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Abstract 

 

Antibiotic tolerant phenotypes, such as persister and viable but non culturable 

cells (VBNC), are known to be present in isogenic bacterial populations. These 

phenotypes are now recognised as an important factor in the recalcitrance of 

infections and the development of antibiotic resistance; which itself is currently a 

major global health crisis. However, despite their clinical importance, we still 

know little about the mechanisms behind their formation and the relationship 

between the two phenotypes. Due to the relatively low abundance of the two 

phenotypes within the population and, in the case of VBNC cells, their ability to 

remain dormant for extended periods of time, high throughput single cell 

approaches currently provide the best opportunities for investigating them; in 

particular microfluidics has emerged as an exciting platform for investigating 

phenotypic heterogeneity at the single cell level due to the control it allows of 

the extracellular environment.  

Using antibiotic persistence as a proxy, we identify temporal windows in which a 

growing E. coli population exhibits significant changes in phenotypic 

heterogeneity and determine highly regulated genes and pathways at the 

population level. We then develop a high throughput microfluidic protocol, 

based on the pre-existing Mother Machine device, to investigate persister and 

VBNC cells before, during and after antibiotic exposure at the single cell level. 

We then developed the first fully automated image analysis pipeline that is 

capable of analysing Mother Machine images acquired in both bright field and 

phase contrast imaging modalities. The combination of our protocol and image 

analysis software allowed us to investigate the role of the previously identified 

genes in the formation of antibiotic persister and VBNC cells, where we identify 

potential biomarkers for these phenotypes before exposure to antibiotic. We 

then used the microfluidic set up to investigate the relationship between protein 

aggregation and antibiotic persister and VBNC cells. We find that protein 

aggregation can be correlated to the expression of exogenous proteins and that 

cells containing visible protein aggregates are, in turn, more likely to be 

persister or VBNC cells; providing further evidence that these phenotypes are 

not distinct and are instead part of one physiological continuum. 
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Chapter 1: Introduction 

1.1 Phenotypic heterogeneity 
 

Phenotypic heterogeneity is the term used to describe the variation between 

cells within an isogenic population and has been observed across multiple 

domains of life. For instance, non-hereditary variation in protein expression is 

known to increase the rate of evolution in mammalian cancer cells1 and 

virulence of the fungi Candida glabrata2. Population heterogeneity has also 

been observed in a wide range of bacterial species, from motility in S. 

putrefaciens3, to biofilm formation in B. subtilis4 and Quorum sensing in V. 

harveryi5. Heterogeneity occurs as a result of the inherent random nature of 

biochemical reactions; for instance the likelihood of cellular components coming 

together to initiate processes, such as RNA polymerase and ribosomes in 

translation, is heavily influenced by the cellular concentration of the 

components. Two factors control this cellular concentration; the number of 

cellular components, such as ribosomes, and the size of the cell itself. In fact, in 

one study, researchers managed to reduce heterogeneity during the initiation of 

sporulation by genetically modifying the bacterium Bacillus subtilis to create a 

population with larger than normal cell size6. The size of individual cells can be 

affected by multiple factors, for instance asymmetrical bacterial division will 

result in old-pole and new-pole daughter cells having different levels of cellular 

components, with even small variations in cell size resulting in potentially 

significant differences in the two cells. A good example of this is efflux activity, 

for instance Bergmiller et al. showed that the multi drug efflux pump AcrB-TolC 

forms a ternary complex which becomes immobilised within the bacterial 

membrane and therefore undergoes biased partitioning, with the old-pole 

daughter cell retaining, on average, 58% of AcrB-TolC complexes7. 

Furthermore, Bergmiller et al. showed that the old-pole daughter cells had 

significantly lower levels of a fluorescent intercellular dye, Hoechst (H) 33342, 

as a result of their higher efflux activity7. They also showed that not only did the 

old-pole daughter cells have increased efflux activity, but they also had an 

increased growth rate in the presence of a bacteriostatic substrate; 

tetracycline7. 
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The difference in growth rate observed by Bergmiller, et al. was a result of 

heterogeneity providing a subpopulation with an advantage when the 

extracellular environment becomes unfavourable (in this case the presence of ≤ 

0.75 g ml-1 of tetracycline). However, heterogeneity in population growth rates 

has been observed in non-stressful conditions8. For example, older cells within 

a population were shown to have increased filamentation and reduced division 

rates by Wang et al8. Similarly, work on cellular ageing has shown that as 

bacteria divide, the cell which retains the old cell pole have lower growth rates 

than the daughter cells who gain a new cell pole9. This has been observed 

regularly in studies of protein aggregation where, during growth, aggregates are 

localised at the cell poles and, therefore, are often retained in the old-pole 

daughter cell upon cell division9,10. As a result, the toxic aggregates are 

concentrated within small subpopulations that are slower growing. Furthermore, 

by removing these aggregates from the majority of the population, the 

population can as a whole maintain a higher average growth rate11–13. This is an 

example of where some of the population exhibit a phenotype which is non-

optimal in favourable environments, but benefits the population as a whole. For 

instance, Nikolic et al. used fluorescent reporters of metabolic genes, such as 

the glucose specific transporter ptsG and acs which is co-transcribed with an 

acetate permease, to show that two subpopulations are present in a glucose 

rich environment; one which utilizes glucose and excretes acetate as a by-

product and a second that uptakes and utilizes the acetate14. 

Some of the best studied examples of cellular heterogeneity are in terms of 

cellular metabolism. Metabolism can be broken down into three sub-processes: 

taking up substrates from the extracellular environment (substrate uptake), 

breaking these down to basic building blocks (catabolism) and using these 

building blocks to construct macromolecules (anabolism)15. Given that these 

macromolecules are often components used for important cellular functions, 

heterogeneity in any of the previously mentioned sub-processes could result in 

the emergence of phenotypic diversity within the population15. As previously 

discussed, heterogeneity has been observed in glucose uptake in Escherichia 

coli14, however, it has also been observed in the N2-fixing bacteria Klebsiella 

oxytoca16. Schreiber et al. found that heterogeneity in N2-fixation increased as a 

result of transcriptional noise in the nitrogen fixing nitrogenase, nifH, when the 
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supply of NH4 increased16. On a similar note, a study by Veening et al. showed 

only a small subpopulation of Bacillus subtilis express aprE, the gene encoding 

subtilisin E which degrades proteins outside of the cell, in nutrient limiting 

conditions17. Subtilisin E is secreted from the bacterium and breaks down 

extracellular proteins that can then be utilised by the whole population17; this 

being another example of a small portion of the population exhibiting a 

phenotype which is costly to themselves, but benefits the wider population.  

Heterogeneity has often been discussed as a type of bet-hedging strategy 

within a population, whereby some of the population are able to rapidly adjust 

when the environment becomes unfavourable18–21. In fact, in normal conditions 

these subpopulations are not significant, but they are able to dominate the 

population behaviour when the extracellular environment changes22; this is 

particularly obvious when we look at the population response to a nutrient 

shift16,19,23,24. Acar et al. showed this by genetically modifying the galactose 

utilisation pathway of Saccharomyces cerevisiae to stochastically switch 

between “On” and “Off” at different rates25. Interestingly, they found that when 

they grew the populations in fluctuating environments, for instance fluctuations 

in pH, temperature and nutrient availability, the fast switching phenotype grew 

faster than the slower switching phenotype25. A similar study on the same 

organism by van Heerden et al. showed that, upon a nutrient shift, variation in 

metabolic flux within the glycolysis pathway resulted in the generation of two 

subpopulations with distinct growth phenotypes26. Kotte et al. had similar 

findings in E. coli, whereby they observed the population responsively 

diversifying into growing and non-growing phenotypes depending on their level 

of metabolic flux when the nutrient source was shifted from glucose to 

gluconeogenic23.  

As previously mentioned, heterogeneity allows a population to rapidly adapt to 

fluctuating environments. Interestingly, Bódi et al. showed that population 

heterogeneity accelerates adaptive evolution in the face of extracellular stress 

by using a synthetically generated gene circuit that expressed an anti-fungal 

resistance gene with varying levels of heterogeneity27. They found that strains 

with a bimodal distribution (more heterogeneity) due to a positive feedback loop 

survived better than those with a normal distribution (less heterogeneity) when 

exposed to an antifungal agent27. However, what was perhaps more interesting, 
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was that both strains evolved to have more heterogeneity (bimodal distributions) 

but this evolution was particularly prominent in the strain which had an initial 

normal distribution27. Furthermore, heterogeneity can be amplified or dampened 

if a feedback loop is present for the mechanism generating the phenotype. For 

example, negative feedback on gene regulation has been shown to reduce 

phenotypic heterogeneity28, whereas positive feedback can increase 

heterogeneity by turning stochastic fluctuations into multiple phenotypes23,29. 

Throughout the above I have discussed how populations adapt over time to 

increase their heterogeneity and how this allows an isogenic population to 

rapidly adjust to fluctuating environments. A key example of this is phenotypic 

heterogeneity allowing a subpopulation to survive high concentrations of 

antibiotics; such as antibiotic persister or viable but non-culturable (VBNC) 

cells30–37. Importantly, increased exposure to otherwise lethal stresses can 

increase the likelihood of adaptive mutations27,38; therefore persister and VBNC 

cells can provide a reservoir for the development of antibiotic resistant strains.  

 

Table 1: A summary of the different sources of heterogeneity covered in 1.1, 

what they cause and how they may affect the formation of different phenotypes. 

Source of 

heterogeneity 

Causes and effects Potential 

phenotypes 

Cellular 

metabolism / 

nutrient 

utilisation 

 Nutrient transitions have been 

shown to result in the formation of 

different phenotypes within 

bacteria, growing and non-

growing, as a result of metabolic 

flux causing bistability in carbon 

metabolism. 

 Similarly, even in glucose 

(preferred carbon source) rich 

environments, some cells will 

utilise the acetate by-product of 

their kin. This will result in two 

growth phenotypes within the 

 Reduced 

growth rate / 

dormancy 

 Formation of 

antibiotic 

tolerant 

phenotypes 
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population, with the slower 

growing phenotype potentially 

acting as a bet-hedging strategy if 

the extracellular environment 

rapidly becomes unfavourable.  

Asymmetric 

cell division 

 Proteins can become immobilised 

in the bacterial membrane 

resulting in them being divided 

asymmetrically between daughter 

cells. In the case of efflux pumps, 

this can result in increased 

antibiotic survival. 

 As daughter cells will not be 

identical in size they will contain 

different levels of cellular 

components such as ribosomes 

and as a result, there will be 

inherent heterogeneity in 

biochemical reactions 

 The movement of protein 

aggregates is often restricted by 

the nucleoids, resulting in polar 

localisation. This means only one 

daughter cell will inherit the 

aggregate and have a reduced 

amino acid pool; triggering the 

stringent response and increased 

cellular dormancy/reduced growth 

rate. 

 Reduced 

growth rate / 

dormancy 

 Visible 

protein 

aggregates  

 Formation of 

antibiotic 

tolerant 

phenotypes 

 

1.2 Antibiotic persister and VBNC cells 
 

1.2.1 Defining antibiotic persister and VBNC cells  
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Antibiotic resistance is where a bacterium acquires a genetic mutation that 

allows it to continue growing and dividing in the presence of a given antibiotic39. 

Antibiotic resistance is a major global health threat, particularly due to the 

emergence of multi-drug resistant (MDR) strains39. MDR strains are emerging at 

a rate faster than ever, as a result of the over use of antibiotics, both in humans 

and in animals39,40. Furthermore, the use of antibiotics is currently projected to 

continue, with estimations suggesting that its use in livestock may increase by 

up to 67 % over the next 10 years40.  

In comparison, persister and VBNC cells remain genetically identical to their 

susceptible kin but are able to survive exposure to otherwise lethal doses of 

antibiotic (Fig. 1). Although first discovered by Hobby et al. in 194241, the term 

“persister” was first used to describe drug tolerant cells two years later by 

Bigger two years later when he observed that penicillin was often unable to fully 

sterilise a flask of Staphylococcus aureus42. However, recently interest in 

antibiotic persister and VBNC cells has increased; in fact, such is the current 

levels of interest, that several leading experts in the field recently published a 

consensus statement in order to ensure the different phenotypes were being 

correctly defined43. They discuss how several factors can be used to distinguish 

between resistance and persistence; 1) in persistence not all cells are killed at 

the same rate, 2) the progeny of persister cells remain susceptible to antibiotics, 

3) the size of the persister population is not dependent on antibiotic 

concentration and 4) persister cells are unable to replicate whilst in the 

presence of antibiotics43. They continue by discussing how tolerance and 

persistence are often interchangeable terms, with the difference being tolerance 

is a population level phenomenon, whereas persistence is an attribute that only 

affects a subpopulation43. As a result, mechanisms that allow tolerant cells to 

survive antibiotics can be investigated with respect to both tolerance and 

persistence, unless such survival is a result of population heterogeneity, in 

which case it is limited to persistence43. Interestingly, some cells are able to 

survive antibiotic treatment but remain dormant and can only resuscitate after a 

long and specific treatment36,44,45. In fact, as a result of their increased 

dormancy, although they are still an example of antibiotic tolerant cells, these 

VBNC cells are considered separate from the persistence phenotype36. As 

persister and VBNC cells are able survive in the presence of antibiotics for 
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extended periods of time, they have regularly been associated with the 

recalcitrance of chronic infections, such as cystic fibrosis33,46,  and proposed to 

be a stepping stone to antibiotic resistance38.  

Despite first being observed in bacterium41,42, antibiotic persistence is not 

restricted to bacteria. LaFleur et al. observed multi drug persistence in biofilms 

of the major human pathogen Candida albicans47. Furthermore, heterogeneity 

in metabolic activity and nutrient utilisation has been suggested to be involved 

in C. albicans persistence48. Interestingly, in C. albicans, persistence has only 

been observed in biofilms and not in planktonic cultures47,48 however, they were 

discovered in both biofilms and planktonic cultures in the yeast Saccharomyces 

cerevisiae49. LaCrue et al. reported a dormant state in the parasite Plasmodium 

falciparum that they propose contribute to the recorruence of infections50. Drug 

tolerant persister cells have also been observed in human tumour cell lines51,52. 

For example, Sharma et al. found approximately 0.3 % of a population in a lung 

cancer derived cell line survived treatment with EGFR (epidermal growth factor 

receptor) inhibitors as a result of phenotypic heterogeneity within the 

population52.  

 

Figure 1. A summary of the difference between susceptible, persisters and 

VBNC cells. The population is isogenic both before and after exposure to 

antibiotics, however susceptible cells (solid green circles) are killed during 

antibiotic exposure, persister cells (pale green circles) survive and regrow upon 

removal of antibiotic removal to form a new, mainly susceptible, population and 

VBNC cells (dotted green circle) survive the exposure but remain in a dormant 

non culturable state after antibiotic removal. As a result, persisters and VBNC 

are currently only identifiable after exposure to antibiotics.  
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1.2.2 Persister and VBNC cells and their role in the recalcitrance of 

infections 
 

As previously mentioned, antibiotic persistence has been linked to recalcitrance 

of chronic infections and proposed to act as a stepping stone in the 

development of antibiotic resistance38,46. In Pseudomonas aeruginosa isolates 

taken from patients, such as those suffering with cystic fibrosis, persister levels 

are up to 100 fold higher, indicating that persister cells are mainly responsible 

for our inability to treat these chronic infections53. There are multiple factors 

involved in the development of antibiotic resistance; one is the initial likelihood 

the mutation occurs and the other is the likelihood of the mutation surviving 

antibiotic exposure38. Therefore, given that persister cells can survive in the 

presence of antibiotics for long periods of time before resuscitating, they provide 

a reservoir for the establishment of resistance. However, increasing the 

reservoir of viable cells during treatment is not the only way in which 

persistence has been proposed to increase the development of resistance54. 

Persistence has also been associated with the stress response pathway55,56, as 

well as pathways which have been linked to promoting both adaptive mutations 

and horizontal gene transfer57. Windels, et al. found a positive correlation 

between antibiotic persistence and the probability cells became resistant in E. 

coli54. Furthermore, they used a strain that had evolved to exhibit a higher level 

of persistence than wild type E. coli, hipA7, and found a higher mutation rate 

compared to their low persister, oppB*, counterparts, suggesting that mutations 

are more likely to occur in persister cells54. Petrosino et al. showed that nutrient 

stress can increase mutations in ampD, an enzyme involved in the regulation of 

β-lactamase production, and result in an increase in resistance to β-lactams58. 

Furthermore, they found the mutagenic response was controlled by the general 

stress response controller, RpoS58.  Similarly, when using strains lacking in a 

stress response, Nguyen et al. found a decrease in persistence in P. 

aeruoginosa biofilms compared to the wild type strains59. Interestingly, they also 

found that when they exposed the strain to conditions promoting adaptive 

resistance it was unable to generate ofloxacin resistant mutants59.  

 

1.2.3 Antibiotic persistence and cellular stress 
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1.2.3.1 Metabolic stress 
 

Stress has also been shown to have a direct effect on antibiotic persistence, 

with populations that are pre-stressed exhibiting higher levels of persister 

cells60,61. Metabolic stress as a result of nutrient shifts is perhaps the most well 

studied example of this56,60,62,63. By growing E. coli in minimal media 

supplemented with either a single carbon source or a combination of carbon 

sources, Amato et al. were able to show that the populations grown in the 

presence of multiple different carbon sources had an approximately 50 fold 

increase in antibiotic persistence as a result of the diauxic shift63. Using 

autotrophic mutants of E. coli, Bernier et al. were able to starve biofilms of 

individual amino acids and found that they contained significantly more persister 

cells in response to treatment with ofloxacin64. Similarly, Fung et al. performed 

survival assays on E. coli grown in different combinations of nutrients and 

amino acids65. Interestingly, they found 8 combinations, all of which lacked 

glucose and some amino acids, in which the populations showed increased 

persistence to ampicillin, ofloxacin and gentamicin, respectively65. 

1.2.3.2 Extrinsic cellular stress 
 

Metabolic stress, however, isn’t the only stress that can increase levels of 

antibiotic persistence; oxidative stress, heat shock, DNA damaging agents and 

pre-treatment with antibiotics have also shown to have an effect35,55,61,66,67. 

Working with Streptococcus mutans, a common contributor to tooth decay, 

Leung and Lévesque showed that they could increase ofloxacin persister levels 

by pre-stressing the population through acid treatment, oxidative stress, amino 

acid starvation and heat shock, respectively55.  Wu et al. induced oxidative 

stress by pre-treating E. coli with paraquat and found it significantly increased 

persister levels in response to the fluoroquinolone ofloxacin61. Interestingly, by 

using a acrB strain, they also identified that this was a result of the 

superoxidise response gene, SoxRS, inducing the expression of the multi drug 

efflux pump AcrAB-TolC61. A similar phenomenon was observed in exponential 

phase Pseudomonas aeruginosa, which typically has lower levels of persisters 

than E. coli, where paraquat again increased persister levels67. Exposure to 

sub-minimum inhibitory concentration (MIC) antibiotic levels, the lowest 

concentration of antibiotic required to prevent bacterial growth, can increase the 

size of the persister population in response to a future higher antibiotic 
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concentration. For instance, pre-treatment of an E. coli culture with 0.1 g ml-1 

of ciprofloxacin for 3h increased the persister fraction by more than 10 fold66.  

1.2.4 Antibiotic persistence in biofilms 
 

Biofilms are often a source of antibiotic persistence59,64. Biofilms form physical 

barriers to parts of the body and although the majority of bacterium within the 

biofilm itself are highly susceptible to antibiotics68, a small proportion of cells 

survive69–71. Furthermore, the exposure to antibiotics within the biofilm can vary, 

with some bacterium experiencing sub-MIC concentrations, as a result of 

variations in tissue location and biofilm size72. Adding to this, although 

persistence is not a genetic trait, there is evidence to show that adaptive 

evolution, through continued exposure to antibiotics, can result in increased 

persistence46. For instance, the previously mentioned Pseudomonas 

aeruginosa isolates that had up to 100 fold higher levels of persister cells53. 

Similarly, through periodic treatment with antibiotics, Moyed and Bertrand 

identified a mutant strain that had the same MIC as the wild-type strain but had 

increased levels of persisters, which they found this to be a result of the HipA 

(high persistence) allele73. This adaptive evolution is not limited to bacteria 

however, LaFleur et al. tested 150 isolates of Candida species from cancer 

patients who had received daily treatment74. Interestingly, they found isolates 

from patients that had been receiving prolonged treatment had higher persister 

levels of the fungal pathogen74.  

