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Abstract: The coupling of reversible ammoniation reactions between two salts presents a method 

for the exploitation of low grade waste heat. This resorption configuration can be used for thermal 

transformation or heat pumping, to recover waste heat to primary producers, or for integration in 

heat networks. To understand the solid/gas reaction behaviour and to model its kinetics, Large 

Temperature Jump (LTJ) experiments were performed on a composite of barium chloride in an 

expanded natural graphite (ENG) matrix. A model has been built using a semi-empirical equation 

from the literature, which has been validated with the LTJ results. The results suggest the semi-

empirical model provides a reasonable prediction for solid/gas reactions once the constants have 

been identified. Enhancing the model to handle sequential phase change reactions will enable a 

wide number of salts to be modelled, making the design of a resorption system practicable. 

Keywords: resorption; adsorption; transformation; heat; thermochemical; ammonia 

 

1. Introduction 

Halide salts reacting with ammonia are an attractive prospect for the purpose of heat pumping 

and transforming. The reversible reaction may present a comparatively inexpensive alternative to 

existing absorption systems, particularly in a simple resorption system, which avoids evaporator and 

condenser components. Existing absorptive systems on the market, such as ammonia-water gas fired 

heat pumps, are not widely adopted due to high costs. Future physical adsorption systems (e.g., 

carbon-ammonia or zeolite-water) may become more affordable, but chemisorption systems (e.g., 

resorption with ammonia—metal halides) produce more heat per kg adsorbed refrigerant and have 

potentially higher Coefficient of Performance (COP). 

Barium chloride presents a reasonable starting point for understanding the kinetics of the halide 

reactions with its single phase change and low temperature reaction conditions. The salt was 

impregnated within expanded natural graphite (ENG) in order to address conductivity issues, 

swelling, or agglomeration. The composite material exhibits the characteristics favoured for a 

chemisorption machine. 
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Figure 1. Large Temperature Jump (LTJ) reactor design; cross hatched area represents reactor 

heating oil jacket. 
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To test the material, it was necessary to perform experiments following the Large Temperature 

Jump (LTJ) method. LTJ experiments provide a simple technique for testing sorption heat cycles 

under typical operating conditions and are well documented [1–4]. In typical sorption operation, the 

change in temperature of the heat exchanger in thermal contact with the adsorbent bed initiates the 

adsorption and desorption reactions [3]. Therefore, an LTJ test piece comprised of a typical section of 

heat exchanger containing a small sample of adsorbent will emulate the performance of a working 

resorption bed or adsorption generator. The rapid heating and cooling of the sample, while recreating 

the actual reaction conditions, also presents a simple case to model the rate-limiting phenomena of 

heat transfer and reaction dynamics. A semi-empirical kinetic model presented by Mazet et al. [5] 

enabled a simulation model to be written using the temperature rise of the heat exchanger (LTJ) wall 

as the driving force. The results were then compared to the real experimental data, considering the 

reaction rate and evolution of the conditions. The large temperature jump reactor designed for this 

experiment can be seen in Figure 1. 

2. Materials and Methods 

2.1. Sample Preparation 

The reactive material was comprised of halide salts impregnated within a conductive matrix of 

expanded natural graphite (ENG). The disks from each sample were cut from SGL Sigratherm board 

L10/1500, with a density of 1500 g/m3. The 10 mm thick board was cut using a water jet cutter into 

disks of 10.8 mm to fit into half-inch stainless steel tubes (of 10.8 mm bore). A 1 mm hole was drilled 

in the centre to receive a stainless steel sheathed thermocouple. The disks were weighed and then 

held submerged in a barium chloride solution, the strength of which determined the disk uptake. The 

containers with the submerged samples were then evacuated using a vacuum pump. They were left 

under vacuum for 24 h before removal and then dried in an oven at 200 °C for an hour to remove all 

moisture [6,7]. The uptake of salt was measured; 4.5 g of anhydrous barium chloride in 25 mL of 

water gave an uptake of 0.23 g of salt in 5 disks of 0.642 g ENG in total. In another case, 4.5 g in 25 

mL gave 0.294 g in 5 disks with a total mass of 0.632. A higher uptake was produced with 9.38 g 

added to 25 mL where the 5 disks had an uptake of 0.759 g in a total of 0.67 g ENG. 

2.2. Large Temperature Jump Apparatus 

The reactor design can be seen in Figure 1. The main component is a reaction vessel that holds 

the reactive samples; this was comprised of a one-inch stainless steel tube welded around a half-inch 

tube with cuffs to form a jacket. The half-inch tube is 15 cm in length and the outer 12 cm. The design 

is to ensure a uniform flow of oil (little velocity variation around the circumference) through the 

jacket delivering heat to the reactor contents. Swagelok face seal fittings were used to connect to 

further pipework, to ensure the rig could be removed and replaced easily.  

