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SUMMARY

We examine the asymptotic properties of the full 

information maximum likelihood estimator (MLE) under the 

assumption of normality 1 n the general nonlinear 

simultaneous equations model. The Initial analysis is for 

the static model, and then the conditions which allow the 

generalisation of the results to the dynamic model are 

explored.

We concentrate on the question of the consistency of 

the MLE when the normality assumption is erroneous. The 

conditions for asymptotic normality are also considered, but 

are given less emphasis because any tests based on the MLE 

require consistent estimates of its covariance and so also 

of Its mean. It 1s demonstrated that 1f 1t 1s possible to 

write down an explicit reduced form, then we can find 

families of true nonnormal distributions for which the 

estimator is consistent. However 1f the reduced form is 

Implicit, then, apart from some special cases, the estimator 

can only be proved to be consistent if the model 1 s 
correctly specified. The nature of the reduced form 1n 

nonlinear models 1s rarely considered, and we examine 

conditions for Its uniqueness. It 1s demonstrated that this 

entails more stringent conditions on the Jacobian than are 

usually acknowledged.

Finally we argue that the Information matrix test 1s a 

natural choice of specification test for the pseudo MLE 

strategy suggested by Gourleroux, Monfort and Trognon 

(1984a), which estimates the parameters of the nonlinear 

regression model by maximising the likelihood from a member 

of the exponential family. The test statistics are



calculated for the Poisson model example discussed in 

Gourleroux, Monfort and Trognon (1984b), and their 

performance contrasted with that of goodness of fit tests. 

Also tests based on the Edgeworth expansion are compared 

with tests based on higher derivatives of the standard

normal likelihood.
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1 . INTRODUCTION

1.1 The econometric model and the data generating process.

The question of how to explain the behaviour of 

economic series Is one of fundamental Importance. The 

choice of policy Instruments, and the appropriate magnitude 

by which to adjust them, to achieve a particular goal 

depends on our understanding of the economy. The central 

problem 1 s that whilst the outcomes of economic agents 

actions are observed, 1t 1s only possible to hypothesise the 

decision making process from which these outcomes result. 

This has naturally led to the use of statistical models to 

attempt to explain the Interrelationship between economic 

series. It 1s hoped that by using data to explore the 

nature of this Interrelationship 1n the past, sufficient 

Information can be acquired to provide useful forecasts of 

what may happen In the future.

In econometrics 1t Is customary to think of the data as 

having been generated by a process of the form

q (y^., x̂ . , a) ■ u ̂ , t * l , . . . T ,  (1)

where yt , xt , ut are vectors of endogenous, exogenous and 

error variables respectively, 1 n period t, and a Is a vector 

of unknown parameters. The functional form q(*) 1s assumed 

time Invariant but 1s of unknown form. Typically Its 

structure 1s determined by a mixture of economic theory and 

prior experience of the variables concerned. Having 

chosen q(*) the next step Is to estimate the unknown 

parameters. Three main estimation strategies are 

employed: least squares (LS), Instrumental variables (IV)
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and maximum likelihood (ML). The latter requires an 

assumption about the error distribution, and this 1 s usually 

that 1t 1s normal. It 1s argued that the transformation 

q ( *) of the underlying series represents the mechanism that 

generated the data and so, on average overtime, the observed 

values of yt , xt satisfy q(yt ,xt ,a) - 0. However 1n any 

time period q(yt ,xt ,a) may be subject to a random deviation 

from zero. This deviation 1s considered equally likely to 

be positive or negative and decreaslngly likely as Its 

absolute value Increases. This suggests ut should be 

modelled as a bell shape distribution centered on zero. The 

normal 1 s one such distribution and has the added advantage 

of making analysis of the model tractable. The properties 

of LS & IV estimates have been analyzed In the literature, 

but little Is known of the properties of ML in nonlinear 

models .

In this dissertation we are concerned with the 

situation 1n which y takes on values In Rm and q(*) Is an 

unspecified function but subject to certain regularity 

conditions. Necessarily some nonlinear models, for Instance 

qualitative response models, are not encompassed by our 

analysis. Within this framework we examine the conditions 

under which the full Information ML estimator 1s consistent 

and asymptotically normally distributed. From standard 

likelihood theory 1t Is known that the MLE 1s consistent, 

and both asymptotically normally distributed and the most 

efficient when the model 1s correctly specified. In this 

thesis we concentrate on the degree to which the MLE retains 

these properties when the true dlstrlbuton 1 s nonnormal, and 

so can be consldered robust to departures from normality.
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The question of the robustness of an estimator 1s of 

considerable Importance. The eventual power of the model 

for either forecasting or policy analysis, as well as Its 

accuracy 1 n explaining the data, depends on the use made of 

our a priori knowledge, which 1 s at best tentative, and 

specification searches consisting of a succession of 

diagnostic tests of model adequacy. There Is no unique 

ordering for applying tests, nor any guarantee that 

different permutations of the sequence lead to the same 

conclusion. There 1s, consequently, no guarantee that the 

original specification was correct nor that the model 

selection procedures are sufficiently sophisticated to 

Indicate directions 1n which 1t might be Improved. This 1s 

particularly true of the assumed error distribution. The 

normality specification captures a symmetric, or bell shape, 

error process 1n an analytically tractable fashion. As 1t 

Is not the only choice satisfying this requirement 1t 1s 

Important to be aware of any biases 1n Inference caused by 

Its Incorrect Imposition.

These reservations about test procedures have 

ramifications for the interpretation of an econometric 

model. It 1s Important to distinguish between the data 

generation process (dgp) and approximations to It. If 1t 1s 

possible to find a functional transformation q(*), subject 

to the conditions 1 n (1 ), that represents the exact 

mechanism by which a change In the economic environment 

effects the behavior of y t , then this particular 

representation 1s the dgp. In the abscence of knowledge 

about the appropriate choice of q(y^,xt ,a), the model 

specification used by practitioners to explain the
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Interrelationship between series Is a synthesis of a priori 

economic theory and diagnostic tests. It has been noted 

above that such a procedure lacks the sophistication to 

infallibly determine the dgp. Therefore the econometric 

model Is best regarded as an approximation to the dgp, whose 

accuracy depends on the estimation and model selection 

procedures employed.

This 1s at the centre of the debate on the Lucas policy 

critique. Lucas (1976) argued that econometric models could 

not be used for policy analysis as they were by their very 

nature self-falsifying. "Given that the structure of an 

econometric model consists of optimal decision rules of 

economic agents" (Lucas, 1976, p. 41) any change 1n a policy 

variable will alter the economic environment and therefore 

agents' reaction functions. The structure of the 

econometric model Is consequently, he argued, changing with 

the policy variable over time. However only the outcomes, 

and not the decision making processes themselves, are 

observed. Given the reservations cited above about the 

genesis of a model specification, the equations are, 

therefore, better Interpreted as approximations to the 

underlying reaction functions. In this case, as S1ms (1982) 

notes, Lucas' conclusion reduces to the point that

"Statistical models are likely to be come unreliable 

when extrapolated to make predictions for conditions for 

outside the range experienced 1n the sample" (S1ms,

1982, p. 122)

1.2 The linear model as an approximation

The eventual model formulation depends 1n part on our
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original specification. A lot of attention has focused on 

the use of linear models to explain economic series. These 

have the advantage of relative computational ease compared 

to nonlinear models, and so It is important to consider 1 n 
what situations the choice of a linear model may be 

suitable. Our arguments suggest that in a large number of 

cases such models are Inappropriate, and so, there 1 s a need 

to develop the theory of their nonlinear counterparts. For 

this section we confine attention to scalar yt and a vector 

of exogenous variables, but the arguments can be generalised 

to vector yt . We consider two justifications for the linear 

form

y t = xt a + ut* (2)

as an approximation to a nonlinear dgp: the normality 

of (yt ,x£) and first order Taylor series expansions.

If (yt .x£) have a joint normal distribution then 

x£a » E(yt |xt ). The assumption of normality can be 

justified quite easily 1 f yt 1 s an aggregate, by appeal to 

central limit theorems. However the sample sizes for which 

these hold will vary from case to case. If yt 1s not an 

aggregate then, from the Edgeworth expansion of Its p.d.f., 

the normality of yt results from the assumption that all Its 

cumulants higher than the second are zero.

Alternatively 1t may be argued that 1f the dgp 1s yt * 

f(xt ) + vt then 1f we take a first order Taylor series 

expansion about the sample means as follows,
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f(x) + E (x1t-xi )Af.
1 = 1 3x 1t

+ EE (x1t- X,)(X.t - X .)
1,j«l 11 1 3 2X 1t 3Xjt

+

then equating higher order terms to a white noise random 

variable (r.v.) Independent of vt , we have a justification 

for the linear model. There are two main flaws 1n this 

argument. Firstly, as noted by Bowden (1974), the 

derivatives are state dependent, and therefore not fixed as 

assumed in the linear model. Secondly, as White (1980) has 

argued, the Taylor series 1s only valid as a local 

approximation whereas we wish to explain behavior throughout 

the sample space, and use dispersed data to estimate the 

parameters.

Linear models are also encountered 1n the time series 

literature. The Wold decomposition theorem establishes that 

a stationary series can be split Into deterministic and non 

deterministic components, and that this nondetermln1 st 1 c 

component has an Infinite order moving average 

representation. The removal of trend and seasonal factors 

from economic series 1 s usually thought to render them 

stationary and nondetermlnlst1c. A more parsimonious 

representation of this component 1s an ARMA model and, by 

using statlonarlty to pool Information, the appropriate 

order of the model can be Identified by the correlogram and 

partial autocorrelation function of the series. The model 

In (2) can be derived as a set of parameter restrictions on 

a multivariate ARMA model for (yt ,x£). The Wold theorem 

only states that this moving average representation exists - 

and not that 1t 1s unique. Recent work by Granger and
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Andersen (1978) has demonstrated that Identification via the 

correlogram 1 s only unambiguous within the class of linear 

models. It can be shown that bilinear models of the form,

with c ^  = 0 for k > m, have the same autocova ri ance 

structure as an ARMA(p,max{q,s>) model. Higher order 

correlations will be needed to uniquely identify a model 

within this class, but the complicated nature of this 

analysis has tended to result 1n Information criteria being 

used to discriminate between bilinear models. However 

Granger and Andersen's results underline that the linear 

representation, whilst analytically tractable. Is not 

accorded any statistical optimality by the Wold theorem. 

Rather 1t is just one model formulation consistent with the 

sample autocorrelation structure.

The use of linear models may be appropriate 1n certain 

cases either because the dgp Itself Is linear or as an 

approximation to a nonlinear dgp. Whilst a linear model has 

the advantage of analytical tractabillty our review of the 

theoretical justifications for Its use, suggest that It 1 s 
by no means always a suitable model choice. These are also 

grounds for expecting traditional model diagnostics to be 

Inadequate Indicators of situations 1 n which estimated 

linear model can be Improved on by adopting a nonlinear 

formulation. The Interpretation of specification tests 1s 

normally within the context of the linear framework. Tests 

for Incorrect functional form have been developed 1 n the 

literature but the choice of alternative hypothesis, and Its

P q r s
+ £ E C

k = 1 m = lyt - j i j V t - j kmut-k^t-m* <3 >
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interpretation 1f accepted, may be problematical. We do not 

examine these Issues but concentrate on the properties of 

estimators once a nonlinear formulation is chosen.

1.3 Time varying linear models as an approximation to 

nonlinear models

Given the data dependence of the derivatives In a 

Taylor series approximation, the natural extension to the 

linear approximation 1s to adopt a time varying linear 

model. In this case the coefficients on the x-j- are regarded 

as altering overtime with certain properties of their 

behavior known. An example of this 1s the state space 

system, outlined for Instance by Harvey (1981), In which 

parameter estimates are updated after each observation by an 

updating procedure such as the Kalman filter. This model 1s 

suitable for evolutionary processes, but we argue below that 

Its dependence on past observations may make 1 t Inapplicable 

for modelling nonlinear systems. An alternative 1s to 

employ switching regression models, which constitute an 

extreme form of varying parameter model. These have been 

suggested by Tong and L1m (1980) 1n the time series 

literature, and are familiar 1n econometrics with reference 

to markets In disequilibrium. Tong and Urn's (1980) 

threshold autoregression model takes the form

yt ■ B(Jt )yt + A(Jt )yt _i + et (Jt ) + c(Jt ),

where yt 1s a vector of endogenous variables In period t,

A (j ), B(j) are matrices of fixed coefficients and et (j) 1s 

strict white noise. The model changes according to the
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value of the Indicator variable Jt which determines the 

value of B(Jt ), A(Jt ), C(Jt ) and the distribution of et (Jt ).

Whilst this formulation is of little practical use 1n 

most econometric settings It does highlight the potential 

weakness of time-dependent parameter models. The problem 1s 

that knowledge of an appropriate Indicator 1s required, but 

this Is unlikely to be available due to the unknown nature 

of the dgp. This approach 1s, however, more consistent with 

the Idea of different linear approximations to an underlying 

nonlinear dgp. In any neighbourhood of a particular point, 

yt , the behaviour of yt can be explained by a linear Taylor 

series approximation with fixed coefficients. However as 

yt , and so the centre of the expansion y t , moves through the 

sample space the coefficients of the linear expansion 

change. However there 1s no reason to suppose they evolve 

by a particular stochastic law. If we regard the 

appropriate linear approximation as being Indexed by some 

state dependent variable, then 1n varying parameter models 

in which the coefficients are presumed to evolve over time 

by some stochastic process, past observations from other 

regimes are still affecting the estimates. For Instance If 

we pass the hypothetical switch point, the varying parameter 

model still bases Its coefficient estimates on the previous 

regime. Harrison and Stevens (1976) have sought to adapt 

the state space representation to a Bayesian framework.

This allows the Intervention of subjective Information 1n 

the updating to weight more heavily the last observation 

when there 1s reason to expect previous experience to be 

misleading. The examples they give for this model are short 

term sales forecasting, when Information about market
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climate 1n the next period may well be available. However 

we typically do not know when the neglect of the underlying 

nonlinearities of the system will make our model unreliable.

1.4 Summary

We have argued above that linear models with or without 

time varying parameters are not necessarily always suitable 

approximations to the dgp. In this thesis we consider 

situations in which a more general nonlinear model 1 s deemed 

appropriate. The majority of our analysis deals with models 

of the generality of equation (1 ) and 1s concerned with the 

properties of the MLE once a functional form has been 

chosen, and not with methods of selecting the functional 

form. The consistency and asymptotic normality of the 

estimator are, of course, prerequisites for specification 

searches for a better approximation using conventional test 

procedures such as the Wald, likelihood ratio or score 

tests.

This work 1s based on a synthesis of two areas of the 

literature, and develops new analytical results to answer 

questions previously unexplored 1n those areas. Existing 

work on the properties of estimators In linear and nonlinear 

models tends to assume the model specification Is correct 

and explores what parts of the specification can be relaxed 

without losing the desirable properties of the estimator.

This 1s different from the approach taken by White (1982) 

who examines the properties of the MLE when It 1s admitted 

from the outset that the model 1s m 1 sspec1 f1ed (In this case 

the estimator Is called the quasi MLE (QMLE)). White (1982) 

derives conditions for the convergence 1n probability of
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this estimator to the value that minimises the Kullback 

U e b l e r  (1951) Information criterion (KLIC). Our work 

follows the practice of the simulataneous equations model 

(SEM) literature and considers conditions for the 

convergence of the QMLE to the true value 1n nonlinear 

mo d e l s .

In chapter 2 we discuss the literature on linear SEM's 

and the Interrelationship between the three stage least 

squares, full Information MLE and full Information 

Instrumental variables estimator. The aim 1s to demonstrate 

the line of argument by which previous authors have 

established the consistency and asymptotic normality of the 

MLE in this situation. This work would appear a logical 

starting point for deriving analogous results for nonlinear 

models, and so we need to Identify at which stages of these 

arguments linearity 1s crucial. We also consider the 

advantages of estimating equations simultaneously (full 

Information (FI) estimation) as opposed to Individually 

(limited Information (LI) estimation). In this thesis we 

focus purely on full Information estimators.

In chapter 3 we survey previous explorations of the 

properties of these three estimators 1 n nonlinear models. 

Amemlya (1977) has shown that the Instrumental variable 

Interpretation of MLE does not persist to nonlinear models, 

and so Hausman's (1974) proof of the consistency of the MLE 

does not generalise from linear to nonlinear models.

Phillips (1982) has shown that there must exist classes of 

the distributions for which ML estimation under normality 

provides consistent estimates. However very little 1s known 

about the size of this class of true distributions and we
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argue that the approach taken by Phillips (1982) cannot be 

extended to provide Information on this Issue. We also 

consider the conditions under which an asymptotic theory for 

nonlinear models can be developed.

Chapter 4 contains an outline of the necessary results 

from the m1sspec1f1ed model literature. We show that the 

focus of our work 1s different from that of White (1982).

He derives conditions for the convergence 1n probability of 

the QMLE to the KLIC minimising value, whereas we examine 

the conditions under which this value Is 1 n fact the true 

value. We also explore the difficulty of verifying second 

order conditions for consistency, and the use of 

distribution free Identification criteria to check these 

conditions. Attention 1s focused on the criteria developed 

by Brown (1983) for nonl1near-1n-var1ables models.

In chapter 5 we consider various alternative analytical 

approaches to that of Phillips (1982) for deriving 

conditions for the consistency of the MLE. We establish 

that there exists a family of weakly stationary true error 

processes whose conditional distribution varies overtime, 

for which the MLE under the assumption of Independently and 

Identically distributed (1 .1 .d.) normal errors provides 

consistent estimators. However the analytical derivation of 

nonnormal 1.1.d. true error distributions, for which ML 

estimation under normality retains these desirable 

properties, depends on the nature of the reduced form. If 

1t can be written down explicitly then we can find true 

distributions for which NLFIML Is consistent, although the 

class Is likely to be much narrower than Its linear model 

counterpart, as 1t depends on the nonl1 nearltles In the



system. We provide some examples of economic Interest to 

Illustrate this point.

In chapter 6 we consider the case where the reduced 

form Is Implicit. We show that the condition for 

consistency Involves all the moments of the distribution.

In this case the analytical results available are that 

NLFIML 1s consistent when the model Is correctly specified 

or If the error 1 s from the class of distributions 

considered by Phillips. However Phillips' proof only 

establishes the existence of such a class, and as Its exact 

nature varies from case to case, our results suggest that 1 f 

we require consistent and asymptotically normal estimates, 

NLFIML should not be used when the reduced form 1s Implicit.

We explore the conditions for a set of structural 

equations, such as (1 ), to Imply an uniquely defined reduced 

form. An examination of the work of Gale and Nlkaldo (1968) 

shows that these conditions are more strlgent than Is 

usually recognised 1n the econometrics literature. Finally 

we consider the conditions for the asymptotic normality of 

NLFIML. White (1983) observes the Importance of consistent 

estimation of the first moment for that of the covariance of 

the QMLE. Whilst White's analysis contains an algebraic 

slip, the essence of h1 s comments retains Its validity. 

Without consistent estimates of the covariance, traditional 

testing procedures based on the parameter estimates break 

down. In contrast NL3SLS 1s consistent and asymptotically 

normal under the same moment conditions as In the linear 

model, and so would appear the prefered estimator.

Chapter 7 contains a discussion of the conditions under 

which our conclusions, about the properties of NLFIML can be
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extended to dynamic models. We examine the types of dynamic 

processes for which we can apply a version of the strong law 

of large numbers and so replicate our earlier analysis for 

static models. Current practice 1s to employ either 

martingale or mixing process arguments. McLelsh (1975) has 

shown both types of processes to be mlxlngales for which the 

desired law of large numbers can be derived. White and 

Domowltz (1983) have advocated the use of mixing processes 

as they have the advantage that functions of them are 

themselves mixing processes, and so their use Involves one 

basic assumption about y ^ . Whereas the martingale arguments 

entail a series of assumptions about functions of yt 

Invariably without examining their consequence for the 

underlying series. However we argue using some results due 

to Jones (1976) that, contrary to the view apparently 

expressed by White and Domowltz, the theoretical validation 

of whether a particular series generated by a model 1s In 

fact a mixing process, 1s likely to prove Impossible.

This chapter also contains an extension of a proof by 

Heljmans and Magnus (1983a) of consistency of the MLE, under 

weak conditions on the underlying process, 1n correctly 

specified models to the case of m1sspec1f1ed models. We 

show that the MLE converges to the KLIC diminishing value 1n 

their framework. Finally, we consider the conditions for 

asymptotic normality of the QMLE 1n dynamic models. In 

particular we focus attention on the choice of scaling 

factor. White and Domowltz (1983) present a central limit 

theorem that requires a constant scaling factor multiplied 

by the Increase of the square root of the sample size. They 

hypothesise that a non constant scaling factor may Induce a
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nonnormal asymptotic distribution. We argue, using the work 

of Hall and Heyde (1981), that this need not be the case.

In chapter 8 we argue that the information matrix test 

suggested by White (1982) is a natural test of model 

specification when employing the pseudo maximum likelihood 

estimation strategy, advocated by Gourleroux, Monfort and 

Trognon (1984a), for the nonlinear regression model. We 

calculate the appropriate tests for the Poisson model 

example considered by Gourleroux, Monfort and Trognon 

(1984b). The resulting tests of distribution are compared 

with goodness of fit tests. We compare the higher order 

likelihood derivative tests (suggested by Chesher, 1983) 

based on the standard normal likelihood with the tests based 

on Edgeworth expansions (Keifer and Salmon, 1983) and show 

that they coincide for tests of the third and fourth moments 

but not for the fifth. Finally 1t is shown that the 

decomposition of the information matrix test in the linear 

model regression model, demonstrated by Hall (1982), can be 

extended to Its nonlinear counterpart.

Chapter 9 contains some conclusions, after which some 

proofs are presented in the appendix.
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2. STATISTICAL PROPERTIES OF ESTIMATORS AND LINEAR MODEL 

RESULTS

2.1 INTRODUCTION

The properties of and relationship between maximum 

likelihood (ML), least squares (LS) and Instrumental 

variables (IV) have been explored at length 1n the 

literature for the linear model. It 1s well known that all 

three can be considered IV estimators, which provides a 

convenient proof of their consistently and asymptotic 

normality provided the error process has mean zero. Whereas 

ML under normality Is the most efficient If the 

specification 1s correct, a class of IV estimators.

Including LS, are asymptotically equivalent. In this 

chapter we outline the basis of these results to Illustrate 

both why linearity delivers such powerful results and why 

the type of arguments used cannot necessarily be generalised 

to the nonlinear setting. We also Introduce and discuss the 

criteria for choice of estimators, Identification and full 

or limited Information estimation of systems of equations, 

the basic theoretical Issues of which are relevant to all 

models.

2.2 Choice of Estimators 1n Classical Statistics

The majority of econometric theory Is based on 

classical statistics. Probability statements have a 

frequentlst Interpretation as the situation envisaged 1 s one 

1 n which the researcher can generate unlimited data by 

repeating the experiment under Identical conditions. In 

econometrics the data are observed passively and so 1t 1 s 

necessary to make regularity assumptions, such as
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statlonarity, before the classical framework can be used. 

This done, we hypothesise a probability model of the 

form q (y • x , a) =* u ,  with assumptions about u,y,x,q(*)» to 

explain the observed relationships between economic 

variables. The model 1s Indexed by an unknown parameter 

vector a and the aim of classical statistics 1 s to reduce 

our uncertainty about a by point and Interval estimation 

using Information 1n the data. The point estimate 

of a ,  a ,  Is a function of random variables and so Is Itself 

stochastic. The Interval estimate, or hypothesis test, 

gives an Idea of the sampling distribution of a and so of 

the degree to which a evaluated at the realised data values 

1s a "true" reflection of a .

We can construct any number of estimators from the 

data, but as our Inference depends on a It Is desirable to 

have some method of "screening out" poor estimators. The 

classical criterion for achieving this Is to require a to be

(1) unbiased: E ( a )  * a and/ or (1 i ) consistent: p U m a  - a .  
The estimator chosen 1s the most efficient (1n the sense of 

having minimum variance), of those satisfying (1 ) and (1 1 ).
In econometric models an estimator 1s usually a 

complicated function of the error random variables making 

its small sample distribution analytically Intractable and 

so the discussion Is limited to large sample properties, 

namely consistency and asymptotic efficiency. The problem 

of Interval estimation reduces to finding the conditions for 

consistency and asymptotic normality of a under particular 

circumstances. The argument Is that whilst we may know 

nothing of Its small sample behavior, an estimator 1 s 
dismissed 1 f Its performance Is not good In large samples.
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However any Interval estimation using asymptotic results 

requires the assumption that Indeed the sample size Is large 

enough, although this Is rarely checked. Asymptotic theory 

can be regarded as an approximation to the finite sample 

result. In any particular situation better approximations 

can be developed from the asymptotic estimates by using 

Edgeworth expansions to analyze the effects of the largest 

asymptotically negligible terms In the distribution function 

of the estimator.

2.3 Identi f1 cat 1 on

The analysis of the properties of estimators 

presupposes that the parameters can be uniquely determined 

from the data or, 1 n statistical parlance, that the model 1 s 
Identified. Economic theory has limited our attention to a 

particular family of probability distributions, termed the 

model, but what we seek 1 s the structure, the particular 

distribution, most likely to have generated the data. The 

problem of lack of Identification 1 s essentially one of 

observational equivalence. This arises when two structures 

are Identical, and so Indistinguishable from sample data. A 

structure Is Identifiable If, and only 1f, there are no 

observatlonally equivalent structures, 1n which case the 

parameters can be uniquely determined from the data.

A well known example of lack of Identification 1s when 

the common factor restriction occurs 1n ARMA models.

Consider the stationary ARMA(1,1) model:

t - 1 + et'> t  " ♦J't-l + ® e U l  < 1 (3)



By repeated substitution for lagged values of y, (3) can be 

written as
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j=0

et + U  + e) i *J et . ..
j»0 t-J-l

Any structure for which + - -e is not Identifiable as then 

yt 1s white noise. This problem can occur, with the same 

consequences for Identification, in a more general model

H(L)yt - ♦(L )et ,

1f H(L) « y(L)H*(L) and *(L) = f(L)**(L). The model cannot 

be Identified due to the common roots shared by both 

polynomials H(L) and *(L).

The problem of lack of Identification 1s essentially 

one of Insufficient Information to enable the parameters to 

be determined. This can be offset by Introducing additional 

Information Into the problem, 1n the form of parameter 

restrictions. These can take two forms: nonstochastic 

restrictions on a and/or stochastic restrictions on the 

p.d.f. of u. For a structure to be model admissible, It 

must satisfy these restrictions, and 1 t 1s hoped that 

sufficient restrictions can be Imposed to reduce the number 

of model admissible structures to one.

Identification Is a general statistical problem, but 1n 

econometrics 1t Is normally associated with simultaneous 

equation models. For Illustrative purposes we consider the 

static linear model
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B 'y t + r'xt * u t , t • î ..... t ,

where yt Is a N x 1 vector of endogenous variables, xt 1s a 

K x 1 vector of exogenous variables and ut 1 s a N x 1 vector 

of mean zero disturbances with contemporaneous covariances 

matrix E and E(u^u^) = 0. The reduced form for y^ is

yt = ïïxt + vt* t  ‘  1 ..... T»

where v^ * B' ^u^. Note that we require B to be nonsingular 

for there to be a unique reduced form associated with the 

structural equations. We return to the conditions for such 

a mapping between y and u 1n a more general setting 1n 

chapter 6. The reduced form 1s necessarily Identified and 

the Identification of the structural equations depends on 

whether given estimates of n we can uniquely determine 

(B,r). The relationship between structural and reduced form 

parameters 1 s given by

AW = 0 where A » [B':r'], W' =

As the system stands there 1s Insufficient Information to 

estimate the parameters of the 1th equation, . They must 

satisfy the restrictions a{W * 0 but as rank(W) » K there 

are only k linearly Independent restrictions on the N+K 

elements of . However 1f we know that the coefficients 

have linear restrictions between them of the form * 0, 

then this Information can be used to achieve Identification. 

The vector must then satisfy affW:*) > 0, and so a 

necessary and sufficient condition for It to be Identified
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up to a scalar multiple is that rank(W:+) = N+K-l. The 

matrix {A’*w] is a nonsingular matrix of dimension N+K â id so 

its columns form a basis for RN + K . We can therefore write

♦ = A'e + Wn ,

and as A* = AA'c, because AW = 0, rank(A+) = rank(g). This 

enables the condition for identification to be restated 1 n a 

more convenient form. For rank(W:$) to be N+K-l, we require 

there to be N-l linear Independent, both of themselves and 

W, columns 1n 4. We therefore require rank(A'c) = N-l, but 

this 1n term Implies that rank(c) = rank(A*) must equal N-l. 

A necessary and sufficient condition for Identification 1n 

this model Is therefore rank(A+) = N-l.

Note we have sought Identification up to a scalar 

multiple because this type of operation on the parameter 

vector does not alter the content of the equations. An 

alternative Is to fix one parameter to a set value, for 

Instance unity, and require unique Identification because 

this normalisation of the equation means that the 

multiplication of the remaining coefficients 1n the equation 

by a scalar alters the nature of the structural equations.

This condition relies on the nonstochastic equations 

A* » 0 and the stochastic restriction that E(ut ) « 0. An 

alternative motivation for the result Is based on the Idea 

of observational equivalence. If the model 1s Identified 

then the transformed structural equations

FB'yt - Fr'xt + Fut ,

'•*- , v
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(F nonsingular) should only be observât 1onal1 y equivalent to 

the original structure If F - I. This can be checked by 

examining the first and/or second moments of the transformed 

system. The first moment approach gives the already derived 

rank condition. The second moment approach uses the fact 

that If two structures are observatlonally equivalent ut and 

Fut must have the same covariance matrix. However 1n the 

unlikely event of our possessing detailed knowledge of the 

second moment of ut , this approach yields insufficient 

restrictions as E(utu£) has only N(N-l)/2 distinct off 

diagonal elements, and so even If we assume I = a2I, we only 

reduce the class of admissible F to be orthogonal matrices. 

Although identification could then be achieved by assuming 

the system to be recursive, and so B would be triangular.

Our original derivation Is specific to linear systems, 

makes only a first moment restriction on the errors, and 

uses no further distributional assumptions. Alternatively 

we can condition on the distribution of the errors and 

derive conditions for local Identification of the model. 

Rothenberg (1971) and Bowden (1973) have demonstrated that 

the parameter vector, a, 1 s Identified at a Q If the 

Information matrix, defined as the expected value of the 

hessian of the likelihood, 1 s positive definite at that 

point. Rothenberg (1971) shows that If ut Is distributed 

normally then the rank condition again results for the 

linear model. We return to those arguments later 1n our 

discussion of the conditions for consistency of an estimator 

1 n a general model .
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2.4 Information & Estimation

Having considered the Identification of a simultaneous 

equations model, we now examine the methods suggested for 

Its estimation. In practice there are three main 

approaches: least squares (or minimum distance).

Instrumental variables and maximum likelihood. Within the 

normal linear model these three are closely related and 

before exploring the extent to which this relationship 

persists in the nonlinear setting. In chapter 3, we first 

outline the arguments used to establish the properties of 

these estimators in the linear model.

As 1n the Identification stage, the proposed methods 

differ In their explicit distributional assumptions. Least 

squares and Instrumental variables are distribution free, 1 n 
the sense that assumptions are only made about the first two 

moments of the error process. However the exogeneity of 

certain variables will be crucial to the construction of 

these estimators. It has therefore been Implicitly assumed 

that the factorisation of the joint distribution Into the 

conditional and marginal densities has produced a sequential 

cut on the parameters of this model. Normality Is, of 

course, sufficient for this, but 1n some cases e.g., the 

multivariate t, the cut will not occur (see Engle, Hendry 

and Richard, 1983).

In utilising the extra Information about the 

distribution 1n ML one would Intuitively expect to produce 

more efficient estimators 1 f the asumptlon 1 s correct, but 

at the expense of bias If 1t Is false. This robustness/ 

efficiency tradeoff Is present In the linear model 1n small 

samples only, but before considering Its origins we must



24

examine the links between Identification, information and 

estimation, the ideas behind which are relevant to all 

models.

The efficiency of an estimator clearly depends on the 

amount of information used. In our discussion of 

Identification we were solely concerned with whether we had 

sufficient Information to be able to determine the unknown 

parameters uniquely from the data. The distinction then was 

between just and under Identification. For our discussion 

of estimation we need to distinguish a third situation, 

namely that of over1 dent 1flcation . This occurs when there 

1 s more than enough independent Information to Identify the 

parameters. For an estimation procedure to be efficient It 

will have to take account of all these restrictions, as the 

use of one set of just Identifying restrictions does not 

guarantee the remaining Independent restrictions on an 

equation will be satisfied. In the linear model the 

properties of LS estimators are closely related to the 

degree of Identification, as both two and three stage LS 

(2SLS and 3SLS) are undefined when the system Is 

under 1 dent 1 f 1e d , but equal when the system 1 s just 

Identified. The existence of estimators 1n all models will 

depend on the number of observations, or rather amount of 

Information, relative to the number of variables. LS and ML 

break down In the undersized sample case, where there are 

less observations than exogenous variables, and 1n the 

course of this chapter we note the methods used to overcome 

this problem.

There may similarly be an Information loss from 

estimating each equation 1n Isolation. Such limited
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Information (LI) techniques Ignore the Information contained 

In the rest of the system about a particular equation, and 

so will never be more efficient than full Information (FI) 

methods which Incorporate all restrictions. Against this 

has to be set the fact that our specification 1s often 

tentative, and so some restrictions may be Incorrect. The 

tradeoff to the efficiency of FI may well be a lack of 

robustness as 1t allows any erroneous restrictions on one 

equation to potentially affect the estimation of the whole 

system. Sims (1980) has argued for the need to match the 

estimation approach to the manner In which restrictions are 

placed. If the system 1s treated equation by equation at 

the specification stage, which defines the restrictions, 1t 
should then be estimated by a LI method. Typically a system 

with a LI specification but estimated by FI methods will not 

appear the appropriate formulation when submitted to model 

diagnostics. The a priori restrictions should therefore be 

placed by consideration of the entire system. The 

difficulty of making such restrictions, S1ms sees as a 

further support for h1s reduced form estimation using vector 

autoregressions. In this thesis we are concerned purely 

with the properties of FI estimators.

2.5 LS. IV and ML 1n the normal linear model

Within the normal linear SEM there 1s a close 

relationship between LS, IV and the ML estimators. Hausman 

(1974) has shown that both 3SLS and FIML can be considered 

as IV estimators and this approach will prove convenient for 

examining consistency and normality of the estimators.

Hendry (1976) has shown that IV and 3SLS can be considered
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as approximations to FI ML, and his "estimator generating 

equation" approach highlights the loss of information, and 

so (small sample) inefficiencies, of 3SLS and IV. In all of 

the subsequent analysis systems of equations are assumed to 

be identified.

Consider the model

where Y is a T x N matrix of jointly dependent variables, X 

1s a T x K matrix of predetermined (weakly exogenous) 

variables, U is a T x N matrix of structural disturbances of 

the system, T is the number of observations, B 1s assumed to 

be nonsingular, E(X'U) = 0, and E(UU') = t®IT . Therefore we 

are allowing contemporaneous but not intertemporal 

correlation between disturbances. The equation used 1n our 

discussion of identification in SEMS in 2.3 is the transpose 

of the tth row of (4). If we Impose normalisation then the 

1th equation of the system can be written as

YB + Xr = U (4)

yi = Zi «1 + ui , (1 = 1 9 • • • 9N)

and the whole system as

y = Zi + u (5)

where

2
0

z zi - [Yj x1 ], = [§{•»{]

o
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yi and are the 1th columns of Y and U respectively,

vecY » y, VecU « u, and 8̂  , are the unrestricted 

coefficients on the endogenous and predetermined variables 

1n the 1th equation. Let the reduced form associated with 

this system be

Y = Xn' + V (6)

where V * UB"*, n '  = rB“ *

Brundy and Jorgenson (1971) define the Instrumental 

variable estimator of 6 as d, the solution to the equations

(W'Z)d - W"y, (7)

where W 1s the matrix of Instruments satisfying the 

following conditions:

(I ) pllm il'u * 0,
T

(I I ) pllm -i-W'W is finite and nonsingular,
T

(I I I ) pi 1 m Iw'X Is finite.
T

Therefore,

d - (M'Z)“ 1H'y, 

d - 6 ♦ (W'Z)_ 1W ' u ,

and so, given that we can apply the central limit theorem
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to W'u//T. we have

/T(d-«) ^ N(0,pl1m (— )_1(— )(— )_ 1 ).
T T T

The IV estimator Is consistent and asymptotically 

distributed as normal, provided the conditions on W and the 

first two moments of u are satisfied.

Brundy and Jorgenson also prove that for W to yield an 

asymptotically efficient d, 1t must be chosen so that the 1 - 
jth block of W, l^j, Is equal to (Wiji.W1 J 2 ). where

a) p 11 m T"1W^J-1X = a^irjpllm A  X'X,

b) pi 1 m T-1Wi'j 2 X = aijpl1m A  XjX,

(where the 1-jth elements of E and E-1 are and o1*

respectively). One possible selection 1s to put « 

C o ^ X w j ,  o ^ X j ] ,  where »j , a 1 ̂  are consistent estimators 

°f ifj > . Of course the 3SLS estimators,

«3SLS “ ® X ( X - X ) " 1X 1) Z ] “ 1C S “ 1 «  X( X'X) ”1 X 1 ]y,

falls Into this class. At the first stage the reduced form 

1s estimated by OLS to derive »j • Each structural equation 

1s then estimated Individually by the IV estimator with 

W - [Xw j .Xj ]: this gives the 2SLS (limited Information) 

estimators of 6^, 1 “ 1 ..... N. The consistent estimator

of E, S, 1s constructed by putting Its 1-jth element,
M l  .1 * * «
a J , equal to T u fuj, where ^  Is T x 1 vector of residuals 

resulting when the 2SLS estimators are fitted to the 1th
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structural equation. Provided the structural equations are just

'.However it is shown on page 32 that it is not the most efficient estimator 
in small samples, although all IV of the form above are equal lyj efficient 
asymptotically.

To derive the ML estimator for this model we assume that U is
distributed multivariate normal. The log likelihood for the model in (4) 
is therefore

- I tr[I e _ 1 (YB + Xr)'(YB + Xr)].
2 T

The first order conditions for optimisation are then

3E

To establish the IV Interpretation of FIML, Hausman (1974) 

concentrates the first order conditions with respect to T. 

From (10),

T « 1 (YB + Xr)'(YB + Xr),

and substituting this Into (6) gives the equations

* Throughout this thesis we refer to the estimator with tbs minimum 
(asymptotic) variance as being (asymptotically) most efficient.

identified 3SLS uses the most efficient* estimator of ir̂ in the first stage

L(B,r,E) ■ const + —  log det(E)“* + T log det (|B|)
2

tt = T(B ' ) " 1 - Y'(YB + Xr)E - 1  = 0, 
SB

( 8 )

It = -X ' (YB + Xr)E_1 = 0 
ar

(9)

= TE - (YB + Xr)'(YB + Xr) = 0 ( 10 )

-X'
B')_ 1 r'X

( 1 1 )



1n terms of our notation in model (5) in which the 

coefficients are stacked in vector form, (1 1 ) can be 

rewritten as
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Z

0

1

(y-Zi )(e "1 ®  I) - 0,

which implies the FI ML estimator of 6 1s 

3 = (W'Z)- 1W'y,

where W' - Z'(S x Ij)-1, Z = d1ag(Z j ..... Z N ),

21 = CX(rB_1 )1 Xi ,X1 ], and S = T“1(YB + Xr)'(YB + Xr) .

The equations are nonlinear in B and f and so have to 

be estimated Iteratively, giving the estimator after the kth 

Iteration as

*k+ l = (MkZ )_lMk ^

the Instruments, Wk , being revised at each step by 

updating Z^ and S using the parameter estimates from the 

last iteration. We have assumed that the second order 

moments are finite and nonsingular, where appropriate, and 

so 6 j may be considered an IV estimator, for every k, as 

It satisfies all the necessary requirements. The asymptotic 

normality and consistency of « follow from the arguments 

above, and so are guaranteed for a wide class of nonnormal 

error distributions.

The relat 1onshlp-between the information sets used In



LS and ML has been explored by Hendry (1975) via the 

estimator generating equations of the system. 1^ we 

concentrate the log likelihood with respect to E-* from 

(10), and stack the first order conditions on the 

unrestricted elements of A * [B,r] 1n a vector we have

C(B-_ 1 :0) - E-1Ar(Z'Z/T) ]r = 0, (12)

where Z is now [Y:X] and [D]r denotes the operation of 

stacking the unrestricted elements of the columns of D Into 

a vector.

From (lc) we have

B - ”1 = E ' M Z ' Z / T J A  B - " 1 « T“1 E-1 A'2'(Y-Xn'). (13)

Taken together (12) and (13) imply

q = (E"1A'(2rX/T)Q')r = 0,

where Q '  * (n':I). Therefore ML estimators of A and E must 

satisfy the following equations:

( e2 1 A3""<Z 'X/T)Qj)r - 0 , (1 )

E2 ■ A'(Z'Z/T)A2 , (11 )

Ql - (1 J:I) , (1 1 1 )
( 14 )

(1 v)
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These are the estimator generating equations. The 

subscripts denote the order in which the estimators are 

obtained in the iterative process. Note the system is 

linear in A, given Q and z .

F I ML is the most efficient estimator because it is 

based on all the above equations. 3SLS, however, ignores 

(iv) in the construction of its instruments, which come from 

the unrestricted estimation of the reduced form. If there 

were overidentifying restrictions on A then this would 

Impose restrictions on it and so 3SLS implicitly assumes each 

equation to be just Identified. The 3SLS procedure can be 

Iterated as well by either revising z 2 from the 3SLS 

residuals or revising and Q by using (1v) and the 3SLS 

estimates. Only the second method uses the complete 

information set, and so gives FIML on convergence.

Solving the equations in (14) is computationally 

burdensome, and so we may seek algorithms that ease this 

burden but give FIML estimates, or algorithms that only 

approximate FIML. IV estimators of the class described by 

Brundy and Jorgenson fall into this second group. The most 

efficient of these 1s 3SLS and although It ignores 

Information, 1t is asymptotically equivalent to FIML. All 

IV estimators of this class have the same asymptotic 

distribution as FIML, provided there are no restrictions 

on r. These in turn are asymptotically equivalent to 2SLS 

and LI ML when each equation 1s just Identified. This 

underlines the point made earlier about the Inefficiencies 

involved 1n ignoring overidentify1 ng restrictions and using 

LI techniques.