1.2.5 Potential mechanisms of antibiotic persistence 
 

Despite the obvious importance of persister cells to health and the recalcitrance 

of infections, a single conclusive mechanism for antibiotic persistence has yet to 

be identified, however several different mechanisms have been proposed to 

play a role. For example, the previously mentioned high persistence (hip) 

strains suggested that persistence was related to toxin/antitoxin (TA) modules 

which act as a maintenance mechanism32. Toxins inhibit important cellular 

functions but plasmid encoded antitoxins act as a down regulator by binding 

them in an inactive complex32. If a daughter cell fails to receive the plasmid 

encoding the antitoxin, then the toxin remains active and the bacterium is killed 

or further replication is prevented32. In a previously discussed study where the 

authors found ciprofloxacin to induce persister formation, they also found that 
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the deletion of the TA module tisAB significantly reduced persister formation, 

but the phenotype could be recovered with complementation66. Similarly, 

overexpression of the toxins MazEF and RelBE in S. mutans, resulted in an 

increase in persistence relative to wild type55. Keren, et al. treated an E. coli 

population with ampicillin in order to lyse all susceptible cells, they then pelleted 

the surviving cells and performed transcriptional analysis75. Interestingly, they 

found chromosomal TA module proteins RelBE, MazEF, and DinJ/YafQ were all 

overexpressed however, it is important to note that they still observed 

susceptible unlysed cells which may contaminate these readings75. 

Furthermore, their method of isolation required antibiotic treatment which is 

likely to affect the transcriptome as well as being performed on a hip strain of E. 

coli. To try and negate the issue of using antibiotics to isolate the persister 

population, Shah et al. used a fluorescent reporter to sort an E. coli population 

based on their level of dormancy34. Using DNA microarrays, they found the 

most induced gene in the dormant cells to be the toxin gene mqsR34 however, 

how accurately this reflects the persister phenotype is questionable as less than 

40 % of this population were persisters.  

TA modules aren’t the only genes associated with increased persistence76; 

Shan et al. developed a transposon sequencing experiment that identified 142 

genes/promoter regions whose deletions resulted in a 5 fold or higher change in 

persister levels to gentamicin treatment from that of the wild type (WT) in 

stationary phase cultures. Although some of these genes coded for TA 

modules, there was also 39 genes involved in flagella synthesis and 13 genes 

related to amino acid biosynthesis53. Again, indicating the lack of a distinct 

mechanism that results in persister formation. A potential reason could have 

been attributed to the variety in identification methods of these persister genes; 

from different types of drugs and different strains of organisms, to different 

organisms’ altogether. Wu et al. seeked to rectify this by ranking the response 

of candidate genes to multiple drugs within a single organism76. Their results 

showed that persistence often still varied depending on the stage of growth and 

the drug used76. Their results were not unusual, growth phase dependent 

persistence has been observed in multiple organisms to multiple drugs77–79. 

1.2.6 Growth stage dependence of antibiotic persistence 
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The growth stage dependence can be linked to the metabolic activity of 

bacteria. As previously discussed, metabolic heterogeneity within a bacterial 

population can generate multiple phenotypes, particularly in terms of 

dormancy44,80. Additionally, external stressors, such as metabolism, heat shock 

and oxidative stress can induce the bacterial stringent response81. The effector 

molecule of the stringent response is the “alarmone” ppGpp, which in turn 

stimulates the production of RpoS81. Similarly, overexpression of Obg, a 

conserved GTPase which measures the cellular energy status to control entry 

into dormant spores in Bacillus subtilis, increased persistence in response to 

ofloxacin in both P. aeuroginosa and E. coli, with the latter being increased 54 

fold relative to wild type20. However, this increase in persistence was lost in a 

relA spoT mutant, indicating the effect of Obg was dependent on ppGpp20. 

Amato, et al. used the relA spoT mutant to investigate nutrient transitions in 

planktonic cultures and found that upon glucose exhaustion persister levels 

increased 20 fold in the wild type strain but only 1.8 fold in the mutant, further 

suggesting a role for ppGpp63. Similarly, Radzikowski et al. switched E. coli from 

growth on glucose to fumarate and found that a slow/non-growing 

subpopulation arose which was antibiotic tolerant and accumulated higher 

levels of ppGpp56. 

Aside from ppGpp, other signalling molecules and quorum sensing have been 

associated with antibiotic persistence. In the P. aeuroginosa strain PAO1, 

Möker et al. found exposure to acyl-homoserine lactone, a quorum sensing 

related signalling molecule, significantly increased persisters67. Leung and 

Lévesque showed quorum sensing also affects persistence in S. mutans, albeit 

using a slightly different approach55. They looked at the expression of comC, a 

CSP pheromone gene, and found it to be upregulated in response to multiple 

environmental stressors55. Furthermore, they showed that a mutant strain, 

comE, which couldn’t respond to the CSP pheromone, no longer produced an 

increase number of persisters in response to environmental stress55. Another 

signalling molecule which is produced by a variety of gram negative and gram 

positive bacteria is indole35,82–85. Indole is produced during the breakdown of 

tryptophan by tryptophanase86,87 and has been shown to control many bacterial 

functions, such as spore and biofilm formation82. Furthermore, during the 

transition from exponential to stationary phase growth in E. coli, a substantial 



[22] 
 

intracellular indole “pulse” has been observed and proposed to inhibit 

growth84,85. Interestingly, despite a general consensus amongst researchers 

that indole appears to play a role in persistence, whether it promotes or reduces 

it is still disputed35,83,88,89. For example, Hu et al. reported that E. coli persister 

fractions in response to ampicillin decreased when cells were pre-incubated 

with increasing concentrations of indole88 however, this doesn’t take VBNC 

bacterium into consideration. In comparison, when Vega et al. incubated E. coli 

with indole, they reported an increase in survival35, but they used a shorter 

incubation time. Interestingly, in a later study, Vega et al. found that a co-culture 

of salmonella typhimurium, which is unable to produce indole, with wild type E. 

coli produced higher levels of persister cells compared to when it was co-

cultured with a tnaA E. coli strain which also didn’t produce indole83. 

1.2.7 Viable but non-culturable cells and the relationship with persistence 
 

So far I have mainly focused on persister cells however VBNC cells can also be 

considered an antibiotic tolerant phenotype36,44. Like persisters, they have been 

linked to the recalcitrance of infections and they constitute a major threat to 

human health, in fact they have been observed in 51 human pathogens90. 

Despite this, most of the knowledge about persister and VBNC cells is focused 

on that of persister cells with even less known about VBNC. Although the two 

were originally thought to be two different distinct tolerant phenotypes, there is 

increasing evidence to suggest they are part of one continuum36. For example, I 

previously discussed the role of the stringent response, particularly relA and 

ppGpp, in persistence and both of these have also been linked to the VBNC 

state. For instance, Mishra et al. incubated Vibrio cholorae at 4 °C for 23 days in 

order to induce the VBNC state and using qPCR found relA to be upregulated 

by over 60 fold91. In another study, cells were able to enter the VBNC state 

more efficiently than wild type cells in strains overproducing ppGpp and less 

efficiently in strains unable to produce ppGpp92. Similarly, the VBNC state has 

also been associated with TA modules. For example, Korch and Hill showed 

that although they were unable to grow some cells after long term induction of 

the hipA toxin, the majority of these cells remained viable according to a 

LIVE/DEAD stain, suggesting induction of the VBNC state93. In an interesting 

study by Ayrapetyan et al., the group that first proposed persister and VBNC 

states to be part of a continuum36, they found that in Vibrio vulnificus a persister 
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population was able to enter the VBNC faster than a wild type logarithmic 

population37. Furthermore, they also found that activation with human serum 

was able to induce both persister and VBNC states37. Pu et al. hypothesised 

that if the VBNC state is simply a more dormant state along the continuum than 

persisters, then increased exposure to factors, such as nutrient starvation, that 

induce dormancy would result in more of the population transitioning from the 

persister to VBNC state94. By leaving an E. coli population in stationary phase 

for a prolonged period of time, they observed that the number of VBNC bacteria 

increased with time94. Adding to this, the persister fraction initially increased 

before beginning to decrease, suggesting they became VBNC94. 

Despite all of the above, the mechanisms behind the formation of persister and 

particularly VBNC cells and the potential continuum that defines them, are still 

not well understood. As discussed above, the majority of research in to the 

phenotypes is at the population level using traditional microbiological methods, 

such as CFU, but these methods often fail to characterise individual 

subpopulations and, in fact, in the case of VBNC, fail to detect them altogether. 

Therefore, to help further characterise the persister and VBNC phenotypes, 

further research should be carried out with single cell resolution.   

1.3 Single cell analysis for investigating population 
heterogeneity 

1.3.1 The need for single cell analysis 
 

As previously discussed, multiple sub phenotypes can exist within bacterial 

populations, for instance in terms of growth rate, metabolic activity and 

resistance to stress7,14,23,24,72,95,96. These sub phenotypes arise as a result of 

variations at the single cell level96–98. Therefore, many traditional microbiological 

assays, such as colony forming units (CFU), are unable to effectively determine 

the mechanisms behind their appearance. For example, if a population were to 

be split into two phenotypes in a bimodal distribution, bulk analysis of the entire 

population would result in an average value and would incorrectly identify the 

whole population to have one intermediate phenotype22.  

Cell to cell heterogeneity exists within microbial populations, but research has 

shown that less than a few percent of a population is more than two fold 
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different than the population average22. However, as discussed earlier, when 

the environmental conditions allow it, these small subpopulations are able to 

dominate population behaviour22. In these circumstances, the population 

behaviour can be interpreted incorrectly if studies are performed at the 

population level (Fig. 2). This is particularly important, when considering 

heterogeneity in response to antibiotics, such as the ability of a persister cell to 

survive antibiotic treatment and its role in recalcitrance of infections33,45,46,72. In 

order to collect single cell measurements, researchers have performed single-

cell microscopy in order to study cellular growth and infection99. Similarly, single 

cell measurements, such as cell size and fluorescence intensity, can be 

acquired using flow cytometry14,100. However, although both of these techniques 

allow researchers to acquire measurements on single cells, they don’t allow the 

control and manipulation of the extracellular environment so are not suitable for 

investigating temporal changes, for instance population heterogeneity in 

response to extracellular stimuli.   

 

Figure 2. The importance of single cell analysis for identifying population 

heterogeneity. The above figure, taken from Lidstrom and Konopka 201022, 

really nicely illustrates how ensemble measurements (such as CFU assays or 

plate reader analysis of fluorescence) will result in an average population level 

response, whereas single cell approaches (such as microfluidic assays and flow 

cytometry) can help illicit the true distribution of phenotypes within a population 

1.3.2 Microfluidics for single cell analysis 
 

An important technological advance which has been adopted by researchers in 

order to investigate cellular heterogeneity in microbial populations is 

microfluidics7,30,101–105. Microfluidics allows the control and manipulation of fluids 
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within devices that are purpose built with submillimetre precision106. The 

introduction of polydimethylsiloxane (PDMS) by Duffy et al. in 1998, as a 

compound that could be used to rapidly fabricate microfluidic devices was a 

major contributing factor to the growth of the microfluidic field107. Adding to this, 

the relatively low cost of PDMS and speed of fabrication means microfluidics is 

more accessible than ever and is being utilised for research into a wide variety 

of biological functions across all domains of life103,104,106.  

In eukaryotes, microfluidics has been used to investigate the physical 

properties. For instance, Pagliara et al. showed pluripotent embryonic stem 

cells had auxetic nuclei, meaning they contracted when compressed, when they 

experienced extracellular pressure as a result of being forced through a 

microfluidic channel that was slightly narrower than their cellular diameter; these 

auxetic properties could be involved in converting mechanical stimuli to a 

cellular response, for instance deciding how the stem cell cell differentiates108. 

Similarly, Irimia and Toner confined cancer cell lines within a microfluidic device 

and found all the cells migrated in the same direction even in the absence of a 

chemical gradient109. Furthermore, they found when they treated the cells with 

drugs which target microtubules that the speed at which this migration occurred 

was drastically reduced109. In bacteria Yu et al. used a microfluidic device to 

compress single E. coli cells; by measuring the cells shortly after compression 

and before they can respond biochemically, it allowed them to focus on the 

physical properties110. Using fluorescently tagged loci, they used their approach 

to show the importance of nucleoid organisation and DNA elasticity in loci 

subdiffusion110. Nobs and Maerkl developed a microfluidic platform which 

allowed them to characterise the growth and division rates in the yeast 

Schyzosaccharomyces pombe, during both a steady temperature and during 

temperature changes109. Furthermore, by performing single cell analysis, they 

were able to correlate the growth and division rates to the cells lineage109. In 

another study, fluorescence microscopy was utilised within a microfluidic device 

in order to perform high throughput screening to identify 10 out of over 50 000 

compounds which improved the efficacy of amphotericin B by over 30 % when 

treating C. albicans111. In bacteria, microfluidics has been used to investigate 

multiple cellular functions, such as growth rate, chemotaxis103,112, gene 

expression105 and response to antibiotics30.  
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Due to its ability to allow tight control and manipulation of the extracellular 

environment, microfluidics has proved an extremely useful tool for studying 

bacterial chemotaxis. Park et al, designed a maze like microfluidic device and 

used it to show for the first time that both E. coli and Vibrio harveyi populations 

aggregate to form quorums113. In a similar study, using a cleverly designed 

device, Cho et al. found that over time bacterial populations organised 

themselves spatially to try and optimise nutrient access and waste removal, 

further highlighting their ability to self-organise114. Microfluidic approaches have 

allowed increased sensitivity in chemotaxis assays, this was epitomised in a 

study by Mao et al, who observed chemo-attraction at a level nearly 3 orders of 

magnitude lower than observed in capillary assays by using a specially 

designed device to investigate the attraction of E. coli to the amino acid 

attractant ι-aspartate115. Interestingly, the fact the bacteria responded to such 

low levels of ι-aspartate highlighted how sensitive bacteria are to extracellular 

stimuli. Stocker et al, investigated how chemotaxis can allow bacteria to exploit 

nutrient rich regions in a marine setting by using a microfluidic device that 

simulated the settling of dissolved organic matter within the oceans116. Using 

this, they found that the motile bacteria, Pseudoalteromonas haloplanktis, were 

able to accumulate in the nutrient rich areas and, as a result, were 4 times more 

likely to be exposed to nutrients than non-motile bacteria116; again highlighting 

how bacteria can react to extracellular stimuli. 

Exposure to nutrients or nutrient depletion can affect population growth rates 

and, as previously discussed, this can be a result of population 

heterogeneity14,23,24. Therefore, microfluidics has emerged as a useful tool for 

investigating growth dynamics within a population. An early example of this was 

by Elfwing et al. who trapped single bacterium to the surface of a microfluidic 

device and optimised the flow rate to wash away any daughter cells, allowing 

for the long term tracking of the mother cell117. Using this set up, they found that 

heterogeneity in lag time increased with increasing concentration of salt in E. 

coli117, indicating the extracellular salt content can affect cellular dormancy. In a 

similar study, Long et al. used a microfluidic chemostat device to track individual 

cellular parameters, such as growth rate, cell size and GFP expression, for an 

E. coli population during continuous growth and upon nutrient shifts, highlighting 

how microfluidics can be utilised for investigating cellular dynamics118.  Using a 
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microfluidic agarose channel, Choi et al. tracked the growth rate of single 

bacterium in response to different concentrations of antibiotics, allowing them to 

rapidly identify the MIC; a method which can improve efficiency for diagnosis 

and treatment of clinical isolates119. Norman et al. investigated the ability of 

individual B. subtilis to switch between two different states during exponential 

growth; a bet hedging strategy in nature to allow the population to “settle down” 

and colonise an environment with favourable conditions120. In this study, they 

used an early version of what is now a widely adopted microfluidic set up; the 

“Mother Machine”8. 

1.3.3 The microfluidic “Mother Machine” 
 

The Mother Machine device was first developed by Wang et al. in 20108. It 

consists of an inlet tube, which allows the manipulation of the extracellular 

environment, and an outlet tube, for the removal of waste products or unwanted 

cells. However, its most important feature is the thousands of miniature side 

channels which were designed to trap a single “Mother” cell whilst its progeny 

divide towards the centre channel and are eventually washed away8. After 

developing the Mother Machine device, Wang et al. used it to show that the 

“Mother” cell accumulated the same pole over hundreds of generations and the 

damages that it accumulates as a consequence, ultimately result in cell death8. 

The previously discussed work by Bergmiller et al. used a mother machine 

device to investigate the distribution of the multi-drug efflux pump AcrB-TolC 

and found it was more prominent in old-pole compared to new-pole daughter 

cells after cellular division7. Kaiser et al. utilised a Mother Machine device to 

investigate the single cell response of E. coli cells during a nutrient switch from 

glucose to lactose105. Interestingly, they found that growth arrest during this 

transition was deterministic and not stochastic as previously believed105.  Also in 

E. coli, Uphoff used DNA alkylation to inflict DNA damage and visualise 

mutation dynamics in real time, finding that mutagenesis was modulated by 

stochasticity in the expression of DNA repair mechanisms121. Furthermore, 

exposure to the alkylating agent resulted in a variety of cell fates, including 

sudden growth arrest and lysis121. Roberts et al. further investigated the 

mutational dynamics in E. coli by fluorescently tagging the mismatch repair 

system, by using the Mother Machine device they developed a micro mutation 

accumulation experiment that allowed them to characterise lethal mutations that 
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are overlooked in similar bulk assays122. Moolman et al. used a slightly modified 

version of a mother machine device to investigate the loading and unloading of 

β2-clamps, which in turn allow the binding of DNA Polymerase III to the DNA 

template, during DNA replication, finding they can remain on the DNA to provide 

a docking platform for other enzymes123. Chait et al. combined optogenetics and 

the Mother Machine to develop a fully integrated platform that allowed them to 

control the gene expression of hundreds of individual bacteria using light 

responsive transcription101. Their approach dynamically combines mathematical 

simulation with experimental results to provide a new platform for investigating 

population behaviour101. Finally, the mother machine has also been used to 

investigate response to antibiotics in S. typhimurium124. Arnoldini et al. induced 

the bistable expression of the virulence factor ttss-1, resulting in the production 

of two phenotypes one expressing ttss-1 and one not. Interestingly, the 

bacterium expressing the virulence factor also exhibited a reduced growth rate 

which, in turn, made them more likely to survive exposure to the fluoroquinolone 

ciprofloxacin124.  

1.3.4 Investigating antibiotic persistence with microfluidics 
 

The Mother Machine is not the only microfluidic device that has been used for 

investigating antibiotic persistence. Gefen et al. used a device that allowed 

micro-colonies to grow in microscopic chambers whilst their extracellular 

environment was tightly controlled by diffusion through a cellulose membrane 

that separated these chambers from larger flow channels125. Using this device, 

they investigated the level of dormancy in persister cells that are found in 

cultures leaving stationary phase125. Using a hip mutant strain of E. coli they 

induced mCherry expression with a synthetic promoter and expected to observe 

little or no fluorescence in persister cells to reflect a level of complete 

dormancy125. In contrast, they found the persister cells exhibited the same initial 

fluorescence response as their susceptible kin, suggesting the persister cells 

were perhaps not in a dormant state in stationary phase but developed upon 

leaving125. Vega et al. suggested that persistence could be induced in E. coli in 

response to the cell-cell signalling molecule indole35. They developed a device 

with a subsection that was the same height as a single monolayer of E. coli and 

would therefore allow individual bacterium to be trapped; once the bacteria were 

seeded in this area the flow could be reversed and the extracellular 
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environment controlled through the “switching” of integrated elastomeric 

valves35. They found an increase in the expression of the tnaC fluorescence 

reporter when they incubated the bacterium with indole and showed that the 

indole induced fluorescence was higher in those bacteria that went on to survive 

ampicillin treatment35. In a device that shared some similarities to both the 

mother machine and the one previously described for Gefen et al., Balaban et 

al. trapped cells in micro channels and the diffusion of media through a 

cellulose membrane allowed the tight control of the extracellular environment30. 

Using this device, they were able to track single cells after exposure to 

ampicillin and determined that those that persister cells had a slower growth 

rate than their susceptible kin prior to antibiotic exposure30. Importantly, 

however, due to limitations with throughput on their device, they had to perform 

their experiment on a hip mutant in order to generate enough persisters. Finally, 

Pu et al. designed a device that had 12 channels alongside each other that 

were each 150 m wide and 20 m deep and imaged cells that stuck to the 

channel surface126. They used BOCILLINTM, a fluorescent β-lactam antibiotic, to 

investigate whether persister cells had lower intracellular accumulation of 

antibiotics127. Interestingly, they found by fluorescently tagging the multi drug 

efflux pump, tolC, that persisters had a higher level of fluorescence, and 

therefore increased efflux activity, than their susceptible counterparts127. 