Thermocouples (seen as temperature transmitters in Figure 2) measure temperatures of the LTJ 

wall, the centre of the salt sample, the expansion vessel temperature, and expansion vessel wall 

temperature. These are connected to an Omega data acquisition device (OMB-DAQ-2408-2AO) and 

LabVIEW program to collect data and to monitor and control the operation. The valves are switched 

to alternate the bath feeding the rig. The rapid change in oil temperature feeding the reactor causes 

the temperature jump effect. The entire rig is shown in Figure 2. To reduce the gas volume within the 

reactor vessel, PTFE (Polytetrafluoroethylene) cylinders were placed to hold the samples in the 

middle. They were drilled with a 1.2 mm centre hole to ensure gas transport (right hand side) in 

Figure 2. Or access for the central thermocouple (Left hand side in Figure 2). The rig was evacuated 

and then loaded to a set ammonia pressure in the expansion vessels with the LTJ reactor isolated so 

that the mass of ammonia in the system could be calculated. For each different nominal pressure tests, 

the cell was again evacuated so that the total mass of ammonia in the system was known. In 

operation, the baths were set to temperatures away from the phase change, based on the data 

presented by Neveu and Castaing [8]. The reactions were carried out at a number of pressures and 

for the different samples with different masses of salt. 
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Figure 2. Process flow diagram of the entire LTJ rig. 

2.3. Reaction Model 

A model was built and written into MATLAB to simulate the behaviour of the composite during 

the process; the kinetic equation component is from work by Mazet, Amouroux, and Spinner [1,9] 

and Lebrun and Spinner [10]. The function is shown in Equation (1). 

𝑑𝑥

𝑑𝑡
= (1 − 𝑥)𝑚𝐴𝑟 (

𝑃 − 𝑃𝑒

𝑃
) (1) 

𝑙𝑛(𝑃𝑒) = −
∆𝐻

𝑅𝑇
+

∆𝑆

𝑅
 (2) 

The function describes the rate of reaction 𝑑𝑥/𝑑𝑡  and is the same for both adsorption and 

desorption reactions, but these must be handled separately. The term 𝑥 represents the degree of 

conversion, which is defined by 𝑥 = 0 at 𝑡 = 0 and 𝑥 = 1 at 𝑡 = ∞. Pseudo constants to be calculated 

are 𝑚  and  𝐴𝑟 ; 𝑚  represents the order of the reaction, and  𝐴𝑟 is a function of Arhenius’ law 

accounting for the activation energy. 𝑃  is the pressure, and 𝑃𝑒 the equilibrium pressure. The 

equilibrium pressure is calculated from the Clapeyron relationship, Equation (2) where ∆𝐻 is the 

reaction enthalpy change in J mol−1, ∆𝑆 is the reaction entropy change in J mol−1 K−1, and R is the 

universal gas constant in J mol−1 K−1.  

To adapt the kinetic equation to a reaction model, a finite element model was written discretising 

the reactive sample across one dimension (radial). Each element was simulated as a lumped 

parameter model with heat flow in and out and an enthalpy generated from the reaction. 

Experimental results provided the temperature of the wall, which is in contact with the first element.  

If an equal pressure rise in a small timestep is assumed for all the elements, then knowing the 

quantity of heat flow in or out of each, plus the assumed kinetic equation allows the change in 

temperature and mass of adsorbed or desorbed ammonia to be calculated. These, in turn, allow the 

total mass of ammonia in the whole system, which should be constant, to be calculated. Iteration of 
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the value of the pressure rise to ensure the ammonia mass balance gives the new conditions for the 

next timestep. The mass balance equation takes account of factors such as gas voids within the cell 

and the changing volume of ammoniate present. The heat transfer resistance to the first element is 

modelled as a gas gap, the size of which was calculated by carrying out a temperature jump with no 

phase change and fitting the predicted temperature curve to the recorded centre temperature. The 

mathematic model was written in MATLAB. 

Equilibrium lines (Equation (2)) from the literature or from our own measurements of a 

composite sample in a magnetic suspension balance were not necessarily valid in the LTJ, as 

discussed below. New equilibrium lines were calculated from the LTJ results, so the conditions of the 

reaction initiation were known before using trial and error to find the constants in the kinetic equation 

(Equation (1)). With the correct equilibrium line and constants, the model could then predict the 

temperature of the salt sample as the phase change occurs. This was repeated for the different LTJ 

tests.  

3. Results and Discussion 

A number of tests were performed on the samples with differing amounts of salt. During a 

desorption–adsorption cycle, it was noted that the temperature of the sample was often found to 

exceed the point at which the phase change occurs, before quickly going back and settling at the 

temperature of the reaction. This was found in all cases of desorption and in some cases of adsorption. 

This is further evidence as to why an LTJ experiment is the best way to test sorption materials; 

alternative methods do not collect enough data during the transient reaction process, and 

supersaturation-like effects will not be observed by the use of other techniques. Specifically, a slow 

‘equilibrium’ measurement using, for example, a magnetic suspension balance, may pick out the non-

equilibrium temperature peak at the onset of reaction rather than the temperature that exists during 

the overwhelming bulk of the reaction. 

3.1. Equilibrium Data 

With the reaction data, it was possible to get an array of data points at which the reaction occurs. 

For the desorption reaction (susceptible to exceeding the equilibrium point), the value was taken after 

any spike at the plateau. 

 

Figure 3. Equilibrium lines, shows all results for adsorption and desorption. 

