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Abstract Background: Automatic image captioning, a highly challenging
research problem, aims to understand and describe the contents of the complex
scene in human understandable natural language. The majority of the recent
solutions are based on holistic approaches where the scene is described as a
whole, potentially losing the important semantic relationship of objects in the
scene.

Methods: We propose Dense-CaptionNet, a region-based deep architec-
ture for fine-grained description of image semantics, which localizes and de-
scribes each object/region in the image separately and generates a more de-
tailed description of the scene. The proposed network contains three compo-
nents which work together to generate a fine-grained description of image se-
mantics. Region descriptions and object relationships are generated by the first
module. Whereas, the second one generates the attributes of objects present in
the scene. The textual descriptions obtained as an output of the two modules
are concatenated to feed as an input to the sentence generation module, which
works on encoder-decoder formulation to generate a grammatically correct but
single line, fine-grained description of the whole scene.

Results and conclusions: The proposed Dense-CaptionNet is trained
and tested using Visual Genome, MSCOCO and IAPR TC-12 datasets. The
results establish a new state-of-the-art when compared with the existing top
performing methodologies e.g., Up-Down-Captioner, Show Attend and Tell,
Semstyle and Neural Talk especially on complex scenes. The implementation
has been shared on GitHub for other researchers: http://bit.ly/2VIhfrf
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Keywords Image Captioning · Semantics Understanding · Sentence
Generation · Recurrent Neural Networks · LSTM

1 Introduction

Automatic image captioning is the task of describing an image in human un-
derstandable language after interpreting the contents of the scene. Particularly,
the precise and concise description of a complex scene which illustrates the sig-
nificant objects and their relationship among them, is of extreme importance.
The well made description of a complex scene helps in contextually aware de-
cision making according to the activities and situations described in the scene
e.g., in surveillance to detect any anomaly by fusing image captioning system
with alarm generation system [29], in robotics and assisted living for blinds,
where the description of the complex scene helps in understanding and seman-
tic analysis of the scene [24], in emotion recognition and sentiment analysis
[33], in assisting visually impaired people [30] and in many other application.

Humans have a special ability to understand and describe a scene with
complex details by just looking at it. They can not only make the image-to-
text associations very quickly but can also detect and recognize the objects
and actions simultaneously. However, making good quality image-to-text as-
sociations so that most of the objects in a scene can be automatically de-
scribed is highly challenging. Most of the current solutions provide a simple
caption for the whole image which just describes the scene categorically and
only presents high level details of the scene under consideration [15,25,23,
46,42,45]. However, in most scenarios, the problem of image captioning is
not trivial because real world images typically contain multiple objects in a
scene which may need to be detected and described simultaneously to gener-
ate dense scene descriptions[44]. Traditionally, hard-coded visual concepts are
filled in the sentence templates to produce image captions [10]. The problem
with these traditional methods is that they create simple and basic sentences
for complex scenes, restricting the text variations. Limiting the text variety
somewhat confines the usefulness of the descriptions which consequently hin-
ders in elaborative and full scene representation. With recent developments in
machine learning, deep layered architectures have shown extraordinary results
in various applications of computer vision. In particular, Convolutional Neural
Networks (CNNs) have become the state-of-the-art in image recognition and
classification [36,4,48,40]. CNNs operate by performing a series of convolu-
tional operations on the input image to transform it into feature maps which
are a data driven representation of the image. The feature maps can be further
used for image classification and other purposes. Another deep network that
has gained popularity is the Recurrent Neural Network (RNN) which retains
the value of its hidden state for next time steps. Its memory retention ability
makes it a very useful asset for sequence generation purposes. RNNs have many
variants, out of which the Long Short Term Memory (LSTM) networks [12] are
commonly used for text generation [43] as they provide a plausible solution for
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Dense-CaptionNet 3

vanishing and exploding gradient problems [5]. Considering the wider success-
ful applications of such deep architectures, there is a paradigm shift towards
the application of deep learning in solving the image captioning problem. Such
systems are typically designed to learn alignments/association between image
features and language sequences [15,25,42,45]. These feature-language associ-
ations are useful to determine the semantics of the scene. They use the learned
alignments to extract textual representation by matching a test image to sim-
ilar training images seen before. A sequence generation module is then used to
convert image features into a proper grammatically correct sentence [15,42].
Such architectures use CNNs as an encoder to generate feature representation
of the image which is then passed to a sequence generation module commonly
consisting of a RNN as a decoder to decode it into a complete and meaningful
sentence [15,25,42,45]. However, these approaches usually take the whole im-
age into consideration to generate coarse scene descriptions without detecting
individual objects contained in the scene. This limits the generation of dense
scene descriptions. A better approach would be to take individual objects of
the image into consideration while creating the captions. Additionally, if the
attributes of the objects are also included separately, important details can be
highlighted in the resulting description (e.g., a person wearing a red shirt). As
yet, such contextual knowledge has not been incorporated in the context of
image captioning.

In this paper, we present a novel modular image captioning methodology
that generates detailed image descriptions by detecting and describing indi-
vidual objects and subsequently using those descriptions and their semantic
relationship to create dense image captions of the complex scene. To achieve
this, the proposed Dense-CaptionNet uses a region extraction module to de-
tect not only the objects present in the image but also recognize the object
attributes to obtain more details of the scene. These objects are described in
the natural language sentences that are later joined with attributes to form
one detailed and concise description of the whole scene. The initial idea is
presented by the authors in [16] and additional experiments are carried out
to thoroughly analyze the proposed method for its scalability and practical-
ity. Most existing architectures e.g. NeuralTalk [15] and Show, attend and
tell [45], generate an image caption by extracting high dimensional features
from the whole image at once, whereas the proposed architecture produces
the mapping of individual objects in the image and utilize their attributes to
generate a comprehensive description of the input image. Few approaches e.g.
SemStyle [28] and Up-Down-Captioner [1] work in a similar way but they also
lose important aspects like object relationships while extracting and describ-
ing individual objects. The significant contributions of the proposed work are
highlighted as follows:

– An object-based architecture for dense captioning of complex scene is pro-
posed which first detects and describes main objects present in the image
to overcome the limitations of the existing architectures. The employed
model is similar to region proposal network (RPN) [34] but differs with it
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4 I Khurram et al.

in the sense that the conventional RPN does not back-propagate the gra-
dients to object proposals making it hard to train the network end-to-end.
The proposed architecture is generic and not only generates the full image
captions but also allows to describe the object(s) present in the image.

