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Abstract: Establishing complete, continuous and minimal error models is fundamentally significant for the calibration of 

robotic manipulators. Motivated by practical needs for models suited to coarse plus fine calibration strategies, this paper 

presents a screw theory based approach to determining the identifiable geometric errors of parallel manipulators at the 

model level. The paper first addresses two specific issues: (1) developing a simple approach that enables all encoder 

offsets to be retained in the minimal error model of serial kinematic chains; and (2) exploiting a fully justifiable criterion 

that allows the detection of the unidentifiable structural errors of parallel manipulators. Merging these two threads leads 

to a new, more rigorous formula for calculating precisely the number of identifiable geometric errors, including both 

encoder offsets and identifiable structural errors, of parallel manipulators. It shows that the identifiability of structural 

errors in parallel manipulators depends highly upon joint geometry and actuator arrangement of the limb involved. The 

process is used to determine the unidentifiable structural errors of two lower mobility parallel mechanisms to illustrate 

the effectiveness of the proposed approach. 
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1．Introduction 

Geometric accuracy is a crucially important performance factor for parallel kinematic machines, especially those 

developed for 5-axis NC machining and precision assembly, where relatively high pose accuracy is a major requirement. 

Kinematic calibration by software is recognized as a practical and economical way to improve pose accuracy if sufficient 

repeatability can be ensured by means of tolerance design, manufacturing and assembly processes. Calibration essentially 

requires a complete, continuous and minimal model that relates the predicted pose error twist of the end-effector to the 

corrections that are to be applied to the current kinematic parameters, generally by iterative least squares [1–4]. 

Over the past decades, there has been a great deal of intensive research into geometric error modeling of serial 

manipulators. There are two ways to formulate error models for calibration. The first way is to take small perturbation of 

the forward kinematics represented by a sequence of homogeneous transformation matrices built by the D-H 

(Denavit–Hartenberg) convention [5,6]. Various modified versions have been published for dealing with the parametric 

discontinuities arising with nearly parallel neighboring axes and/or the arbitrary localization of a tool frame attached to 

the end-effector [2,7–14]. The second way uses differentiation of the forward kinematics represented by the POE 

(Product of Exponentials) formulae [15–26], which can be established in either the global or local sense, depending upon 

the frames in which the joint twist coordinates are evaluated. Several methods have been proposed within each of these 

methods for determining the identifiable parameters via redundancy elimination at the model level [11–14,20–26]. A 

feature common to both D-H and POE based methods is that the encoder offset of a prismatic joint has to be treated as 

the redundant error parameter that must thereby be removed from the error model. A straightforward explanation of this 

result is that the twist axis of a prismatic joint is a free vector so that it only needs two angular parameters to describe the 

direction [11,12,22–25]. In addition, singular value decomposition (SVD) is an alternative way for determining the 

identifiable parameters at the calibration level [26–36]. Although a column full ranked identification Jacobian can be 

guaranteed, the retained error parameters have no longer geometrical meanings. However, the pose errors caused by the 

encoder offsets are usually much larger than those caused by the structural errors of joints and links. The preferable 

practice is to coarsely identify and compensate the encoder offsets iteratively until they are reduced below the level at 

which the linearized model becomes valid for full parameter identification and pose error compensation. Therefore, it is 

essential to develop an approach that enables all encoder offsets to be retained in the error model under the requirements 

of completeness, continuity and minimality for calibration. 

Because of the complicated topological structures of parallel manipulators, there has been little work on determining 

their identifiable error parameters at the model level [37–40], although great efforts have been made at the calibration 

level using singular value decomposition [28–36]. For example, an empirical formula  , , ,
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proposed [37] where ,r in  and ,p in  denote the number of revolute and prismatic joints and ,ss in  the number of links 

between two spherical joints in limb i  ( 1, 2, ,i l L ) with l  being the number of limbs of a parallel manipulator. This 



formula was then amended to take account of the number of independent loop closures and the number of cylindrical 

joints involved [38,39]. Unfortunately, as remarked by [40], these formulae were tested only via case-by-case studies 

without any formal justifiable proof. More recently, an interesting attempt to use the POE based approach [40] for 

dealing with the same problem provided a formula  , ,
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maximal number of identifiable parameters of non-overconstrained and non-redundantly actuated parallel manipulators. 