Notably, the adsorption points all occurred on the same line, as shown in Figure 3. The 

desorption plots were more scattered, with each of the three different salt concentration samples 
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having slightly different adsorption equilibria. A new equilibrium line based on the Clapeyron 

equation can be calculated using Equation (2). The result can be seen in Figure 4. The fact that the 

calculated lines presented would ultimately cross suggests that these relationships are not really 

linear but present a reasonable approach for the model simulation. The calculated enthalpy and 

entropy values are 35,340 (J/mol) and 223 (J/molK) for adsorption, respectively, and 48,670 (J/mol) 

and 263 (J/molK) for desorption, respectively. 

 

Figure 4. Calculated equilibrium lines compared to data by Neveu and Castaing attributed to a thesis 

by S. Mauran (1982) Perpignan [8]. 

3.2. LTJ and Modelling Results 

Once the heat transfer and equilibrium properties were established, trial and error was used to 

find the constants 𝑚  and  𝐴𝑟  from Equation (1). The desorption and adsorption reactions were 

treated separately and had different constants. The findings show that the kinetic model was 

reasonably accurate at predicting the rate of reaction over a number of different conditions for 

samples with different mass fractions of salt.  

The experimental and simulated results are shown in Figures 5 and 6. One can observe the 

previously described non-equilibrium temperature peaks (desorption) and troughs (adsorption) in 

the experimental results. In desorption, the wall temperature can be seen to rise, showing the 

temperature jump and the driving force for the reaction. There is some divergence between results, 

but what gives particular confidence is the ability of the model to predict the absorption reaction, 

which is slower and will likely be the rate-limiting effect in a resorption system. Furthermore, it is 

significant that the overall cycle times are so short, often less than 15 min. For all desorption tests, the 

values for the constants 𝑚 and 𝐴𝑟 that gave the best fit were 2 and 3.5, respectively, suggesting a 

second order reaction. Adsorption reactions 𝑚 and 𝐴𝑟 were found to be 1 and 0.1, respectively. 

The results shown in Figures 5 and 6 show that the semi-empirical model provides a reasonable 

prediction for solid–gas reactions, predicting the reaction quantity and rate for the range of conditions 

tested (between two and eight bar). At room temperature, above eight bar ammonia is at danger of 

condensing and below two bar is outside the expected working conditions, and mass transfer effects 

begin to effect below this. This is particularly important as evidence suggests that in these composite 

samples, the reaction is heat-transfer limited rather than chemical-reaction-rate limited. This can be 

seen in Appendix A, where the pressure change during the reaction can be observed as linear, 

suggesting there is no diminishment in rate due to a change in concentration of ammoniate. 
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These results will enable the design of a prototype transformer to show the potential for waste 

heat recovery. Further research will explore the more detailed behaviour of the material. Figure 5d 

shows the divergence between the predicted and experimental centre temperature. However, the 

predicted pressure (not shown) and, hence, the desorption rate remains a satisfactory match. This is 

the greatest disparity occurring at extreme reaction conditions (low pressure and salt concentration) 

outside the range of anticipated use. Further adjustment of parameters may reduce this, but the 

values of the derived constants 𝑚 and 𝐴𝑟 suggest a first and second order reaction as might be 

expected and should be applicable to the design of full-scale reactors. Future research should consider 

the chemistry of the composite material and aim to understand the causes of the meta state and 

reaction initiation, as well as hysteresis and differing equilibrium lines. Future work will look at other 

salts that will be paired with barium chloride for resorption machines and can consider different 

kinetic models. 

  
(a) (b) 

  
(c) (d) 

Figure 5. Model results versus measured results for desorption reaction: (a) approx. 7 bar with 0.531 

kg salt/kg of composite; (b) approx. 7 bar with 0.317 kg salt/kg of composite; (c) approx. 2 bar with 

0.531 kg salt/kg of composite; (d) approx. 2 bar with 0.317 kg salt/kg of composite. 
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(a) (b) 

  
(c) (d) 

Figure 6. Model results versus measured results for adsorption reaction: (a) approx. 7 bar with 0.531 

kg salt/kg of composite; (b) approx. 7 bar with 0.317 kg salt/kg of composite; (c) approx. 3 bar with 

0.531 kg salt/kg of composite; (d) approx. 3 bar with 0.317 kg salt/kg of composite. 

4. Conclusions 

LTJ test results on barium chloride impregnated into a conductive matrix, showed promise for 

real resorption systems with favourable short cycle times. Modelling the behaviour with a semi-

empirical model presented by Mazet et al. was successful in predicting the chemical dynamics over 

multiple test samples and a range of pressures and temperatures. The results provide enough 

evidence and knowledge to produce a detailed design for a resorption bed or adsorption generator. 

Previously recorded equilibrium lines were found to be not appropriate in the dynamic situation, but 

more experimentation is required. Partly due to the observation of a meta state in both desorption 

and adsorption, an initial temperature rise or fall beyond the equilibrium level is observed before the 

reaction commences returning to phase change temperatures. With more tests on other salts and the 

expansion of the simulation model, a design of a resorption system will proceed. 

Author Contributions: Conceptualization, R.C. and S.H.; methodology, R.C. and S.H.; software, R.C. and S.H.; 

validation, R.C., and S.H.; formal analysis, S.H.; investigation, S.H.; resources, R.C.; data curation, S.H.; writing—

original draft preparation, S.H.; writing—review and editing, R.C. and S.H; visualization, S.H.; supervision, R.C.; 

project administration, S.H.; funding acquisition, R.C. 

