
c ©
20

17
W

ile
y.

T
hi

s
is

th
e

au
th

or
’s

ve
rs

io
n

of
th

e
w

or
k.

It
is

po
st

ed
at
h
t
t
p
:
/
/
w
w
w
.
b
r
u
c
k
e
r
.
c
h
/

b
i
b
l
i
o
g
r
a
p
h
y
/
a
b
s
t
r
a
c
t
/
b
r
u
c
k
e
r
.
e
a
-
s
e
c
u
r
e
-
s
e
r
v
i
c
e
s
-
2
0
1
7

by
pe

rm
is

si
on

of
W

ile
y

fo
r

yo
ur

pe
rs

on
al

us
e.

N
ot

fo
r

re
di

st
ri

bu
tio

n.
T

he
de

fin
iti

ve
ve

rs
io

n
w

as
pu

bl
is

he
d

in
So

ftw
ar

e:
P

ra
ct

ic
e

an
d

E
xp

ie
re

nc
e

(S
P

E
),

pp
.1

–2
4,

20
17

,d
oi

:1
0.

10
02

/s
pe

.2
51

3.

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 0000; 00:1–24
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Modelling, Validating, and Ranking of
Secure Service Compositions

Achim D. Brucker1, Bo Zhou2, Francesco Malmignati3, Qi Shi2, and Madjid Merabti4

1 The University of Sheffield, Sheffield, United Kingdom. E-mail: a.brucker@sheffield.ac.uk
2 Liverpool John Moores University, Liverpool, United Kingdom. E-mail: {b.zhou, q.shi}@ljmu.ac.uk
3 Selex ES S.p.A, A Finmeccanica Company, Italy. E-mail: francesco.malmignati@guests.selex-es.com

4 College of Sciences, University of Sharjah, Sharjah, UAE. E-mail: mmerabti@sharjah.ac.ae

SUMMARY

In the world of large-scale applications, software-as-a-service (SaaS) in general and use of micro-services,
in particular, is bringing service-oriented architectures (SOA) to a new level: systems in general and
systems that interact with human users (e.g., socio-technical systems) in particular are built by composing
micro-services that are developed independently and operated by different parties. At the same time, SaaS
applications are used more and more widely by enterprises as well as public services for providing critical
services, including those processing security or privacy of relevant data. Therefore providing secure and
reliable service compositions is increasingly needed to ensure the success of SaaS solutions. Building such
service compositions securely, is still an unsolved problem.
In this paper, we present a framework for modelling, validating, and ranking secure service compositions
that integrate both automated services as well as services that interact with humans. As a unique feature, our
approach for ranking services integrates validated properties (e. g., based on the result of formally analysing
the source code of a service implementation) as well as contractual properties that are part of the service-
level-agreement and, thus, not necessarily ensured on a technical level. Copyright c© 0000 John Wiley &
Sons, Ltd.

Received . . .

KEY WORDS: Service design, human-centred service compositions, service modelling, service
deployment, service ranking, secure service composition, service availability,
SecureBPMN

1. INTRODUCTION

Enterprises need to flexibly adapt to new processes and react on changes on the market quickly. In
today’s interconnected world, this also impacts enterprise IT systems: they also need to be flexible
to support the business needs (see [30] for an overview of flexible enterprise IT approaches). At the
same time more large-scale applications for enterprises, the public-sector, as well as for consumers
are built using compositions of micro-services and are delivered as software-as-a-service (SaaS).
The underlying paradigm (as well as technologies such as WSDL [23] or REST [29]) is not new: it
was already promoted a decade ago in the form of the service-oriented architecture (SOA) [27, 39].
Still, the problem of how to provide service-oriented systems that are secure by default is unsolved:
the lack of security is a main factor that hinders cloud adoption [8].

Security is often considered to be technical topic that is addressed by specialists. While this
is certainly true for low-level technical security decisions (e.g., selecting a specific encryption
scheme), there are many security aspects (such as access control or compliance) that need to be
addressed right from the requirements elicitation phase. Moreover, these business-level security
requirements are pre-requisite to many technical security decisions.

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/266992031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.brucker.ch/bibliography/abstract/brucker.ea-secure-services-2017
http://www.brucker.ch/bibliography/abstract/brucker.ea-secure-services-2017
http://dx.doi.org/10.1002/spe.2513
mailto:a.brucker@sheffield.ac.uk
mailto:b.zhou@ljmu.ac.uk
mailto:q.shi@ljmu.ac.uk
mailto:francesco.malmignati@guests.selex-es.com
mailto:mmerabti@sharjah.ac.ae

2

Even if security requirements are captured early on, there is still the problem of tracing their
actual implementation—which might require their refinement or even the “translation” of business
concepts into technical concepts. While this is true for all systems, it is a particular challenge for
service-oriented systems as, usually, service developers that work with service compositions have
only limited influence on the security of the composed services. Thus, the compositions need to
select the most suitable ones on offer.

In our approach, a service developer constructs a service composition plan for a system that can
contain both automated services as well as human-centred services. While often, this composition
plan is driven by the functional system requirements, our approach supports the specification
of security requirements as first class citizens. This allows to discuss these important non-
functional requirements with customers early in the design-phase and, thus, helps to realise a
development methodology that supports “security-by-design.” After searching for suitable services
in a marketplace, the abstract composition plan will be associated with concrete services for each
task in the plan. The selection of services guarantees the fulfilment of both the functional as well as
the security requirements of the system.

An important part of building secure service compositions is the selection of the most
appropriate—in terms of security as well as functionality—services for building the actual service
composition. It inevitably involves the quantification and ranking of services, according to their
security levels. The three most important pre-requisites for quantifying and ranking services are:

1. a model or specification of both the security properties that a service composition as a whole
as well as each individual service needs to fulfil, and the security guarantees offered by the
services.

2. an understanding of to what extent the security guarantees of a service can be trusted.

3. a ranking algorithm that can cope with uncertainties or weak security guarantees and still
ensures that the service composition provides the required functionality and the needed level
of security.

Our contributions in this paper address these requirements by developing an integrated
development process and framework that supports security properties, as first class citizen; right
from the beginning of the service composition process, in which the service composition is modelled
for binding with the required security properties. Secondly, this model is formally analysed to ensure
that the composition provides the actual security requirements based on the minimal guarantees
provided by the services being composed. Thirdly, we employ a ranking approach that allows to
select the most suitable services by considering both formally verified security properties as well as
informally stated security properties that are guaranteed by contractual or legal frameworks.

Our implementation is integrated into the Aniketos framework [13]. The framework, including
the implementation presented in this paper, is available as Free Software (https://github.
com/AniketosEU).

This paper extends our previous works [12, 13, 16, 17, 24, 56] in several key aspects: first, the set
of properties that can be analysed both on the implementation level as well as on the actual service
compositions are extended, e. g., to support the analysis of cryptographic properties. Second, formal
analyses that yield in a binary “secure” or “inconclusive” result are integrated with quantitative
ranking approaches. Finally, the isolated modelling and analysis approaches are, for the first time,
integrated into a uniform, tool-supported, process that supports the whole life-cycle of modelling
and implementing secure systems based on a SOA.

The rest of the paper is organised as follows. The next section (Sect. 2) provides an overview of
existing SOA frameworks and explains how to use the BPMN modelling tool to construct service
composition. We follow up on this by explaining in Sect. 3 how to model secure services and secure
service compositions. In Sect. 4, we present techniques for formally validating security properties of
atomic services as well as service compositions. We introduce a ranking and quantification approach
that takes this uncertainty into account in Sect. 5. We discuss the framework in which our solution
is integrated in Sect. 6. In Sect. 7, we briefly present a case study and, finally, we discuss related
work (Sect. 8) and draw conclusions (Sect. 9).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

https://github.com/AniketosEU
https://github.com/AniketosEU

3

2. BACKGROUND: SOA AND BPMN

In this section, we introduce SOA, its security requirements as well as BPMN as a solution for
describing systems that are built using service compositions and support both automated services
(tasks) as well as human-centred services (tasks).

2.1. Service-Oriented Architecture and Its Security

A service is a unit that provides a certain functionality. The SOA allows users to reuse existing
services depending on their requirements. Therefore services can be composed to form a larger
application in an ad hoc manner. SOA platforms provide a foundation for modelling, planning,
searching for and composing services. They specify the architectures required, as well as providing
tools and support for service composition standards.

To facilitate service composition across different platforms, service modelling languages are
used to describe a) the business requirements of a system and b) system resources. By expressing
behaviour processes and system organisation in agreed formats, not only the services can be easily
understood and composed, but also the compositions can be validated against desired criteria and
modified to suit required changes in operation.

Security in SOA becomes a big challenge due to the lack of common ground. One service
developed with good faith in its security may not be necessarily good enough for another to use. For
instance data access is a security issue that concerns most information systems. It is one of the main
objectives while deploying secure services. Weak access control can cause severe consequences
such as information leakage or data integrity issues. The situation gets more complicated in SOA
as individual services from different domains may apply data access control in different—and often
incompatible—ways.

Enterprise servers such as Glassfish do offer security parameterisations, but these are typically
domain or platform-specific [21]. Subsequent standards have been proposed to augment the basic
description of WSDL, to add semantic, behavioural, and to a limited extent, authentication and
security data [3]. Other such property-based extensions, including Unified Services Description
Language (USDL) [41], consist of standards that target trust and security, to bridge the previously-
identified vendor divide.