– We propose a novel sentence generation module that is used to join descrip-
tions of the objects and their attributes to form a complete sentence. This
module has the capacity to be further trained and is used to join words to
form a proper sentence.

– The proposed approach is validated on MSCOCO and the IAPR TC-12
dataset [11] which, up to our knowledge, is the only dataset containing
dense image contents that provides the detailed image descriptions. The
quantitative results illustrate that the proposed Dense-CaptionNet out-
performs the state-of-the-art image captioning methodologies in the stan-
dard evaluation metrics.

The paper is organized as follows. The related works section discusses the
relevant state-of-the-art image captioning techniques. The proposed method
consisting of region extraction, region description with attribute generation
and the sentence generation, is described in Methodology. The performance
evaluation is illustrated in Results section. Finally, the Conclusion section
concludes the paper with future research directions.

2 Related work

Most existing techniques solve the problem of image captioning by formulating
the problem into an encoder-decoder framework. The encoder part is typically
a CNN that does the feature extraction, whilst the decoder part is usually a
RNN that utilizes the extracted feature maps and translates them into natural
language captions.

Several techniques have been developed for the problem of describing the
complex scene in natural images in human understandable natural language
[2]. A paradigm shift was introduced by NeuralTalk [15] and Neural Image
Caption (NIC) [42]. Both of the end-to-end (i.e., single trainable architecture)
models are based on neural networks consisting of a CNN for feature extrac-
tion and Recurrent neural networks (RNNs) for generating language sequences
based on extracted features. These methods map image features and associ-
ated sentences in a high dimensional space first, then on un-seen data they
generate a sentence based on the high dimensional mapping. In contrast to
this fixed high dimensional mapping, Donahue et al. [9] presented Long-term
Recurrent Convolutional Networks (LRCNs) which work by learning and using
compositional representations using a CNN and RNN combination. All these
techniques performed very well but they are unable to validate the words be-
fore generating sentences. These validations are useful for refining purpose, to
ensure that no word is included in the generated description which does not
correspond to any object or action in the image. Such a refining system has
been utilized by Kelvin et al. [45] by employing attention mechanism to focus
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Dense-CaptionNet 5

on objects before generating next word so that noise can be reduced. This ap-
proach is similar to human visual system which emphasizes some specific parts
of the scene while other parts of the image are considered as the contextual
information.

Attention mechanism was extended by Yang et al. [46] which executes a
series of review steps on the hidden states of encoder and gives a ”thought”
vector as an output each time against a review step. The thought vector is
a representative of global properties unlike simple encoder hidden states. At-
tention mechanism takes the thought vector as an input to form refined de-
scriptions. One problem faced by the attention-based approaches is that they
require extra computation by generating attention for semantically less usefull
words like ”to”, ”from” etc. To solve this, [25] has proposed an adaptive atten-
tion mechanism, where a visual sentinel vector is used to decide that whether
the attention generation for a particular word is required or not. This helps in
generating attention for visual words (e.g., table, chair, bus etc.) only and no
attention is generated for non-visual words (such as to, the, on etc.). It also
attempts to predict other words that seem visual but can be generated from
language model e.g. ”table” after ”eating on a dining”. The encoder-decoder
framework also served as a basis in a multimodal attentive translator mecha-
nism [23], which employed an attention layer to detect objects at every time
step before generating each single word so that the word occurs at its appro-
priate location in the sentence. For example, if the object “table” is detected
first but its word representation should be at the end in “food on the table”,
the attention layer will detect all the objects first and will put “table” at the
end. Park et al. [32] changed the generic captioning to a personalized type of
captioning, particularly designed for post generation and hashtag generation
in user’s personal style and language. It takes user’s previous post data to
learn this style and language.

Encoder-decoder mechanism was also enhanced by increasing the memory
power of the decoder RNN in a recently published technique called MemSRM
[6]. Increased knowledge remembering power of the decoder RNN makes it
capable to generate better image captions. The problem with this technique
is that it does not increase object detection power of the network. So if there
are not enough object/regions detected then increased memory power of the
decoder RNN cannot generate detailed image descriptions.

Aside from the encoder-decoder framework, another deep learning based
mechanism based on reinforcement learning was proposed by Ren et al. [35]
which consists of a policy network to predict the next word by considering the
current state and a value network to provide guidance by evaluating all possi-
ble combinations that can be formed from the current state, thus attempting
to generate a caption similar to captions in the training set. A Similar mech-
anism was proposed by Liu et al. [47] who proposed that an actor generates
the token and a critic evaluates by using a value competition strategy. Both
of these deep reinforcement learning techniques do not ensure existence of all
possible objects of the image in the generated caption as they only aim to
make a caption similar to captions in the training set. It should be noted
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6 I Khurram et al.

that the object level semantic information is not extracted in these methods
hence these architectures are unable to generate dense descriptions. Incorpo-
rating object detection module as a prior for generating image captions may
be useful in generating detailed descriptions, as in [14] where a region proposal
network [34] is used to extract the object regions. Afterwards, the descriptions
are produced for all the extracted objects/regions rather than generating one
single caption for the whole image. It uses a CNN to extract image features
that are then fed as input to the RPN module for localization. Subsequently,
these localized regions are then given as input to an RNN trained to generate
text sequences. This technique is unable to describe the image as a whole in
one complete meaningful sentence. Formulating the caption as one sentence is
useful in many contexts [16] e.g., visual search [7], post generation for social
media [32] etc. This type of localization strategy was also used in [28], where
detected objects are described using encoder-decoder formulation. Semantic
terms are extracted from these regional descriptions using NLP (Natural Lan-
guage Processing) techniques. These semantic terms are then passed from
another encoder-decoder architecture based on RNNs to form a complete sen-
tence. Another architecture based on such localization strategy is proposed in
[1]. It uses two approaches i.e. bottom-up and top-down attention. Extract-
ing object regions in the form of feature maps is called Bottom-up approach
as attention will work at object level instead of CNN extracted features of
uniform grid of regions. Subsequently, top-down attention uses two LSTMs
as encoder-decoder to generate full image caption. Weighted training [8] is
another approach which proposes Reference based Long Short Term Mem-
ory (R-LSTM) used to assign different weights to each word considering its
importance for the caption generation.