This formula has exactly the same form as that for serial manipulators. The formula was claimed to be independent of the 

topological structure of a parallel manipulator in terms of joint geometry and actuation arrangement. Although this 

formula can be derived with ease by the G-K mobility criterion, its validity is indeed debatable because a structural error 

might be intrinsically unidentifiable, a criticism justified in this article. 

Driven by the practical needs for a coarse plus fine calibration strategy, this paper presents a screw theory based 

approach to determining the identifiable geometric errors for the calibration of parallel manipulators. Its particular goal is 

to exploit a justifiable criterion that allows both redundant and unidentifiable structural error parameters to be detected 

while retaining all encoder offsets in the minimal error model. After this brief review of the major challenges, Section 2 

first formulates the linearized error model of a serial kinematic chain based upon the modified D-H convention [7]. Then, 

it proposes a simple method that enables the encoder offsets to be retained in the established minimal error model by 

linear correlation analysis of a set of unit twists associated with the axes of three consecutive body-fixed frames. Section 

3 starts by formulating a linearized error model of parallel manipulators by using the dual and reciprocal properties of 

wrench and twist systems of the platform. Exploration follows a criterion that enables unidentifiable structural errors 

within a limb to be detected by examining the virtual work done by the unit wrenches that the limb imposes on the unit 

twist associated with the structural error being considered. Merging the ideas developed in Sections 2 and 3 results in a 

new formula that calculates precisely the number of identifiable error parameters of parallel manipulators. The 

effectiveness of the proposed method is illustrated in Section 4 via dealing with two lower mobility parallel mechanisms 

before conclusions are drawn in Section 5. 

 
2. Minimal Error Model of Serial Kinematic Chains  

2.1 Error modeling  

Fig.1 shows the schematic diagram of a serial kinematic chain composed of a base and n movable links serially 

connected by n 1-DOF actuated joints. In order to avoid parametric discontinuities arising when two consecutive joints  

have nearly parallel axes, we establish the following frames using the modified D-H convention [7].  

(1)  Global reference frame 0K  attached to the base (link 0);  

(2)  Body frames 1jK ( 0,1, , 1j n L ) attached to link j  with the 1jz   axis aligned with the  1 thj  joint axis;  

(3)  Body frames 1nK  and 2nK  attached to link n  with the 2nz   axis aligned with the tool axis of the end-effector 

and its origin located at the tool tip point (TCP);  

(4)  Intermediate frames jK ( 1,2, , 1j n L ) attached to link j  with the origin coincident with that of jK  and the 

jy  axis aligned with the jy  axis as shown in Fig.2;  

(5)  Moving global reference frame 0
K  with its origin nominally coincident with the TCP and its axes remaining 

parallel to those of 0K . 
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Fig. 1 The Schematic diagram of a serial kinematic chain, 

with link n being the platform and link n+1 the tool.  
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jA represents the origin of jK ( 0,1,2, , 2)j n L as shown in Fig.1. Consequently, the homogeneous transfor- 

mation matrix of jK  with respect to 1jK ( 1,2, , 1j n L ) can be consistently parameterized by 1j  , 1jd  , 1ja  , 

1j   and 1j  . Here, 1j   denotes the angle from 1jx   to jx  measured about 1jz  ; 1jd   the distance from 1jx   

to jx  measured along 1jz  ; 1ja  the distance from 1jz  to jz  measured along jx ; 1j  the angle from 1jz   to jz  

measured about jx ; and 1j  the angle from jx  to jx  measured about jy . Note that the nominal value of 1j   is set 

to be zero because ideally jK  is aligned with jK ; its deviation represents particular misalignment about the jy axis as 

clearly depicted in Fig.2. In addition, we use the first two D-H parameters, 1n  and 1nd  , to describe the transformation 

between 2nK  and 1nK . Hence, the pose (position and orientation) of the end-effector can be expressed by successive 