In the linear model the eff1 clency/robustness tradeoff 

Involved In the explicit use of the normality assumption In
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estimation 1s only a small sample phenomenon. The FI ML 

1 s (asymptotically) robust for a wide class of 

nonnormal distributions as Its consistency depends only on 

the errors having mean zero. FI ML is also asymptotically 

distributed the same as a class of IV estimators, which can 

therefore be used to simplify the numerical computations 

required to produce an asymptotically optimal estimator.

In the above discussion of small sample behavior, we 

have assumed away the problem of the "undersized" sample by 

not considering constraints on T. For the first step of 

3SLS we require at least as many observations as exogenous 

variables e.g. T > K. Sargan (1978) has shown that if T < 

N+K then the log likelihood will be infinite and so have no 

maximum. This follows from an examination of the log 

likelihood concentrated with respect to £,

L = T log|detB| - V2T 1 ogdet (AZ 'ZA ' ).

If it 1s possible to find A0 satisfying the a priori 

restrictions such that,

(I) det B0 * 0,

(II) X'Aq * a', where Xa « 0,

then the first term of L 1s finite and the second infinite. 

Sargan shows that 1n the undersized sample case, we can find 

such an Aq with probability one. In situations when ML and 

LS breakdown 1t may be possible to construct an IV estimator 

that would be asymptotically efficient. All that was needed

Iest1 mator
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at the first stage was a consistent estimator of the reduced 

form coefficients.^ This can be derived consistent, but 

inefficient estimation of the structural coefficients as

plim n" = - plim T plim B-1 = TB-1 = U' .

The matrices B and r can be derived by L11V estimation of 

the structural equations using Wj = [ D j , X j ]  where Dj is a 

set of dummy variables associated with division of the 

sample Into mj.j subsets, where mj is the number of 

endogenous variables in the jth equation of (4). Each 

column of Dj has elements equal to unity for the 

corresponding subset and zero elsewhere. From equation (7) 

it can be seen that the condition for the block diagonal 

matrix W'Z to be Invertible 1s that be nonsingular for

all 1. A necessary condition for this is that T > mj+K^-1 , 

and so the estimator can be constructed 1f T < K. However 

when the sample 1s not undersized, this method produces an 

Inefficient estimator In small samples.

In this chapter we have seen that there Is a close 

relationship between the estimators familiar In the linear 

model literature. Both 3SLS and FIML can be regarded as 

F 1 1 V and so are consistent and asymptotically normally 

distributed. Further 1f our criterion for choice of 

estimator within this class Is asymptotic efficiency there 

1s nothing to choose between LS and ML estimators. In the 

next chapter we examine the extent to which the persistence, 

or lack of 1t, of these relationships and properties has 

been explored 1 n the literature on nonlinear models.



3. ASYMPTOTIC THEORY AND EXISTING LITERATURE ON NLSEMS

3.1 Asymptotic theory in nonlinear models

We now consider the extent to which the close 

interrelationship between LS, IV and ML estimators in linear 

models can be generalised to nonlinear models. In 

particular we focus attention on the conditions for 

consistency and asymptotic normality of these estimators and 

the degree to which the lines of argument used to establish 

these properties in the linear model can be extended to this 

more general framework. However this presupposes that we 

can construct an asymptotic theory for nonlinear models. It 

will be seen below that the approach taken in the literature 

is to make analogous assumptions to those made in the linear 

model. To develop an asymptotic distribution theory, which 

must rest on the convergence of functions of the stochastic 

variables, restrictions will Inevitably need to be placed on 

the class of model considered. In the linear model this is 

achieved by assuming that the cross product matrices 

converge to a finite limit and that the Central Limit
I, T

theorem can be applied to t  e w ^ u  ̂ for various wt . By
t - 1  z z

placing the appropriate restrictions on w we ensure that for 

any linear combination of u 1 n a particular function of w, 

say L(u), the weight attached to a value of L(u) decreases 

to zero as |u| ♦ -, faster than L(u) + -. If +(u) 1s the 

p.d.f. of u then, algebraically,

L(u ) + (u ) 0 as | u | -.

This controls the effect of outliers when evaluating the 

limit i.n probability of L(u), so that convergence occurs.
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These assumptions translate easily into order of probability 

restrictions on the variables. In the nonlinear model we 

are concerned with the convergence of nonlinear functions of 

u, h (u ), and the effect of outliers must be similarly 

restricted. The class of function must satisfy

L(u) + (u ) ♦ 0 as | u | «,

and so the choice crucially depends on the specified p.d.f. 

of u. These conditions are equivalent to requiring that the 

series of exogenous variables and errors be a Cesaro sum 

generator, in the terminology of Burguette, Gallant and 

Souza (1983). This is a series satisfying the following 

conditions from Gallant and Holly (1980). "Let vt , t =

1 , 2 .....be a sequence of independent and Identically

distributed s-dimensional random variables defined on a 

complete probability space (n,A,P*) with common 

distribution v. Let v be absolutely continuous with respect 

to some product measure on Rs and let b be a nonnegative 

function with fbdv < ». Then there exists E with P*(E) = 0 

such that if w /  E

T
11m (1/T) z f[Vt (w)] = /f(v)dv(v ),
T+» t - 1 1

for every continuous function with |f(v)| < b(v).M In the 

content of econometric models we have vt « (ut ,xt ) and, 

letting y(ut ,xt ,a) be the reduced form for yt , this theorem 

gives us

i T i T
T E f(y*.*».«)• and T"1 z f f  (y (u , xt ,o), xt ,a )dP (u ) 

t-1 1 1 t-1 u



converge uniformly to

f if(y(u,x,a),x,a)dP(u)dv(x),
x u

where u is the probability of measure of x. This of course 

depends on the existence of the bounding function with 

finite expectation. Again the arguments depend on the 

p.d.f. of u. The implications for the underlying variables 

are less clear in the nonlinear case, and invariably not 

explored. For the present we follow convention 1n making 

the usual assumptions. The question of whether they are 

necessarily too restrictive to make the results of no 

practical use in econometric models is considered 1n chapter

7.

3.2 Nonlinear 3SLS

The properties of nonlinear three stage least squares 

(NL3SLS) have been considered by Jorgenson and Laffont 

(1974) and Amemiya (1977). Jorgenson and Laffont's original 

treatment is for a model of the form

yt « f(zt ,B) + ut ,

where zt is a vector of endogenous, exogenous and lagged 

dependent variables. In this chapter we limit attention to 

static models, and in chapter 7 consider the assumptions 

about the variables necessary to generalise the results to 

dynamic models. This issue is not discussed by Jorgenson 

and Laffont but the "appropriate" assumptions are made. For 

the present we are concerned with static models and so leave
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the discussion of this problem to chapter 7. Amemiya (1977) 

extended their work by considering NL3SLS for the model

'^t,a) = ut t » 1,2,...T,

where y t , xt , ut , and a are vectors of dimension (mxl),

(kxl), (mxl) and (pxl) respectively. The error process is 

assumed to satisfy (1) E(ut ) = 0 (11) E(ut u£) « n and (111) 

E(ut u{) » 0, t * s. The whole system can then be stacked in 

the fol1owi ng way

E(y ,x ,a) = U,

where U is of dimension m x T.

The NL3SLS estimates of a are obtained by minimising

J(a) = F(«)-AF(a),

for some matrix A. Jorgenson and Laffont (1974) consider 

A = [n_1 ® X(X'X)- 1 X'] where n Is a consistent estimator 

of n. This is not the most efficient choice of A, and 

following Amemiya (1977), we consider

, r E8F . ,E3F -1 “1ESF . ,
A - (n ®  I) _ 1 E(aF/3a') --- (n • I) - 1 ---- --- (n a  l)'1,

L 3 a  3a‘"J 3a

In the discussion of asymptotic efficiency. To establish 

the consistency and asymptotic normlity of this estimator 

Jorgenson and Laffont (1974) make the following assumptions:

a) ut are i.i.d..
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in the discussion of asymptotic efficiency. To establish 

the consistency and asymptotic normllty of this estimator 

Jorgenson and Laffont (1974) make the following assumptions:
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a) ut are 1 .1 .d.,
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b) 11m i-X'X .= M, a finite nonsingular matrix, 
T+- T

I , I
1 ic) pl1m —  X'---  * H. uniformly 1n a.
T 3b '

1Then pi 1m - X ' ---
T 3 o '

where
3 a

3 fXI
3ai

3fPi
3 a.

= H of rank p,

3 f IT
3 a-,

3 fpT
3a,

These assumptions are the nonlinear counterparts of those 

made 1n the linear model, and the analysis used to derive 

the results 1 s also essentially the same.

The mean value theorem applied to F(o) about a 

point ag gives

F( o)  - F(«0 )

3fj/3o'

3 fp/3 o'

( o - o n ) (15)

0*0

where a lies between aQ and a. Premult1piy1ng both sides 

of (15) by T"^2(n ® X'X)*^(I ®  X') » the LHS becomes
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Now plim v2 U = 0 and, from the definition of a

F(a) < F(ag) and so U'SU > F(a)'SF(a). The probability

hand side is a finite matrix multiplied by plim(a-aQ ), we 

have shown consistency.

To establish asymptotic normality, it is also necessary 

to assume

e) we can apply the central limit theorem to X ' u ^ / Z T ,

This result is derived by considering a mean value expansion

distribution is given on the right hand side of (16).

In the normal linear model we have seen that 3SLS and 

FI ML are asymptotically equivalent, and so 3SLS attains the 

Cramer Rao lower bound (CRLB) asymptotically under 

normality. Amemiya (1977) shows that in general for the

limit of y  2 F ( a ) is also zero, and as the plim of the right

1 3 fd) plim -  X ' ----- Gj uniformly in a i • 1 ,. . , m , 
j “ 1 . • • .P

* • • »
T 3 a j  3 a

where u< is the ith row of U so that

X ' U j / Z T  1 N( 0, f l  0  M)

X'um //T

Under the above conditions

(16)

of 3J /3a | * around aQ , and then showing that /T(a-ag), whose 

distribution 1 s still dependent on n, converges 1n 
distribution to that of a "pseudo" variable, /fia-ag), whose
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nonlinear model this is not the case. He considers the 

performance of NL3SLS with the most efficient choice of A.

It can then be shown that NL3SLS only reaches the CRLB 

asymptotically under normality if

fi(yt *xt *a ) = c i (“i)'z (yt *xt } + ^i(°1 »xt )»

where zt Is of the same dimension as yt . This special case 

1 s of no practical Interest because typically in econometric 

nonlinear SEM's of this class the dimension of z(yt ,xt ) 1s 

greater than the number of endogenous variables due to the 

contemporaneous feedback between variables Involving 

different functions of the variables 1 n different 

equations. For the linear model It was argued that the 

computationally less burdensome 3SLS can be used to 

approximate FIML as 1t has the same asymptotic distribution. 

However the failure of NL3SLS to reach the CRLB 

asymptotically under normality for any practically useful 

cases means that It cannot be used similarly as an 

approximation to NLFIML.

3.3. Properties of NLFIML: Amemlya (1977) and Phillips 

(1982)

There has been some controversy 1n the literature about 

the properties of NLFIML 1n the general nonlinear static 

model. Amemlya (1977) Implied the true distribution must be 

normal for NLFIML to be consistent and asymptotically 

normally distributed. Phillips (1982) has shown that this 

requirement 1 s only sufficient and not necessary for 

consistency. Given consistency 1t can easily be established
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that NLFIML Is asymptotically normally distributed. The 

asymptotic efficiency of NLFIML when the distribution is 

correctly specified follows directly from standard 

likelihood theory. Before we explore the conditions for 

consistency and asymptotic normality of NLFIML 1n various 

situations it is necessary to outline how both Amemlya and 

Phillips came to their respective conclusions. This will 

serve to Illustrate the complexity of the problem within 

this general framework and the limitations to existing 

analysis.

Conditions for a consistent root to the likelihood equation.

Let the log likelihood function, indexed by the 

parameter vector a, for a sample size T be denoted Lj(a). 

Expand T_ 1 L T (o) around the true value oQ using the second 

order mean value theorem:

T_1 L T (a) = T"1 LT (a0 ) + T'1— I  .(a-aQ )

(17)

+ T(a"ao) ' r2
------ *(“ -«0 )*3a3a'  a y

where ay lies between a and <x q . Taking probability limits 

on both sides of (17) gives

pl1m T_1 L(a) « pl1m T"*Ly(ag)



From this we deduce that sufficient conditions for a 

consistent root to the likelihood equation are

pi 1 m
3a' a0

0,

pi 1 m
3 a 3 a' a0

1s negative definite.

The second of these 1s the condition for Identification of 

the parameters derived by Rothenberg (1971) and Bowden 

(1973).

The asymptotic normality of NLFIML comes from the first 

order mean value theorem applied to the score vector:

3L T 3L t
A 32LT

3a
A
a 3a ag 3a3a'

If we can apply a Central Limit Theorem to 3Ly/3a|' with 

appropriate scaling then we have the desired result. To 

begin with we concentrate on the arguments Involved in 

establishing consistency and deal with asymptotic normality 

1ater.

The model we consider 1s an m equation system

fl(yt »xt ,al) ■ u 1t 1 ” 1 »2 ,..,m,

t - 1,2,..,T

where a^ are the parameters 1 n 1 th equation, we assume:

1 ) ut 1 s distributed Independently and Identically 

normal with covariance matrix n

2) there are no constraints amongst the ‘s
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3) the mapping f1 : yt ♦ u t Is continuous one to one 

mapping from a subset of Rn onto the whole Rn , and 

the Inverse function 1 s continuous

4) all relevant derivatives exist and are continuous 

for a given xt and almost all yt In the

neighborhood of the true value of a.
T 1

5) and E ftf£ where ft' = <f It • • • >f n t ) ' are 

nonsingular in the same domain as 4).

This model specification is essentially a 

generalisation of the linear model assumptions. It was 

remarked earlier that the implications of assumption 5 for 

the underlying variables may be unclear, but 1t should also 

be noted that assumption 3) 1s likely to be extremely 

restrictive. We return to the Implications of 3) for the 

model 1n chapter 6, but for the present follow the 

established practice In the literature of assuming a unique 

Inverse exists without considering the Implied restrictions 

on the model .

The log 11kel1 hood i s

* T T T i
Lt = - -  log|n| + z 1 og | | af.. / 3yr | | - 1/ 2 z

2 t - 1 t t t - 1 1 1

This can be concentrated with respect to n to give

L T - Elog||aft/ay{|| - T 1

and so the score vector 1 s

3L «i ag1
---- - E — - - T(tgif-)(iff')1-1
3a 3u
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where t subscripts have been supressed, = 3f/3a|, 

»g^aUj * and (A)T1 indicates the jth

row of A " 1 .

We can rewrite the score vector as

3L

3a.
= z[—  - g i u'a1 ] - T - ^ g  u'C(iHJil) :1- a1],

“0 3U1 1 T 1

where a is the 1 t h column of ft.

To establish that 3LT/3a4 has a zero probability
1 1 1 “o

limit Amemiya (1977) uses the following lemma: "if Uj,..,un 

are jointly normal with mean 0 and covariance and h(u)

1s such that Eh and E3h/3u^ are finite then

E(3h/3u.|) = E ( htai ̂  u . ) M . This of course implies 
I jplim 3LT/3a, is zero. Amemiya concluded that normality 

1 1 ' °0
was therefore crucial for consistency. H1s mistake was to 

assume that this was a property of normal random variables 

alone.

Phillips (1982) presents a "Possibility Theorem" which 

shows that whenever NLFIML is consistent when the assumed 

and true distributions are normal then 1t 1s also consistent 

when the true distribution 1s a particular discrete mixture 

of normals. His proof, which we outline below, 1s for a one 

equation one parameter model, for simplicity, but the 

arguments can be generalised.

The true p.d.f. of ut is

pdf(u) - 7(2ww)"1/25 -1exp(-u2/2wS2 )dG(w),
0

where S2 * { fwdG(w )}- 1 E(u2) and G(w) is a distribution 
0

function supported on [0,«).
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The proof 1s concerned with showing

plim T_1 ï(g'-gu<y-2 ) = 0, (where g' = 3g/3u),

as elementary arguments show the remaining term 

of 3L/3a.j|a^ to be zero. As g ( • ) is a function of xt and ut 

we need to consider expectations with respect to the joint 

distribution of ( u ^ x ^ ) .  So we have

_ i 1
t 1 £ (g-

t = l
•a'2gut ) /dF(x;e)/(g'-c"2gu)pdf(u)du, (18) 

x u

where e are the parameters of the distribution of xt . We 

need to show the RHS of (18) is zero and the argument rests 

on using the weights of the mixing distribution to offset 

the nonl1 nearities in the system.

Proof;

Since g(u)pdf(u) 1s absolutely continuous it follows

that

b
(g'pdf(u)du ♦ 
à

Let a ♦ b ♦ -«• 

be zero. So,

/g'pdf(u)du » 
u

where mw ■ fwdG(w).

fgpdf'(u)du » [gpdf(u)]g.
9

then the right hand side can be shown to

-/gpdf'(u)du
u

o_2/gu/(2ww)"1/Z ô " 1exp{-u2/2wô2)mww " 1dG(w) 

Therefore
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T 1 E(g'-a“2g u ) + a-2/dF(x ;e )/gudu/(2*w ) “^ 2 a"*exp(-u 2/2wa2 )
x

X [mwW 1-l]dG(w)

2
“ ° 3i" ^ 2 f ( 2»w) _ 1 ^2[mww _1-l ]dG(w) fdF ( x ; 6 )/guexp(-^i— ? )du 

0 x u  2wa

= /( 2xw) ^ 2[m w ' 1 -l]h(w;a,ij2,e)dG(w). 
0 w

(19)

We now require a mixing distribution for which this is 

zero. In the normal case G(w) =|® * * j^and mw = 1.

Phillips (1982) takes the following mixing distribution

G(w) = /° w <c

) “ * W1 < w

1 1 - e+a, w2 < w

' 1 w3 < w

with 0 < a < e. As s ♦ 0, w3"w l * ® and density

approaches normality. We need to establish that we can move 

away from this case in a systematic way so that for every 

mixing distribution of the above form the limit function 1 s 
zero.

Put n > 0 and assume:- 

1 -n < wj < 1 , wj < W2 < W3, 1 < W 3 < 1 + n.

Choose W 2 such that mw « aWj + (l-e)w2 + (e-a)w3 * 1, 

which Implies w2 - (1-CaWj + (c-a)w3] )/(1-e ). The limit of 

(19) is now
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(2w)"1/2Cah(w1 )(w-1-l)w“ 1/2 + (l-e )h(w2 )(w-1-l)w-1/2 

+ (e-a)h(w3)(wj1-l)w'1/2].

p
Of course if h(w;a,a ,e) » 0 the result 1s easy to show, but 

we must consider what happens when h(w;a,a2 ,e) * 0 for 

1-n < w < 1+n. For this limit to be zero we must choose a 

such that

a[h(Wj)(wj1 -l)wj1/2-h(w3)(w31 -l)w31/2] (20)

= -eh(w3)(w31-l)w-1/2-(l-e)h(w2)(w-1-l)w-1/2.

The final point we need to check Is that if a 1s the 

solution to (20) for certain wj < 1 and W3 > 1 then 

0 < a < e, as required for G(w). Phillips (1982) verifies 

this but, as 1t 1s not crucial to the Intuition behind the 

argument, we do not reproduce 1t here.

There are two points worth noting at present about the 

result. Firstly the arguments can be generalised to 

mul1 1equat1 on multlparameter models using multiple mass 

points. We would then end up with a system of linear 

equations for the vector a. Secondly Phillips has 

established the existence of an Infinite number of 

distributions for which NLFIML Is consistent, formed as wj, 

w2 move away from unity. NLFIML 1s therefore always 

consistent when the true distribution moves away from 

normality In this fashion.
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3.4 Non! 1 near IV

The Interpretation of LS as an IV can also be extended 

to the nonlinear setting, although the idea behind IV does 

not translate easily. In the linear model we had

y = Z« + u ,

and the IV estimators were constructed as solutions to 

W ' y  = W'Zi,

which is a system of equations in «. To produce an 

analogous estimator 1n the nonlinear model

2^ = f ( Zfc »«) +

we need to linearise the system about the parameter

value a0 . The IV estimator 1s therefore artificial as aQ 1s

unknown. Linearsation gives

1 m ,

(2 1)
where fjjt * ( z i t  ̂8<*1 j and the Pi x 1 vector

ctj consists of the coefficients in the 1th equation

Putti n g ,

F
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and y® = f.(zt -a0 ), the system 1n equation (21) can be 

written as

y-y° * Fj.fa-aQ) + u,

and the IV estimator, a IV, is defined as the solution to 

W'(y-y°) « W'Fj . U - B jj).

Using similar arguments to the NL3S case we can show that

✓ T(aIV-a0 ) £ N(0,plim[(— W'F. )-1 (— W ' ( n ®  I)W)(— FrW)-1]). 
iv u T 1 T T 1

Clearly if we put W « X(n ®  X'X)X'Fj and X = I ®  X, the a IV

is asymptotically equivalent to the NL3SLS estimator.

However in the nonlinear model construction of the most

efficient Instruments will run Into problems. In the linear

model the optimal set were based on a consistent estimator

of the systematic part of the reduced form equation,

Independent of the errors. By analogy. In the nonlinear

model we seek the systematic part of af./aa^ , due to the
1 1 I °o

linearisation, and so the reduced form even 1 f It were 

available will not provide the answer. Jorgenson and 

Laffont (1974) consider some possible solutions to this 

problem, but as these do not provide estimators 

asymptotically equivalent to NL3SLS we do not review them 

here.

The derivatives are easier to calculate for the 

nonlinear In variables but linear In parameters model
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f(y^*x^)B + x^C ~ ,

as they are not functions of the parameters. Hatanaka 

(1978) outlines a routine for constructing an IV 

estimator. Although the derivatives are simpler, the 

problem of calculating the systematic component of the 

variables remains. Hatanaka (1978) suggests estimating the 

structural equations by OLS to obtain consistent estimates 

of the parameters *q l s * The deterministic solution of the 

estimated model can then be obtained by numerical techniques 

to yield predicted values for the endogenous variables 

y0LS* These are then transformed to the appropriate 

functional forms for the structural equations, f(yQ L S ,xt ) 

and used as Instruments. Each equation is estimated 

separately by IV, to obtain consistent estimators of u^. 

These can be used to estimate the covariance matrix of ut , 

which 1 s needed for the final step of estimating the 

equations simultaneously to give FIIV.

Using similar arguments as 1n section 3.2, 1t can be 

shown that the resulting estimator «IV 1 s consistent but 

asymptotically Inefficient under normality. The Intuition 

behind this fact Is that uses the deterministic solution

of the model and not the conditional expectation. Any 

nonlinear effects of u^ 1 n the reduced form are completely 

Ignored. This reduced Information set 1s a cause of the 

Inefficiency and of course 1s a problem for IV estimation of 

nonlinear models 1n general.

Whilst NL3SLS has an IV Interpretation Amemlya (1977) 

has shown that NLFIML 1s not an IV estimator. He replicates 

the arguments used by Hausman (1974) 1n the linear model and



shows that the estimator is not FI ML at each iteration. We

can stack the score vector equations to give

[T-1 E— F'-Gr]F(T_1 F'F)"J « 0,
3u '

where F is the m x T matrix whose 1 ,tth element is

f1 (yt»xt »“i ) and the matr1x whose tth column
- 1 39i{ = G{-T -- -F' and

(2 2 )

is 3f ̂ (yt .xt ,a.j ) / . If we let G

. . . 0

G'

G£ 0

A _ 1
Then, putting n = T F'F, (22) can be rewritten as

G'(n_1 « I)vecF =* 0.

Let oj be an Initial estimator of a. By expanding vecF(o1 ) 

around <*g using a first order Taylor series expansion we 

obtain an updated estimator, <»2» as the solution to

G'(n_1 « I)(vecF(a0 ) + G(a2-ag)) - 0.

This gives

«2 ” «i - CG'(n - 1 • I)G]- 1 G'(n - 1 • I) vecF. (23)

For this second stage estimator to be maximum likelihood Its
A

distribution must not depend on that of <*j. This Is easily 

seen by considering the general class of Iterative
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shows that the estimator 1s not FI ML at each Iteration. We 

can stack the score vector equations to give

[T -1 1
3 U

]F(T- 1 F'F) ■ 1 0. ( 2 2 )

where F 1s the m x T matrix whose 1 ,tth element Is 

fi (yt.xt»ai ) and is the matrix whose t th column 

1s 3f j (yt >xt ,<»j )/3a{. If we let G*

G'

.. T-l_391 >i - T E---
3U '

and

Then, putting n = T”*F"F, (22) can be rewritten as

G'(n " * « I) vecF = 0.

* A

Let be an Initial estimator of a. By expanding vecF(a^) 

around aQ using a first order Taylor series expansion we 

obtain an updated estimator, a^, as the solution to

G' (f l  1 «  I ) ( v e c F ( a g )  + G ( a 2 - a 0 )) * 0 .

This gives

«2 * «1 - [G'(n - 1 • I)G]"1 G'(n"1 • I)vecF. (23)

For this second stage estimator to be maximum likelihood Its 

distribution must not depend on that of a^. This 1s easily 

seen by considering the general class of Iterative
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solutions:-

02 = a j-A-
3 a a ^

where A is' some matrix. Taking a Taylor series expansion

that this choice of A does not satisfy the condition, and 

so o2 1n (23) 1s not the maximum likelihood estimator 1n 

general. The linear model case discussed by Hausman (1974) 

1s a special case for which the condition 1s satisfied.

In this chapter 1t has been demonstrated that the close 

relationship between the FI estimators, which provides the 

basis for the derivation of conditions for consistency and 

asymptotic normality of F I ML In the linear model, does not 

persist to the nonlinear setting. From standard likelihood 

theory 1t 1s known that NLFIML has those properties If the 

model 1s correctly specified. Otherwise all that Is known 

Is that 1f the true distribution 1s a member of a particular 

family of discrete mixtures of normals, then NLFIML retains

A-î-i + [I -A. w l T ^ û j - O g ) .
3 a 3 a " a

where a lies between a^ and Og. The condition for the 

distribution of T1/ 2(a2 -Og) not to depend on Oĵ  1s that

pi 1mTA"1 = pi 1 mT
3a3a' ag

Our estimator falls Into this general class with 

A = [G'(n-1 ®  I)G]_ 1 . However Amemlya (1977) demonstrates
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these properties. Phillips' (1982) analysis establishes 

that the coincidence of assumed and true distribution is 

only sufficient for NLFIML to be consistent. It provides a 

starting point for an examination of the nature of the 

trade-off between the noni 1 nearlties in the system and true 

distributions for which NLFIML Is consistent. The approach 

taken 1n the Possibility theorem cannot be generalised to 

other true distributions, and so to pursue the question of 

the consistency of NLFIML we need an alternative type of 

analysis. This is explored 1n chapters 5 and 6. Before 

that, we set our analysis within the context of the quasi 

MLE theory developed by White (1982). This serves to 

provide the background for our subsequent analysis, in the 

course of which we are able to provide a more unified 

treatment of the conditions for consistency of NLFIML.
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4. INFERENCE IN MISSPECIFIED MODELS.

4.1. Theory of the quasi MLE

Our main focus in the remaining chapters 1s behavior of 

NLFIML when the distributional assumption about the errors 

is the only mlsspedficat1on . Our analysis 1s limited to 

the case common in practice In which ML estimation 1s 

carried out under the assumption of normality. White (1982) 

has considered the more general framework of maximum 

likelihood estimation for distr1 butlonal 1y misspecified 

models for the 1.1.d. case. This can be generalised to the 

i.n.I.d. case under consideration as follows.

Define the average Information measure I(gt ,ht ,a) as

, T
I(gt .ht .o) * 11m T 1 j E(log(gt (yt )/h (y ,«)), 

z z T*- t*l z 1 z z

where yt are I.n.I.d. variables with true distribution gt (*) 

1n period t, but MLE 1s carried out assuming ht (*,a) to be 

the p.d.f. of yt . I(gt ,ht ,a) is a generalisation of the 

Kullback Liebler (1951) Information Criterion (KLIC).

Let a* be the parameter vector that minimises the KLIC.

Then under the following regularity conditions, which are a 

generalisation of White (1982) assumption A3: a) E(log 

9t(>t)) exists and |log ht (yt ,a)| < m(yt ) for all a In A, 

where m 1 s Integrable with respect to the distribution 

function of yt , b)I(gt :ht , a) has a unique minimum at a* in
A

A; the quasi maximum likelihood estimator, a-., converges to 

a* almost surely.

The first order conditions for KLIC minimisation are 

obtained by differentiating I(*) with respect to a. This 

gives
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31

= -11m T~1
T

I
r /C3loght (yt ,a)/3a]gt (yt )dyt .

I
(24)

I
The second order conditions are

3a3a t*= 1 9a9a" 9t (*t )dyt

The QMLE 1s obtained by setting t
t«l

T 3loght (yt ,o)
= 0 and

3a
solving for a. For a* to be the KLIC minimising value 1t 1s

definite. These are the conditions derived earlier 1n the 

discussion of the Amemiya/Ph111ips debate on consistency, 

where of course expectations have to be taken with respect 

to the true distribution. In the context of White's 

analysis these represent conditions for the convergence 

of aj to a*. He terms ay "consistent" for a* If they are 

satisfied, but we shall not do so to avoid confusion. We 

refer to ay as being consistent for a 1 f the conditions for 

KLIC minimisation are satisfied for a = a Q , the true value. We are 

concerned with the conditions under which ay converges to 

the particular value ag, and not the general conditions for 

the existence of a KLIC minimising value a*.

To check these conditions for a consistent root we need 

to examine the behavior of the quasi score and quasi hessian 

at the true parameter value. The second order conditions 

are very difficult to verify 1 n general as the "sign" of the 

hessian 1 s likely to depend on the properties of the 

exogenous variables and the unknown parameters. In the case 

of nonlinear In variables models, however we can use the 

fact that the second order condition for consistency 1 s also 

the condition for Identification of the parameters.

sufficient that 3l/3aI = 0 and 32I/3a3a'l 1 s negative
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Rothenberg (1971) and Bowden (1973) considered this 

link between identification and the existence of a well 

defined maximum likelihood estimator. Rothenberg (1971) 

essentially uses the arguments outlined earlier to derive 

the second order conditions for consistency based on the 

expansion of the true likelihood. Bowden (1973) uses the 

KLIC minimising arguments restricted to the case where the 

family of distribution 1 s correct, but 1t 1s desired to 

distinguish between two parameter vectors. White (1982) 

generalises this result for i.i.d. variables to cover 

situations in which the family is misspecif1e d . His 

arguments revolve around taking mean value expansions of the 

quasi likelihood. Rothenberg (1971) shows that the familiar 

"distribution free" criterion based on the observational 

equivalence arguments 1n the linear model result from the 

requirement that the information matrix be negative definite 

when the true distribution 1s normal. The generalisation of 

White (1982)'s theorem 3.1 to the 1.n.1.d. case explains 

this result as the structural parameters can be Identified 

from those of the reduced form using knowledge of only the 

first two moments of the distribution. The observational 

equivalence criterion can therefore be derived from the 

quasi hessian condition for all distributions with the same 

first two moments as the normal.

The literature on m l s s p e d f l e d  models has largely been 

concerned with the conditions for convergence of the QMLE to 

the KLIC minimising value without relating these Ideas to 

the more familiar concepts of consistency and 

Identification. White (1982) notes that Identification 

retains Its Importance In m 1 sspec1 f 1 ed models and In the
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subsequent chapters we consider the conditions for and the 

importance of consistency. We have already noted the 

difficulty of evaluating the "sign" of the hessian, and 1 n 

the next section we examine the distribution free 

identification criteria developed by Brown (1983) for models 

nonlinear in the variables but linear 1 n the parameters.

This criteria is used to check second order conditions 1n 

some worked examples in chapter 5. Brown's arguments are 

reproduced fairly rigorously because we need to extend his 

arguments to dynamic models 1n chapter 7 and also to relate 

h1 s assumptions about model specification to our discussion 

of the conditions for a unique reduced form in chapter 6.

4.2. Identification in nonlinear models

Brown (1983) has developed "distribution free" criteria 

for Identification of nonlinear 1 n variables models using 

arguments based on observat 1ona 1 1 y equivalent structures.

In the analysis of the linear model we used the 

nonstochastic restrictions. A* - 0, and the stochastic 

restriction that E(u^|xt ) * 0 to provide sufficient 

information for the discrimination of one equation from 

linear combinations of the rest; necessarily this 1 s the 

only class of transformations that need to be considered.

In the nonlinear model a linear combination of nonlinear 

transformations may produce an equation observatlonal1y 
Indistinguishable from the 1th equation of the system. This 

1s best demonstrated by an example from Fisher (1966, p. 

133). Consider the system
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a0 + aly l + a2y 2 + a3y ly 2 (26)

b ly l + b 2y 2 = u 2 " (27)

Put uj U2 = 0, then 1f we construct a third equation by 

squaring (27) and adding (26) to 1t, then this equation 1s 

Indistinguishable from (26). For this example above the set 

of possible transformations that need to be considered 1 s 

larger than a system linear 1 n both parameters and 

variables. Consequently, the Identification criterion from 

the linear model has not used enough restrictions 

(Information) on the system to be applicable. We use 

Brown's criteria later 1n our analysis and so outline the 

basis of his results.

Consider the system

Aq(y,x) « u, (28)

where y 1 s a m x 1 vector of endogenous variables, x 1 s a 

k x 1 vector of exogenous variables, u 1 s a m x 1 vector of 

disturbances, q(*) 1 s a n x 1 vector of known functions of 

y,x and A 1s the m x n matrix of unknown coefficients. In 

this context a structure consists of a coefficient matrix,

A, and a conditional distribution f(u|x). Two structures 

are then observatlonally equivalent when they Imply the same 

conditional distribution for y.

The procedure 1s similar to the linear model except 

that we Increase the Information set. For a structure to be 

model admissible 1t must satisfy the following,

1) nonstochastic restrictions: A+ - 0,
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2) stochastic restrictions: a) the mean of the error 

conditional distribution 1 s zero, b) the 

conditional distribution 1s Independent of the 

exogenous variables.

The assumption 2b) 1s essentially arbitrary, but 

justifiable as In this context exogenous means determined 

outside the system. Brown notes, however, that exactly the 

same conditions would be derived from replacing this with 

the restriction that E(uu^) be positive definite.

It 1s assumed that (28) defines a single relevant 

Inverse relationship

y - G(u,x;A), (29)

where G(*) 1s an (mxl) vector of continuous functions 

obtained by either analytic or numerical techniques. Me 

discuss the Implications of this assumption for the 

generality of the model 1n chapter 5. Therefore two 

structures (A1 ,f1 ), (A°,f°) are observatlonal1y equivalent 

1 f, and only 1f,

u « A 1 q(G(u,x;A°),x)

has the conditional distribution f 1 when y follows the 

conditional distribution determined by (29) for u 

distributed as f°.

First consider necessary and sufficient conditions 

for u to be stochastically Independent of x when u follows 

f®. Let tj' be an n row matrix which forms a basis for the 

space generated by
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q( u , x) =

3 X '
If det (A°3q^3y') jt O for all u,x then I I

1 l: *
A AtJ" spans the space 3u/3x'. By analysing A t}' we can

derive our condition for stochastic Independence. If

* 0 then 3u/3x' * 0 and u depends on x. However

1 f A^tJ' = 0 then 3u/3x' = 0 and so u 1 s locally Invariant

with respect to x. As u(u,x) 1s continuous with respect to

x, u must be a function of u alone. The stochastic

Independence of u and x therefore Implies that of u and x,
1 >

and so the required condition 1s that A Q * 0.

The next step 1s to derive conditions under which 

E(u|x) 1s zero. Let

q (x ) * E(q(G(u,x;A°),x|x),

where u 1s distributed f°, then E(u|x) * 0 1f and only 1f 

A 1 q^(x) * 0. Taken together with the nonstochastic 

restrictions, this gives the conditions that 1 f (A*,f*) 1 s 

observatl onal 1 y equivalent to (A°,f°) then A*(q,tf',$) * 0. 

The condition for the 1th equation to be Identifiable (up to 

a scalar multiple) and therefore to be the only structure 

satisfying the restrictions 1 s

rank(q :tf' ) * n-1, (30)

where •1 1 s the mxR^ matrix of restrictions on the 

coefficients of the 1th equation, <*{, the 1th row of A.

The sufficiency of this condition follows from the fact 

that 1f (30) holds then « ( ( q . ♦ 1 ) - 0 and so the 

coefficients of the 1th equation of every structure



observatlonal1 y equivalent to (A°,f°) are unique up to a 

scalar multiple.

The condition is necessary because it ensures only 

(A°,f°) is model admissible. For 1f rank (q’.tf',^) < n-1, 

then it is possible to find arbitrarily close 

to a® satisfying the restrictions where a .j is not a scalar 

multiple of . If A* is composed of A® only 

with a.j replacing , then it will satisfy the restrictions 

and so A0 1s not identifiable.

This condition has the drawback that it requires the 

specification of the higher moments of u to evaluate q(x). 

(The derivatives can be calculated from the implicit 

function theorem). This cancels out one of the chief 

advantages of this method namely the minimal assumptions 

about the error distribution. However this can be avoided 

by considering the "implied equations" of the system. These 

are equations linear 1 n q(y,x) but independent of our 

original model and satisfying its stochastic restrictions. 

Their coefficients are related to the properties of the 

orglnal model, and so offer an alternative source of 

Information about the original parameters.

Me have assumed that (A^,f°) 1s model admissible and so 

A°(q,0') - 0. The m independent rows of A0 therefore lie 1n 

the row kernel of Q*' * (q,tj'). The row kernel has 

dimension m * , where

m* - d1mQ*' - rank Q*' - n - rank Q*'.

This Implies we can find m* - m additional Independent rows 

giving the (m*-m) x n. matrlc C such that
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forms a basis for the row kernel of Q*'. The matrix C 

contains the coefficients of the following Implied equations 

of the system:

w = Cq(6(u,x;A°);x) - h(u).

Note these have been constructed so that E(w|x) « 0 and 

CO ' = 0, and therefore the augmented matrix A 

automatically satisfies the stochastic restrictions. We can 

now derive an equivalent condition for Identification. 

Consider the matrix

A*(Q*':#1 ) * (0:A*«1 ).

This matrix has rank equal to the number of Independent (of 

each other and 0*') columns of . Therefore

rankiA**^) » rank(Q * ' : )  - rank(Q*').

This Implies that r a n k ( Q * ) e q u a l s  N-l 1f, and only 1f, 

r a n k f A * ^ )  equals m* - 1. The latter 1s therefore an 

alternative condition for Identification of the 1th equation 

of the original system.

This approach has enabled us to replace the 

Identification condition based on the noni 1 nearltles In the 

system by a linear model type condition for an augmented 

system of equations, the additional Information coming from
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the coefficients of the Implied equations which depend on 

the nonl1nearlt1es of the system. For this new condition to 

be workable we need to be able ^to find C. Brown shows^that 

the rows of C may be chosen as those linearly Independent 

rows such that C(Q':Cf':q) = 0.* This still depends on q, but 

If the constant term 1 s unrestricted in the 1**1 equation 

then C may be chosen as those m* - m linearly Independent 

rows, in addition to the (nxl) vector (0,..,0,1 ), such 

that C(Q":Cf‘'} = 0. This revised condition would be 

applicable 1 n most practical circumstances.

Given this resemblance to the linear model condition 1t 

1 s worth considering when these conditions will coincide as 

then the nonlinearity In the variables can be Ignored, and 

the model treated as linear for Identification purposes.

From the nature of the conditions discussed this Is the case 

when there are no Implied equations. Brown shows that this 

can be established for the class of models subject to one 

condition for which

Aq(y,x) >= A 1q 1 (y1 ,x1 ) + A2q 2(yx ,X l ,y2 ,x2 )+A3q3(x 3 )+a0,

where y' * (yj,y2 )» x' = (xltx2 .x3 )' and the elements of

<>2(yi *X1 ,yz ,x2 ) are functionally Independent when (yi.xj)

are taken as constants. The condition for there to be no

Implied equations 1s rank(A2 :A®) = m, 1.e. of full rank. If

this Is satisfied then the 1th equation 1 s Identifiable 1 f

and only 1 f rankiA^t^) » m - 1 , which 1 s the condition

derived 1n our discussion of the linear model. Applications

of these techniques are presented later In our discussion of

the conditions for consistency of NLFIML 1n particular 
nonlinear in variables models.
* Where Q' forms a basis for the columns of [dq/dy'idq/dx'J when A°q(yfx)K>.



5. CONSISTENCY OF NLFIML

5.1 Nonlinear regression model

The properties of FI ML have recently received attention 

in the literature on the nonlinear regression model. 

Gourieroux, Monfort and Trognon (1984), GMT, develop the 

Idea of accepting that any distributional assumption is 

likely to be incorrect so that the choice made should be the 

one delivering the most robust estimator. They term the 

resulting estimator a pseudo MLE as the choice of 

distribution is not made through any desire to accurately 

model the error process but because it determines the 

optimand of the estimation routine, and a suitable choice 

can deliver an estimator with desirable properties. Such a 

scheme is more in the spirit of least squares than maximum 

likelihood, hence the prefix pseudo. It should be 

distinguished from the QMLE which 1s the MLE derived from a 

misspecified model. Although our attention has been focused 

on the case In which the distribution alone 1 s incorrect, 

the term QMLE denotes the MLE derived when any aspect of the 

model 1s misspecif1 e d . GMT further show that the assumed 

distribution must come from this family for the pseudo MLE 

to be consistent for all possible choices of conditional 

expectation of yt and true error distributions. We return 

to their arguments 1 n chapter 8 where we examine the use of 

the Information matrix test as a general test of 

mlsspecif1cat 1 on In this type of model.