Although these object localization based approaches work well in generat-
ing the descriptions involving maximum detected objects, they lack incorpora-
tion of the contextual information in the form of object relationships and hence
semantically leave room for improvement in describing the complex scene in
the image in one complete meaningful sentence. These techniques also do not
focus on object attributes separately. In this context, the approach presented
in this paper generates a single sentence describing the whole image by fusing
the attributes and descriptions of the individually detected objects containing
relationships. In the following section, we describe the proposed methodology
in detail.

3 The proposed method

We propose a deep learning based architecture that is capable of localizing and
subsequently, describing each region prior to giving a fine-grained and detailed
image description.

The proposed system has two deep layered modules to generate text de-
scriptions of the image objects. The first module is responsible of generating
the region descriptions which includes relationships among objects. The second
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Man wearing 
shirt and shorts
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on beach

Blue shirt
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blue shirt 
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standing on  
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RNN

RNN

Descriptions

Attributes

Encoder 
RNN

Decoder 
RNN

Sentence Generation

Feature 
vector of Text

Attribute Generation

Region Descriptions

+

Attention

Region Extractor

Convolution 
operations

Beige shorts

Description Formulation

Fig. 1: Architecture overview. Object regions are extracted by region extraction module.
Region descriptions and object attributes are then generated from these extracted regions.
Afterwards, sentence generation component joins all the produced region descriptions and
attributes to form a detailed descriptive sentence

one generates attributes of the objects which are contained in the image. The
visual representation and the textual data are aligned in 300-dimensional fea-
ture space using embeddings. We call this visual-textual mapping generation
as “alignment model”. Afterwards, deep features are extracted by convolving
the input image to match with the aligned visual-textual data. We call this
un-seen data matching as “generation model”. Similar technique has been em-
ployed by [15]. Such visual to text data representation is obtained to describe
regions i.e. text formulations such as “person walking on the street” along
with object attributes like “tall person”. Both types of textual data is con-
catenated as a single line of text and given as input to the sentence generation
module, which uses on encoder-decoder framework to generate syntactically
correct fine-grained descriptive sentence incorporating grammatical context.
Figure 1 gives an overview of the proposed architecture workflow. The pro-
posed approach works with the integration of the following modules: 1) Region
extraction, 2) Attribute generation and region description formulation and 3)
Sentence Generation. These modules are described in detail in the subsequent
sub-sections.

3.1 Region extraction

A CNN is joined with the modified RPN [34] and a small two layered recogni-
tion network to form region extraction module, as proposed in [14]. Figure 2
describes the working details of region extraction process. It can be observed
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8 I Khurram et al.

that the CNN is responsible for the extracting the input image features. This
extracted convolutional feature map of the whole image is then passed to
adapted/modified RPN to convert them into regional feature maps. Subse-
quently, two-layered recognition network compactly encode these regional fea-
ture maps. These compacted regional feature maps are given as input to the
LSTM for description formulation.

C

Feature map of 
whole image

Extracted 
regions Feature maps of 

extracted regions

Recognition network 
for compact 

encoding of regions

RPN

CNN

Fig. 2: Region extraction block. CNN extracted features are fed to RPN for region extrac-
tion.

The proposed system uses VGG-16 [39] (with default parameter settings)
to extract image features. The generated output feature vector has dimensions
of 512 ×W ′ × H ′ with H ′ = H/16 and W ′ = W/16 where H is the height
and W is the width of the input feature map. The division by 16 denotes
that the dimension is reduced by VGG-16 through convolution and only the
high-level features are retained. This output feature vector is then passed to
an adapted RPN for recognition and localization of objects of interest. In
the proposed architecture, the RPN is inserted after the last layer of CNN.
Briefly, it works by sliding a kernel window over the generated feature map to
produce low dimensional feature map. This feature map is then passed into
two special fully connected layers for further processing. The first layer is the
regression layer which generates bounding boxes of the object proposals and
the other is the classification layer which generates objectness scores of each
object proposal. At each point on sliding window, a maximum of k proposals
(also called anchors) can be found, so the regression layer generates 4k output
(as the coordinates of each bounding box are four) and the classification layer
generates mk output where m is a tuple representing objectness score. We
set the value of k as 9 which includes 3 scales and 3 aspect ratios for each
scale. These anchors are translation invariant which means if an object is
translated in the original image then the object should still be predicted, and
the computed anchor should also be translated unlike various other methods.
To improve computational efficiency, the best R (= 256) proposals are taken
from all the computed region proposals containing R/2 (in case of maximum)
positive and the remaining negative proposals. The positive region proposals
are obtained if the intersection over union (IoU) is greater than a certain
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Dense-CaptionNet 9

threshold (set to 0.7). Similarly, the negative region proposals are obtained
if IoU is less than 0.3. These region proposals are then mapped onto a fixed
feature representation via bilinear interpolation [14,13]. The use of bilinear
interpolation allows end-to-end back propagation through the region/object
proposals. It samples the selected proposals on the sampling grid (X ×Y × 2)
which are then provided as input to the bilinear sampler along with the input
convolution feature map M of the dimension Q × W ′ × H ′ to give region
features. The bilinear sampler uses kernel s to output Q×X ×Y dimensional
output feature map N . The convolution with kernel s can be summarized as:

NQ,u,v =

W∑
u′=1

H∑
v′=1

MQ,u′,v′s(u′ − xu,v)(v′ − yu,v) (1)

where s(d) = max(0, 1− |d|).
Consequently, for all selected region proposals, the tensor of shape R ×

Q×X × Y will be obtained. All of the region features included in the tensor
are then compactly encoded into a code by passing them through recognition
network which represents their visual appearance. The recognition network is
a small and simple network with two fully connected layers, similar to the
one used in [14], that maps the multi-dimensional selected region proposal (or
tensor) into a matrix of size R × D having R region codes with each code
having dimension D (= 4096).

3.2 Description formulation

In this module, the feature representations of the extracted regions are trans-
lated into multiple (grammatically correct) meaningful sentences. To elabo-
rate, the extracted feature representations are aligned with the given textual
sequences by an encoder-decoder framework and later utilize these learned
alignments (i.e., aligned features) to produce the textual representation. Such
feature-to-text generation is challenging owing to the fact that the learned
model should be capable of incorporating the contextual information while
generating the textual sentences i.e., it should remember what token it has
generated before so that no word is repeated consecutively ensuring the cor-
rectness of the grammar of language. Usually, RNNs are considered capable
to cope with such constraints in text/sequence generation problems. To over-
come the vanishing gradient issues, LSTM [12] – variant of RNNs – is used for
generating image captions as in [42,45,14].