2.2. Using BPMN to Construct Service Compositions

In process-oriented approaches, a service composition is often described using BPMN [46]. The
modelling in BPMN is done by expressing business processes through business models. A BPMN
model is a flowchart based diagram (see Fig. 1) that displays the basic structure and flow of activities
and data within a business process.

2.2.1. Why BPMN. In our approach, we are using BPMN for modelling service compositions in
the context of, e.g., business process-driven systems and socio-technical systems, i. e., systems that
comprise machine-to-machine as well as human-to-machine interactions. The ability of BPMN to
model both human as well as service tasks was one of the main reason for choosing BPMN over one
of the many alternatives, including BPEL [47]. Moreover, BPMN is equipped with a standardised
graphical notation that allows the visual modelling notation that is easy to understand and already
known by many business experts. Finally, BPMN is executable and widely supported by multiple
modelling and execution environments including Free Software implementations such as Activiti
BPMN or SAP Netweaver BPMN. Thus, there is no need to translate BPMN to BPEL.

The approach presented in this paper is fully supported by a prototype developed on top of Activiti
BPMN (based on BPMN 1.0) and, moreover, selected parts of the approach such as the secure
modelling of BPMN as well as the validation of selected security properties are also available as
part of an implementation based on SAP Netweaver BPMN (supporting a subset of BPMN 2.0).

2.2.2. Developing Service-Based Systems Using BPMN. From a high-level perspective, the
development of a service-based system is divided into two phases:

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

4

Figure 1. A service composition of a service for booking travels.

1. In the design phase, a service developer (together with domain or business experts) designs
the process model, representing the composition of automated and human-centred service.

2. In the deployment phase, the process model is deployed in a business process execution
engine, which can act as a service orchestrator as well as manage and configure other parts of
the runtime infrastructure, e. g., enforcing access control.

This high-level view does not include several other tasks involved in system development, e. g., the
implementation of actual services and design of user interface.

Fig. 1 shows a very simple BPMN diagram modelling a service composition that provides a travel
booking service to customers. First, the customer enters his/her flight and hotel preferences into the
system (such user interactions are modelled by user tasks in BPMN). Next, two web services
(modelled as service tasks) are executed and connected via parallel gateways. These web
services can be operated by different service providers and, in our example, provide functionalities
for finding suitable hotel and flight information respectively. Here the parallel gateways ensure
that the service which queries the customer’s credit card data will only be executed if both the
Find suitable hotels and Find suitable flights tasks terminated successfully. By using exclusive
gateways the service developer is able to indicate that the Book the hotel task might fail. In case
the booking fails (!booked), an error boundary event will be reached. Finally, the regular starting
and ending points of the workflow are marked, respectively, by start and end events.

Modern systems need to fulfil a plethora of security requirements. In our simple example, to avoid
fraud or price-fixing agreements, we could demand that the services for finding hotels and flights and
the service doing the booking, are from different service providers. Moreover, only authenticated
users will be allowed to authorise a booking. In addition, there might be also other requirements,
e. g., only few service providers are “trustworthy” enough to handle the booking task.

3. MODELLING SECURE SERVICES

Modelling secure systems requires both the modelling of secure atomic services (i. e., automated
services) and of secure service compositions that combine both services that interact with human
users as well machine-to-machine communication.

3.1. Modelling Secure Atomic Services

We use ConSpec [4] for modelling atomic services as well as for specifying the (secure) input/output
behaviour of composed services (i. e., composed services that are modelled as “black box”). Using
ConSpec for our work is motivated by three reasons: 1. ConSpec was designed for specifying
security properties, 2. it also supports the monitoring of security properties at runtime (e. g., see [7]),
and 3. by using a language that is independent from the underlying service technologies, we can
support different service technologies (e. g., RESTful services, WSDL-compliant services) at the

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

5

1 RULE ID ruleID
2 SCOPE <Session | Multisession>
3 SECURITY STATE
4 <bool | int | string> VarName1 = <Value1>
5

...
6 <bool | int | string> VarNamen = <Valuen>
7
8 <BEFORE | AFTER> event1 PERFORM
9 Guard1,1 → Update1,1

10
...

11 Guard1,m → Update1,m

12
13

...
14
15 <BEFORE | AFTER> eventi PERFORM
16 Guardi,1 → Updatei,1

17
...

18 Guardi,j → Updatei,j

Figure 2. The concrete syntax of ConSpec.

1 RULE ID Confidentiality_Booking
2 SCOPE Multisession
3 SECURITY STATE
4 string ServiceID = Hotel_Booking
5 string inputSuite = Basic256Sha256Rsa15
6 string inputSchema = symmetric
7 string inputAlgorithm = AES
8 int inputKeyLength = 256
9 string outputSuite = Basic256Sha256Rsa15

10 string outputSchema = symmetric
11 string outputAlgorithm = AES
12 int outputKeyLength = 256
13 BEFORE activity.start(string id, string type,
14 int time, int date, string exec,
15 string Output) PERFORM
16 ServiceID = id ∧ · · ·

Figure 3. A ConSpec specification requiring encryption.

same time. Our work can easily be adapted to other service specification languages that support
security properties such as USDL [41], PROTUNE [11], or combinations of XACML [45] and
WSDL [23].

ConSpec is a rule-based language (see Fig. 2 for its concrete syntax. The tag RULE ID simply
defines the ID of the policy defined. The tag SCOPE specifies whether the rule is applied to one
specific execution or to all executions of the service. The tag SECURITY STATE defines the
global variables and their initial values. Then several events are checked BEFORE or AFTER the
event occurrence. If an event occurred, we check guards one by one until we find the one which
is satisfied. In this case certain security updates are performed. If no guards are fired for the event,
then the further execution is not permitted (and some further security actions, like notifying the
customer, are triggered). In case no security updates are needed but the further execution is allowed,
there is a special action SKIP, which does not do anything but continues the execution. There is also
a possibility of specifying an ELSE statement for the cases, when the further execution should be
allowed even if no guards are fired (we omitted this option here for simplicity). A state can be seen
simply as a specific assignment to the variables defined in the SECURITY STATE part. Naturally,
the assignment set in the SECURITY STATE part defines the initial state. Actions are defined by
the guarded events (specified between <BEFORE | AFTER> and PERFORM), i. e., by the name of
the event (class and method), the set of its parameters and possible assignments for these parameters
(in the case of AFTER the results of the event are also considered).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

6

Figure 4. Confidentiality requirement in ConSpec editor.

Let us consider a candidate service for handling payments in our booking example (recall Fig. 1).
Here, a natural requirement is the confidentiality of the credit card data, which can be achieved by
using cryptography. Fig. 3 specifies this requirement using the concrete syntax of ConSpec.∗ This
policy requires that both the input and the output of the service are encrypted with a specific cipher
with a specific key length, that is part of the WS-Security cipher suite Basic256Sha256Rsa15.
In more detail, we require the use of AES with a key length of (at least) 256 bits.

It is worth mentioning that the security specifications here are derived from user requirements.
Therefore they can be fully customised by security experts. Instead of having to manually model
everything, many of the requirements are directly derived from our Model Transformation Module,
which is briefly mentioned in Sect. 6. ConSpec templates, which contain standardised security
requirements such as encryption algorithms and authentication methods can also be created and
enforced for each atomic services in the composition plan during the security validation phase as
described in Sect. 4. It is of course less flexible and may not be very useful in certain scenarios.

In our framework, users (e. g., service developers) can use a user-friendly graphical editor
for specifying ConSpec policies. For example, Fig. 4 shows how a confidentiality requirement
(encryption) is configured and imposed on the Booking service.

3.2. Modelling Secure Service Compositions

Modelling security properties, as a first class citizen of a service composition plan, requires an
integrated language for both security and functional requirements. We address this need with
SecureBPMN, a meta-model-based [14] security language that integrates into BPMN. SecureBPMN
extends BPMN 1.0 with means for specifying security properties. We based our work on BPMN 1.0
as at the point in time in which we started our work, BPMN 2.0 was not yet available. While already

∗Our implementation is based on an XML ConSpec representation.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

7

Subject

UserGroup
0..*

0..* Role0..* 0..*

0..* 0..*

Permission1..* 0..* Action 0..* 1..*

AuthorizationConstraint

SoD
+max: Integer
+static: Boolean

BoD
+min: Integer
+static: Boolean

1..* 0..*

ActivityAction

Activity

0..*

AtomicActiviyAction

CompositeActivityAction
0..*

0..*

NeedToKnow

ActivityAC

0..*

1..*

1..*

0..*

Delegator Delegation
+maxDepth: Integer

SimpleDelegation TransferDelegation

1..1

0..*

1..*

0..*

1..1

0..*

0..* 0..*

Figure 5. The SecureBPMN meta-model (simplified excerpt).

BPMN 1.0 allows for modelling simple security properties, neither BPMN 1.0 nor BPMN 2.0 are
expressive enough to model the security needs of modern systems. For example, neither BPMN 1.0
nor BPMN 2.0 are able to express role-based access control constraints with dynamic and static
separations of duty constrains. For a detailed discussion, we refer the reader to [12] (discussing
SecureBPMN, extending BPMN 1.0) and [49] (discussing SecBPMN, extending BPMN 2.0).