However, they also found that in a tolC strain persisters and susceptible cells 

showed the same level of BOCILLINTM fluorescence127, which raises the 

question if intracellular drug levels do play a role in persistence. 

Although microfluidics has provided researchers with a tool for investigating 

heterogeneity at the single cell level, a lot is still left to be determined, 

particularly with respect to antibiotic persister and VBNC cells. For example, 

many of the investigations into antibiotic persistence have still required the use 

of hip mutants in order to generate sufficient numbers of persister cells. 

Furthermore, with VBNC cells believed to be even less frequently occurring, 

they still remain difficult to investigate. However, as these high throughput 

devices become more readily available and researchers are rapidly producing 

vast amounts of data, it is the analysis steps that are becoming the limiting 

factor. 
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Table 2. A summary of the microfluidic experiments discussed in 1.3 and the 

respective cellular / population attributes being investigated. 

Attributes being measured Examples 

Mechanical / physical 

properties 

 Auxetic properties of nuclei in stem cells108 

 Physical response of E. coli to mechanical 

pressure before they could respond 

biochemically110 

Chemotaxis / motility  Migration of cancel cells128 

 Self-organisation of bacteria to improve 

population efficiency, for instance with 

respect to nutrient utilisation113–116 

Growth rate  Effect of temperature on growth rate of S. 

pombe109 

 Rapidly identifying MIC of bacteria in 

response to different antibiotics119 

 Switching between growth 

phenotypes117,118,120  

 Growth dynamics of the mother cell over 

time and in response to different 

extracellular environments8,105 

Mutation dynamics  Stochasticity in the expression of DNA 

repair mechanisms121 

 Characterising lethal mutations overlooked 

in bulk assays122 

Antibiotic persistence  Effect of indole exposure35 

 Level of dormancy of persister cells leaving 

stationary phase125 

 Growth rate of persister cells prior to 

antibiotic exposure30 

 Efflux activity in persister cells126 
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1.4 Current image analysis platforms  
 

The development of new high throughput technologies in microbiological 

research, including microfluidics, means researchers are now accumulating 

data faster than ever. In terms of microscopy images, this means that it now 

often takes longer for researchers to analyse their images than it does to initially 

acquire them. As a result, the development of image analysis technologies has 

been described as “lagging behind the adoption of high-throughput imaging 

technologies"129. As a result, groups are now often spending time developing 

their own automated or semi-automated image analysis tools101,105,118,124,130–133. 

However, this is often time consuming and if the imaging platform is very 

specific, they are unlikely to be used by other groups. 

One of the first open source image analysis packages available for biological 

applications was ImageJ134. However, despite its relative success, ImageJ is 

designed for single images and therefore programming knowledge is required to 

develop macros if a researcher wished to adapt it for use on larger, more 

complex datasets. That being said, some groups have developed freely 

available plugins which can be utilised by the scientific community, for example 

MicrobeJ135. MicrobeJ was utilised by Simsek and Kim to detect single 

bacterium trapped under an agar pad whilst investigating single cell metabolic 

heterogeneity15. Haugan et al. used it to detect single bacteria and fluorescent 

foci in E. coli whilst investigating growth during host infection136. However, 

MicrobeJ is limited to phase contrast or fluorescence images and is not fully 

automated as it still requires some level of manual input.  

In a similar approach, the Broad institute developed CellProfilerTM, a freely 

available open source platform137. CellProfilerTM allows researchers with limited 

computer vision experience to develop their own pipelines through combining 

multiple individual modules. Rees et al. used CellProfilerTM to detect the nucleus 

and nanoparticle loaded vesicles whilst investigating heterogeneity in 

nanoparticle uptake in lung carcinoma cells138. In contrast, Inamine, et al. used 

it to detect gut bacteria in fecal samples139. However, although Long et al. used 

CellProfilerTM for image analysis, they required additional custom scripts in 

order to segment the channels and track images across frames118 as 
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CellProfilerTM is mainly focused on problems surrounding colonies and colony 

growth.  

Table 3. A comparison summary of the current image analysis softwares 

designed specifically for mother machine images; highlighting the need for a 

fully automated platform for images acquired in bright field. 

 

Similar to the previously discussed MicrobeJ, some Mother Machine specific 

plugins have been developed for ImageJ. The first plugin, mmj, was developed 

by Arnoldini et al. and was used by their research group to investigate the 

expression of virulence factors in S. typhimurium124. However, the plugin is 

semi-automatic and, therefore, due to the level of pre-processing required, it 

remains relatively inefficient and has not been adopted by the wider community. 

A second, more automated, imageJ plugin, MoMA, has since been developed 

by Kaiser et al.105. They used it to analyse images of E. coli during a nutrient 

shift between glucose and lactose and claim to have achieved unprecedented 

levels of accuracy105.  However, MoMA requires a license for Gurobi, which is 

only free for academics, therefore limiting its accessibility within the scientific 

community. Furthermore, its detection pipeline is designed specifically for phase 

contrast images, so its ability to cope with bright-field images remains to be 

determined. To my knowledge, the only other, freely available Mother Machine 

specific image analysis platform is Molyso130. Molyso is a fast and efficient 

software developed in python by Sachs et al130. However, like MoMA, it is also 

limited to phase contrast images. As a result, despite the now widespread 

 Current analysis softwares 

Functionality mmJ MoMA Molyso 

Level of automation 
Semi 

Almost 

fully 
Fully 

Language ImageJ 

plugin 

ImageJ 

plugin 
Python 

Additional issues Requires 

Gurobi 
- - 

Phase contrast    

Bright field    
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adoption of the Mother Machine7,101,105,130–132, there are still very few image 

analysis platforms available specifically for Mother Machine images. In fact, to 

the best of my knowledge, there are no platforms available for Mother Machine 

images acquired using bright field microscopy. 

1.5 Gaps in the knowledge 
 

The fact that antibiotic persister and VBNC cells are involved in the 

recalcitrance of infection33,46 and can act as a stepping stone for antibiotic 

resistance38 has resulted in a heightened interest in the phenotypes. However, 

despite this, still very little is known about the two phenotypes, or the 

relationship between them. Researchers have found that pre-stressing a 

population, for example exposure to sub-MIC levels of antibiotic, oxidative 

stress and nutrient transitions35,55,61,66,67, has been shown to increase the level 

of persistence, but in all of these examples the stress has been deliberately 

added by the researchers.  Furthermore, it is known that persister fractions, the 

number of persister cells within a population divided by the total population size, 

vary at different stages of the bacterial growth cycle and in response to different 

antibiotics79. However, what remains unclear is how bacteria populations may 

shape their extracellular environment during the growth cycle and how this, in 

turn may affect persister formation.  

One reason why persisters and VBNC cells are particularly difficult to 

investigate is that they exist in a temporary state and are genetically identical to 

their susceptible kin. As a result, traditional microbiological methods have 

struggled to elucidate the mechanisms behind their appearance. For instance, 

colony forming units (CFU) assays can give an indication of the persister 

fraction within a population, but fail to consider VBNC bacteria. Furthermore, 

persister fraction is the only information that can be gained from CFU assays, 

as new populations formed from the persisters are genetically identical to the 

original population and remain susceptible to future antibiotic exposure. As a 

result, new high throughput technologies, such as microfluidics, are rapidly 

being adopted by researchers in order to generate measurements, such as 

shape and transcriptional activity, at the single cell level105,140,141. 
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Although microfluidics has provided a platform for investigating antibiotic 

persister cells, many of the devices that have been used thus far are still limited. 

For example, some groups don’t confine individual bacterium and therefore face 

the difficulty of having to track cells within micro colonies127. As a result, they 

have to remain focused on a small area of their device, which in turn limits their 

throughput. Others have realised the importance of confining the bacteria in 

order to make tracking much easier and, as a result, increase throughput30. 

However, in many examples, the devices used still didn’t have sufficient 

throughput in order to effectively analyse persister formation in wild type strains, 

so were often forced to investigate high persistence (hip) mutants30,71.  

Despite this, to the best of my knowledge, until this thesis work there are no 

reports of VBNC cells being investigated using single cell microfluidics. 

Furthermore, some researchers have proposed that VBNC and persister cells 

are part of one physiological continuum36,37. Therefore, a carefully designed, 

single cell microfluidic platform that would allow the investigation of VBNC and 

persister cells in unison may prove extremely useful for investigating this 

hypothesis.  

I previously discussed how protein aggregation has been linked to reduced 

growth rate and increased efflux activity within bacterium7,9; similar 

characteristics as to those that have been observed in persister and VBNC 

cells127,142. However, the link between the persister cells, VBNC cells and 

protein aggregation has yet to be determined. Therefore, a microfluidic protocol, 

such as the one discussed above, could also be utilised to investigate the 

relationship between cellular stress, protein aggregation and the formation of 

persister and VBNC cells.  

As previously discussed, persister and VBNC cells are genetically identical and 

only survive antibiotic exposure as a result of entering a transient state. 

Interestingly, although this temporary state is one of the characteristics that 

make persisters and VBNC so unique; it also makes them extremely difficult to 

investigate. To date, there is no way to isolate persisters or VBNC prior to 

exposure to antibiotics. In fact, it is still not completely clear if persister and 

VBNC cells exists within a population prior to exposure, or if it is the exposure 

itself that causes them to enter the persister or VBNC state. In order to decipher 
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this, it is important for researchers to be able to investigate and track the 

response to antibiotics before, during and after exposure, all within a single 

experiment. 

The above gaps in knowledge could all be investigated with a well-designed 

microfluidic device and accompanying protocol. However, the issue still remains 

that persister and VBNC cells only make up a small proportion of a population. 

Therefore, thousands of cells will need to be included in each assay in order to 

gather enough information on each phenotype. As a result, any such protocol 

would generate vast amounts of data, of which the respective analysis could 

become the limiting step. Therefore, the development of a fully automated 

image analysis software would allow the protocol to main sufficient throughput. 

To date, no such programs exist for the analysis of Mother Machine images 

acquired using bright field microscopy.    
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Chapter 2: The culture environment 
influences both gene regulation and 
phenotypic heterogeneity 
in Escherichia coli  

2.1 Introduction 
 

In this chapter, we investigate population heterogeneity by using antibiotic 

persistence as a proxy. This approach allows us to identify temporal windows in 

which significant changes, with respect to the size of the antibiotic persister 

population, occur. Therefore, by investigating the population transcriptome, we 

can identify genes and pathways which are highly regulated during the 

aforementioned temporal windows; genes and pathways which can be further 

investigated at the single cell level using the protocol developed in chapters 3 

and 4, respectively.    

Genetically identical bacterial populations can exhibit cell to cell variations that 

result in the formation of multiple sub populations with different phenotypes95,98. 

This phenotypic heterogeneity can be generated in response to a variety of 

factors, such as pH and metabolic stress35,55,61,66,67. Nikolic, et al. investigated 

heterogeneity in metabolic rate and nutrient uptake using fluorescence based 

transcriptional reporters and observed heterogeneity in the expression of the 

two glucose transporters, ptsG and MglBAC, when cells were grown with 

glucose as their only nutrient source14. Furthermore, they found that there was 

heterogeneity in the expression of acs, encoding acetyl-CoA synthetase, when 

the culture was provided with high concentrations of glucose14. acs is co 

transcribed with the acetate permease, ActP, so there results also suggested 

heterogeneity in utilisation of acetate14. In a similar study, Kotte et al. used flow 

cytometry and theory to investigating the response of individual bacteria within 

an E. coli population during a switch from glucose to gluconeogenic 

substrates23. By staining the cellular membranes with a fluorescent dye, they 

could determine a cells growth history as its fluorescence halved with each 

division. Their results showed that during the shift from glucose to 
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gluconeogenic substrates, the population diversified in response, with some 

bacterium growing on the gluconeogenic substrates and others entering a 

dormant, non-growing state23.  Finally, using the fluorescently labelled glucose 

molecule (2-NBDG), Şimşek and Kim investigated metabolic uptake and activity 

in response to nutrient upshifts, minimal media to rich LB medium, in E. coli15. 

They found that 3 different phenotypes existed when they categorised the cells 

based on metabolic activity and viability; a metabolically active and growing 

phenotype,  a partially metabolic active and non-growing phenotype and a 

metabolically inactive and non-viable phenotype15. However, what was perhaps 

most interesting was that the distribution of these sub populations changed 

during starvation or exposure to extracellular stress, in this case oxidative15. 

Despite this heterogeneity, physiological variations that are more than 2 % 

different than the population average are often only observed in less than a few 

percent of the population22. This means it is extremely difficult to study such sub 

populations, however one possible option is to use a proxy, such as 

persistence, to study phenotypic heterogeneity98.  

Interestingly, nutrient shifts have also been associated with an increase in 

antibiotic persistence; Amato and Brynildsen showed that a shift in carbon 

source, such as glucose to fumarate, can generate persister formation in 

response to the β-lactam ampicillin and the fluoroquinolone ofloxacin62.  One 

hypothesis as to how starvation can cause increased antibiotic survival is that 

the growth arrest associated with starvation can reduce the efficacy of 

antibiotics on their targets143. However, Nguyen et al. showed that, upon serine 

starvation, persistence only increased 34 fold in a mutant strain of 

Pseudomonas aeruginosa that was unable to generate a stringent response 

compared to a 2300 fold increase in the parent strain; suggesting the stringent 

response plays a major role in the increased persistence we observe upon 

nutrient starvation. Nutrient starvation, however, is not the only source of stress 

that has been linked to an increase in antibiotic persistence, for instance Leung 

and Lévesque witnessed an increase in ofloxacin persistence after pre-

exposure to acid55.  

All of the above examples of extracellular stress, be it metabolic or acidic, that 

have been externally applied to a culture by the researchers. However, Keren et 

al. showed that the number of persisters increased for an E. coli population 
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growing in LB broth between lag and stationary phase in response to ofloxacin 

and ampicillin79. This suggests that increases in antibiotic persistence can result 

from a population’s self-generated stress and is not reliant on external 

stressors. For example, the extracellular environment of a growing planktonic E. 

coli population will be constantly changing as a result of the uptake of nutrients 

and excretion of waste products. Furthermore, the nutrients being utilised will 

change over the growth cycle, for instance as the favoured nutrient source, 

glucose, runs out24. On top of this, the excretion of waste products, such as 

acetate, will affect the extracellular pH which, in turn, has been shown to affect 

the regulation of genes involved in catabolism and transport144.  

The gene expression profile has been characterised for exponential and 

stationary phase E. coli O157 in minimal media supplemented with glucose145. 

However, until this thesis, no one has characterised the relationship between 

the extracellular environment and the population transcriptome of E. coli K12 

growing in lysogeny broth, despite it being a regularly used model experimental 

system. In the following chapter, we characterise the extracellular pH and sugar 

levels throughout the growth cycle and investigate how this is reflected in the 

population transcriptome. We then use the formation of antibiotic persister cells 

in response to the β-lactam ampicillin, the fluoroquinolone ofloxacin and the 

aminoglycoside gentamicin, as a proxy for population heterogeneity in order to 

identify temporal windows where the population shows substantial phenotypic 

diversification. Finally, we explored the population transcriptome during these 

temporal windows, in order to identify candidate genes and pathways that could 

be further investigated using the single cell approach we discuss later in this 

thesis.  
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Microorganisms shape the composition of the medium they are growing in, which
in turn has profound consequences on the reprogramming of the population gene-
expression profile. In this paper, we investigate the progressive changes in pH and
sugar availability in the medium of a growing Escherichia coli (E. coli) culture. We
show how these changes have an effect on both the cellular heterogeneity within the
microbial community and the gene-expression profile of the microbial population. We
measure the changes in gene-expression as E. coli moves from lag, to exponential,
and finally into stationary phase. We found that pathways linked to the changes in
the medium composition such as ribosomal, tricarboxylic acid cycle (TCA), transport,
and metabolism pathways are strongly regulated during the different growth phases. In
order to quantify the corresponding temporal changes in the population heterogeneity,
we measure the fraction of E. coli persisters surviving different antibiotic treatments
during the various phases of growth. We show that the composition of the medium in
which β-lactams or quinolones, but not aminoglycosides, are dissolved strongly affects
the measured phenotypic heterogeneity within the culture. Our findings contribute to
a better understanding on how the composition of the culture medium influences both
the reprogramming in the population gene-expression and the emergence of phenotypic
variants.

Keywords: phenotypic heterogeneity, Escherichia coli, persisters, metabolism, bacterial physiology, antibiotics,
gene-expression profiling, KEGG pathways

INTRODUCTION

Within isogenic populations there may be substantial cell-to-cell heterogeneity in terms of
metabolic activity (Nikolic et al., 2013; Şimşek and Kim, 2018), growth rate (Kotte et al., 2014),
substrate assimilation (Sheik et al., 2016), compound secretion (Veening et al., 2008), virulence
(Arnoldini et al., 2014), and resistance to stress (Balaban et al., 2004). This heterogeneity has been
observed across all the domains of life and arises from the inherent random nature of biochemical
reactions (Elowitz et al., 2002; Kaern et al., 2005; Lidstrom and Konopka, 2010). Phenotypic
heterogeneity may allow some individual cells to survive shifts in the environmental conditions,
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and thus permitting the population to withstand fluctuating
environments (Balaban et al., 2004; Ackermann, 2015; Venturelli
et al., 2015; Schreiber et al., 2016; Bódi et al., 2017). It
has also been suggested that phenotypic heterogeneity can
accelerate evolutionary adaptation to different environmental
challenges (Beaumont et al., 2009; New et al., 2014). The culture
environment in turn affects the population transcriptome. For
instance, pH has been shown to regulate genes involved in
catabolism and transport (Hayes et al., 2006), whereas glucose-
lactose diauxie induces the downregulation of amino acid
biosynthesis and aerobic metabolism genes (Chang et al., 2002).
Additionally, changes in gene-expression levels in response to
nutritional changes are strongly linked to growth rate and cell
size (Weart et al., 2007; Scott et al., 2010; Chien et al., 2012; Yao
et al., 2012). Moreover, it has been suggested that a reduction in
cell size increases the heterogeneity in gene-expression within the
population (Kaern et al., 2005).

However, only a small subpopulation of bacteria shows
observable physiological variations, such as growth rate that is
more than twofold different than the remainder of the population
(Lidstrom and Konopka, 2010). Therefore, the identification and
study of such small subpopulations can be challenging but can
be simplified by analyzing the functional consequences of a given
case of phenotypic heterogeneity (Ackermann, 2015).

For example, persister cells are a small proportion of a
clonal microbial population that can survive otherwise lethal
doses of antibiotics and resume growth shortly after removing
the antibiotic (Hansen et al., 2008; Lewis, 2010; Maisonneuve
et al., 2013), but without acquiring genetic changes that confer
antibiotic resistance. In this paper we used persister cell
formation as a proxy for phenotypic heterogeneity. Persister
cells have been observed across all the domains of life (Lewis,
2010; Hangauer et al., 2017; Megaw and Gilmore, 2017) and
are believed to contribute to the survival of bacteria in biofilms
exposed to antibiotics (LaFleur et al., 2006; Lewis, 2010) and to
chronic infections in immunosuppressed hosts (Mulcahy et al.,
2010; Maisonneuve and Gerdes, 2014).

Persisters can form stochastically as a result of fluctuations
in gene-expression (Amato et al., 2013). However, a variety
of environmental factors favor persister formation, including
subinhibitory concentrations of antibiotics (Amato et al., 2013),
nutrient limitation (Vega et al., 2012), intra-species interactions
(Bernier et al., 2013), starvation (Fung et al., 2010), and in
the case of pathogens, interactions with the host (Helaine
et al., 2014). Amato et al. (2013) showed that diauxic growth
contributes to persister cell formation, whereas another study
by the same group showed that nutrient transitions contributed
to persister formation within bacterial biofilms (Amato and
Brynildsen, 2014). Keren et al. reported that the number
of ampicillin or ofloxacin persisters increased from lag to
stationary phase (Keren et al., 2004a). However, the temporal
windows when there are substantial increases in the formation
of persisters to different antibiotics during growth of Escherichia
coli (E. coli) on lysogeny broth (LB) have yet to be defined.
Moreover, gene-expression profiling has been carried out on both
exponential and stationary phase E. coli O157 growing on 3-
(N-morpholino)propanesulfonic acid (MOPS) minimal medium

supplemented with 0.1% glucose (Bergholz et al., 2007). However,
the changes in the transcriptome throughout the growth cycle of
E. coli K12 growing in LB remain to be determined, despite this
being an experimental model system employed in microbiology,
biotechnology, and molecular biology.