The feature-to-text translation is employed by feeding ti tokens (i = −1,
0, ..., T ) to a single LSTM network where t−1 represents the region code en-
coded by a recognition network (comprising of a linear layer with ReLU activa-
tion function), t0 is the START token indicating the beginning of the sequence
and t1 to tT is the input sequence. The output of the LSTM is obtained using
the following recurrence relation [12]

hi; bi = f(hi−1; ti) (2)
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10 I Khurram et al.

where hi denotes the hidden states, ti is the input and bi is the output vector
at time step i. It is worth to mention that the LSTM strips off the region
code and START token but appends an END token so the resulting size of the
output vector b becomes T + 1. Such feature-to-text translation via LSTM is
performed in two ways i.e., two different LSTMs are trained on two different
training samples respectively where the first set consists of region descriptions
which essentially captures the objects and their relationships. An example of
a region description associated with a particular region would be “Man wears
headband”. The other set of training samples includes attributes that encap-
sulate the object properties such as “headband is white”. Next, we describe
the region description and attribute generation in detail in the following two
subsections.

3.2.1 Region description

The output of the region extraction constitutes the bounding boxes for the
region proposals and their objectness scores based on the probability of an
object present in that bounding box. Since an image comprises of multiple
regions (i.e., multiple overlapping bounding boxes), this enables the possibil-
ity of capturing objects and their relationships in more detail. To this end,
an individual LSTM is trained using region descriptions containing not only
the object names but also their relationships in the form of a complete sen-
tence. A description of each region is thus generated using the trained LSTM.
In this way, an image is essentially represented in the form of multiple text
descriptions where each description highlights the corresponding object and
its relationship to other objects in case when multiple objects are present in a
single region. For instance, the LSTM generated description “person standing
near the car” of the region denoted by green bounding box in Figure 3 cap-
tures the relationship between the two different objects (i.e., person and car)
contained in the region.

It is worth to mention that the use of LSTM enables generation of de-
scriptions in correct grammatical syntax. Moreover, the use of all the sub
descriptions of individual regions is indeed helpful in generating a detailed
description of the whole image. To this end, all generated sub descriptions
are joined into one single line of text separated by “.” characters and is later
combined with the generated attributes representations explained in the next
subsection.

3.2.2 Attribute generation

Each sub-image (extracted bounding boxes) contains objects having certain
attributes e.g. colour and features etc. which can be detected and explained
separately to enhance the overall description. For this purpose, another LSTM
network is trained using object attributes to capture object properties which
could be associated with relationships to enable description of the full image
in a single meaningful sentence incorporating the contextual information. For
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Trees on the 
side of road

Person standing 
near the car

Input Image

Bounding Boxes

Sub-Images Sub-Image 
Descriptions

Objects

Relationship

Sub-Image 
Attributes

Object

Attributes

Red sign

Region Descriptions

Attribute Generation

Sign on the 
pole

Many cars on 
the road

Tall green tree

Yellow car

Bounding Boxes

Sub-Images

Fig. 3: Region description and attribute generation. Bounding boxes of region proposals
act as sub-images. Region description and attributes are generated for each sub-image.

instance, the attribute “Tall green trees” generated for the yellow bounding
box in Figure 3 when combined with its region description “Trees on the
side of the road” could potentially give better captioning of the image as
a whole since the regions descriptions help to incorporate the inter object
details while the object attributes aids in including intra-object details. To
this end, the output of the attribute-trained LSTM encompassing the object
attributes/properties belonging to each individual region are also concatenated
in a similar manner as region descriptions. Subsequently, the fused region
descriptions and the object attributes are concatenated and passed as input
to the sentence generation module.

3.3 Sentence generation

The region descriptions and the object attributes are combined by this module
to generate a single fine-grained, detailed sentence keeping in consideration the
grammatical correctness of the sentence. It works on the concept of sequence-
to-sequence (seq2seq) frameworks [41] typically used for machine translations
(i.e., language translation e.g., English to French). An encoder-decoder archi-
tecture is used for sentence generation where LSTM is used both as encoder
and decoder.
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12 I Khurram et al.

3.3.1 Encoder-decoder framework

The LSTM encoder is responsible for generating vector representation of the
concatenated region and attribute descriptions which is then fed into decoder
LSTM to produce a single line sentence which is more descriptive in nature
than a short caption. Encoding RNN is thus responsible to encode both region
descriptions (including objects and object relationships) and object attributes
into a “thought” vector. Thought vector is simply a sequence of number values
that are used for text representation. Decoder then uses this thought vector
to convert the numbers to a sentence.

Man wearing shirt Blue shirt

Context 
vector

Man wearing blue shirt

0.6 0.5 0.2 0.1 0.2

{End token}

Man wearing blue shirt{Start token}

Encoder Decoder

Current 
hidden 
state

Attention 
vector

Attention 
vector 

calculation
+

Attention vector 
calculation

Comparison 
with all the 

source states

Computing 
weighted 
average

Attention 
vector 

calculation

Attention 
vector 

calculation

Attention 
vector 

calculation

Attention 
vector 

calculation

Fig. 4: Encoder decoder framework of sentence generation with attention mechanism. All
the hidden states of the encoder are compared with current state of decoder to find weights,
which are then used to find context vector by computing a weighted average. Subsequently,
the computed context vector is combined with current state of the decoder to generate
attention vector for feeding to the next time step.

To elaborate, in order to find and generate the textual representation, the
model first finds the source and target embeddings which would correspond to
the actual word representations. The retrieved word embeddings are exploited
by the encoder-decoder framework to generate the final sentence. Practically,
the encoder is initialized with zero vectors and translates text to find the
numbered embeddings. On the other hand, the decoder is initialized with the
ending hidden state of the encoder and begins decoding as soon as it gets
the start token. A numerical vector having probabilities of each word is given
as output by the decoder. The word with highest probability is chosen. The
process thus continues until the decoder LSTM generates the end token.
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Dense-CaptionNet 13

3.3.2 Attention mechanism

Without attention mechanism, sentence generation relies on reading complete
region descriptions and attributes and compresses all information into a fixed-
length vector. It is obvious, that multiple region descriptions and attributes
containing many words will surely lead to information loss. Attention fixes this
problem up to some extent by looking over all the information in original text
(region descriptions and attributes), then generate proper word according to
current word it works on and the context.