Burguette, Gallant and Souza (1983) consider the 

properties of various estimators. Including FI M L , when the 

nonlinear regression model 1 s used to approximate the 

general model outlined earlier. They are concerned with the
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asymptotic properties of the resulting estimator when both 

the functional form and distribution are mlsspecified, and 

so their analysis is more general than that of Amemiya 

(1977) and Phillips (1982). However both these approaches 

do not generalise easily to the more complicated general 

nonlinear model as the use of the nonlinear regression model 

considerably simplifies the analysis. This Is demonstrated 

1 n section 5.2 where 1 t 1 s seen that their model format is 

crucial to the strength of their results.

5.2 Consistency of NLFIML in the general model

We now explore various attempts to establish a general 

result 1n the manner of Phillips (1982) for the general 

static nonlinear model. Consider the model discussed by 

Amemiya (1977) and Phillips (1982):—

f 1 (y t ,xt *“1 ) * u 1t* 1 =

where yt 1 s a m x 1 vector of endogenous variables, 

xt 1 s a k x 1 vector of exogenous variables.

Is a P| x 1 vector of parameter 1n the 1th equation. 
We consider the case 1n which MLE 1s carried out under the 

assumption that ut « (u ,.., um t )' 1 s Independently and 

Identically normally distributed with mean zero and 

covariance n. The aim 1s to examine the properties of the 

QMLE a,j , when the normality assumption alone 1s Incorrect.

The score of the quasi likelihood under normality 1s
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8LLF T 31n ||J ||
----- - = Z -----------

t = l 3a

> I

order condition for aQ to be the KLIC minimising value is

where e * («,*eco') and expectations are taken with respect 

to the true distribution. By weak law of large number arguments the

The score with respect to a i 1s less easy to evaluate. 

However 1f we were dealing with the nonlinear regression 

model the analysis Is simplified. The Jacobian 1s the 

Identity matrix and so the only non zero term 1 n the score 

Is

which has zero expectation at eQ . The second order 

conditions are similarly easily verified, and enable GMT 

(1984) to develop powerful results for this class of model.

For more complicated models the presence of the 

Jacobian causes considerable problems. Typically It 1s a 

nonlinear function of the parameters and variables. Amemlya 

( 1977) avoided 1tav1ng to examine the nature of this function

3LLF NE = 0

expectation of the derivative with respect to ft-1 is zero at 0Q

3U.F,

t

'XT-' '
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by recourse to a lemma for normal random variables. This 

1 s, of course, no use when the model is mlsspeclf1 e d . 

Another possible solution is to use the properties of the 

true distribution and score to evaluate the quasi score 

at 8g. The Jacobian of the transformation from assumed and 

true error p.d.f. to that of yt is the same. Letting TLLF 

be the true LLF we know from conventional ML theory

3TLLF T 31 n | | J M
-  T u

T 3 Tpdf(u. )
4- V ^

30 0 q t = l 30 0g t»l 0

has zero expected value. Therefore if we can show

_i 3Tpdf(ut ) 
plimT a e -------- i—

_i 3Qpdf(ut ) 
plimT *e -------- L_

30

then 1t must follow that pl1mT-lE 3(̂ LL|: » 0.
30 en

Given that normality could be argued to be a 

specification aimed at capturing a symmetrical error 

distribution, a natural choice of true p.d.f. to use is when 

ut 1 s distributed as a member of the elllptlcally symmetric 

family. It might be considered disturbing 1f NLFIML 1s not 

robust in this case. We consider the case 1n which the true 

p.d.f. is a continuous mixture of normals:

Pdf(ut ) - /(2w)_m/2w - m /2 |rr1 |exp[-u'n_1u t/2w]g(w)dw,

where g(w) 1 s a p.d.f. supported on the positive real 

line. This means we must compare
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pi 1mT-1 EC/ (  2nw) “ m/2 I n _ 1 1 e x p [ - u r n “ 1u i. / 2 w ] g ( w ) d w ] -10 t t

x "(2ifw)"'n/2|n- 1 |exp[-u'n-1ut/2w]— g(w)dw * I_in_1ut , 
0 1 * w 30i t

where

mw l n *

mw * ^wg(w )d w ,

- 1 ® ̂  t -1with pi 1 mT E— -n u*., 
3a.

true parameter value.

where both pllms are evaluated at the 

Clearly a sufficient condition would

be for the Integrals in denominator and numerator to have 

the same value. In general there 1s no reason for this to 

be the case. To Illustrate the problems we consider the 

case where w has a particular Inverted gamma distribution, 

so that the true p.d.f. of ut 1s a multivariate Student t. 

If we let the p.d.f. of w be

h ( w Iv) ■ v »v/2
r(v/2) 2

■v/2w ‘ 0 < w < »,

then the true p.d.f. of ut 1s the MV Student t with v 

degrees of freedom:

p(ut Iv,o) r[(v+m)/2] I nI 
nm^r(v/2)(v-2)m/2

•[ l+u 'n -1 ut/v-2] -(m+v)/2

Therefore we need to compare
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_i 3Tpdf(uf )
pi 1 mT

3ai ao

(31)

* pi i mT - 1 (m + v ) 
v-2 “0

with

p 11m T -i E
l 3Qpdf(ut )

We first consider the problem with the assumptions in 

Amemiya (1977) namely that all summations in the score and 

likelihood converge to finite limits. In this case the two 

sides of (31) are not in general equal for finite v. 

Consider the quasi p.d.f. term first.

respect to the MV Student t with v degrees of freedom. To 

evaluate the other plim we need a result from Prucha and 

Kelejian (1983), namely

EC— i-n_1ut ] * /— - « ' ^ . . p f u  |v,o)du
•s ~ u L t •

which is the expected value of (3f£/3«*̂  )fl- 1ut taken with

v +m v

Therefore



which 1s equal to — -—  times the expected value 
_1 v"2 .J

(3f£/3<*^)n u^ taken^with respect to a MV Student t 

distribution with v+2 degrees of freedom. Now 3f£/3a.j 1s a 

nonlinear function of u ^ , and so the constant adjustment 

does not transform from expectations taken with respect to 

the two distributions. However 1f v 1s Infinite then the 

two pllms are the same, but this just replicates Amemlya 

(1977)'s result as both distributions are then normal. To 

establish a general result we need further Information about 

the system. Due to the symmetry of the MV Student t distribution 

we know that odd functions of ufc have zero expectation, therefore 

if 3ft',/3ai is an even function of ut, then both terms in (31) have 

the same plim when evaluated at aQ . However this condition requires 

knowledge of the reduced form of the model, which in general we do not 

have.

The conclusion to be drawn from the above analysis is as 

follows: we cannot say that NLFIML is consistent when we maximise 

the normal likelihood but the errors are actually distributed multi

variate Student t under the conditions on f(») in Amemiya (1977).

It is the case that NLFIML may be consistent but this requires further 

knowledge and/or restrictions on the model. The problem is that unlike 

the linear model these are not easily verifiable. We later consider 

some particular examples to illustrate the relationship between the non- 

linearities in the system and the conditions on the true distribution for 

the QMLE to be consistent. Before doing so we consider the situation 

in which we can derive a general result by relaxing one of the assumptions 

of the Amemiya (1977) model.
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5.3 Consistency of NLFIML when u» 1s a weakly stationary 

process

One of the advantages of the normal specification Is 

the equivalence of the assumptions that the errors are 

uncorrelated or statistically Independent over time. This 

special property enables us to consider the likelihood of T 

observations on' a m-d 1mens 1 onal vector ut or of one
k' -friikVKt-iHhr- WJrrw'T." v • * '

............. . • -1 u. ■ ». -

I.. ■ -- -z.ir.'l'
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5.3 Consistency of NLFIML when u» 1s a weakly stationary 

process

One of the advantages of the normal specification 1s 

the equivalence of the assumptions that the errors are 

uncorrelated or statistically Independent over time. This 

special property enables us to consider the likelihood of T 

observations on~ a m-d 1mens 1 onal vector ut or of one
■' i..-r t -,-V; -ajnrsrsv r.rws-■;**, • V-- - •
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‘ . . . .  . . . . . .  *• -

fi'.'Vf«*:

I



73

observation on the mT dimensional vector vecU and obtain an 

Identical estimator. This is not a general property of 

random variables, and when we relax the normality assumption 

we must consider exactly what the appropriate specification 

1s, given our knowledge of the system. In this section we 

show that there are families of stationary processes 

satisfying the first two moment conditions on the error, for 

which NLFIML under normality 1s consistent.

Phillips' (1982) arguments used the mixing distribution 

to offset the nonl1 nearlt 1es in the system whilst retaining 

the Independence of the errors. In each circumstance the 

appropriate mixing weights are different as they depend on 

the nonlinearity present. It 1s possible to achieve the 

desired result by sacrificing the Independence assumption 

but leaving the true distribution unconstrained, and using 

the dependence structure of ut to offset the nonl1 nearlt1e s . 
We are therefore focusing attention on the vecU framework 

and consider the case 1n which vecU was mistakenly assumed 

to be normal .

Maximisation of the quasi and true likelihood are both 

just optimisation problems and what we need to show Is that 

their solution 1s the same. This would be the case If the 

quasi and true scores are proportional. For If

3L, 3L„ 3 L, 3L,
---  a ---- then E ---- ■ 0 Implies E ---- - 0.
3a 3a 1 3a 1 3a

We of course need regularity conditions to ensure the 

optimisation problem 1 s properly defined and these are 

listed 1n Ameml ya ( 1977), although all expectations must be 

taken relative to the true distribution.
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If vecU ~ N(0,I &  n) then the log likelihood is

L r = constant

+ — ln|n- 1 |- — (vec U)'(n - 1 ®  I)vec U + ln||J||,
2 2

where J 1s the Jacobian of the transformation from vecU to 

vec Y. We are primarily Interested in the structural 

coefficients a and so concentrate the likelihood with 

respect to n. As

- 1 T - 1 - 1 Tvec U'(n ®  I)vec U » s uro u. » trfl s utuf
t»l 1 z t»l 1 z

it follows that

3LN T„ 1 I
a« - 1 7 2 t - r *

Implying that the QMLE for a 

substitute this back Into LN 

likelihood Ljj, we have:-

* _ 1
is n * T tut u£. If we then 

to derive the concentrated log

l S » const + — ln|n- 1 | + ln||J||. 
" 2

The QMLE for a 1s obtained by minimising l S.

We now consider the log likelihood 1f vecU has a MV 

Student t distribution with v degrees of freedom. In this 

case

Lst const + 1 n | |J | | + — 1 n|n"1 1
2

- (J'T v.)l n£v + vec U'fn"1 ®  I)vec U * 
2 v -2



which impi i es

3Lst , Tn _ (mT + v) _ J l “ tut_________ v

30_1 2 2 * Cv+trn-1tilUtu' - ^ T  * v -2

setting this derivative to zero gives the solution

* -1 ^ «.i*
Cl * T E U.ur, as trn Cl = m . 

t = l z z

We can use n to concentrate the likelihood giving

Lcst const + — ln|ci_ 1 | + 1 n I I J I I .
2

has Identical first and second derivatives with 

respect to a as Ljj. Therefore as we know

E
st 3a

0 and E 
st

32Lc 3 Lst
9a3a"

1 s negative definite,

it follows that

st 3a a0
0 and E

st 3 a3 a "
is negative definite. as wel 1

Of course this argument can be used 1n reverse with 

expectations taken with respect to the normal distribution 

to show the QMLE under Student t 1s consistent 1f the true 

distribution 1s normal. Both optimisation problems are the 

same, and converge to the same solution. We have therefore 

established the consistency of a subject to all except one 

of the conditions 1n Amemlya (1977). It was remarked 

earlier that the vecU and 1 .1 .d. u* specifications are not 

the same for the MV Student t case. Since 1t 1s the ut
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specification that 1s more commonly made It 1 s Important to 

determine the Implications for ut of vecU having a Student t 

d 1 stri but 1 on .

From Zellner (1971) we know that If z '  * (z£,z£) has a 

multivariate Student t distribution then p(z!|z2 ) and p(z2 ), 

the conditional and marginal distributions also have MVST 

form. The joint density 1s

P(z 1 tZ2 )
r[(v+m)/2]|H| 

wm /2r(v/2)

V2
— c l-*-Q1+Q2D-(m+v )/2

where v = degrees of freedom, 

z 1 s m x 1 ,

Qi * 2iHi2i*
H-} = E(Z< z | )/(v-2),

E(z) - 0,

EfZjZj) = 0.

This can be factorised to give

...........  r  K i'Hz2 i1̂  i rit2<i*i>2 >’" l/2iHn i ‘/ 2 i

1 2  ' [ u . o ' 7 ' , V ’ ,Tj  ‘|/';V < i * o 2 ) 1 >■*’ ■ *  J

r[(v+m2 )/2] r[(m+v)/2]
where K i * -------- k2 “ i r r n ---------------

tr r( v/2) w 1 r[(v+m2)/2 ]

and mj + m 2 » m, which can be denoted

P(zltz2 ) - p(z2)p(z1 |z2 ) (1n that order).

The marginal distribution for z2 , p(z2 ), 1s clearly MV 

Student t with v degrees of freedom.

The situation with which we are working 1s
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T
Q - £ q.j , q.j - U1 ^1 U1 > ancl so

p(vecU) = r[(v+mT)/2)] |H|[1+ J q (mT+v )/2f 

wmT/2 r(v/2) t = 1

T
with |H| = n | H . | . Me can clearly factorise p(vecU) Into 

1 - 1  1
the marginal distribution for any ut and the conditional 

distribution of the remaining elements of vecU given u^.

p(vecU) = l U p L l Z i I | H |[1+ r (m+v )/2
w / zr(v/2) 1 *

,-----rE(-T*v>/g]----- . nT |„ |Cl„  l  r (.T.,)/i

X Cl+qk ]_m(T‘1)/2. (33)

where a = (l+qk )- 1 .

The first line of (33) 1s the marginal distribution of 

U|( and the last two lines are 1n the form of a MV Student t 

distribution with (m+v) degrees of freedom. Therefore 1f 

vecU ~ MV Student t(v), then the marginal distribution of ut 

1s also MV Student t(v), with E(ut ) » 0 and E(ut u£) - V, for 

all t, as Hj ■ H for all 1. However the conditional 

distribution of Zj given Z2 . 1 s not the marginal 

distribution for zj. Therefore whilst the ut are 

Identically distributed MVST, they are not Independent. Me 

now explore the nature of this dependence.

The conditional distribution p(Z}|z2) can be factorised 

1n a similar fashion to the joint density. If we put Z2 -
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U} and zf - (u ^ o m U j )«

p (2 u 2 ) . —  iH2i[i*a 1, 2r (2, *,)/2(i*p1 ) - /2
w ' r[(v+m)/2] i  1 6 1

X ,'T '2 & ; T*, > m ----- n U U 1'*!!..,.- l  q, r < * T‘>)/zir(T-2)m/2 r[(v + 2m)/2:l i=3' 1 ' 1 2i„3M1 J

x Cl+q2a1 ]"m(T_2)/2Cl+q1 ]“m <T-2 >/2 ,

where a2 = [l+aiq2] - 1 and ajag = [l+qi+q2]> The first term 

of p(z}|z2) corresponds to p (u2 1ul) and the remainder to 

p( ( U3..Uy)'|u2 ,uj). The distribution p (u 2 Iu ̂ ) 1s MV Student 

t with (v+m) degrees of freedom and

E(uz |u1 ) » 0,

var(u2 |ui) * a^ H21 /(m+v-2).

We can clearly continue to make these factorisations to give 

the result that P (uk I(u ..uJ )- Is a MV Student t with 

(v+(k-l)m) degrees of freedom and

E (u kl(uk-l***u i ) )  = °»

var(u|c|uj|_1 ..uj)') 1
km+v-2

H *C1+ E q,] 
1- 1 1

1

m+-T ^ 7 J
— _ 1 1 k - 1 1
u 1 i[l+ E qz]-1, 

k 1 - 1 1
H

As k Increases the conditional distribution of u^ tends to 

the MV normal, but Its marginal distribution 1s still MV

Student t
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To summarise: If the process behaves to ensure the 

joint distribution of the u^'s is MV Student t, then 

although the ut 's are no longer independent, the marginal 

distribution of each ut is the same, and ut forms a weakly 

stationary series as its unconditional moments are constant 

over time. The process 1s also serially uncorrelated over 

time.

Can we learn anything about other distributions for 

which NLFIML derived under normality is consistent? The MV 

t-distribution 1 s a continuous mixture of normal 

distributions with identical means and covariance wV where 

WV2 has an inverted gamma distribution. Consider the case 

where vecU has a general mixture of normals distribution 

with weighting function g(w). The log likelihood function 

1s

Lm - ln7(2„)-mT /2w - mT/2| n- 1 | mT/2 
0

x e x p (-vecU'(n - 1 ®  I)vecU/2)g (w)dw> + ln||J||,

an_i o
-mT/2w -mT/2 [nmT - mrut u'w-1 ]|n - 1 | mT/2 

2 2

x exp(-— vecU'(n_1 8  I)vecU/2)g (w )dw
2

where

I - f(2w) -mT/2w -mT/2|n -l|mT/2
0

x exp(-ivecU'(n - 1 0 I)vecU/w)g(w)dw. 
2



The solution to the score is clearly of the form 

n = cT tut u£, where c Is a constant depending on the ratio 

of the Integrals and so the likelihood can be concentrated 

as before. The p.d.f. of vecU can be factorised, putting 

vec* U' =* (u£..u'_1 ,u' + 1 ..u^.), as

pdf(vecU) * 7(2ir) -m(T-1) /2 . w -m(T-l)/2|*-l|m(T-l)/2 
0

exp ( -¿vec* U'JL2---®__LlVec*U)
2 w

x ( 2x) 2w “m̂ 2 | n - 1 1 2exp( -¿urn"1u 1./w)g(w)dw,
2 z z

= p(vec*U)p(ut ).

To obtain the marginal distribution for ut we Integrate out 

vec*U, and as p(vec*U) 1s a normal distribution as a 

function of vec*U, the marginal for ut Is

f( 2w) V ' 2 | n“11 2exp( -¿urn-1ut/w)g(w)dw .
0 2 t t

The conditional distribution for vec*U given ut 1s the ratio 

of two Integrals over w, and so 1n general does not equal 

the marginal distribution for vec*U.

All the distributions mentioned above are members of 

the class of elUp t l c a l l y  symmetric distributions

f(v) - o"r | n r 1/24(v'n_ 1 v/o2 ),

2
where v Is a (rxl) vector and a n  1 s a positive definite 

matrix and ♦ (*) 1s a function on CO,»). If vecU has a



distribution from this class then the log likelihood of the 

sample 1 s
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LLF = 1n | |J | | + — ln|n-1| + 1n$[vecU'(n"1 ®  I)vec U/2],

where cov(vecU) = (I ®  n). The ML estimator for n Is the 

solution to

for c). The concentrated log likelihood 1s therefore

which when optimised with respect to a will give Identical 

solutions to when the quasi normal likelihood 1 s used. 

Kelker (1970) has considered the distribution theory of the 

elllptlcally symmetric family In detail. He shows that the 

marginal distribution of each ut 1 s the same but whilst the 

first moment of the conditional distribution 1 s zero, for 

all t, the conditional covariance depends on the history of 

the series. Again ut forms a weakly stationary series, as 

Its unconditional moments are constant over time. At 

present we are only concerned with conditions for the 

consistency of NLFIML. In chapter 6 we consider the

2

*[vecU'(n_1 ® I)vecU/2]
1

where v = vec U'(n_1 ®  I)vecU. It will again be of the form

♦ (v)

1 3»( V )
3 V v*v *»

where v* = vecU'(n_1 ®  I)vecU = cmT (assuming we can solve

LLFC = 1n | | J | | + — ln|n- 1 | + const, 
2



distribution from this class then the log likelihood of the 

sample 1 s

81

LLF = 1 n | | J | | + — l n | n “1 1 + 1 n*[vec U'(n - 1 ®  I)vec U/2],

where cov(vecU) » (I ®  n). The ML estimator for a 1s the 

solution to

for c). The concentrated log likelihood is therefore 

LLFC = 1n | |J| | + — 1 n|n“1 1 + const,

which when optimised with respect to a will give Identical 

solutions to when the quasi normal likelihood 1 s used. 

Kelker (1970) has considered the distribution theory of the 

elllptlcally symmetric family 1n detail. He shows that the 

marginal distribution of each u^ 1 s the same but whilst the 

first moment of the conditional distribution Is zero, for 

all t, the conditional covariance depends on the history of 

the series. Again ut forms a weakly stationary series, as 

Its unconditional moments are constant over time. At 

present we are only concerned with conditions for the 

consistency of NLFIML. In chapter 6 we consider the

2

3 0 2 ♦CvecU'(n“ ® I)vecU/2]
1

where v = vec U'(n - 1 ®  I)vecU. It will again be of the form

♦ (v) 3v v»v
1 3 ♦ (v )

^ A 1

where v = vecU'(n ®  I)vecU = cmT (assuming we can solve

2
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arguments for the asymptotic normality of the estimator in 

the static model with the i.i.d. specification. We do not 

at present explore the conditions for the vecll framework. 

Essentially we need to find the appropriate assumptions for 

applying a central limit theorem to the quasi score, when 

the model 1s dynamic. This 1s examined in chapter 7.

We have explored possible ways of establishing classes 

of true distribution for which NLFIML under normality is 

consistent. Although we have not been explicit about the 

nonl1 nearlties present, both methods are implicitly 

dependent on the functional form f(*)» Within the 1.1.d. 

specification Phillips (1982) showed that there is always a 

family of distributions for which NLFIML under normality is 

consistent, but the form of this distribution depends on the 

weights in the mixture and so therefore on f(*). 

Alternatively we can consider the elUp t l c a l l y  symmetric 

family of distributions and show that the marginal 

distribution of ut 1 s constant over time and Independent of 

f(*)> but that the dependence structure between the ut must 

take a particular form which depends on the nonl1 near1 11 e s . 
Therefore the only general result for the static nonlinear 

model 1s that there are true distributions for which NLFIML 

under normality 1s consistent. The nature of these 

distributions, however, depends on the nonl1 nearlties 1n the 

model. In the next section we examine this relationship for 

specific examples.

5.4 Examples of models for which NLFIML 1s consistent

To derive more substantial results 1t Is necessary to 

specify the problem in greater detail. In this section we
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consider a series of examples containing non 11nearities 

common In econometric models. These Illustrate the type of 

restrictions placed on the true distribution to ensure that 

NLFIML under normality 1s consistent.

5.4.1 Expenditure and cost share models

Mellander (1983) provides an algorithm for NLFIML in 

the following class of models:

Byt * l ( zt p * + Czt*2(zt q ) = ut* * = 1 ***»T*

where yt and zt are vectors of endogenous and predetermined 

variables respectively and denotes either the 

multiplication or division operator. The unknown parameters 

are contained 1n B, C, p, q. One restriction on the 

applicability of the algorithm 1s that the 

scalars (z£p), (z£q) must appear 1n every equation. The 

model 1s of some Interest as it contains such forms as

(1) the system of expenditure shares corresponding to 

the Indirect translog utility function 

(Christensen, Jorgenson and Lau (1975):

n
t /mt>
-----------  + u1t

- 1 + ^  j i ly1j 1°9(pj t /mt>

(11) the system of cost shares corresponding to the 

generalised Leontlef cost function: Dlewert 

(1971).

'1t
»1 * j ;iy1J log(PJ

To Incorporate possible cross equation restrictions
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Mellander (1983) considers the case where B, C, p, q are 

functions of unknown parameters e.

Within such systems of equations the error covariance 

matrix is singular due to the adding up constraint on the 

budget shares (see Barten, 1971). The solution to this is 

to omit an equation. Berndt and Savin (1975) have shown 

that 2 step "Zellner type" estimators depend on which 

equation is omitted, whereas Barten (1971) has shown FI ML to 

be Invariant to this choice. Against this has to be set the 

robustness of the known minimum distance estimators for a 

wide class of distributions compared to the unknown 

properties of NLFIML. Below we consider the properties of 

NLFIML in this model and show it to be consistent provided 

the first two moments are correctly specified, whenever it 

is consistent under normality. Our analysis is concerned 

with the case where *.j represents division, but the same 

conclusion would be derived for the case where it represents 

multiplication. Consider the model

Byt (z'p)_1 + Czt (z'q)_1 = ut , t = 1....T,

where in Mellander (1983)‘s treatment y^ and z^ are m and n 

component vectors of observations at time t on the 

endogenous and predetermined variables respectively. B, C, 

p, q contain the unknown parameters. For the present we 

restrict attention to exogenous zt and consider conditions 

under which the result can be generalised to dynamic models 

1n chapter 7. This model is a special case of a family of 

nonsingular transformations of the nonlinear regression

model of the form
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 ̂̂ (y ̂ *x t * ai) = M x t ,ai )yt + 9(x^»<*^) = u-j ̂ »

where h(x^.a^) is assumed invertible. In a similar fashion 

to the nonlinear regression model discussed in sections 5.1 

and 5.2, the consistency of NLFIML depends only on the first 

two moments of the model being correctly specified provided 

the regularity conditions, that ensure the problem 1s well 

defined, are satisfied. This result follows easily because 

we have maintained the linearity of y t .

5.4.2 Logs and Levels Models

In his paper Phillips (1982) states that maximum 

likelihood estimators derived under normality for two 

particular models are consistent when the true distribution 

is in fact a member of the mixtures of normals family. To 

establish exactly what is going on we examine his models A 

and B in detail, and discover that model B fails the second 

order conditions for consistency but is easily amended to 

ensure that these are satisfied. We start with Phillips' 

Model B:

The model 1s

lnylt + a 1lny3t + a2 = u lt

yit*2t + b l>lt + b 2xt = u2t

1ny 3t + cilnyit = u3t

>4t + d l*2t = u4t •

The Jacobian 1s Jt - (yj^(l-c1a 1 ). The concentrated log 

likelihood function is:

T - l  TLLF = const - — 1n|T E u+ u'| + Tln(l-a.c,).
2 t-1 1 1 1 1
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Let A t = | T Z u^u-Tl and m . . = T 
t = 1 1 1 1 Ji j

1 ,j = 1,..,4. Clearly the score vector depends on 

derivatives of Ay .  Before we calculate these it is 

necessary to briefly outline some results on permutations 

and determinants from Pollock (1979, p. 62-3).

A permutation a defined on the set of integers In = 

[l,..,n] is a one to one mapping of In onto itself. For 

every i e In there is a unique a(1) = j e In and for every 

1 e In there exists a unique 1 e In such that o(l) = i. The 

sign of a permutation is either negative or positive 

depending on the number of transpositions in every 

factorisation. This is determined as follows: for the 

permutation [u(l),a(2),..,a(n)], let p be the number of 

pairs of elements [ct(i),a(j)]; i < j such that a(i) > a(j). 

The sign of the permutation, denoted sgn(a), is (-l)P. We 

can use this notation to define the determinant of a matrix. 

Recall Ay denotes the determinant of T"*Eut u£, and so

The score of the concentrated log likelihood function is

where the summation is over 4! terms. This implies

---  = Esgn(a )E9m ,k k /3e)
36 a k a ( k '*k

4

j*k

3LLF
30

The first order conditions for consistency require
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pi imT - 1 3LLF

ae
= 0.

From the above

pi imT -1 3LLF
30

= pi1m(l-a1c1 )
’0

-1 3 ( i c i ) 1 „ , 4_ 3AT" ““P u  mAT pli m ■ «
30 2 3 0

Now pii mAZ1 
_ ! T 1

plimT Z u 4 u

n _ 1 | by the weak Law of Large numbers, and

t = l 'it jt ai j , we therefore need to turn our

attention to p l i m S m ^ ^ j   ̂/ 3 0.

i) Consider 3m^j/3a1. The coefficient aj only appears 

in the first equation and so the only nonzero 

derivatives are S m ^ / S a ^ ,  k = 1,2,..,4. So

3 m 11 _i T
------ 2T / / l t 1" ^3a, t=l

and

3mli -1 T -- = T Z u .t lny,t •
3a, t=l

To evaluate the plims of these terms we need the 

reduced form for y 3t» this gives

lny3t = (u3t-c1u lt-a2 )(l-a1c 1 )-1

We need only consider the stochastic part of the 

reduced form as by elementary arguments pl1mT” *Eu^t 

is zero. So consider

E (u1tlr,y3t) * E( Ui tCu3t-C!Ult]( 1-ajC! )_ 1 .



element of n, we haveAgain using for the i-jtfl

E(uit1ny3t) = (cri3~c i*Tii)( 1—a 1c 1)—1

It follows that

Esgn(a)(aa(1)>3-c1aa(1)>1)

x a 2
a(2),2aa(3),3aa(4),4 (1 - a ^ j )

The factor of 2 arising because 3mij/3a1 = S m ^ / s a ^

So, putting si.-j equal to cofactor associated with 

the 1-jth term of n,

The first term of (34) is an expansion of n along

its "wrong" cofactor and so is zero. Therefore as

A- * = | n | “ 1 we have pi  1mT“ * 3 L L F / 3 a , I . *  0 as1
requi red .

ii) It is easy to establish that piimT'*3LLF/3a,| = 0C

by similar arguments to those used to limit 

attention to the stochastic part of lny3t above.

111) The derivatives with respect to bj clearly Involve 

y lt, so we need to first calculate the reduced form 

expression for y lt. This follows from

pi 1 mT -1 3LLF
i =1

(34)

1 3n i l’c ldet I « H (  l- a ^ j )  _1

0

0

1nyit = u lt-a2-ai(u3t-c1lnylt)

to yield
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*lt = exPC(ult-a2-a1u 3 t )/(1-cja!)].

Again we need only consider the stochastic part, 

namely exp(u lt-a1u3 t ).

E ^u itexP(u lt”a lu 3t)) ( 3/3si )mgf((s )

Sl = n s 2 = 0
s3 = a l
S4 = 0

where mgf(s) is the moment generating function of 

ut . Following Phillips (1982) we consider the case 

in which the true distribution is a member of the 

mixture of normals. Therefore

2 m l  = {;wew *'3s'2dG(w)}8s.
3 s 0

where n{/wdG(w)> = n. 
0

ns = n rl ‘ s
all + 3 1 a l3

0 a 12 + 3 1 a 2 3

a i a 13 + a 1 a 33

O
______1 a 14 + a 1 a 43

which implies

gf (s )
3S . 5 1 = 152 = 0

s3“a l
S4 = 0

{/we2 s "”s/2dG(w)>
0

[glital°i3]
{/"wdG(w) } ’ 

0

So
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pl i m-
3 A .
i---
3b , 90 = r 9n(a)a“ (1)’lCaa(2 ).l+ala«(2),3:|aa(3),3aa(4),4k *

where k = 2 * we ws ' ^ s / 2 dG( w) / / wdG( w) .  Thi s  g i v e s

p 1 i m-
3 A,

3b .
- 1 H ^- A [ E a.  . n».  + a . E a , j  n„ .  ] = 0,

0O 1=1 11 21 1 1 = 1 J1 21

as  bot h s ummat i ons  a r e  e x p a n s i o n s  o f  n  a l o n g  the 

wrong c o f a c t o r .

1 v ) By s i m i l a r  a r gument s  t o t he  above we can e a s i l y

show pi i m T ' S L L F / S b g  = 0 , as  3mi 2 / 3 b 2 = T- 1 Euu xt .

, T
v)  Co n s i d e r  s L L F / a c j .  As S m ^ / S C j  = T e U‘j t 1 n^ i t ’ 

we need t h e  reduced form f o r  y l t , c a l c u l a t e d  

e a r l i e r .  Thi s g i v e s

1nyit - (u lt-a 2'a lu 3t)(i-aici)- 1 .

We need only consider the stochastic part of lnylt, 

namely (uit_aiU3t )(l-ajcj)- 1 . As

pl1m T‘1Eui t (ult-a1u3 t ) =

we have 

3 A i"
" “ 9n(a)ao(l).l0o(2),2Caa(3),l_alaa(3).3]aa(4),4dC j Cl

X ----------.
(1-a|C j )

That g1ves
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pi imT
3C .

-1 3LLF

9q (1

= 0,

- a l . 1 4
- a 1c 1) 1=1 11 J1 1 1 1

-1

as  a g a i n  t he  summat i on i s  an e x p a n s i o n  o f  n a l ong  

t he  wrong c o f a c t o r .

v i ) F i n a l l y  we need t o  c o n s i d e r  pl i rnT" 1 — L -
3d.

To e v a l u a t e  t h i s  we need t he  r e duc e d  form f o r  y 2£ :

* 2 t  - ( u2 t _b2 xt ) y i t " b l
and

*  i t  "  e x p [ - ( u l t - a 2 - a 1u 3 t ) ( l - a 1c 1 ) - 1] .

whi ch i m p l i e s

>2t ” ( u 2 f b 2xt)exPt-(u lt-a2-a lu 3 t H 1-aiC1 )"1 ]-b1 .

Thi s  g i v e s

3mi4 T-1 I
ITT = T t-Y“ y“

-1 -1 = T t i i ( u 1 t ( u 2 t - b 2x t ) e x p [ . ( u l t - a 2 - a l u 3 t ) ( l - a l c l ) ] - b l U u )

We need on l y  c o n s i d e r  t h e  s t o c h a s t i c  p a r t  of  t h i s
_! T

e x p r e s s i o n ,  and c l e a r l y  pl 1mT z b . u . . .  = 0 ,  s o we need on l y
t  = l 1

e v a l u a t e

ECui t ( u2 t " b 2 x t ) e x P C " ( u l t - a l u 3 t ) ( 1- a l c l ) ‘ 1] 

■  E [ u 1 t u 2 t e x p [ - ( u l t - a l u 3 t ) ( l - a l c l ) " 1 ]

- b 2 E ( x t u 1 t e x p C - ( u l t - a l u3 t ) ( l - a l c l ) ‘ l ]
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where s '  = [ - ( 1 - a j C j ) - 1 , 0 , a l ( 1 - a j C x ) ~ l , 0 ],  

From P h i l l i p s  ( 1982)  we know

-1

2_rc9.f-(.s,). _ {fwews ^ S^2dG(w)}n + {/w 2exp[ws'ns/ 2]d G( w ) }ns s 'n 
3 S 3 S '  0 0

and as  t he  i - j t h e l e me nt  o f  n s s ' n  _  = [ f l s s ' n l ] .  .
I s I s 1 J

where [ n s s ' n j . . ] ^  = ( -ff n +a i ° i  3 ) ( - ° i  j +a i 3 ) .  

we have ( o m i t t i n g  s c a l i n g  f a c t o r s ) ,

3 mg f (s ) 
3S.. 3s 2 *-a 1 2 " a l a 2 3 ^ a l i  - a l a i 3^ + ° i  2 *

and so

3 A T
p 1 i m----- = E s g n ( a ) a

3d 1
a ( l ) , l a a ( 2 ) , 2 a a ( 3 ) , 3

x i ( a 1 2 - a 1 a 2 3 ) ( o a ( 4 ) > 1 - a 1 oa ( 4 ) > 3 ) + a a ( 4 ) > 2

+ b ‘,<°«(4).l<1-a lcl)'1i-1 ) + al ( 1-a lc l)<,a(4).3>*

where u » p l i m T " * E x t . 

Thi s  g i v e s

pi 1mT 1 3LLF
3d,

- 1 H H 
= -A { ( ° i 2 - a i a 2 3 5( . E. a 11 n41 * a l . E. ° 31  n4 1 >

“ Q  1 = 1  1 = 1

4 4 4

+ 1 ^ a 1 2 n4 i " b 2)<Cal 1 ^ " 3 1  °41 " 1 * ^ 1 1  n41 ] }

0,

a s  E O i . n . ,  » 0 f o r  j  » 1 , 2 , 3 .  So t he  f i r s t  o r d e r  
1- 1



We now need to consider the second order conditions for 

consistency. To do this we shall make use of the 

identification criterion given in Brown (1983) and outlined 

in section 4.2 above.

Our model falls into the following class:

u = A 1q 1 ( y 1 ,x1) + A 2q 2 (y i.xj,y2 ,x2 ) + A 3q 3 (x3 ) + a0 ,

where the elements of q2 (yi, x^ ,y2 ,x2 ) are functionally 

independent when (yj.xj) are taken as constants. This means 

that any two elements of q2 (*) must not contain the same 

variable when the variables in q^ are held constant.

Recall the model 1s

c o n d i t i o n s  f o r  c o n s i s t e n c y  a r e  s a t i s f i e d .

i ° y i t  ♦ a i 1 n y 3 t  + a 2 = *u lt

y i t * 2 t  + b i y i t  + b 2 x t s
u 2t

1r,y 3 t  + c i 1r,y it * u 3t

> 4 t  + d i y 2 t s u4t

Put

q(y.x)

1n>lt « (uit-az-âiustjtl-âici)"1

1ny3t (u3t-c1(ult-a2-a1u 3t)(l-a1c 1 )"1

>ity2t u2 t -b2xt _blexP[(u lt"a2_alu 3t)(l"a lc l)-1-l

yit ex p [ ( u lt-a2-a1u 3t)(l-a1c 1)“ 1 ]

y4t U4 t -d lC(u2t-b 2xt )exp[-(ult-a2 -a1u 3 t )(l-a1c 1 )‘ 1]]+b1d 1

y2t (u2t-b2xt )expC-(uit-a 2-a iu3t)(l-a iCi)-1]-b i

xt xt

i _1 _
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Following Brown (1983) we have

q 1(y1*x l)' = Clnylt,ylty 2t,ylt,y2t]

q 2 (ylx ly 2*x 2 ) ' = C1ny 3 f y 4t]

q 3 (x3) = [xt ],

so :

■ 1 0 0 0 ‘ , a 2 = “a l 0 ■ • a 3 = ' 0 ■ • a0 “ ' a2
0 1 »1 0 0 0 b2 0

C 1 0 0 0 1 0 0 0

0 0 0
dI

0 1 0 0

The condition for there being no implied equations in the 

system 1s that rank(A2 :A3 ) = 4. Were this to be satisfied 

identification would be assessed using the familiar linear 

model criteria. However it is clearly not satisfied for the 

above model, so we have to consider the alternative criteria 

developed by Brown.

Brown shows that the 1th equation of the system is 

identifiable Iff rankp(q :9':*^) = n-1 where:

q = E[q(u,x)|x=0],

9' is a n row matrix given by Ü L üjJLL,
3x'

n is the dimension of q(*),

and A*^ » 0 are the parameter restrictions on the 1th

equati on



F o r  o u r mo d e l :

E[q(u,x ) |x=0]

“a 2(1-ajC! )"1

-c1a2 ( 1 - a ^ ) - 1

E[-b1exp[(ult-a2- a 1u 3 t )(l-a1c 1 )-1]] 

E[exp(ult-a2-a1u 3 t )(l-a1c 1 )-1 

E[-d1u2texp[-(ult- a2-a1u3 t )(l-a1c 1 )_1]+b1d 1 

E[u2texp[-(uit-a2-a iu3t)(l-a2C1 )"1]-b1 

0 

1

= a q ( u , x )
_  3 x '

= 0

0

-b2

0

d 1b 2exp[-(ult-a2-a1u 3 t )(l-a1c 1 )“ 1] 

-b2exp[-(ult-a2-a1u 3t)(l-a1c 1 )“ 1]

1

0

(i) Consider the first equation:

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0
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We assume the relevant expectations to exist and 

using for the more complicated nonzero elements

we can write:

( q : Cf : * x ) -a2 ( 1-axci )"1 

-c1a 2 ( 1 - a ^ !  )

r31 

r41 

r51 

r6 1 

0 

1

,0 ,0,0,0,0,0 

- 1 ,0 ,0,0,0,0,0 

, -b2 ,1,0,0,0,0 

,0 ,0,1,0,0,0 

•r52 ,0,0,1,0,0

» r62 »° *° »° »1 »° 

,1 ,0,0,0,0,1 

,0 ,0,0,0,0,0

p

For the first equation to be identified we need the 

rank of this matrix to be 7. Whilst the rows 

marked p form a linearly independent set the 

remaining three are multiples of each other and so 

the rank of is 6. The first equation is

not identified, and so the conditions for 

consistency are not satisfied, 

ii) For the second equation:

(q:C(: *2 ) -a2 (l-ajcj)-1 

”Ci32( 1-aiC! ) 

r31 

r4 1 

r51

r61

01

,0 ,1,0,0,0,0 

1 .0 ,0,1,0,0,0 

,-b2 ,0,0,0,0,0 

,0 ,0,0,0,0,0 

* r52 »^ .0,1,0,0 

*r62»°»0»0»l»0 

9 1 ,0,0,0,0,0 

,0 ,0,0,0,0,1
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We can construct a set of 7 linearly independent 

rows by excluding the third row, and using the 

remainder. The rank of the matrix is therefore 7. 

iii) For the third equation:

(q :0:*3 ) - a 2 (l-aic1 )-1 

-c ja2 (1-a ̂ c i) * 

r 31 

r 4 1 

r 51

r 61 

0

1

,0 ,0,0,0,0,0,0 

1 ,0 ,0,0,0,0,0,0 

, -b2 , 1,0,0,0,0,0 

,0 ,0,1,0,0,0,0 

,r^2 ,0,0,l,0,0,0

» r6 2 •0 »° *° »1 »0 *°

,1 ,0,0,0,0,1,0

,0 ,0,0,0,0,0,1

The bottom seven rows of this matrix form a 

linearly independent set and so the rank of the 

matrix is 7.

iv) For the fourth equation

(q:0= *4 ) -a 2 (1-aic i )-1 ,0 ,1,0,0,0,0,0

- c 2 (1-ajci)"1 ,0 ,0,1,0,0,0,0

T33 ,-b2 ,0,0,1,0,0,0

r 4 1  * 0 , 0 , 0 , 1 , 0 , 0

f5i ,r6 2 ,0,0,0,0,0,0

r 61 »r62 »0»0,0,0,0,0

0 ,1 ,0,0,0,0,1,0

1 ,0 ,0,0,0,0,0,1

which is of rank 7 and so the equation is 

identified. The lack of identification of the



We can construct a set of 7 linearly independent 

rows by excluding the third row, and using the 

remainder. The rank of the matrix is therefore 7. 

iii) For the third equation:

( q : Ef: *3 ) -a2( 1-aiC!)_1 ,0 ,0,0,0,0,0,0

-c1a2(l-a1c 1 )_1 ,0 ,0,0,0,0,0,0

r31

r41

r51

r6 1 

0

1

,-b2 ,1,0,0,0,0,0 

,0 ,0,1,0,0,0,0 

,r^2 ,0,0,1,0,0,0 

• r6 2 ,0,0,0,1,0,0 

,1 ,0,0,0,0,1,0 

,0 ,0,0,0,0,0,1

The bottom seven rows of this matrix form a 

linearly independent set and so the rank of the 

matrix is 7.

iv) For the fourth equation

(q:0:*4) -a2 (l-aici)  ̂ ,0 ,1,0,0,0,0,0

-c1a2 (1-aic1 )- 1 ,0 ,0,1,0,0,0,0

T3i ,-b2 ,0,0,1,0,0,0

r4 i ,0 ,0,0,0,1,0,0

T0i ,rg2 ,0,0,0,0,0,0

r6 1 »r62»0 »0 »0 »0 »0 »0

0 ,1 ,0,0,0,0,1,0

1 ,0 ,0,0,0,0,0,1

which 1s of rank 7 and so the equation is 

identified. The lack of identification of the



f i r s t  e q u a t i o n  f o l l o w s  i n t u i t i v e l y  b e c a u s e  t h i s  

e q u a t i o n  i s  i n d i s t i n g u i s h a b l e  f rom a l i n e a r  

c o mb i n a t i o n  o f  t he  f i r s t  and t h i r d  e q u a t i o n s .