4 4  homogeneous transformations 
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 1, 1 1 1Rot ,n n nz   T ,  2, 1 1 1Trans ,n n nz d  T  

Assume that the structural errors are much smaller than the relevant nominal parameters and all the encoder errors have 

been reduced below the level at which the linearized model becomes valid by means of the coarse calibration. These 

conditions allows the linearized error model of the serial kinematic chain to be formulated by taking small perturbation 

on both sides of Eq.(1), ignoring higher-order terms in the deviations of kinematic parameters, and applying appropriate 

isomorphism transformations.  
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where ξ  denotes the error twist about 2nA  ; 
, 1

ˆ
k jξ ( 1, 2, ,5k  L ) denotes the unit twist of the relevant frame’s axis 

along/about which the thk  geometric error , 1k j   of jK  with respect to 1jK  is defined; 1/ 2j n r ( / 2j nr ) denotes the 

nominal vector pointing from 2nA 
 to 1jA  ( jA ). 1jw , ju  and jv  are the nominal unit vectors of the 1jz  , jx  and 

jy  axes, respectively; in the linear, first order model jx  and jx  are functionally indistinguishable.  

 

2.2 Elimination of redundant error parameters 

We now present a simple method to determine the redundant error parameters such that the encoder offsets can be 

retained in the minimal error model. In order to do so, evaluate in 
1jK ( 1, 2, , 1j n L ) twelve unit twists 

corresponding to the axes of three consecutive frames
1jK , 

jK  and
1jK . It is worthwhile pointing out that this 

treatment differs from the previous works [12,24–27] where linear correlation among six unit twists associated with two 

consecutive frames were merely analyzed such that the encoder offset of a prismatic joint has to be treated as a redundant 

term, it thereby must be removed. The left superscript indicates the frame in which the Plücker coordinates of a unit twist 

are expressed. Evaluated in
1jK , the positioning vectors pointing from 

1jA 
 to 

1jA 
 and 

jA  can be expressed as 
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where +1j

jR  denotes the orientation matrix of 
1jK  with respect to 

jK .  

Examining Eq.(4) indicates that: (a) 1

,
ˆ ( 3,4,5)j

k j k ξ  and 1

, 1
ˆ ( 1,2)j

k j k

 ξ  are always constant unit twists; (b) if 

joint j  is prismatic 
+1j

jR  becomes a constant matrix, leading to 1

, 1
ˆ ( 2,3)j

k j k

 ξ  and 1

,
ˆ ( 1,2)j

k j k ξ  being 

constant unit twists; and (c) 1

1, 1
ˆj

j



ξ  becomes a constant unit twist if joint j  is prismatic and jz  is parallel to 1jz  . 

Recalling that the   parameter was introduced to deal with singular geometries, 5, 1j   and 5, j  are redundant unless 

specific parallel conditions apply, in which case an alternative parameter must be taken instead. Building upon these 

observations, we propose a simple method for determining the redundant error parameters by considering the following 

two cases.  

Case 1: When joint j  is revolute, 2, j  is a structural error and there are two redundant parameters. If jz  is parallel 

to 1jz   ( 1jz  ), retain 5, j  ( 5, 1j  ) and take 2, j  as the redundant error parameter because it can be merged into 2, 1j   

( 2, 1j  ). Otherwise, take 5, j  ( 5, 1j  ) as a redundant error parameter in accordance with the basic D-H convention.  

Case 2: When joint j is prismatic, 2, j becomes an encoder offset that must be retained. Two steps are needed to 

determine the four redundant error parameters.  

Step 1: If jz is parallel to 1jz   ( 1jz  ), retain 5, j  ( 5, 1j  ) and take 2, 1j   ( 2, 1j  ) as the redundant error parameter 

as it can be merged into 2, j . Otherwise, take 5, j  ( 5, 1j  ) as the redundant error parameter according to the basic D-H 

convention.  