Hence, the above encoder-decoder process is feasible for small sized sen-
tence generation but for complex scenarios consisting of larger sentences, pass-
ing only a single hidden state to the decoder is not sufficient since the single
state represents very little information. To make it flexible enough to generate
long sentences, encoder-decoder framework is equipped with attention mecha-
nism as depicted in Figure 4. The attention mechanism works by comparing all
the encoder hidden states with the current decoder hidden state, and compute
the attention weights wvu as shown:

wvu =
exp(score(dv, eu)

S∑
u′=1

exp(score(dv, eu′))

(3)

where dv is the decoder hidden state, eu is the encoder hidden state and
score is used to compared the decoder hidden state dv with each of the source
hidden states eu. There are various choices of the scoring function; popular
scoring functions include the multiplicative and additive forms. More about the
scoring functions is explained in a similar approach [26]. Using the attention
weights, a context vector c is computed:

cv =
∑
u

wvueu (4)

The calculated context vector is used to generate attention vector av by
combining with the current hidden state of the decoder. This attention vector
is used as input to the next time step for the generation of word probability
vector. Attention vector av can be summarized as:

av = tanh(Wc[cv; dv]) (5)

As depicted in Figure 4, the attention mechanism requires two kinds of
inputs at each hidden state. First, the values of all the hidden states are
passed to the current hidden state instead of only the ending one. Second, the
values of the attention vector are passed to the current hidden state which
enables the sentence generation module to produce the final detailed single
line sentence.
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3.4 Model training and optimization

The region extraction and attribute generation modules have been trained as
encoder-decoder formulation for 50,000 iterations and having 512 units at each
layer of the LSTM. To minimize any overfitting, regularization is done using a
dropout of 0.5. The training of the CNN has been carried out using stochastic
gradient descent (SGD) with a learning rate of 1×10−6 while adaptive moment
estimation [17] has been employed for the full module training of the region
and attribute description building blocks. The CNN was initialized with the
weights pre-trained on ImageNet [36] which was further fine-tuned by freezing
first four layers of the network after 1 epoch. Sentence generation module
contains 200 LSTM units in each of the 2 hidden layers (in both encoder and
decoder) and is trained for 20,000 iterations using SGD with a learning rate of
1.0. A dropout of 0.2 has been used for regularization of sentence generation
module.

The training mini-batches for region and attribute description modules
consist of a single image. The training batches for sentence generation module
contains 128 text sentences. All the training details are shown in Figure 5.

Sentence 
Generation 

Module

CNN pre-trained
o ImageNet 
o 1 × 10-6 learning rate

o SGD optimization strategy

CNN RPN LSTM

Region Description Module 
(Trained End to End)

CNN RPN LSTM

Attribute Generation Module 
(Trained End to End)

the letter LOVE on a shirt

man is bend backward

The man is holding a frisbee.

man wears a headband

CNN pre-trained
o ImageNet 
o 1 × 10-6 learning rate
o SGD optimization strategy

Full module training (end to end)
o ADAM optimization strategy
o 0.5 dropout
o Mini-batch of 1 image
o Visual Genome (attributes) e.g.

frisbee is round

shirt is tan

frisbee is white

Both encoder and decoder LSTMs
o 2 hidden layers
o 200 units at each layer
o 0.2 dropout 

MSCOCO sample:

a rock hole in the ground 
surrounded by sand. one man in a 

tee-shirt, pants and a cap is holding 
a shovel, the one is wearing pants, a 

jumper and a hat, is walking 
towards him. white tee-shirt. grey 

pants. white cap. other pants. black 
pants. white jumper. traditional hat

a rock hole in the ground 
surrounded by sand; one 
man in a white tee-shirt, 

grey pants and a white cap is 
holding a shovel, the other 

one is wearing black pants, a 
white jumper and a 

traditional hat, is walking 
towards him;

a computer monitor, lamp shade on 
a table, white chair with a pillow, a 

window with a glass, a white chair, a 
lamp on the table, white chair with 
a white seat, a flat screen tv, a table 

with a wooden frame, white 
curtains on window, Empty chair, 

laptop computer

A living room with 
the light on next to a 

computer desk.

Source Target

IAPR TC-12 sample:
Source

Target

Final 
Description

Full module training (end to end)
o ADAM optimization strategy
o 0.5 dropout
o Mini-batch of 1 image

o Visual Genome (region descriptions) e.g.

o 1.0 learning rate
o SGD optimization strategy
o Batch of 128 text sentences
o Custom dataset (MSCOCO + IAPR TC-12)

Fig. 5: Training parameter details and datasets used for each module.
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Dense-CaptionNet 15

In context to deep transfer learning, we want to highlight that the CNN
used was pre-trained on ImageNet [36] dataset. We have also used pre-trained
weights of Densecap [14] for region extraction module by removing the last
layer and fine-tuning it. Densecap was designed to detect individual regions
of the images and describing all of them in separate line each. In contrast,
the proposed approach takes into account the semantic context and object
relationships to form a single meaningful and concise grammatically correct
description of a complex scene. The proposed architecture already uses deep
transfer learning by utilizing the pre-trained weights of Densecap in the region
extraction module.

4 Experimental results & validation

Comparison of the results obtained from the proposed network with existing
state-of-the-art methodologies for generating image descriptions (i.e. Show,
Attend and Tell [45], Neural Talk [15], SemStyle [28] and Up-Down-Captioner
[1]) has been made. Following is the description of datasets used in evaluation.

4.1 Datasets

We have used two different datasets to train the modules of proposed method-
ology. Region description and attribute generation modules have been trained
on one dataset while the other dataset has been used for sentence generation
module to learn how to fuse small descriptions and attributes into one mean-
ingful sentence description. Following sub-sections provide the details of both
of these datasets.

Table 1: Details of the datasets used.