To e n s u r e  c o n s i s t e n c y  we need t o  amend t he  mode l ,  and 

t h i s  c o u l d  be done by i n t r o d u c i n g  x t  i n t o  t he  t h i r d  e q u a t i o n  

to give,

1n* l t + a 1 1 ny 3t + a 2 = u l t

y i t * 2 t + b i y n + b 2 x t  = u2t

1 n* 3 t + c i l n y i t + c 2x t  = u 3t

* 4 t + d l * 2 t = u 4t

Thi s  a l t e r s  t h e  r e duc e d  f o r ms :

y I t  = e x p [ ( u l t - a 2 - a 1 u 3 t + c 2 x t ) ( 1 - a j C i ) - 1 ]

y 2 t  = ( u2 t - b 2 x t ) e x p [ - ( u l t - a 2 + c 2 x t - a 1 u 3 t ) ( l - a 1 c 1 ) " 1 ] - b 1

y 3t = e x PC(u 3t-c1(ult-a2-a1u 3t-c2xt )(l-a1c 1 )"1-c2xt )]

> 4 t  = u4 t _ d l C ( u 2 f b 2 x t ) e x p [ - ( u l t - a 2 - a 1 u 3 t + c 2 x t ) ( l - a 1 c 1 ) - 1 ] + b 1d 1 .

However  due t o  t he  i n d e p e n d e n c e  o f  e r r o r s  and r e g r e s s o r s  

t h i s  w i l l  not  e f f e c t  t he  a r g u me nt s  f o r  the f i r s t  o r d e r  

c o n d i t i o n s  but  I t  w i l l  have an i mpa c t  on t he  s ec ond or d e r  

condi  t  i ons  .

The v e c t o r  q i s  e v a l u a t e d  wi t h x = 0 ,  and so t h i s  

r e ma i n s  u n a l t e r e d  when t he  model  i s  amended.  However Cf wi l l  

now t a k e  t he  f or m:
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The e f f e c t  o f  t h i s  on t he  i d e n t i f i c a t i o n  a r g u me n t s  i s  t h a t  

f o r  t he  f i r s t  e q u a t i o n  ( ( i )  a b o v e ) ,  the 8 th and 2 nd rows 

combi ned wi t h p form an i nde p e nde nt  s e t  g i v i n g  ( q": Q: ) t he

r e q u i  red rank of  7.

The a r gume nt s  f o r  t he  r e ma i n i ng  e q u a t i o n s  a r e  s t i l l  t he  

same and so the whol e  s y s t e m i s  i d e n t i f i e d .  The s econd 

o r d e r  c o n d i t i o n s  f o r  c o n s i s t e n c y  a r e  t h e r e f o r e  s a t i s f i e d  in 

t he  amended model  .

P h i l l i p s  ( 1982)  model  A:

i ny i t  + a i + a 2 xt  = u i t

y 2 t  + b l y l t  + b 2 xt  = u2 t

i )  F i r s t  o r d e r  c o n d i t i o n s  f o r  c o n s i s t e n c y :

Us i ng s i m i l a r  a r gument s  to t h o s e  above  i t  i s

e a s i l y  s e e n  t h a t

pi  i mT_ 1 3 LLFc / 3a .  I nI 00
pi i mT_ 1 3LLFc / 3 a 2 0

0
pi  i m T ' 1 3LLFc / 3 b 2

0

0

f o r  the c l a s s  of  t r u e  d i s t r i b u t i o n s  c o n s i d e r e d  

a b o v e .  We need on l y  c o n s i d e r  3LLFc / 3 b j :

From t he  f i r s t  e q u a t i o n :

y l t  = e x p [ u l t - a 1 - a 2 xt ] ,
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whi ch combi ned wi t h

,T’ 1t ^ l Ut Ut l = m llm 2 2 - m 12m 21

i m p l i e s

3LLF
—  = - T A - ^ m u T “ 1 E u2 t e x p Cu l t - a i - a 2 x \ 

1 t_13b

m l 2 T_ t f 1 u l t e x p C u lt -a l-a 2 x t :l)*

T h e r e f o r e  a s s umi ng  t he  t r u e  d i s t r i b u t i o n  t o come 

f rom t he  c l a s s  of  c o n t i n u o u s  m i x t u r e s  o f  nor ma l s :

pi imT - 1 3 L L F 1
3b .

,-l
A (a l l 3m9 f / 3 s 2 S l=1 s2 = 0

- a 123mgf/3s1 r-ls = l ) p l 1 mT‘  ï  e x p ( - a 1 - a 2 x t ) 
1 _n t  = 1s2 = 0

-A ^ ° 1 1 a 1 2 _ a 1 2 ffl l ^

x p l i m T - 1  t e x p i - a , - a , x . . ) {  fwews p s / 2 dG( w) }  
t = l  1 c 1 Ô

0.

i i )  The s e c o nd  o r d e r  c o n d i t i o n s  a r e  e a s i l y  v e r i f i e d

q ' ( y . x )  -  [ l n y l t , y 2 t , y l t . x t , l ] ,

q Î<y l ,X1 > “ ^ 1 n y l t , y lt^* 9 2 (y i x iy 2 » x 2) = ^y 2t^* q 3 * C x t^
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and

[ A2 : A3 ]
c

whi ch i s  of  r ank 2

i mp l y i n g  t he  i d e n t i f i c a t i o n  c r i t e r i a  f rom t he  l i n e a r  model  

i s  a p p r o p r i a t e .  For  t he  f i r s t  e q u a t i o n

r ° 0  1 r  i

r—rH(0

II and [ A * „ ]  =
L i b i J

C

1— o

--
1

o

bo t h of  whi ch a r e  o f  rank m- 1  = 1 and so t he  s econd or d e r  

c o n d i t i o n s  f o r  c o n s i s t e n c y  a r e  s a t i s f i e d .

The c o n c l u s i o n s  f rom t h e s e  e x a mp l e s  a b ou t  the 

p r o p e r t i e s  o f  NLFIML in s t a t i c  l o g s  and l e v e l s  mod e l s  f o r  

t he  s i t u a t i o n  in which t he  t r u e  d i s t r i b u t i o n  i s  mi x t u r e  of  

nor ma l s  but  we have as sumed n o r m a l i t y ,  a p p e a r  t o b e :

1) The model  do e s  not  need t o  be r e c u r s i v e ,  f o r  c o n s i s t e n c y  

but  our  a r g u me n t s  have r e l i e d  on b e i ng  a b l e  t o w r i t e  

down t he  e x p l i c i t  r educed f or m.

2) NLFIML p r o v i d e s  c o n s i s t e n t  e s t i m a t o r s  f o r  r e c u r s i v e

model s  s a t i s f y i n g  t he  i d e n t i f i c a t i o n  c r i t e r i o n .  Thi s

can be e s t a b l i s h e d  by c o n s i d e r i n g  t he  a r gume nt s  in

P h i l l i p s  model  A. Note t h a t  f o r  a r e c u r s i v e  model  the

J a c o b i a n  i s  I nde pe nde nt  o f  the p a r a m e t e r s  and s o we need
, T

o n l y  c o n s i d e r  t he  d e r i v a t i v e s  o f  l n | T  e u , . u r | .
t  = l 1 1

For  t he  e x p a n s i o n  a l o ng  t he  wrong c o f a c t o r  

a r gume nt s  we r e q u i r e d  a m ^ / a e ^  t o  be a l i n e a r  

c o mb i n a t i o n  o f  t he  sampl e  c o v a r i a n c e s  o f  the r e s i d u a l s  

e x c l u d i n g  m^ j .  For  t h i s  we r e q u i r e  the endoge nous  

e x p l a n a t o r y  v a r i a b l e s  in t he  e q u a t i o n  not  t o  have a
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r e d u c e d  form t h a t  doe s  not  depend on Uj . Thi s  c o n d i t i o n  

w i l l  a l wa y s  be s a t i s f i e d  i n t he  r e c u r s i v e  mode l .

Note t h a t  f o r  l o g s  and l e v e l s  model s  we wi l l  on l y  

need t he  f i r s t  d e r i v a t i v e  o f  t he  mgf .

3)  We have r e q u i r e d  t he  mgf t o  e x i s t  and so l o g s  and l e v e l s  

mode l s  not  be c o n s i d e r e d  wi t h  a MV S t ude nt  t  a s  t he  t r u e  

d i s t r i b u t i o n .

5 . 4 . 3  F u r t h e r  e x a mp ' l e s :

1)  Brown ( 1 9 8 3 )  c o n s i d e r s  t he  i d e n t i f i c a t i o n  o f  t he  

f o l 1 owi ng s y s t e m

u it = y n  + al

u 2t = b ly lt + y 2t + b2 xt + b 3 ’

and shows t h a t  t he  s ec ond e q u a t i o n  i s  u n i d e n t i f i e d .  The 

s e c o nd  o r d e r  c o n d i t i o n s  f o r  c o n s i s t e n c y  a r e  t h e r e f o r e  

not  s a t i  s f i  ed .

One p o s s i b l e  m o d i f i c a t i o n  t o  overcome t h i s  i s  to 

i n t r o d u c e  an a d d i t i o n a l  e x o g e n o u s  v a r i a b l e  c o n s i d e r
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and so t he  l i n e a r  model  c r i t e r i o n  i s  a p p r o p r i a t e .

0
1

I which i s  o f  rank 1 ,
b2J

which i s  a l s o  o f  rank 1 , and so 

t he  s y s t e m i s  i d e n t i f i e d .

We can now c o n s i d e r  t he  f i r s t  o r d e r  c o n d i t i o n s :  t he  

r e duc e d  form of  the amended s y s t e m i s

*lt = "al "a2zt + u lt

>2t = u2t + b l(u lt_al_a2zt ) 2 + b2xt + b 3

t i TR e c a l l  t he  l og  l i k e l i h o o d  i s  LLFC = c o n s t  —-1n | T -A e ut ur |
2 t=l 1 z

and so by ar gument s  a l r e a d y  used t o  e s t a b l i s h  t he  r e s u l t s  

f o r  t he  P h i l l i p s '  model s  we have

p 11mT* 1 3LLFC/ 38^ = 0 ,  f o r  = a i * a 2 * b2 , b 3 ’

p r o v i d e d  t he  t r u e  d i s t r i b u t i o n  has mean z e r o .

We t h e r e f o r e  need o n l y  c o n s i d e r  pi 1mT" 1 3 LLFC/ 3 b . 
T 1 TLLFC = c o n s t - —1n| T  E ut u " | ,
2 t«l z z

3LLFC T»- 1 3m22 ,3m12------ = — A T {m ,.----- - i---
3b,  2 3b,  3b <n1 2 }
'i c °U 1

= -TAT1{mn T 1 I u2ty lt " m 12T \ E .u lty lt} * 
t * 1 t = 1

As b e f o r e ,
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p 1 i mA -1
T A = dets,

pi i m m-j j  = <j.j . ,

and so we need to calculate plimT”1 £ u. y 2
t=l U  U

plimT-1 t^1u 2ty It = p1imT"1t f 1u 2t(ult-a l-a 2zt )2

r-1plimT t^ iu 2t(u lt-2a 1u lt-2ultzt )

_ i T p _ I T
= plimT £ u 2tu It “ 2alCT12“2cr12p1 s zt'

and also

plimT”1 E u. y 2 
t=l LZ

plimT”1t EiU lt(ult-a1-a2zt )2

- 1 ^ 3  i TplimT e u 1 + - 2a, , (a.+plimT £ z* ) .
t=l 1 t = l z

If we assume the true distributions to be symmetric about
T

zero and so plimT e u1 t Uj t ukt = 0, then
t=l

plimT - 1 3LLF
3b .

= -A"l {-2(al+pl1mT” 1 E zt  ) ( « 12- ® n  «i2 )
0Q t«l

For this model NLFIML under the assumption of normality is 

consistent for the true parameters vector provided the first 

and third moments of the true error process are zero. Again 

we can see that the recursive nature of the model is 

crucial. If zt were replaced by ygt then we quickly run 

into problems in trying to calculate the reduced form, and 

the arguments used above would not go through. This 

situation is dealt with in chapter 6.



In t h i s  c h a p t e r  i t  has  been shown t h a t  f o r  any 

n o n l i n e a r  model  we can f i n d  c l a s s e s  o f  t r u e  d i s t r i b u t i o n s  

f o r  which NLFIML i s  c o n s i s t e n t  by c a r e f u l l y  s t r u c t u r i n g  t he  

c o r r e l a t i o n  p a t t e r n  o f  the r e s i d u a l s  or  the mi x i ng  

d i s t r i b u t i o n  o f  t he  t r u e  p . d . f .  ( a s  in P h i l l i p s ,  1 9 8 2 ) .

The e x a mp l e s  p r e s e n t e d  i l l u s t r a t e  the c o n n e c t i o n  

between t he  non 1 i n e a r 1 1 i e s  in t he  s y s t e m and t he  p r o p e r t i e s  

r e q u i r e d  o f  t he  t r u e  d i s t r i b u t i o n  f o r  NLFIML under  n o r m a l i t y  

t o  be c o n s i s t e n t .  Our a n a l y s i s  has  r e l i e d  on be i ng  a b l e  t o 

w r i t e  down an e x p l i c i t  r e duc e d  form f o r  the endogenous  

v a r i a b l e s .  In t h i s  c a s e  t h e r e  a r e  a l wa ys  a s e t  of  moment 

r e s t r i c t i o n s  on t h e  t r u e  d i s t r i b u t i o n  which g u a r a n t e e  NLFIML 

i s  c o n s i s t e n t .  However in t he  m a j o r i t y  o f  c a s e s  we a r e  not  

g o i ng  t o  be a b l e  t o  f i n d  an e x p l i c i t  r e duc e d  f or m.  Thi s  

r a i s e s  two q u e s t i o n s :  ( 1 ) under  what c o n d i t i o n s  i s  t h e r e  an 

i m p l i c i t  r e duc e d  form and ( i i )  can we s a y  a n y t h i n g  a bout  i t s  

f u n c t i o n a l  f orm?  In t he  next  c h a p t e r  we e x p l o r e  t he  ans we r s  

t o  t h e s e  pr ob l e ms  and t h e i r  i m p l i c a t i o n s  both f o r  our  model  

s p e c i f i c a t i o n  and t he  c o n s i s t e n c y  of  NLFIML.



6 . MODEL SPECIFICATION AND THE CONDITIONS FOR THE

CONSISTENCY AND ASYMPTOTIC NORMALITY OF NLFIML 

6 . 1 .  Model Coher ency

I t  i s  f r e q u e n t l y  a r gue d  t h a t  t he  s t r u c t u r a l  form o f  an 

e c o n o me t r i c  mode l ,

f 1 ( y t . xt . “ ) - un ; i = 1 , . .  , m,

s hou l d  be c o n s i d e r e d  wel l  s p e c i f i e d  i f  i t  i mp l i e s  a wel l  

d e f i n e d  r e duc e d  f orm f o r  y t . Thi s  i s  i n t e r p r e t e d  by 

G o u r i e r o u x ,  L a f f o n t  and Monfor t  ( 1 9 8 2 )  ( GLM) as  the 

r e q u i r e me n t  t h a t  t he  model  "mus t  a s s o c i a t e  a uni que  v a l u e  o f  

y t  wi t h any a d m i s s i b l e  v a l u e  o f  xt , ut  and a"  (GLM 

p.  6 7 5 ) .  They t er m t he  c o n d i t i o n s  on a under  which t h i s  i s  

t he  c a s e  as  " c o h e r e n c y  c o n d i t i o n s " .  T y p i c a l l y  i t  i s  a s s umed 

t h a t  t he  model  s a t i s f i e s  t h e s e  r e s t r i c t i o n s  pr ov i de d  the 

J a c o b i a n  o f  t he  t r a n s f o r m a t i o n  i s  n o n s i n g u l a r .  However t h i s  

i s  onl y  a n e c e s s a r y  c o n d i t i o n ,  as  not e d  by GLM, and so i t  i s  

i mp o r t a n t  t o  e x p l o r e  t he  n a t u r e  o f  t he  r e s t r i c t i o n s  p l a c e d  

on t he  model  by t h i s  r e q u i r e m e n t .

In g e n e r a l  a t t e n t i o n  i s  f o c u s e d  on t h r e e  t y p e s  of

ma p p i ng .  I f  we l e t  y m be t he  s a mp l e  s p a c e  o f  the e ndogenous

v a r i a b l e s  and Rm t he  m- d i me n s i o n a 1 E u c l i d e a n  s pa ce  then f^ 

can be r e g a r d e d  a s  a mappi ng f rom y t  t o u^ wi th domain Ym

and r ange  Rm. The mappi ng f ^ : y t  -*• u t  1s i n j e c t i v e  (or

" one  t o o n e " )  i f  f - j ( y)  *  f  -j ( y ' )  i m p l i e s  y » y ' .  The 

mappi ng i s  s u r j e c t i v e  ( or  " o n t o " )  i f  f o r  e v e r y  e l ement  u o f  

Rm t h e r e  i s  a t  l e a s t  one v a l u e  o f  y such t h a t  f ( y )  » u.  

F i n a l l y  f f : y t  + u t  I s  b i j e c t i v e  ( o r  " 1 - 1  c o r r e s p o n d e n c e " )  

i f  t he  mappi ng i s  bot h i n j e c t i v e  and s u r j e c t i v e .
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The i mp o r t a n c e  o f  b i j e c t i v e  ma ppi ngs  i s  t he y  p e r mi t  t he  

) d e f i n i t i o n  o f  an { i nver s e  mappi ng f rom u t'o y .  For  i n t h i s

c a s e  t h e r e  i s  a uni que  v a l u e  of  y t  such t h a t  f ( y t )  = ut , and 

so we can c o n s t r u c t  a mappi ng g:  ut  y t  such t h a t  g ( f ( y t ) )  

= y t . Our e a r l i e r  a n a l y s i s  of  t he  p r o p e r t i e s  o f  e s t i m a t o r s  

has  been r e s t r i c t e d  t o  t he  c o n s i d e r a t i o n  o f  b i s e c t i o n s .  

Amemiya ( 1 9 7 7 )  a s s u me s  t h a t  “ f j : y t  + u t  i s  a c o n t i n u o u s  

one t o  one mappi ng f rom a s u b s e t  o f  Rm o n t o  t he  whol e Rm and 

t he  i n v e r s e  f u n c t i o n  i s  a l s o  c o n t i n u o u s "  ( p .  9 5 6 ) .  Brown 

( 1 9 8 3 ) ' s  d e r i v a t i o n  o f  i d e n t i f i c a t i o n  c r i t e r i a  f o r  n o n l i n e a r  

in v a r i a b l e s  mode l s  a s s ume s  t h a t  t he  s t r u c t u r a l  e q u a t i o n s  

i m p l i c i t l y  d e f i n e  " a  s i n g l e  r e l e v a n t  i n v e r s e  r e l a t i o n s h i p  . .  

o f  c o n t i n u o u s  f u n c t i o n s "  ( p .  1 7 7 ) .  However n e i t h e r  o f  t h e s e  

a u t h o r s  e x p l o r e  any f u n c t i o n a l  r e s t r i c t i o n s  e n t a i l e d  in such 

an a s s u m p t i o n .

6 . 2 .  Cohe r e nc y  in P i e c e w i s e  L i n e a r  Mo d e l s .

GLM c o n s i d e r  t he  c a s e  where f-j c o m p r i s e s  a s e t  o f  

p i e c e w i s e  l i n e a r  ma p p i n g s .  To i l l u s t r a t e  t h a t  t he  

e x a m i n a t i o n  o f  c o h e r e n c y  c o n d i t i o n s  f o c u s e s  a t t e n t i o n  on a 

d i f f e r e n t  i s s u e  1 n t h i s  c a s e ,  we o u t l i n e  t he  s i m p l e s t  c a s e  

c o n s i d e r e d  in t h e i r  p a p e r .

Le t  a j , . . , a n be i n d e p e n d e n t  l i n e a r  f or ms  d e f i n e d  on 

Rm. For  e a c h  s u b s e t  I o f  t he  s e t  { 1 , 2 , . . , n } ,  l e t  Cj  be t he  

c a s e  d e f i n e d  by

Cj  = { x | x  e Rn , a 1 x > 0 i f  1 e I and a i x < 0 i f  1 t  I ) .

The I n v e r t i b l e  l i n e a r  mappi ng Aj 1s  a s s o c i a t e d  wi t h 

each c a s e ,  and our  f u n c t i o n  f  i s  s e t  e q ua l  t o
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f  = EAj J  j ,

where J j  i s  the i n d i c a t o r  v a r i a b l e ,  d e f i n e d  t o  be one i f  

x e Cj  and ze r o  o t h e r w i s e .

Gi ven t he  i n v e r t i b i l i t y  of  each mappi ng ,  t he  c o n d i t i o n  

f o r  t he  i n v e r t i b i l i t y  o f  t he  p i e c e w i s e  mappi ng i s  t h a t  t he  

c o n e s  Cj p a r t i t i o n  Rn . GLM show t h a t  a n e c e s s a r y  and 

s u f f i c i e n t  c o n d i t i o n  f o r  t h i s  t o be t he  c a s e  i s  t h a t  a l l  t he  

d e t e r m i n a n t s ,  de t Aj  , I { l , 2 , . . , n } ,  have the same s i g n .  Thi s  

i s  e q u i v a l e n t ,  in t h i s  c a s e , t o r e q u i r i n g  | 3 f t / a y £ | t o  be 

e v e r y whe r e  n o n z e r o .  The J a c o b i a n  i s  c o n t i n u o u s  and so i f  

t he  d e t  Aj a r e  not  o f  t he  same s i g n  then t h e r e  must  be a 

c r o s s o v e r  p o i n t  bet ween r e g i me s  f o r  which t he  J a c o b i a n  i s  

z e r o .  The as s umed I n v e r t i b i l i t y  wi t h i n  r egi me combi ned wi t h 

l i n e a r i t y  g u a r a n t e e s  t he  e x i s t e n c e  of  a uni que  I n v e r s e  

mappi ng g i v e n  t he  p a r t i t i o n .

GLM c o n c e n t r a t e  on e s t a b l i s h i n g  t he  c o n d i t i o n s  f o r  an 

I n j e c t i v e  p i e c e w i s e  l i n e a r  ma ppi ng .  Thi s  a p p r o a c h  doe s  not  

g e n e r a l i s e  t o  o t h e r  n o n l i n e a r  mo d e l s ,  a l t ho u g h  t he  q u e s t i o n  

o f  c o h e r e n c y  i s  s t i l l  i m p o r t a n t .  Below we c o n s i d e r  t he  t y p e  

o f  r e s t r i c t i o n  p l a c e d  on more g e ne r a l  n o n l i n e a r  model s  by 

c o h e r e n c y  c o n d i t i o n s .

6 . 3 .  The I m p l i c i t  F u n c t i o n  Theorem.

The n a t u r e  o f  t h e  mappi ng between y and u g u a r a n t e e d  by 

a n o n s i n g u l a r  J a c o b i a n  1s d e s c r i b e d  by the i m p l i c i t  f u n c t i o n  

t heor em ( s e e  G o u r s a t ,  1959 ,  p.  4 5 ) .  Thi s  s t a t e s  t h a t  i f  we 

have a s y s t e m o f  e q u a t i o n s

m,f 1 ( y t , x t , a )  *  “ i f 1 1 • 2 t • • t
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where f , ( * )  a r e  c o n t i n u o u s  and p o s s e s s  c o n t i n u o u s  f i r s t  

p a r t i a l  d e r i v a t i v e s  in t he  ne i ghbor hood  of  y t , u t  then i f  

t he  J a c o b i a n  o f  t he  t r a n s f o r m a t i o n  f rom y t o  u,  | a f t / 3 y ' | , 

i s  nonzer o  f o r  ŷ . and u^ t hen t h e r e  e x i s t s  one and onl y  

one s y s t e m o f  c o n t i n u o u s  f u n c t i o n s ,  y i t  = $ ( u t ) ,  which 

s a t i s f y  t he  o r i g i n a l  e q u a t i o n s  and which r e duc e  t o 

y t  - y t f o r  u t  = u t .

Thi s  t heor em e s t a b l i s h e s  c o n d i t i o n s  f o r  a l o c a l  

b i j e c t i o n .  Pr ov i de d  t he  J a c o b i a n  i s  n o n s i n g u l a r ,  t h e r e  i s  a 

uni que  l o c a l  i n v e r s e .  The a n a l y s i s  i s  onl y  l o c a l  and t he  

f u n c t i o n a l  form o f  $ ( ’ ) need not  remai n c o n s t a n t  as  we move 

t hr ou g h  t he  s a mpl e  s p a c e .  I f  t he  J a c o b i a n  c o n d i t i o n  hol ds  

e ve r ywhe r e  in t he  s ampl e  s p a c e  then t h i s  i m p l i e s  t h a t  f o r  

a l l  y t  t h e r e  i s  a v a l u e  o f  ut  t h a t  maps ont o i t .  S i m i l a r l y  

a s  t he  mappi ng f rom ut  t o  y t  has  a J a c o b i a n  t h a t  i s  t he  

i n v e r s e  o f  t h a t  f o r  t he  mappi ng o f  y^ t o  ut , t h i s  i m p l i e s  

t h a t  f o r  e v e r y  v a l u e  o f  ut  t h e r e  i s  a v a l ue  o f  y t  mappi ng 

ont o  i t .  In g l o b a l  t e r m s ,  t h e r e f o r e  bot h of  t h e s e  mappi ngs  

a r e  s u r j e c t i o n s  i f  t he  J a c o b i a n  i s  n o n s i n g u l a r  ( a l m o s t )  

e ve r ywhe r e  in t he  s ampl e  s p a c e .

The t y p e  o f  r e s t r i c t i o n s  on t he  model  i mp l i e d  by the 

J a c o b i a n  c o n d i t i o n  can be s ee n by c o n s i d e r i n g  the f o l l o w i n g  

two e x a m p l e s .

a )  t he  l o g s  and l e v e l s  mode l ,

1nyit + a l*2t + a 2xt = u lt 

l n y 2t  + b i y u  + b 2 x t  - u2 1 ,
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d o e s  not  p o s s e s s  an e x p l i c i t  r e duc e d  f o r m.  The 

J a c o b i a n  i s  l ( y i t y 2 t ) _ 1  "  a i*>i I . and s o f o r  y i t  t o  

have a l o c a l l y  d e f i n e d  i n v e r s e  mappi ng we must  

r e s t r i c t  y ^  to be g r e a t e r  t han ze r o  and

yIt 56 albi y 2 f

b)  In t h e  c a s e  where t h e r e  a r e  r a t i o s  in t he  mode l ,

yit/y2t + a2xt/>,2t ’ ult

*2t + b iyit + b2zt = u2 t »

t hen we must  r e s t r i c t  a t t e n t i o n  t o  nonze r o  y ^ t  t h a t  

s a t i s f y  | J  | = | y ^ ( 1 + b 1 ( y l t + a 2 xt ) ) |  * 0 .

Thi s  t y p e  o f  r e s t r i c t i o n  i s  u s u a l l y  handl ed by a s s umi ng  

t he  i n v e r s e  i s  l o c a l l y  d e f i n e d  “ a l mo s t  e v e r y wh e r e “ meani ng 

t h a t  t he  v a l u e s  o f  y ^  t h a t  do not  s a t i s f y  t he  J a c o b i a n  

c o n d i t i o n  have been a t t a c h e d  a ze r o  p r o b a b i l i t y  o f  

o c c u r e n c e  .

That  t h i s  c o n d i t i o n  does  not  g u a r a n t e e  t h a t  t he  mappi ng 

i s  a g l o b a l  b i j e c t i o n  can be seen f rom t he  f o l l o w i n g  exa mpl e  

g i v e n  by Gal e  and Ni ka i do  ( 1 9 6 8 ) .

C o n s i d e r  t he  mappi ng

2y i 2
fi(yi .y2 ) = e - y2 + 3

2y i 3
f2(yi,y2) = 4e y 2 - y 2.

2 y |  2 yi  o p
| 3 f / 3 y '  | = 2e A(4e + 5 y 2 ) > 0 in R4 .
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The two p o i n t s  ( 0 , 2 )  and ( 0 , - 2 )  a r e  bot h mapped ont o  t he  

o r i g i n ,  and so a l t h o u g h  t he  J a c o b i a n  i s  e ve r ywhe r e  

n o n s i n g u l a r  t he  mappi ng i s  not  a b i j e c t i o n .

6 . 4 .  Gale and Ni k a i d o  Uni va l e nc e  The o r e ms .

Gale and Ni k a i d o  ( 1968)  exami ne t he  c o n d i t i o n s  on the 

J a c o b i a n  t h a t  e n s u r e  t he  mappi ng i s  an i n j e c t i o n .  The b a s i s  

f o r  t h e i r  r e s u l t s  i s  a t heorem s p e c i f y i n g  s u f f i c i e n t  

c o n d i t i o n s  on a m a t r i x  A f o r  t he  e q u a t i o n s  Ax < 0 and x > 0 

t o  have on l y  the t r i v i a l  s o l u t i o n .  To u n d e r s t a n d  t he  

s t r i n g e n c y  o f  t h e s e  c o n d i t i o n s  and t o a p p r e c i a t e  t he  

c o m p l e x i t y  o f  t he  pr obl em we o u t l i n e  t he  most  r e l e v a n t  Gale 

and N i k a i d o ' s  r e s u l t s  be l ow,  but  b e f o r e  we can do t h i s  the 

f o l l o w i n g  d e f i n i t i o n s  ar e  r e q u i r e d .

1) The p r i n c i p a l  s u b m a t r i c e s  o f  an (nxn)  ma t r i x  

A = a r e  m a t r i c e s  of  t he  form:

a i i a i j • • a i m

a j i a J j
•

•

•

a jm a mm

where ( 1 , j , . . , m )  i s  any p e r mu t a t i o n  o f  m i n t e g e r s  

f rom the s e t  of  i n t e g e r s  { l , 2 , . . , n } .

2)  The p r i n c i p a l  mi nor s  of  A a r e  t he  d e t e r m i n a n t s  of  

t he  p r i n c i p a l  s u b m a t r i c e s ,  and t he  d e t e r m i n a n t s  of  

m a t r i c e s  f ormed by e x c l u d i n g  any number o f  p a i r s  of



rows and col umns  t h a t  bot h c o n t a i n  t he  same 

di  agonal  e l e m e n t .

3) A P- ma t r i x  i s  a m a t r i x  wi th a l l  i t s  p r i n c i p a l  

mi nor s  pos i  t i  ve .

A) Vec t or  i n e q u a l i t i e s  in t he  p r o o f  s h o u l d  be 

i n t e r p r e t e d  as  f o l l o w s :

x > y i f  x i > y i , i = 1 , . .  ,n ,

x > y i f  x i > y i but  x * y ,

x > y i f x i > y i , i = l , . . , n .

The r e s u l t s  in Gale and Ni ka i do  ( 1 9 6 8 )  s t em f rom t he  

f o l l o w i n g  t heorem ( Ga l e  and N i k a i d o ,  1968 ,  Theorem 1,

p .  8 2 ) :

I f  A i s  a P - m a t r i x ,  t h e n  t he  i n e q u a l i t i e s  

Ax > 0,  x < 0 have onl y  t he  t r i v i a l  s o l u t i o n  x = 0 .

Thi s  r e s u l t  i s  t r i v i a l  i f  A and x a r e  s c a l a r s ,  and t he  

p r o o f  f o r  h i g he r  d i me ns i o n s  i s  by i n d u c t i o n .  The c r u c i a l  

p r o p e r t y  o f  a P- ma t r i x  t h a t  d e l i v e r s  t he  c o n c l u s i o n  i s  t h a t  

i f  we d e l e t e  one of  i t s  rows and col umns  t hen t he  r e s u l t i n g  

m a t r i x  i s  i t s e l f  a P - m a t r i x .

The f o l l o w i n g  two r e s u l t s  can be d e r i v e d  f a i r l y  s i mp l y  

f r om t h i s  t he or e m.

C o r o l l a r y  1:  I f  A i s  a P - m a t r i x ,  t h e r e  i s  a number 

X > 0  such t h a t  f o r  a l l  n o n n e g a t i v e  v e c t o r s  x > 0  of  norm 1 

( | | x | |  = 1) some component  o f  Ax i s  as  g r e a t  as  X.

112



113

C o r o l l a r y  2:  I f  A i s  a P - m a t r i x ,  t he  i n e q u a l i t i e s  

A'x > 0 , x > 0  have a s o l u t i o n .  J

Non 1 i n e a r  Model s

The b a s i s  f o r  t he  s u f f i c i e n t  c o n d i t i o n s  f o r  an 

i n j e c t i v e  mappi ng i s  a n o n l i n e a r  a n a l o g u e  o f  t heor em 1 .  For 

t h i s  we need t o  show not  onl y  t h a t  t he  i n e q u a l i t i e s  l o c a l l y  

i mp l y  on l y  one s o l u t i o n  but  t h a t  t h e r e  a r e  no o t h e r  

s o l u t i o n s  o u t s i d e  t h i s  and so i t  would be e x p e c t e d  t h a t  the 

a p p r o p r i a t e  c o n d i t i o n s  would be more r e s t r i c t i v e  than t ho s e  

o f  t he  i m p l i c i t  f u n c t i o n  t h e o r e m.  Gal e  and N i k a i d o ' s  ( 1968)  

t he o r e m 3 e s t a b l i s h e s  t h a t  i f  t he  J a c o b i a n  o f  t he  mappi ng F 

i s  a P - m a t r i x ,  then f o r  any a ,  x i n n,  t he  i n e q u a l i t i e s

F ( x ) < F ( a ) ,  x > a ,

have on l y  t he  s o l u t i o n  x = a .  The p r o o f  i s  a s  f o l l o w s :

I f  we a s s ume t h a t  F i s  d i f f e r e n t i a b l e  and s e t  F ( a )  = 0 

( w i t h o u t  l o s s  of  g e n e r a l i t y )  t hen

1im{F(x) / | |x-a| |-J(a)(x-a )/||x-a | |} = 0, (35)
x+a

where f o r  any v e c t o r  v ,  | | v | |  = ( v ' v ) \  For  x > a ,  t hen i f  

j  ( a ) i s  a m a t r i x  such t h a t  J ( a ) ( x - a )  > 0 t hen a i s  t he  onl y 

p o i n t  in t he  ne i g hb or ho od  f o r  whi ch F ( x )  = 0 .  By c o r o l l a r y  

1 , i t  i s  s u f f i c i e n t  t h a t  J ( * )  be a P - m a t r i x .

Thi s  p a r t  o f  t he  a n a l y s i s  i s  s i m i l a r  t o  t he  i m p l i c i t  

f u n c t i o n  t h e o r e m.  For  t he  e x i s t e n c e  o f  a l o c a l l y  d e f i n e d  

u ni q u e  i n v e r s e ,  we r e q u i r e  J ( a ) ( x - a )  # 0 in e q u a t i o n  ( 3 5 )  so 

t h a t  F ( x ) * F ( a ) in a s u i t a b l y  d e f i n e d  n e i g h b o r ho o d  o f  a.



To e s t a b l i s h  t h i s  u n i q u e n e s s  in a r e c t a n g u l a r  r e g i o n  we 

need t o show t h a t  i f  x i s  the s e t  of  a l l  s o l u t i o n s  t o t he  

i n e q u a l i t i e s ,  t hen x = x - { a }  i s  t he  empty s e t .  The s e t  x 

i s  c ompa c t ,  and i f  i t  were not  empty i t  mus t  c o n t a i n  a 

mi ni mal  e l ement  x wi t h  the p r o p e r t y  t h a t  no o t h e r  e l ement  x 

o f  x s a t i  s f i e s  x < x .

Gale and Ni k a i d o  ( 1 9 6 8 ) ' s  a r gume nt s  f o r  t he  e mp t i n e s s  

o f  x ar e  bas ed on c o n s i d e r i n g  two c a s e s .

C a s e l :  x > a

Assume J ( x )  s a t i s f i e s  c o n d i t i o n  1.  By c o r o l l a r y  2 

t h e r e  i s  a v e c t o r  u < 0 such t h a t  J ( x ) u  < 0 .  Be c a us e  x > a 

we can choos e  X p o s i t i v e  s a t i s f y i n g

x ( x )  = x + xu > a .

The r e f or e  a < x ( x )  < x so x ( x )  l i e s  in n.  From t he  

d i f f e r e n t i a b i l i t y  o f  F we have

F ( x ( X ) ) = F ( 7 )  + X J (7 )u  + 0 ( x | | u |  | ) 

so t h a t ,

H * ( X ) )  - F ( x ) _ J ( - }___ u_ .  0>
x I | U I I M u l l

The l e f t  hand t erm can be made as  s ma l l  as  n e c e s s a r y  by 

s u i t a b l y  c ho o s i n g  X. However t h i s  i m p l i e s  F ( x ( x ) )  <

F ( x ) < F ( a )  and x ( x )  c d,  f o r  a s u f f i c i e n t l y  s ma l l  p o s i t i v e

As ( x - a )  > 0 ,  i t  i s  s u f f i c i e n t  t h a t  J ( a )  be n o n s i n g u l a r  f o r

i f  J ( a ) ( x - a )  = b t h e n  ( x - a )  = J ( a ) " ^ b  > 0 whi ch i m p l i e s

b *  0 .
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X, contradicting the minimality of x.

Ca s e  2:  Some component  of  x = { x ^ } i s  equal  t o the 

c o r r e s p o n d i n g  component  of  a = { a ^ .  Let  t h i s  be t he  f i r s t  

e l e me n t  o f  x and a .

Ga l e  and Ni ka i do  ( 1 968)  e s t a b l i s h  t h a t  i f  x  ̂ = a ^ , f o r  

any i ,  then x = a i f  t he  J a c o b i a n  i s  a P - ma t r i x .  They 

d e f i n e  a new mappi ng F:  n -*• Rn _  ̂ by

f i <x ; ) = f i (a ] 1 xn ) * (i 2 , . . ,  n ) ,

where

«  = { ( x 2 , . . , x n ) | p i < q i , ( i  = 2 , .  . , n ) } .

The J a c o b i a n  ma t r i x  of  t he  new mappi ng i s  n e c e s s a r i l y  a P- 

m a t r i x ,  and f 1 ( a 2 , . . , a n ) = 0 > f i ( x ? , . . , ) ,  ( i  = 2 , . . , n ) .  

Then by c a s e  1 we have x = a .  Note t h a t  i f  x and a ar e  

a s s umed t o  have more t han one e l e me n t  in common,  the 

s t r u c t u r e  of  t he  P- ma t r i x  e n s u r e s  a s i m i l a r  p r oo f  goes  

t h r o u g h .

Thi s  t heorem i s  t he  b a s i s  f o r  t he  f o l l o w i n g  u n i v a l e n c e  

t heor em ( Ga l e  and N i k a i d o ,  t heor em 4,  p.  8 6 ) .  (The pr oo f  i s  

r e p r o d u c e d  in a p p e nd i x  1 ) .

I f  F:  n -*• Rn , where n i s  a c l o s e d  r e c t a n g u l a r  r e g i on  

of  Rn , i s  a d i f f e r e n t i a b l e  mappi ng s uch t h a t  the J a c o b i a n  

ma t r i x  J ( x )  i s  a P- ma t r i x  f o r  a l l  x in n,  then F i s  

uni  v a l e n t  in n.

Thi s  c o n d i t i o n  on t he  J a c o b i a n ,  wh i l s t  very s t r i n g e n t ,  

i s  on l y  s u f f i c i e n t  f o r  an i n j e c t i v e  ma ppi ng .  However from



t h e  s t r u c t u r e  o f  t he  a r g u m e n t s  i t  c an be s e e n  t h a t  i f  we

wi s h  t o  work a t  t h i s  l e v e l  o f  g e n e r a l i t y ,  t he n t h e  r e q u i s i t e

c o n d i t i o n  on t h e  J a c o b i a n  mus t  be o f  t h i s  t y p e .

I t  i s  n o t  n e c e s s a r y  f o r  A to be a P- ma t r i x  f o r  

Ax < 0,  x > 0 t o  i mpl y onl y  x = 0 .  Anot her  s u f f i c i e n t  

c o n d i t i o n  can be d e r i v e d  from C r a me r ' s  t he o r e m.  Let  Ax = b,

s i g n  as  t he  d e t e r m i n a n t ,  which i s  c l e a r l y  not  e q u i v a l e n t  t o 

A b e i n g  a P - m a t r i x .  We c ou l d  t h e r e f o r e  r e p l a c e  t he  

c o n d i t i o n  in t heor em 1,  c o r o l l a r i e s  1 and 2 by t h i s  

r e q u i r e m e n t .  Case  1 o f  t heorem 3 would f o l l o w  t h r o u g h ,  but  

f o r  c a s e  2 we r e q u i r e  t he  a d j o i n t s  o f  a l l  t he  p r i n c i p a l  

s u b m a t r i c e s  t o  have a l l  e l e me n t s  of  the same s i g n  as  t h e i r  

d e t e r m i n a n t s .  In p a r t i c u l a r  a l l  t he  l e a d i n g  d i a g o n a l  

e l e me n t s  o f  J  must  be p o s i t i v e ,  and so i m p l i c i t  in t h i s  

r e s t r i c t i o n  i s  t h a t  t he  d e t e r m i n a n t s  of  a l l  t he  p r i n c i p a l  

s u b m a t r i c e s  mus t  be p o s i t i v e .  The J a c o b i a n  must  t h e r e f o r e  

be a P - m a t r i x ,  but  t he  a d j o i n t  c o n d i t i o n  a l s o  p l a c e s  

r e s t r i c t i o n s  on the o t h e r  mi nor s  o f  t he  p r i n c i p a l  

s u b m a t r i c e s  and so i s  more r e s t r i c t i v e .