Funding: This research was funded by the TNO project ‘EASIER’ and EPSRC studentship in conjunction with 

the Energy Research Accelerator funded by InnovateUK. 

Acknowledgments: We thank Charles Joyce of the University of Warwick for assistance in producing the 

materials for the experiment and his insightful knowledge of workshop processes, and also other members of 

the STET department at Warwick for much advice when discussing the experiment. 



Energies 2019, 12, 4404 8 of 19 

 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 

Figure A1. Raw results from the LTJ experiment, TC stands for thermocouple. Both LTJ wall 

thermocouples can be seen to show the same results, which shows effective design. 

Appendix B. LTJ Matlab Code 

Equation=1;   % Chose rate equation as below: 

% 1: madsnew(n)=mads(n)-dt*msalt(n)*((x(n)-xinitial)^yads)*Aads*(1.-

peq/p) 

% 2: madsnew(n)=mads(n)-dt*msalt(n)*((x(n)-xinitial)^yadsln)*C1ads*... 

     %exp(-Ea/R0/T)*log(p/peq) 

  

dt=0.01;     % Time step (s) for simulatiom If N=3 use 0.02 

R0=8314;      % Universal Gas Constant J/kmol K 

RNH3=R0/17;   % Approximate ammonia gas constant J/kg K 

Cpgas = 2760; % Specific heat Cp of ammonia gas (mean) J/kg K 

Cvgas =Cpgas-RNH3; % Specific heat Cv of ammonia gas (mean) J/kg K 

Cpads=3120;   % Specific heat of ammoniate J/kmol NH3 ***kg??? 

CpENG = 720;  % Specific heat of ENG J/kg K 

rhoENG=195.9;   % Density of unfilled block of ENG kg/m^3 

rhoads=817;   % Density of solid ammoniate - ammonia ice from Wiki kg/m^3 

MWamm=17.03;  % MW ammonia 

rhogra=2250;  % density of graphite kg/m^3 to get true volume 

  

experiment = menu('choose experiment number', '44-52', '53-56', '57-62') 

if experiment == 1 

%%%% Data from EXP 44-52 salt mass and ENG initial multiplier to smooth 

curves    
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 MassSalt = 0.759e-3; 

 MassSalt = MassSalt*0.47; 

 MassENG  = 0.67e-3;   

end 

if experiment == 2 

%%%% Data from EXP 53-56 salt mass and ENG initial multiplier to smooth 

curves        

    MassSalt = 0.23e-3; 

    MassSalt = MassSalt*0.47; 

    MassENG  = 0.642e-3; 

end  

if experiment == 3 

%%%% Data from EXP 53-56 salt mass and ENG initial multiplier to smooth 

curves        

    MassSalt = 0.294e-3; 

    MassSalt = MassSalt*0.47; 

    MassENG  = 0.632e-3; 

end 

% Input salt and reaction 

saltname = menu('Choose Reaction', 'BaCl2', 'CaCl2(8-4)', 'CaCl2(4-2)') 

if saltname==1 % All BaCl2 parameters below 

   Cpsalt=361.2; % Specific heat of BaCl2 J/kg K (Nist 75.22 J/(mol K)) 

   rhosalt=3856; % Density of unammoniated salt kg/m^3 Wikipedia 

   MWsalt=208.23;% MW of salt - BaCl2 

    

   Xmax=8;% Max moles NH3 per mole salt assumed equal in all nodes 

   Xmin=0;% Min moles NH3 per mole salt assumed equal in all nodes 

   Xstart=8;      % value of X at time zero    

   delHdes=48670.37e3;  % Altered with LTJ results 

   delSdes=263.17772e3;  % Altered with LTJ results 

   delSads=223.1352e3;  % Altered with LTJ results    Pretty certain 

   delHads=35338.96e3;  % Altered with LTJ results    about ads results 

    

            ydes=2;           % Dynamic parameter desorption Eq 1 

            Ades=3.5;          % Dynamic parameter desorption Eq 1 

            yads=0.2;           % Dynamic parameter adsorption Eq 1 

            Aads=0.75;          % Dynamic parameter adsorption Eq 1 

            yadsln=1;         % Dynamic parameter desorption Eq 2 

            ydesln=1;         % Dynamic parameter desorption Eq 2 

            C1ads=500;        % Dynamic parameter desorption Eq 2 (1/s) 

            C1des=100;        % Dynamic parameter desorption Eq 2 (1/s) 

            Eaads=25000;% Dynamic parameter ads Eq 2 (J/kmol K [as R0]) 

            Eades=25000;% Dynamic parameter des Eq 2 (J/kmol K [as R0]) 
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else 

    if saltname==2 % All CaCl2 8-4 parameters below 

        Cpsalt=656.8; % Cp of CaCl2 J/kg K (Wikipedia 72.89 J/(mol K)) 

        rhosalt=2150; % Density of unammoniated salt kg/m^3 Wikipedia 

        MWsalt=110.984;% MW CaCl2 

  