In this paper, we report the changes in sugar levels and pH
and the associated reprogramming in gene-expression during
the transitions between the different phases of E. coli growth.
We then investigate the phenotypic heterogeneity within the
E. coli population throughout the growth cycle by using persister
formation, in response to ampicillin, gentamicin, or ofloxacin as
a proxy for studying cellular heterogeneity. Our findings will be
instrumental for investigations into the mechanisms underlying
microbial survival in transitioning environments and provide
key transcriptomic data for a commonly used model in many
bacterial studies.

MATERIALS AND METHODS

Chemicals and Culture Preparation
All chemicals were purchased from Fisher Scientific or Sigma-
Aldrich unless otherwise stated. LB medium (10 g/L tryptone,
5 g/L yeast extract, and 10 g/L NaCl, Melford) and LB agar
plates (LB with 15 g/L agar) were used for planktonic growth and
enumeration of colony-forming units (CFUs), respectively. E. coli
BW25113 was purchased from Dharmacon (GE Healthcare).
A single colony of E. coli BW25113 was grown in 200 ml
fresh LB in a shaking incubator at 200 rpm and 37◦C for
17 h (Supplementary Figure S1A). After 17 h incubation, the
culture was diluted 1:1000 in fresh LB and growth was measured
hourly by taking three aliquots that were then centrifuged
(13,000 g for 5 min), the supernatant was removed, the pellet
was resuspended in phosphate-buffered saline (PBS), and serial
dilutions were plated on LB agar for CFU counts (Supplementary
Figures S1B,C,H). This experiment allowed us to determine
that the culture was in stationary phase at t = 17 h (left axis
in Supplementary Figure S2). In order to avoid introducing
any bias in our measurements (Luidalepp et al., 2011), we
used the same LB autoclaving conditions in all our assays. The
relatively small error bars in our measurements and in other
recent reports (Orman and Brynildsen, 2016; Radzikowski et al.,
2016) demonstrate the suitability of autoclaved LB for these
microbiological assays.

Characterizing the Bacterial Environment
A culture was prepared as described above and eighty-one
100 µl aliquots were added to individual wells of a 96-well plate
(three technical replicates in biological triplicates for each of
the nine time points were investigated). The remaining wells
were filled with fresh LB for blank measurements. The plate was
placed in a preheated (37◦C) Infinite R© 200 PRO plate reader
(TECAN) shaking at 200 rpm. To quantify bacterial growth in
this assay, optical density at 595 nm (OD595) was measured
hourly in nine selected wells for each time point. Bacterial
growth measured via the plate reader method (right axis in
Supplementary Figure S2) was comparable to that measured via
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CFU counts in cultures growing in 200 ml flasks (left axis in
Supplementary Figure S2). To quantify the amount of reducing
sugars, preheated (100◦C) Benedict’s reagent (Sigma-Aldrich)
was then added to the same wells according to the manufacturer’s
instructions and absorbance at 490 nm was measured after 15 min
incubation. The absolute sugar concentration was determined
by extrapolation through a standard curve of known glucose
concentration (Supplementary Figure S3). This was obtained
by adding glucose in MilliQ water at concentrations of 125,
250, 500, or 1000 µM in triplicate in a 96-well plate. Preheated
(100◦C) Benedict’s reagent was then added to the same wells
and the absorbance at 490 nm was measured after a 15 min
incubation. The average reading from three wells containing
only MilliQ water was subtracted from the readings of the
glucose containing wells. These blank subtracted readings are
reported in Supplementary Figure S3 together with a linear
regression fitting of the experimental data. In order to measure
the culture pH, the probe of a PH-100 ATC pH meter (with
an accuracy of pH 0.01, Voltcraft) was immersed in a separate
culture prepared as described above and the pH was recorded
hourly. The measurements were taken in at least three biological
replicates.

Transcriptomic and qPCR Analysis
A culture was prepared as described above. Immediately after
dilution (0 h), 500 µl aliquots were taken from the overnight
(17 h) culture and 1, 2, 3, 3.5, 4, 4.5, 5, 6, or 7 h after dilution
in fresh LB (1:1000) and were incubated at 200 rpm and 37◦C as
described above. The RNA of the cells contained in each aliquot
was stabilized using RNAprotect Bacteria Reagent (Qiagen).
Extraction was performed with RNeasy Mini Kit (Qiagen) and
DNA removal with DNase I (RNase-free, Ambion), using the
recommended protocols. RNA concentration and purity were
determined using a 2100 Bioanalyzer (Agilent). cDNA libraries
from all samples with an RNA integrity number (RIN) greater
than eight were prepared and then sequenced using Illumina
HiSeq 2500. The paired reads were trimmed and sequencing
adaptors were removed using fastq-mcf. RNA ERCC spike-in
control sequences were removed using bowtie version 1.0.0,
and the remaining reads were aligned to the reference genome
using tophat2 version 2.1.0. The gene-expression was quantified
using HTseq-count. DESeq2 v1.6.3 was used to normalize the
raw transcript reads for all genes by using the median-ratio
normalization method and for library size (Love et al., 2014).
To reduce the number of false-positive results, the log2 fold
changes were shrunk toward zero for lowly expressed genes and
the adjusted p-values were calculated using a false discovery
rate (FDR) of 0.1. We then determined the log2 fold change
in the normalized transcript reads for each gene at different
time points, relative to the normalized transcript reads in the
overnight stationary phase sample (t = 17 h). In order to
identify the variables that best differentiate the data, as well as to
determine how well-clustered the replicates were, we performed
principal component analysis (PCA) using DESeq2 and a built-
in R method (prcomp) on the top 500 expressed genes. These
genes were normalized using a regularized log transform prior to
PCA to allow better visualization of the trends and clusters that

may otherwise remain hidden. The data shown represent the first
(PC1) and second principal components (PC2). The clustering of
the time point replicates indicates a high level of reproducibility
in our data. During the three different growth phases the top
10% of upregulated and downregulated genes, based on their
log2 fold change, were identified and goseq was used to identify
overrepresented pathways in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Ogata et al., 1999; Kanehisa et al., 2016,
2017). In order to check the results, qPCR was performed on
the same aliquots on a StepOnePlusTM Real-Time PCR System
for selected genes. Both RNA-seq and qPCR measurements were
performed in biological triplicates.

MIC Determination
The minimum inhibitory concentration (MIC) of the employed
antibiotics against E. coli BW25113 was determined using a
96-well plate method. E. coli was grown for 17 h in LB
containing different concentrations of ampicillin (0.5–512 µg
ml−1), ofloxacin (0.0625–64 µg ml−1), or gentamicin (0.125–
128 µg ml−1) and the OD595 was measured hourly. The
MICs were measured as the lowest concentrations at which the
OD595 was the same as the control (bacteria-free LB) and were
determined as 5, 4, and 0.125 µg ml−1 for ampicillin, gentamicin,
and ofloxacin, respectively.

Persister Enumeration
A culture was prepared as described above and during mid-
exponential phase (t = 3 h after dilution) the respective
antibiotics were added to the culture to reach a concentration
of 25 × MIC, with persister levels typically not varying above
this concentration of antibiotics (Johnson and Levin, 2013).
Every 30 min an aliquot was taken from the treated culture,
centrifuged (13,000 g for 5 min), re-suspended in PBS, and plated
on LB agar plates. The plates were incubated and CFUs were
determined the following day. For each antibiotic, the fraction
of persister cells plateaued after 3 h of treatment, as previously
reported (Johnson and Levin, 2013), confirming that we were
studying persister subpopulations rather than antibiotic-tolerant
populations (Brauner et al., 2016).

In order to enumerate persisters based on the effect of different
antibiotics during the various phases of growth, a culture was
prepared as described above (Supplementary Figures S1A,B).
Nine 500 µl aliquots were withdrawn from the growing culture
hourly (Supplementary Figures S1C,E). Three of them were
used for untreated controls, the aliquots were centrifuged
(13,000 g for 5 min), supernatant was removed, the pellet was
resuspended in PBS, and serial dilutions were plated on LB agar
(Supplementary Figure S1H). Three aliquots were supplied with
500 µl LB (1:1 dilution) containing 50 × MIC of one of the
three above specified antibiotics (final concentration 25 ×MIC)
and were returned to the shaking incubator (Supplementary
Figure S1F). After 3 h, these aliquots were centrifuged, the
supernatant was removed, and the pellet was re-suspended in
PBS. Serial dilutions were then performed and plated on LB agar
(Supplementary Figure S1I). Three aliquots were injected with
10 µl of one of the three above specified antibiotics to reach a
final concentration of 25 × MIC and returned to the shaking
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FIGURE 1 | Characterization of the physical changes in the bacterial
environment. (A) Dependence of the concentration of reducing sugars in the
culture on the time elapsed from dilution in LB medium of an overnight E. coli
culture. (B) Dependence of sugar concentration per cell (squares, right axis)
and the expression of the glucose (ptsG, circles, left axis) and acetate (actP,
triangles, left axis) related genes on time elapsed from dilution in LB medium.
Gene-expression is reported as the log2 fold change with respect to the
measurements on the overnight samples (t = 17 h). Data and error bars are
the mean and standard error of the mean (SEM) calculated on measurements
obtained in biological triplicate.

incubator (Supplementary Figure S1G). After 3 h these aliquots
were centrifuged, the supernatant was removed, the pellet was
re-suspended in PBS, serially diluted and plated on LB agar
(Supplementary Figure S1J).

RESULTS

Nutritional and Chemical Environment
of a Growing E. coli Culture
We investigated how the sugar content and the pH of the growth
medium changed over time. Notably, both quantities are known
to affect the outcome of antibiotic treatment (Allison et al., 2011;
Cama et al., 2014). The measured concentration of fermentable
sugars in the LB medium we employed was 163 ± 35 µM.
A previous study found that LB contained less than 100 µM
fermentable sugars by using a genetic approach based on a hemA
deletion mutant unable to grow in the absence of fermentable
sugars (Sezonov et al., 2007). This discrepancy could be due to
the different sources of LB and the different techniques used to
quantify the sugar concentrations. This further emphasizes the
added value of carrying out the simple assay described in Section
3.2 to quantify the concentration of fermentable sugars during
bacterial growth.

After E. coli inoculation into LB medium, we measured the
remaining sugar concentration at various intervals throughout

the growth cycle (Figure 1A). We calculated the corresponding
concentration of sugar available per bacterium (squares in
Figure 1B) by dividing the measured sugar concentration by
the measured number of bacteria in the culture (full symbols in
Supplementary Figure S2, left axis). This revealed a one order of
magnitude decrease in the sugar available per bacterium between
3 and 6 h after inoculation, when the culture transitioned from
exponential to stationary growth-phase.

We also measured the pH of the culture throughout the
growth cycle (Supplementary Figure S4). The pH decreased
from 6.8 and reached it’s most acidic value of 6.2 during the
exponential phase at t = 4 h, then rose up to a maximum of
7.0 during the stationary phase at t = 7 h. We explain this
finding by considering that the culture environment is acidified
by the excretion of acetate during aerobic fermentation, resulting
from bacterial growth on carbohydrates during exponential phase
(Kleman and Strohl, 1994). However, upon exhaustion of these
carbohydrates, the bacteria use alternative carbon sources such as
amino acids and other gluconeogenic substrates (Sezonov et al.,
2007), resulting in the production and excretion of ammonia that
increases the culture pH. Losen et al. (2004) did not observe the
same growth-phase dependence for the pH of a growing E. coli
culture. However, their assay was performed using a different
E. coli strain (ATCC 53323) and different culture conditions
including a different LB supplier, a one order of magnitude
smaller LB volume and a one order of magnitude higher
inoculum concentration. All together, our data complement our
existing knowledge on the changes occurring in the medium
composition during E. coli growth in LB (Losen et al., 2004;
Sezonov et al., 2007).

Changes in Gene-Expression During
the Growth Cycle
The gene-expression profile of bacterial populations is
profoundly affected by changes in the culture (Hua et al.,
2004; Bergholz et al., 2007; Klumpp and Hwa, 2015; Vital
et al., 2015). However, to the best of our knowledge, this is
the first study reporting the progressive reprogramming of the
gene-expression profile of E. coli growing in LB throughout the
different phases of growth.

In order to study the effect of the changing nutritional
or chemical environment of the culture on the population
transcriptome, we measured gene-expression profile in aliquots
taken at different stages of growth in biological triplicates.
Supplementary Table S1 reports, for each gene, the mean and
SEM of the normalized transcript reads measured in the samples
taken at t = 17 h post inoculation. Supplementary Table S1 also
reports the mean and SEM of the log2 fold change in normalized
transcript reads in the samples taken at t = 0, 1, 2, 3, 3.5, 4,
4.5, 5, 6, or 7 h post inoculation relative to the t = 17 h sample.
The mean relative error, averaged on the relative errors for the
transcript reads of all genes at t = 17 h, is 24%, thus confirming
good reproducibility across biological replicates. Indeed, this
corresponds to a log2 fold change of 0.31, whereas in comparison,
the average absolute log2 fold change in gene-expression at t = 2 h
relative to t = 17 h is 1.9. We further confirmed the changes in
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gene-expression of selected genes using qPCR (Supplementary
Figure S5).

The PCA allowed clustering of the transcriptome profiles
measured from the different biological replicates at each time
point (Figure 2A), demonstrating good reproducibility of our
cultures grown in shake flasks without the need for fermenter
cultivation (Chang et al., 2002). The transcriptomes from
adjacent time points clustered close to each other forming
a nearly complete cycle, with the transcriptome measured at
t = 0 being close to that measured at t = 7 h. Similarly,
a cyclic transcriptional response of E. coli to acid adaptation
was previously reported (Stincone et al., 2011). Furthermore,
the transcriptomes measured at t = 0 and t = 1 h are
simultaneously similar in terms of PC2 but different in terms
of PC1 (Figure 2B), suggesting that part of the transcriptome

FIGURE 2 | Principal component analysis (PCA) of the transcriptome at
different stages of growth. (A) Correlation between the first (PC1) and second
(PC2) principal components of the transcriptome of samples taken in
biological triplicate at different time points during E. coli growth in LB. The
clustering of transcriptomes from the same time points confirms the
reproducibility of our measurements. Furthermore, adjacent time points
clustered close to each other forming a nearly complete cycle, the
transcriptome measured at t = 0 being close to that measured at t = 7 h.
(B) The temporal dependence of PC1 (circles) resembles that of E. coli growth
(Figure 3A) suggesting that genes used for PC1 may play a role in adaptation
to the exhaustion of nutrients, whereas the temporal dependence of PC2
(squares) resembles that of the culture pH (Supplementary Figure S4)
suggesting that these genes may be involved in the adaptation to pH
changes.

rapidly adapts to changes in the nutritional environment. The
population transcriptome then becomes increasingly different in
PC1 (circles in Figure 2B). This suggests that the regulation
of the genes used for PC1 analysis allows the culture to
progressively adapt to an environment unfavorable for growth,
as explained in the discussion below. On the other hand,
the PC2 variance reveals that the transcriptomes at t = 3.5
and t = 4 h differ the most from the transcriptome at
t = 0 h. The PC2 variance for the t = 0 h transcriptome is
instead similar to that of the t = 7 h transcriptome, a trend
similar to the temporal dependence of the average division
rate (Supplementary Figure S6) and a mirror image of the
trend in pH (Supplementary Figure S4). This suggests that
the regulation of the genes used in the PC2 analysis governs
the cell division and metabolism machineries, which in turn
drive the changes in the environmental pH. This is, to the
best of our knowledge, the first time PCA is carried out on
the transcriptome of an E. coli culture throughout its growth
cycle.

The decrease in sugar levels in the medium parallels the
regulation of a set of genes including ptsG, a glucose-specific
phosphotransferase (Luli and Strohl, 1990), and the dedicated
acetate uptake system actP (Luli and Strohl, 1990; Figure 1B).
Expression of ptsG increases during the lag phase (circles in
Figure 1B) when fresh medium is added to the culture and then
decreases as the sugar concentration per bacterium decreases
after t = 3 h (squares in Figure 1B). Bergholz et al. did not
investigate gene-expression profile during lag phase but reported
a similar downregulation of ptsG with a −3 log2 fold change
between 4.5 and 5 h growth. In comparison, actP expression
rapidly decreases between t = 0 h to t = 1 h as fresh medium is
added to the culture before increasing at t = 4 h as sugars are
metabolized and acetate becomes available in the environment
(triangles in Figure 1B) as previously reported (Bergholz et al.,
2007).

The growth curve in Figure 3A shows the three characteristic
phases of growth: lag phase between t = 0 h and t = 2 h,
exponential phase from t = 2 h to t = 5 h, and stationary
phase from t = 5 h onward. We considered gene regulation
during each of these phases based on the log2 fold change
in transcript levels at t = 2 h relative to t = 0 h, t = 5 h
relative to t = 2 h, and t = 7 h relative to t = 5 h,
respectively. Furthermore, for each growth phase we grouped the
top 10% of upregulated genes, from the 4313 genes analyzed.
Then for each KEGG pathway we determined the number of
genes that were in the top 10% group. We then used goseq
to calculate the probability of this number occurring when
compared to the total number of genes in the pathway (p-
value in Figure 3). For example, the KEGG pathway “Microbial
metabolism in diverse environments” has 201 associated genes.
Therefore, in the top 10% group of the upregulated genes from
all pathways one would expect to find 20 genes associated to this
KEGG pathway. However, in the top 10% group of upregulated
genes during exponential phase, we identified 54 genes from
the “Microbial metabolism in diverse environments” pathway.
Therefore, this pathway was overrepresented in the 10% group
of upregulated genes during exponential phase with a p-value
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FIGURE 3 | Regulation of KEGG pathways during different phases of the growth cycle. (A) Growth phases of an E. coli culture. (B–D) Heat map tables of the top
twenty overrepresented KEGG pathways during lag, exponential, and stationary phase, respectively. Each top table reports upregulated genes (in red) while each
bottom table reports downregulated pathways (in blue). Pathways were ranked by significance of their p-values. Both growth and gene-expression profile
measurements were performed in biological triplicate. In (A) data and error bars are the mean and SEM of measurements. Error bars are small compared to the
corresponding mean values and are hidden behind some of the data points.

of 1.12 × 10−12. We repeated this process for the top 10%
downregulated genes, before ranking all the KEGG pathways by
p-value, and reported the top 20 overrepresented pathways for
the up- and downregulated genes (in red and blue, respectively,
in Figure 3) during lag phase (Figure 3B), exponential phase
(Figure 3C), and stationary phase (Figure 3D). Supplementary
Table S2 reports the p-value and number of genes in each
of these pathways for lag, exponential, and stationary phase.
We could not directly compare our results with previously
reported datasets (Weber et al., 2005; Bergholz et al., 2007)
because these studies did not employ the KEGG database.
Therefore, we report below the expression of strongly regulated
genes for each growth phase and discuss our findings in the
context of data reported in previous studies investigating either
persisters or the influence of the medium composition on gene
regulation.

The average expression dynamics for the whole transcriptome
(dashed line in Figure 4) remained relatively constant throughout
the different phases of growth. However, unlike previous reports
(Chang et al., 2002), we found significant changes in the
expression of several pathways during the lag phase (t = 0 to

t = 2 h). Metabolism pathways were strongly downregulated
(Figure 3B bottom table and Supplementary Table S2) and in
particular the most overrepresented of these KEGG pathways
was “Microbial metabolism in diverse environments.” This
pathway was previously found to play a key role in Klebsiella
pneumoniae adaptation to cold or heat shocks (Tripathy et al.,
2014). Among the 10 most downregulated genes, we found
astA (−13.0 log2 fold change, squares in Figure 4A), astB,
and astC in the AST pathway controlling arginine degradation;
gadA and gadB controlling glutamate decarboxylase activity
(De Biase et al., 1999); the biofilm regulator bssR; and the
aldehyde dehydrogenase aldB. These genes were then all strongly
induced during the exponential phase (between 8 and 10 log2
fold).