Step 2: Take 3, 1j  and 3, j  as always redundant error parameters as a consequence of the linear correlation analysis 

of the constant unit twists. 
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Fig. 3 The forward algorithm for determining the redundant error parameters 

Note: 
1 prismatic joint

0 revolute joint
jt


 


 

1 ?j jz z P

1?jt 



This redundancy elimination procedure can be implemented by either a forward or a backward algorithm throughout 

the entire chain, i.e. from the base to the end-link or vice versa. Fig.3 shows the flow chart of the forward algorithm. It is 

important to note that some of the redundant error parameters determined by the forward algorithm are different from 

those obtained by the backward one. Nevertheless, the maximum number of identifiable error parameters obtained by 

both is the same, i.e. 4 2 6Serial r pN n n   , including n  encoder offsets and 4 2 6r pN n n n     independent 

structural errors.  

Adding subscripts ' 'ta  and ' 'ts  to identify the independent unit twists associated with the encoder offsets and the 

structural errors, and reordering them in sequence from the base to the end-link, finally results in the linearized minimal 

error model of serial kinematic chains.  
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where ,a j and 
,

ˆ
ta jξ are the encoder offset of the thj actuated joint and its unit twist; ,s j  and 

,
ˆ
ts jξ  are the thj  

structural error and its unit twist.  

 

3. Minimal Error Model of Parallel Manipulators  

3.1 Error modeling  

Fig.4 shows the schematic diagram of an f-DOF 

( 2 6f  ) parallel manipulator composed of l 

( 1f l f   ) limbs connecting the platform with the 

base. We assume that the thi  limb contains in  

( 6if n  , 1, 2, ,i l L ) 1-DOF joints, with at most 

one of them actuated. Without losing generality, two 

families of parallel manipulators are considered. The first 

family covers those with f constrained active limbs, i.e., 

6in   for all limbs. The second contains those having f 

unconstrained active limbs (i.e., 6in  , 1,2, ,i f L ) 

plus one properly constrained passive limb numbered 

1l f  . Parallel manipulators not belonging to these 

families can be treated by methods similar to that used 

here. 

Using the conventions adopted in Section 2 for the 

error modeling of serial kinematic chains, a global 

reference frame 0K  is placed on the base and body 

frames ,j iK ( 0,1, , 2ij n L ) associated with the links 

of the thi  limb. The moving reference frame 0
K  has 

its origin at 2,( )
in iP A   with its axes remaining parallel to those of 0K . Note that no errors of 0,iK  with respect to 0K  

need be considered because those of 1,iK  with respect to 0,iK  have already been taken into account instead, and that all 

2,in iK  are coincident with one another because they can be arbitrarily located. 

All the limbs share the same platform, so following the procedure to generate Eqs.(4) and (5) allows the pose error 

twist about 2,( )
in iP A   to be expressed as 

, , , ,i a i a i s i s i  ξ ξ T η T η , 1, 2, ,i l L                              (6) 

Then, using the method given in [44] to determine all the unit wrenches imposed by the thi limb upon the platform and 

collecting them in a matrix form, yields  

Limb i   

0,iK
1,iA

1z

,j iz

,j iA

1,j iz 

1,j iA 

,in iz

,in iA

0
K

2,in iK

0K

2,( )
in iP A 

Fig. 4 The schematic diagram of a parallel manipulator 
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ˆ ˆ
ic i wc i wc n i

 
 
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where , ,
ˆ

iwa g iξ  denotes the unit wrench of actuation generated by the actuated joint numbered ig , and , ,
ˆ

cwc k iξ  the thck  

( 1,2, ,6c ik n L ) unit wrench of constraint of the thi  limb. Both are expressed in ray-coordinates. Obviously, 

, 1a f  W  and ,c i W  ( 1,2, ,i f L ) for the second family of parallel manipulators.  