Fig. 5 shows a simplified excerpt of the SecureBPMN meta-model that describes the domain-
specific language for expressing the core security properties supported by SecureBPMN. The
selection of security and compliance properties supported by SecureBPMN is based on discussions
with various experts at SAP SE as well as the case studies conducted together with the industrial
partners of the Aniketos project.

• Role-based access control (RBAC): SecureBPMN provides a hierarchical role-based access
control language supporting arbitrary constraints on the permissions. A Subject can be an
individual User (i.e., a human user interacting with the system) or a Group of subjects.
Subjects are mapped to a Role hierarchy. It is allowed in SecureBPMN to explicitly permit
(Permission) the actions (Action) on the BPMN meta-classes Activity, Process, and
ItemAwareElement. The latter is a class in the BPMN meta-model [46] from which, e.g.,
the BPMN DataObject is derived.

• Permission-level separation and binding of duty: SecureBPMN models separation of duty
(SoD) and binding of duty (BoD) as sub-types of AuthorizationConstraint. SecureBPMN
generalises the, usually binary, SoD and BoD constraints to n-ary constraints: an SoD
constraint models that a Subject is not allowed to “use” more than max permissions out
of n (max < n); BoD is generalised similarly. Finally, if a SoD (BoD) constraint already
guaranteed by the RBAC configuration, it is called static SoD (BoD).

• Delegation: SecureBPMN supports delegation of tasks and, thus, the execution of services,
with (TransferDelegation) and without (SimpleDelegation) transfers of the necessary
access rights. The former only allows delegation of tasks to subjects that already possess
the necessary rights. The latter allows delegation of tasks to arbitrary subjects that, then, can
act on behalf of the original subject (Delegator). The number of delegations can be restricted
by maxDepth, e. g., a maxDepth of zero forbids any delegation.

• Need-to-know principle: Confidentiality or a strict application of the need-to-know principle
(NeedToKnow) is another important security property. In the context of service compositions
this mainly refers to restrictions on the access to process variables or data objects (instances of
the BPMN meta-class ItemAwareElement) and, thus, restricts the process of internal data-
flow.

In our experience, these properties cover the most important needs for designing service
compositions. For the more advanced features of SecureBPMN, such as the support for break-glass
access control policies [18], history-resets for binding-of-duty with loops, or negotiable delegations,
we refer the reader to [12]. To support service designers as well as security experts, we extended
Activiti BPMN editor. This extended editor (see Fig. 7) supports the user-friendly modelling of
security requirements.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

8

1 <wsdl:definitions
2 xmlns:tns="http://booking.aniketos.eu/" . . .>
3 <wsp:Policy . . .>
4 <wsp:ExactlyOne>
5 <wsp:All>
6 <sp:SymmetricBinding>
7 <wsp:Policy>
8

...
9 <sp:AlgorithmSuite>

10 <wsp:Policy>
11 <sp:Basic128Sha256Rsa15/>
12 </wsp:Policy>
13 </sp:AlgorithmSuite>
14 </wsp:Policy>
15 </sp:SymmetricBinding>
16

...
17 </wsp:Policy>
18 </wsdl:definitions>

Listing 1: Excerpt of the WS-Policy for the service “Book the hotel.”

4. VALIDATING SECURITY PROPERTIES

After we have specified the security properties of atomic services as well as service compositions
it would be nice, if we could verify that these properties hold for a specific instantiation (i. e.,
selection of services). While this is not possible for all properties, for many important properties
it is achievable. In this section, we will present a verification approach to validate that services
fulfil certain security properties. Together with contractual properties specified in the service level
agreements, the result of the validation serves as input to the ranking and quantification process.

4.1. Validating Atomic Services

Atomic services are realised by implementing the business logic as computer program which is
usually offered as a service (e. g., by deploying it as WSDL compliant web services). Recall our
booking service (Fig. 1), assume that we want to implement this service as a WSDL compliant
web service. The implementation of the Book the hotel service should fulfil, among others, the
following two security properties:

1. as the information sent to the service is confidential (e. g., the travel destination or the credit
card data), the service shall only accept encrypted data as input (as specified in Fig. 3) and

2. to minimise the attack surface as well as ensure compliance to the Payment Card Industry
(PCI) Data Security Standard (https://www.pcisecuritystandards.org/), the
Card Verification Number Scheme (“CVS Code”) shall not be stored (e. g., in a database).

To validate these properties, two artefacts need to be checked: for the first property, we need to
analyse the WS-Policy configuration (see Sect. 4.1.1); for the second property, we need to analyse
the actual source of the service implementation (see Sect. 4.1.2).

4.1.1. Validating Service Configurations. Listing 1 shows a simplified version of the WS-
Policy [52] (respectively, WS-Security) specification for the Book the hotel service. This policy
specifies that both input and output of the web service are encrypted using the algorithm suite
Basic128Sha256Rsa15 (line 11) during transmission.

Now, recall the requirements specified in ConSpec (Fig. 3). On the first glance, the WS-Policy
specification seems to comply with the ConSpec specification. However this is not true: the ConSpec
specification requires to use encryption keys with length of 256 bits while the WS-Policy only uses
keys with length of 128 bits. Thus, such an implementation of the Book the hotel service does not
fulfil our security requirements.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

https://www.pcisecuritystandards.org/

9

To detect this kind of configuration problems, we implemented a service that is able to check the
followings:

• the https configuration of a server: we check the validity of the server’s certificate chain with
respect to a user configurable list of trusted root CAs and supported ciphers.

• the WS-Policy configuration for a WSDL-compliant web service. Here, we check in detail the
SOAP messages that represent the parameters and return values of the service calls.

• the framework configuration for a RESTful service in a more complex situation. First and
foremost, we check the https configuration of the framework. Moreover, if the framework used
for implementing the RESTful service supports additional means for configuring security, we
check this configuration as well.

• the frameworks, such as Apache CXF, allow to configure authentication and authorisation in a
declarative way. Together with runtime information such as the user-role mapping, we check
if the authentication and authorisation are configured according to the requirements expressed
in ConSpec.

As the configuration is analysed and compared with the security requirements (i. e., the ConSpec
specification), there are two checking modes:

1. strict: we require that the actual configuration matches exactly the requirements. For example,
the key lengths must be exactly the same.

2. relaxed: we check that the actual configuration is at least as secure as specified in the
requirements. For example, a service configuration using RSA with key length of 512 bits
satisfies the requirement of using RSA with key length of 256 bits.

The relaxed checking is only used for properties, such as key length, that clearly provide a higher
level of security. In particular, we do not allow relaxed checking on the actual cipher algorithms
(e. g., RSA, AES), nor their mode (e. g., CBC, EBC), as the selection of such important properties
should be a careful decision made by security experts.

As default we still recommend the relaxed checking mode as it results in a larger set of candidate
services. Thus it allows for greater flexibility during service composition while still ensuring the
security requirements. As the implementation of these checks is straight-forward, we omit them due
to space limitation.

4.1.2. Validating Service Implementations. Only a small fraction of security properties can be
implemented by providing an appropriate configuration. Most security measures are part of the
service implementation, i. e., they are part of the computer program that implements the service.
Listing 2 sketches a simplified implementation of the credit card validation code for the web service
Book the hotel and lets have a closer look: this service handles credit card data and, thus, needs
to comply to the PCI standard—even though the credit card is usually not charged when reserving
a room, the card data is validated to ensure the possibility to charge the card in case of a late
cancellation. The PCI standard states explicitly that the CVS of the card shall not be retained on the
system. We can state this property in ConSpec as follows:

1 RULE ID CvsNotRetained
2 SECURITY STATE
3 BEFORE retain(...) PERFORM
4 checkForArgumentCvs -> {skip>

where retain(...) is a virtual function that captures all method calls that potentially will retain
the data, e. g., write access to a database or the file system and checkArgumentForCvs is a
predication that checks for any arguments containing the CVS. This data flow depended predication
uses a combination of a naming heuristic (e. g., if a variable’s name contains CVS, we assume it
stores a CVS) and a data flow analysis (e. g., for known APIs that provide access to the CVS such
as the result of the Get user’s credit card data service).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

10

1 //read input parameters
2 String arrivalDate = req.getParameter("arrival");
3 String guestName = req.getParameter("guestName");
4

...
5 // read credit card data from IdP
6 String ccHolder = service.getCcData("ccHolder");
7 String ccNumber = service.getCcData("ccNumber");
8 String ccCVS = service.getCcData("ccCVS");
9 String ccValidity = service.getCcData("ccVal");

10
...

11 // check credit card
12 log.write("Check Credit Card for guest "+guestName);
13 if(validateCC(ccHolder,ccNumber,ccCVS)){
14 log.write("CC validation ("+ccHolder+"/"
15 +ccNumber+") successful.);"
16 }else{
17 log.write("CC validation ("+ccHolder+"/"
18 +ccNumber+"/"+ccCVS+") failed.);"
19 }

Listing 2: Simplified excerpt from the “Book the hotel” service.

Figure 6. An example of an information disclosure violating the PCI standard.