Among the upregulated pathways (Figure 3B top table
and Supplementary Table S2), “Ribosome” was the most
overrepresented indicating induction of the translation
machinery. Furthermore, among the 10 most upregulated
genes, we found yghG (7.9 log2 fold change, circles in Figure 4A)
and yghF that were induced at t = 1 h and have previously been
linked to type II secretion (Kim et al., 2017); borD encoding a
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FIGURE 4 | Pattern of expression of the top most upregulated and
downregulated genes during each phase. Expression profiles of the most
upregulated (circles) and downregulated (squares) genes between
t = 0–2 h (A), t = 2–5 h (B), and t = 5–7 h (C) from dilution in LB medium of an
overnight E. coli culture. Gene expression is reported as the log2 fold change
with respect to the measurements on the overnight samples (t = 17 h). The
average expression dynamics for the whole transcriptome (dashed line)
remains relatively constant throughout the different phases of growth. The
expression dynamics for all the 4373 analyzed genes is reported in
Supplementary Table S1. Data and error bars are the mean and SEM of
measurements obtained on biological triplicates. Error bars are hidden behind
some of the data points.

prophage lipoprotein; proV, proW, and proX also induced at
t = 1 h, encoding parts of an ABC transporter for the uptake
of glycine, betaine, and proline; iraM induced at t = 1 h and
encoding an anti-adapter protein that inhibits RpoS proteolysis;
and stpA encoding a DNA-binding protein. yghG, yghF, borD,
iraM, and stpA were then strongly downregulated (between
−6 and −8 log2 fold) during exponential phase. Notably,
gene-expression profiling during the lag phase was not reported
in a previous transcriptomic study carried out on E. coli O157
(Bergholz et al., 2007).

During the exponential growth phase (t = 2 h to t = 5 h)
there was an extensive reprogramming of gene-expression.
The “Ribosome” pathway was the most overrepresented in the

top 10% downregulated genes, indicating repression of the
translation machinery at the transition between exponential and
stationary phase (t = 5 h) in response to the depletion of
nutrients in the culture conditions. This was reflected in the
measured division rate (Supplementary Figure S6). Among the
10 most downregulated genes, we found plaP (−9.4 log2 fold
change, squares in Figure 4B) encoding a putrescine importer
required for the induction of pili-driven motility, in accordance
with the reported low motility of exponentially growing E. coli
(Amsler et al., 1993); cspA encoding a cold shock protein; fhuF
encoding an iron reductase protein; lpxT encoding the lipid
A 1-diphosphate synthase; fecA encoding an outer membrane
receptor in the Fe3+ dicitrate transport system; and the above
discussed yghF. fhuF and plaP were then upregulated by a factor
of 6 and 2 log2 fold, respectively, during stationary phase.

Metabolism related pathways were upregulated with
“Microbial metabolism in diverse environments” now being
the most overrepresented KEGG pathway (Figure 3C top table).
Among the 10 most upregulated genes, we found gadA (11.1 log2
fold change, circles in Figure 4B), gadB, gadC, and gadE that
were induced at t = 4 h and whose upregulation at the transition
between exponential and stationary phase have previously been
reported (De Biase et al., 1999; Weber et al., 2005; Bergholz et al.,
2007); glcD and glcE induced at t = 3.5 h, encoding a subunit of
the glycolate oxidase; narU induced at t = 3 h, encoding a nitrate
and nitrite inner membrane transporter; aldB already discussed
above; and tnaC discussed below. glcD, glcE, and tnaC were then
downregulated during the stationary phase. The tnaC gene is
part of the tnaCAB operon that regulates tryptophan catabolism
and is comprised of a 24 residue upstream peptide TnaC, the
tryptophanase TnaA, and the low affinity tryptophan permease
TnaB (Konan and Yanofsky, 1997). TnaA is responsible for
the breakdown of tryptophan, which is utilized by E. coli as an
energy source to produce pyruvate, ammonia, and indole (Luli
and Strohl, 1990). Interestingly, as the sugars were depleted in
the culture, we observed an increase in expression of the tnaCAB
operon (Supplementary Table S1). This was in accordance
with a previous proteomic study carried out on E. coli K12
BW25113 growing on minimal medium (Soufi et al., 2015),
suggesting a correlation between tryptophan related gene and
protein expression. Furthermore, Gaimster and Summers (2015)
observed an increase in tnaA expression in a growing E. coli
culture, correlating this to an increase in the concentration
of extracellular indole (Gaimster et al., 2014). Finally, we also
observed an upregulation of transport genes including ompF and
lamB encoding two of the major E. coli outer membrane porins
(Supplementary Table S1), which was not previously observed
(Bergholz et al., 2007).

Metabolism related pathways were downregulated as the
population entered stationary phase (t = 5 h to t = 7 h) with
“Microbial metabolism in diverse environments” now being
the most overrepresented KEGG pathway (Figure 3D bottom
table). This coincided with the previously mentioned reduction
in sugar availability (Figure 1B). Almost all of the genes in
the phosphoenolpyruvate (PEP)-dependent phosphotransferase
system (PTS) pathway, a major bacterial mechanism for
the accumulation of carbohydrates (Shimizu, 2013), were
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downregulated as the bacteria moved from late-exponential to
stationary phase (Figure 3D). The downregulation of the PTS
pathway may cause reduced levels of glycolysis intermediates
such as fructose 1,6-bisphosphate (FDP), which in E. coli results
in the activation of cra and the subsequent transcriptional
repression of pfkA and pykF (Shimizu, 2013). Both pykF and pfkA
were downregulated as the culture transitioned from exponential
to stationary phase (Supplementary Figure S7) resulting in
the downregulation of the TCA cycle (Figure 3D). This is in
agreement with a previous transcriptomic study carried out on
E. coli O157, reporting a downregulation of the tricarboxylic
acid (TCA) cycle pathway after t = 4.5 h compared to t = 3 h
growth on minimal medium (Bergholz et al., 2007). Similarly,
we found agreement between Bergholz’s data and ours on
the downregulation of the sulfur metabolism pathway, sulfur
being present in LB and instrumental for the biosynthesis of
the amino acids cysteine and methionine (Sekowska et al.,
2000).

Among the 10 most downregulated genes were glcD (−5.1
log2 fold change, squares in Figure 4C), glcE, glcA, and glcB;
ansB encoding L-asparaginase 2; fumB encoding a fumarate
hydratase; and adiY encoding a transcriptional regulator. glcD,
glcE, glcA, and glcB were further downregulated during the lag
phase. Finally, genes encoding transporters including ompF and
lamB, were also downregulated as previously reported (Chang
et al., 2002).

The “Ribosome” pathway was the most overrepresented in
the top 10% upregulated genes. However, the mean expression
of all the 48 genes in this pathway was downregulated by
a factor of 2.8 log2 fold at t = 7 h compared to t = 2 h.
Among the 10 most upregulated genes, we identified fhuF (6.1
log2 fold change, circles in Figure 4C); astA, astC, and astE
in the AST pathway, that were induced at t = 6 h; prpB
induced at t = 4 h, encoding the 2-methylisocitrate lyase; bfd
encoding bacterioferritin-associated ferredoxin; rmf induced at
t = 4 h, encoding a ribosome modulation factor; ynfM encoding
an inner membrane transporter; sodA induced at t = 6 h,
encoding a superoxide dismutase, previously associated with the
emergence of metabolic heterogeneity during nutrient starvation
(Şimşek and Kim, 2018); and obgE encoding the essential GTPase
ObgE/CgtA. In the AST pathway, rmf, ynfM, and prpB were
then strongly downregulated (between −5 and −10 log2 fold)
during lag phase. Furthermore, a major regulator of the stress
response in bacteria, particularly their entry into stationary
phase, is the sigma factor rpoS controlling the expression of
approximately 10% of genes in E. coli (Weber et al., 2005).
Our data shows that rpoS expression increases rapidly as the
culture enters stationary phase (Supplementary Figure S8), in
accordance with previously reported data (2.4 and 2.8 log2 fold
change, respectively, between t = 4 h and 5 h from inoculation)
(Bergholz et al., 2007). Bergholz, et al. also reported that the
most highly upregulated gene during the transition to stationary
phase was acs, which encodes acetyl CoA synthetase, confirming
the data reported in a separate study on E. coli MG1655
(Baev et al., 2006). Similarly, between t = 4 h and t = 4.5 h
from inoculation, we observe a 7.4 log2 fold change in the
expression of acs and 4.7 log2 fold change of aceB expression,

in accordance with Bergholz, et al. who reported a 5.4 log2
fold change for aceB during the same temporal window. These
data suggest that at least some E. coli responses to changes
in growth medium are conserved across evolutionary distance
and are not specific to the growth medium employed. All
together, our data on the reprogramming of the culture gene-
expression during the transitions between the different growth
phases (Figures 3, 4 and Supplementary Tables S1, S2) will be
relevant for studying the responses of microbial communities to
environmental changes.

Growth Stage Dependent Persister
Formation
We then studied the growth cycle dependence of phenotypic
heterogeneity within the population by measuring persistence
to antibiotics as a phenotypic proxy. We used three antibiotics
with distinct modes of action: ampicillin, gentamicin, and
ofloxacin. Specifically, ampicillin is a β-lactam that binds to
the penicillin-binding proteins located inside the bacterial cell
wall. It inhibits the last stage of bacterial cell wall synthesis
leading to lysis mediated by autolytic enzymes. Gentamicin is
an aminoglycoside that works by irreversibly binding to the 30S
subunit of the bacterial ribosome, thereby interrupting protein
synthesis. Ofloxacin is a second-generation fluoroquinolone that
acts on DNA gyrase and topoisomerase IV, and thus altering the
control of DNA supercoiling and inhibiting normal cell division
(Aldred et al., 2014).

To investigate the growth-dependent heterogeneity
of the response to each antibiotic, we performed two
different treatments (see Supplementary Figure S1): three
culture aliquots were injected with antibiotic and fresh LB
(Supplementary Figure S1F), while three other aliquots
were injected with antibiotic only (Supplementary Figure
S1G). In both cases, the final antibiotic concentration
was 25× the antibiotic MIC. For each time point and
each antibiotic treatment, we then calculated the ratio
between the measured number of persisters in the culture
relative to the total number of bacteria in the culture
(Figure 3A), defining this as the persister fraction. We finally
normalized each persister fraction dataset to their maximum
values.

When gentamicin was added to the culture aliquots with fresh
LB, the fraction of persisters showed a 3.4 log10 fold increase
between t = 3 h and t = 4 h, before remaining relatively constant
for the remainder of the growth cycle (Figure 5A). When only
gentamicin was added to the culture aliquots the fraction of
persisters showed a similar pattern, except for a shift of 1 h, with
a 3.6 log10 fold increase between t = 2 h and t = 3 h (Figure 5B).

When ofloxacin was added to the culture aliquots with fresh
LB, there was a small increase in the persister fraction during the
lag phase (Figure 5C). However, the persister fraction showed
a 2.6 log10 fold increase during the exponential phase (between
t = 2 h and t = 4 h) when only ofloxacin was added to the culture
aliquots (Figure 5D).

When ampicillin was added to the culture aliquots with fresh
LB, we measured a 2 log10 fold increase in the persister fraction
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FIGURE 5 | Growth phase dependence of the fraction of persisters to gentamicin, ofloxacin, or ampicillin. Temporal dependence of the normalized fraction of
persisters to treatment either with gentamicin (A), ofloxacin (C), or ampicillin (E), with the addition of fresh LB, or with antibiotics only [(B,D,F), respectively]. At t = 0
an overnight E. coli culture was diluted 1:1000 in LB medium and the culture growth started. Each data set is normalized to its maximum persister fraction. Data and
error bars are the mean and SEM of measurements obtained at least on biological and technical triplicates.

during the stationary phase (Figure 5E). When only ampicillin
was added to the culture aliquots, we measured a 1.5 log10 fold
increase in the fraction of persister cells during the lag phase
(t = 1 h, Figure 5F).

Growth-dependent bacterial susceptibility has recently been
reported (Greulich et al., 2015). Here, we demonstrate that as the
composition of the medium in the culture environment changes,
the microbial population becomes increasingly heterogeneous in
response to the treatment to antibiotics with different modes of
action.

Furthermore, antibiotic susceptibility and persister assays are
often carried out by supplementing antibiotics with fresh LB
medium (Wu et al., 2015; Orman and Brynildsen, 2016). We
demonstrate that in the case of gentamicin, the addition of
fresh LB medium does not substantially affect the dependence of
persister fraction on growth phase. Indeed, it has recently been
demonstrated that nutrient-rich environments do not increase
susceptibility to antibiotics that irreversibly bind to the 30S
subunit of the bacterial ribosome (Greulich et al., 2015). On
the contrary, we observed that the formation of persisters to
β-lactams and quinolones is strongly affected by the medium
composition, suggesting that this should be carefully considered
when screening for antibiotics against persister cells.

DISCUSSION

Within an isogenic population, there is inherent phenotypic
heterogeneity which allows an adaptive response to an ever-
changing extracellular environment (Balaban et al., 2004; Ryall
et al., 2012; Nikolic et al., 2013; Kotte et al., 2014). For example,
within a growing isogenic population of bacteria there are
multiple growth phenotypes present, from exponentially growing
to slow growing, or dormant bacteria (Ryall et al., 2012; Kotte
et al., 2014). Persister cells are an example of a phenotype which
differs from the majority of cells in a clonal population in terms
of growth rate (Lewis, 2010; Maisonneuve et al., 2013), motility,
gene expression, and cell size (Ryall et al., 2012). Furthermore,
persister cells can be generated in response to a number of
environmental conditions (Keren et al., 2004b; Vega et al., 2012;
Bernier et al., 2013; Helaine et al., 2014), including nutrient
limitation (Fung et al., 2010; Maisonneuve and Gerdes, 2014)
and nutrient transitions (Amato et al., 2013) that also generate
a variety of other bacterial responses (Lidstrom and Konopka,
2010).

Therefore, we utilized the persister phenotype as a proxy
for changes in population-wide heterogeneity throughout the
E. coli growth cycle where the environmental conditions are
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constantly changing. We observed homogeneity in response
to all antibiotics during lag phase with very few persisters to
any of the tested antibiotics. However, the different persister
fractions observed in response to the different antibiotics further
emphasize the phenotypic heterogeneity within the population
during the exponential and stationary phases. In fact, population
based heterogeneity allows rapid response to alterations in
the nutritional environment; it is only when the environment
becomes favorable to a given subpopulation that they are able
to dominate the whole population-level response (Lidstrom
and Konopka, 2010). Indeed, within the growth cycle we
observed changes in both nutrient availability (Figure 1) and pH
(Supplementary Figure S4).

These changes in the culture medium also influenced the
population transcriptome during the same temporal windows
where we measured notable increases in the fraction of persisters.
We observed upregulation of carbon fixation pathways and
tryptophan metabolism (Figure 3C), potentially as a result of an
increase in the concentration of extracellular indole (Gaimster
et al., 2014). Indole has also been linked to persister cell formation
(Vega et al., 2012, 2013) and the induced expression of a variety
of drug exporters (Meng and Bennett, 1992; Balaban et al.,
2004). Moreover, ompF and lamB, encoding two of the major
outer membrane porins that have been associated with drug
uptake (Ziervogel and Roux, 2013; Lin et al., 2014; Cama et al.,
2015) were also upregulated at the whole population level during
exponential phase (Supplementary Table S1).

In comparison, during stationary phase we observed a clear
downregulation of metabolism related pathways (Figure 3D).
The downregulation of the TCA cycle as the population moves
from exponential to stationary phase (Figure 3D) results in the
excretion of acetate into the extracellular environment and its
subsequent utilization (Figure 1; Luli and Strohl, 1990; Shimizu,
2013). Kotte et al. (2010) modeled population adaptation to
different nutrients in silico, showing that as glucose levels reduce,
cells are predicted to utilize their natively produced acetate. This
ability to adapt to nutrient availability appears to be a result
of metabolic flux at the single-cell level (Kotte et al., 2010;
Kochanowski et al., 2013) and results in the diversification of
growing and non-growing phenotypes, such as persisters (Kotte
et al., 2014). Indeed, we measured an increase in persister
fraction in response to all three antibiotics as the available sugars
become limited (Figure 1). However, each type of antibiotic
reveals different levels of heterogeneity suggesting that different
biological pathways underlie persistence to different antibiotics.

We also found that the outcome of antibiotic treatment is
strongly influenced by the composition of the medium containing
the antibiotic. In fact, the addition of antibiotics and fresh LB
alters the native culture environment and causes a reduction
in the number of persisters (Figure 5), reducing phenotypic
heterogeneity within the E. coli community.

One of the current limitations within our knowledge of
persister bacteria is that their transcriptome has been examined
only after treatment with antibiotics (Keren et al., 2004b) owing
to the lack of biomarkers to isolate persisters from the majority of
susceptible cells before antibiotic challenge. However, antibiotic
treatment is known to alter the bacterial transcriptome (Lewis,

2010). Our current study identifies molecular pathways that
are strongly regulated at the whole population level when
the environment changes and, coincidentally, the fraction of
persisters within the population increases. Some of the identified
pathways such as tryptophan metabolism and TCA cycle (Vega
et al., 2012; Kotte et al., 2014), have indeed previously been
associated with persisters. However, it is noteworthy that our
approach measures the mean transcriptomic response of the
whole population. Therefore, our measurements do not allow
us to determine whether the pathways that we have identified
are also strongly regulated in the minority of persister cells.
Indeed, the differential response of persisters could be masked
by that of the majority of susceptible cells. Considering that
cell-to-cell variation increases with increasing mean gene-
expression (Silander et al., 2012), these comprehensive data
sets provide well defined culturing time points, medium
compositions, and putative pathways that could be investigated
with single-cell approaches (Henry and Brynildsen, 2016;
Bamford et al., 2017) to determine molecular pathways that are
differentially regulated in persisters compared to the majority of
susceptible cells.

Our approach could easily be extended to investigate the
dynamics of phenotypic heterogeneity in different microbial
communities such as bacterial biofilms (Domka et al., 2007),
natural yeast and fungal populations (LaFleur et al., 2010;
Holland et al., 2014), or cancer cells (Hangauer et al., 2017)
responding to a variety of environmental cues.
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Supplementary Figures and Tables 
 
Supplementary Tables – 

 

Please note: the tables are deposited online at: 

https://www.frontiersin.org/articles/10.3389/fmicb.2018.01739/full#supplementar

y-material 

 

Table S1. A comprehensive data set of gene expression profiling at the 

different phases of growth. Columns A-D report each gene b, JWID, and ID 

number and name, respectively. DESeq2 was used to normalize the raw 

transcript reads using the median of ratios method and correcting for library 

size. Columns E and F report the mean, and standard error of the mean, 

calculated by averaging measurements of normalized transcript reads obtained 

from three t=17 h culture aliquots. Columns G-Z report the mean, and standard 

error of the mean, of the log2 fold change in normalized transcript reads on the 

samples at t=0, 1, 2, 3, 3.5, 4, 4.5, 5, 6, and 7h post dilution, respectively, 

relative to the normalized transcript reads of the t=17h sample. 

Table S2. Overrepresented pathways during each growth phase. The table 

reports the top 20 overrepresented KEGG pathways. The top 10% of up or 

down differentially expressed genes were selected and goseq used to identify 

the overrepresented KEGG pathways for each phase of growth. Column A 

reports if these pathways were up or down regulated. Column B reports the 

name of the pathway. Column C gives the calculated p value. Column D shows 

the number of genes that were differentially expressed (number of genes that 

were in the top 10% of up or down regulated genes, respectively). Column E 

reports the total number of genes in the pathway.  
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Supplementary Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S1. Schematic illustrating the persister assay. A single colony of E. 

coli was grown at 37 °C and 200 rpm in 200ml LB for 17 hours (A). We defined 

t=0 the time at which this culture was diluted 1:1000 in LB and growth at 37 °C 

and 200 rpm was restarted (B). Nine aliquots were taken from the growing 

culture hourly (C-E). Three aliquots were centrifuged immediately (13,000 g, 5 

minutes) (C), serially diluted and plated on LB agar (H). The other six were 

treated for 3 hours, three supplemented with 500 µl of fresh LB (F) and three 

directly to the aliquot (G). In both cases the final concentration was 25×MIC. 

The treated aliquots were incubated for 3 hours, centrifuged, re-suspended in 

PBS and plated on LB agar(I-J). 
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Figure S2. Comparison of E. coli growth in a conical flask and in a 96 well 

plate. Three overnight cultures of E. coli were diluted 1:1000 in fresh LB. Three 

200 mL aliquots of these solutions were placed in three glass conical flasks 

whereas eighty-one 100 µl aliquots were added to individual wells of a 96 well 

plate (3 technical replicate in biological triplicate for each of the 9 time points 

investigated). The remaining wells were filled with fresh LB for blank 

measurements. Growth was measured hourly via CFU counts on LB agar 

plated with technical triplicate taken hourly from each flask (left axis) and via 

O.D. 600 measurements of 9 selected wells on a plate reader (right axis). All 

data represent mean and standard error of the mean of biological and technical 

triplicates. Some error bars are small compared to the corresponding mean 

values and are hidden behind the data. 
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Figure S3. Standard curve for glucose detection using Benedicts reagent. 