Pre-multiplying on both sides of Eq.(6) with T

iW  ( 1, 2, ,i l L ) and noting that a unit wrench of actuation 

(constraint) does virtual work only on a unit twist produced by that wrench [41–43], results in the linearized error model 

of parallel manipulators 

T
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where 
, ,4 2 6i r i p i iN n n n     denotes the number of structural errors within the thi  limb. Adding the encoder 

offsets of the f  actuated joints, then gives the total number of geometric error parameters of a parallel manipulator as  

1

l

parallel i

i

N f N


                                          (9) 

For non-overconstrained and non-redundantly actuated parallel manipulators, substituting the G-K mobility criterion 

 
1

6 6
l

i

i

f n


    into Eq.(9) finally results in 

 , ,

1

4 2 6 4 2 6
l

parallel r i p i r p

i

N n n n n


                                 (10) 

This formula is identical to that proposed by [40]. Note, however, that parallelN  given by Eq.(10) is not the number of 

identifiable error parameters of parallel manipulators, a claim to be justified in the following section. 

 

3.2 Determination of the unidentifiable structural errors in a limb 

All encoder offsets of parallel manipulators are identifiable if 
T

, , , ,
ˆ ˆ 0

k kwa g k ta g k ξ ξ  ( 1,2, ,k f L ) and W  is 

non-singular. However, it is not generally true that all the structural errors given in Eq.(8) are identifiable. This limitation 

is proven by expanding 
, ,s i s iΛ η in Eq.(8) as 

T T
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s i s i i s i s i s j i i ts j i

j




 Λ η W T η W ξ , 
, , ,1, ,6 ,

ˆ ˆ ˆ
i ii wa g i wc i wc n i

 
 

W ξ ξ ξL , 1, 2, ,i l L         (11) 

Omitting, for convenience in this argument, the indicators “ i ” for limbs, “ a ” and “ c ” for actuations and constraints, 

and “ s ” for structural errors, Eq.(11) can be rewritten as 

T

,

1

ˆ
N

j t j

j



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w w m
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W ξ ξL                              (12) 

where m  denotes the total number of the unit wrenches imposed by a limb on the platform. Obviously, if 

T

, , ,
ˆ ˆ ˆ0   w k t j w k  ξ ξ ξ W  or  T

,
ˆ Kert j ξ W                            (13) 

then j  is unidentifiable. Mathematically, Eq.(13) indicates that j  is intrinsically unidentifiable if 
,

ˆ
t jξ  belongs to 

the null space of T
W , because it cannot be observed in the pose error measurements.  



In the linearized model at a given configuration the Jacobian is generated using the nominal dimensional parameters. 

Therefore, the reciprocal relations of the wrenches/twists are ideal according to the Taylor’s expansion. Note that 
,

ˆ
t jξ  is 

always a screw in the form either a line vector or a free vector, and so is 
,

ˆ
w kξ  for the limbs commonly used in parallel 

manipulators [44]. The geometric conditions satisfying Eq.(13) are revealed by considering two possible cases below; 

when both 
,

ˆ
w kξ and 

,
ˆ

t jξ are free vectors, Eq.(13) is self-satisfied. 

Case 1: Both 
,

ˆ
w kξ  and 

,
ˆ

t jξ  are line vectors, physically representing a force and an instantaneous rotation, i.e. 

,

,
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ξ
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                               (14) 

where 
,w ks (

,t js ) denotes the unit vector of screw axis of 
,

ˆ
w kξ (

,
ˆ

t jξ ), 
,w kr (

,t jr ) denotes the position vector pointing from 

the origin of 
0
K  to an arbitrary point on the screw axis. Then 
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ˆ ˆ 0w k t j w k t j w k t j   ξ ξ r r s s                                 (15) 

if 
,w ks  and 

,t js  are coplanar. One example satisfying Eq.(13) is that 
,w ks  intersects 

,t js  because a pure force passing 

through the center of a spherical joint does no virtual work on the instantaneous rotation about an axis passing though the 

same center. Consequently, the angular structural error related to the instantaneous rotation is potentially unidentifiable.  

Case 2: If 
,

ˆ
w kξ  is a line vector while 

,
ˆ

t jξ  is a free vector, or vice versa, i.e.  