        Xmax=8;% Max moles NH3 per mole salt assumed equal in all nodes 

        Xmin=0;% Min moles NH3 per mole salt assumed equal in all nodes 

        Xstart=8;      % value of X at time zero 

  

        delHdes=41013000;% Reaction enthalpy J/mol for CaCl2 8-4 

        delSdes=230300;  % Reaction entropy change for CaCl2 8-4 J/molK 

        delHads=41013000;% Reaction enthalpy J/mol for CaCl2 8-4 

        delSads=230300;  % Reaction entropy change for CaCl2 8-4 J/molK 

         

            ydes=1.5;           % Dynamic parameter desorption Eq 1 

            Ades=0.7;          % Dynamic parameter desorption Eq 1 

            yads=1.5;           % Dynamic parameter adsorption Eq 1 

            Aads=0.7;          % Dynamic parameter adsorption Eq 1 

            yadsln=1;         % Dynamic parameter desorption Eq 2 

            ydesln=1;         % Dynamic parameter desorption Eq 2 

            C1ads=500;        % Dynamic parameter desorption Eq 2 (1/s) 

            C1des=100;        % Dynamic parameter desorption Eq 2 (1/s) 

            Eaads=25000;% Dynamic parameter ads Eq 2 (J/kmol K [as R0]) 

            Eades=25000;% Dynamic parameter des Eq 2 (J/kmol K [as R0]) 

    else 

        if saltname==3% All CaCl2 8-4 parameters below  

            Cpsalt=656.8; % Cp of CaCl2 J/kg K (Wikipedia 72.89 J/(mol K)) 

            rhosalt=2150; % Density of unammoniated salt kg/m^3 Wikipedia 

            MWsalt=110.984;% MW CaCl2 

             

            Xmax=4;% Max moles NH3 per mole salt assumed equal in all nodes 

            Xmin=2;% Min moles NH3 per mole salt assumed equal in all nodes 

            Xstart=2;      % value of X at time zero 

  

            delHdes=42268000;% Reaction enthalpy J/mol for CaCl2 4-2 

            delSdes=229920;  % Reaction entropy change for CaCl2 4-2 J/molK 

            delHads=42268000;% Reaction enthalpy J/mol for CaCl2 4-2 

            delSads=229920;  % Reaction entropy change for CaCl2 4-2 J/molK 

  

            ydes=1.5;           % Dynamic parameter desorption Eq 1 

            Ades=0.7;          % Dynamic parameter desorption Eq 1 

            yads=1.5;           % Dynamic parameter adsorption Eq 1 
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            Aads=0.7;          % Dynamic parameter adsorption Eq 1 

            yadsln=1;         % Dynamic parameter desorption Eq 2 

            ydesln=1;         % Dynamic parameter desorption Eq 2 

            C1ads=500;        % Dynamic parameter desorption Eq 2 (1/s) 

            C1des=100;        % Dynamic parameter desorption Eq 2 (1/s) 

            Eaads=25000;% Dynamic parameter ads Eq 2 (J/kmol K [as R0]) 

            Eades=25000;% Dynamic parameter des Eq 2 (J/kmol K [as R0]) 

        else 

            'Incorrect salt entered'; 

        end 

    end 

end 

   

Ve=11.423e-3;     % Volume of expansion vessel and pipework in m^3 

   

massfracsalt = MassSalt/MassENG; 

  

N=3;                % Number of nodes 

Bore=0.01088;% LTJ tube bore (m) 

TCbore = 1e-3; %tc hole 

length=5*9.5e-3;        % Total axial length of samples (m) 

VvoidLTJ=0;%2.7e-5;      % Void volume in LTJ tube (m^3) 

hwall=5e5;    % Wall to ENG heat transfer coefficient 

kammgas=0.024; % Conductivty of gas W/mK 

gap=0.0002; % Wall ENG gap in m 

hwall=kammgas/gap; 

% CHECK Radial conductivity of ENG + SALT 

kENG=16; 

% **********  END OF PARAMETERS FOR TWEAKING  *********** 

  

% Input experimental data 

filename = input('Enter filename (without .xls)' ,'s') 

figname=filename + string(' Xstart = ')+num2str(Xstart)+... 

    ", gap = "+num2str(gap*1000)+string(', kENG = ')+... 

    num2str(kENG); % Figure titles 

expt=xlsread(filename); 

%Columns are t(s) Twall (C) Te (C) Tewall (C) Tcentre(C) p(bar) 

% Convert to K and Pa 

  

expt(:,2) = (expt(:,2)+expt(:,8))/2; % average wall temps 

expt(:,2:5)=expt(:,2:5)+273; % Temperatures to K 

  

expt(:,6)=expt(:,6)*1e5;     % Pressures to bar (Check guage is absolute) 
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toff=expt(1,1); % Time offset 

expt(:,1)=expt(:,1)-toff; % Time column begins at zero. 

datasize=size(expt); 

rows=datasize(1); % Number of rows 

tmax=floor(expt(rows,1)/dt)*dt;% Max time rounded to whole number of dt's 

jmax=floor(expt(rows,1)/dt); 

    % Rows in array to be used in simulation,start at dt, end tmax 

tempoffe=-expt(1,4)+expt(1,3); % Offset to add to col 4 (Te) 

expt(:,4)=expt(:,4)+tempoffe; 

expt(:,6)=smooth(expt(:,6),20); 

% 20 point moving average to smooth pressure data 

expt(:,3)=smooth(expt(:,3),20); % smooth Te 

expt(:,4)=smooth(expt(:,4),20); % smooth Tewall 

dataarray=zeros(jmax,6); 