The absorbance at 490 nm was measured for known glucose concentrations of 

125, 250, 500 and 1000 µM, respectively. The background was determined as 

the average of a triplicate measure of milliQ water. Triplicate readings were 

taken for each concentration, the background subtracted and the mean and 

SEM plotted. A linear regression was fitted to these points and the resulting 

function used to extrapolate sugar concentrations through the growth cycle of E. 

coli.  
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Figure S4. The growing culture shapes the extracellular environment pH. 

An overnight culture of E. coli was diluted 1:1000 in fresh LB and the pH of the 

culture measured through the resulting growth cycle. The pH decreases during 

lag and early exponential phase reaching a minimum of 6.2, then increases 

during late-exponential phase and up to 7 after 7h of growth. Data and error 

bars are the mean and SEM of at least 3 biological replicates.  
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Figure S5. qPCR measurements confirm reliability of RNA-seq. In order to 

confirm the reliability of the RNA-seq data we performed quantitative PCR 

(qPCR) on the same samples for selected genes. The open symbols and 

dashed lines represent the transcriptomic results, whereas the filled symbols 

and lines represent those values obtained from qPCR. The results clearly 

indicate a similar pattern in the expression profiles for both methods.  
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Figure S6. The bacterial division rate throughout the different stages of 

growth. An overnight culture of E. coli BW25113 was diluted 1:1000 in fresh 

LB. We measure division rate as the log2 fold change between the bacterial 

CFU at consecutive hourly intervals throughout the bacterial growth cycle 

reported in Fig. 2A. Means and SEM are calculated from at least 3 biological 

and technical replicates. 
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Figure S7. Regulation of glycolysis related genes. Carbon starvation results 

in increased expression of the transcription factor Cra (green triangles) which 

represses glycolysis enzymes pfkA (orange circles) and pykF (purple squares). 

During carbon starvation in E. coli levels of the glycolysis intermediate 

phosphoenol pyruvate (PEP) increases and inhibits the enzyme pfkA, which 

catalyzes an earlier step of glycolysis where GF6P is converted to FDP. The 

resulting increase in FDP activates the transcription factor cra which 

subsequently represses both pykF and pfkA.   

 
 

 

 

 

 

 

 

 

 

 

 

 

0 2 4 6
-4

-3

-2

-1

0

1

2

p fk A

p y k F

C ra

L
o

g
2

 F
o

ld
 C

h
a

n
g

e

T im e  (h )



[61] 
 

 

  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S8. The regulation of the sigma factor rpoS through the growth 

cycle.  rpoS is a sigma factor that is heavily associated with adaptation to 

stress and the onset of stationary phase. The graph above shows how upon 

dilution into fresh, nutrient rich, LB media, rpoS is downregulated. As the growth 

cycle progresses, it is gradually upregulated before a sharper rise is observed 

at the onset of stationary phase, where it then plateaus.  
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2.3 Conclusion 
 
 
During growth in LB media, a planktonic population of E. coli transitions through 

multiple phases of growth, resulting in the easily recognisable bacterial growth 

curve79. These phases are typically referred to as lag phase, exponential phase 

and stationary phase79. However, even during these phases, the population will 

be continuously adapting to its extracellular environment. For instance, during 

lag phase, the population is gradually adjusting to the nutrient rich environment. 

Despite this, until this thesis, the changes to the extracellular environment and 

how these affect the population transcriptome, had yet to be determined for a 

planktonic E. coli population growing in LB medium, despite it being an 

experimental model system79,85,146,147. 

Using the data on pH, sugar content and population transcriptome, we were 

able to paint a picture of how bacteria were adapting to different nutrient 

sources. We found that the concentration of sugar was initially high (~200 M) 

but declined through the growth cycle, with a rapid decline during exponential 

growth. As a result, the sugar concentration essentially mirrored the growth 

curve, indicating the importance of sugar availability for the population to 

maintain its maximal growth rate. The pH, in comparison, became more acidic 

during the lag and early exponential phases of the growth cycle before 

increasing as the population entered stationary phase. We hypothesised that 

this was a result of the population initially utilising the sugars and excreting 

acetate during aerobic fermentation increasing the acidity of the extracellular 

environment. Then, upon exhaustion of these preferred nutrient sources the 

population would switch to gluconeogenic substrates, such as the 

aforementioned acetate, resulting in the extracellular environment becoming 

more basic from the excretion of ammonia as a waste product. By investigating 

the population level transcriptome, we were able to support this hypothesis by 

showing that the temporal expression of the glucose permease, ptsG, initially 

increased and peaked at approximately the same time as the pH was at its 

most acidic. In comparison, actP almost mirrored this expression, with a sharp 

increase after 4 hours of growth, coinciding with an increase in pH. Interestingly, 

both nutrient availability and pH have been shown to affect antibiotic 

survival56,60,62–65, therefore we used persister formation as a proxy to identify 
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temporal windows within the growth cycle where we could observe drastic 

changes in phenotypic heterogeneity. 

We investigated persister formation in response to three different classes of 

antibiotics; aminoglycosides, fluoroquinolones and β-lactams, respectively. All 

three showed similar responses during lag phase, however the response to the 

three antibiotics was different depending on the stage of growth. This variation 

highlighted the population heterogeneity, particularly during exponential and 

stationary phase.  We then investigated the population level transcriptome 

during the temporal windows where we observed large increases in persister 

formation in response to our respective drugs. This approach allowed us to 

identify genes and pathways that were highly regulated during the temporal 

windows in which we observed increases, for instance the upregulation of the 

tna operon during the transition from exponential to stationary phase. However, 

it is important to note that these genes and pathways are a reflection of the 

entire population, so may not be representative of the sub populations that 

harbour persister cells. Therefore, it is important to develop a high throughput 

approach, like the one we introduce in chapter three, that will allow us to further 

investigate genes or pathways at the single cell level. In fact, using the data 

from this chapter, we identified tnaC in chapter three as a potential biomarker 

for VBNC and persister cells prior to antibiotic exposure.   
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Chapter 3: Investigating the 
physiology of viable but non-
culturable bacteria by microfluidics 
and time-lapse microscopy 

3.1 Introduction 
 

Although genetically identical to their susceptible kin, persister and VBNC cells 

are able to survive otherwise lethal doses of antibiotics. Both of these 

phenotypes have been proposed as stepping stones for the development of 

antibiotic resistance32,38 and have also been linked to the recalcitrance of 

chronic infections32,70. Despite this, as researchers, we still know very little 

about both phenotypes, in particular VBNC cells. One reason for this is it is 

currently not possible to isolate a persister or VBNC population for further 

analysis, such as transcriptomic, without using antibiotic exposure to identify 

them. Therefore, given that such exposure is also likely to affect the cells 

transcriptome, a non-invasive biomarker that would allow the identification and 

isolation of persister cells prior to antibiotic exposure would be a major 

breakthrough for the research field.  

We previously showed in chapter two how we could use antibiotic survival, in 

particular persister cell formation, as a proxy for investigating phenotypic 

heterogeneity at the population level. By coupling this with transcriptomic 

analysis we were able to identify potential genes and pathways which were 

highly regulated at the population level during more than 10 fold increases in 

persister formation. However, as previously discussed in chapter two, this 

approach provided us with the mean transcriptome of the whole population 

rather than that of the persister subpopulation; highlighting the importance of 

single cell measurements. For instance, by using an “on/off” bimodal distribution 

(i.e. red cells and white cells) of a population as an example, Lidstrom and 

Konopka elegantly explained how population level averages would result in the 

phenotype being incorrectly as an intermediate (i.e. pink cells) state22. 
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Microfluidics has emerged as an excellent tool for investigating phenotypic 

heterogeneity and has, in fact, been utilised by some researchers to investigate 

persister formation30,127. However, to the best of our knowledge, until this thesis, 

no one has utilised microfluidics to investigate the VBNC phenotype. This 

seems surprising, as there is increasing evidence to suggest that the two 

phenotypes, persister and VBNC cells, are not physiologically distinct but are, in 

fact, part of one dormancy continuum36.  

As a result of the above and as highlighted in chapter one, there is a need for a 

cleverly designed microfluidic device that would allow the tracking of individual 

bacterium before, during and after antibiotic exposure. Such a device would 

provide a useful research tool for investigating the expression of single genes or 

pathways, such as the ones identified using our method in chapter two, to help 

decipher the mechanisms behind the formation of persister and VBNC cells. 

Furthermore, this approach may also allow potential biomarkers to be identified 

for the isolation of persister and VBNC cells before antibiotic exposure. Finally, 

if such a device were to allow the simultaneous analysis of persister and VBNC 

cells, it would prove extremely useful for further investigating the relationship 

between both phenotypes.  

Wang et al. first introduced their Mother Machine device to investigate 

heterogeneity in growth rate within an E. coli population8. The device is cleverly 

designed so that the side channels are narrow enough to confine individual 

bacterium, whilst the larger main channel can be used for the careful 

manipulation of the extracellular environment8. With that in mind, we identified 

the Mother Machine as a perfect platform for us to analyse antibiotic persister 

and VBNC cells at the single cell level.  

In the following chapter, we report the protocol we developed and how we 

utilised it alongside plasmid-encoded fluorescent reporters to investigate the 

expression of 3 genes (ptsG, tnaC and tolC) in persister and VBNC cells before, 

during and after exposure to ampicillin. tolC and tnaC were chosen as a result 

of their previous links to antibiotic persistence, as discussed in chapter one. 

Furthermore, tnaC was also chosen as a result of the population level 

transcriptomic analysis we reported in chapter two. In short, tolC has been 

shown to increase persistence as a result of enhanced efflux activity126. 
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Whereas the tryptophanase (tna) operon was highly regulated during a 

temporal window identified by an increase in persistence in chapter two and the 

role of indole, a product of tryptophanase, in persistence has been debated by 

multiple researchers35,83,88,89. In comparison, ptsG has not previously been 

linked with persister or VBNC cells so was chosen as a control.  
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Background
Clonal bacterial populations show cell-to-cell differences
in physiological parameters, including responses to exter-
nal perturbations [1]. For example, under drug treatment,
the majority of a clonal bacterial population is susceptible
to the drug, whereas at least two subpopulations – per-
sister cells and viable but non-culturable (VBNC) cells –
are able to survive high doses of antibiotics. Persister cells
survive the antibiotic challenge and resume growth on
nutrient-rich media shortly after removing the drug [2, 3],
whereas VBNC cells survive the antibiotic challenge but
may regrow only after a long and specific treatment [4].
Therefore, VBNC cells are difficult to detect and study via
standard microbiology assays.
Persister and VBNC cells are in a transient state and

are often, but not always [5], associated with dormancy
[2, 6]. It has been suggested that they form stochastically
as a result of fluctuations in gene and protein expression
[6, 7]. However, deterministic components of persister
and VBNC formation have also been documented [8–13].
Persister and VBNC cells pose a serious threat to human
health since they may be recalcitrant to drug treatment
[2], and thus can contribute to the relapse of diseases such
as tuberculosis, cystic fibrosis-associated lung infections,
candidiasis, cholera, septicemia, and gastroenteritis [4].
Furthermore, these subpopulations may constitute a
reservoir for the development of antibiotic resistance
mechanisms [14].
The recent advances in single-cell microfluidic analysis

[15] have greatly enriched our understanding of persister
cells, highlighting the contributions from toxin-antitoxin
modules [6], the alarmone guanosine tetraphosphate
pathway [7, 16, 17], efflux activity [18], the catalase-
peroxidase enzyme [19], respiration [20], and protein
production [21, 22]. However, single-cell microfluidic
analysis has not yet been implemented to investigate
VBNC cells due to the difficulty in distinguishing these
cells from dead or dying cells, and the requirement to
image and track thousands of individual cells. Neverthe-
less, VBNC cells constitute a major public health con-
cern, since they have been observed in 51 human
pathogens [3] and are difficult to eradicate via standard
sterilization treatments such as heat, acid, ethanol, anti-
biotic or osmotic stress [23]. Therefore, there is an ur-
gent to develop methodologies to study and combat
bacteria in the VBNC state [4].
Here, we introduce a novel single-cell approach allowing,

for the first time, the investigation of the changes in size,
morphology and promoter activity in VBNC cells respond-
ing to drug treatment (Fig. 1). We take advantage of the
well-established mother machine device [24, 25], designed
to investigate the growth of a large number of individual E.
coli cells. This device is equipped with thousands of micro-
fluidic channels with cross section comparable to the size

of individual E. coli cells and connected to a large micro-
fluidic chamber where the medium is continuously ex-
changed via pressure-driven microfluidics. In this paper,
we use this technology to perform drug treatment, bacter-
ial culturing, and live/dead staining in series, while imaging
and tracking individual cells, thus permitting the iden-
tification of single VBNC cells alongside persister or
susceptible cells. This new methodology allows us to
obtain the following crucial information that will advance
our understanding of VBNC cells. (1) We demonstrate
that ampicillin-treated stationary phase E. coli cultures
contain more VBNC than persister cells. (2) We show
that, before drug treatment, VBNC cells exhibit cell length
and levels of fluorescence for selected reporter strains
similar to the ones measured in persister cells, supporting
the hypothesis that these two phenotypes are part of a
shared physiological continuum at least in the investigated
E. coli strain [4]. (3) We demonstrate that, after drug treat-
ment, VBNC cells are distinct from dead or dying cells
and display fluorescence levels comparable to persister
cells. (4) We identify the fluorescence of the tnaC reporter
strain as a new biomarker for distinguishing persister and
VBNC bacteria from the remainder of the population be-
fore drug treatment. Our novel single-cell approach will
facilitate unraveling the molecular mechanisms underlying
the formation of non-growing subpopulations and
their capabilities to survive environmental changes.
As such, our methodology represents a powerful tool
for researchers investigating phenotypic or genotypic
heterogeneity.

Results
Identification of VBNC cells
We chose to apply our novel single-cell approach to
stationary phase E. coli cultures because the fraction of
VBNC and persister cells in this growth phase is in the
range 10-3–10-1 [18, 20, 26, 27]. This suggested that
these phenotypes could be investigated with our pro-
posed approach since it allows manipulating and track-
ing of approximately 2000 individual cells. In order to
do so, we first loaded a 2-μL aliquot of a stationary
phase E. coli culture into the microfluidic mother ma-
chine device [24] and confined the bacteria in the lateral
channels of the device (t = 0, Fig. 1a, e). We then treated
the bacteria with a high dose of ampicillin, 25× minimum
inhibitory concentration (MIC), dissolved in Lysogeny
broth (LB; 0 < t < 3 h, Fig. 1b). Since ampicillin targets cell
wall synthesis, we identified susceptible lysed cells that die
and lyse either during or after drug treatment and com-
prise the majority of the population (leftmost channel
in Fig. 1) [28]. We then exchanged the drug-containing
medium for LB (3 < t < 24 h, Fig. 1c) and identified in-
tact persister cells that survived the antibiotic challenge
and could regrow upon restoring favorable conditions
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(third channel from the left in Fig. 1), similarly to previ-
ously reported microfluidic approaches [6, 7, 18, 19].
However, these methodologies did not allow the study
of VBNC cells. In order to overcome this limitation, we
performed live/dead staining as a last step in the series
of our on-chip assays [5, 29, 30]. This step allowed us
to identify two further phenotypes of susceptible non-
lysed cells that died but did not lyse during nor after
drug treatment (rightmost channel in Fig. 1) and VBNC
cells that survived the antibiotic challenge but did not
regrow upon restoring favorable conditions (second
channel from the left in Fig. 1). Since we imaged and
tracked each single cell throughout this series of assays,
we were able to measure the size and morphology of
each single cell before, during and after drug treatment
and to assign each cell to a specific phenotype at the
end of the experiment. This is, to the best of our know-
ledge, the first methodology allowing for the study of
VBNC cells, alongside persister and susceptible cells,
before, during, and after drug treatment.

Size and morphology of VBNC cells before, during, and
after ampicillin treatment
Before ampicillin treatment (t = 0), the four phenotypes
(persister, VBNC, susceptible lysed, and susceptible non-
lysed cells) had similar average lengths (Fig. 2a), calcu-
lated as the mean and standard error of the mean of
single-cell measurements for the different phenotypes.
Persister cells survived the 3-h ampicillin treatment and
began dividing within 2 hours of exposure to LB
(Additional file 1: Figure S1a); forming microcolonies
and reaching an average length of 3.8 ± 0.2 μm by t =
24 h. In contrast, after exposure to ampicillin and
subsequent incubation in LB, VBNC cells were smaller
(2.3 ± 0.2 μm) in average length, (squares in Fig. 2a) and
more rounded compared to persister cells. Indeed, both
cell dwarfing and rounding have been observed in VBNC
cells of many species [31, 32]. In separate control ex-
periments we measured the growth of bacteria con-
fined in the lateral channels of the mother machine
device and exposed to LB, but without the addition of

Fig. 1 Single-cell approach to study viable but non-culturable (VBNC) cells. Schematic illustrating the steps carried out to distinguish VBNC
cells from susceptible non-lysed (SNL), susceptible lysed (SL), and persister (P) cells. a A 2-μL aliquot of a stationary phase E. coli BW25113
culture was loaded in the lateral channels of the mother machine device. b Between t = 0 and t = 3 h, ampicillin was injected in the
mother machine device at a concentration of 25 × the minimum inhibitory concentration in Lysogeny broth (LB) progressively lysing the
majority of bacteria (SL cells, leftmost channel). c Between t = 3 and t = 24 h, LB was injected in the microfluidic device, P bacteria started
to grow and eventually gave rise to progeny (third channel from the left). d At t = 24 h, a live/dead staining assay was performed by
flowing in the microfluidic device SYTO9 and propidium iodide, distinguishing VBNC bacteria staining green (second channel from the left) from SNL
bacteria staining red (rightmost channel). Representative bright-field (e–f) and fluorescence images (g) of the four phenotypes illustrated above, before
(e) and after (f, g) drug treatment. The weak red staining in the channel containing the SL bacterium was due to cell debris barely visible in the
corresponding bright-field image. Scale bar, 5 μm
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ampicillin (Additional file 1: Figure S1b, c). As ex-
pected, these bacteria exhibited similar initial average
length to the bacteria measured in the ampicillin
treatment experiments. However, they began dividing
within 2 hours of exposure to LB (Additional file 1:
Figure S1b) and at t = 24 h exhibited an average
length close to that measured for the persister cell
progenies (diamonds in Additional file 1: Figure S1c).

VBNC cells constitute the majority of cells surviving
ampicillin treatment in a stationary phase E. coli culture
We enumerated the bacteria belonging to the four pheno-
types and defined fSL, fSNL, fP, and fVBNC as the fractions
given by the number of counts for susceptible lysed, sus-
ceptible non-lysed, persister, or VBNC cells, respectively,
divided by the number of total cells imaged in our assay
before drug treatment. When we used a high dose of
ampicillin (25 ×MIC), we measured fVBNC = 0.01 and fP =
0.003 (Fig. 2b). Therefore, we provide direct evidence that
VBNC cells, rather than persister cells as recently reported
[18], constitute the majority of cells surviving ampicillin
treatment in a stationary phase E. coli culture [27]. These
cells possibly entered the VBNC state during nutrient star-
vation in stationary phase [32] or during the successive
antibiotic treatment [23]. These findings suggest the need
for investigating the VBNC phenotype in concert with
persister cells [4]. We also found that susceptible cells that
did not lyse were another small fraction, while the ma-
jority of bacteria lysed as a result of drug treatment
(fSNL = 0.047 and fSL = 0.94, Fig. 2c and d, respectively).