We use static source code analysers to check the data flow within a implementation to ensure that
the actual implementation does not violate the requirements. For this example we need to check that
there is no execution path of the service implementation accesses the CVS from the IdP and calls
functions that can retain the data.

When we execute this check on our example service implementation (see Listing 2), we have
been notified that the programmer implementing this service made a mistake: the CVS stored in
the variable ccCVS (line 7) is written to a log file (line 18) and, thus, is retained in the file system
or a database. Fig. 6 illustrates this notification. The Activiti Designer in Aniketos automatically
switches to the Java perspective of Eclipse and highlights the source code that violates the security
or compliance requirement specified in the context of the service composition.

We also check for common programming related security vulnerabilities such as SQL Injection
and log file forging. The service designer does not need to specify these rather basic properties as
we assume that they need to be fulfilled by all services. In our example, such a vulnerability will be
reported as the content of the variable guestName (line 3), which can be influenced by an attacker,
is written without any checks into the log file (line 12).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

11

In the prototype we use our own static code analysis tool that is based on Wala (http:
//wala.sf.net). As an alternative, we can also generate configurations for a commercially
available static code analysis tool.

4.2. Validating Security Compositions

Composing secure services does not, automatically, result in a secure service composition. On the
one hand, there are properties, such as separation of duties, that inherently cannot be expressed on
the level of an atomic service and, on the other hand, secure services can be used wrongly (e. g.,
using insecure configurations or sending confidential data to a public service).

To address these issues, we use an analysis method inspired by the work of [6]. We extended
their work significantly to support n-ary SoD (BoD) constraints as well as constraints on the
level of constrained permission (instead the task-level). As [6], we use the AVANTSSAR tool
suite (www.avantssar.eu) as back-end for our formal analysis. Consequently, we translate the
service composition plan and its security requirements to ASLan [6], i. e., the input language of the
AVANTSSAR tool suite. The choice of ASLan is based on two reasons: 1) the experiments carried
out by [6] show that ASLan is expressive enough to capture the requirements of security enriched
service compositions and 2) the use of the same tools allows for developing a common verification
back-end for our SecureBPMN-based approach as well as the approach developed by [6]. In fact,
we could show that the analysis can be provided as a cloud-based service thus can be used by both
modelling approaches [24].

Adding constraints such as SoD or BoD to a system that is already restricted by RBAC
results in questions like the following: “Is the SoD constraint already guaranteed by the RBAC
configuration?” Let us consider an RBAC configuration in which task t1 can only be executed by
members of the role r1 and task t2 can only be executed by members of the roles r2. Furthermore,
let us assume that no users is assigned to both roles (i.e., no user is a member of r1 and r2). Thus,
an SoD constraint between t1 and t2 is enforced already by the RBAC configuration and, hence, we
only need to check this constraint after changes to the RBAC configuration are made. We call this
a static separation of duty constraint. In contrast, let us consider an RBAC configuration in which
tasks t1 and t2 can both be executed by members of the role r1. In this situation, an SoD needs
to be checked, at runtime, for each and every access control request. Thus, we call this a dynamic
separation of duty.

While static separation of duty constraints do not need to be enforced at runtime and, thus, reduce
the runtime costs, it requires to re-check the SoD constraints after each and every modification of the
RBAC configuration (e. g., adding new roles, changing the role assignment of subjects). In contrast,
dynamic separation of duty constraints require a runtime check for each access to a resource that is
constrained by separation of duty. While this is more flexible, it requires additional resources and,
thus, costs more at runtime. Moreover, additional security checks might result in delays for users
and, thus, might reduce the usability of the system.

Assume, in our example (recall Fig. 1), we want to counterfeit fraud or price-fixing agreements.
Therefore, we require that the services Find suitable flights and Book the flight are operated by
different providers (and similarly, for the hotel booking). The actual RBAC configuration is inferred
automatically from the information available in the service marketplace (i. e., the SLA).

Our formal analysis translates the security configuration (here, RBAC and SoD/BoD) as well as
the security properties that should be verified into the formal language ASLan [6]. In our example,
the result of this translation (only an excerpt) for the security looks as follows:

1 hc rbac_ac(Subject, Role, Task)
2 := CanDoAction(Subject, Role, Task)
3 :- user_to_role(Subject, Role), poto(Role, Task)
4 hc poto_T6 := poto(TravelAgency1, Find suit. flights)
5 hc poto_T7 := poto(TravelAgency1, Book the flight)

where poto facts describe which users or roles can execute/access a task.
The security goal is, in this case a SoD constraint between the services Find suitable flights and

Book the flight:

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

http://wala.sf.net
http://wala.sf.net
www.avantssar.eu

12

Figure 7. Security validation within the Activiti BPMN editor.

1 attack_state sod_securitySod1_1(Subject0,Subject1,
2 Inst1,Inst2)
3 := executed(Subject0,task(Find suit. flights,Inst1)).
4 executed(Subject1,task(Book the flight;Inst2))
5 ¬(equal(Subject0,Subject1))

This configuration, obviously, violates the SoD constraint as the TravelAgency1 can do both
searching for flights and booking them. In this case, a dishonest travel agency could prefer flights
with a higher bonus for the travel agency that are not necessarily the cheapest for the traveller. This
is detected by our analysis, e. g., the verification modules returns the following “attack trace:”

1 1. [w_task1(fnat(n0,0,0))]
2 2. [authorizeTaskExec(bo,user,task1,fnat(n0,0,0))]
3 3. [h_taskExec(bo,user,task1,fnat(n0,0,0),
4 in_task1,out_task1)]
5 4. [w_parallelgateway1(fnat(n0,0,0))]
6 5. [w_servicetask1(fnat(n1,0,0)),
7 w_servicetask2(fnat(n2,0,0))]
8 6. [authorizeTaskExec(flight1,flightservice,
9 servicetask2,fnat(n2,0,0)),

10 authorizeTaskExec(travelagency1,travelagency,
11 servicetask1,fnat(n1,0,0))]
12

...
13 15. h_taskExec(travelagency1, travelagency,
14 servicetask9,fnat(n8,0,0),
15 in_servicetask9,out_servicetask9)

Of course, this textual representation is not well-suited to practitioners. Therefore, we developed
a user-friendly visualisation of such an attack in terms of the high-level composition plan (i. e., on
the level of the BPMN model). Fig. 7 shows how our prototype visualises such a violation to the
service developer. The service developer is able to manually step through all necessary actions that
a dishonest user would execute to violate the SoD constraint.

After such an analysis, the service developer needs to decide how to mitigate this risk. In general,
there are several options, among them

• re-design the composition plan, to avoid the need for a particular separation of duty constraint,

• instruct the service composition framework to ensure the selection of different service
providers, or

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

13

• enforce a dynamic separation of duty at runtime. For this, our prototype can generate
configurations for XACML [45] based access control infrastructures.

The concrete mitigation plan depends on the actual use case.

5. SERVICE QUANTIFICATION AND RANKING

It is not uncommon, when composing service, that several service instances, offered from different
service providers, fulfil the basic requirements. In this section, we will discuss this situation in more
detail and present approach that supports service developers to select the “best” service according
to their security needs.

5.1. The Role of SLA

The security property modelling and verification techniques allow the service consumer specify
certain security properties that the service composition has to comply with. In practice, not all
security properties are technically verifiable and some properties such as BoD and SoD are validated
at design-time but not always enforced at runtime.Therefore we need to look at other sources that
can provide security guarantees for web services.

Web services are normally made available together with a service-level agreement (SLA). A SLA
is a guarantee that has to be accepted by service consumers before the service is used. A SLA can
specify the properties of a service across different levels. For example, on business level it can
describe what kind of functionality the service is offering and how the users will be charged (cost);
on the technical level it may describe the number of shutdowns the service might experience each
year (QoS).

Security can also be promised as part of the SLA. However its coverage is rather poor to date
due to the lack of well defined semantics. The SLAs traditionally focus on the QoS metrics such
as a bandwidth guarantee and backup strategy. Even when the security is mentioned, in practice it
tends to be written in a natural language with fuzzy terms such as “High” or “Good.” Therefore it
is very difficult for the service consumer to really understand the situation and compare the web
services from the security perspective. Nevertheless as a legally bound document, SLAs are useful
as a complement to technical verifications.

It is an interesting question to ask which security properties should be specified in the SLAs.
As SLAs can be written in natural language, thus in theory it is possible to specify any security
properties the service would like to offer. However, to make it meaningful and comparable, a proper
schema must be defined first. Henning [33] was among the first trying to address the quantifiable
security issue in SLAs by expressing and measuring the security of a service by associating it
with performance related metrics. For example, a security requirement to “Restore backed up
data” is measured by a quantifiable metric such as “Data restored 95% of times within a given
response time.” The way the security has been expressed is rather subjective though, depending on
the context of each enterprise, where the research was targeting. Therefore the process cannot be
implemented automatically. Instead, it requires a close study of the enterprise’s configurations by
security specialists. SecAg [31] [32] is another framework proposed to express security metrics in
SLAs. SecAg extends the standard WS-Agreement [5] to provide necessary semantics for specifying
security properties. For example, with the extensions it can specify which service level objective
(SLO) is auditable and assign an access control list to the SLO. Based on the extensions, the author
also proposed a risk-based approach for service matchmaking. Each SLO is assigned a weight w
representing the risk that the SLO is not fulfilled. By calculating the weighted Euclidean distance of
each SLA to the security requirements, using techniques such as a text similarity analyser, the SLA
that is closest to the security requirements will be selected as the risk is at the minimum. With this
solution though, there is a possibility that a SLA offering far better security may not be considered
as the closest to the original requirements.

