to hit y in at most T = 4trel lnn steps, the result follows. J
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A.4 Proofs from section 5.1
Proof of Theorem 16. We prove the simple graph case; this proof may be easily extended
for multigraphs with suitably adapted notation. The optimisation problem (7) above can
be rephrased as a Linear Program by making the substitution rx,y,z = π(x) · αzx,y. Either
the Ellipsoid method or Karmarkar’s algorithm will approximate the solution to within
an additive ε > 0 factor in time which is polynomial in the dimension of the problem and
log(1/ε), see for example [29, 24]. J

Proof of Lemma 12. Fix an optimal strategy α for Hit(F, x, v), and for each y ∈ Γ(x) write
qy for the probability that the first step under this strategy is from x to y. Recall that
qy =

∑
z∈Γx

2αz
x,y

d(x)2 . Now given that the first step is at y, an optimal strategy for the remaining
steps is precisely an optimal strategy for Hit(F, y, v), and thus

H two
x (v) =

∑
y∈Γ(x)

qyH
two
y (v).

Suppose there exist y, z ∈ Γ(x) with H two
y (v) < H two

z (v) but αzx,y < 1 at the first step. By
instead (at time 1 only) always choosing y in preference to z, the expected hitting time is
decreased by 2

d(x)2 (1 − αzx,y)(H two
z (v) −H two

y (v)), a contradiction. Thus we have αzx,y = 1
if H two

y (v) < H two
z (v) and αzx,y = 0 if H two

y (v) > H two
z (v). If H two

y (v) = H two
z (v) then the

expected hitting time does not depend on αzx,y, and so any strategy satisfying these conditions
at time 1, and thereafter following an optimal strategy, is itself optimal.

It follows by induction that following β for k turns and thereafter following α is optimal;
since this gives arbitrarily good approximations of the expected hitting time under β, β
is itself optimal for Hit(F, x, v), and, since the definition of β does not depend on x, for
Hit(F, y, v) for any y 6= v.

Next we show that β is also an optimal strategy for minimising Ev [ τ+
v ]. Suppose not,

and let γ be an optimal strategy. Write qγx for the probability of moving from v to x at time
1 under γ, and Hγ

v (v+) for Ev [ τ+
v ] under γ. Now

Hγ
v (v+) =

∑
x∈Γ(v)

qγxH
γ
x (v)

>
∑

x∈Γ(v)

qγxH
β
x (v),

by optimality of β for Hit(F, x, v). Suppose γyv,x 6= βyv,x for some x, y ∈ Γ(v). Repla-
cing γyv,x and γxv,y by βyv,x and βxv,y respectively changes

∑
x∈Γ(v) q

γ
xH

β
x (v) by 2

d(v)2 (βyv,x −
γyv,x)(H two

x (v)−H two
y (v)), which is non-positive by choice of β. Thus after a sequence of such

changes we obtain

Hγ
v (v+) >

∑
x∈Γ(v)

qγxH
β
x (v)

= Hβ
v (v+). J

Proof of Lemma 14. First we bound Hα
v (v+)−Hβ

v (v+), where β is as described in Lemma
12. Consider the strategy of following α until the first time the walk either reaches v or is at
x and offered a choice between y and z, and in the latter case following β until v is reached.
The difference between this strategy and following α is p(αzx,yHα

y (v) + αyx,zH
α
z (v)−Hβ

y (v)),
where p is the probability of the latter event occurring before the walk returns to v. Note
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that

αzx,yH
α
y (v) + αyx,zH

α
z (v)−Hβ

y (v) > (αzx,y − 1)Hβ
y (v) + αyx,zH

β
z (v)

= (1− αzx,y)(H two
z (v)−H two

y (v))
> (H two

z (v)−H two
y (v))/2

by Lemma 12 and the assumptions. Further,

p > 2
(

1
∆(F )2

)d(v,x)+1
>

(
n

2

)−2n
,

since with at least this probability the walk is forced along a specific shortest path to x, then
offered a choice of y or z.

Thus the difference in Ev [ τ+
v ] between α and this hybrid strategy is at least

ζ := 1
2

(
n

2

)−2n
(H two

z (v)−H two
y (v)),

and since β minimises this quantity among all strategies by Lemma 12, the same bound
applies to the difference between α and β, giving

πα(v)−1 > πβ(v)−1 + ζ,

and consequently

πα(v) 6 πβ(v)− ζ πβ(v)2

1 + πβ(v)ζ . (8)

We have 1 > πβ(v) >
(
n
2
)−1 by comparison with a simple random walk. Also we may crudely

bound ttwo
hit F by noting that a SRW has probability at least

(
n
2
)1−n of reaching any given

vertex in at most n − 1 steps, giving ζ < 1. Combining these bounds with (8) gives the
required result. J

Proof of Lemma 15. Note that the hitting times (hx)x∈V for any given unchanging strategy
are uniquely determined by the equations

hx =
{

1 +
∑
y Pxy · hy if x 6∈ S

0 if x ∈ S,

where P is the transition matrix for the strategy. This set of equations can be written
as Ah = b, where A := (I−Q), Qi,j = Px,y if i, j /∈ S and 0 otherwise, and b is a 0-1
vector. Notice that since S 6= ∅ we have ‖Q‖ < 1 and so A−1 exists [27, Cor. 5.6.16.] For
any non-random strategy, and in particular for the optimal strategy described above, every
transition probability from x is a multiple of d(x)−2. Thus all the elements of A can be put
over a common denominator D, where D := LCM(d(x)2)x∈V < (n!)2 < n2n/2.

We have h = A−1b = |A|−1CTb, where C is the matrix of cofactors. Each entry in C
can be put over a common denominator which is at most Dn, and so the same applies to
each entry of CTb. Also, |A| < 2n by Hadamard’s inequality [27, Thm. 7.8.1]. It follows
that if two hitting times differ, they differ by at least (2D)−n. J
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