,

,
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w k
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then
 

T T

, , , ,
ˆ ˆ 0w k t j w k t j ξ ξ s s                                       (17) 

requires
, ,w k t js s . This means that if the direction of a force (couple) is normal to that of an instantaneous translation 

(rotation), the linear (angular) structural error related to the instantaneous motion is potentially unidentifiable.  

Fig.5 shows the flow chart of the algorithm for determining the unidentifiable parameters. The design freedom of a 

passive joint clearly offers no structural error, so, with ,p iN  the number of passive joints and 0,iN  the number 

unidentifiable structural errors of the thi  limb detected by Eqs.(15) and (17), the total number of identifiable error 

parameters, including both encoder offsets and identifiable structural errors, of parallel manipulators is given by 
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No 

1j 

Input 
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Fig. 5 The algorithm for determining the unidentifiable parameters 
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At this stage, it is important to note that the identifiability of a structural error within the error model given in Eq. (8) 

is highly related to limb connectivity, to joint geometry and to the actuator arrangement of the parallel manipulator being 

considered. So, removing all unidentifiable structural errors from Eq.(8) finally results in the minimal linearized error 

model of parallel manipulators. 

 

4. Examples 

In this section, we take 3-RPS and 3-UPS&UP parallel mechanisms as two exemplars to illustrate the effectiveness of 

the proposed process for determining redundant error parameters within limbs using the method developed in Section 2, 

and for detecting unidentifiable structural errors of the parallel mechanisms using the criteria developed in Section 3. 

Here, S, U, P, R denote spherical, universal, prismatic and revolute joints, respectively. The underlined P  denotes the 

actuated prismatic joint. For modelling, the S and U joints are replaced by the appropriate number of revolute joints, 

denoted by R, having mutually orthogonal axes. 

 

4.1. 3-RPS parallel mechanism 

Fig.6(a) shows schematic diagram of a 3-RPS parallel mechanism compromising a base, a platform and three 

identical RPS limbs. By omitting indicator ‘i’ for limbs, Fig.6(b) shows a RPS limb whose joint axes are arranged to 

satisfy the geometric conditions below 

 

1 2 2 3 3 4 4 5,  ,  ,     w w w w w w w w                               (19) 

Keeping mind 5n  , 4rn  and 1pn  , and removing all the redundant error terms while retaining the encoder offset of 

the P joint using the method developed in Section 2, leads to 

4 2 6 4 4 2 1 6 5 19r pN n n n                                       (20) 

non-redundant structural errors given in Table 1. The unit twists associated with these error terms are given by 
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Fig. 6 The schematic diagram of a 3-RPS parallel mechanism 
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where jd ( 1,6j  ) denotes the common normal between the jx and 1jx  axes, 2 5q A A
uuuuur

, 5PAa
uuuur

 and 0PAb
uuuur

, 

respectively. The RPS limb imposes on the platform a unit wrench of actuation and a unit wrench of constraint, both are 

in the form of line vectors as depicted in Fig.6(b). 
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Examination of Eq.(21) and (22) shows that 
,

ˆ ( 7,  8,  9,  11,  14)t j j ξ  are line vectors having their screw axes 

intersecting the screw axis of 
,1

ˆ
wξ and 

,2
ˆ

wξ . Consequently, there are 5 unidentifiable structural errors (shown in red in 

Table 1) that can be detected using the criteria developed in Eq.(15).  

With 3l  ,
, 4p iN  and

0, 5iN  ( 1,2,3i  )，the number of identifiable error parameters of the 3-RPS parallel 

manipulator can be determined by 
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It contains 3 encoder offsets of the actuated prismatic joints and 42 identifiable structural errors in total. 