Gal e  and Ni ka i do  ( 1 9 6 8 )  e s t a b l i s h  a u n i v a l e n c e  t heorem 

under  s l i g h t l y  weaker  c o n d i t i o n s .  I f  we d e f i n e  a weak P- 

mat r i  x as  one wi t h p o s i t i v e  d e t e r mi n a n t  and n o n n e g a t i v e  

p r i n c i p a l  m i n o r s ,  then i t  can be shown by t o p o l o g i c a l  

a r gume nt s  t h a t  :

I f  F:  n -*• Rn , where n i s  an open r e c t a n g u l a r  r e g i on  of

then 

A+ , t he

where a £ j  i s  t he  k - j t h e l ement  of  

A.  For  x = 0 t o  be t h e  onl yt he  a d j o i n t  ma t r i x  o f  A

s o l u t i o n  i t  i s  s u f f i c i e n t  t h a t  a l l  t he  a j V be o f  t he  same

Rn i s  a d i f f e r e n t i a b l e  mappi ng such t h a t  t he  J a c o b i a n  ma t r i x  

J ( x )  i s  a weak P- ma t r i x  f o r  a l l  x in n,  t hen F i s  u n i v a l e n t .
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Thi s  a r e a  i s  worthy o f  f u r t h e r  r e s e a r c h .  The p r o o f s  

o u t l i n e d  above  s u g g e s t  t h a t  worki ng t o t h i s  d e g r e e  o f  

g e n e r a l i t y  i s  l i k e l y  t o r e q u i r e  such a r e s t r i c t i v e  

c o n d i t i o n .  I t  s hou l d  be e x p l i c i t l y  c o n s i d e r e d  in t he  work 

o f  Amemiya ( 1977)  and Brown ( 1 9 8 3 ) .

R e c u r s i v e  s y s t e ms  s a t i s f y  t h i s  c ohe r e nc y  c o n d i t i o n  

p r o v i d e d  t he  l e a d i n g  d i a g o n a l  e l e me nt s  of  t he  J a c o b i a n  a r e  

p o s i t i v e .  E a r l i e r  we c o n s i d e r e d  t he  f o l l o w i n g  c a s e  in which 

no e x p l i c i t  r educed form c o u l d  be wr i t t e n  down,

1nyit + a l>2t + a 2xt = u lt

( 3 6 )

lny2t + tMylt + t>2x t = u 2 t .

For  t he  i m p l i c i t  f u n c t i o n  t heorem t o be v a l i d  we 

r e q u r i e d  | a f t / 3 y £ |  t o be n o n z e r o .  The G a l e - Ni k a i d o  

u n i v a l e n c e  c o n d i t i o n  r e q u i r e s  t h i s  d e t e r mi n a n t  to be 

p o s i t i v e .

An i n t e r e s t i n g  exa mpl e  o f  where the more r e s t r i c t i v e  

J a c o b i a n  c o n d i t i o n  s u p p o r t s  our  i n t u i t i o n  i s  an augment ed 

v e r s i o n  o f  t he  q u a d r a t i c  model  d i s c u s s e d  in s e c t i o n  5 . 4 . 3 .  

C o n s i d e r

y lt + a ly 2t = u lt ‘ a lxt = c lt 

y 2t + b ly lt = u2t ' a2xt = c2 t »

whi ch i mpl i  e s

a ly 2t " b 1ly 2t + b 11(" 2t ‘ c lt 0.
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and s o ,

y = (2a1b1 )‘1 ± (2ax )-1ybjZ-4aic ,

where

C l e a r l y  t h e r e  can be 0,  1 or  2 r e a l  s o l u t i o n s  f o r  y 2 t • The 

J a c o b i a n  of  t he  t r a n s f o r m a t i o n  i s

1 2a iy2t
J  =

bi 1

The r e q u i r e me n t  t h a t  J  be n o n s i n g u l a r  e n s u r e s  ( 2a ^b^)  * * ^ 2X ’ 

and so e l i m i n a t e s  t he  equa l  r oo t  c a s e .  Note t ha t  i f  the

s y s t e m has r e p e a t e d  r o o t s  t hen t he  l i n e  y l t  = b ^ C g j . - b  j 1y 2t 

i s  a t a n g e n t  t o  t he  cur ve  y l t  = A \ ^ \ x ~ c 2 X ’ ^  y l t ’ y 2 t ’

c l t ’ c 2t  a r e  Pa r t i c u l a r  p o i n t s  s a t i s f y i n g  t h o s e  e q u a t i o n s ,  

t hen t he  i n v e r s e  f u n c t i o n  y ^ t  = * ( c , c 2 t ) i s  not  l o c a l l y  

c o n t i n u o u s  about  c i t ’ c 2t  as  v a l ue i s  a boundary po i nt

o f  t he  s e t  of  f e a s i b l e  v a l u e s  o f  c l t , C2 t  t h a t  pe r mi t  the 

s y s t e m t o  have a s o l u t i o n .  Thi s  d e mo n s t r a t e d  by f i g u r e  1,
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F i g u r e  1

* l t

For  a g i ve n  v a l u e  of  c l t , i f  we reduce  c 2t  by any 

amount ,  no ma t t e r  how s m a l l ,  then t h e  e q u a t i o n s  become 

i n c o n s i s t e n t .

Thi s  c l e a r l y  does  not  r e s t r i c t  t he  mappi ng t o  be 

u n i v a l e n t  as  t he  s ys t e m may have two r o o t s .  However i f  the 

J a c o b i a n  i s  a P - ma t r i x  t hen y 2t  < ( 2 a 1b 1 ) “ 1 , and a t t e n t i o n  

i s  l i m i t e d  t o  one r oo t  o f  the q u a d r a t i c .

6 . 5 .  Model S p e c i f i c a t i o n  and E s t i m a t i o n

The n o n s i n g u l a r i t y  o f  t he  J a c o b i a n  i s  r e q u i r e d  f o r  the 

c o n s t r u c t i o n  of  t he  l i k e l i h o o d  f u n c t i o n .  Throughout  our  

a n a l y s i s  of  ML we as s umed the d e n s i t y  o f  ut was MV normal  

and so t he  p . d . f .  o f  y t i s  g i ven by

pdf(yt ) = ||aut /3y£||pdf(ut (yt )).

T y p i c a l l y  i t  i s  a s sumed t h a t  t h e r e  e x i s t s  a u n i q u e  

i n v e r s e  of  t he  mappi ng f rom û . t o y^ i . e .  t h a t  i t  i s  a 

b i j e c t i o n .  However ,  as  not ed by P o l l o c k  ( 1 9 7 9 ) ,  t h i s  

p r o c e d u r e  can s t i l l  be empl oyed i f  t h e  mappi ng from ut t o y t 

i s  a s u r j e c t i o n ,  e s s e n t i a l l y  due t o  t he  ar gument s  o f  the
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i m p l i c i t  f u n c t i o n  t he o r e m.  No such d i s t r i b u t i o n  a 1 1 y 

mo t i v a t e d  a s s ump t i o n  i s  r e q u i r e d  i f  we e s t i m a t e  the model  by 

l e a s t  s q u a r e s .  However i f  we r e q u i r e  our  model 

s p e c i f i c a t i o n  t o  c o n s i s t  of  a s u r j e c t i v e  or b i j e c t i v e  

mappi ng then c l e a r l y  t he  J a c o b i a n  c o n d i t i o n s  must  be 

s a t i  s f i e d  .

An exampl e  of  a s u r j e c t i v e  mappi ng f a m i l i a r  in the 

e c o n o me t r i c s  l i t e r a t u r e  i s  t he  l o g s  and l e v e l s  model wi t h 

l i n e a r  c o n s t r a i n t s .  C o n s i d e r

B iy t + ri1 ogyt + a iz t = " » •

where y t i s  o f  d i me ns i on m and u l t  i s  x 1 wi t h m̂  < m.

To be a b l e  t o t r a n s f o r m  from t he  p . d . f .  o f  ut  t o  t h a t  o f  y^ 

we need t o  c o n s t r u c t  an i n v e r t i b l e  mappi ng from ( u t , v t ) t o 

y t  where t he  vt  a r e  m-nij dummy v a r i a b l e s .  The a l t e r n a t i v e  

i s  t o  use  l i n e a r  c o n s t r a i n t s  on the v a r i a b l e s  t o i n t r o d u c e  

a d d i t i o n a l  i n f o r m a t i o n  i n t o  t he  p r ob l e m.  I f  t he  c o n s t r a i n t s  

t a k e  the form

B2y t + r 2 l o 9yt  + A2 z t  = ° *

a s y s t e m of  m-m^ e q u a t i o n s ,  t hen p r o v i d e d  the c o n d i t i o n s  of  

t h e  i m p l i c i t  f u n c t i o n  t heor em a r e  s a t i s f i e d  we now have a 

u n i q u e  l o c a l l y  i n v e r t i b l e  ma ppi ng .  Under n o r ma l i t y  t he  l og  

l i k e l i h o o d  f u n c t i o n  i s

T T i - lLLF = Z l o g | d e t J . |  - —l o g d e t n .  - —t r n .  A. X' XA,  + c o n s t ,  
t - 1  1 2 l 2 l l l

where



n o r m a l i t y  we need the r e du c e d  form of  t he  s y s t e m .  In 

g e n e r a l  t h i s  cannot  be w r i t t e n  down e x p l i c i t l y ,  the probl em



i s  i l l u s t r a t e d  by t he  s i mp l e  exampl e  used by Davi dson ( 1981)  

f o r  a s i m u l a t i o n  s t udy
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l o g y i t  = a + b l o g y 2t  + ut

y l t  = y 2t + z.

The l og  l i k e l i h o o d  f u n c t i o n  i s  then

LLF = Z l o g C b y ' ^ - y ' h  - —l o g o 2 , 
t = l  2

3LLF 2t

' n - y ' i l

.  t ; 2 ! - 1t f 1ul t 1° 9 y 2 t !

3LL F T" - 2 L ------  = - To Z u
t = l3a I t

t he  l a t t e r  ha v i ng  a z e r o  pl i m p r o v i d e d  t he  t r u e  d i s t r i b u t i o n  

has  mean z e r o .  To exami ne  the t r u e  d i s t r i b u t i o n s  f o r  which 

■ 13LLFpi i mT"
3b 0,

= 0 ,  we need t he  reduced form f o r  y-j^.  For

our  exampl e  s u b s t i t u t i n g  i n t o  t he  i d e n t i t y  g i v e s :

1 o g ( y l t / y 2t  * = a + ut

y l t / y 2t  = e
a+u.

and so

a + ut  b
y l t  = e y 2t  y 2t  + z f

Unl e s s  b - 1,  t he  s i t u a t i o n  c o n s i d e r e d  by Da v i d s on ,  the 

r educed form c a nnot  be w r i t t e n  down e x p l i c i t l y .  For  b = 1
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a + u t
y = zl___________ z

y l t  a + u t z t
1- e  1

y 2t  " a+u z t •
1-e z

but  t h i s  c a s e  i s  of  l i t t l e  i n t e r e s t  f o r  our p u r p o s e s .  The 

e x t e n t  t o  whi ch we can l e a r n  a bout  t he  r educed form,  and so 

t he  c o n s i s t e n c y  o f  NLFIML,  i f  b *  1 i s  e x p l o r e d  in t he  next  

s e c t  i on .

Hat anaka  ( 1 9 7 8 )  c o n s i d e r s  n o n l i n e a r  in v a r i a b l e s  model s  

o f  t he  f or m,

f(y.x)B1 + xcj = Uj

f ( y , x ) B 2 + x c 2 = 0 .

The endogenous  v a r i a b l e s  a r e  p a r t i t i o n e d  i n t o  ( y ^ , y 2 ) wi t h  

y j  o f  t he  same d i me ns i o n  as  u j .  The p a r t i t i o n  i s  a r b i t r a r y  

e x c e p t  t ha t  ( 3 f / 3 y 2 ) B2 must  be n o n s i n g u l a r .  Hat anaka a r g u e s  

t h a t  y 2 s hou l d  be e x p r e s s e d  as  a f u n c t i o n  of  y^ and x f rom 

t he  i d e n t i t y ,  and t h i s  s u b s t i t u t e d  i n t o  t he  s t o c h a s t i c  

e q u a t i o n s .  E s t i m a t i o n  i s  then c a r r i e d  out  on t h i s  pr obl em 

o f  r educed d i m e n s i o n .  Thi s  of  c o u r s e  r e q u i r e s  be i ng  a b l e  to 

s o l v e  f o r  y 2 , and from t he  i m p l i c i t  f u n c t i o n  t heorem we know 

t h a t  t he  J a c o b i a n  c o n d i t i o n  does  not  g u a r a n t e e  an e x p l i c i t  

s o l u t i o n .



6.6. The Implicit Function Theorem and Analytic Functions

The J a c o b i a n  c o n d i t i o n s  d e s c r i b e d  above pr ov i de  

i n f o r m a t i o n  on s i t u a t i o n s  in which an i m p l i c i t  reduced f orm 

e x i s t s  but  as  y e t  do not  g i ve  any i n d i c a t i o n  about  i t s  

f u n c t i o n a l  f o r m.  Gour s a t  ( 1 9 5 9 ,  p.  402)  shows t h a t  the 

i m p l i c t  f u n c t i o n  t heor em can be e x t e nde d  in the f o l l o w i n g  

way:

I f  e a c h  o f  t he  f u n c t i o n s  f ^ ( * )  ( i )  v a n i s h  when yj  = û

= 0 ( i i )  i s  d e v e l o p a b l e  in a power s e r i e s  near  t ha t  p o i n t  

and ( i i i )  the'  J a c o b i a n  i s  n o n s i n g u l a r ,  then t he r e  e x i s t s  one 

and onl y one s y s t e m of  s o l u t i o n s  t o t he  e q u a t i o n s  of  t he  

f orm y^ = <t>(u^) where 4>  ̂ ( * )  a r e  power s e r i e s  in u which 

va ni  sh when u = 0 .

Thi s  t heor em i s  not  d i r e c t l y  a p p l i c a b l e  t o the c a s e s  

c o n s i d e r e d  above  due t o the c o n c e n t r a t i o n  on y^ = u  ̂ = 0 .  

Go u r s a t  ( 1 9 5 9 )  c o n s i d e r s  power s e r i e s  o f  the form

= £a . 
i J

v ’u j u r
, r v l u 2 ’ * u p* ( 3 7 )

wi t h  a o o . . O  = However we can a da p t  hi s  r e s u l t s  so t h a t

t he  c o n d i t i o n s  a r e  t h a t  the <t> ̂  ( ") a r e  d e v e l o p a b l e  around 

y.j = y ? , Uj = u9 by c o n s i d e r i n g  power s e r i e s  of  the form 

( 3 7 )  wi th a 0 o . . o  * ° *  The c o nve r g e nc e  of  t he  power s e r i e s  

ne e ds  t o  be chec ked  in each c a s e .

The we i g h t s  in the power s e r i e s  e x p a n s i o n  can be 

c a l c u l a t e d  f rom r e p e a t e d  d i f f e r e n t i a t i o n  of  the o r i g i n a l  

e q u a t i o n s .  For  i n s t a n c e  c o n s i d e r  t he  model In 6 . 4  ( e q u a t i o n  

3 6 ) .  P u t t i n g  z 1t  = l n y i t  t o t r a n s f o r m  the e q u a t i o n s  i n t o  

f u n c t i o n s  d e v e l o p a b l e  in power s e r i e s  we have
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' 2t
z l t  + a l e = Uu  - a 2 xt  = v

I t
z 2t  + b i e = u2t - b2 xt = v

I t

2t

Thi s  g i v e s

z l t  + a i e x p [ v 2 t - b 1e x p z l t ] = v 2t

I f  t h e  s o l u t i o n  i s  of  the form

z l t  . E . c i j v l t v 2 t *
' * J

t hen Cg 0 = z 1 1 1 where v£ = ( v i t , v 2 t ^ *  We t t l e r e ^or e

d e v e l o p  t he  powef  s e r i e s  about  t he  po i nt  z l t  = c 0 o» v = 0 .  

The c o e f f i c i e n t s  c 10 and c 01 a r e  g i ve n by

9 z I t
10 9 v I t

= 1 + b 1a 1e x p [ v 2 t + z l t - b 1e x p z l t ].
9 Z I t
9 U I t

and s o  c 10 = - (  l " b i^ i e x p [ c 0 o - b e x Pc o o ^ " 1 * s i m i l a r l y ,

- a 1e x p C - b 1e x p c 0Q]9 Z I t
01

9 V 2t vt =°  1 - a j b j e x p Cc QQ- b j e x p c QQ]

Thi s  method can be c o n t i n u e d  t o  g i ve  a l l  t he  p a r a me t e r s  

o f  t h e  power s e r i e s .  The next  s t e p  would be to check t he  

c o n v e r g e n c e .  The above c a l c u l a t i o n s  g i ve  t he  f l a v o u r  of  

what  would be r e q u i r e d  to check t h i s .  Our s u b s e q u e n t  

a r g u me n t s  do not  need i t ,  and so we do not  exami ne i t  f o r  

t h i s  examp 1e .

Havi ng  d e r i v e d  our  power s e r i e s  s o l u t i o n  f o r
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Z lt " E c 1jv ltV 2t*

The same mus t  be done f o r  z 2£ .  We can then r e t u r n  t o our 

o r i g i n a l  s y s t e m t o d e r i v e

y lt = e x p U c 1 J (Uit-a 2Xt)i (u2t - b 2xt )j ,

and a similar expression for y 2t.

The crucial point about the implicit function analysis 

is that it is only locally valid. Even if the functions 

f(’) are analytic the weights of the resulting power series 

are state dependent, being evaluated at a particular 

point. Our analysis of the behavior of yit is considerably 

complicated by this fact. A similar observation was made by 

Bowden (1974) in the context of Taylor series expansions and 

locally linear models. If all the functions cannot be 

developed as power series and we cannot find a suitable 

transformation as in the example, then we can develop a 

power series approximation by omitting troublesome terms. 

This would amount to assuming their effect to be small and 

asymptotically negligible for consistency analysis. It is 

also worth noting that bilinear models have been suggested 

in the time series literature as a second order 

approximation to Volterra expansions. They could be 

justified in a static framework as a second order 

approximation to the power series for yt . However this 

would require time varying parameter bilinear models as the 

assumption of constant coefficients is not justified by the

theory.
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6.7. Implicit Function Theorem and Consistency of NLFIML

What are the implications of these results for the 

original problem? Both Amemiya (1977) and Phillips (1982) 

restrict attention to fi ( -) satisfying the implicit function 

theorem, and their results only require the reduced form to 

exist. Phillips' "Possibility Theorem" is valid for 

implicit reduced forms, but to calculate the appropriate 

mixing distribution in a particular case in general requires 

an explicit reduced form for the calculations to be 

feasi b l e .

If the reduced form cannot be written down explicitly, 

but only as a power series in the regressors and errors with 

time varying weights, then there is little that can be said 

about the consistency of NLFIML. For the case in which the 

reduced form was explicit then there were moment 

restrictions reflecting the nonlinearities in the system. 

When the reduced form is a power series, then it is not 

possible to identify these moment restrictions. In general 

they apply to all the moments of the distribution. We know 

that under normality NLFIML is consistent, but cannot 

specify any other classes of distribution explicitly for 

which consistency is guaranteed. The arguments for its 

asymptotic efficiency also require the distributions to be 

correctly specified. The above analysis does not rule out 

the possibility of other true distributions for which NLFIML 

under normality is consistent, but it does suggest that its 

robustness needs to be proved for particular cases rather 

than assumed. In the absence of an explicit reduced form 

this entails simulation studies, but the dependence of the 

estimators properties on the sequence of exogenous variables
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would render the results of little general interest.

This contrasts with the properties of NL3SLS 

established by Jorgenson & Laffont (1974). Given the 

conditions for an asymptotic theory for nonlinear models are 

satisfied then NL3LS is consistent provided the mean of the 

error process is zero. A comparison of the covariances of 

NL3SLS & NLFIML for particular cases may be interesting but 

the calculation of the variance of NLFIML is more

complicated in the misspecified case. Again results are

model specific and likely to be dependent on the sequence of

exogenous variables.

6.8. Asymptotic Normality of NLFIML

The foregoing analysis has concentrated on the point 

estimate properties of NLFIML. To complete our classical 

analysis of the estimator we must consider interval 

estimation using NLFIML, and so find appropriate conditions 

for it to have a well defined asymptotic distribution.

In a correctly specified model, the asymptotic 

normality of NLFIML is deduced from a mean value expansion 

of the score vector about the true parameter value,
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QMLE. The expansion then is about the KLIC minimising 

value a*, and expectations are taken with respect to the 

true distribution. This leads to the conclusion that,

/T(<i-a*) ~ N i O . A ^ B ^ A ; 1 ) ,

where

A*

B*

1 imT' • 1
3 2L ,

Z E-
t — 1 3 a 3 a *"

limT ' 1
t= 1 3 a

^ t -1 T 3 L t - 1 imT 1 T E__ - 3Lt E__ i
3a' »* t = 1 3 a a* 3a'

and L*. is the score associated with likelihood of the
T

observation in period t, L = z Lf .
t = l 1

The arguments for the asymptotic normality of NLFIML 

therefore rely on the validity of the Central Limit Theorem 

to the quasi score. Amemiya (1977) shows that

r l / 2 1 L_ . - J ]  -
3a, 3u .j

T-lEg 1u'.T*l/2[(rJÜLl)-l-a1]. 
1 T 1

When evaluated at a* the right hand side has zero 

expectation by definition. The function g can be considered 

as a function of u, x and a, and so the only stochastic 

elements are functions of u^. If a* = ag then the û. form 

an 1.1.d. sequence and we can apply the Central Limit 

Theorem provided we make the analogous regularity conditions 

to Amemiya (1977). Namely E|g i t | 3 and E | 3g n /3u it | 3 are 
uniformly bounded for all t where ut Is evaluated at aQ and 

expectations are taken with respect to the true distribution. 

For the arguments used in Amemiya (1977) to go through we
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require the QMLE to be consistent, and not ut to be normally 

distributed.

If a* * ag then we must consider the behavior

Therefore 3L/3a^ is a function of ut , xt , a* and aQ and as 

ut is the only stochastic part of these we can use the same 

arguments as before. This, again, gives

We can therefore establish the asymptotic normality of 

NLFIML even when it is not consistent using the conventional 

assumpti ons.

In moving from the i.i.d. to the i.n.i.d. case, we

encounter problems in consistently estimating the covariance

of / T(a-a*). In the i.i.d. case considered by White (1982),

E 3L./3 a I = 0 and so the covariance can be estimated
t 1 a*

consistently by Its sample analogue Ay ByAj where

_ i T 2 I
A- = T £ 9 . ,

of 3L/3a.j when u is evaluated at u* = f(yt ,x. ,a*). Now

Uy + h(yy,Xy,a*,aQ)

★

t = l a

B T
1 , (Lt .Lt

= T £ ---  ---
t = 1 3a 3a' a
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However for our model E3L./3a| * 0 in general , and
a •»• i i

t̂ 1b t a t 1 - i ; 1 * * * : 1so A t B-pA-,. - A* B^Aj.1 + A^ * D* A.̂  ~ , where

_1 T 3L 3 Lt I 
D* = lim T 1 £ E--lE— 1 f

T-*-«» , t = 1 in. 3 a | a*i J

The matrix A y ^ B ^ A^1 provides an estimator of the mean square 

error. White (1983) notes that this problem exists but 

incorrectly calculates the limit of A ^ B y A y 1 . The 

complications arise because By is not a consistent estimator 

of the covariance of the score in models of this 

generality. As White (1983) points out a consistent 

estimator of D is not available unless the true distribution 

is known. However as we have seen for regression models 

with errors assumed to be normal the QMLE is consistent 

provided the expected value of the true error process is 

zero. In this case we can consistently estimate the 

covariance matrix, as argued by GMT. Outside the regression 

framework, clearly consistent estimation of the first moment 

of the parameters is a precursor for consistent estimation 

of the second moments, and therefore for consistent 

inference using asymptotic tests. Although as argued by 

White (1983) one could undertake "conservative inference" 

using the sample moment matrices, as D is positive semi- 

definite. This underlines the importance of considering the 

conditions under which NLFIML is consistent. Further it 

provides another argument in favour of NL3SLS if we are to 

use the classical criterion to choose estimators. It was 

demonstrated earlier that NL3SLS 1s asymptotically normally 

distributed using the analogous assumptions to the linear 

model to construct an asymptotic theory.



We have considered the properties of the two most 

common estimators in the literature on systems of nonlinear
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static equations. The three stage least squares estimator 

only requires the assumption that the first moment of the 

error process be zero and its covariance be constant over 

time. Under these conditions it is consistent and 

asymptotically normally distributed, the desired properties 

for an estimator in classical statistics. The full 

information maximimum likelihood estimator shares these 

properties when the normality assumption is correct and is 

then asymptotically the most efficient estimator. The 

normality specification can be argued to be made as a way of 

capturing the symmetry of the errors in an analytically 

tractable fashion, and so to an extent should be considered 

arbitrary. Given this, it is desirable that the properties 

of our estimator should be robust when the distribution is 

misspecified. We have seen that in general it is not 

possible to explicitly write down the reduced form of the 

system, and so we cannot specify the class of true 

distributions for which NLFIML under normality is 

consistent. Although it is still asymptotically normally 

distributed, if NLFIML is not consistent then we cannot 

consistently estimate the covariance matrix of the QMLE. 

Therefore if we desire consistent estimators of the 

parameters and to be able to conduct inference about them 

using hypothesis tests, then our results suggest that least 

squares and not maximum likelihood should be used. This 

contrasts with the analogous result for linear models for 

which 3SLS and FI ML converge in distributions.
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7. CONDITIONS FOR GENERALISATION OF STATIC MODEL RESULTS TO 

DYNAMIC MODEL 

7.1. Int roduct i on

It might be anticipated that our conclusions about the 

properties of NLFIML in the static model can be extended to 

dynamic models for certain classes of stochastic processes. 

Our arguments required the convergence in probability of 

certain functions of random variables. Specifically we need

T"1 l  f(yt ) + 1imT_1lEf(y. ) . 
t = l z z

Finding the conditions on yt under which this holds is 

refered to by Loeve (1978, p. 37) as the "central asymptotic 

problem". If yt is i.i.d. then this result follows from the 

weak law of large numbers. For sequences of i.n.i.d. yt , 

the result can be justified from Kolmogorov's first theorem 

(see Rao, 1973, p. 114), which states that

"If {X^ } i = 1,2,.. is a sequence of independent random
p

variables such that E(X.j) = ĝ  and V (X ̂ ) = then
co «  •  3 • S «
I (o./i,) < » implies X + g_".

i = 1
Such regularity conditions are implicit in our earlier 

analysis. However when considering the properties of NLFIML 

in dynamic models, we have moved into the world of neither 

independently nor identically distributed yt , and so 

Kolmogorov's theorem is not applicable. The major problem 

is to find the conditions on yt that allow law of large 

number type arguments to be used in dynamic models. Once 

this is done our earlier analysis easily extends for such 

processes. In this section we are concerned with the 

assumptions that must lie behind the construction of an
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asymptotic theory of nonlinear dynamic models and so these 

results are relevant to both LS and ML estimators. The 

approach taken is quite rigorous as in the absence of such 

strong assumptions as independence, it is interesting to 

discover exactly what properties of the r.v's deliver the 

result. These conditions limit the processes that can be 

modelled using the theory and their identification is a 

necessary precursor to assessing whether economic time 

series satisfy these requirements.

An outline of the chapter is as follows. In section 

7.2 we consider an extension of the work of Heijmans and 

Magnus (1983a) to show the QMLE to the KLIC minimising value 

in dynamic models. In section 7.3 we examine possible sets 

of regularity conditions that allow the development of a 

strong law of large numbers and central limit theorem for 

dynamic processes. In section 7.4 we show that our analysis 

of the robustness of NLFIML can be extended to particular 

dynamic models. The asymptotic normality of NLFIML is 

examined in section 7.5 and in section 7.6 we consider the 

plausibility of the mixing process assumption.

7.2. Convergence of QMLE.

7.2,1 Discussion of problem

Heijmans and Magnus (1983a) prove the consistency of 

the MLE of the parameter vector that indexes the joint 

density of a sequence of neither independent nor identically 

distributed random variables. The interest 1n their proof 

is the nature of the assumptions made about yt which they 

"believe .. are weaker (and more readily applicable) than 

usual" (Heijmans A Magnus, 1983a, p. 1). Their conditions
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do not require the derivatives of the likelihood, uniform 

convergence or the parameter space to be compact. The 

situation considered is, therefore, more general than our 

framework in which the behavior of derivatives is 

restricted. However their work is of interest for two 

reasons: as a basis of a more general proof about MLE, and

as an example of the limitations of a particular form of 

analysis for our central question about the robustness of 

the MLE.

Heijmans and Magnus’ (1983a) proof requires the joint 

p.d.f. of y i ,.. ,yn to be correctly specified. The last 

paragraph of their paper states:

"Finally, there is the problem of misspecification . We 

have assumed that the true distribution underlying the 

observations belongs to the parametric family defining the 

ML estimator. If this is not the case, can our proofs be 

modified to show that the ML estimator is still consistent?" 

(P. 26).

The answer to this question is yes and no. It is shown 

below that their arguments establish the convergence of the 

MLE to a particular value - the true value when the model is 

correctly specified. The majority of their proof* 

concentrates on the convergence property, and only in parts 

is the correct specification required. From our earlier 

analysis we would intuitively expect the QMLE to converge to 

the KLIC minimising value when the model is misspecified . 

This we establish below by using HAM's convergence arguments

♦The original proof contains some errors, which I am 
Indebted to Jan Magnus for bringing to my attention. Below 
we present a generalisation to the misspecified case of an 
amended version of their proof.
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within the mi sspecified model, and the probability theory 

appropriate to this more general case.

As H&M note consistency proofs have taken two forms.

We can either seek to establish that the score vector is 

zero when evaluated at the true parameter value, and so the 

likelihood has a consistent root, although not necessarily 

its maximum. This is the approach taken by Amemiya (1977), 

Phillips (1982) and in our chapters on static models. 

Alternatively we can examine the ratio L (y q )/L (y), where 

Yg is the true value, and show that it is almost everywhere 

greater than one and that accordingly the MLE must converge 

to this value. The latter is the approach taken by H&M. In 

the following analysis we also use this line of argument to 

show that the QMLE converges to the KLIC minimising value 

under similar regularity conditions to H&M. However it is 

seen that this line of argument cannot be used easily to 

establish the consistency of the OMLE when the model is 

misspecified . This requires further information on the 

model, and appears to be more easily handled within the 

consistent root framework.

To develop this second approach we need the yt process 

to satisfy the mixing conditions outlined by White and 

Domowitz (1982) amongst others. These specify the rate at 

which the dependence between two observations in time decays 

as their distance in time increases. It can be shown that 

if the decay is fast enough we can establish a strong law of 

large numbers for such processes. In this chapter we 

outline the proof of this result and consider the 

applicability of these conditions to economic data. Before 

considering this work it is necessary to outline certain



definitions from topology, analysis and probability theory 

that can be found in texl 

(1974) and Loeve (1962).

that can be found in texts such as Armstrong (1979), Apostol 
4 -i $

7.2.2 Definitions.

1) A random variable X is defined on the triple (£2,f*,p ) 
where £2 is the sample space, F* is a a-field of subsets of £2 
and P the probability density function of X.

2) G* is a sub o-field of F* if it is a collection of 

subsets of F* satisfying (i) $ and F* belong to G* (ii) 

if G belongs to G* then so does Gc (iii) if (Gn > is a
oo

sequence of sets in G , then U Gn belongs to G .
n = 1 n

3) The minimal a-field over the class of all intervals from 

the real line, R, is the Bore! field B in R and the 

elements of B are Bore! sets in R.

4) Let g e G, then a nei qhborhood of g, N(g), 1s the 

set {4 :<m G, | | t-g | | <r} for some r.

5 ) Let G be a subset of F *  then G is open if 1t c o n ta in s  a 

neighborhood of each of its points.

6) Let p be a point of F* and G C  F* then p is a limit 

point of G if every neighborhood of p contains at least 

one point of G - {p >.

7) A set is closed if it contains all its limit points.

8) A topology on a set F* is a nonempty collection of 

subsets of F*, called open sets, such that any union of 

open sets is open, any finite intersection of open sets 

is open, and both F* and the empty set are open. A set 

together with a topology on it, is called a topological

space .
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9) Let F* be a topological space and let G* be a family of 

open subsets of F* whose union is all of F*. such a 

family is called an open cover of F*. If G' is a sub

family of G* and if UG' = F*, then G' is called a 

subcover of G*.

10) A subset F of En is closed and bounded if and only if 

every open cover of F* (with the induced topology) has a 

finite subcover.

11) A topological space X is compact if every open cover of 

F* has a finite subcover.

12) To every set G there are assigned an open set G° and a 

closed set G. (i) The interior G° of G is the maximal 

open set contained in G, i.e. the union of all open sets 

in G. G is open if G° = G. (ii) The adherence G of G 

is the minimal closed set containing G, that is the 

intersection of all closed sets containing G. If G is 

closed then G = G. These two are related as follows:

(Gc )° = (G)c and (G°)c = (Gc ) .

13) Every set containing a nonempty open set is a 

neighborhood of any point x of this open set. Let N(x) 

be the neighborhood of x, then (i) x i s i nteri or to G if 

G is a neighborhood of x (Ii) x is adherent to G if no 

N(x) is disjoint from G.

14) The set G is said to be dense if F if G D  F .

7.2.3 Proof of convergence of QMLE to KLIC minimising value.

Notati on

Let y (n) = (yi.y?».. ,yn ) be a set of continuous real
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valued random variables, whose assumed joint density 

function hn (y,y) is of known form except for the parameter 

vector y e r C  R p .

Denote the quasi likelihood function by Ln (y) and its 

log by An (y). The QMLE is the value y(y) e r such that

Ln (V  = supLn ^ ) .yeT

Our proof of the convergence of Yn to the KLIC 

minimising value, y*, is in three stages. Firstly we 

show y n exists almost surely. Secondly given its existence 

we show Yn converges to y* it a particular condition is 

satisfied. Finally it is shown that four assumptions 

guarantee that the condition holds and so the convergence is 

proved .

Existence of y?

If r is a compact subset of Rp and Y (n ) a measurable 

space then if

(i) for every y ,  h (y,y) is a measurable function of y, 

(i 1 ) for every y, Ln (y) is a continuous function of y, 

then a QMLE for y exists almost surely.

The proof is a simple adaptation of Jenrich (1969) 

lemma 2. Under the above conditions there exists a 

measurable function yn from Y ( n ̂ onto r such that for all y 

in Y:

L(yn (y),y) ■ supL(y.y).

The proof depends on subsequence and continuity 

arguments. The situation is that we have parameter



estimators that are functions of the data. We therefore 

have a sequence of estimators each of which maximises the 

likelihood, for a particular sample size and which has a 

limit point as the sample size increases. We need to show 

that this limit is the optimum. Compactness ensures that 

the limit point of this sequence is a member of the 

parameter space.

Proof

Let (rn ) be an increasing sequence of finite subsets 

of r whose limit is dense in r.

For each n there is a measurable function y from y 

into rn such that

L(yn (y).y) = sup L ( y,y), for all y in Y.
Yern

Let Ynl denote the first component of yn . Let y^ = limynl
„ _ n

and note y^ , is measurable as yn  ̂ is measurable for each n.

For each y in Y there exists a subsequence (y_ (y)) of 
_  n l
(Yn (y))* which converges to a point y in r of the form

(Yj(y) *Y2»##*Yp) •

sup L((y1 (y) ,y2 ,..,y ) ,y) > L(y,y) = 1imL(yn (y ) ,y)
(yj.••,Yp )er i i

= limi sup L (y ,y) = sup L(y,y).
^ erni

The inequality follows because we have enlarged the set over 

which the supremum is taken, and so it can only become 

smaller. The first equality is from the definition of y and 

uses the continuity of L(*). The last equality follows 

because the limit of rp , a sequence of subsets of r, is
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de ns e  in r and so t he  mi ni mal  c l o s e d  s e t  c o n t a i n i n g  t he  

l i m i t  of  r n a l s o  c o n t a i n s  r .  T h e r e f o r e  t he  l i m i t  must  

be r i t s e l f .  Thi s  i m p l i e s

SUP L ( ( y . ( y  ) , y_ , . .  , y ) = s u p L ( Y . y ) ,  f o r  a l l  y e Y.
( Y1 . . . . Y p ) e r  P Y

Let  L ' ( y j . . . . Yp . y )  = L ( Y1 ( y)  , y 2 » • • *Yp »y)  » t hen L ' ( Y . y )  i s  a 

c o n t i n u o u s  f u n c t i o n  of  y f o r  a l l  y in Y and a me a s u r a b l e  

f u n c t i o n  of  y f o r  a l l  y i n r .  Ap p l y i n g  t he  same argument  

t o  L '  a s  f o r  L g i v e s  a m e a s u r a b l e  r e a l  v a l u e d  f u n c t i o n  

y 2 s uch t ha t

sup L ( ( y , ( y ) . Y? ( y ) . y , . • • »y_ ) , y ) *  s u p L ( Y . y ) .
( Y j » • • » Yp) c r  1 Z 3 p y

I f  we c o n t i n u e  t o  u s e  t h i s  a r gument  we can deduce

L ( ( Yt ( y ) . Y2 (y ) . • • ,  Yp ( y ) ) . y  ) = s u p L ( Y . y )  f o r  a l l  y in Y.
v Y

T h e r e f o r e  y - ( Y j » » * » Y p )  i s  a me a s u r a b l e  f u n c t i o n  f rom y 

i n t o  r t h a t  ma x i mi s e s  t he  q u a s i  l i k e l i h o o d  and so t he  p r o o f  

i s  c o mp l e t e .

7 . 2 . 4  Conve r ge nce  o f  Yn

B e f o r e  c o n s i d e r i n g  t he  t heor em and p r o o f  of  

c o n v e r g e n c e ,  i t  i s  n e c e s s a r y  t o l i s t  a c o u p l e  o f  e x t r a  

d e f i n i t i o n s  f rom t o p o l o g y .

The p a r a me t e r  s p a c e  i s  s a i d  t o  be an i n t e r v a l  1n RP,  as  

i t  i s  t he  C a r t e s i a n  pr oduc t  o f  p one d i me n s i o n a l  

i n t e r v a l s .  To p r o v e  c o n v e r g e n c e  we r e q u i r e  r t o  be compact  

or  in o t h e r  words  t he  C a r t e s i a n  p r o d u c t  of  p one d i me ns i ona l
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closed intervals. However if r is not compact we can

overcome the problem by one-point compactification (see Ash,

1972, p. 388). By adding a point not in r to r we can
★

construct a compact set, r , with the same topology as r.
★

If we let r = r U {»}, where {«} is a point not in r, and

define Z to be an open set in r if and only if Z is open
• , . *in r or Z is the complement in r of a compact subset of r 

then

(i) If Z c r, Z is open in r if and only if Z is open 
*

i n r ,
★

(i i ) r is compact.

The property of a compact set that is crucial to our

arguments is the existence of a finite subcover. This

enables us to restrict attention to a particular finite 
★

subset of r with particular properties.

Let y* e r be the value of y satisfying

S„(y *,N( y )) = 1o g (Ln (y * )/ sup L (♦)) > 0,
♦ c N ( y )

then if (i) Yn exists a.s.,

(i1 ) for every y * Y* there exists N(y ) such that

11 mi nfSn (y * .N (y )) > 0 a.s.,
A n +»

the sequence (Yn > converges a.s. to y * as n ».

This is theorem 1 of Heijmans and Magnus (1983a) except 

that we do not interpret y * as being equal to y 0 . the true 

value. HSM's result is in two parts. First they prove this 

theorem, and then establish a set of conditions that Imply 

(ii). We inevitably follow this format. Their proof of 

theorem 1 is reproduced verbatim here as it does not require 

the model to be correctly specified. The conditions however
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do need adaptation, and we develop the idea of y * as the 

KLIC minimising value when we examine that part of the 

proof.

Proof

Let N*(y*) be some neighborhood of y * and N*(y *) be its 

complement in r * . For every point 4> in N*(y *) there exists 

(by assumption) a neighborhood N ' (<j>) such that

lim 1 n f S n (y * .N'(*)) > 0 a.s. .

The union of all such neighborhoods cf points in $ in 

N*(y *) covers N*(y *),

r U N '(♦) 3  N^(y * ) .
< M < ( y *)

Since r* is compact, N*(y *) is compact as N*(y *) is an 

open set relative to r* by definition. Therefore there 

exists a finite subcover of N*(y *). In other words we can 

find a finite number of points * 1 ,..,*r and i>r + 1 = {“ } (from 

the compacti vi sation ) , in n £ ( y * ) with neighborhoods Nh (<t,h ), 

(h = 1 ,..,r + 1 ) such that

r +1 c
U N (♦h ) D Ni(Y*), 

h = l "

and H m 1 n f S n (Y*.Nh (*h )) > 0 a.s., h = l,..,r + l. This 
n ■*■<» 

implies
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and so the supremum over the larger set cannot be smaller. 

In turn this gives

converges almost surely to y*.

To establish a set of conditions that imply condition 

ii) of the theorem, we require a variant of the law of large 

numbers and less strict convergence properties of random 

variables. The arguments are formulated in terms of 

conditional expectations and so we are able to make use of 

the following results.