Dataset Module Total Sam-

ples

Statistics

Visual Genome Region De-

scription

108,077 Images 4,297,502 region descriptions (having

75,729 unique objects)

Visual Genome Attribute

Generation

108,077 Images 1,670,182 attribute-object instances

(having 40,513 unique attributes)

MSCOCO +

IAPR TC-12

Sentence

Generation

91,721 Descrip-

tions

4,829 source vocabulary and 7,817 tar-

get vocabulary for training set

4.1.1 Region description and attributes generation dataset

Visual Genome [20] dataset has been employed for region and attribute de-
scriptions generation. It is a large database providing knowledge base with
an aim to translate well defined image concepts to natural language e.g., to
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16 I Khurram et al.

solve cognitive tasks like automatic image description. It comprises of images,
region descriptions, visual question answers, attributes and object relation-
ships. Among them, images along with their attributes and region descriptions
have only been used in this work. We have used 108,077 images consisting of
4,297,502 region descriptions (having total number of 75,729 unique image ob-
jects) and 1,670,182 attribute-object instances (having total number of 40,513
unique attributes). The region descriptions are provided in the form of sen-
tences which are used for training.

two brown rocks in the sea at a brown 
sandy beach with a brown cliff behind it; 
green bushes in the foreground; a blue 
sky in the background; 

Sample IAPR TC-12 description

POS 
Tagging

brown rocks
brown beach
sandy beach
brown cliff
green bushes
blue sky

Attributes

two rocks in the sea at a 
beach with a cliff behind it

bushes in the foreground

a sky in the background

Semi Column Separation

Region 
Descriptions

+

Sentence 
Generation 

Module 
Training

Target 
Sentence

Source Sentence

Tagged Adjectives

Fig. 6: Preprocessing performed on IAPR TC-12 dataset. Description is passed from POS
tagger to extract adjectives i.e. attributes. Description is then separated from semi-column
to form region descriptions.

The attributes are provided in the form of single words in the dataset which
are adapted for training of attribute generation. This adaptation is performed
so that the single words are converted into single complete sentences by join-
ing the attributes with the corresponding objects. The reason behind this is to
enable the trained attribute generation RNN to output object together with
their associated attributes in the form of a single sentence.
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4.1.2 Customized sentence generation dataset

A customized dataset has been prepared for the training of sentence generation
module which consists of MSCOCO [22] and pre-processed IAPR TC-12 [11]
dataset descriptions. First consider IAPR TC-12 dataset that has a description
containing short captions for regions of each image separated by semi colons.
We replaced those regional captions by “dot” operator in our technique.

For training, the parts-of-speech tagging (POS) [27] is applied on the short
regional descriptions, with the aim to extract the respective attributes (ad-
jectives). The extracted attributes are subsequently added at the end of the
regional captions (already separated by “dot” operators). In the end, the pro-
vided detailed descriptions of IAPR TC-12 become the target description while
the dot separated line of text, containing region descriptions and attributes
now become the source text for training as shown in Figure 6.

+

Sentence 
Generation 

Module 
Training

Image
Five 

Captions

Densecap

a brick building with a clock 
tower
a cloudy blue sky
a statue on top of a building
clock on the building
a window with a clock
a clock on the building
white clouds in blue sky 

Region 
Descriptions

DISCO 
Similarity 
Measure

One 
Caption

Target 
Sentence

POS 
Tagging

blue sky
green tower
green roof
white clouds

Attributes

Tagged 
Adjectives

Source Sentence

Target 
Sentence

Fig. 7: Preprocessing performed on MSCOCO dataset. Image is passed from Densecap
(Region Captioning Algorithm) to form region descriptions. All five captions are then com-
pared with these region descriptions one by one using DISCO similarity measure to find
most closely related caption out of five. This one caption is then passed to POS tagger to
extract adjectives i.e. attributes.

Now consider, MSCOCO dataset which is provided with 5 descriptions
against each image. Figure 7 shows the pre-processing done on MSCOCO
dataset. As there are 5 descriptions against each image, so to choose the
most related target sentence we have to first extract region descriptions of
the images. To get the region descriptions, we fed DenseCap (region caption-
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ing algorithm) [14] with MSCOCO images. These extracted region descriptions
are compared with the five descriptions of MSCOCO image by using DISCO
(extracting DIstributionally related words using CO-occurrences) similarity
measure [18].

DISCO is a Java library using which semantic similarity can be computed
between words/phrases. DISCO library uses a pre-processed database (called
word space) which contains word vector for each word. These word vectors
are produced such that the similar words are in close proximity in the (word)
vector space. DISCO API just fetches these closely related vectors (or clusters)
from the database and calculates the cosine similarity between them. POS
tagging is used to extract adjectives as attributes from MSCOCO dataset
just like we did with IAPR TC-12 dataset as shown in Figure 7. Further
POS tagging is performed on the adjectives to reduce the vocabulary size and
count of unique words in source and target sentences. The benefit of reducing
vocabulary is that the better training accuracy is achieved with less number of
training iterations. Finally, the source and target training sets contain a total
vocabulary of 4,829 words and 7,817 characters. There were a total of 58,702,
14,675 and 18,344 captions for training, validation and testing respectively, for
both source and the target sentences. Sample of sentences given in IAPR TC-
12 and MSCOCO datasets is shown in Table 2 along with the desired output
of Dense-CaptionNet.

4.2 Performance analysis

The proposed architecture is evaluated for dense level image captioning by
qualitative and quantitative performance comparison with published state-of-
the-art methodologies.

Table 2: Descriptive nature of IAPR TC-12, single line nature of MSCOCO dataset and
the desired output of single but lengthy description.

IAPR TC-12 MSCOCO

Dense-CaptionNet gen-

erated output

a yellow building with white

columns in the background;

two palm trees in front of the

house; cars are parking in front

of the house; a woman and

a child are walking over the

square;

A group of elderly travelers

around a bench near the

ocean

trees on the shore, a land-

scape, a large mountain

range in the distance.

IAPR TC-12 dataset is divided into two parts. One part is used for training
while the rest (consisting of 6,802 unseen images) is used for evaluation. De-
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Dense-CaptionNet 19

scriptions containing non-English characters are removed. The IAPR TC-12
dataset is chosen for the evaluation of Dense-CaptionNet because of its nature
of having dense and detailed image captions. Moreover, it is also diverse and
contains complex scenes having multiple objects in all images.

4.2.1 Evaluation metrics

The evaluation metrics employed for comparison purposes are: BLEU [31]
(Bilingual Evaluation Understudy), ROUGE-L [21] (Recall Oriented Under-
study of Gisting Evaluation using LCS), METEOR [3] (Metric for Evaluation
of Translation with Explicit Ordering)

4.2.2 Qualitative and quantitative results

The descriptions generated by the proposed architecture are shown in Table 3.
The results are compared with NeuralTalk [15], Show, Attend and tell [45],
SemStyle [28] and Up-Down-Captioner [1]. It can be observed, the region based
details are incorporated by Dense-CaptionNet in the scene description in a
better way, making the final sentence more descriptive, fine-grained and dense
as compared to the existing state-of-the-art methodologies.