 

4.2. 3-UPS&UP parallel mechanism 

Fig.7(a) shows schematic diagram of a 3-UPS&UP parallel mechanism composed of a base, a platform, three  

identical UPS limbs plus a UP limb in the middle, where the UP limb connects rigidly to the platform. Figs.7(b) and (c)  

show joint axe arrangements of these limbs, which satisfy the geometric conditions 
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Fig. 7 The schematic diagram of a 3-UPS&UP parallel mechanism 
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Clearly, the number of non-redundant structural errors in the UPS limb is 22N  as 5n  , 4rn  and 1pn  , and that for 

the UP limb is 13N  as 3n  , 2rn  and 1pn  . The corresponding error terms are given in Tables 1.  

On one hand, the unit twists associated with the non-redundant structural errors in the UPS limb can be formulated as 
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Note that the limb imposes on the platform a unit wrench of actuation in the form of line vector as shown in Fig.7(b).  
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It can be seen from Eq.(26) and (27) that 
,

ˆ ( 7,  9 ~12,  14,  17)t j j ξ  are line vectors having their screw axes intersecting 

the screw axis of 
,1

ˆ
wξ ; while 

,
ˆ ( 8,  13,  15)t j j ξ  are free vectors having their screw axes normal to the screw axis of 

,1
ˆ

wξ . Consequently, there are 10 unidentifiable structural errors (shown in red in Table 1) that can be detected using the 

criteria given in Eqs.(15) and (17).  

On the other hand, the unit twists associated with the non-redundant structural errors in the UP limb can be 

formulated by 
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The limb imposes on the platform three unit wrenches of constraint, i.e. two linear vectors and one couple, as clearly 

depicted in Fig.7(c).  
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It is easy to see from Eqs.(28) and (29) that the structural errors listed in Table 1 are identifiable since neither Eq.(15) nor 

Eq.(17) is satisfied.  

With
, 5p iN  ,

0, 10iN   for 1,2,3i  and
, 3p iN  ,

0, 0iN  for 4i  , the number of identifiable error parameters of 

the 3-UPS&UP parallel mechanism can then be determined by 
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It contains 3 encoder offsets of the actuated prismatic joints and 49 identifiable structural errors in total.  

The results given in Eq.(23) and Eq.(30) have been verified using the SVD method [27]. For parallel manipulators of 

other types, the number of identifiable geometric errors can also be determined straightforwardly according to Eq.(18), 

which include both encoder offsets and identifiable structural errors. For convenience, Table 1 summarizes the structural 

errors of several limb designs that contain one actuated/passive prismatic joint and are commonly used to build parallel 

kinematic machines. Also, the encoder offset of an actuated limb is indicated in the table. The wrenches of actuation and 

constraint imposed by each limb on the platform are determined using the method proposed in [44]. The non-redundant 

structural errors of each limb are determined using the method developed in Section 2, out of which the unidentifiable 

ones (shown in red) are detected using the criteria developed in Section 3.  

 
 

Table 1 Encoder offset and structural errors in the limbs containing one prismatic joint 
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5.  Conclusions 

This paper presents a screw theory based approach to determining the identifiable error parameters of parallel 

manipulators for calibration purpose. The following conclusions are drawn.  

(1) By using the modified D-H convention and considering the linear correlation analysis of a set of unit twists 

corresponding to the relevant axes of three consecutive body-fixed frames, we have proposed an approach that enables all 

encoder offsets to be retained in the minimal error model of serial kinematic chains.  

(2) By examining the virtual work that the unit wrenches imposed by a limb delivery on the unit twist associated with a 

structural error belonging to that limb, we have created a vigorous criterion that allows the unidentifiable structural errors 

of parallel manipulators to be fully detected. This leads to a new formula for the determination of the maximum number 

of identifiable geometric errors, including both encoder offsets and identifiable structural errors, of parallel manipulators. 

We have shown that identifiability of a structural error is highly dependent upon the limb connectivity, joint geometry 

and actuator arrangement. Two examples have provided to show the procedure for determining the identifiable 

parameters of parallel mechanisms and the results have been consolidated by SVD method. 

(3) The linearized error model established using the proposed method fulfills the requirements of completeness, 

continuity and minimality, thus enabling the efficient practical implementation of coarse plus fine calibration strategies 

for parallel manipulators. 