1 ) The monotone convergence theorem for conditional

sup A (*) > An (y* ) - max 
* eN^(y*) n n l<h

max sup A($)
l<h<r + l <teNh U h )

min Sn (y*,Nh U h ))h > -a. Ì ■' " 11

From the basic definition of Nh (<j>h ) we have

P[ 1 i m i n f { min S (y*,N (* )> > 0] = 1 
1 < h< r+ 1 n n nn +°°

and so

P[lim inf{An (y*) > syp An (*)}] = 1 
n+- 4>eN*(y*)

As Yn exists a.s., Yn eN*(y*) a.s. as n -*• » and so yn

★
expectations: let X be a r.v defined on (ft»F ,p)
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and G be a sub a-field of F* then if Xn + X, and

E|Xn | < », it follows that E X  t E X.n
2) The Stability Theorem (Loeve, 1978, p. 53):

If Z— 2^- < ” with bn + », then

» • • » X k-1 )} Ò* S ' °*

The next step is to establish a set of conditions 

implying lim infSn (y *»N( y )) > 0 a.s. This part of our 

proof, although relying heavily on HAM, differs from their 

result. Firstly because we need to correct their proof* for 

the original case they consider and secondly because for the 

misspecified case we take expectations with respect to the 

true density which is not h(y,Y*).

Define 9 n (y) = Ln ̂ Y ^ Ln -1 ̂ Y  ̂ and = 1 * 9n^Y  ̂ is

just the conditional density of y n given yn -i»..*yi. For *

Tn ( y *  , *  ) -  l o g { g n ( Y * ) / s u p g n ( 4 , ) > .
4> e ♦

To establish the desired result we make the following 

additional assumptions.

1) For theorem 1 we require the likelihood to be

continuous and this in turn implies 9n (Y) and Tn (.j 

are continuous. Also we assume E[Tn |yn_j ,..,y± ] is 

a continuous function of y For all y.

*1 am indebted to Jan Magnus for bringing the errors in the 
original to my attention.

a nonempty subset of r defi ne
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2 ) E(TnIyn-1»• • >yi) > 0 where y* * 4, for all n. This 

amounts to requiring y to be identified for each 

conditional distribution gn ( •) . Note this 

assumption also implies

(i) y is asymptotically identifiable and

so lim 1n f ( 1/n )E1og(L (y*)/L (y )) > 0 for 
n -►«>

every y * y * ,

(ii) lim i n f (1/n)£ E [ T | y , , . . , y 1] > 0. 
n

3) For every y * y*. ETn (y*,y) is uniformly bounded 

and ETn (y*,N(y)) is uniformly bounded for some 

neighborhood N(y) of y.

4) For every y * y* there exists an a < 1 such 

that n ‘aET^(y*,y) is uniformly bounded

and n _aE T ^ (y* , N(y)) is uniformly bounded for some 

neighborhood N(y) of y.

Assumptions 3) and 4) are just the regularity 

conditions for the stability theorem. Under these 

assumptions, the condition (ii) from theorem 1 is satisfied 

and so {y n ) + y* a.s. .

It is the identification condition that allows us to 

continue the KLIC minimising interpretation of y*. Recall 

the KLIC is

I (h ,p : y ) = Elog[h(y,y)/p(y)],

where h(y,y) is the assumed density and p(y) the true p.d.f. 

of y .

Consider the ratio

R = E[log(h(y,»)/p(y))]
Y* E[log(h(y,y*)/p(y))]
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and l e t  y *  be t he  KLIC mi n i mi s i n g  v a l u e .  Thi s  i mp l i e s  

> 1 f o r  a l l  4> * y * .

In t u r n  t h i s  gi  ves

E l o g h ( y , $ )  - E l o g p ( y )  > E l o g h ( y , y * )  - E l o g p ( y ) ,

and so

Elogh(y, i j >)  - E l o g h ( y , y * )  > 0 .

T h e r e f o r e  i f  t he  v e c t o r  y *  i s  t o  s a t i s f y  t he  i d e n t i f i c a t i o n  

c o n d i t i o n  t hen i t  must  be t he  KLIC mi n i mi s i n g  v a l u e .  Thi s  

p r o o f  c o n s i s t s  o f  a g e n e r a l i s a t i o n  t o  t he  m i s s p e c i f i e d  c a s e  

o f  one p o s s i b l e  amended v e r s i o n  of  H&M's p r o o f  f o r  the 

c o r r e c t l y  s p e c i f i e d  mode l .
★

Let  y '  * y *  be an a r b i t r a r y  p o i n t  of  T . We need t o 

f i n d  a ne i g hb or ho od  N( y ' )  o f  y '  such t h a t

l i m i n f S ( y * , N ( y ' ) )  > 0 a . s .  . 
n

Now

S _ ( y* , N ( y ' ) )  = i n f  l o g ( L  ( y * ) / L  ( ♦ ) )
4>eN( y '  )

n
= inf I 1og(gt (y* )/gt (* )) 

♦eN(y') t=l 1 r
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> i  i n f  l o g ( g t ( y * ) / g t ( ♦ ) )  
t  = l  ♦ e N ( r )  1 1

n

n
= E Tt  ( Y* , N( Y'  ) )  a . s . . 

t  = l z

T h e r e f o r e  our  r e s u l t  f o l l o w s  i f  we can show our a s s u mp t i o n s  

imply

- 1 nl i m i nf n  £ Tt ( y *  » N( Y '  ) ) > 0 a . s .  . 
n -*■« t  = 1

The p r o c e d u r e  i s  t h a t  we f i r s t  e s t a b l i s h  t h a t  Tt ( * )  

s a t i s f i e s  t he  c o n d i t i o n s  o f  the monotone c o n v e r g e n c e  

t h e o r e m.  I t  i s  then e s t a b l i s h e d  u s i n g  t h i s  t heorem and the 

i d e n t i f i c a t i o n  c o n d i t i o n  t h a t  t he  c o n d i t i o n a l  e x p e c t a t i o n  of  

Tt  l i e s  between ( 0 , 6 ) .  We then need t o v e r i f y  t h a t  the 

s t a b i l i t y  t heorem a p p l i e s  t o  de duce  t h a t  Tt  i s  s u b j e c t  t o 

t he  same bounds .

Co n d i t i o n  2) g u a r a n t e e s  t h e r e  e x i s t s  a ne i ghbor hood 

N^( y ' )  o f  y '  s uch t h a t

ET^( y * • N1 ( y ' ) )  i s  u n i f o r m l y  bounded.

Let  N*(y ') be t he  f i r s t  e l e me nt  o f  a s e q u e n c e

{ N ' ( y ' ) »  i e N, the s e t  o f  n a t u r a l  numbers )  o f  ne i ghbor ho ods

of  y '  wi t h p r o p e r t y  t ha t

N * ( y ' )  D N i + 1 ( Y ' )  and l l m N ^ y ' )  = l ' •

For  e v e r y  n e  N

Tn (Y*.Ni (y ')) < Tn (Y*,Ni+1(Y')) a.s..
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Tn (y * .N1 (y ' ) ) + Tn (Y*,-r') a.s. as i + •. (37)

Thi s  i m p l i e s  t h a t  f o r  e v e r y  i e N ETn ( y * . N1 ( y ' ) )  i s  

u n i f o r m l y  bounded in n.

Def i  ne

a J ( y* , y ' )  = E( Tn ( Y* , N i ( Y' ) ) | y 1 , . . . y n_ 1 ) .

and

An (y*,Y') = E(Tn (Yn ,Y')|y1 ....yn_1>.

As ETn ( y*  , N1 ( y '  ) )  and ETn ( Y* , Y^ )  a r e  u n i f o r ml y  bounded,  

and f rom ( 3 7 ) ,  we can a p p l y  the monotone c o n v e r g e nc e  t heorem 

f o r  c o n d i t i o n a l  e x p e c t a t i o n s  t o o b t a i n

A ’ (y *. y ') + An ( Y * , Y ' )  a . s . ,  f o r  i + - .

For  t he  next  s t a g e  of  t he  p r o o f  we need t o  us e  t h i s  

r e s u l t  t o  j u s t i f y

0 < n_1 £ A t (Y*.Y') - n_1 T a J ( y * , Y ' )  < e ,  ( 38)  
t = l  1 t = l  *

f o r  e v e r y  e s a t i s f y i n g  0 < e < s u p { A n (y * ,y ' ) - a ’(y *,y ')>.
i ^and f o r  a n e i g h b o r h o o d  N ( y " )  o f  Y " •

From t he  monotone c o n v e r g e n c e  t heorem we have
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0 5 An ( Y * , Y ' )  - A^ ( y* , y ' )  < e a . s . ,

f o r  any 1 and some e .

I f  we a s s ume ( i )  , A’ a r e  c o n t i n u o u s  in i f o r  a l l  y

and y ( i i )  Â  > 0 f o r  a l l  n and i ,  t hen we must  be a b l e  t o 

f i n d  a f i n i t e  i ,  i *  s a y ,  s a t i s f y i n g  ( 3 8 ) .  Let  i *  be the 

s m a l l e s t  i s a t i s f y i n g  ( 3 8 ) .
- 1 nFrom a s s u mp t i o n  2) we know l i m i n f  n t At ( Y * , Y ' )  > 0,

n -*■<» t  = 1
and so f rom e q u a t i o n  ( 3 8 ) ,

-1 n il i m i n f n  E A, . (y * . y ' )  > 0 a . s . ,  f o r  i > i * .  ( 39)
t « l  z

We now need t o  show the c o n d i t i o n s  o f  L o e v e ’ s s t a b i l i t y  

t heor em a r e  s a t i s f i e d  t o  us e  ( 39 )  t o  l e a r n  about  

1 i m i n f n _ 1 ETt ( * )  .

Co n d i t i o n  4)  e n s u r e s  t he  e x i s t e n c e  of  a ne i ghbor hood 

o f  y ' ,  N ( y ' )  s u c h  t h a t

n'aET2(Yjt ,N( y' ))

i s  u n i f o r ml y  b ounde d .

N1 ( y ' )  C n ( y ' )  f o r  a l l  

Thi s i m p l i e s

T „ ( y* . W( y ' ) )  f  Tn ( Y * , N ' ( Y ' ) )  < Tn ( Y* . Y ' )  a . s .  i > 1 * * ,

a s  t he  n e i g hb o r ho o d  s h r i n k s  as  we move from l e f t  to r i g h t  of  

t h i s  i n e q ua l i  t y .

Therefore we have

Let  i * *  be an i ndex such t ha t

i > ’**•
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Tn ( ^ *  » N1 ( Y '  ) ) 5 Tn ( Y* »N( y '  ) ) + tJ ( t * . y -> a .  s . .

Taki ng  e x p e c t a t i o n s  i t  f o l l o w s  t h a t  n " “ var  Tr ( Y* , N1 ( y ' ) )  i s  

u n i f o r m l y  bounded f o r  eve r y  i > i * * .  In p a r t i c u l a r  i s u c h  

t h a t

n va r  Tt ( y * , N 1 ( y '  ) )
Ï ----------n----------  < » .

t  = l  t £

We can t h e r e f o r e  us e  L o e v e ' s  s t a b i l i t y  t heorem t o de d u c e ,  

f o r  e v e r y  i > i * *

n ’ 1t V t ( Y * , M l ( Y ' ) )  ‘  E( Tt (Y* ‘ N i ( 'f * ) ) l > ' l * * - * > ' t - l )

t e n d s  t o z e r o  a . s .  f o r  n » ,  and so 

n il i m i n f ( l / n )  T. T. ( y * , N  ( y ' ) )  > 0 a . s . ,  
t = l 1

f o r  e v e r y  i > m a x ( i * , i * * ) .

We have t h e r e f o r e  ans wered H&M’ S q u e s t i o n .  I t  has been 

shown t h a t  under  a s e t  of  r e g u l a r i t y  c o n d i t i o n s ,  the QMLE 

c o n v e r g e s  a l mo s t  s u r e l y  to t he  KLIC mi n i mi s i n g  v a l u e .  What 

i s  a p p a r e n t  f rom c o n t r a s t i n g  t h i s  a p p r o a c h  t o our  e a r l i e r  

a n a l y s i s  i s  t h a t  wi t h o u t  f u r t h e r  i n f o r m a t i o n  about  the model  

i t  i s  not  p o s s i b l e  t o  g e n e r a l i s e  t h i s  p r o o f  i n t o  one of  

c o n s i s t e n c y  f o r  the m i s s p e c i f i e d  c a s e .  Thi s  probl em i s  more 

e a s i l y  ha ndl e d  by t he  o t h e r  a p p r o a c h  in ML t h e o r y .  We 

r e t u r n  t o  t he  c o n s i s t e n t  r oot  o f  t he  l i k e l i h o o d  e q u a t i on  

a r g ume nt s  l a t e r .  To pr oduce  a n a l o g o u s  a r gument s  to the 

s t a t i c  model  a bout  t he  r o b u s t n e s s  of  NLFIML we need t o be
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7.3 Assumptions underlying the strong Law of Large Numbers 

for dependent processes

The extension of our results on the asymptotic 

properties of NLFIML and NL3SLS requires the application of 

a strong law of large numbers and Central Limit theorem for 

dependent processes. In this section we examine possible 

sets of regularity conditions that deliver this result and 

that must be assumed to hold if we are to construct an 

asymptotic theory of nonlinear models. The main problem is 

going to be unravelling the implications of restrictions on 

functions of variables for the underlying raw series. This 

of course is a problem in the static model, but our analysis 

followed tradition and assumed it away. In the linear model 

the assumption that suitabley normalised cross product 

matrices converge to a limit has clear implications for the 

variables themselves. Typically in the nonlinear framework 

we make analogous regularity conditions to the linear model 

but the restriction that tends t0 a 1imit has 1ess

easily interpretable implications for the variables.

Our analysis requires the convergence in probability of 

various functions of the variables. This can be handled by 

making regularity assumptions about each function as it 

becomes necessary, and so implicitly restricting the 

underlying variables. Alternatively we can seek assumptions 

about the variables that imply particular functions obey a 

SLLN. The latter approach would appear preferable, as it is

a b l e  t o  a p p l y  a v e r s i o n  o f  t h e  s t r o n g  l aw o f  l a r g e  number s

t o  f u n c t i o n s  o f  d e p e n d e n t  r andom v a r i a b l e s .  The c o n d i t i o n s

t h a t  u n d e r l i e  t h i s  a r e  e x p l o r e d  in t h e  ne x t  s e c t i o n s .
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a b l e  t o  a p p l y  a v e r s i o n  o f  t h e  s t r o n g  l aw o f  l a r g e  number s

t o  f u n c t i o n s  o f  d e p e n d e n t  random v a r i a b l e s .  The c o n d i t i o n s

t h a t  u n d e r l i e  t h i s  a r e  e x p l o r e d  in t he  ne x t  s e c t i o n s .
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various functions of the variables. This can be handled by 

making regularity assumptions about each function as it 
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desirable to examine whether economic series in fact satisfy 

these requirements. It is this question that led White and 

Domowitz (1982) to suggest modelling economic series by 

mixing processes. We assess the arguments in favor of this 

practice in section 7.6. Before that, we consider other 

possible regularity conditions and their interrelationship.

7.3,1 Martingales

Martingale arguments are often invoked in the time

series literature to apply a central limit theorem to the

score vector and for the estimation of the covariance matrix

of the MLE. It is therefore worth considering the extent to

which they provide the solution to our problem.
★

A martingale is a sequence (Xn ,F ) defined on the 

probability triple (n,F*,p) satisfying

i ) are an increasing sequence of a fields i .e .
★ ★

Fn-Fn+1 ’
ii ) *n

. i , ★ *
c L (fl,Fn>p) , that is X is a r.v defi ned

on (O.F*,p) and E |X R || < ~ for all n .

iii ) = EfXn + l l O  a *s * for al 1 n •

Our analysis is concerned with appropriately normalised
n

summations of r.v's and so we define Sn = £ X4 . If does
n i=l 1

not have a zero mean than the arguments carry through by 

centering it about its conditional expectation. Put = 

X^-E-j.jX^, then EZ^ = 0. Let X̂  be a zero mean martingale 

then Sn is said to possess the martingale property as

*We write Xn _ LP if Xn is a r.v defined on (n,F*,p) and 
E|Xn |P <
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E(Sn | SXt • • »sn-l) = E(sn-l+xn I S1 9 • • 9

To establish the convergence of the summation we require a 

bound on some measure of the discrepency between and 

Sj. For the independence case, laws of large numbers are 

based on the Chebyshev inequality,

and additional conditions on the probability of outliers and 

the order in probability of the first two moments of the 

process (see Loeve, 1977, p. 290).

Independence is only important in the derivation of the 

inequality because it implies the orthogonality of and 

Xj. Hall and Heyde (1981) show that the assumption that 

{Sn ,F*} is a zero mean martingale is also sufficient for 

this property as

The Chebyshev inequality can therefore be extended to such 

processes, and so to establish convergence we require a 

diminishing bound on S^-S as m -» •». Feller (1971, p. 242) 

uses these arguments to prove the martingale convergence 

theorem for Sn processes satisfying the above conditions and

P(|Sn |>e) < e'2ES2 , for any e > 0

E U i X j )  = E( Xj E( Xi | F * _ 1 ) ) = E( X j [ E (  S1 | F * _ 1 ) — S1_ l ] )  = 0

ES2 < c < ~.

The Chebyshev inequality implies

n > m , (40)
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and so for convergence we need to show varfS^-S^ tends to 

zero. As Sn has zero mean,

var(Sn -Sm ) = E(Sn-Sm )2 = E S^- 2 E Sn Sm+E .

By the tower property of conditional expectations,

 ̂̂ n ̂ m  ̂Sm E ( Sn |Sm ) E S'

and so

v a r (Sn - Sm ) = ES2-ES2.

O *
Under our assumptions (S*,F ) forms a submartingale sequence

p
and so (E(Sn )} is a monotonical 1y increasing sequence that 

tends to a finite limit. Therefore if we set n = «, in 

equation (40), it has been shown that Sm converges in 

probabi1i ty to .

As it stands this theorem does not give us the required

interpretation of the limit in terms of an expectation.

However the Kolmogorov strong law of large numbers* for

i.n.i.d. r.v's cited earlier can be directly extended to

martingales via Kronecker's lemma (see for instance Feller,

1971, p. 239). This states:

"Let {xk> be an arbitrary numerical sequence and {b^ > a

strictly increasing sequence of positive constants. If
xl+x2+ **+xnthe series i“bkxk converges, then -------------  ♦ 0."

*Rao ( 1973)1s proof on p. 114 and p. 142 is based on the 
Hajek Renyi inequality which only requires the to be
orthogonal .
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7.3.2 Mixinqales

McLeish (1975) defines the sequence (Xn ,F*) as a 

mixingale if, for sequences of finite nonnegative constants

c n and where ti> Tm ^m
m > 0,

a ) C
XEicLU

b) 1 1 ^n" ^n-m

Mi xi  n g a l e s  can be

t he  d e f i n i t i o n  imp

c ) m i 8 X

d) Xi - E .  X,1 +oo Í

This resemblance is sufficient for many of the martingale 

convergence theorems to be extended to these more general 

processes. Square integrable martingales are a special case 

of this definition obtained by putting ipg = 1 , = 0 for

m > 1 and c p = (EX^)1^ .

Chebyshev's inequality can again be used as the basis 

for a convergence theorem, but the arguments need to be 

generalised. McLeish (1975) shows that if {Xn ,Fn) is a 

mixingale such that i|<n = 0( n ” ̂  ̂  (1 ogn ) ) as n + ■», then

? n 2E(maxSf) < k z cf, 
i <n 1 ‘ i =1 1

where k is a constant depending only on i|> . This result can

See appendix 3 for di scu s s i on/de f i n i t i on of size of <|in
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be used to bound the variance of the difference between Sn

If we let m then the bound on the probability goes to

zero and so Sn converges a.s.. As before we can use 

Kronecker's lemma to deduce the Kolmogorov strong law of 

large numbers for mixingale processes.

7.3.3 Mixing Processes

To define a mixing process it is necessary first to 

consider two measures of dependence between o algebras F*

if <t> and a are zero. Let tXt > denote a sequence of random

Borel a- algebra of events generated by Za ,Za + i , . . ,Zb . Now

and Sm in our earlier analysis 

t|*n = 0 ( n (l ogn ) "2 ) as n + -

We assume £ c4 < » and 
i - 1 1

then

2

p( max  ̂I S n - S j  > e ) < e
m<n<m'

and so

p(max I Sn- S j  >e) <
n <m i =m

and G*:

(i) a relative measure

* ( F * , G * )  = sup Ip(GI F ) -p ( G) I .

{ Fe F , Ge G : p ( F ) > 0  >

(ii) a "strong" measure

a (F * ,G*) = sup Ip (F G)-p(F )p (G)I

{ F e F  , Ge G }

The events in F* and G* are independent if and only

★
vectors defined on (n,F ,p) and let F . » o (Z* ;a <t<b) - thea t ■ ■

define *(m) = su pn« ( F __ ,Fn + m ) and a(m) = supn<x( F _0>»Fn+(n
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both of which measure the dependence that exists between 

events at least m periods apart. A sequence for which 

4>(m) + 0 as m -*■ 0 is called uniform mixing and one for 

which a(m) + 0 as m + 0 is strong mixing. From the 

definition of conditional probability, $ mixing implies a 

mixing. Essentially mixing processes are sequences for 

which the dependence between two observations in time 

decreases as the distance between them grows larger. It 

would intuitively be expected that there would be connection 

between mixingales and mixing processes as both are defined 

in terms of a decaying dependence between observations over 

time. The relationship between convergence in absolute and 

conditional probability is translated into one between 

absolute and conditional moments by the following result due 

to McLeish (1975). This enables us to establish that mixing 

processes are mixingales and so the convergence theorems of 

the latter can be applied to the former.

Let X be a r.v. measurable with respect to F* and 

1 < p < r < °°. Then

a) ||E(X|F*)-E(X)||p < 2*(m)1- 1 / r ||X||r,
b) ||E(X|F*)-E(X)| |p < 2(21/p+l )a(m)1/p-1/r| |Xp | | . 

Below we outline the proof of part a) and leave the proof of 

b) to appendix 4. Before we can do this it is necessary to 

introduce some extra definitions from measure theory (Loeve, 

1962, p.82-84).

Defini ti ons

1 ) A set function i|» is defined on a nonempty class r of 

sets in a space n by assigning to every set A e r a 

single number i|i(A), finite or infinite, the value of ip 

at A. If every set in r is a countable union of sets
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in r at which i|i is finite, i|> is said to be a-finite.

2 ) i)i is (countably or a) additive if <|i(EAj) = Zi)»(Aj) 

either for every countable or only for every finite 

class of disjoint sets respectively.

3) Let i|> be an additive function on a field r and 

define i|>+ and i)»- on r by

t|>+ (A) = supif>(B),  i|>” (A) = - i nf i ) i ( B) ,  A, B , e T 
BeA Bc A

The set functions »p+ » i|i” and ^ = i|) + + are called 

the upper, lower and total variation of ip on r.

Since ip (<p) = 0, these variations are nonnegative.

4) Jordan Hahn decomposition: If t is a additive on 

the a-field A, then there exists a set D e A such 

that for every A e A

— ip — (A ) = ifr(AnD), ip"*” (A ) = ip (AnDc ) .

ip+ and ip~ are measures and ip = ip+ — ip— is a signed 

measure, as at least one of its components is finite. 

We can now proceed with the proof.

Proof

a) This follows from theorem 2.2 of Serfling (1968).

The argument is as follows:

We assume E | X |r < » for some r > 1. Let p denote the
it 00 if if n

probability measure induced on Fn+m by (n,F ,p) and p(.|F

denote a regular conditional probability measure on F*"+m
* n  * n  m 

given F_>>. Let p be the signed measure P( * I F_oo)-p( .) . The

space n corresponding to the r.v's (xn + m »xn+m+l* * * * has a

Hahn decomposition a = n+ U n“ with respect to p , such that
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f o r  any me a s u r a b l e  s u b s e t  A o f  Si, the s e t s  A O si + and 

A n a '  a r e  me a s u r a b l e  and y(Ansi + ) > 0 ,  y(AOsi” ) < 0 .  As si i s  

m e a s u r a b l e  so t oo  ar e  si+ and Si” . The r e f o r e  as  y and -y a r e  

me a s u r e s  on Sl+ and si” r e s p e c t i v e l y

| E ( X | F * J - E ( X )  | = | f XdP (to | F * 0 ^) -dP (u) |
$1

< I f+ Xdu| + I / _ Xd ( -u ) |
SI SI

< /  + I X | d y + /  | X | d ( -y ) •
SI SI

By L o e v e ' s  c r i n e q u a l i t i e s *

| E ( X | F * J - E ( X ) | P < 2P-1[ f | X | d y ] P + 2P”* 1[ f | X | d ( -y ) ] P . ( 41)
SI SI

From t he  d e f i n i t i o n  of  a <(> mi x i ng  p r o c e s s  we have

f+ dy = p ( Sl+ 1 F * ^ )  - p(si  + ) < « ( m) .
Si

By Ho l d e r s  i n e q u a l i t y ,

/ + |X|dy < (/+ |X|P d y ) 1 / P (f+ d y ) 1/<’, p ” 1^ ” 1 = 1,
SI SI SI

and s o

♦The bounds are manipulated to produce the required result using 
the following inequalities (see Loeve, 1962, p. 155-156).
i) cr-1nequality : E|X + Y|r < c r E | X | r + crE|Y|r , where

cr = 1 or 2r"l according to whether r > 1 or r < 1 .

ii) Holder Inequality: E|X Y | < E 1/r |X|rE 1/s |Y|s where r > 1.

and s”1 + r”1 = 1 .
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c r + | x | d g ] p < C*(m)]P/<’/+ |X|Pdy.

Similar reasoning can be used for n" and y , to give

|E(X|F*")-E(X)|P < 2p" 1 [*(m)]p/q[f + |X|pdy+/_|X|pd(-y)].

The RHS of this equation is 2P_1 U ( m ) ] p/q[E( |X|P | F * J - E | X | P].

Therefore just using the fact that we have taken the modulus 

of X we can rewrite it as,

|E(X|F*J-E(X)|P < 2p-1 U ( m ) ] p/q[E( |X|P | F * J  + E|X|pj,

The final step in the proof follows from the fact that we 

could have used r > p in the exponent of the c r inequality 

in equation (41). ||•||k is a nondecreasing function of k

and so the bound with r as exponent is also a bound when p 

is used. Therefore

Using these inequalities with <|i(m) aid a(m), it can be

which implies

E|E(X|F*J - E ( X ) | p < 2p U ( m ) ) p/qE|X|p ,

and so

| |E(X|F*J - E ( X ) | |p < 2*(m)1_1/p| |X| |p.

I |E(X|F*J - E( X ) | |p < 2*(m)1" 1/ r ||X| |p .

seen that mixing processes are indeed mixingales. For
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instance a $ mixing process is a mixingale with cn = 

2(EX^ ) ^ 2 and = <j>1 /̂2(m). From our earlier definition of 

an L2 martingale, which required 'I'q = 1 • ^m = 0 and cn = 

( E X ^ ) ^ ^ ,  it can be seen that the L2 martingales are not 

equivalent to 4> mixing processes, although it would be 

anticipated that convergence theorems for the latter would 

apply to martingales due to the generosity of its bound.

The one important property possessed by mixing processes is 

that functions of them are themselves mixing. The 

specification of the martingale in terms of conditional 

expectations meant it did not satisfy this requirement. 

However it would intuitively be expected that if a sequence 

has decaying dependence over time then, suitably restricted 

nonlinear transformations of the series would exhibit 

similar behavior. By defining mixing processes in terms of 

probabilities, we allow functions of the sequence to exhibit 

similar patterns of behavior.

McLeish (1975) establishes this property of mixing 

conditions. Let (5n ;-»<n<»} be a 4> mixing sequence*, and 

let Xn = fn {?.} where fn is a nonrandom function of the 

whole history, past and future, of the process, and EX^ = 0. 

Defi ne

*m
F n = o(cn t...em ) for m > n,

*m " supn ^ F -»,Fn+m^ *

*A similar result can be shown for a mixing sequences, see 
McLeish (1975).



where vm is 0 [ n 1 1 21o g n ( 1 o g 1o g n ) 1 + 5 ] " 1
*i +mi +m

As E(X1 |F i_m ) = Xi , we have

i + m
) l  l 2 + I | X . - E ( X i  | F * i

i + m
i -2m Ai

m

from the definition of <t> mixing and the fact that EX^ = 0. 

From Jensens inequality we can then show that

The sequence X-j therefore satisfies part a) of the 

condition for a mixingale. To establish that it satisfies 

b) we need a lemma due to Billingsley (1968, p. 184). He 

shows that if F* and G* are two a-fields with F*fclG* and 

E ( Y2 ) < » then

Y - E(Y|G*) = n - E (n|G*) . and so

E { | n- E {n I G* > | 2 G*> = E { n 2 |G*> - E 2 {n|G*> < E {r,2 1 G* >.

*i +m
|E(*,|F , . . ) I I P < I I X , l l r .

and so

M E i - 2m I |X,| |

E{|Y-E(Y|G*) |2} < E{|5-E{C|G*}|2}.

This can be proved by putting n = Y - E(Y|G*), which implies



The result follows by taking expectations of both sides of

the inequality. This lemma can then be applied to our 

problem to show

the square brackets denote “the greatest integer contained 

in") and c^ = max( | |X,| |r , 1 ).

These theorems provide the basis for the strong law of 

large numbers presented by White and Domowitz (1982). The 

arguments used are similar to those of Heijmans and Magnus 

(1983) in their proof of the consistency of the MLE. Before 

we can outline their proof, we require their lemma A.l which 

establishes conditions for the uniform convergence of

mixing processes are mixingales, and is important in the 

proof because it provides bounds on functions of the data 

and parameters .

The lemma is as follows:

Let fZt > have zero mean and suppose 4>(m) is of size 

r/(2r- 1 ) (or a(m) of size r/(r-l)).

a) If there exists y > 0 and p such that r < p < 2r

t = l t
b) If there exists A < « such that E|Z^|P < A for all

t, then (1) TY_1 £ Z,. a*s ‘ 0 for 0 < Y < 1-r/p < 1/2 
t = l z

and (ii) there exists T depending only on a and e

1 - 1 / rand so is a mixingale with = 2<t>£m /2] + v [m/2] (where

for whi ch £ (E | | p )
t - 1 x

P)l/rT (y-l)p/r< ^ then

TY_1 £ Z. a*s * 0
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such that for all T > T(a ,e ), |Ty_1 e Z. | < e a.s.
t = l

Parts a) and b(i) follow directly from the mixingale 

convergence theorem discussed above, and b(ii) can be

derived from the Chebyshev inequality using the mixingale
2

bound and k E c^ which is independent of the sample size, 

due to the bounding condition.

Using this result, we are now in a position to 

establish the strong law of large numbers for mixing 

processes presented by White and Domowitz (1982). Their 

theorem 2.3 states:

Let qt (Zt ,e) be measurable for each e in H, a compact 

subset of Rp , and continuous on H, uniformly in t a.s.. 

Suppose there exist measurable dominating functions dt (zt ) 

such that |qt (Zt ,e)| < d t (Zt ) for all e in H, and for some r 

> 1 and 0 < 6 < r, E|dt (Zt ) | r+5 < A < » for all t. If 

either a) 4>(m) = 0(m_x), X > r/(2r-l) or b) o(m) ■ 0(m”x ) 

for X > r/(r-l), r > 1 then

i) E(qt (Zt ,e)) is continuous on H in t.

ii) |Ty_1 E Cqt (Zt ,0) - Eqt (Zt ,e)]| a*S * 0 uniformly
t - 1 1

in 9, for 0 < v < 6/(r+fi) < 1/2.

The proof is based on similar techiniques to that of 

Heijmans and Magnus (1983). We need to establish an upper 

and lower bound on qt (Zt ,e), and then to show that 

qt (Zt ,e) - E(qt (Zt ,e)) is bounded by the original bounds 

minus their respective expectations. The uniform 

convergence arguments from White and Domowitz (1982)'s lemma 

given above are used to show summation of both bounds minus 

their expectation goes to zero a.s.. From which it follows

that
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, T

,TY t-iCqt (zt ,9)"Eq t (zt ’0)3 ' a*s ’ °*

Proof • Part (i ) follows the continuity of qt (Zt ,8) and the 

uniform integrabi1 ity of q^(Z^,e) due to the existence of

M zt>-

Part (i i ) Using part (i) we can set E(qt (Zt ,e)) = 0 

without loss of generality. Let

qt (Zt , e , p )  = s u p { q t (Z , e ) : | | e - e  | | < p } ,

£ t (Z,e,p) = inf{qt (Z,e): | U-e| I 5 p >,

both of which are measurable functions. From the continuity 

of qt (Z,e) on H and the bound on E | dt (Zt )|r + 5 it follows 

that

limqt (Z,9,p) = qt (Zt ,8),

and

lim£t (Z,8,p) = q t (Zt ,e) uniformly in p a.s..

This implies E|qt (Z , 8 ) |r + 6 < a 

and E|g_t (Z,e)|r + fi < A.

Therefore as the expected values are bounded it follows by 

definition that 1

1 imE | qt (Z , 8 , p ) | = 1 i mE | qt (Z , 8 ,p ) | = 0 as p 0.



168

For each 0 e H there must exist pn (e ) so small that

- e n ‘Y < E ( £ t (Zt ,e,p)) < E("qt (Zt ,0 ,pn (0 )) < e n ‘Y (42).

Define 5 (0 ,p) = {?:||5-e|| < p}. This forms an open

cover of the compact set H, and so there must exist a finite
9 n

subcover: 9n i »«->0ng e H for which H U 5(0n , pn (©n )) .

From the definitions of q t and £ t for all 0 in H it must 

follow that

1 M
min nY_ z qt (Z , 0 

1 < i <gn t = l_t z "i 'pn (6n )) < nY-l
n
Z q 

t = l t (Zt*e )

Y-l 0 ~max n z qt (Z .0 ,p (e )) .
1 <i <g t = l z z n i n n i

From (42)

1 n
min nY_ z qt (Z ,e ,Pn (e )) - E(qt (Zt*9n 'pn (0n >) 

1 <i <gn t = l z z 1 1 ~ z z n i n n i

•• (I 1 M

< min nY ~ 1 Z qt (Z ,0 , p ( e n ))+e < nY_1 z qt (Z.,e)+e. 
1 < i <gn t-1“ 1 t n. n n. - t = l Z Z

From the uniform domination and lemma A .1, we know that 

for every i there exists T(a ,e ) such that for all 

T > T ( a , e ) and almost every sequence {Zt>,

(43)

< TY" \ - l i a t ( Z t ,en i ,Pn ( 9 n 1 ) )  "  E (^ t  <Zt *9n i ’ pn < %  > >> ’

where y < 6/(r+6 ).

z q.iZ^.e) for T > T(a ,e ). 
t = l z z

Therefore -2e < T



S i m i l a r l y  we can show

V- 1T T E q* (Z*. , 0 ) < 2e a .s .. 
t  = l

Since the set Fn of sequences {Z^} such that (43) fail

to hold for any i has measure zero and since Gn = U^.F. is0 • <1

00
an increasing sequence of sets of measure zero, P( U G ) =

k = 1 n
1 i m P (G_ ) = 0, we have 

. T
| TY -1^ iq t (Zt ,e) - E(qt (Zt ,e))| a4 s * 0 

as T + ■», uniformly in e, for 0 < y < 6/(r+6).

Our analysis of the consistency of NLFIML can be 

generalised to dynamic models under two types of regularity 

condition. We can use martingale or mixingale convergence 

theorems to the required functions of the variables such as 

the score and hessian, and in this way implicitly restrict 

the underlying variables of the system. Alternatively we 

can make the explicit assumption that the underlying 

variables are mixing processes, and then use the mixingale 

convergence theorem. In the remainder of this chapter we 

concentrate on the latter approach, but it is Important to 

note martingale strong law of large numbers and central 

limit theorems could have been used to generate the results
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7.4 Relationship between robustness of NLFIML and the 

reduced form

Mixing processes are therefore ergodic and so provide 

an answer to the central asymptotic problem. If we are 

prepared to assume our series to be of this form then we can 

use similar analysis to that undertaken in the static case 

to examine the robustness of NLFIML. Furthermore if we wish 

to use the conventional estimators in dynamic models, it is 

necessary to make this type of assumption. This applies 

equally to LS and ML and has to be implicitly made in the 

analysis of Jorgenson and Laffont (1974).

The conditions for the consistency of NLFIML are the 

same as before and we illustrate below that the arguments 

used in the static model carry through by considering a two 

equation nonlinear in variables example. To avoid the 

difficulty of verification of the second order conditions we 

need to extend Brown's (1983) analysis. In his exposition 

Brown (1983) deals with contemporaneous nonlinear in 

variables models of the form Aq(y,x) » u. However his 

analysis is more general than it at first appears because of 

the assumptions made. The error process is assumed only to 

be distributed independently of the exogenous variables x 

with mean zero. It is these properties of u that are used 

to generate the identification criteria. The point to note 

is that there is no assumption about the serial independence 

of u because Brown wanted to allow for the more general case 

in which the structure of u is unknown. This is why he 

deals with conditions relative to exogenous variables x, 

whereas Fisher (1966) used the serial independence 

assumption and assumed x to consist of predetermined
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variables. There is no reason not to use the criteria for 

Fisher's model as his mistake, corrected by Brown, is 

concerned with the number of implied equations and not his 

original assumptions. However once we consider Brown's 

disturbances with predetermined variables we increase the 

potential number of transformations that may produce 

observational1 y equivalent equations. In that case more 

information is needed, maybe, from covariance restrictions 

instead of the independence assumption.

We now consider the conditions for consistency of 

NLFIML in the following model from Howrey and Kelejian 

(1971).

Let

*lt = b lxt + u lt

y 2 t  = b2yit-i + b3expylt + u2 t ,

where ut = (u^t ,u2t)' are IIN(O.n). The reduced form for 

y 2 t 1s given by

*2t = b 2 n - l  + b3exP(b lxt+ult) + u 2t •

The concentrated quasi log likelihood is

T  - i  T
LLFC = const — -1 n | T- z u.ur|.

2 t=l 1 z

a) First order conditions for consistency: From the

arguments used in the static case plim T * - = 0
3b 1 0Q

provided the true distribution has mean zero. Now
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3 LL FC 
3b 2

•-A t 1 (m
3m 22 3m

11'
- 2m 1 2,

3b, 12" 3b ,

= -lA-1f2m11T-1j iU2t(b1xt_1+u lt_1)-2m 12 T tf 1 U lt(blxt-l+ U lt-l)}‘

1 T t T
where we have let Ay = |T 1 z u u'| and m.. = T"1 z u . .u . . .

t=l z z 1J t=l 1C Jt
Therefore given the serial independence of ut ,

plimT • 13LLF
3b,

0.

Finally we need to check 3LLFc /3b,|., . For this we assume,j  e0
as before, that the true distribution is a mixture of 

normals.

Now

3LLF
3b,

c - 1 _i T _ i T
-  = -TAt { m ^ T  z u2texp(b1xt +ult )-m12T z u ^ e xpibj xt +u lt) > , 

t 1 t= 1

_ i 1
and as  pl i mT z u . ^ e x p b , x t = 0 ,  we need on l y  c o n s i d e r  

, T t  = l 1 z
p l i mT"  S uH t expu , t . 

t«l z
For t h i s  f a mi l y  of  d i s t r i b u t i o n s ,

E(u1texpult) = — 2-mgf(s)
3 S i

s, = l " a li * 
s2-°

This implies plimT -13LLF'
3b.

= 0 as well. The first order
9,

conditions for consistency are therefore satisfied and we 

now need to check the second order conditions.

To verify the second order conditions for consistency 

using the identification criteria in dynamic models we need
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to assume that the underlying variables are mixing 

processes.

If we put q(y,z) = [yxt ,y2t .expyjt ,yx x ,xt ,1].

where zt are predetermined variables, then the Brown's 

notati o n :

q i (yi»z i )' = [y i t* e x p y it] ’ 

q2<y l»z l*y 2 ’z2)' = 2t ̂ ’

identification is assessed using the linear model criteria. 

The coefficient matrix is

1 0 0  0 -bx 0

rank(A*j) = rank(A*2) = 1, which is the number of equations 

minus one and so the system is identified. NLFIML is 

therefore consistent in this model if the true distribution 

is a member of the mixture of normals.

To undertake this analysis we need to be able to write 

down an explicit reduced form. If this is possible then we 

are able to list a set of true distributions for which 

NLFIML is consistent. However if we are unable to do this

q3 (z3 ) [y lt-l,xt-'*

It follows that rank(A2:Aj) = rank 2 and so

A and

0 1 - b ̂  - b 2 0 0

the conclusion has to be that NLFIML is only definitely 

consistent when the model is correctly specified or the
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error distribution is the mixture of normals considered by 

Phillips (1982). It is not possible to list conditions on a 

true nonnormal error process that guarantee the consistency 

of NLFIML. Again this is a marked contrast to NL3SLS which 

is consistent in this model provided û. is i.i.d. with mean 

zero .

7.5 Asymptotic normality of an NLFIML in dynamic models.

White and Domowitz (1982) also present the following 

central limit theorem for mixing processes. (White and 

Domowitz, 1982, theorem 2.6, p. 10)

Let iZt> be a sequence of random variables satisfying

a) E(Zt ) = 0,

b) there exists V, finite and nonzero such that 

E (Sa (T)2-V) -*• 0 as T ->■ ®, uniformly in a, where

V T> = T
- 1 / 2 a + T

t = 1 + a "t *

c) E | Z1 1^r < A < » for all t and some r > 1. If 

either 4»(m ) or a(m) is of size r/(r-l) then

t- 1 /2v -1 /2 ( tT z , .
t=l Z

N( 0,1 ) .

This theorem can be used to establish the asymptotic

normality of the score as a random vector is only

multivariate normal if any linear combination of its

elements is univariate normal, and functions of mixing

processes are themselves mixing.

If we let L* be the conditional quasi-log likelihood of
T

the observation in period t and L = e L* , then by
t - 1 z
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definition 1imT"1E3L/3o .I is zero. Therefore if we centre
I “*

the conditional quasi score about its expectation, Zt =

3L / 3 a.. - E3Lt/3a.I , the central limit theorem can now be 

applied to deduce

T " 1 / Z 3L/3a.
a - 1 3Lt 3Lt~N(0,limT izE— - — -
, 8°̂

r - 1 .
3L 3!.