Despite of these efforts being made, the issue of measuring security of a service composition
remains unsolved. In this section, we introduce the mechanism for quantifying and ranking

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

14

Figure 8. Example composition of three services.

service compositions, i. e., we support the service consumer in choosing, based on an automated
recommendation, the most suitable service composition. This recommendation should be made
based on the properties of the service composition as a whole, rather than just based on individual
sub-services in the composition. The quantifying and ranking is used when the service consumers
have to choose one from a number of available service compositions. It is particularly useful when
the validation is not fine-grained, i. e., a large number of service compositions either pass or fail the
validation altogether, which does not help to select the most suitable service composition.

As a starting point, we quantify and rank service compositions from three aspects, which are the
three factors that are mostly considered by service consumers: encryption (security), availability
(QoS), and cost (business). We focus on these three properties in this paper because not only they
are normally mentioned in the SLAs, but also they are the properties that can be validated through
different means. For example, the encryption algorithm is specified in SLA and can be validated by
techniques explained in Sect. 4. Availability of a service can be easily recorded and calculated by
examining the logs stored in the system. This work is implemented as a key part for the security
composition planner module (see Sect. 6) in Anketos framework.

5.2. Encryption – The Weakest Link

There are some cases when the weakest link principle is particularly applicable to service
composition. It states that when services are composed together, the security capability of the
composite service is equal to what the weakest service or link offers. This security principle is
applicable to many security properties and encryption is one of them. When encryption is applied
to communications between services, the services may adopt different encryption algorithms or
key lengths which give them different encryption strengths. To communicate with each other, the
encryption strength of a service with an advanced encryption algorithm may be degraded by that
of a service with a weak encryption scheme during the composition. Thus the composite service
literally uses the weakest encryption strategy in part of its communications. For example, consider
the case in Fig. 8 where service A supports encryption algorithms of Blowfish and 3DES, service
B supports Blowfish and AES, and service C supports 3DES and AES. To communicate with each
other, the link between service A and B is encrypted with Blowfish and the link between B and
C is encrypted with AES. Therefore the overall strength of the composition, in terms of keeping
communications confidential, is the weaker one between Blowfish and AES.

The weakest link principle is used to determine the security capacity of the service compositions.
It should be noted however that the weakest link principle is not universally applicable. There are
security cases where alterations to a service composition can be utilised to improve the security of
a composite service to be greater than that of the weakest component. An example might be where
a firewall service is used to shield an otherwise vulnerable service from outside attack. The use of
the firewall mitigates the vulnerability exposed by the weaker service. And vice versa it may also
apply in reverse: the introduction of a component may serve as an exacerbating factor that reduces
the security of the overall composition to a degree beyond that posed by the service were it to act in
isolation. This often results from interactions between incompatible security properties.

To simplify the issue, in this study we focus on the encryption. Therefore each link between
services is checked, and the encryption strength of the composition is determined by the weakest
link, i. e.,

E =
n

min
i=1

Ei

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

15

Table I. Quantitative value of encryption algorithms.

Algorithm Name Quantitative Value

Serpent 0.9
AES (Rijndael) 0.8
3DES 0.7
CAST128/256 0.6
Twofish 0.5
Blowfish 0.4
MARSH 0.3
Other encryptions 0.2
Codings 0.1
Plain text 0.0

where E is the encryption strength of the composition and Ei is the encryption strength for each
link i in the composition. Ei is determined by the strongest algorithm supported by both services at
each end of the link i.

The quantitative value (from 0.9 to 0 in our case), however is predetermined by expertise in
advance based on Tab. I. As claimed in [37], the quantitatively ranking of encryption algorithms is
possible but heavily depends on the metrics and target scenario. Tab. I is a guideline and rather used
to demonstrate our ideas.

5.3. Availability

Availability is another aspect being used to compare services and it relates to QoS. Availability
in this scenario means the available time ratio of a service. An unexpected service shutdown
could cause severe damage to a service consumer’s business and a service developer’s reputation.
Therefore seeking guarantee from the service provider about the service availability is one of the
top priorities for service consumers, before they commit to use the service. The situation gets
complicated in service composition because a composition’s availability is decided by not only
the technical specifications of the sub-services, but also by the structure of the composition.

Take the example of the travel booking service in Fig. 1 on page 4, where most of the services
are placed in sequential order. That means if one of the sub-services is not available, the entire
composition will stop. Therefore the availability of sequential tasks is the product of all the sub-
services’ availability values in percentage. However, the services Find suitable hotels and Find
suitable flights are executed in parallel. It means these two services can be carried out separately.
Nonetheless they still have to be both finished before the next task Get user’s credit card data
can be executed. Therefore for parallel tasks the availability value is the minimum among them.
For services that are exclusive to each other, the availability of the composition depends on which
service has been eventually used.

Tab. II shows the rules that we used for calculating the availability of composite services. Assume
in Fig. 1 each service has the following availability value: Find suitable hotels: 0.99, Find suitable
flights: 0.96, Get user’s credit card data: 0.97, Book the hotel: 0.99, Book the flight: 0.98, and
Undo hotel booking: 0.94. The availability value for a successful transaction will be calculated as:

A = min(0.99, 0.96)× 0.97× 0.99× 0.98 = 0.90

where A represents availability of the composition.

5.4. Cost

Finally the last factor that also plays an important role in consumer’s decision making is the cost.
Higher security and QoS normally indicate a higher price, which must be within a consumer’s
budget. Comparing to encryption and availability, calculating the cost of a service composition is

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

16

Table II. Rules to calculate availability.

Description Calculation

Sequence
∏n

i=1 Ai

Parallel min(A1, . . . , An)

Exclusive Ai

Place
R

R
R

R

R

Aniketos Secure Composition Framework

Figure 9. The Aniketos Secure Composition Framework.

more straightforward. It is the sum of all the employed atomic services’ costs, i. e.:

C =

n∑
i=1

Ci

where C is the cost for the composition and Ci is the cost for atomic service i.

6. A SECURE COMPOSITION FRAMEWORK

Building secure composite services on top of a SOA is a challenging task. At design-time the
service developer needs to select the optimal set of services that satisfies both the functional and
security requirements put by the end user. At runtime, a service may become unavailable due
to various reasons and has to be replaced automatically with an alternative service that, at least,
offers the same security guarantees. In addition, the service developer also needs to decide if a
given security property should be enforced statically or dynamically. While a static enforcement
creates less overhead at runtime, it reduces the flexibility of service substitution or re-composition.
In contrast, dynamic enforcement is usually more flexible but requires more system resources at
runtime. Thus, a service designer needs also to consider economical aspects of realising security
and compliance requirements.

To support the service developer in building flexible and secure services through compositions,
we propose a secure service composition framework that addresses both the design-time and runtime
secure service composition. We focus only on the technical parts of the design-time process, i. e.,
we exclude the requirements elicitation, as well as the service deployment and runtime adaptation
parts.

Fig. 9 gives a high-level overview of the Aniketos Secure Composition Framework which is the
design-time modelling and analysis part of the Aniketos platform. At the beginning, domain experts
together with requirement engineers specify the high-level business process as well as the security
requirements by using the Aniketos Socio-technical Modelling Tool [48]. It provides the opportunity
to express security needs not just from technical, but also from social aspects (not discussed in this
paper). From these semi-formal descriptions, the model transformation module automatically infers

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

17

Figure 10. Set ranking criteria.

composition plans, which are presented in the BPMN format. These composition plans are coarse-
grained. Thus, before these composition plans can be deployed in the Aniketos Service Runtime
Environment, they will be refined by a service developer using the Aniketos Secure Composition
Framework.

The Aniketos Secure Composition Framework provides an Eclipse-based environment (the
Service Composition Modeller) to the service developer for refining the composition plans as well
as checking their security properties. Specifically, the service developer can, among others, use the
following component modules:

• Model Transformation Module: infers the draft composition plan from the requirement
document expressed in the Aniketos Socio-technical Modelling Language [48].

• Secure Composition Planner Module: allows the service developer to semi-automatically
select secure services for a given composition plan (see Sect. 5). To check that the
compositions comply with the security requirements, this module uses the Security
Verification Module and the Security Property Determination Module.

• Security Verification Module: provides formal validation and verification solutions for
composed services and atomic services, as discussed in Sect. 4.

• Security Property Determination Module: provides a uniform interface for accessing security
properties of services. Moreover, this module stores the verification status of security
properties to avoid an unnecessary (expensive) re-verification.

• Service Marketplace: registers and stores the services for open access. The Secure
Composition Planner Module selects services from the Service Marketplace.