Fig. 2 Dimension and fraction of viable but non-culturable (VBNC)
cells. a Average length of VBNC cells (green squares), alongside
persister (blue circles), susceptible non-lysed (black upward triangles),
and susceptible lysed cells (red downward triangles) before (t = 0),
during (0 < t < 3 h), and after treatment (3 < t < 24 h) with ampicillin at
a concentration of 25 ×minimum inhibitory concentration in Lysogeny
broth. We assigned a length value of zero to cells that became
undetectable with our code upon cell lysis. This explains the
decrease in the average length of susceptible lysed cells. Lengths
of untreated cells in control experiments are reported in Additional
file 1: Figure S1a. Bacterial width did not significantly change
throughout the experiment for the different phenotypes but for
susceptible lysed cells (data not shown). Data and error bars are
mean and standard error of the mean obtained by averaging single-
cell values (nSL= 1651, nP = 33, nVBNC= 48, nSNL = 87) measured in the
microfluidic experiment illustrated in Fig. 1 performed on biological
triplicates (N = 3). We did not observe any significant difference
between the results obtained from different biological replica. Due to
the large sample sizes, error bars are small compared to the
corresponding mean values and are hidden behind some of the
data points. Ampicillin concentration dependence of the fraction
of (b) VBNC and persister cells surviving the antibiotic challenge,
of (c) susceptible non-lysed cells, and of (d) susceptible lysed
cells killed by the antibiotic challenge. Data and error bars are
obtained by averaging each phenotype frequency measured at
least in biological triplicate
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We confirmed the reliability of our assay by performing
bulk ampicillin treatment and colony forming unit (CFU)
assays on separate aliquots of the same E. coli cultures.
Through these bulk assays we obtained a measured fP
similar to that measured via our novel single-cell assay
(Additional file 2: Figure S2) and to previously reported fP
values [33]. The CFU method does not, however, allow
distinction between the VBNC and susceptible pheno-
types. In contrast, our novel methodology provides a
powerful tool to identify and study VBNC cells. Moreover,
we found that fP and fVBNC decreased with ampicillin con-
centration (Fig. 2b and Additional file 2: Figure S2),
whereas fSNL and fSL increased (Fig. 2c, d). It is worth not-
ing that, at high ampicillin concentration (25 ×MIC) we
measured four times as many VBNC as persister cells,
whereas at a lower ampicillin concentration (12.5 ×MIC)
this ratio was reversed, with fP being three times
higher than fVBNC (Fig. 2b). These findings suggest the
importance of employing the same standardized dose
of drug when studying rare phenotypes within a clonal
population.

Tracking promoter activity in individual VBNC cells
In order to further investigate the VBNC state, we used
the approach illustrated in Fig. 1 in combination with
green fluorescent protein (GFP) transcriptional reporter
strains [34]. Each strain carried a low copy number plas-
mid with the promoter region of a gene of interest
inserted upstream of a gene for a fast-folding GFP with
an average lifetime of 8 h. GFP expression levels in indi-
vidual strains of this library have been used to measure
the corresponding promoter activity both at the popula-
tion and single cell levels [34, 35]. We used this ap-
proach to measure single-cell GFP fluorescence levels as
a proxy for the activity of the promoters that initiate the
transcription of the genes tolC, tnaC, and ptsG. The tolC
gene encodes part of the multidrug efflux pump AcrAB-
TolC, and E. coli persister cells have previously been
shown to exhibit higher tolC expression than untreated
cells [18]. The tnaC gene encodes the leader peptide of
the tnaCAB operon responsible for tryptophan transport
and catabolism, including the enzyme TnaA, which
converts tryptophan to indole, pyruvate, and ammonia.
Indole has previously been shown to regulate the forma-
tion of E. coli persister cells [9, 36]. The role of these
putative persister genes in VBNC cells remains to be in-
vestigated. The ptsG gene encodes part of the glucose
permease transporter, and was chosen as a control gene
as it has not been previously associated with persister
nor with VBNC cells.
Figure 3a–c shows a representative set of images dis-

playing GFP fluorescence of a persister cell, a VBNC cell
(dashed and dotted contours, respectively), and five sus-
ceptible lysed cells of the tolC reporter strain. Figure 3d–g

shows the corresponding single-cell fluorescence through-
out the different steps of the experiment, which are before
(t = 0), during (0 < t < 3 h), and after (3 < t < 24 h) ampicil-
lin treatment. We found that the VBNC cell exhibited a
level of GFP fluorescence similar to the persister cell be-
fore and during drug treatment. After drug removal and
21 h exposure to LB, the VBNC cell was distinguishable
from susceptible lysed or susceptible non-lysed cells even
before performing the live/dead staining. In fact, whereas
susceptible cells did not show any GFP fluorescence, the
VBNC cell exhibited a high level of GFP fluorescence,
being more than two times brighter than the persister cell
progeny. This suggests that the non-growing VBNC
phenotype maintains an active tolC promoter.
We also found that susceptible non-lysed and susceptible

lysed cells showed similar patterns of fluorescence for the
three investigated reporter strains and henceforth refer to
them as susceptible cells. However, we identified two fur-
ther subgroups within the susceptible subpopulation in the
tolC reporter strain, namely cells that displayed increasing
fluorescence levels during drug treatment (filled triangles
in Fig. 3a–c, f and Additional file 3: Figure S3b) and cells
that showed decreasing levels of fluorescence (open trian-
gles in Fig. 3a–c, g and Additional file 3: Figure S3b).

VBNC cells can be distinguished from susceptible cells
before antibiotic treatment
In order to investigate the patterns of GFP fluorescence
in VBNC cells of the three reporter strains, we imaged,
tracked, and analyzed approximately 2000 individual
bacteria for each reporter strain.
Before ampicillin treatment, VBNC cells exhibited fluor-

escence levels similar to those measured in persister cells
for all the investigated reporter strains (Fig. 4a–c). This
further supports the hypothesis that the persister and
VBNC phenotypes are part of a shared physiological con-
tinuum [4]. Furthermore, persister and VBNC cells of the
tolC reporter strain exhibited only slightly higher fluores-
cence levels than susceptible cells (Fig. 4a). This suggests
that persister and VBNC cells may not rely on antibiotic
efflux to survive the antibiotic challenge in disagreement
with previously reported findings [18]. This disagreement,
however, could also be ascribed to the use of different
antibiotic treatment conditions. Remarkably, fluorescence
levels in persister and VBNC cells in the tnaC reporter
strain were half of those measured in susceptible cells,
possibly because the former are in a less active metabolic
state [27]. This contradicts a previous study that suggested
that persister cells exhibit higher levels of tnaC promoter
activity with respect to susceptible cells [9]; however, in
that study, 0.5 mM indole had been added to an exponen-
tially growing E. coli culture. Furthermore, a different
study suggested a link between reduction of tnaCAB op-
eron expression and the formation of persister cells [36],
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corroborating our findings. Our data suggests that the
persister and VBNC cells found in a stationary phase E.
coli culture constitute subpopulations existing before
exposure to ampicillin, confirming previous findings [6].
However, this is still under debate since other studies sug-
gest that exposure to antibiotics itself underlies persister
cell formation [12]. We anticipate that our new method-
ology will be crucial for identifying further phenotypic
differences between VBNC, persister, and susceptible cells
prior to drug treatment.

During ampicillin treatment, VBNC and persister
cells maintained similar fluorescence levels in the tolC
and tnaC reporter strains, but VBNC cells displayed
lower fluorescence levels in the ptsG reporter strain
compared to persister cells (circles and squares in
Fig. 4d–f, 0 < t < 3 h). On the contrary, susceptible
cells very quickly lost their fluorescence in all three
employed reporter strains (triangles in Fig. 4d–f ) but
not in a subpopulation of the tolC reporter strain
(Fig. 4d and Additional file 3: Figure S3).

Fig. 3 GFP fluorescence patterns in single viable but non-culturable (VBNC) cells. Fluorescence images reporting GFP expression levels, as a proxy for the
activity of the promoter of tolC, in a single VBNC cell (green square), alongside a persister cell (blue circle) and five susceptible cells (a) before, (b) during,
and (c) after drug treatment. Scale bar, 5 μm. Corresponding fluorescence patterns for the (d) persister, (e) VBNC, and (f, g) the two selected susceptible
cells in the images above. The VBNC cell exhibited a fluorescence pattern similar to the one of the persister cell throughout the entire assay, but the VBNC
cell was much brighter and easily distinguishable at t= 24 h. This suggests that the fluorescence associated to the tolC reporter strain could be used to
isolate VBNC cells from the remainder of the population after ampicillin treatment and 21 h exposure to LB. The two susceptible cells displayed very
different responses to the antibiotic treatment. For the cell in (f) (marked with a filled triangle in Fig. 3a), fluorescence levels increased during and
immediately after drug treatment but decreased after t= 5 h, with the cell eventually lysing by t= 24 h. For the cell in (g) (marked with an open
triangle in Fig. 3a), fluorescence levels decreased during drug treatment, with the cell lysing by t= 3 h. This suggests that besides the four phenotypes
introduced in Figs. 1 and 2, there are at least two further subgroups of susceptible cells (Additional file 3: Figure S3)
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After ampicillin treatment and 21 h exposure to LB,
VBNC cells displayed markedly different fluorescence
levels for all the investigated strains compared to persister
cells. VBNC cells maintained higher fluorescence levels in
the tolC and tnaC reporter strains, and exhibited different
fluorescence levels with respect to susceptible cells
(Additional file 4: Figure S4). This is consistent with
the hypothesis that, whereas dead cells do not express
genes, VBNC cells continue producing mRNA [37].
Therefore, we unambiguously demonstrated that VBNC
cells can be distinguished from susceptible non-lysed
cells before, during, and after drug treatment. Persister
cells instead showed higher fluorescence levels in the

ptsG reporter strain (Fig. 4g–i) compared to VBNC
cells, suggesting that the former were utilizing a higher
amount of sugars after drug treatment.
In separate control experiments we measured the

changes in GFP fluorescence of bacteria confined in the lat-
eral channels of the mother machine device, exposing them
to LB without the addition of ampicillin. As expected, these
bacteria exhibited similar fluorescence levels to susceptible
cells at t = 0 (Additional file 5: Figure S5). Moreover, during
exposure to LB, these bacteria exhibited similar pat-
terns of fluorescence levels as persister cells (Additional
file 6: Figure S6, 3 < t < 24 h), further suggesting that
persister cells had reverted to a normally growing state.

Fig. 4 Distribution of GFP fluorescence levels in viable but non-culturable (VBNC) cells before and after drug treatment. Distribution of fluorescence levels
in VBNC (green) cells, alongside the susceptible (red) and persister (blue) phenotypes in the (a) tolC, (b) tnaC, and (c) ptsG reporter strains before drug
treatment (t = 0). Susceptible cells include both susceptible lysed and susceptible non-lysed phenotypes since these exhibit similar GFP fluorescence
patterns. d–f Corresponding average pattern of fluorescence levels for the different phenotypes and reporter strains throughout the microfluidic assay,
0 < t< 24 h. g–i Distributions of fluorescence levels after drug removal and 21 h exposure to LB. The bottom and top of the box are the first and third
quartiles, the band inside the box is the median, the bottom and top whiskers represent the 10th and 90th percentiles, respectively. Data are obtained at
least in biological triplicate (N= 3) for each reporter strain employed for a total of nS= 6659, nP = 198, and nVBNC = 147 fluorescence patterns of single
susceptible, persister, and VBNC cells, respectively. We did not observe any significant difference between the results obtained from different biological
replica. Due to the large sample sizes, error bars are small compared to the corresponding mean values and are hidden behind some of the data points
in (d), (e) and (f). The differential tnaC fluorescence levels in VBNC cells with respect to susceptible cells allows identifying the former as the dimmest
cells before drug treatment, establishing tnaC-GFP as a potential biomarker to isolate VBNC cells, alongside persister cells, within the
untreated clonal population. Moreover, at t = 24 h, VBNC cells display increased fluorescence levels in the tolC and tnaC reporter strains,
whereas persister cells show increased fluorescence levels in the ptsG reporter strain. Therefore, the three investigated reporter strains
could be used in future as biomarkers to distinguish and isolate VBNC from persister cells after drug challenge and exposure to LB,
these two phenotypes often being confused
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Discussion
Progress in our understanding of VBNC cells since
their discovery in 1982 [38] has been slow and incre-
mental. Our approach represents a general tool to
measure the physiological state of VBNC cells,
alongside persister cells, before antibiotic treatment.
Moreover, this approach, as well as other recently
introduced methods [27], can serve to bridge the gap
between VBNC and persister states that are rarely
studied in the same context [4]. Specifically, in this
paper we quantitatively compare persister and VBNC
fractions in a stationary phase E. coli culture, and
characterize the size, morphology, and activity of se-
lected promoters in persister and VBNC cells exposed
to the same microenvironment. However, our ap-
proach could easily be adapted to measure other
physiological parameters previously linked to the for-
mation of VBNC and persister cells such as uptake
and efflux of nutrients and drugs [18, 39], metabolic
activity [5], and mRNA metabolism [40].
Little is known about the genetic control underlying

the VBNC state and the gene expression profile in
VBNC E. coli [3, 41, 42]. Indeed, transcriptome analysis
has been reported only for V. cholerae VBNC cells [43].
Furthermore, gene expression profiling is typically car-
ried out on VBNC cells isolated after exposure to drugs
[27] or other stressful environments such as cold sea-
water or low pH [3, 43], which affect the VBNC state
[44]. Our approach instead allows investigating VBNC
cells, alongside persister cells, before drug treatment and
in a microenvironment that we can accurately control
via microfluidics. In this respect, our approach is likely
to change the way we investigate non-growing subpopu-
lations within clonal or mixed microbial populations.
It is worth noting that, if VBNC cells are present in

microbiological quality control samples from the food
industry, water distribution systems, or hospitals, the
number of viable bacteria in the sample will be under-
estimated via the widely employed CFU count method.
Therefore, the inability to detect VBNC cells can pose
a risk to human health [3]. Our platform represents a
rapid and reliable tool to detect VBNC cells in bacter-
ial populations. This allowed us to unambiguously
demonstrate that VBNC cells are not in a transitory
stage in the degeneration of bacteria leading to cell
death [45, 46]. On the contrary, our data proves that,
even after drug treatment, at least the tolC promoter
remained active in VBNC cells and thus supports the
hypothesis that VBNC cells are in a transitional state
awaiting for suitable conditions to resuscitate [44]. In
this respect, our single-cell approach represents an
ideal tool for the future investigation of the mecha-
nisms underlying VBNC resuscitation, which remain
largely unknown [3, 47].

Our microfluidic system can be adapted to investigate
other bacterial pathogens and cell types, including can-
cer populations where drug-tolerant cells have been
identified [48]. More generally, our platform will allow
the investigation of how non-growing subpopulations
within clonal or mixed microbial populations respond to
changes in the environmental pH, temperature, and nu-
trient content. Furthermore, we are currently working
on scaling up our microfluidic system to investigate per-
sister and VBNC phenotypes occurring at frequencies
below 10-3. Specifically, we plan to apply our approach
to bacterial cultures transitioning from the exponential
to the stationary phase when the fraction of persister,
and possibly VBNC cells, monotonously increases from
10-5 to 10-2 [26], thus suggesting that the changes occur-
ring in the culture environment might favor the forma-
tion of these phenotypes. Such a higher throughput
system will also allow investigating candidate VBNC cell
formation mechanisms involving multiple genes through
the simultaneous investigation of several reporter strains
[4]. In this respect, a recent study investigated the ex-
pression of up to 100 genes in persister cells, but not in
VBNC cells, by using fluorescence-activated cell sorting,
sequencing, and a library of promoter reporters [33].
However, this approach also relies on the use of antibi-
otics to identify persister cells and does not allow mea-
surements of gene expression on the same cell before,
during, and after drug treatment.

Conclusion
There is currently a lack of biomarkers that can be used
to segregate VBNC cells from the majority of S cells before
antibiotic treatment [33]. Our single-cell approach allowed
us to establish that, when using the tnaC reporter strain,
stationary phase persister and VBNC E. coli were signifi-
cantly less fluorescent than susceptible E. coli and will allow
future identification of other genes that are differentially
regulated in VBNC cells before antibiotic treatment. The
associated reporter strains could be used to isolate natively
formed VBNC cells via fluorescence-activated cell sorting
for downstream transcriptomic and proteomic analysis. As
such, our novel single-cell approach provides a new oppor-
tunity to unravel the molecular mechanisms underlying the
capability of microbial pathogens to survive drug treatment
and remain non-growing.

Methods
Chemicals and cell culture
All chemicals were purchased from Fisher Scientific or
Sigma-Aldrich unless otherwise stated. LB medium
(10 g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl)
and LB agar plates (LB with 15 g/L agar) were used for
planktonic growth and enumeration of CFUs, respect-
ively. E. coli BW25113 were purchased from Dharmacon
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(GE Healthcare). tolC, tnaC, and ptsG reporter strains of
an E. coli K12 MG1655 promoter library [34] were pur-
chased from Dharmacon (GE Healthcare). Plasmids were
extracted and transformed into chemically competent E.
coli BW25113 as previously reported [33]. We verified
that these reporter strains exhibit similar growth rates
and levels of fP and fVBNC compared to wild-type E. coli
BW25113. Overnight cultures were prepared by picking
a single colony of E. coli BW25113 from a streak plate
and growing it in 200 mL fresh LB medium in a shaking
incubator at 200 rpm and 37 °C for 17 h.

Fabrication of the microfluidic devices
The mold for the mother machine microfluidic device
[24] was obtained by pouring epoxy onto a polydimeth-
ylsiloxane (PDMS, Dow Corning) replica of the original
mold containing 12 independent microfluidic chips
(kindly provided by S. Jun). Each of these chips is
equipped with approximately 6000 lateral microfluidic
channels with width and height of approximately 1 μm
each and a length of 25 μm. These lateral channels are
connected to a main microfluidic chamber that is 25 and
100 μm in height and width, respectively. PDMS replicas
of this device were realized as previously described [49].
Briefly, a 9:1 (base:curing agent) PDMS mixture was cast
on the mold and cured at 70 °C for 120 min in an oven.
The cured PDMS was peeled from the epoxy mold and
cut into individual chips. Fluidic accesses were created
by using a 0.75 mm biopsy punch (Harris Uni-Core,
WPI). The PDMS chip was irreversibly sealed on a glass
coverslip by exposing both surfaces to oxygen plasma
treatment (10 s exposure to 30 W plasma power, Plasma
etcher, Diener, Royal Oak, MI, USA). This treatment
temporarily rendered the PDMS and glass hydrophilic, so
within 5 min after bonding the chip was filled with 2 μL of
a 50 mg/mL bovine serum albumin solution and incubated
at 37 °C for 1 h, thus passivating the device’s internal
surfaces and preventing subsequent cell adhesion.

Microfluidics-microscopy assay to identify and study
VBNC cells
An overnight culture was prepared as described above.
Spent LB broth and bacteria were prepared by centrifu-
ging the overnight culture (10 min at 3000 g and 20 °C).
The supernatant was filtered twice (Medical Millex-GS
Filter, 0.22 μm, Millipore Corp.) and used to re-suspend
the bacteria in their spent LB to an optical density of 50
at 595 nm. Bovine serum albumin was added to the
bacterial suspension at a concentration of 0.5 mg/mL. A
2-μL aliquot of this suspension was injected in the above
described microfluidic device and incubated at 37 °C.
The high bacterial concentration favors bacteria entering
the narrow lateral channels from the main microcham-
ber of the mother machine (Fig. 1a, e) [24]. We found

that an incubation time of 20 min allowed filling of the
lateral channels with, typically, between one and three
bacteria per channel. An average of 60% of lateral chan-
nels of the mother machine device were filled with bac-
teria and 50% of the filled channels contained single
bacteria. This facilitated tracking each single bacterium
throughout the different phases of our assay (Fig. 1). The
microfluidic device was completed by the integration of
fluorinated ethylene propylene tubing (1/32" × 0.008").
The inlet tubing was connected to a flow-rate measuring
device (Flow Unit S, Fluigent, Paris, France) controlling
the pressure applied by a computerized pressure-based
flow control system (MFCS-4C, Fluigent) on the inlet res-
ervoir feeding the flow rate device itself. This instrumenta-
tion was controlled by MAESFLO software (Fluigent). At
the end of the 20 min incubation period, the chip was
mounted on an inverted microscope (IX73 Olympus,
Tokyo, Japan) and the bacteria remaining in the main
microchamber of the mother machine were washed into
the outlet tubing and reservoir by flowing spent LB at
300 μL/h for 8 minutes. At this point (Fig. 1a, e) we
acquired our first set of images in bright-field and fluores-
cence mode (the latter were acquired only when using
reporter strains). Images were collected via a 60×, 1.2 NA
objective (UPLSAPO60XW, Olympus) and a sCMOS
camera (Zyla 4.2, Andor, Belfast, UK). The region of inter-
est of the camera was adjusted to visualize 23 lateral chan-
nels per image. Upon acquiring each bright-field image
the microscope was switched to fluorescent mode and
FITC filter using custom built Labview software and a
fluorescence image was acquired by exposing the bacteria
to the blue excitation band of a broad-spectrum LED
(CoolLED pE300white, Andover, UK) at 100%, 20%, and
20% of its intensity and for 0.05, 0.03, and 0.05 s for tolC,
tnaC, and ptsG imaging, respectively. These parameters
were adjusted in order to maximize the signal to noise
ratio. The device was moved by two automated stages (M-
545.USC and P-545.3C7, Physik Instrumente, Karlsruhe,
Germany, for coarse and fine movements, respectively) to
image the next set of lateral channels and these steps were
repeated until approximately 2000 bacteria were imaged
(average of 1943 ± 316 bacteria per experiment). After
acquiring the first set of images, the microfluidic environ-
ment was changed by flowing LB containing ampicillin at
25× MIC at 300 μL/h for 8 minutes and then at 100 μL/h
for 3 h (t = 0, Fig. 1b). Imaging was carried out hourly
for 0 < t < 6 h and at t = 24 h. After 3 h, the antibiotic
was removed and LB medium was flowed in the chip at
300 μL/h for 8 minutes and then at 100 μL/h for 21 h
(Fig. 1c). Crucially, at t = 24 h live/dead staining [27]
was performed by flowing SYTO9 and propidium iod-
ide (PI, Thermo Fisher Scientific) into the microfluidic
device for 25 and 10 min, respectively, at a concentra-
tion of 3.34 and 30 μM, respectively, according to the
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manufacturer’s specifications. To the best of our know-
ledge, this is the first time that live/dead staining is im-
plemented in the mother machine approach and it is
crucial for distinguishing VBNC cells from susceptible
non-lysed cells. Indeed, these fluorescent dyes differ in
their ability to penetrate the bacterial membrane and
stain live and dead bacterial cells, respectively [50].
Bright-field and fluorescence images were acquired to
determine whether each bacterium was dead or alive.
SYTO9 and PI staining were imaged by using 60% blue
and 100% green LED intensity, FITC and TRITC filters,
respectively, and an exposure time of 0.01 s. PI only
was used imaging reporter strains. The entire assay was
carried out at room temperature.