S E__ 1 • e__ -
‘ 3a. a* 3 a^

Using the mean value theorem applied to the score, as in the 

static model, it follows that

/T(aT- o  i  n (o ,a ;;1b *a ; 1),

whe re

A* = 1 i m T ~ 1E -3—
3 a 3 a '

B* = 1 i m T"1 E t-3Lt
8L 1 ^ 3L• t -1 i mT" 1 z E___- E__ 1

3a da - a = a* 3a a* 3a'

If we let Aj and Bj be the sample analogues evaluated at a-p 

of A*, B* then as before

a -1 b t a - 1 -a ; 1 b * a ; 1 a*s * a ^ d . a ; 1 .

where D* Is the positive semi definite matrix 

. T 3L,
D* = 11m T"1 E E-

T + «> t = 1 3 a.
_t 3Lt• e___—

1 3a.

The problem 1s that we cannot estimate D* without knowledge 

of the true distribution. For our asymptotic tests to be
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valid we must have a consistent estimator of a,  as for 

instance would be the case for the nonlinear regression 

model. Otherwise we can only conduct what White (1983) 

termed "conservative inference“ using conventional 

procedures in misspecified models.

This analysis has required the assumption that 
a + T 2

E(T-1/Z j i  \ - v + 0 for some finite and nonzero V.
t=a+l 1

Convergence of the variance of the process to a constant 

regardless of its index in time, a, is a limitation on the 

heterogeneity that can be covered by our model. Further 

White and Domowitz (1982) argue that the requirement 

E(Sa (T)2 ) - Vn + 0, uniformly in a, implies Vn = V. This 

again requires the covariance to converge to a value 

independent of the index a. White and Domowitz (1982) 

hypothesise that relaxing this condition may result in 

nonnormal limiting distributions, but Basawa, Feigin and 

Heyde (1976) and Hall and Heyde (1981) have shown that this 

need not be the case.

Following Hall and Heyde (1981) we consider a 

univariate one parameter model. They note that not all the 

results can be generalised, but this framework is sufficient 

to show that this alternative approach encounters the same 

problems.

Consider a sample X^,X2,..,Xn of consecutive 

observations from some stochastic process whose distribution 

depends on a single parameter e H. Hall and Heyde (1981) 

are concerned with the correctly specified case, and so, we 

first outline the assumptions that generate their result 

under these circumstances, as they provide a guide to those 

necessary for an extension to the misspecified case. (As it
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h a p p e n s ,  we a l s o  need t o  know p o t e n t i a l l y  a l l  t he  hi gher  

o r d e r  moments o f  t he  t r u e  d i s t r i b u t i o n  f o r  t h i s  t o  be 

p o s s i b l e ) .  Let  Ln ( e )  be t he  l i k e l i h o o d  a s s o c i a t e d  wi th 

Xl » X2 , . . , X n and as s ume i t  t o be t wi c e  d i f f e r e n t i a b l e  wi th 

t he  e x p e c t e d  v a l u e  of  t he  h e s s i a n  b e i n g  f i n i t e  f o r  each n.  

Denote t he  a - f i e l d  g e n e r a t e d  by X1 , . . , X | C (k > 1) by Fk ( Fg = 

t r i v i a l  a - f i e l d ) .

Put

d l og L  ( e )  n .
---------------  = z — [ l o g L . ( e )  - 1o g L . . ( e ) ]  = t u . ( e ) ,

de i =1 de 1 1-1 1

and E ( u j ( e ) | F ^ _ j )  = 0 ,  so t h a t  { d l o g L p ( e ) / de  , F n) i s  a s q u a r e  

i n t e g r a b l e  m a r t i n g a l e .  Al s o  l e t

V e> = 1 i 1 E e<u l (e >lF i-i)-

and

n n
J  ( e )  = E v , ( e )  = £ d u , ( e ) / de  .

n i = 1 1 i = 1 1

The q u a n t i t y  I n ( 9 )  r e p r e s e n t s  t he  c o n d i t i o n a l  i n f o r ma t i o n  

and c l e a r l y  v a r i e s  over  t i m e .  I f  we us e  t h i s  non c o n s t a n t  

n o r m a l i s a t i o n  o f  t he  MLE, en , about  t he  t r u e  v a l u e ,  i n s t e a d  

o f  t he  c o n s t a n t  V in t he  mi x i ng  CLT,  t hen 1t  can be shown 

t h a t

1¡/2(e)(én-e) í N(o,i),

under  t he  f o l l o w i n g  a s s u m p t i o n s :
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1)  I n ( 9 )  a * s ’ ~ , and so i n f o r ma t i o n  i s  c o n t i n u a l l y

a c c r u i n g .
p 2ii) In (o)/EI (o) -*• n (0), some positive r.v. and

P
-*■ -1 as  n -*• « ,  the c o n v e r g e n c e s  be i ng

uni f o r m .

i i i )  There e x i s t s  some 6 > 0 such t h a t

| 9 n - e |  < 6 / E I n ( e ) 1 / 2 .

The r e s u l t  f o l l o w s  f rom a mean v a l ue  e x p a n s i o n  o f  the 

summat i ons  o f  t he  c o n d i t i o n a l  s c o r e s  in a s i m i l a r  f a s h i o n  to 

t he  o t h e r  CLT t heor ems  p r e s e n t e d  a b o v e .  The c r u c i a l  po i nt  

i s  t h a t  f o r  model s  of  t h i s  g e n e r a l i t y ,  we r e q u i r e  random 

n o r m a l i s a t i o n  t o  i nduce  t he  d e s i r e d  b e h a v i o r  on the MLE.

The pr obl em in t he  m i s s p e c i f i e d  c a s e  i s  two f o l d .  

F i r s t l y ,  as  r emarked e a r l i e r ,  t he  s c o r e  i s  not  a m a r t i n g a l e

s e q u e n c e .  Thi s  can be overcome by c e n t e r i n g  u ^ ( e )  about  i t s  
c o n d i t i o n a l  e x p e c t a t i o n ,  and t h e n ,  f rom n"

11i mELn/ d e I e *  = ° *  we have

cn " U (9) i N(0,1), 
n i = 1 u

_ 1 n 2
where c n = n” E E ( u ^ - E ( u i | F ^ ^ ) | F ^ ) . The probl em i s  

i = 1
c l e a r l y  goi ng  t o be t h a t  when t he  model i s  m i s s p e c i f i e d  we 

do not  know t h i s  e x p e c t a t i o n .  T he r e f o r e  the e x t e n s i o n  o f  

the t h e o r y  t o c ove r  s i t u a t i o n s  where the n o r ma l i s i n g  f a c t o r  

o f  t he  summat i on i s  n o n c o n s t a n t  s t i l l  does  not  s o l v e  the 

pr obl em of  i n f e r e n c e  ba s e d  on t he  QMLE.

I t  i s  wor th n o t i ng  t h a t  t he  s i t u a t i o n  i s  much e a s i e r  t o  

ha ndl e  when we use t he  n o n l i n e a r  r e g r e s s i o n  model wi th
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l a g g e d  de p e nde nt  v a r i a b l e s  as  r e g r e s s o r s .  In t h i s  c a s e  the 

QMLE i s  c o n s i s t e n t ,  and so we can c o n s i s t e n t l y  e s t i m a t e  

A* ^B* A* ^  by i t s  s ampl e  a n a l o g u e .  He i j ma ns  and Magnus 

( 1 9 8 3 b )  p r e s e n t  a p r o o f  o f  the a s y m p t o t i c  n o r ma l i t y  o f  the 

MLE under  n o r m a l i t y  f o r  t h i s  model ,  when i t  i s  c o r r e c t l y  

s p e c i f i e d ,  u s i n g  v e c t o r  m a r t i n g a l e  a r g u m e n t s .  C o n s i s t e n c y  

o f  t he  QMLE i s  go i ng  t o  g u a r a n t e e  t h a t  t h e i r  a r gument s  can 

be g e n e r a l i s e d  t o  pr oduce  s i m i l a r  r e s u l t s  t o  t h o s e  a b o v e .  

White and Domowitz ( 1983)  p r e s e n t  a s e r i e s  of  s p e c i f i c a t i o n  

t e s t s  f o r  t he  r e g r e s s i o n  model  under  t he  mi x i ng  a s s u m p t i o n s ,  

and o f  c o u r s e  t h e s e  a v o i d  t he  pr ob l e ms  o f  t he  c o n v e n t i o n a l  

t e s t s  in more c o m p l i c a t e d  n o n l i n e a r  dynami c  mo d e l s .

T h e r e f o r e  as  White and Domowitz ( 1 9 8 2 )  o b s e r v e  we can 

c o n s t r u c t  a c o mp l e t e  a s y m p t o t i c  t h e o r y  o f  i n f e r e n c e  f o r  

dynami c  model s  on t he  b a s i s  of  t h e s e  a s s u m p t i o n s .  More 

c o r r e c t l y ,  g i ve n  t he  c o n s e r v a t i v e  i n f e r e n c e  pr obl e ms  wi t h 

our  t e s t s  ba s e d  on NLFIML,  we can c o n s t r u c t  as  much o f  a 

p r a c t i c a l l y  u s e f u l  a s y m p t o t i c  t h e o r y  as  in t he  s t a t i c  

mod e l .  The o b v i o u s  q u e s t i o n  t o t ur n  t o  now i s :  a r e  

economi c  s e r i e s  mi x i ng  p r o c e s s e s ?

7 . 6  V e r i f i c a t i o n  and S u i t a b i l i t y  o f  t he  a s s ump t i o n  t h a t  

s e r i e s  a r e  mi x i ng  p r o c e s s e s .

Our c o n c l u s i o n s  on t he  a s y m p t o t i c  p r o p e r t i e s  of  NLFIML 

i n dynami c  mode l s  r e l y  on t he  u n d e r l y i n g  v a r i a b l e s  b e i ng  

mi x i ng  p r o c e s s e s .  Not a l l  s e r i e s  s a t i s f y  t h e s e  r e q u i r e me n t s  

and so b e f o r e  we us e  t he  t h e o r y  f o r  economi c  mo d e l l i n g  i t  i s  

d e s i r a b l e  t o  a s s e s s  whet her  economi c d a t a  obey t h e s e  

b e h a v i o r a l  r e s t r i c t i o n s .  White and Domowitz ( 1982)  a r g ue

t h a t



180

" a l t h o u g h  p a r t i c u l a r  t h e o r e t i c a l  model s  can be 

d e mo ns t r a t e d  to y i e l d  e r g o d i c  or  mi x i ng  p r o c e s s e s ,  i t  

i s  not  p o s s i b l e  to v e r i f y  f rom a f i n i t e  s ampl e  t h a t  a 

p a r t i c u l a r  p r o c e s s  i s  e r g o d i c  or mi x i n g .  Thus we a dopt  

mi x i ng  as  an o p e r a t i n g  a s s ump t i o n  f o r  economi c  p r o c e s s e s  

on t he  b a s i s  o f  p l a u s i b i l i t y  and c o n v e n i e n c e . . . "  ( p . 5 ) .  

There a r e  c l e a r l y  two i s s u e s  at  s t a k e  he r e .  F i r s t l y  whet her  

we can v e r i f y  t he  mi xi ng  c o n d i t i o n s  f rom s ampl e  e v i d e n c e  and 

s e c o n d l y  whet her  we can v e r i f y  them f o r  a t h e o r e t i c a l  mode l .

As White and Domowitz ( 1982)  o b s e r v e  i t  i s  not  p o s s i b l e  

t o us e  s ampl e  d a t a  t o v e r i f y  mi xi ng  a s s u m p t i o n s .  Qui t e  

s i mp l y  t hey r e f e r  t o l i m i t i n g  b e ha v i o u r  which cannot  be 

a s s e s s e d  from a f i n i t e  s a mp l e .  We a l s o  f a c e  the probl em 

t h a t  in t he  a b s e n c e  of  i n f o r ma t i o n  about  t he  p a r a m e t e r s ,  we 

would r e q u i r e  a law of  l a r g e  numbers  t o a p p l y  f o r  t he  

s u b s t i t u t i o n  o f  p a r a me t e r  e s t i m a t e s  t o be v a l i d .

White and Domowitz i mpl y t h a t  t he  v e r i f i c a t i o n  o f  the 

a s s u mp t i o n s  f o r  t h e o r e t i c a l  model s  i s  q u i t e  s t r a i g h t f o r w a r d .  

Thi s  does  not  a p p e a r  to be t he  c a s e  as  we d e mo n s t r a t e  below 

f o r  a s i mp l e  n o n l i n e a r  s t a t i o n a r y  p r o c e s s  u s i n g  the work of  

J o n e s  ( 1 9 7 6 ) .

F i r s t  c o n s i d e r  the c o n d i t i o n s  of  White and Domowitz 

( 1 9 8 2 ) ' s  t heorem 2 . 3 .  These are

1)  qt (Zt , e )  must  be me a s u r a b l e  f o r  each e in H, 

i 1 ) H must  be c o mp a c t ,

1 1 i ) we r e q u i r e  do mi na t i ng  f u n c t i o n s  dt ( Zt ) t o e x i s t  f o r

a l l  e ,

1 v ) moment r e s t r i c t i o n s :  f o r  some r > 1 and 0 < « < r 

E | d t (Zt ) | r+S < A < - ,  f o r  a l l  t ,  

v)  * (m)  » 0( m- X) f o r  X > r / ( 2 r - l ) ,
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or

a(m)  = 0 ( m" * )  f o r  x > r / ( r - l ) ,  r > 1.

C o n d i t i o n s  ( 1 )  and ( i i )  a r e  f o r m a l i t i e s  t h a t  must  hol d f o r  

t he  model  t o  be “ wel l  b e h a v e d " .  I f  t he  p a r a me t e r  s p a c e  i s  

not  compact  we can a l wa ys  make us e  o f  one p o i n t  

c o mp a c t 1v i s a t i o n  as  d e s c r i b e d  e a r l i e r  in t he  p r o o f  o f  t he  

c o n v e r g e n c e  o f  t he  QMLE t o  the KLIC mi n i mi s i n g  v a l u e .

The e x i s t e n c e  of  a d o mi na t i ng  f u n c t i o n  i s  not  an 

u n r e a s o n a b l e  a s s u mp t i o n  g i ven t he  p h y s i c a l  r e a l  wor l d 

c o n s t r a i n t s  t h a t  e x i s t  on v a r i a b l e s .  Thi s  a s s u m p t i o n ,  

empl oyed in t he  r e s t r i c t i o n  of  a t t e n t i o n  t o  Ce s a r o  summable 

s e r i e s ,  r u l e s  out  model s  which make Zt  = f ( t ) ,  an i n c r e a s i n g  

non c o n v e r g i n g  s e que nc e  o f  random v a r i a b l e s .  For  i n s t a n c e  

an AR(1)  model  wi t h c o e f f i c i e n t  g r e a t e r  t han one .

The mi x i ng  c o n d i t i o n s  t h e m s e l v e s  r e f e r  t o  p r o b a b i l i t i e s  

and so t o  exami ne  t h e i r  v a l i d i t y  we need t he  d i s t r i b u t i o n  of  

t he  p r o c e s s .  To g i v e  an i m p r e s s i o n  o f  t he  pr ob l e ms  i n v o l v e d  

we o u t l i n e  some r e s u l t s  due t o J o n e s  ( 1 9 7 6 )  on t he  

p r o p e r t i e s  o f  n o n l i n e a r  s t a t i o n a r y  Markov p r o c e s s e s .  

R o s e n b l a t t  ( 1 9 7 1 )  g i v e s  c o n d i t i o n s  f o r  t he  e r g o d i c i t y  o f  

s t a t i o n a r y  Markov p r o c e s s .  Al t hough t h e s e  r e s e mb l e  mi x i ng  

c o n d i t i o n s  in as  much as  t hey depend on p r o b a b i l i t i e s ,  t hey 

a r e  l e s s  s t r i n g e n t .  The a s s ump t i o n  o f  s t a t i o n a r i t y  doe s  not  

d e l i v e r  t he  mi x i ng  r e s u l t .

Cons i  de r  t he  model  ,

*n + l = A(Xn ) + ZR + i , n = (...-1,0,1..),

where x ( * )  i s  a f i x e d  r e a l  f u n c t i o n  o f  a r e a l  argument  and
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z n 1S a s e que nce  o f  i . i . d .  random v a r i a b l e s .  The i nput  

s e r i e s  { Zn> has d i s t r i b u t i o n  F T y p i c a l l y  t h i s  i s  our  

model  s p e c i f i c a t i o n  wi t hout  c o n s i d e r a t i o n  of  the 

i m p l i c a t i o n s  f o r  t he  d i s t r i b u t i o n  of  Xn+^ . The mi xi ng  

c o n d i t i o n s  depend on t h i s  i mp l i e d  d i s t r i b u t i o n ,  and so we 

must  s o l v e  f o r  t he  d e n s i t y  o f  Xn+1- as  a f u n c t i o n  of  X ( ' )  and 

FZ-

I f  t he  a u t o r e g r e s s i o n  f u n c t i o n  x ( * ) ,  i s  c o n t i n u o u s  

e ve r ywhe r e  then a s u f f i c i e n t  c o n d i t i o n  f o r  s t a t i o n a r i t y  i s  

the e x i s t e n c e  of  c o n s t a n t s  e ,  a  > 0 such t ha t

E { | x ( x ) + Z | - | x | } < - e ( | x | > a )  .

The d i s t r i b u t i o n  f u n c t i o n s  Fx , m( ’ >x 0 ) » ( m > l ) .  o f  Xm 

c o n d i t i o n a l  on a v a l u e  Xg = xg a r e  g i ve n  by

Fx,i(x;xo) = F z (x -X(x0 )),

Fx,m(x ;xo) = fF z (x -x(y))d F x>m.i(y;xo)« m = 2 »3 -** •

In most  c a s e s  t h e s e  e q u a t i o n s  can onl y  be s o l v e d  by 

nume r i c a l  i n t e g r a t i o n ,  t he  s o l u t i o n  t o  which g i v e s  no i de a  

o f  t he  p r o p e r t i e s  o f  s i m i l a r  s e r i e s .  J o ne s  ( 1976)  I n s t e a d  

c o n s i d e r s  the p r o p e r t i e s  o f  t he  model

Xn + i ( S ) - a + b X n (6 ) + B [ x { X n ( B ) } - b X n ( 8 ) - a ] ,

as  an e x p a n s i o n  a b out  the l i n e a r  p r o c e s s  f o r  which B = 0 .

Thi s  l e a d s  to power s e r i e s  e x p a n s i o n s  in the p a r a me t e r  8 

about  t he  known s o l u t i o n  f o r  t he  p r o c e s s  {Xn ( 0 ) > .
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For  t h i s  p a r t  of  h i s  a n a l y s i s  J o ne s  c o n s i d e r s  model s  

wi t h b = 0 ,  and so p u t t i n g

Yn (B)  = B[ A{Xn ( B ) } - a ]  (n = . . - 1 , 0 , 1 , . . ) ,

and Zn = Zn + a * M * )  *  M x ) - a ,  

we have

• V e> * C l  

★
I t  f o l l o w s  t h a t  Zn + 1 must  be i n d e p e n d e n t  o f  ( Yn ( e ) ,  Yn_ ^ ( B ) ,  . . )  . 

The a p p r o a c h  J o n e s  t a k e s  i s  t o f i r s t  f i n d  power e x p a n s i o n s  

f o r  t he  c h a r a c t e r i s t i c  f u n c t i o n s  o f  t he  c o n d i t i o n a l  

d i s t r i b u t i o n  and t o then f i n d  i t s  i mp l i e d  F o u r i e r  i n v e r s e ,  

t he  c o n d i t i o n a l  d e n s i t y  f u n c t i o n .

The c h a r a c t e r i s t i c  f u n c t i o n  ( c . f . ) ,  <t>Y q , o f  Yn ( s )  

gi  ven t h a t  Y ( b ) = y i s

4>y , 0 ( s ; Y ; b ) = e l s y  = L0 0 ( s , y ) ,  s a y ,

b e c a u s e  g i v e n  i n f o r ma t i o n  up t o p e r i o d  n,  Yn can onl y  t a k e  

one v a l u e  and i s  t hus  d e g e n e r a t e .

The c . f .  of  Yn + 1 ( s )  g i ve n  t h a t  YR( B) = y i s

♦ Y>1( s ; y ; B )  = f e 1 S S A ( y + z ) dFz * ( z ) .

Expandi ng  t he  e x p o n e n t i a l  g i v e s
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♦ y i ( s ; y ; b ) = r î  l l s _ B A ( y + z ) ) J  ( z )
j-o j! Z

= £ Bj ( i s )3 /-j U t z ̂ dF?^( z )
j=0 j! *

= E 8J L.  . (s ,y), say, 
j = 0

w here Lj,l(s »y) = (1s)jpj(y) = ( is )j f-A-J ( y +z W ,« (z ) , j > 0 .
j !

For  k > 0 d e f i n e  L $ k | ( s , y )  = 3 kL.  1 ( s , y ) / 3 y k , 
J » 1 J  » 1

then

* Y , 2 ^ S ; y ; 6  ̂ ° fZB':iL j i l { s , 6 A ( y  + z ) } d F z * ( z )

= f Ê Ê ^ ^ f ’ l s . O ^ F ^ z ) ,
j =0 k = 0 J ’ k !

■ E 8j £ , ( s , 0 ) p  ( y ) ,  
j =0 q = 0 q

=
CO
E 6J L.  o ( s , y ) . 

j = 0 3 t i

J o n e s  u s e s  s i m i l a r  . argument s  t o  show t ha t  the 

f u n c t i o n  o f  Yn+m+1( 6 )  g i ven t h a t  Yn ( e ) = y ,  I s

c h a r a c t e r i  s t  i c

* Y, m+ l ( s ; y : 8 ) ’  J o ' S . - l 1' - 1' ’ -

where

( 1 s ) J P j ( y )

oIIE

Lj , m + i ( s » y ) -
j  “ID / _ \

<,.I o LJ - i . » ( s - 0 ) p q <i' )
(j > m> l )

(m>j ) .
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If we define

,(n) _ £  
j dy

nCPjfy)] = f.*.J ( y ^ d Fz<t(z))
y=0 dyn j! L y=o

then it can be shown that

m - 1
LN,m(s »y) = 1 E(is) Pr

rl (r?) (r-j) (rn>
n = 1 Pr °rn-l rn

rl (r2) (r )
+ i(is) p • • • P. P_ (y), (1<m<N) , 

rl rm-l rm

where the first double summation is over all sets of 

n < m - 1 integers r^,..rn , (r^>l), satisfying r‘i + r2+ * ’ + rn = 

N, and the second summation is over all sets of m integers 

r 1»• • • rm » (ri>1 )» satisfying r 1 + .. + rn) = N.

Let t (n »J) be given for 1 < j < N by

r(N,j) _

p(0)
j

* V t (N"J ,n)p(n) , ( 1 < j < N ) , 
n = l 3

/ *. .v (0) (r,) r k_,
and so Tvr,*Ji = sp p . . p where the summation is

rl ~2 ~k
over all sets of k integers (k<N-j+l), r^,..,rk ,(r^>1), 

satisfying r1 + ** + r|( = N and r^ = j.

Define S^N * ^ ( y )  for (l<j<N-m + l;m >1) by

s|N,j)(y) =
pN (y) (j = n )

0 (1 < j < N )

and

c(N,j)
m (y)

N-j-m+2
E

n = 1
c( N-j ,n ) 
^m-l (y )P

(n) (l<j<N-m+l; m=2,3,..)
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t hen

EPr Pr ••• Pr Pr (y), (IfJ < N-m + 1 ; m> 2)
(r2 ) (p3) (rm )

1 1 o r , r1 2 m - 1 m

Therefore we can write

N
E

• / »I * \ N-m + 1
(i s)J r N,J ' + z (i s )J S 

j - 1 '
j S,iN *j ) (y), l<m<N

j =N-m + 2

and

(m>N>l)

Finally, the characteristic function of y n+m(e) given that 

Yn (e) = y is

(This relies on p(’) being continuously differentiable and 

the distribution of Yn+m(g) given Yn (s) having moments of 

al 1 orders .)

We were originally concerned with the distribution of 

Xn (8). Its characteristic function is the product of those 

of the independent random variables and Yn (8) and so

* x(s ; 8) = *z*(s)*y(s ; 8)

where <|>2*(s) is the c.f. of Zn + a.

Therefore the c.f. of Xn+1 given Xn = x 1s

” j+m -2
z z BN (is)j T^N *j^+ Z+ E

j = l N = j-i-m-i
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4>Xjl (s;x;<?) = 4>z*(s )<»>y , 0 ( s  ;BA(x) ;b )

<t>z*(s)exp[isB{x(x)-a}]

and

,(,X,m(s;x;6) = +z*(s),,,Y, m - l (s:6A{x) ;B)

Jones (1976) notes that these summations only converge under 

conditions which are too restrictive for the result to be of 

practical use.

If the input distribution has a continuously 

differentiable density then we can invert the expressions 

for the characteristic equation for its Fourier transform, 

the density of X.

As the common density of {Z n } is fz (z), that of {Z*} 

is f 2*(x ) = fz(z-a). This gives the density of X as

We can truncate this at a fixed power of N , N* say, and 

wri ti ng

f x (x î 8) = f z*(x) +

where

fj)5p(x )  = 3^fz*(x)/3x^

h<"*> -
J N-j

( J >1 )

1 (j=0)

gives



188

fx (x î 8 ) * f ( x )

Similarly the conditional density of Xn+m(s) given that 

Xn (B ) = x '  is, for m > 2,

Jones (1976) considers these quantities for some simple 

functional forms with a normal input distribution. His 

analysis suggests that the development of analytically 

tractable solutions depends on the proportionality of the 

functional form to the probability density function.

For i nstance,

where

mi n(N*.j+m-2)
T.

N = j N=j+m-l

All these expressions rely on being able to calculate pjn  ̂

and Pj(y).
i i n

Recal 1 Pj n

pj (y )

f^(y^>a)-a.}J_dF (z)
•Î I ^j !

X(x) = xexp{ w2(x-d)2 } 
2

( - “><X<“ )

then for j > 1 this implies
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Pj[x(x)](y)
j ! /2wa

• f exp { j  w 2 ( z-d ) 2 
2

i 7(z-a-y)2>dz

j! (jw o + 1 )7 ~ 7 ~ — T /2exp{

The derivatives pjn  ̂ can be calculated from pj using the

recurrence relations for Hermite polynomials.

Jones (1976) presents results for the joint density of 

Xn+m(B) and Xn (s ) which involve similar types of 

calculations. These of course would be needed to verify if 

a process was strongly mixing. Rosenblatt (1971, p. 195) 

shows that the above calculations can be avoided if x(') 

has a particular form. He shows that when Xn has the same 

distribution as a nonlinear function of the input 

f(Zn ,Zn _i, . .), and so is purely non deterministic, then its 

stationarity implies it is strongly mixing. In which case 

if it is of the correct size White and Domowitz's (1982) 

results can be applied. However in general Xn does not have 

such a representation, and the assumption of stationarity is 

undesi rable.

The verification of mixing conditions for theoretical 

models is by no means straightforward, especially as we have 

only considered the calculations for univariate processes. 

Jones (1976) outlines the extension of the analysis to 

vector prcesses which involves similar but more complicated 

expressions, as would be anticipated. If we are to proceed 

we clearly need to know the input distribution and correct 

functional form. The analysis of the properties of the 

series when there is misspecificat 1 on , or in other words 

adjusting the relationship between x ( ”) and Fz (*), entails 

nontrivial calculations. Strictly verification of the
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mi x i ng  a s s u mp t i o n s  s houl d  pr ocede  any a s y mp t o t i c  a n a l y s i s  on 

t h e i r  b a s i s ,  but  t h i s  i s  c l e a r l y  not  f e a s i b l e  f o r  v a r i o u s  

c o mb i n a t i o n s  of  x ( ' )  and Fz ( * ) -

The practical conclusion from this work seems to be 

that we must either decide to assume or not to assume the 

variables are mixing. As pointed out by White and Domowitz, 

(1983) their adoption has certain implications whicy may or 

may not be acceptable. For instance the covariance of 

mixing processes decays to zero as the distance between the 

observations increases and at a rate slower than that of 

ARMA models. The assumptions therefore allow the series to 

have more memory than conventional linear models. Rootzen 

(1974) has shown that if the process {Y } is (»-mixing with 

limiting distribution G, then the range of (yn(w)} is dense 

in the support of G for almost all w. From the White and 

Domowitz (1983) central limit theorem we know

T- l / 2 y- l / 2  a ET z d N( 0 , l ) .  
t = a + l  z
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allocating values of w that yield “improper" Yn (w) zero 

probability. Mixing does not therefore appear to be a 

particularly burdensome assumption.

Our analysis has shown that we can extend the results 

about the robustness of NLFIML and inference based on it 

from the static to the dynamic model under two types of 

regularity condition. Firstly we can implicitly bound the 

underlying variables by assuming various functions of them 

are martingales or mixingales. Alternatively we can assume 

the underlying variables to be mixing processess which, 

subject to size conditions, behave as mixingales. As 

functions of mixing processes are themselves mixing, we can 

then apply mixingale laws of large numbers to the 

appropriate functions. The analysis in section 6 suggests 

that the assumption that economic series are mixing is not 

particularly restrictive and can therefore be used as a 

basis of an asymptotic theory for nonlinear dynamic 

econometric models.
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econometric models.
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8. THE INFORMATION MATRIX TEST AND THE EXPONENTIAL FAMILY. 

8.1 Pseudo maximum likelihood estimators.

Gourieroux, Monfort and Trognon (1984a) consider the 

properties of MLE's in the nonlinear regression model. They 

argue that as the true distribution of the error process is 

unknown, the choice of assumed distribution should be one 

that ensures the resulting estimator has desireable 

statistical properties for a wide variety of true 

distributions. This leads them to discuss the idea of the 

pseudo MLE, which denotes the estimator derived by 

maximising what is acknowledged to be the wrong likelihood. 

In our earlier work, we have used the White (1982) 

terminology and refered to this estimator as a quasi MLE.

The model we consider here is of the following form

y t  = f(xt ,e) + ut ,

where yt and u^ are G dimensional vectors and f(x^,e) 

represents the conditonal expectation of yt . GMT ( 1984a) 

assume that the Cesaro summability conditions detailed by 

Burguette, Gallant and Souza (1983) (see section 3.1 above) 

are satisfied. GMT (1984a) establish the consistency and 

asymptotic normality of the PMLE for the situations in which 

a) we require estimates of the parameters of the mean and 

assume the distribution of ut is a member of the linear 

exponential family, b) we require estimates of the 

parameters of the variance as well and the assumed 

distribution is a member of the quadratic exponential 

family. They further show that in each case it is necessary 

that the assumed distribution be a member of that particular
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exponential family for the strong consistency of the PMLE 

for any true mean zero distribution of û -. The arguments 

for restricting attention to such distributions are 

therefore quite strong.

The Eg and Ex denoting expectations taken with respect to 

the true error process and regressors respectively.

Therefore whilst the first order properties of the PMLE do 

not depend on the true distribution, the covariance matrix 

clearly does. In the absence of knowledge about the true 

distribution, it may be of interest to construct a 

specification test of the adequacy of the pseudo 

distribution as an approximation. It is argued below that 

the information matrix test suggested by White (1982) is a 

natural test of such a hypothesis. The analysis presented 

here examines the IMT and higher order likelihood derivative 

tests (see Chesher, 1983) for the linear and quadratic 

exponential families. They provide an alternative test of 

distribution to the goodness of fit type tests, although

GMT (1984a) show that

✓T(êT-eQ) + N(0,J-1IJ-1)

where

and

’'” ExE0T' 1[I -► OO

3LLF t 3LLF t
36



each is based on different properties of the true 

distribution, and could similarly be used outside the 

regression context.

8.2 Linear exponential family.

The linear exponential family is a class of probability 

measures on R G indexed by a parameter m e M C  R G that 

satisfy:

a) every element of the family has a density function 

with respect to a given measure v(du)

b) this density function can be written as

L(u,m) = exp{A (m )+B(u )+ C (m )u> : u e R^,

where A(m), B(u) are scalars and C(m) is G- 

dimensional row vector.

c) m is the mean of the distribution whose density is 

L(u,m ).

The reason for the necessity of using a member of this 

family to ensure strongly consistent estimators follows from 

the known properties of the true distribution. If all that 

we know is that its mean is mg. and we require our estimator 

to be strongly consistent for all distributions with this 

property, then the quasi score must be a linear function of 

(u-m), if it 1 s to have zero expectation under the true 

distribution. This is equivalent to requiring the log 

likelihood function to be linear in (u-m) and so the density 

to be of the form above. [Note that for this family 

-3A /3m = (3C / 3m)m, see GMT 1984a].

The information matrix test is based on the fact that





specific example we consider the Poisson models examined ty 

GMT (1984b).

8.3 Poisson models

In this framework the endogenous variable is discrete, 

and may represent the frequency of a particular event in a 

fixed period of time. We consider the case where there is 

specification error, may be due to an omitted variable, and 

so

y^ ~ Poisson (x^) and Xi = expx^b + .

To obtain the conditional distribution of y-j , L(y-j|x-j), it 

is necessary to integrate over e ^ , so

y 1exp(-X.)X,
L(yi |x,) = f------------- g(ei)dei .

y i '

where g(e.j) is the p.d.f. of . This in general does not 

have a convenient form, although if E(expe^) = 1 and
O

V(expe^) = n then we know the first two moments of y ^ :

E(yi I x-j ) = expx^b ,

2
variy^lx^) = expx^b + n exp2x^b.

In spite of our ignorance of the true distribution, we can 

obtain consistent and asymptotically normal estimators of 

the parameters by using using PML methods provided y^ is 

assumed distributed linear exponential. GMT (1984b) show 

that the covariance of the PMLE is J ”^IJ“^, where
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J = 1i mT“ 1E E ( H e : 1 H I ) ,  
t x 3b u 3b

I ~ 1 i m T” 1 E E ( ̂ ^ E *1 O E~ 1 1i, t S10E0 .
t 3b 3b

and f(xrb) = expx|b. In this context nQ = var(y^|x.|) in the
O

true model (i.e. nQ = expxfb+n exp2x|b), and e q is the 

variance of the chosen linear exponential family.

GMT (1984b) point out that a specification test can be 

based on a comparison of J and I. This amounts to a test of 

whether the covariance matrix of the assumed and actual 

distributions are equal, and so can be regarded as a test of 

whether the estimated covariance of y, in the assumed 

distribution is insignificantly different from the sample 

variance. Therefore rather than applying the information 

matrix test principle to J and I as given by GMT (1984b), it 

would appear computationally easier to apply the information 

matrix test to the pseudo distribution. GMT (1984b) 

consider four examples of the linear exponential families, 

and we calculate the appropriate information matrix test for 

each model. The covariances are left to an appendix.

8.3.1 Poisson Distribution

If we assume y^ ~ Poisson (expxfb), the the log 

likelihood function for one observation is

LLF = xi + y ^ o g x ^  - logiy^),

and so
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Xi (yi -expxrb),

-x^ xrexpxrb.

Therefore the IMT compares the following quantity with zero, 

Txixr{(y.-expxrb)2 - expxrb}.

If y^ does indeed have a Poisson distribution then Efy^) = 

var(y-j), and the statistic checks whether the parameter 

estimates support this restriction.

Typical elements of the covariance of the indicator 

vector are calculated in the appendix. Chesher (1983) and 

Lancaster (1984) have shown that under Hg the IMT can be 

calculated from the auxilliary regression of a constant on 

the indicator vector and score vector. If x lt = 1 for all 

t, then we can use the IMT principle to derive a simple test 

of the equality of mean and variance, based on,

t(yi -xi )2 - txi = ,

which can be calculated as nR2 from the regression of a
2

constant on vi and 3LLF.. /3b and is distributed Xl the 

model is correctly specified.

8.3.2. Normal distribution

If we assume yt ~ N(expx^b.l) then 1

1 2LLF-j = const“  (yt -expx{b) ,

3LLF
3b

2
3 LLF
3b 3b '



xi (y.j-expxrb)expxrb,
3LLF.

3b 
2

3 LLF .
------------- -- -  x . x / e x p x : b ( y . - 2 e x p x r b ) .
3b 3b '  1 1 1 1  1

The IM test therefore compares

txixfexpxfbC(yi-2expxrb) + (y1 -expxrb)2expxrb] ,

with zero, and is a test of whether the variance is unity.
o

I f  x j t  = 1,  f o r  a l l  t ,  t hen an a s y m p t o t i c a l l y  t e s t  of  

wh e t he r  y^ has t h i s  d i s t r i b u t i o n  can be c a l c u l a t e d  by 

r e g r e s s i n g  a c o n s t a n t  on S L L F ^ a b  and where

2
vi = expxib[(yi-2expxi'b) + (y^expxfb) expxrb].

8.3.3 Gamma Distribution

If yt ~ Gamma with a degrees of freedom then the LLF is

LLF^ = const - x|b - y., exp (-xfb),

3LLF.
------ = xi exp(-x.j-b) (yi -expx^b) ,

3b

32LLF.
-------  = -x . xry. exp (-x .'b),
3b 3b '

which impli es

f 32LLF. 3 LL F . 3 LL F . 2
z ------ -- + ------ ------ = txH xr(-y.+(y.-expxrb) exp(-xfb)) .

L 3 b3 b '  3b 3 b '  J



The moment g e n e r a t i n g  f u n c t i o n  of  the gamma 

d i s t r i b u t i o n  i s  (x/(x-t))r where we have s e t  

X = a e x p ( - x ^ b )  and r = a .  Thi s  i m p l i e s  t he  v a r i a n c e  

i s  r / X = a e x p 2 x i b ,  and so t he  IM t e s t  exami nes  whet her  

va r  y.j = X- 1 Eyi as  r e q u i r e d .

As in t he  P o i s s o n  c a s e  i f  x l t  = l ,  f o r  a l l  t ,  we can
2

c a l c u l a t e  a x j  t e s t  o f  whether  t he  d i s t r i b u t i o n  i s  Gamma by 

c a l c u l a t i n g  nR2 f rom t he  a u x i l l i a r y  r e g r e s s i o n  of  a c o n s t a n t  

on 3LLF. . /3b p l u s  v.. where

2
v i = ( y i - e x px  fb ) e x p ( - x r b )  - y i .

8 . 3 . 4  N e g a t i v e  b i nomi a l  d i s t r i b u t i o n  

In t h i s  c a s e  t he  p . d . f .  o f  y^ i s

r ( a ” 1+ y . )  - ( a ‘ 1 + y i ) y i
-------.-------------- ( 1 + a e x p x r b )  ( a e x p x i b )
r(a"1 )r(y1+l) 1

For  a g i ve n  v a l u e  of  a ,  the LLF of  the o b s e r v a t i o n

1 s

LLFi = y^ xj’b - (a' 1+yi ) 1 o g (1 + aexpx^b),

and so,

3LLFi x 1- (y 1 -expxfb)
' = ' 1 “ *

3b l+aexpx|b

32LLF1 x1 x{(y1 +a_ 1 )aexpx|b
-------- = -------------------- -̂---
3b 3b' (1+aexpxfb)
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(Note this second derivative is different from the result 

stated in GMT, 1984b,p. 706).

The IMT compares zero with

xixi o 1
E{--------------7 . [ (y,-expxrb) -(y.+a )aexpxjb]}.

(1+aexpxrb ) c 1 1  1 1

The mean and variance of this family are: E(y-j) = expxrb 

and var y^ = expx|b(1+aexpx^b). In the same fashion as 

before if x^t = l, for all t, we could construct a xj test 

of whether the distribution is negative binomial by 

calculating nR2 from the regression of a constant 

on v^ and 3LLF^/ab, where

[(yi -expxi'b)2-(yi+a-1 )aexpxrb]
v .  = -------------------------------------------------------- .

(1+aexpxib)

8.4. Specification tests based on higher order derivatives 

of the 1 i keli hood
For the purposes of PML estimation the information 

matrix test is all that is required. However using the 

theory in Chesher (1983) we can develop specification tests 

based on the higher derivatives of the likelihood.
oo

By differentiating f f(y,e)dy = 1, f(') being the
— oo

p.d.f. of y, we obtain

- aif(0o ) . U y ^ 0 ) _ n
I j —  --------  “ *
-« as f(y.e0 )

For i » 1, this gives E3
30

this identity we obtain the information matrix identity, but 

we could similarly base a test on third order derivative

i « 1,2,3......

= 0, and by differentiating



wh i c h  would g i v e  t h e  i n d i c a t o r  v e c t o r

d 3 = F 3<90> + 3F 2(eo>F 1<e0 > + F l (90)3

where Fj(eQ) = 1°9f (yteQ )/39^.
From the nature of the linear exponential family,

F 3 ( 9 ) = i-{ill,iy.4-nl>}C 
3m 3m3m'

G a2C(m) c
= E [(u-m)' e> I ] 3 {------- /3m

g = 1 3m 3m '

3 ( 3C/3m)C 
3m

A test based on this indicator vector examines the

relationship between first, second and third moments of the

distributions. Similarly, as in Chesher (1983), we can

construct a test based on the jth derivative of Ealogf/

3 9 1 . = 0 and from the nature of the linear exponential
90

family this compares the presented relationship between the 

(j+l)t h , jt h ,...lst moments of the distribution.

Clearly for the information matrix and higher order 

derivative tets to have this interpretation in terms of the 

central moments of the distribution (up to the j+lth) we 

require L(u,m) to be a member of the linear exponential 

family. In general if the kth order, for all k, derivative 

test is to examine the relationship between the first 

r(k+l)th moments of the distribution then the log likelihood 

must be a polynomial of order r in (u-m).

As an example of these higher order tests we consider 

the standard normal distribution. The LLF of one 

observation is given by

G
E (I. 9 = 1 '

32C.
3m 3m'
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LLF = 

3LLF

3m

3 2 LLF

3m2

3 k LL F 

3mk

Therefore

const 

u - m , 

= -1 , 

= 0,

- — (u-m)2 ,
2

k > 2.

d3 = (u-m) 3 - 3(u-m) ,

a nd

d 4 = F 4 ( e 0 ) + 4 F 3F 1 ( e 0 ) + 3 F 2 ( e 0 ) 2 + 6 F 2 ( e 0 ) F 1 ( e 0 ) 2+ F 1 ( e 0 ) 4 

= 3-6(u-m)2 + (u-m)4 ,

“ 5 “

F 5 ( 0 O ^ + F 4 ^ 9 O ^ F l ^ 0 O ^ + 4 ^ F 4 ^ 9 O ^ f:i ^ 0 O ^ + F 3 ^ e O ^ ,:2 ^ 9 O ^ +F:3 ^ 9 O ^ F l ^ 9 O ^ 2  ̂

+ 3 [ 2 F 2 ( e o ) F 3 ( 0 o ) + F 2 ( e o ) 2F 1 ( e o )]

+ 6[F3 (0Q )F1(0O ) + F 2 (0Q )2 + F 2 (0q )F1(0Q )2]F j (0Q )

+ 4F2 (0o )f i (0o )3+f i (0o )5

= 3(u-m) + 6 - 6(u-m) 2 - 4(u-m) 3 + (u-m) 3 

= (u-m)3 - 4(u-m)3 - 6(u-m)2 + 3(u-m) + 6.