Table 3: Qualitative Results - Comparison with existing state-of-the-art techniques. The
first row against each image illustrates the descriptions obtained (using 6,802 images of
IAPR TC-12 dataset) on NeuralTalk (DeepVS) [15]. The 2nd-5th rows show the descrip-
tions obtained by Show, Attend and Tell (Hard Attention) [45], SemStyle [28], Up-Down-
Captioner [1] and the proposed Dense-CaptionNet, respectively.

 
 

  

DeepVS [15] A large body of water with a boat in the 
background. 

A bedroom with a bed and a table. 

Hard Attention [45] A view of a large body of water. A bedroom with a bed and a bed. 

SemStyle [28] I 'm going to be the beach. I climb into bed and then i stormed 
into the room. 

Up-Down-
Captioner [1] 

A large body of water on a beach. A bed with a bed and a bed in it. 

Dense-CaptionNet A body of water with blue water, white 
clouds in a blue sky in the 
background. 

A bed with a comforter and a 
wooden headboard. 
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Table 4: IAPR TC-12 dataset: Quantitative results comparison with existing state-of-the-
art architectures. (High values depict better results).

Evaluation
Metric

Network Models

DeepVS
[15]

Hard Atten-
tion [45]

SemStyle
[28]

Up-Down-
Captioner
[1]

Dense-
CaptionNet

BLEU-1 0.091 0.080 0.043 0.095 0.128
BLEU-2 0.047 0.041 0.017 0.050 0.064
BLEU-3 0.025 0.022 0.007 0.028 0.031
BLEU-4 0.013 0.011 0.004 0.016 0.016
METEOR 0.062 0.060 0.040 0.070 0.070
ROUGE-L 0.215 0.207 0.115 0.229 0.216

As an example, consider 1st result in Table 3, it can be seen that Dense-
CaptionNet has easily recognized and described white clouds in the blue sky
and the colour of water in the sentence. Likewise, other examples also show
that most details of the objects are successfully described by the architecture
proving the fact that the proposed Dense-CaptionNet is able to describe the
image in a detailed manner. Table 4 shows the quantitative results obtained
using the aforementioned evaluation metrics on 6,802 images of IAPR-TC-12
dataset. The proposed Dense-CaptionNet has shown the comparable results
to the existing state-of-the-art techniques when evaluated on standard perfor-
mance metrics depicting that the complex scenes can be described in a more
detailed and fine-grained manner by the proposed network. The difference in
depth and quality of the descriptions is due to the fact that complex scenes
contain multiple objects with attributes and the proposed architecture detects
and describes those multiple objects individually along with their attributes
to form better descriptions for complex scenes.

Table 5: MSCOCO dataset: Quantitative results comparison with existing state-of-the-art
architectures. (High values depict better results.)

Evaluation
Metric

Network Models

DeepVS
[15]

Hard At-
tention
[45]

SemStyle
[28]

Up-Down-
Captioner
[1]

Dense-
CaptionNet

BLEU-1 0.730 0.683 0.406 0.767 0.707
BLEU-2 0.530 0.504 0.232 0.601 0.546
BLEU-3 0.393 0.353 0.131 0.449 0.404
BLEU-4 0.280 0.246 0.073 0.321 0.294
METEOR 0.241 0.218 0.151 0.254 0.266
ROUGE-L 0.520 0.483 0.291 0.539 0.536

We have evaluated Dense-CaptionNet (proposed approach) and Table 6
shows the superior qualitative results of detailed natural language descrip-
tions obtained over complex scenes in MSCOCO images. The quantitative
evaluation however tricky in our case. The reason for this is because the pro-
posed Dense-CaptionNet aims to generate a single caption which describes the
complex scene containing multiple objects in one natural language sentence.
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As depicted in Table 6, the MSCOCO dataset contains 5 short descrip-
tions/captions of every image. In contrast, since Dense-CaptionNet produces
a lengthy detailed sentence, the quantitative evaluation using standard evalua-
tion metrics including BLEU, METEOR, ROUGE-L is not much appropriate
as in these metrics, the evaluation is solely based on word to word n-gram
matching. The quantitative results obtained using the same evaluation met-
rics on 1500 images of MSCOCO dataset are shown in Table 5.

Table 6: Qualitative Results on MSCOCO - Comparison with state-of-the-art techniques.
1st- 4th rows against each image show the descriptions obtained by NeuralTalk (DeepVS)
[15], Show, Attend and Tell (Hard Attention) [45], SemStyle [28], Up-Down-Captioner
[1]. The 5th row shows MSCOCO descriptions and the 6th row shows proposed Dense-
CaptionNet.

 
 

 

 

DeepVS [15] a desk with a laptop and a monitor a man riding a motorcycle down a 
street 

Hard Attention [45] a laptop computer sitting on top of a 
desk. 

a man riding a motorcycle down a 
street. 

SemStyle [28] i sat up at the computer desk and 
logged onto the computer . 

the man rode his motorcycle on 
the road . 

Up-Down-Captioner 
[1] 

A computer desk with a computer and 
a keyboard. 

A person riding a red motorcycle 
on the street. 

MSCOCO 
Descriptions [22] 

- A home computer and mouse on a 
desk. 
- A desk that has a computer and other 
various items on it. 
- A movie is playing on the computer 
monitor. 
- A computer, key board, cell phones 
and other electronic gadgets are on the 
table. 
- A computer desk topped with a 
desktop computer monitor and 
keyboard. 

- This is a man riding a red crotch 
rocket. 
- A man is riding a motorcycle on a 
road. 
- A man that is riding around on a 
motorcycle. 
- A motorcycle rider on a red silver 
and black motorcycle. 
- A man riding on the back of a red 
motorcycle. 

Dense-CaptionNet a desk with a laptop, a keyboard, a 
mouse and a monitor. 

a man wearing a helmet is riding 
a motorcycle 
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4.2.3 Training parameters and accuracy analysis

We have performed detailed experiments on sentence generation module by
changing number of layers, number of units per layer and by training on dif-
ferent number of iterations.

Table 7: The analysis of sentence generation module training parameter and accuracy

Iterations Layers LSTM Units per

layer

BLEU - valida-

tion

BLEU - test

20,000 2 300 30.9 31.7

20,000 2 400 30.6 31.2

20,000 2 200 31.1 31.8

20,000 3 200 30.7 31.3

30,000 3 300 27.5 28.2

40,000 2 200 31.0 31.6

Total dataset used for training consists of 58,702 text descriptions. This
dataset is created using IAPR TC-12 and MSCOCO dataset as stated earlier.
The results of these experiments are given in table Table 7.