  

for j=1:jmax;   % Make data array from time dt to tmax 

time=dt*j; 

for ROW=1:rows-1 

    if time>=expt(ROW,1)& time<=expt(ROW+1,1); 

        row=ROW; 

    end 

end 

% row is lower row for interpolation 

fract=(time-expt(row,1))/(expt(row+1,1)-expt(row,1)); 

dataarray(j,1)=time; 

dataarray(j,2)=expt(row,2)+fract*(expt(row+1,2)-expt(row,2)); 

dataarray(j,3)=expt(row,3)+fract*(expt(row+1,3)-expt(row,3)); 

dataarray(j,4)=expt(row,4)+fract*(expt(row+1,4)-expt(row,4)); 

dataarray(j,5)=expt(row,5)+fract*(expt(row+1,5)-expt(row,5)); 

dataarray(j,6)=expt(row,6)+fract*(expt(row+1,6)-expt(row,6)); 

  

end 

  

xinitial=Xmax*MWamm/MWsalt; % Maximum kg ammonia / kg salt 

xfinal=Xmin*MWamm/MWsalt;     % Minimum kg ammonia / kg salt 

xstart=Xstart*MWamm/MWsalt;     % kg ammonia / kg salt at time zero 

Tinitial=300; % initial temperature of all nodes in K 

Tinitial=expt(1,5); 

% Expansion vessel properties 

pinitial=3e5; % Initial pressure in Pa 

pinitial=expt(1,6); 

Teinitial=300;% Initial temperature in K 

Teinitial=expt(1,3); 
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Te=Teinitial; 

meinitial=pinitial*Ve/Teinitial/ramms(pinitial/1e5,Teinitial-273); 

meinitial=pinitial*Ve/Teinitial/RNH3; 

              % Initial kg of NH3 in expansion vessel 

me=meinitial;               

%%% **********SET UP NODE VOLMES and UAs************** 

  

T=ones(1,N)*Tinitial; 

V=zeros(1,N); 

for n=1:N 

    r(n)=Bore/2*n/N;% Radius of element 

    Aouter(n)=2*pi*r(n)*length; % Outer ht area of element (m^2) 

    if n==1 

        V(n)=0.5*pi*r(1)*r(1)*length;     % Volume of elements in m^3 

    else V(n)=0.5*pi*r(n)*r(n)*length-0.5*pi*r(n-1)*r(n-1)*length;  

    end 

    if n==1 

        rmean(n)=r(1)/sqrt(2);      

        % Mean radius such that areas either side are equal (m) 

    else rmean(n)=sqrt((r(n)*r(n)+r(n-1)*r(n-1))/2);  

    end 

end 

Vtotnodes=sum(V); 

  

% ************CALCULATE ALL UAs************* 

if N==1 

    UAouter(1)=2*pi*length/(1/hwall/r(1)+log(r(1)/rmean(1))/kENG); 

    UAinner(1)=0; 

else 

for n=1:N-1 

    UAouter(n)=2*pi*kENG*length/(log(rmean(n+1)/rmean(n))); 

    if n==1 

        UAinner(n)=0; 

    else 

        UAinner(n)=2*pi*kENG*length/(log(rmean(n)/rmean(n-1))); 

    end 

end 

UAouter(N)=2*pi*length/(1/hwall/r(1)+log(r(1)/rmean(1))/kENG); 

UAinner(N)=2*pi*kENG*length/(log(rmean(N)/rmean(N-1))); 

end 

  

% *********Calculate other parameters for elements****** 

for n=1:N 
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% mENG(n)=V(n)*rhoENG; 

mENG(n) = MassENG/N; 

msalt(n) = MassSalt/N; 

% Mass of ENG in node(s)in kg. In general a 1-d array 

% msalt(n)=massfracsalt*mENG(n); % Mass of salt in nodes (kg) 

mads(n)=msalt(n)*xstart;     % Mass of adsorbate in nodes (kg) 

x(n)=mads(n)/msalt(n); % Mass NH3/mass salt in nodes 

MCp(n)=mENG(n)*CpENG+msalt(n)*Cpsalt;  

                    % Combined MCp for ENG and salt J/K 

V0void(n)=(V(n)-mENG(n)/rhogra-msalt(n)/rhosalt); 

                    % Void volume m^3 with zero adsorbate 

% add VvoidLTJ proportional to node volumes 

V0void(n)=V0void(n)+VvoidLTJ*V(n)/Vtotnodes; 

Vvoid(n)=V0void(n)-mads(n)/rhoads; % initial void volume in node n in m^3 

mgas(n)=pinitial*Vvoid(n)/Tinitial/ramms(pinitial/1e5,Tinitial-273); 

mgas(n)=pinitial*Vvoid(n)/Tinitial/RNH3; 

                    % Mass of gas in voids (kg) 

T(n)=Tinitial;   % Temperature of node (K)                     

end % of unchanging node or initial properties                     

p=pinitial; 

mgasinitial=sum(mgas); %Initial mass of gas (kg). 