 

Acknowledgement 

This work is partially supported by National Natural Science Foundation of China (grants 51420105007, 51605324, 

and 51622508) and EU H2020-RISE-ECSASDP (grant 734272).  
 

References 

[1] P. Schellekens, N. Rosielle, H. Vermeulen, M. Vermeulen, S. Wetzels, W. Pril, Design for precision: current status and trends, 

CIRP Ann. - Manuf. Technol. 47(2) (1998) 557–586. 

[2] B.W. Mooring, Z.S. Roth, M.R. Driels, Fundamentals of manipulator calibration, John Wiley & Sons, New York, NY, USA, 

(1991). 

[3] B. Siciliano, O. Khatib, Springer handbook of robotics, 2nd ed., Springer, Berlin, Germany, (2016). 

[4] J.P. Merlet, Parallel robots: open problems, in: J.M. Hollerbach, D.E. Koditschek (Eds.), Robotics Research, Springer, London, 

UK, (2000) 27–32. 

[5] J. Denavit, R.S. Hartenberg, A kinematic notation for lower-pair mechanisms based on matrices, J. Appl. Mech. 22(2) (1955) 

215–221. 

[6] L.W. Tsai, Robot analysis: the mechanics of serial and parallel manipulators, John Wiley & Sons, New York, NY, USA, (1999). 

[7] W. Veitschegger, C.H. Wu, Robot accuracy analysis based on kinematics, IEEE J. Robot. Autom. 2(3) (1986) 171–179. 

[8] H.W. Stone, Kinematic modeling, identification, and control of robotic manipulators, Kluwer, Dordrecht, The Netherlands, 

(1987). 

[9] S. Hayati, K. Tso, G. Roston, Robot geometry calibration, in: Proc. 1988 IEEE Int. Conf. Robot. Autom., Philadelphia, PA, USA, 

(1988) 947–951. 

[10] H. Zhuang, Z.S. Roth, Robot calibration using the CPC error model, Robot. Comput. -Integr. Manuf. 9(3) (1992) 227–237. 

[11] L.J. Everett, M.R. Driels, B.W. Mooring, Kinematic modelling for robot calibration, in: Proc. 1987 IEEE Int. Conf. Robot. 

Autom., Raleigh, NC, USA, (1987) 183–189. 

[12] K. Schröer, S.L. Albright, M. Grethlein, Complete, minimal and model-continuous kinematic models for robot calibration, Robot. 

Comput. -Integr. Manuf. 13(1) (1997) 73–85. 

[13] W. Zhu, B. Mei, Y. Ke, Kinematic modeling and parameter identification of a new circumferential drilling machine for aircraft 

assembly, Int. J. Adv. Manuf. Technol. 72(5) (2014) 1143–1158. 

[14] Y. Wu, A. Klimchik, S. Caro, B. Furet, A. Pashkevich, Geometric calibration of industrial robots using enhanced partial pose 

measurements and design of experiments, Robot. Comput. -Integr. Manuf. 35 (2015) 151–168. 

[15] F.C. Park, K. Okamura, Kinematic calibration and the product of exponentials formula, in: J. Lenarčič, B. Ravani (Eds.), 

0K

K

a

,1
ˆ

wξ

3w
,3

ˆ
wξ

,2
ˆ

wξ
1n

2n

1w

2w

0A

2 3( )A A
1A

4 4d w

4A

5( )P A

5 4( )w w

1 1d w



Advances in Robot Kinematics and Computational Geometry, Springer, Dordrecht, The Netherlands, (1994) 119–128. 

[16] K. Okamura, F.C. Park, Kinematic calibration using the product of exponentials formula, Robotica 14(4) (1996) 415–421. 

[17] I. Chen, G. Yang, C.T. Tan, H.Y. Song, Local POE model for robot kinematic calibration, Mech. Mach. Theory 36(11) (2001) 

1215–1239. 

[18] H. Wang, S. Shen, X. Lu, A screw axis identification method for serial robot calibration based on the POE model, Ind. Robot: Int. 

J. Rob. Res. Appl. 39 (2012) 146–153. 
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