The framework also includes a simple user interface providing prioritising options so that the
service developer can specify the criteria used to rank the service compositions. As shown in Fig. 10,
the service developer is able to choose how much weights he/she wants to put on each criterion of
encryption, availability, and cost. Assume the developer sets the weights to 0.32, 0.53 and 0.15
respectively, the overall value V for each service composition will be:

V = 0.32× E + 0.53×A+ 0.15× B − C

B

where E represents the value of encryption strength, A represents the value of availability, C
represents cost, and B represents the consumer’s budget. These values are calculated using the
methods discussed in Sect. 5. Apparently higher values of E and A as well as a lower value of C will
result in greater value of V . In this way the generated service compositions cannot only be security-
wise verified by our SecureBPMN extensions, and also ranked easily based on the developer’s other
priorities.

7. A CASE STUDY

We implemented a prototype of our framework based on the Activiti BPMN tool suite (http:
//www.activiti.org). This prototype was applied to several industrial case studies within

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.activiti.org
http://www.activiti.org

18

Figure 11. BPMN diagram of the booking hotel case study.

the Aniketos project. Additionally, we discussed our with domain experts from SAP and SAP’s
customers. In this section we illustrate a simple process of using the tool suite to book a hotel. Here,
we focus on service tasks that can be executed automatically to demonstrate the idea of how services
are composed to create new applications.

The case study presented in this section illustrated our overall approach. For the evaluation of our
approach (see also the discussion in Sect. 9), we used three larger case studies from three different
domains: air traffic management, public sector, and telecommunication. For details, we refer the
reader elsewhere [1].

Our illustrative case study is as follows: to offer a user with helpful and smooth booking
experience, a new hotel booking application needs to be composed by multiple services. Basically
once a booking is made, we want to provide the user with some local information about the hotel,
such as the point of interest, as well as an email confirmation. Specifically, providing the local
information involves four services: 1) Get the hotel coordinates, 2) Retrieve point of interest around
the hotel’s coordinates, 3) Load the map around the hotel, and 4) Create a new web page to display
these information. Together with the actual booking and email confirmation services, in total six
services will work together to provide the new application. Each of the service in the application
can be provided by more than one service providers, offering different security properties.

We model the system using BPMN. Actors are represented as roles that are assigned to tasks in the
BPMN model. As shown in Fig. 11, six service tasks (Book the hotel, Get hotel coordinates, Point
of interest, Map, Web page booking info, and Send booking info via email) are created in the BPMN
diagram to represent the entire process from book a hotel, to display the booking information, and
to send email notification to the user.

In the next step, security expert will specify security requirements following the steps explained
in Sect. 3. One assumption here is that the atomic services will be registered first in our Service
Marketplace, together with their SLAs. In this case study, two map services are registered for the
Map task and both are discovered by the composition framework as shown in Fig. 12.

We registered two services for each of the six service tasks in the case study. Therefore in total
it created 64 (26) possible service compositions (also called composition plan in our framework),
which will not all pass the validation process described in Sect. 4. The remaining composition
plans are ranked by the service developer based on user’s preferences, as described in Sect. 5.
Fig. 13 shows the results and this completes the design phase of the development of secure service
composition.

Finally the chosen composition plan (normally the one ranked first) will be deployed to the
Aniketos Service Runtime Environment (Activiti Engine-based) as shown in Fig. 14. Starting up
the composite service will invoke the atomic services in turn and display the booking result as a

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

19

Figure 12. Two map services are discovered.

Figure 13. Creation and ranking of composition plans.

web page, as illustrated in Fig. 15. During runtime, the access control policies are enforced by an
XACML-based infrastructure [17].

8. RELATED WORK

We see three areas of related work: 1. modelling of security requirements for process models,
2. analysing security properties of process models, and 3. determining security of composite
services.

There is a large body of literature extending graphical modelling languages with means for
specifying security or privacy requirements. One of the first approaches is SecureUML [40], which
is conceptually very close to our BPMN extension. SecureUML is a meta-model-based extension
of UML that allows for specifying RBAC-requirements for UML class models and state charts.
There are also various techniques for analysing SecureUML models, e. g., [10] or [15]. While based
on the same motivation, UMLsec [38] is not defined using a meta-model. Instead, the security
specifications are written, in an ad-hoc manner, in UML profiles. Similar to UMLsec, [44] presents
an attribute-based approach (i. e., the conceptual equivalent of UML profiles) of specifying security
constraints in BPMN 2.0 models. Inspired by these works, there are several approaches extending
BPMN 2.0 with security specifications, e. g., [22, 49]. While they provide, on the one hand, further
security properties that are not supported by SecureBPMN, they all have in common that the access
control specifications are very coarse-grained (only supporting simple RBAC models). In contrast,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

20

Figure 14. Composition deployed to the runtime environment.

Figure 15. Running service-based application of the case study.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

21

our approach allows the fine-grained specification of security requirements for single tasks or data
objects.

With respect to the validation of security requirements on the business process level, the closed
related work is the work of [53] and [6] that both support the checking if an access control
specification enforcing binary separation of duty and binding of duty constraints. Apart from
security properties, there is also a strong need for checking the consistency of the business process
itself, e. g., the absence of deadlocks. There are several works that concentrate on this kind of process
with internal consistency validation, e. g., [25] and [2]. Moreover, there are several approaches for
analysing access control constraints over UML models, e. g., [51], [15], and [38]. These approaches
are limited to simple access control models, as the UML models are usually quite distant from
business process descriptions comprising high level security and compliance goals.

Last but not least, determining the properties of a composite service based on its atomic services
is another area that attracts attentions from the research community. To achieve this, the first
step is to quantify web services. In the past the focus was on raking web services based on just
their QoS metrics and trying to find the best match. Paper [50] ranks web services under multi-
criteria matching. It targets at accurate web service selection and assigns a dominance score to each
advertised web service. [43] defines a business-focused ontology to enable semantic matchmaking
in open cloud markets. Paper [35] proposed the concept of Quality of Security Service. It treats
the security as part of QoS requirements. The author argues that security requirements such as
the strength of a cryptographic algorithm, the length of a cryptographic key, security functions,
confidence of policy-enforcement and the robustness of an authentication mechanism would all
be specified and measured as the quality of security services. Paper [19] proposed an Analytic
Hierarchy Process (AHP) based framework for web service quality evaluation. It uses a quality
meta-model to format SLAs and assigns weights to different quality characteristics based on their
importance. Similarly [20] uses a Singular Value Decomposition (SVD) based technique, and a user
assisted weighting system to find higher order correlations among web services. With respect to the
determination of properties of composite services, paper [36] focuses on the QoS values of service
composition. It takes the structure of the services into account, in a similar way as we determine the
availability of the service compositions. Based on a process sequence such as loop, and, or, the QoS
values are calculated according to predefined rules. Elshaafi et al. [26] use a similar method but the
focus was on the trustworthiness of service composition. The authors argue that trustworthiness of
a service composition is a combination of properties such as reputation, reliability and availability
etc. These properties are one step closer towards general security issues and the authors are also
from the Aniketos framework development team. Zhou et al. [56] propose a classification method
that abstracts and quantifies service compositions based on five key security aspects: confidentiality,
integrity, availability, accountability and non-repudiation. There are also other works that focus
on security properties of system-of-systems such as [55] and [54]. Comparing to these works, our
approach concentrates on the most objective and justifiable properties in encryption, availability and
cost, which represents security, QoS and business respectively. Our solution also gives flexibility to
the end users so that they can decide how to prioritise these properties in service compositions.

9. CONCLUSIONS AND LESSONS LEARNED

We presented a practical approach for developing service-oriented systems. Our approach supports
certain security properties following the “secure-by-design” paradigm. Our approach focuses on
the most important “high-level” security properties to allow non-security experts (e.g., business
analysts) to consider security right from the beginning. As such, it does not replace traditional secure
development processes and techniques [9, 28, 34, 42] that address architectural and implementation
security aspects.

Besides the presented illustrative case study and three large case studies in the context of
the Aniketos project[1], we discussed our approach with various experts at SAP. Overall, these
experiences show that our approach is applicable to a wide range of application domains.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

22

Our approach provides a seamless integration of technical security properties that can be formally
verified with (informal) security and other requirements that are specified in SLAs. This was rated
as a unique and very powerful feature of our framework. The experts at SAP suggested to extend
this approach even one step further to include post-hoc checks: as in many systems properties such
as separation of duty are not enforced at runtime, they need to be checked—during audits—by
analysing the log files.

Moreover, our interview partners for the Aniketos project liked that security properties can be
modelled by non-security experts together with the service composition. While it is understood that
all security requirements need to be reviewed and extended by security experts, offering non-security
experts the possibility to initially model their security requirements was seen as a competitive
advantage.

Our evaluation showed that the supported security properties are sufficient for most modelling
needs. Still some case studies raised the need for various notions of confidentiality. Confidentiality,
in terms of requiring encrypted communications between the different services (tasks) is an
important requirement. Choosing the correct encryption techniques (in fact, on a technical level,
we need to ensure that data is only communicated over authenticated and secure channels) requires
a multitude of technical decisions (e. g., encryption algorithms, and length of cryptographic keys).

Finally, our evaluation showed our formal analysis is usually able to validate security or
compliance properties within less than 20 seconds. While this is fast enough for the (interactive)
design of service compositions, it is too slow for automatic service re-composition at runtime.
Therefore, the efficient caching, which needs to ensure the authenticity and validity of validation
results is of outermost importance.