% Assumes xinitial salt volume 

totgasinitial=mgasinitial+me; % Initial total mass of gas (kg) 

  

% Set up result storage arrays 

    mgasarray=zeros(N,ceil(tmax/dt)); 

    madsarray=zeros(N,ceil(tmax/dt)); 

    Tarray=zeros(N,ceil(tmax/dt)); 

    xarray=zeros(N,ceil(tmax/dt)); 

    Xarray=zeros(N,ceil(tmax/dt)); 

    parray=zeros(1,ceil(tmax/dt)); 

    mearray=zeros(1,ceil(tmax/dt)); 

    Tearray=zeros(1,ceil(tmax/dt)); 

    mtotarray=zeros(1,ceil(tmax/dt)); 

    xexptarray=zeros(1,ceil(tmax/dt)); 

index=0;            % Counter for time loop 

for t=dt:dt:tmax;   % Time in seconds 

index=index+1; 

Twall=dataarray(index,2);      % Wall temperature (K) 

%Calculate heat into nodes dQ (J) 

if N==1 

dQ=dt*UAouter(n)*(Twall-T(n));  

else 
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    for n=1:N-1 

        if n>1; 

            dQ(n)=dt*(UAouter(n)*(T(n+1)-T(n))+UAinner(n)*(T(n-1)-T(n))); 

        else 

            dQ(n)=dt*UAouter(n)*(T(n+1)-T(n)); 

        end 

    end 

    dQ(N)=dt*UAouter(N)*(Twall-T(N)); 

end 

dQwall=dt*UAouter(n)*(Twall-T(n)); 

%Joules into element 

dQe=0.;             % Joules into vessel in time step. 

  

pnew=fzero(@saltmasserrornew,p+1000); 

%T 

%Tnew 

%stop 

% fzero finds pnew such that saltmasserror.m returns a zero 

% Store masses in arrays 

for j=1:N 

    mgasarray(j,index)=mgasnew(j); 

    madsarray(j,index)=madsnew(j); 

    Tarray(j,index)=Tnew(j); 

    xarray(j,index)=madsnew(j)/msalt(j); 

    Xarray(j,index)=xarray(j,index)*MWsalt/MWamm; 

end 

parray(1,index)=pnew; 

peqadsarray(1,index)=peqads; 

peqdesarray(1,index)=peqdes; 

adsarray(1,index)=ads; 

mearray(1,index)=menew; 

mtotarray(1,index)=menew+sum(madsnew)+sum(mgasnew); 

Tearray(1,index)=Tenew; 

 

% Calculate experimental change in x 

meexpt=dataarray(index,6)*Ve/RNH3/dataarray(index,3); 

% pV/RT for experimental vessel gas mass 

mgasexpt=dataarray(index,6)*sum(Vvoidnew)/RNH3/(dataarray(index,2)+... 

    dataarray(index,5))*2;% Expt gas mass using calculated Vvoid, mean T 

totgasexpt=meexpt+mgasexpt; 

delgas=totgasexpt-totgasinitial; 

delxexpt=-delgas/sum(msalt); % Change in x from start 

xexptarray(1,index)=xstart+delxexpt;  
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%if xexptarray(1,index)<0;xexptarray(1,index)=0;end; %Remove negatives 

% Estimated x based on initial value and gas mass 

%Carry out mass balance 

Oldmass=sum(mgas)+sum(mads)+me; 

Newmass=sum(mgasnew)+sum(madsnew)+menew; 

Masschange=1-Oldmass/Newmass; 

% Carry out energy balance on elements 

for n=1:N 

ENGplusSALTheat(n)=MCp(n)*(Tnew(n)-T(n)); 

deltaUgas(n)=Cvgas*(mgasnew(n)*Tnew(n)-mgas(n)*T(n)); 

deltaUads(n)=madsnew(n)*(Cpgas*Tnew(n)-pnew/rhoads-delHdes/MWamm)-.../ 

    mads(n)*(Cpgas*T(n)-p/rhoads-delHdes/MWamm); 

%Uadsnew=Cpgas*Tnew(n)-pnew/rhoads-delHdes/MWamm; 

%Uads=Cpgas*T(n)-p/rhoads-delHdes/MWamm; 

deltaH(n)=dmouthout(n); 

end 

sumheat=sum(ENGplusSALTheat+deltaUgas+deltaUads+deltaH); 

ENGplusSALTheatarray(1,index)=sum(ENGplusSALTheat); 

dQwall; 

Heatfraction=(dQwall-sumheat)/dQwall; 

Heatfractionarray(1,index)=Heatfraction; 

dQarray(1,index)=dQwall; 

%Uadsarray(1,index)=Uads; 

sumheatarray(1,index)=sumheat; 

deltaHarray(1,index)=sum(deltaH); 

deltaUadsarray(1,index)=sum(deltaUads); 

deltaUgasarray(1,index)=sum(deltaUgas); 

% Energy balance on vessel 

 

%stop 

% Set old values to new ones 

mgas=mgasnew; 

mads=madsnew; 

T=Tnew; 

p=pnew; 

x=xnew; 

Te=Tenew; 

me=menew; 

Vvoid=Vvoidnew;  

t; 

  

end % of simulation, t=tmax 
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function F=saltmasserror (pnew) 

for n=1:N 

    n; 

    % adsorbing (ads=1) or desorbing (ads=0) ?? 

    peqads=exp(-delHads/R0/T(n)+delSads/R0); % Equilibrium p (ads) in Pa 

    peqdes=exp(-delHdes/R0/T(n)+delSdes/R0); % Equilibrium p (des) in Pa 

    ads; 

    if p<peqdes; 

        ads=0;  

        peq=peqdes;  

        delH=delHdes; 

       if Equation==1 % Linear model 

       madsnew(n)=mads(n)+dt*msalt(n)*((xinitial-xfinal)*... 