The first two tests involving d 3 and d4 are identical 

to the LM tests for normality based on the Edgeworth

expansion derived by Keifer and Salmon (1983). These two
. p

tests are independent under Hg and a X 2 Test of normality

can be derived by regressing a constant on d3 , d4 and

3LLF/3m. However the d5 indicator vector is not

interpretable as such an LM test, as it is not the sample

estimate of the fifth cumulant of the distribution.

8.5 Quadratic exponential family

If we require estimates of the first and second 

conditional moments of the distribution of yt , which are 

strongly consistent and asymptotically normally distributed 

for all possible true distributions with the same first two 

moments, then GMT (1984a) show that it is necessary for the 

assumed distribution to be a member of the quadratic 

exponential family.

This family is characterised as follows:

a) every element of the family has a density function 

with respect to a given measure v(du), which can be 

written as

L ( u , m , £ ) = exp{A(m,E)+B(u)+C(m,£)u+u'D(m,E)u},

where m e M C  R G , E is a p.d. matrix, A(m,E), B(u) 

are scalars, C(m,E) is a row vector of size G and 

D(m,E) is a G x G matrix.

b) m is the mean and E the covariance of the 

distribution L(u,m,E).

The necessity of the assumed distribution to come from
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this family for the strong consistency of the estimator 

follows easily when we note,

' a£ 3 D ̂ / 3m '

3 A (m , E ) _ 3C.. . a X 3D„/3m  *- ------m + 2 2  ,
3m 3m

_ 3 Dq / 3m

where is the i*-11 column of D. Also

The pseudo likelihood will therefore always have a 

consistent root. However if all we know about the true 

distribution is its first two moments then for the PMLE to 

be strongly consistent for all true distributions with those 

moments, the pseudo score must be linear in (u u '-e ) and (u-m).

To calculate the information matrix test for this

3A(m,ï)
ctJ3D1/3E

(m' ®  I) +

The score vector can therefore be written as

31 nL = — (u-m) +
3m 3m

?(uGuj - aGj)3DGj/3m
J

31 n L [(u-m)^ ® I]-- — -- -
3 ( S “ 1 )

+

L J

E(u1Uj -alj)3Dlj/3E

^ u Guj-a Gj>3D Gj/3l:

model, we require the hessian To simplify the notation let
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S(u 1UJ -o1J )aD1J/»E

_J(uGuJ-aGj)8D Gj/íE

- 1'

- 1 '

and

E ( u 1 uj. -CTjj ) SDj / am

JZ(uGuj - aGj)3DGj/3,n

Therefore

32lnL 
3m 3m '

■ r G 3 2C 3 v
i £  + E ---- 9-  + -- ¡Ü,
3m g=l 3m3m' 3m

32lnL 3v.

3m 3 E-1 c " —  + ((u-m) ' « I) 3[3C/3m]c

3 E 3 E- 1 c 7 ~ ’

a 2 l n . iC 9v.
3 T = (I ®  [(u-m)' ® I]3[3C / 3E 1 ]/3E 1 +- 1 C - 1 C3 E 3 E 3 E- 1'

The information matrix test examines hypotheses about 

the first four moments of the distribution. In a similar 

fashion to Hall (1982), the indicator vector can be divided 

into three components. The first compares two estimater of

« 9 a I I F a l l F
the covariance of m T , {3£LLF/3m.3m . } and {-2---  ----—} , and 1s

J 3mi 3nij
a test on a linear combination of the 2nc*, 3rd and 4th 

moments of u. The second compares the estimator of the 

covariance of m^ and j , and is a test on a linear 

combination of the first four moments of u. Finally the
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vector comparing {32LLF/3j:71 s e T 1 } with ( i-L-L F •1 J , c
3 LLF

a l. • a l .
another test on a linear combination of the first four

moments of the distribution.

Hall (1982) shows that in the normal linear fixed 

regressor model, the IMT decomposes asymptotically under H0 
into the sum of three independent tests: a test of 

homoscedasticity, a test of skewness and one of nonnormal 

kurtosis. This decomposition dependent on the symmetry of 

the distribution about zero and whilst it generalises to the 

nonlinear counterpart of this model, as we show below, it is 

clearly not going to be a general property of the quadratic 

exponential family.

We consider the case where G = 1, but our results 

generalise to higher order dimension vectors.

The LLF of one observation is

LLF = const —i-lno2 
2 - (xt ,e))

2 *
2 a

and

3LLF

3LLF
T ~ T ~ — ~7 + —~x( y*  ( x t  ’ 6 ^

2
2 a 2a

363 6

= — j-( yt -f (xt , e ))
3 ft

3 6 3a a

2
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The i n d i c a t o r  v e c t o r  i s  t h e r e f o r e  i d e n t i c a l  t o t h a t  de r i v e d  

by Hal l  ( 1982)  once 3 f t / 3 0  i s  s u b s t i t u t e d  in f o r  xt , as

where Aj has  s t h  e l e me n t :

1 9 f t  . 9 f t ,  2 2,
36.

A2 bas  r t  ̂ el  ement

3 f.  ̂ 9 1
z~ —  ( ut ' 3ut a '>~ 5 '

and

3u(4
. „ -8,u t JUt 2 A 3 4,Aq = Eu (--  - --- a + — a ) .

J 4 3 4

For t he  d e c o mp o s i t i o n  we r e q u i r e  the covtA^.A^) = 0 f o r  

i * j . Thi s  f o l l o w s  i mme d i a t e l y  f o r  c o v (a 2 ,Aj ), as  i t  i s  a 

l i n e a r  f u n c t i o n  o f  the odd moments of  ut  and so under  Hg i s  

z e r o .  The f a c t  t h a t  c o v (a ^, a 3 ) i s  z e r o  f o l l o w s  f rom

3 f . 3 f  * - ,

3 e i 3 6 j
111 lll_n- l r 3 f t 111
30i 36. 30i 30.

and so

. 3 f.. _i ® 2 2
c o v ( A, >Ao) = n” * e E[  1 — - - n  s — -  — —D ( u i - a ) A 3 ]

1 J 3 6 i 3 9 j 36i 3 6 j

i
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In t he  n o n l i n e a r  r e g r e s s i o n  model wi th nor mal l y  

d i s t r i b u t e d  e r r o r s ,  t he  IMT a s y m p t o t i c a l l y  decomposes  i n t o  

t he  sum of  t h r e e  s t a t i s t i c s  ea c h o f  which t e s t s  

h o m o s c e d a s t i c i t y , s kewnes s  and z e r o  mean,  and nonnormal  

k u r t o s i s  a l o n e .  F ur t he r  t he  t e s t s  are a s y m p t o t i c a l l y  

i n d e p e n d e n t ,  i f  t he  moments o f  t h e  e r r o r  p r o c e s s  a r e  f i n i t e  

up to and i n c l u d i n g  o r d e r  e i g h t  and wi th odd moments z e r o .  

Note t he  r e ma i n i ng  p a r t  of  t he  a n a l y s i s  in Hal l  ( 1982)  

c o n c e r n i n g  t he  power of  the t e s t  cannot  be g e n e r a l i s e d  t o 

t he  n o n l i n e a r  model  as  i t  r e q u i r e d  Amemiya' s  r e s i d u a l  

decompos i  t i  on .

8.6. Discussion

The PML p r oc e d ur e  c o n c e n t r a t e s  on mod e l l i ng  t he  f i r s t  

two moments o f  t he  p r o c e s s .  The us e  of  the e x p o n e n t i a l  

f a m i l y  g u a r a n t e e s  t ha t  t he  e s t i m a t o r  i s  a l ways  c o n s i s t e n t  

and so we can c o n s t r u c t  c o n s i s t e n t  e s t i m a t o r s  of  the 

c o v a r i a n c e  ma t r i x  of  the PMLE.

I t  has  been ar gued t h a t  t he  i n f o r ma t i o n  ma t r i x  t e s t  i s  

t he  n a t u r a l  p r o c e d ur e  f o r  a s s e s s i n g  the v a l i d i t y  up t o t he  

s ec ond moment o f  t he s e  mo d e l s .  In the exampl e  c o n s i d e r e d ,  

t he  IM t e s t  e xa mi ne s  whet her  t he  r e l a t i o n s h i p  between mean 

and v a r i a n c e  i m p l i c i t l y  as s umed by the c ho i c e  of  

d i s t r i b u t i o n ,  i s  s u p p o r t e d  by t he  d a t a .  These t e s t s  can be 

us e d  o u t s i d e  t he  r e g r e s s i o n  f r a me wor k ,  and as  hi gher  o r d e r  

d e r i v a t i v e  t e s t s  bas ed on t he  l i n e a r  e x p o n e n t i a l  f a mi l y  a r e  

t e s t s  on l i n e a r  c o mb i n a t i o n s  o f  t he  c e n t r a l  moments ,  t hey 

p r o v i d e  u s e f u l  t e s t s  of  the d i s t r i b u t i o n .  In t h i s  c o n t e x t ,  

t he  IM t e s t  can r e f u t e  t he  h y p o t h e s i s  t h a t  the da t a  were 

g e n e r a t e d  by a bi nomi a l  d i s t r i b u t i o n ,  s a y ,  but  does  not



n e c e s s a r i l y  c o n f i r m t h i s  i f  an i n s i g n i f i c a n t  s t a t i s t i c  i s  

r e c o r d e d  as  more than one d i s t r i b u t i o n  may have t h i s  mean- 

v a r i a n c e  r e l a t i o n s h i p .

For  t he  c a s e  in which ŷ . i s  s c a l a r ,  then an a l t e r n a t i v e  

method o f  c he c k i ng  t he  v a l i d i t y  of  the d i s t r i b u t i o n a l  

a s s u m p t i o n s  i s  to us e  t he  goodne s s  of  f i t  t e s t  o u t l i n e d  by 

Heckman ( 1 9 8 4 ) .  Thi s  i n v o l v e s  d i v i d i n g  t he  r ange  o f  y up 

i n t o  more than two model  a d m i s s i b l e  i n t e r v a l s ,  and compar i ng  

t he  e x p e c t e d  and a c t u a l  f r e q u e n c i e s  in each i n t e r v a l .  I t  

r e p r e s e n t s  an i n e f f i c i e n t  t e s t  o f  a c o mp o s i t e  h y p o t h e s i s  

a b out  a l l  t he  moments of  the d i s t r i b u t i o n ,  but  i t s  a dv a nt a g e  

compared t o t he  IMT i s  t h a t  i t  exami nes  t he  s hape  of  the 

d i s t r i b u t i o n  and u s e s  i n f o r ma t i o n  on what r ange  of  v a l u e s  

s h o u l d  have been o b s e r v e d .

However such a t e s t  i s  not  whol l y  a p p r o p r i a t e  f o r  t he  

PML f ramework in which we a r e  c onc e r ne d  wi th the f i r s t  two 

moments  o f  t he  p r o c e s s  a l o n e .  Fur t he r mor e  w h i l s t  the 

g o o d n e s s  o f  f i t  t e s t  u s e s  i n f o r ma t i o n  on the " s h a p e "  of  t he  

d i s t r i b u t i o n ,  which may be of  i n t e r e s t  when f o r e c a s t i n g ,  the 

c o n s t r u c t i o n  o f  g o od ne s s  o f  f i t  t e s t s  when yt  i s  a v e c t o r  1s 

a n o n t r i v i a l  e x e r c i s e  and so t he  method would not  appear  

e a s i l y  i mp l e me n t a b 1e f o r  model s  o f  the g e n e r a l i t y  d i s c u s s e d  

i n t h i s  c h a p t e r .

The IM t e s t  i s  not  wi t hout  i t s  pr obl ems  as  w e l l .  

F i r s t l y ,  a l t h o u g h  we can c o n s t r u c t  c o n s i s t e n t  e s t i m a t o r s  o f  

t he  c o v a r i a n c e  i f  t he  model  i s  m i s s p e c i f 1e d , the 

i n t e r p r e t a t i o n  of  a s i g n i f i c a n t  s t a t i s t i c  i s  onl y t ha t  t he  

a s s umed d i s t r i b u t i o n  i s  not  c o r r e c t .  We coul d  conduct  a 

s u c c e s s i o n  o f  IM t e s t s ,  g i ven c o n s i s t e n t  e s t i m a t e s ,  to 

a s s e s s  which d i s t r i b u t i o n  i s  most  in keepi ng  wi th the



d a t a .  The s e que nc e  i s  not  i ndepe nde nt  and s o  we can onl y 

p l a c e  a bound on t he  s i z e  of  the t e s t .  I n t e r p r e t a t i o n  of  

t he  r e s u l t s  may a l s o  be d i f f i c u l t  i f  more t ha n one t e s t  i s

i n s i g n i f i c a n t .
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9 .  CONCLUSIONS

In t h i s  t h e s i s  we have exami ned the p r o p e r t i e s  of  

NLFIML in bot h s t a t i c  and dynami c mo d e l s ,  and the p a r a me t e r s  

r e s t r i c t i o n s  i m p l i c i t  in t he  r e q ui r e me nt  t h a t  our 

s p e c i f i c a t i o n  be c o h e r e n t .  I t  has been shown t h a t  t he  c l a s s  

o f  t r u e  d i s t r i b u t i o n s  f o r  which NLFIML i s  c o n s i s t e n t  depends  

on t he  n o n l i n e a r i t i e s  p r e s e n t  in t he  s y s t e m.  I f  i t  i s  

p o s s i b l e  t o wr i t e  down an e x p l i c i t  r educed form f o r  the 

s y s t e m,  t hen we can f i n d  f a m i l i e s  o f  t r u e  d i s t r i b u t i o n s  f o r  

which c o n s i s t e n c y  i s  g u a r a n t e e d .  For  I n s t a n c e  in l o g s  and 

l e v e l s  model s  NLFIML i s  c o n s i s t e n t  f o r  t r u e  d i s t r i b u t i o n s  

wi t h  a p a r t i c u l a r  moment g e n e r a t i n g  f u n c t i o n .  However i f  

t he  r e duc e d  form i s  i m p l i c i t  then t he  onl y  a n a l y t i c a l  

r e s u l t s  a v a i l a b l e  a t  t h i s  d e g r e e  o f  g e n e r a l i t y  are  two 

f o l d .  F i r s t l y ,  i t  i s  p o s s i b l e  t o f i nd  d i s t r i b u t i o n s  e i t h e r  

by s u i t a b l y  c h o o s i n g  t he  c o r r e l a t i o n  s t r u c t u r e  or mi xi ng  

d i s t r i b u t i o n  o f  t he  e r r o r s ,  but  the e x a c t  c h o i c e  in any 

p a r t i c u l a r  c a s e  depends  on t he  n a t u r e  of  the u n d e r l y i n g  

r e duc e d  f o r m.  S e c o nd l y ,  and more g e n e r a l l y ,  a p a r t  f rom 

t h e s e  s p e c i a l  c a s e s ,  NLFIML i s  onl y g u a r a n t e e d  to be 

c o n s i s t e n t  i f  t he  model  i s  c o r r e c t l y  s p e c i f i e d .  Thi s  does  

not  r u l e  out  t he  p o s s i b i l i t y  o f  t h e r e  be i ng  nonnormal  t r ue  

d i s t r i b u t i o n s  1n any p a r t i c u l a r  c a s e  f o r  which NLFIML i s  

c o n s i s t e n t ,  but  i t  does  s u g g e s t  t h a t  i t s  r o b u s t n e s s  can by 

no means be a s s ume d .

Our a n a l y s i s  has  f r e q u e n t l y  used the s t a t i s t i c a l  

nome n c l a t u r e  i n t r o d u c e d  by White in hi s  deve l opment  o f  QMLE 

t h e o r y .  However we have f o c u s e d  a t t e n t i o n  on an I s s u e  t ha t  

has  not  r e c e i v e d  p r o p e r  t r e a t me n t  in t h i s  l i t e r a t u r e .  White 

( 1982)  c o n c e n t r a t e s  on the c o n d i t i o n s  f o r  the conve r ge nc e  of
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t he  QMLE t o t he  KLIC mi n i mi s i ng  v a l u e ,  whereas  we have 

e x t e nd e d  t h i s  l i n e  of  a n a l y s i s  by e x a mi ni ng  t he  c o n d i t i o n s  

under  which t h i s  i s  the t r u e  v a l u e .  The l a t t e r  i s  an 

i mp o r t a n t  q u e s t i o n  be c a us e  once we l e a v e  the i . i . d .  

f r amework wi t h which White ( 1982)  wor ke d ,  t he  i m p l i c a t i o n s  

f o r  our  t e s t  p r o c e d u r e s  bas ed on t he  QMLE a r e  no l o n g e r  the 

same r e g a r d l e s s  of  whether  t he  KLIC mi n i mi s i n g  va l ue  i s  or 

i s  not  t he  t r u e  v a l u e .  Thi s  po i nt  i s  acknowl edged in White 

( 1 9 8 3 ) ,  a l t h o u g h  the e x t e n t  of  i t s  i m p l i c a t i o n s  are  not  

e x a mi n e d .  In t h e  c l a s s  of  model s  we have c o n s i d e r e d ,  i f  i t  

i s  not  p o s s i b l e  t o  o b t a i n  c o n s i s t e n t  e s t i m a t e s  of  the f i r s t  

moments then we cannot  o b t a i n  c o n s i s t e n t  e s t i m a t e s  o f  t he  

c o v a r i a n c e .  The r e s u l t  i s  t ha t  we a r e  reduced t o what White 

( 1 9 8 3 )  has  t e r med c o n s e r v a t i v e  i n f e r e n c e  ba s ed on t he  QMLE. 

I t  i s  b e c a u s e  o f  t h e s e  i m p l i c a t i o n s  f o r  t e s t  p r o c e d u r e s  t ha t  

we have r e j e c t e d  t he  White ( 1982)  n o me n c l a t u r e  and r e s e r v e d  

t he  term c o n s i s t e n c y  f o r  c onve r g e nc e  t o the t r u e  v a l u e ,  

which i s  i t s  c o n v e n t i o n a l  meani ng.

T y p i c a l l y  i t  i s  a rgued t h a t  our  n o n l i n e a r  e c onome t r i c  

model  has  a s t r u c t u r a l  e q u a t i o n  i n t e r p r e t a t i o n .  C o n s i s t e n t  

e s t i m a t i o n  t hen has an i n t r i n s i c  a p p e a l  of  i t s  own i f  the 

p a r a me t e r s  t h e m s e l v e s  a r e  of  c o n c e r n .  However c o n s i s t e n c y  

r e t a i n s  i t s  i mp o r t a n c e  as  a c r i t e r i a  f o r  e s t i m a t o r  s e l e c t i o n  

even i f  we r e q u i r e  onl y a f o r e c a s t i n g  model .  For  any 

s p e c i f i c a t i o n  s e a r c h e s  f o r  a more p a r s i mo n i o u s  

r e p r e s e n t a t i o n  o r  the c a l c u l a t i o n  o f  f o r e c a s t  i n t e r v a l s  

r e q u i r e  c o n s i s t e n t  e s t i m a t i o n  of  t he  c o v a r i a n c e  ma t r i x  of  

t he  QMLE. The s t r u c t u r a l  e q u a t i o n  i n t e r p r e t a t i o n  e n t a i l s  

s t r i n g e n t  p a r a me t e r  r e s t r i c t i o n s ,  i n most  c a s e s ,  f o r  t h e r e  

t o  be a uni que  r educed f or m.  In t he  c o u r s e  of  our work we



have not ed t h a t  v a r i o u s  a u t h o r s  ( Go u r i e r o u x ,  Monfort  and 

Trognon,  ( 1 9 8 4 ) ,  B u r g u e t t e ,  G a l l a n t  and Souza ( 1 9 8 3 ) )  have 

o b t a i n e d  power f ul  r e s u l t s  f o r  t he  n o n l i n e a r  r e g r e s s i o n  

mode l .  The i n t e r p r e t a t i o n  of  such model s  i s  open t o 

q u e s t i o n .  In most  s i t u a t i o n s  t hey cannot  be r e ga r de d  as  the 

r educed form e q u a t i o n s  a s s o c i a t e d  wi th a n o n l i n e a r  model .

I f  we have a f u n c t i o n a l l y  c o n s t a n t  n o n l i n e a r  s t r u c t u r a l  

e q u a t i o n ,  t hen f rom t he  i m p l i c i t  f u n c t i o n  t heorem we know 

t h a t  in t he  m a j o r i t y  of  c a s e s  in economi c m o d e l l i n g ,  the 

r educ ed  form wi l l  not  remai n f u n c t i o n a l l y  c o n s t a n t  over  t he  

s a mpl e  s p a c e .  Whi l s t  the r e g r e s s i o n  model can be argued t o 

be an a p p r o x i m a t i o n ,  in some s e n s e ,  t o the reduced form,  i t s  

" a c c u r a c y “ wi l l  va r y  f rom c a s e  t o  c a s e  and depend on what 

may be an a r b i t r a r y  c h o i c e  o f  f u n c t i o n a l  f or m.  Within t h e s e  

model s  t he  q u e s t i o n  o f  c o n s i s t e n c y ,  exami ned by GMT ( 1 9 8 4 a ) ,  

r e t a i n s  i t s  i m p o r t a n c e ,  as  do s p e c i f i c a t i o n  t e s t s  even in 

t he  PMLE f ramework where i t  i s  e x p l i c i t l y  acknowl edged t h a t  

t he  e r r o r  d i s t r i b u t i o n  i s  i n c o r r e c t .  S p e c i f i c a t i o n  t e s t s  

p r o v i d e  e v i d e n c e  of  when t he  e x i s t i n g  c h o i c e  of  f u n c t i o n a l  

form may be i n a d e q u a t e ,  and i mproved f o r e c a s t s  can be ga i ne d  

f rom an a l t e r n a t i v e  f o r m u l a t i o n .  I t  has been a r gued in 

c h a p t e r  8 t h a t  t he  i n f o r m a t i o n  ma t r i x  t e s t  ( Whi te ,  1982)  

would be a n a t u r a l  c h o i c e  f o r  t h i s  p u r p o s e .

The p e r f o r ma nc e  of  NLFIML has been c o n t r a s t e d  wi th t h a t  

o f  NL3SLS,  which 1s c o n s i s t e n t  and a s y m p t o t i c a l l y  nor ma l l y  

d i s t r i b u t e d  f o r  mean z e r o  e r r o r  p r o c e s s e s  under  c o n d i t i o n s  

a n a l o g o u s  t o  t he  l i n e a r  mode l .  I t  has the drawback of  be i ng  

a s y m p t o t i c a l l y  i n e f f i c i e n t ,  in g e n e r a l ,  1f  the t r u e  e r r o r  

d i s t r i b u t i o n  1s n o r ma l .  However i t  may be argued t ha t  

n o r m a l i t y  i s  t o  some e x t e n t  a r b i t r a r y  as  i t  i s  j u s t  an
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a n a l y t i c a l l y  t r a c t a b l e  way of  c a p t u r i n g  t h r e e  b a s i c  

p r o p e r t i e s  o f  t he  e r r o r  p r o c e s s ,  u,  i )  i t  can t a ke  on any 

v a l u e  in Rm, i i )  p ( 0 < u < a )  = p ( - a < u < 0 )  f o r  some p o i n t ,  a ,  

i i i )  p ( | u | > a ) monot oni c a l  1y d e c r e a s e s  making e x t r e me  v a l u e s  

uni  i kel  y .

Once we c o n s i d e r  t he  c a s e  of  o t he r  s ymmet r i c  e r r o r s  

t hen NL3SLS has g u a r a n t e e d  d e s i r a b l e  a s y mp t o t i c  p r o p e r t i e s ,  

and NLFIML may no l o n g e r  have an e f f i c i e n c y  a d v a n t a g e .  The 

c e n t r a l  i mp o r t a n c e  o f  t e s t i n g  p r o c e d u r e s  in e c o n o me t r i c s  and 

t he  a n a l y t i c a l  d i f f i c u l t i e s  of  compar i ng  t he  e f f i c i e n c y  of  

NL3SLS and NLFIML,  s u g g e s t  t ha t  the r o b u s t n e s s  p r o p e r t y  

s hou l d  be g i ve n  more we i g ht  in our  c ho i c e  of  e s t i m a t o r .  Our 

a n a l y s i s  shows t h a t  t he  i n c o r r e c t  i mp o s i t i o n  of  the 

n o r m a l i t y  a s s ump t i o n  i s  l i k e l y  t o b i a s  i n f e r e n c e  in 

n o n l i n e a r  mo d e l s ,  and so NL3SLS would a ppe a r  t o be t he  

p r e f e r e d  e s t i m a t o r .

Al t hough NL3SLS r e s u l t s  from an o p t i m i s a t i o n  r o u t i n e  

t h a t  does  not  t a ke  e x p l i c i t  ac c ount  of  the J a c o b i a n  

r e s t r i c t i o n s ,  i f  our model  s p e c i f i c a t i o n  i s  t o have a 

s t r u c t u r a l  i n t e r p r e t a t i o n  t he  e s t i m a t o r s  s houl d  s a t i s f y  

t h o s e  c o n d i t i o n s .  E v i de nc e  of  t h e i r  v i o l a t i o n  c a l l s  i n t o  

q u e s t i o n  t h i s  i n t e r p r e t a t o n  of  t he  model .  A l t e r n a t i v e l y  our  

g e n e r a l  n o n l i n e a r  model  can be c o n s i d e r e d  as  one of  an 

I n f i n i t e  number o f  a p p r o x i m a t i o n s  t o  the dgp ,  and so s houl d 

be i n t e r p r e t e d  l i k e  t he  r e g r e s s i o n  model  as  a method of  

o b t a i n i n g  f o r e c a s t s .  From the i m p l i c i t  f u n c t i o n  t heorem we 

know t he  c h o i c e  of  a r e g r e s s i o n  or  more g e ne r a l  n o n l i n e a r  

model  i s  not  I n t e r c h a n g e a b l e  1n t e r ms  of  t he  c o r r e l a t i o n s  

e x p l o i t e d  b e c a u s e  a f u n c t i o n a l l y  c o n s t a n t  s ys t em of  

n o n l i n e a r  e q u a t i o n s  does  not  u s u a l l y  s o l v e  f o r  a
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f u n c t i o n a l l y  c o n s t a n t  r e g r e s s i o n  model  . The a dv a nt a g e  of  

t he  f ( y > x , a )  = u f r amework i s  t h a t  i t  can be used f o r  p o l i c y  

s i m u l a t i o n  ( i n  t he  s p i r i t  of  S i ms ,  1982,  s ee  c h a p t e r  1 

a b o v e ) ,  wher eas  t he  r e g r e s s i o n  model r e l e g a t e s  the 

s i m u l t a n e i t y  to the e r r o r  p r o c e s s .

E s t i m a t o r s  and f o r e c a s t s  s houl d  a l ways  then be 

i n t e r p r e t e d  c o n d i t i o n a l  on the chos en f u n c t i o n a l  form and 

l o s s  f u n c t i o n  empl oyed in e s t i m a t i o n .  Thi s  r e t u r n s  us to 

t he  pr ob l e ms  of  c h o o s i n g  a model and a s s e s s i n g  i t s  adequacy 

d i s c u s s e d  in c h a p t e r  1.  I t  was a r gue d  t he r e  t h a t  the 

s t r a t e g y  o f  a s s umi ng  a l i n e a r  model u n l e s s  d i a g n o s t i c s  

s u g g e s t e d  i t s  i n a d e q u a c y  was u n d e s i r a b l e  be c a us e  of  

b l i n k e r e d  I n t e r p r e t a t i o n s  of  such t e s t s .  Thi s  probl em 

a p p e a r s  in our  c h o i c e  o f  d i a g n o s t i c  f o r  any model ,  a s  our 

c o n c l u s i o n s  r e s u l t  f rom t he  i mp o s i t i o n  of  s u b j e c t i v e  

o p i n i o n s .  At p r e s e n t ,  o u t s i d e  the l i n e a r  f r amework,  t her e  

e x i s t  l i m i t e d  methods  o f  d i s c r i m i n a t i n g  between two model s  

t h a t  can be c o n s i d e r e d  o f  the same f u n c t i o n a l  f orm,  f o r  

i n s t a n c e  b e c a u s e  t hey a r e  both b i l i n e a r .  Whearas what i s  

i d e a l l y  r e q u i r e d  i s  some method of  s e l e c t i n g  t he  a p p r o p r i a t e  

c l a s s  of  f u n c t i o n a l  form t o  be c o n s i d e r e d .  The probl ems  of 

s t a t i s t i c a l  dependence  between a s e que nc e  of  t e s t s  and the 

c h o i c e  o f  t he  a p p r o p r i a t e  c o r r e l a t i o n s  t o examine s u g g e s t  

e a s i l y  i n t e r p r e t a b l e  p r o c e d u r e s  f o r  such c l a s s  

i d e n t i f i c a t i o n  a r e  go i ng  t o  be very d i f f i c u l t ,  i f  not  

i m p o s s i b l e ,  t o  o b t a i n  f o r  n o n l i n e a r  mo d e l s .  In t h e i r  

a b s e n c e  i t  i s  i mp o r t a n t  t o be aware o f  the l i m i t a t i o n s  of  

e c o n o me t r i c  model s  and t o  be very c a u t i o u s  in a t t a c h i n g  any 

s t r u c t u r a l  or  dgp i n t e r p r e t a t i o n  t o t hem.  I n s t e a d  t he s e  

model s  s houl d  be more p r o p e r l y  r e g a r d e d  as  an a ppr ox i ma t i on
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whose i n t e r p r e t a t i o n  i s  c o n d i t i o n a l  on the chos en f u n c t i o n a l  

form and e s t i m a t i o n  l o s s  f u n c t i o n .  For  a g i ven ge ne r a l  

n o n l i n e a r  model  we have d e mo n s t r a t e d  t h a t  t he  l o s s  f u nc t i o n  

i m p l i c i t  in NL3SLS i s  more a p p r o p r i a t e ,  g i ven c o nv e nt i o na l  

r e q u i r e m e n t s ,  t han t h a t  of  NLFIML.  The deve l opment  of  more 

s o p h i s t i c a t e d  met hods  of  d i s c r i m i n a t i n g  between n o n l i n e a r  

mo d e l s ,  a f t e r  e s t i m a t i o n ,  r emai ns  an a r e a  worthy o f  f u r t h e r  

r e s e a r c h .



APPENDICES

Appendi x  1 : Pr oo f  of  Gale and N i k a i d o ' s  Uni va l ence  Theorem 

In t h i s  a p p e nd i x  we p r e s e n t  Gale and N i k a i d o ' s  ( 1968)  

p r o o f  o f  t h e i r  u n i v a l e n c e  t heorem ( t heorem 4 p.  8 6 ) :

I f  F:  ft -*■ Rn , where ft i s  a c l o s e d  r e c t a n g u l a r  r e g i o n  of  

Rn , i s  a d i f f e r e n t i a b l e  mappi ng such t h a t  the J a c o b i a n  

m a t r i x  J ( x )  i s  a P - ma t r i x  f o r  a l l  x in ft, then F i s  

u n i v a l e n t  in n.

Proof

Suppos e  a , b  e ft and F ( a )  = F ( b ) .  We need t o show t ha t  

a = b .  Let  a  ̂ , b  ̂ be t he  1th e l e me nt s  of  a and b 

r e s p e c t i v e l y .  S u p p o s e ,  maybe a f t e r  r e o r d e r i n g  t h a t ,

a i t b i ( i <k ) ,  a > b.¡ ( i > k ) .  We need t o c o n s i d e r 3 c a s e s .

Case 1 : k = n,  t hen F ( a )  = F ( b )  and a < b , and so by the

amended t heorem 3,  a = b .

Cas e 2: k = 0 ,  a = b by s i m i l a r  r e a s o n i n g  t o c a s e 1.

Cas e 3: 0 < k < n.  Def i ne  t he  mappi ng D: Rn + Rn by

D( x j . • • » *n ) ~ n ) •

D i s  u n i v a l e n t  on Rn and D-1 = D. Fur t he r D(n) i s

a g a i n a c l o s e d  r e c t a n g u l a r  r e g i o n .  Let D( a ) = a * and D(b)

b * . Let H: D( ft) -*■ Rn be the c omp o s i t e mappi  ng gi ven by H

D o F 0 D. Thi s i m p l i e s  H( a * )  = H( b* )
★

a n d a  <
*

b • As the

J a c o b i a n  ma t r i x  of  the pr oduc t  o f  two t r a n s f o r m a t i o n s  i s  the 

p r o d u c t  o f  t he  J a c o b i a n  of  e a c h ,  we have the J a c o b i a n s  o f  H 

and F a r e  i d e n t i c a l .  The r e f o r e  t he  J a c o b i a n  of  H i s  a P- 

ma t r i x  and by t he  amended t heorem 3 a p p l i e d  t o H we have 

a *  » b *  whi ch i m p l i e s  a = b
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Appe ndi x  2

Ha. j ek-Renyi  i n e q u a l i t y :

Let  Xj,X2 ... be i ndepe nde nt  r . v ' s  such t ha t  EX-j = 0 and 
2

V ( X i ) = < ». If cj,c2 ... is a nonincreasing sequence of

positive constants, then for any positive integers m,n with 

m < n and arbitrary e > 0

p( max c j  X . + .  , + X j  >e)  < I , . ( c 2 Eo? + E c ? o ? ) .  
m<k<n K 1 K '  " e Z m 1 1 m+1 1 1

The p r o o f  of  t h i s  r e s u l t  onl y r e q u i r e s  the i ndependence  

o f  t he  X-j t o  i mpl y t h e i r  o r t h o g o n a l i t y .  ( See  Rao,  1973, p.  

142.)

Appendi x  3

Or de r  of  Mi x i n g a l e  s e q ue nc e s

Our d i s c u s s i o n  of  the c onve r g e nc e  o f  a mi x i n g a l e  

s e q u e n c e  i s  r e s t r i c t e d  to p r o c e s s e s  wi t h i|>n e x h i b i t i n g  a 

p a r t i c u l a r  r a t e  of  c onve r g e nc e  t o z e r o .  These c o n d i t i o n s  

e n s u r e  t h a t  t he  v a r i o u s  summat i ons  under  c o n s i d e r a t i o n  do in 

f a c t  c o n v e r g e .

McLei sh ( 1975)  d e f i n e s  t o be of  s i z e  -p i f  t he r e

e x i s t s  a p o s i t i v e  s e que nc e  { L ( k ) > such t h a t

a)  En n -1L(n) < » ,

b ) Ln“ Ln-l - 0(L (n )/n ),

c)  Ln i s  e v e n t u a l l y  n o n d e c r e a s i n g ,

d) *n = 0[l/n1/2L(n)]2p.

T h i s  can be t r a n s l a t e d  i n t o  a s i n g l e  o r d e r  c o n d i t i o n ,  as  any 

s e q u e n c e  whi ch i s  0 [ n ^I ^1o g n ( 1 o g l o g n )  ̂ p wi th 6 > 0 i s  of  

s i z e  - p / 2 .

The m i x i n g a l e  c onve r g e nc e  t heorem r e q u i r e s  4>n to be of
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size -1/2, and subsequent order restrictions on *(ni) and a(m) 

guarantee the mixing processes are mixingaies of size -1/2.

Appendix 4: Proof that a-mixinq processes are mixinqales 

We need to show

I IE(X|F*)-E(X) | |p < 2(21/P + l)a(F*,G*)1/P -1/r| |X| |p .

This is proved in lemma 2.1 of McLeish (1975).

Let c = a(m)_1/r | | X | |r and = XI(|X|<c), where I(') 

is the indicator function, and X2 = X-Xj. We neglect a = 0 

case for which the result is trivial and put a > 0.

By Minkowski's inequality, namely if r > 1 then

E 1/ r |X+Y |r < E 1/r|X|r + E 1/r|Y|r ,

and the fact that X = X^ + X2 we have

I | E ( X | F * ) - E ( X )  | | p < | | E ( X 1 | F * ) - E ( X 1 )| | p + | | E ( Xg | F * ) - E X 2 | | p .

From the definition of Xj = XI ( |X|<c) it follows that 

Xj < c and so E(Xj|F*) and E(Xj) must lie between [-c,c] and 

so the maximum discrepency between E(X^|F*) and EXj Is 2c. 

Therefore

||E(X1 |F*)-EX1||p < E 1/p[2c]P-1 |E(X1 |F*)-EX1|

Ell
= (2c) P E 1/p|E(X1|F*)-EX1|.

From part a) and putting p = r we have
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I IE(X2 |F* )-EX2 | | < 2*(m)1-1/P||X2 | |p < 2||X2 ||p ,

as <)> (m ) lies between 0 and 1 by its definition and p > 1. 

Taken together this implies

* P-1
I IE(X|F* )-E(X)| |p < (2c) p E1/P|E(X1 | )-EX1 | + 2 | |X2 | |p , (1) .

To develop the next part of the proof we need two

results from Dvoretsky (1972): lemmas 5.1 and 5.2. Using

the Jordan decomposition arguments of part a) we can

establish that if x and y are two r.v's satisfying |X| < 1,

|Y| < 1 and putting a = sup|P(XeB)-P (yeB)| where the sup is
B

over all Borel sets B, then |EX-EY| < 2a . This can be shown 

as foilows:

Let v(B) = P(XeB)-P(yeB) for all Borel sets B, and so 

it is signed measure. Now

|EX-EY | = | ftv(dt) | < f 11 | | v| ( d t ) < f | v | (d t ) ,

where |v|(B) is the total variation of X on B. Let B+ and 

B” be a Jordan decomposition of [-1,1] corresponding to v, 

then

|v|([-l.l]) = 2 v (B + ) = 2A .

We are Interested in r.v's bounded by an arbitrary 

constant, c. The above argument carries through when we 

standardise the bound to give |X/c| < 1 and |Y/c| < 1, the 

resulting bound on E | X — E Y| < 2a c .

Using this result Dvoretsky (1972) shows that if
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|X| < c and If F* = B(x) with G* any a-field in the

probability space then E|E(X|G*)-EX| < 4ac where a is the 

strong measure of dependence between two sets defined 

earlier. This can be proved as follows:

Let G denote the set where E(X|G*) > EX, and G' its 

complement. From the tower property of conditional 

expectations we have

0 = E[E(X|G*)-EX]

= E[E(X|G* ) - E X|G]P(G) + E[E(X|G*)-EX|G']P(G'). (2)

Also

(3)

E|E(X|G*)-EX | = E[E(X|G*)-E(X)|G]P(G)-E[E(X|G*)-EX|G'DP(G'), 

and combining (2) and (3) we have

E|E(X|G*)-EX| = 2E[E(X|G*)-EX|G]P(G).

If we let X be a r.v with the same distribution as X 

and independent of G* then

E[E( X|G*)-EX|G] = E(X|G)-E(X|G) < 2sup|P(XeB|G)-P(X e B | G ) | ,
B

and as P[(XeB) G] = P(XeB)P(G) the bound becomes 4ac.

This means we can rewrite equation (1) as

2 I I x I I r  t  P
||E(X|G*)-EX||p < (2c)p_1/p(4ac)1/p > c (r-p )/p" * (4)
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where the second term comes from

EI X|p I( |X | >c ) < — i-E|X|r I( |X|>c). 
c v

From the Minkowski inequality it follows that ||X2 ||r < ||X|| 

and so the upper bound in (4) becomes 2(21^p+l)a 1^p”1^r ||X|| 

which is the required result.

Appendix 5 : Covariance matrices of PMLE's in Poisson model 

example .

Let d(yt ,b) be the indicator vector consisting of the 

lower triangular elements of the matrix

d 2LLF dLLF dLLF.L ^ t • t
dbdb" db db"

From Lancaster (1984), the covariance of d is

dLLF. dLLF. dLLF. -1 dLLF.
E(dd")-E(d------) E[---- I ‘ ---- £] E (---- 1 * d")

db" db db" db

where E denotes 1 imn-*£E( *).

1) For the case where we assume y^ ~ Pois son(expxfb), 

typical elements of the component matrices of the 

covariance are as follows: where = expx^b.

E d -j d j = n-1 îxrtx stxmtx nt(3x2 + xt ),

dLLF. , 2
Ed1---- 1 ixrtx stx kt('3xt )*

d b .

dLLF. dLLF.
E---- - ------

dbi dbj
Ex i t x j t X t '



2 )  y ̂  ~ N( e x p x j ’ b . l )

-1. 2 . ,. 4 ,
Ed<d < = n- ïxptx stxptx|ntxt (l-5x‘+ 6 x p .

Ed

1 J

dLLFt -1_ 2
1 - ^ 7 "  = n E x rtxstxptxf

dLLF dLLF, . ,
E-----------------------------------  n “ 1 Ex , ,  X . ,  X ,  .

dbi db j 1x; z

3) yj ~ Gamma(x = aexp(-xrb ), r = a) where p.d.f. of Gamma

is x r" 1e " Xx,‘ .
/( r )

Ed -j d j = n'1îxrtx stxn)tx ktexp(-2xi'b)[3a2 + 8a + 6]

dLLFt _i r2a-l,
Edi— —  n Ex rtxstx kt1- -1db j a
dLLF dLLF , ,

E---- - ---- - = n _15:x,,x,,a .
db. db.

4) y.j ~ negative binomial, and so with p.d.f.

-1 % ,_-lV «* +y < )
— .----- '---- ( l+aexpxib)

r(a_1)r(yi+l)

r(a-i+y,) . . .-(a- +y,) *i
. (aexpxib)

Edi d j

n‘ lîxptx stx rtxmt Cxt+(4a 2+ 3a)Xt+(9a 3+8a 2+ 2a)Xt+(5a4+5a3+aZ

Ed
dLLF,. t x ,x ,x , o 2 2 3 3»t = n -1 j._£t_st— rt ( xt+ax£+a¿x£+ax£) ,

db. (l+axt )

't t -1E_____-  ------ = n r x , * x
d b i dbj U  ^  (l+axt )

where Xt = expx£b,
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