REFERENCES

[1] Deliverable 6.4: Final report on aniketos applied to industrial case studies. Tech. rep., Aniketos
(2014). URL http://www.aniketos.eu/sites/default/files/downloads/
Aniketos%20D6.4%20-%20Final%20report%20on%20Aniketos%20%20applied%
20to%20industrial%20case%20studies.pdf

[2] van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofstede, A.H.M., Rosa, M.L., Mendling, J.:
Correctness-preserving configuration of business process models. In: Fiadeiro, J.L., Inverardi, P. (eds.)
FASE, LNCS, vol. 4961, pp. 46–61. Springer (2008)

[3] Akkiraju, I.R., et al.: Web service semantics – WSDL-S (2005)

[4] Aktug, I., Naliuka, K.: Conspec - A formal language for policy specification. ENTCS 197(1), 45–58
(2008)

[5] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J., Rofrano, J., Tuecke, S.,
Xu, M.: Web services agreement specification (WS-Agreement). Tech. rep., Open Grid Forum (2007)

[6] Arsac, W., Compagna, L., Pellegrino, G., Ponta, S.E.: Security validation of business processes via
model-checking. In: Erlingsson, Ú., Wieringa, R., Zannone, N. (eds.) ESSoS, LNCS, vol. 6542, pp.
29–42. Springer (2011)

[7] Asim, M., Yautsiukhin, A., Brucker, A.D., Lempereur, B., Shi, Q.: Security policy monitoring of
composite services. In: Brucker, A.D., Dalpiaz, F., Giorgini, P., Meland, P.H., Rios, E. (eds.) Secure
and Trustworthy Service Composition: The Aniketos Approach, no. 8900 in LNCS: State of the Art
Surveys, pp. 192–202. Springer (2014)

[8] Autotask Corporation: Metrics that matter (2014). http://www.autotask.com/lp/
metrics-that-matter-2014/ (2014)

[9] Bachmann, R., Brucker, A.D.: Developing secure software: A holistic approach to security testing.
Datenschutz und Datensicherheit (DuD) 38(4), 257–261 (2014). doi: 10.1007/s11623-014-0102-0

[10] Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-design models. Information
and Software Technology 51(5), 815–831 (2009)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.aniketos.eu/sites/default/files/downloads/Aniketos%20D6.4%20-%20Final%20report%20on%20Aniketos%20%20applied%20to%20industrial%20case%20studies.pdf
http://www.aniketos.eu/sites/default/files/downloads/Aniketos%20D6.4%20-%20Final%20report%20on%20Aniketos%20%20applied%20to%20industrial%20case%20studies.pdf
http://www.aniketos.eu/sites/default/files/downloads/Aniketos%20D6.4%20-%20Final%20report%20on%20Aniketos%20%20applied%20to%20industrial%20case%20studies.pdf
http://www.autotask.com/lp/metrics-that-matter-2014/
http://www.autotask.com/lp/metrics-that-matter-2014/
http://dx.doi.org/10.1007/s11623-014-0102-0

23

[11] Bonatti, P.A., Coi, J.L.D., Olmedilla, D., Sauro, L.: A rule-based trust negotiation system. IEEE Trans.
Knowl. Data Eng. 22(11), 1507–1520 (2010)

[12] Brucker, A.D.: Integrating security aspects into business process models. it 55(6), 239–246 (2013)

[13] Brucker, A.D., Dalpiaz, F., Giorgini, P., Meland, P.H., Rios, E. (eds.): Secure and Trustworthy Service
Composition: The Aniketos Approach. No. 8900 in LNCS. Springer (2014)

[14] Brucker, A.D., Doser, J.: Metamodel-based uml notations for domain-specific languages. In: Favre,
J.M., Gasevic, D., Lämmel, R., Winter, A. (eds.) ATEM (2007)

[15] Brucker, A.D., Doser, J., Wolff, B.: A model transformation semantics and analysis methodology for
SecureUML. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS, no. 4199 in LNCS,
pp. 306–320. Springer (2006)

[16] Brucker, A.D., Hang, I.: Secure and compliant implementation of business process-driven systems. In:
Rosa, M.L., Soffer, P. (eds.) SBP, LNBIP, vol. 132, pp. 662–674. Springer (2012)

[17] Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.: SecureBPMN: Modeling and enforcing access
control requirements in business processes. In: SACMAT, pp. 123–126. ACM (2012)

[18] Brucker, A.D., Petritsch, H.: Extending access control models with break-glass. In: Carminati, B.,
Joshi, J. (eds.) SACMAT, pp. 197–206. ACM (2009)

[19] Casola, V., Fasolino, A., Mazzocca, N., Tramontana, P.: An ahp-based framework for quality and
security evaluation. In: CSE, vol. 3, pp. 405–411 (2009)

[20] Chan, H., Chieu, T., Kwok, T.: Autonomic ranking and selection of web services by using single value
decomposition technique. In: ICWS, pp. 661–666 (2008)

[21] Chan, S.W.: Security annotations and authorization in glassfish and the Java EE 5 SDK (2006)

[22] Cherdantseva, Y.: Secure*BPMN – a graphical extension for bpmn 2.0 based on a reference model of
information assurance & security. Ph.D. thesis, Cardiff University (2014)

[23] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description language
(WSDL) 1.1. Tech. rep., W3C (2001)

[24] Compagna, L., Guilleminot, P., Brucker, A.D.: Business process compliance via security validation as
a service. In: Oriol, M., Penix, J. (eds.) Testing Tools Track of ICST. IEEE Computer Society (2013)

[25] Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in BPMN.
Information & Software Technology 50(12), 1281–1294 (2008)

[26] Elshaafi, H., McGibney, J., Botvich, D.: Trustworthiness monitoring and prediction of composite
services. In: ISCC, pp. 580–587 (2012)

[27] Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR (2005)

[28] Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A.: Security testing: A
survey. Advances in Computers 101, 1–51 (2016). doi: 10.1016/bs.adcom.2015.11.003

[29] Fielding, R.T.: REST: architectural styles and the design of network-based software architectures. Phd
dissertation, University of California, Irvine (2000)

[30] Gromoff, A., Kazantsev, N., Ponfilenok, M., Stavenko, Y.: Newer approach to flexible business
architecture of modern enterprise. In: ICEIS, pp. 326–332 (2013)

[31] Hale, M., Gamble, R.: Risk propagation of security slas in the cloud. In: IEEE GLOBECOM, pp.
730–735 (2012)

[32] Hale, M., Gamble, R.: Secagreement: Advancing security risk calculations in cloud services. In: IEEE
World Congress on Services, pp. 133–140 (2012)

[33] Henning, R.: Security service level agreements: Quantifiable security for the enterprise? In: NSPW,
pp. 54–60 (2009)

[34] Howard, M., Lipner, S.: The Security Development Lifecycle. Microsoft Press, Redmond, WA, USA
(2006)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

http://dx.doi.org/10.1016/bs.adcom.2015.11.003

24

[35] Irvine, C., Levin, T.: Quality of security service. In: NSPW, pp. 91–99 (2001)

[36] Jaeger, M., Rojec-Goldmann, G., Muhl, G.: Qos aggregation in web service compositions. In: IEEE
Int. Conf. on e-Technology e-Commerce and e-Service, p. 181185 (2005)

[37] Jorstad, N., Landgrave, T.S.: Cryptographic algorithm metrics. In: Information Systems Security Conf.
(1997)

[38] Jürjens, J., Rumm, R.: Model-based security analysis of the german health card architecture. Methods
Inf Med 47(5), 409–416 (2008)

[39] Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service Oriented Architecture Best Practices.
Prentice Hall (2005)

[40] Lodderstedt, T., Basin, D.A., Doser, J.: SecureUML: a UML-based modeling language for model-
driven security. In: Jézéquel, J.M., Hussmann, H., Cook, S. (eds.) UML, no. 2460 in LNCS, pp.
426–441. Springer (2002)

[41] Marienfeld, F., Höfig, E., Bezzi, M., Flügge, M., Pattberg, J., Serme, G., Brucker, A.D., Robinson,
P., Dawson, S., Theilmann, W.: Service levels, security, and trust. In: Barros, A., Oberle, D. (eds.)
Handbook of Service Description: USDL and its Methods, chap. 12, pp. 295–326. Springer (2012)

[42] Mauw, S., Oostdijk, M.: Foundations of attack trees. In: ICISC, pp. 186–198. Springer-Verlag, Berlin,
Heidelberg (2005). doi: 10.1007/11734727 17

[43] Modica, G.D., Petralia, G., Tomarchio, O.: A business ontology to enable semantic matchmaking in
open cloud markets. In: SKG, pp. 96–103 (2012)

[44] Mülle, J., von Stackelberg, S., Böhm, K.: A security language for BPMN process models. Tech. rep.,
KIT (2011)

[45] OASIS: eXtensible Access Control Markup Language (XACML), version 2.0 (2005)

[46] OMG: BPMN, version 2.0 (2011)

[47] Organization for the Advancement of Structured Information Standards: Web services business process
execution language (BPEL), version 2.0 (2007)

[48] Paja, E., Dalpiaz, F., Poggianella, M., Roberti, P., Giorgini, P.: Modelling security requirements in
socio-technical systems with STS-tool. In: Kirikova, M., Stirna, J. (eds.) CAiSE Forum, vol. 855, pp.
155–162 (2012)