BLEU-dev shows the BLEU-4 score obtained on validation dataset while
BLEU-test shows the BLEU-4 score obtained on test dataset. Best results on
both validation and test splits are obtained using 200 units in 2 layers and
training them for 20,000 iterations. We came into conclusion that training
LSTMs for text does not require much larger number of iterations, nor it
require more than 2 layers and 200 units. As text training is simple and text
dataset is not much complex.

The accuracy for region description and attribute generation modules is
computed using Mean Average Precision (mAP) on 5000 test images (provided
with the dataset). With the proposed scheme, the mAP for region extraction
module computed by the object bounding boxes detected from adapted region
proposal network (RPN) bounding boxes are used is 5.39 which is better as
compared to other benchmark studies, e.g., mAP computed using bounding
boxes obtained from Faster R-CNN [34] and Neuraltalk [15] is 3.21 and 4.27
respectively. Similarly, for attribute generation module, we obtained is 4.91
mAP because much of the bounding boxes are ignored for attribute generation
and only those boxes are retained which contains objects having significant
attributes.

4.3 Discussion of results

Complex scenes having many objects can be described in a detailed way by
the proposed architecture as compared to the other state-of-the-art methods.
The basic reason behind its better performance is the fact that it breaks the
image into regions and describe those individual regions instead of describing
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the image as a whole. These descriptions are then semantically fused using
two LSTMs networks in the sentence generation module that incorporates the
scene context in generating the full scene description. To minimize the false
positives in the region extraction, only those objects are retained, whose RPN
generated objectness scores is high. These filtered objects are then given to
sentence generation module for single line sentence generation. The sentence
generation module uses attention mechanism to join the region descriptions
and features of the objects. The attention mechanism makes it feasible to gen-
erate large sentences without inserting any irrelevant word. The result of all
this careful engineering is that the final sentence includes maximum possible
objects while reducing much of the probability of any false detection. More-
over, since the feature extracting CNN (VGG-16) is initialized with pre-trained
weights using ImageNet [36] dataset containing over 1000 object categories,
it can extract features which are helpful for region extraction module Dense-
CaptionNet is capable to describe object parts in the generated fine-grained
description e.g. “headboard” of bed shown in Table 3 (second image). Like-
wise, it is efficient to detect object attributes e.g. “wooden” and relationships
between objects e.g. “with” in the caption “a bed with a comforter” etc. Such
minor details of the scene are helpful to generate in-depth description of the
scene. Attention mechanism is employed for sentence generation because sim-
ple encoder-decoder is only feasible for small sized sentence generation. For
complex scenarios (having multiple objects e.g. 1st image in Table 3) requir-
ing large sentence caption passing only one single hidden state to the decoder
is not sufficient because single state may not contain enough information. De-
tecting maximum possible objects and using attention mechanism while fusing
them into a sentence results in a detailed image caption.

The training of the system is done using datasets which contains generic
images. Different specialized datasets can be used for domain specific training
e.g. cars dataset [19]. This type of specialized training will make the system
able to detect and describe domain specific things e.g. car models and years
etc. Another example is to train on garments dataset [38] which will generate
descriptions containing attributes of clothes.

Moreover, short vocabulary makes the training of the sentence generation
module easy and less time consuming. Attributes are adjectives and objects
are nouns. We have post tagged only attributes which decreased the number
of words in the vocabulary making the sentence generation more easy and
reliable. Nouns can also be post tagged to make vocabulary size shorter but
that will make it difficult to replace the nouns with original objects from source
sentence and thus making the description a little un-reliable.

Repeated object description is a limitation of our methodology when it
describes an object multiple times in the overall image caption. This is be-
cause, a single object detected at multiple box sizes or aspect ratios can have
high objectness score for all the boxes. The system is tuned to pick boxes with
high scores, so in this case, it will select one object multiple times. The issue
cannot be completely eliminated as there can be some real life complex sce-
narios where multiple instances of the same object can appear in the image for

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24 I Khurram et al.

example, a scene can have multiple buildings or multiple chairs. The problem
of repeated object descriptions cannot be totally eliminated considering the
above mentioned facts.

Another scenario where image captioning is challenging is shown in the
example “a man on a motorcycle with a red shirt and a pair of shoes on
the street” in Table 3 (6th image in supplementary material). The system
has no mechanism to perform attention while generating the final one-line
description because of which objects not present in the scene can also be
included sometimes e.g. “a pair of shoes” is not shown in the image but still
included in final caption.

5 Conclusion

In this paper, we propose a modular deep learning based network, Dense-
CaptionNet, to solve the image captioning problem. Instead of producing
an image description using the whole image, the proposed architecture ex-
ploits the individual object descriptions within the image to generate full
dense description. Exploiting the regional object based information to pro-
duce attributes and regional descriptions before generating complete image
caption helps to describe the contents of the scene in more fine-grained and
detailed manner. The region extraction module detects the object regions and
their confidence/objectness score using an adaptation of the RPN network.
The language generation module takes the detected objects and performs the
image-to-text mapping to produce region and attributes descriptions. These
two types of text descriptions are joined using an encode-decoder framework,
consequently producing single semantically and grammatically correct detailed
sentence. Since the detailed descriptions of image attributes are not available
with MSCOCO dataset, the evaluation is performed only on IAPR TC-12
dataset which contains the complex scenes together with their detailed de-
scriptions. The qualitative and quantitative results show that the proposed
Dense-CaptionNet out-performs the existing state-of-the-art methods in all
the standard evaluation metrics.

Although the achieved accuracy is high, there are several avenues for fur-
ther improvement of the proposed approach as follows:

– Similar to the attribute generation module, the relationships module can
also be incorporated to enhance the overall descriptions by better cap-
turing the inter object relationships. The training of this module may be
performed by using the Visual Genome dataset [20].

– The proposed network architecture has degraded accuracy when the image
is rotated. To cope with this issue, the rotation invariant features may be
extracted prior to description generation, e.g., by using Spatial transformer
network [13] or RotNet [37]. In future, we aim to extensively evaluate the
incorporation of RotNet into our architecture.

– More detailed and domain-specific descriptions can be generated by further
training the network on domain specific datasets, e.g. the “cars” dataset
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[19], to further enhance the descriptive capability of the proposed network
architecture.

6 Compliance with ethical standards

The authors declare no conflict of interest. No funding is received for the re-
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