           (((x(n)-xfinal)/(xinitial-xfinal)))^ydes)*Ades*(1.-peq/p); 

       end 

       if Equation==2 % Log model with Arrhenius f(T) 

       madsnew(n)=mads(n)+dt*msalt(n)*(xinitial-xfinal)*... 

       (((x(n)-xfinal)/(xinitial-xfinal))^ydesln)*... 

       C1des*exp(-Eades/R0/T(n))*log(p/peq); 

       end 

    else  

    %% 

    if p>peqads; 

            ads=1; 

            peq=peqads; 

            delH=delHads; 

      

      if Equation==1 % Linear model 

      madsnew(n)=mads(n)+dt*msalt(n)*((xinitial-xfinal)*... 

          (((x(n)-xfinal)/(xinitial-xfinal)))^yads)*Aads*(1.-peq/p); 

      end 

      if Equation==2 % Log model with Arrhenius f(T) 

       madsnew(n)=mads(n)+dt*msalt(n)*(xinitial-xfinal)*... 

           (((xfinal-x(n)/(xinitial-xfinal))^yadsln))*... 

           C1ads*exp(-Eaads/R0/T(n))*log(p/peq); 

      end 

        else 

            % In hysteresis band keep going in the same direction. 

            % If starting in the band arbitrarily suppose desorption 

            if ads==[]; 

            ads=0;  

            peq=peqdes;  

            delH=delHdes; 
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      if Equation==1 % Linear model 

           madsnew(n)=mads(n)+dt*msalt(n)*((xinitial-xfinal)*... 

           (((x(n)-xfinal)/(xinitial-xfinal)))^ydes)*Ades*(1.-peq/p); 

      end 

      if Equation==2 % Log model with Arrhenius f(T) 

       madsnew(n)=mads(n)+dt*msalt(n)*((x(n)-xfinal)^ydesln)*... 

           C1des*exp(-Eades/R0/T(n))*log(p/peq); 

      end 

            end 

        end 

    end 

         

    % Limit x between max and min 

    xnew(n)=madsnew(n)/msalt(n); 

    if xnew(n)>xinitial; xnew(n)=xinitial;end 

    if xnew(n)<xfinal; xnew(n)=xfinal; end 

    madsnew(n)=xnew(n)*msalt(n);  

    R=RNH3;  

    Vvoidnew(n)=V0void(n)-madsnew(n)/rhoads;% new void volume in node n 

m^3 

    if ads==0;  % Desorption 

        a=-Cpgas*(0.5*mads(n)+0.5*madsnew(n)+p*Vvoid(n)/2/R/T(n))-MCp(n); 

        b=dQ(n)+MCp(n)*T(n)-Cvgas/R*(pnew*Vvoidnew(n)-p*Vvoid(n))... 

        +mads(n)*(Cpgas*T(n)-p/rhoads-delH/MWamm)+... 

          madsnew(n)*(pnew/rhoads+delH/MWamm)... 

 -Cpgas/2*(T(n)*(mads(n)-madsnew(n)+p*Vvoid(n)/R/T(n))-

pnew*Vvoidnew(n)/R); 

        c=Cpgas*T(n)*pnew*Vvoidnew(n)/2/R; 

    % a,b,c quadratic parameters for Tnew 

    else    %adsorption 

        a=-MCp(n)-madsnew(n)*Cpgas; 

        b=dQ(n)+MCp(n)*T(n)-Cvgas/R*(pnew*Vvoidnew(n)-p*Vvoid(n))... 

        +mads(n)*(Cpgas*T(n)-p/rhoads-delH/MWamm)+... 

          madsnew(n)*(pnew/rhoads+delH/MWamm)... 

          -Cpgas*Te*(mads(n)-madsnew(n)+p*Vvoid(n)/R/T(n)); 

       c=Cpgas*Te*pnew*Vvoidnew(n)/R; 

    end 

    %a, b, c % Check signs to get correct root. 

    Tnew(n)=(-b-sqrt(b*b-4*a*c))/2/a; % Positive root taken 

    if Tnew(n)==0;stop;end 

    mgasnew(n)=pnew*Vvoidnew(n)/R/Tnew(n); % New gas mass kg 

    dmout(n)=mads(n)-madsnew(n)+mgas(n)-mgasnew(n)%mass of gas expelled kg 

    dmouthout(n)=dmout(n)*Cpgas*(T(n)+Tnew(n))/2; % Enthalpy flow out 
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end 

mout=sum(dmout); % Total mass to vessel kg 

hout=sum(dmouthout); % Total enthalpy flow to vessel. 

R=ramms(pnew/1e5,T(n)-273); % Accurate ammonia gas constant 

R=RNH3; 

Tenew=(dQe+me*Cvgas*Te+hout)/Cvgas/(me+mout); % New vessel temperature K 

menew=pnew*Ve/R/Tenew;                % New gas mass in vessel kg 

F=menew-me-mout;                      % Mass imbalance kg  

end 
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