[49] Salnitri, M., Dalpiaz, F., Giorgini, P.: Designing secure business processes with SecBPMN. Software
& Systems Modeling (2015)

[50] Skoutas, D., Sacharidis, D., Simitsis, A., Kantere, V., Sellis, T.: Top-k dominant web services under
multi-criteria maching. In: EDBT, pp. 898–909 (2009)

[51] Sohr, K., Ahn, G.J., Gogolla, M., Migge, L.: Specification and validation of authorisation constraints
using UML and OCL. In: di Vimercati, S.D.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS, LNCS,
vol. 3679, pp. 64–79. Springer (2005)

[52] Vedamuthu, A.S., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T., Ümit Yalçinalp: Web
services policy 1.5 (2007). URL http://www.w3.org/TR/ws-policy/

[53] Wolter, C., Meinel, C.: An approach to capture authorisation requirements in business processes.
Requir. Eng. 15(4), 359–373 (2010)

[54] Zhou, B., Arabo, A., Drew, O., Llewellyn-Jones, D., Merabti, M., Shi, Q., Waller, A., Craddock,
R., Jones, G., Arnold, K.L.Y.: Data flow security analysis for system-of-systems in a public security
incident. In: ACSF, pp. 8–14 (2008)

[55] Zhou, B., Drew, O., Arabo, A., Llewellyn-Jones, D., Kifayat, K., Merabti, M., Shi, Q., Craddock, R.,
Waller, A., Jones, G.: System-of-systems boundary check in a public event scenario. In: SoSE (2010)

[56] Zhou, B., Llewellyn-Jones, D., Shi, Q., Asim, M., Merabti, M., Lamb, D.: Secure service composition
adaptation based on simulated annealing. In: ACSAC, pp. 49–55 (2012)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

http://dx.doi.org/10.1007/11734727_17
http://www.w3.org/TR/ws-policy/

	1 Introduction
	2 Background: SOA and BPMN
	2.1 Service-Oriented Architecture and Its Security
	2.2 Using BPMN to Construct Service Compositions
	2.2.1 Why BPMN.
	2.2.2 Developing Service-Based Systems Using BPMN.

	3 Modelling Secure Services
	3.1 Modelling Secure Atomic Services
	3.2 Modelling Secure Service Compositions

	4 Validating Security Properties
	4.1 Validating Atomic Services
	4.1.1 Validating Service Configurations.
	4.1.2 Validating Service Implementations.

	4.2 Validating Security Compositions

	5 Service Quantification and Ranking
	5.1 The Role of SLA
	5.2 Encryption – The Weakest Link
	5.3 Availability
	5.4 Cost

	6 A Secure Composition Framework
	7 A Case Study
	8 Related Work
	9 Conclusions and Lessons Learned

@Article{	 brucker.ea:secure-services:2017,
 author	= {Achim D. Brucker and Bo Zhou and Francesco Malmignati and
		 Qi Shi and Madjid Merabti},
 journal	= {Software: Practice and Expierence (SPE)},
 publisher	= {John Wiley \& Sons},
 address	= {},
 language	= {USenglish},
 url		= {https://www.brucker.ch/bibliography/abstract/brucker.ea-secure-services-2017},
 title		= {Modelling, Validating, and Ranking of Secure Service
		 Compositions},
 year		= {2017},
 classification= {journal},
 areas		= {security, software},
 public	= {yes},
 doi		= {10.1002/spe.2513},
 keywords	= {Service design, human-centred service compositions,
		 service modelling, service deployment, service ranking,
		 secure service composition, service availability,
		 SecureBPMN},
 abstract	= {In the world of large-scale applications,
		 software-as-a-service (SaaS) in general and use of
		 micro-services, in particular, is bringing service-oriented
		 architectures (SOA) to a new level: systems in general and
		 systems that interact with human users (e.g.,
		 socio-technical systems) in particular are built by
		 composing micro-services that are developed independently
		 and operated by different parties. At the same time, SaaS
		 applications are used more and more widely by enterprises
		 as well as public services for providing critical services,
		 including those processing security or privacy of relevant
		 data. Therefore providing secure and reliable service
		 compositions is increasingly needed to ensure the success
		 of SaaS solutions. Building such service compositions
		 securely, is still an unsolved problem. In this paper, we
		 present a framework for modelling, validating, and ranking
		 secure service compositions that integrate both automated
		 services as well as services that interact with humans. As
		 a unique feature, our approach for ranking services
		 integrates validated properties (e. g., based on the result
		 of formally analysing the source code of a service
		 implementation) as well as contractual properties that are
		 part of the service- level-agreement and, thus, not
		 necessarily ensured on a technical level.},
 pdf		= {https://www.brucker.ch/bibliography/download/2017/brucker.ea-secure-services-2017.pdf}
}

%0 Journal Article
%T Modelling, Validating, and Ranking of Secure Service Compositions
%A Brucker, Achim D.
%A Zhou, Bo
%A Malmignati, Francesco
%A Shi, Qi
%A Merabti, Madjid
%J Software: Practice and Expierence (SPE)
%D 2017
%I John Wiley & Sons
%G USenglish
%F brucker.ea:secure-services:2017
%X In the world of large-scale applications, software-as-a-service (SaaS) in general and use of micro-services, in particular, is bringing service-oriented architectures (SOA) to a new level: systems in general and systems that interact with human users (e.g., socio-technical systems) in particular are built by composing micro-services that are developed independently and operated by different parties. At the same time, SaaS applications are used more and more widely by enterprises as well as public services for providing critical services, including those processing security or privacy of relevant data. Therefore providing secure and reliable service compositions is increasingly needed to ensure the success of SaaS solutions. Building such service compositions securely, is still an unsolved problem. In this paper, we present a framework for modelling, validating, and ranking secure service compositions that integrate both automated services as well as services that interact with humans. As a unique feature, our approach for ranking services integrates validated properties (e. g., based on the result of formally analysing the source code of a service implementation) as well as contractual properties that are part of the service- level-agreement and, thus, not necessarily ensured on a technical level.
%K Service design, human-centred service compositions, service modelling, service deployment, service ranking, secure service composition, service availability, SecureBPMN
%U https://www.brucker.ch/bibliography/abstract/brucker.ea-secure-services-2017
%U https://www.brucker.ch/bibliography/download/2017/brucker.ea-secure-services-2017.pdf
%U http://dx.doi.org/10.1002/spe.2513

TY - JOUR
AU - Brucker, Achim D.
AU - Zhou, Bo
AU - Malmignati, Francesco
AU - Shi, Qi
AU - Merabti, Madjid
PY - 2017//
TI - Modelling, Validating, and Ranking of Secure Service Compositions
JO - Software: Practice and Expierence (SPE)
PB - John Wiley & Sons
KW - Service design, human-centred service compositions, service modelling, service deployment, service ranking, secure service composition, service availability, SecureBPMN
N2 - In the world of large-scale applications, software-as-a-service (SaaS) in general and use of micro-services, in particular, is bringing service-oriented architectures (SOA) to a new level: systems in general and systems that interact with human users (e.g., socio-technical systems) in particular are built by composing micro-services that are developed independently and operated by different parties. At the same time, SaaS applications are used more and more widely by enterprises as well as public services for providing critical services, including those processing security or privacy of relevant data. Therefore providing secure and reliable service compositions is increasingly needed to ensure the success of SaaS solutions. Building such service compositions securely, is still an unsolved problem. In this paper, we present a framework for modelling, validating, and ranking secure service compositions that integrate both automated services as well as services that interact with humans. As a unique feature, our approach for ranking services integrates validated properties (e. g., based on the result of formally analysing the source code of a service implementation) as well as contractual properties that are part of the service- level-agreement and, thus, not necessarily ensured on a technical level.
UR - https://www.brucker.ch/bibliography/abstract/brucker.ea-secure-services-2017
L1 - https://www.brucker.ch/bibliography/download/2017/brucker.ea-secure-services-2017.pdf
UR - http://dx.doi.org/10.1002/spe.2513
ID - brucker.ea:secure-services:2017
ER -

 brucker.ea:secure-services:2017
 ArticleInAPeriodical
 John Wiley & Sons
 2017
 Software: Practice and Expierence (SPE)

 Brucker Achim D
 Zhou Bo
 Malmignati Francesco
 Shi Qi
 Merabti Madjid

 Modelling, Validating, and Ranking of Secure Service Compositions
 In the world of large-scale applications, software-as-a-service (SaaS) in general and use of micro-services, in particular, is bringing service-oriented architectures (SOA) to a new level: systems in general and systems that interact with human users (e.g., socio-technical systems) in particular are built by composing micro-services that are developed independently and operated by different parties. At the same time, SaaS applications are used more and more widely by enterprises as well as public services for providing critical services, including those processing security or privacy of relevant data. Therefore providing secure and reliable service compositions is increasingly needed to ensure the success of SaaS solutions. Building such service compositions securely, is still an unsolved problem. In this paper, we present a framework for modelling, validating, and ranking secure service compositions that integrate both automated services as well as services that interact with humans. As a unique feature, our approach for ranking services integrates validated properties (e. g., based on the result of formally analysing the source code of a service implementation) as well as contractual properties that are part of the service- level-agreement and, thus, not necessarily ensured on a technical level.