Image and data analysis
Microfluidics confinement and time-lapse microscopy
allow the tracking of each individual bacterium and its
eventual progeny throughout the entire assay. All image
processing was performed using a custom Python mod-
ule [51]. Briefly, channels and bacteria were detected by
using automated thresholding algorithms. Each channel
within a frame and each bacterium within a channel
were assigned unique numeric labels. Each bacterium
was tracked by taking into account all of the possible
combinations for cell death or division and the most
likely calculated depending on several factors, including
each cell location and area. Once bacterial lineage was
established, the corresponding masks were used to ex-
tract information about each bacterium such as width,
length, area and fluorescence intensity from the corre-
sponding fluorescence image. The fluorescence back-
ground was determined as the average fluorescence for
the areas of the channels that did not contain bacteria
and subtracted from the fluorescence intensity measured
on each bacterium. For each bacterium, the measured
GFP signal was normalized by cell size to account for
variations in expression due to the cell cycle [52]. The
final output images showed each detected bacterium
with its unique numeric label. The measurements for all
bacteria within a frame across the different time points
were written to .csv files. The detection and label assign-
ment was visually verified and each bacterium classified
as persister, VBNC, susceptible lysed, or susceptible non-
lysed phenotype as defined in Fig. 1. Further details of
this framework will be reported in a separate publication
currently in preparation. Semi-automated measurements
were performed on randomly selected pools of images
using ImageJ and the accuracy of the above automated
framework verified. All data reported in GraphPad Prism
7 represent mean and standard error of the mean of at
least biological triplicates. Due to the large sample
sizes, error bars are small compared to the corre-
sponding mean values and are hidden behind the data

points in some of the graphs (Fig. 4d–f, Additional
file 1: Figure S1a, Additional file 3: Figure S3b, and
Additional file 4: Figure S4). Statistical significance
was tested by unpaired t test with Welch’s correction.

MIC determination and persister enumeration via CFU assay
The MIC of ampicillin against E. coli strain BW25113
was determined using a 96-well plate method. E. coli
was grown in LB medium for 17 h at varying concentra-
tions of ampicillin (0.5–512 μg mL-1) and the absorb-
ance measured at 595 nm. The MIC was defined as the
lowest concentration at which the absorbance was the
same as the control (bacteria-free LB) and determined as
5 μg mL-1. In order to measure the fraction of persister
cells to ampicillin in the culture, six 500-μL aliquots
were withdrawn from the overnight culture. Three were
used for untreated controls, centrifuged (12,000 g for
5 minutes), the supernatant removed, the pellet re-
suspended in phosphate-buffered saline, serially diluted,
plated on LB agar, and CFU counted after overnight
growth in an incubator at 30 °C. Three aliquots were
supplied with 500 μL LB containing ampicillin at 50 ×
MIC (resulting in a final concentration of 25 ×MIC) and
returned to the shaking incubator. After 3 h, these ali-
quots were centrifuged, the supernatant removed, the
pellet re-suspended in phosphate-buffered saline, serially
diluted, plated on LB agar, and CFU counted after over-
night growth in an incubator at 30 °C. The persister cell
fraction fP was defined as the number of CFUs obtained
from the treated aliquots divided by the number of CFUs
obtained from the untreated aliquots.

Additional files

Additional file 1: Figure S1. Bacterial growth in the microfluidic
device. a) Fractional distributions of time elapsed to first cell division for
persister cells. b) Fractional distributions of time elapsed to first cell
division for untreated cells in separate control experiments where LB but
without ampicillin was added in the mother machine device. n ≥ 3, nP =
134 and nC = 1274 persister and untreated control cells, respectively. c)
Corresponding average length of persister cells (circles) before (t = 0),
during (0 < t < 3 h), and after treatment (3 < t < 24 h) with ampicillin at a
concentration of 25 × MIC in LB and of untreated control cells
(diamonds). Data and error bars are mean and standard error of the
mean obtained by averaging single-cell values obtained on nP = 33 and
nC = 592 persister and untreated control cells, respectively, in biological
triplicate. We did not observe any significant differences between the
results obtained from different biological replica. Due to the large
sample sizes, error bars are small compared to the corresponding mean
values and are hidden behind some of the data points in (c). (PNG 1509 kb)

Additional file 2: Figure S2. Bulk and single-cell persister enumeration.
Dependence of the frequency of persister cells on ampicillin concentration
as measured via the single-cell microfluidics-microscopy assay (full circles)
illustrated in Fig. 1 and the colony forming unit assay (open circles). The two
assays are performed on aliquots withdrawn from the same E. coli overnight
culture. Data and error bars are mean and standard error of the mean of
measurements obtained in biological triplicate (N = 3). Data agreement
within experimental error confirms the validity of the newly developed
microfluidic assay. (PNG 226 kb)
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Additional file 3: Figure S3. Subgroups in the subpopulation of
susceptible cells. a) Distribution of GFP fluorescence levels in susceptible
cells of the tolC reporter strain after ampicillin treatment (t = 3 h). b)
Temporal dependence of average fluorescence levels for susceptible cells
that fluoresce (filled triangles) and do not fluoresce (open triangles) at t
= 3 h, resembling the two susceptible cells reported in Fig. 3. Data and
error bars are the mean and standard error of n = 623 (filled triangles)
and n = 754 (open triangles) susceptible cells measured in biological
triplicate (N = 3). We did not observe any significant difference between
the results obtained from different biological replica. Due to the large
sample sizes, error bars are small compared to the corresponding mean
values and are hidden behind the data points in (b). (PNG 365 kb)

Additional file 4: Figure S4. Viable but non-culturable (VBNC) cells are
different from susceptible non-lysed cells (SNL). Average pattern of GFP
fluorescence levels of the VBNC (green squares) and SNL (black triangles)
phenotypes throughout the microfluidic assay for the a) tolC, b) tnaC, and c)
ptsG reporter strains. The two phenotypes are already distinguishable during
drug treatment. Data and error bars are obtained as the mean and standard
error of the mean of single-cell measurements in biological triplicate (N = 3)
for each reporter strain for a total of nVBNC = 147 and nSNL = 335 VBNC
and SNL cells, respectively. We did not observe any significant
difference between the results obtained from different biological
replica. Due to the large sample sizes, error bars are small compared
to the corresponding mean values and are hidden behind some of
the data points. (PNG 568 kb)

Additional file 5: Figure S5. Susceptible cells are indistinguishable
from untreated cells before drug treatment. Distribution of fluorescence
levels in the susceptible phenotype before drug treatment (t = 0) and in
untreated control cells before regrowth in LB (t = 0) in the a) tolC, b)
tnaC, and c) ptsG reporter strain. The two populations are not statistically
different, an unpaired t test with Welch’s correction yielding a P value of
0.07, 0.7, and 0.9, respectively. The bottom and top of the box are the
first and third quartiles, the band inside the box is the median, the
bottom and top whiskers represent the 10th and 90th percentiles,
respectively. Data are obtained at least in biological triplicate (N = 3) for
each reporter strain employed for a total of nS = 6659 and nC = 3076
susceptible and control cells, respectively. We did not observe any
significant difference between the results obtained from different
biological replica. (PNG 423 kb)

Additional file 6: Figure S6. Persister and untreated control cells have
similar patterns of fluorescence levels during regrowth on LB. Average
pattern of fluorescence levels in persister (circles) and untreated control
(diamonds) cells throughout the microfluidic assay in the a) tolC, b) tnaC,
and c) ptsG reporter strains. Persister and untreated control cells exhibit
similar patterns of fluorescence levels during regrowth on LB (3 < t < 24 h
and 0 < t < 24 h for persister and control cells, respectively)
demonstrating that persister cells revert back to a normally growing state
after removal of the antibiotic drug. Data and error bars are obtained as
the mean and standard error of the mean of single-cell measurements in
biological triplicate (N = 3) for each reporter strain for a total of nP = 132
and nC = 3076 persister and control cells, respectively. We did not observe
any significant difference between the results obtained from different
biological replica. Due to the large sample sizes, error bars are small
compared to the corresponding mean values and are hidden behind the
data points. (PNG 585 kb)
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Fig. S1. Bacterial growth in the microfluidic device. a) Fractional 

distributions of time elapsed to first cell division for persister cells. b) Fractional 

distributions of time elapsed to first cell division for untreated cells in separate 

control experiments where LB but without ampicillin was added in the mother 

machine device. n ≥ 3, n P  = 134 and n C  = 1274 persister and untreated control 

cells, respectively. c) Corresponding average length of persister cells (circles) 

before (t = 0), during (0 < t < 3 h), and after treatment (3 < t < 24 h) with ampicillin 

at a concentration of 25 × MIC in LB and of untreated control cells (diamonds). 

Data and error bars are mean and standard error of the mean obtained by 

averaging single-cell values obtained on n P  = 33 and n C  = 592 persister and 

untreated control cells, respectively, in biological triplicate. We did not observe 

any significant differences between the results obtained from different biological 

replica. Due to the large sample sizes, error bars are small compared to the 

corresponding mean values and are hidden behind some of the data points in 

(c). 
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Fig. S2. Bulk and single-cell persister enumeration.  Dependence of the 

frequency of persister cells on ampicillin concentration as measured via the 

single-cell microfluidics-microscopy assay (full circles) illustrated in Fig. 1 and 

the colony forming unit assay (open circles). The two assays are performed on 

aliquots withdrawn from the same E. coli overnight culture. Data and error bars 

are mean and standard error of the mean of measurements obtained in 

biological triplicate (N = 3). Data agreement within experimental error confirms 

the validity of the newly developed microfluidic assay.  
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Fig. S3. Subgroups in the subpopulation of susceptible cells. a) 

Distribution of GFP fluorescence levels in susceptible cells of the tolC reporter 

strain after ampicillin treatment (t = 3 h). b) Temporal dependence of average 

fluorescence levels for susceptible cells that fluoresce (filled triangles) and do 

not fluoresce (open triangles) at t = 3 h, resembling the two susceptible cells 

reported in Fig. 3. Data and error bars are the mean and standard error 

of n = 623 (filled triangles) and n = 754 (open triangles) susceptible cells 

measured in biological triplicate (N = 3). We did not observe any significant 

difference between the results obtained from different biological replica. Due to 

the large sample sizes, error bars are small compared to the corresponding 

mean values and are hidden behind the data points in (b). 
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Fig. S4. Viable but non culturable (VBNC) cells are different from 

susceptible non lysed cells (SNL). Average pattern of GFP fluorescence 

levels of the VBNC (green squares) and SNL (black triangles) phenotypes 

throughout the microfluidic assay for the a) tolC, b) tnaC, and c) ptsG reporter 

strains. The two phenotypes are already distinguishable during drug treatment. 

Data and error bars are obtained as the mean and standard error of the mean 

of single-cell measurements in biological triplicate (N = 3) for each reporter 

strain for a total of nVBNC  = 147 and n SNL  = 335 VBNC and SNL cells, 

respectively. We did not observe any significant difference between the results 

obtained from different biological replica. Due to the large sample sizes, error 

bars are small compared to the corresponding mean values and are hidden 

behind some of the data points. 

 



[84] 
 

 

Fig. S5. Susceptible cells are indistinguishable from untreated cells before 

drug treatment. Distribution of fluorescence levels in the susceptible 

phenotype before drug treatment (t = 0) and in untreated control cells before 

regrowth in LB (t = 0) in the a) tolC, b) tnaC, and c) ptsG reporter strain. The two 

populations are not statistically different, an unpaired t test with Welch’s 

correction yielding a P value of 0.07, 0.7, and 0.9, respectively. The bottom and 

top of the box are the first and third quartiles, the band inside the box is the 

median, the bottom and top whiskers represent the 10th and 90th percentiles, 

respectively. Data are obtained at least in biological triplicate (N = 3) for each 

reporter strain employed for a total of n S  = 6659 and n C  = 3076 susceptible 

and control cells, respectively. We did not observe any significant difference 

between the results obtained from different biological replica.  
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Fig. S6. Persister and untreated control cells have similar patterns of 

fluorescence levels during regrowth on LB. Average pattern of fluorescence 

levels in persister (circles) and untreated control (diamonds) cells throughout 

the microfluidic assay in the a) tolC, b) tnaC, and c) ptsG reporter strains. 

Persister and untreated control cells exhibit similar patterns of fluorescence 

levels during regrowth on LB (3 < t < 24 h and 0 < t < 24 h for persister and 

control cells, respectively) demonstrating that persister cells revert back to a 

normally growing state after removal of the antibiotic drug. Data and error bars 

are obtained as the mean and standard error of the mean of single-cell 

measurements in biological triplicate (N = 3) for each reporter strain for a total 

of n P  = 132 and n C  = 3076 persister and control cells, respectively. We did not 

observe any significant difference between the results obtained from different 

biological replica. Due to the large sample sizes, error bars are small compared 

to the corresponding mean values and are hidden behind the data points.  
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3.3 Conclusion 
 

Using the protocol reported in this chapter, we identified that both persister and 

VBNC cells had significantly lower expression of a plasmid based fluorescent 

reporter for the precursor of the tryptophanase operon; tnaC. As a result, we 

propose low fluorescence in this reporter strain for stationary phase cultures to 

be a potential biomarker for the isolation of persister and VBNC cells before 

exposure to antibiotics. Furthermore, using a similar reporter for the multidrug 

efflux pump tolC, we showed that VBNC continue to have a significantly higher 

level of expression than their persister kin. The continued efflux activity could 

indicate a higher level of damage in VBNC cells and that persister cells recover 

quicker upon removal of antibiotics. This provides evidence that VBNC are not 

cells that are “at death’s door”148, but are in fact still in an active state and are 

awaiting favourable conditions in order to resuscitate. In fact, VBNC cells 

actually exhibited significantly different fluorescence levels compared to 

persister cells in all 3 of the reporter strains used after 21 hours of regrowth in 

fresh media. Again, VBNC fluorescence was significantly higher than persisters 

in tnaC, however it was significantly lower in the glucose specific permease 

ptsG. The latter suggesting some level of reduced metabolic activity remaining 

in the VBNC cells; consistent with literature findings that they remain 

metabolically active, albeit at a significantly reduced rate37,44,149,150. In fact, as 

discussed in a recent paper by Ayrapetyan et al. our protocol can be used to 

investigate the transition of cells into the dormant state, particularly under 

exposure to stressful conditions, such as antibiotics or the pH levels identified in 

chapter two; an approach which may be crucial for testing the dormancy 

continuum hypothesis44.  

Importantly, this protocol can allow for the simultaneous screening of multiple 

genes through the use of different fluorescent reporters. For instance, in chapter 

two we hypothesise that cells first use glucose before switching to acetate and 

show that the population level transcriptome reflects this hypothesis through the 

expression of ptsG and actP. By switching the main nutrient source from 

glucose to acetate prior to antibiotic exposure, reporters for both of these genes 

could be simultaneously measured to determine if the cells response to the 

switch allows it to enter the persister or VBNC state. Furthermore, our system is 

not limited to the reporter strains we used or to antibiotic response mechanisms, 
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it could easily be utilised for investigating how microbial populations adapt to 

changes in their extracellular environment, such as the changes in pH levels 

measured in chapter two.  

As mentioned above, our protocol also allowed us to analyse persister and 

VBNC cells prior to exposure to antibiotics. Using this information, we were able 

to show that VBNC and persister cells shared similar levels of fluorescence and 

similar morphological attributes (i.e. cell size) for all 3 reporter strains prior to 

antibiotic exposure. This supports the hypothesis that VBNC and persister cells 

are not distinct entities but exist as part of one physical continuum37. Our 

evidence that VBNC cells had higher fluorescence levels than persister cells 

after 21 hours of regrowth in the tolC reporter strain, suggests that VBNC are 

more damaged than their persister counterparts, perhaps as a result of added 

intracellular stress. Interestingly, the protocol discussed in this chapter provides 

an exciting platform to further investigate this. 

In chapter one I discussed how indole has been associated with antibiotic 

persistence, but whether it decreased or increased survival was still up for 

debate. In chapter two, we then showed that tnaC, the precursor to the tna 

operon, was one of the 10 most upregulated genes during the exponential 

phase of growth when we also witnessed increases in the persister fraction 

within the population. However, as discussed above, we showed in this chapter 

that the fluorescence level in the tnaC reporter strain was significantly lower in 

the persister and VBNC phenotypes. As a result, we propose it to be a potential 

non-invasive biomarker and aim to use it for the isolation of persister and VBNC 

cells prior to antibiotic exposure. Furthermore, once isolated transcriptomic 

analysis can help elucidate the mechanisms involved in their formation such as 

their metabolic state. Therefore, this shows that the approach we took in 

chapter one can be useful for identifying potential genes and mechanisms 

involved in phenotypic heterogeneity, and again highlights the importance that 

these need to be investigated at the single cell level.  

In this chapter we report the protocol we developed, based on the pre-existing 

Mother Machine technology8, for the analysis of single antibiotic persister and 

VBNC cells. To the best of my knowledge, this is the only protocol developed 

that allows the simultaneous analysis of persister and VBNC cells before, during 
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and after, exposure to antibiotics.. However, we discussed in chapter one how 

modern single cell technologies are often limited by the time required to perform 

the data analysis. This protocol is no different, despite producing a vast amount 

of data on single bacteria, the throughput was limited by the time required to 

analyse all the images. As a result, I developed an automated python program 

that would allow the analysis of the images acquired using the mother machine; 

MMHelper. MMhelper was discussed briefly in this chapter and it was utilised 

for the data analysis of the experiments reported. However, a more detailed 

overview can be found in chapter four.  
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Chapter 4: MMHelper: An automated 
framework for the analysis of 
microscopy images acquired with the 
mother machine 

4.1 Introduction 
 

In the previous chapters we have discussed and shown the importance of single 

cell approaches, particularly microfluidics, for investigating phenotypic 

heterogeneity. Due to their ability to allow manipulation of both the extracellular 

environment and extracellular space, microfluidic devices have already been 

used for investigating single cell characteristics in multiple domains of 

life104,115,151. Pagliara et al. used microfluidics to discover pluripotent embryonic 

stem cells had auxetic properties108. In bacteria, Norman et al. investigated the 

ability of cells to switch between growth states in B. subtilis120. Similarly, single 

cell growth and division rates were characterised in the yeast S. pombe109. 

However, perhaps the most commonly adapted microfluidic device to date has 

been the Mother Machine8. 

The mother machine was first developed by Wang et al. to investigate 

heterogeneity in growth rates in an E. coli population8. It has since been used 

by a variety of research groups, for example to discover that S. typhimurium 

cells that express the virulence factor ttss-1 were more inclined to survive 

exposure to a fluoroquinolone124 and that multi-drug efflux pump AcrB-TolC is 

more prominent in mother cells after E. coli cellular division7. In chapter three I 

introduced our high throughput protocol for investigating antibiotic persister and 

VBNC cells in bacterial populations using the mother machine technology. 

Furthermore, in chapter one and chapter three, we discussed how the 

throughput of microfluidic devices, such as the mother machine, can be limited 

by the analysis steps and therefore the need for automated analysis systems to 

compliment them.  

To this end, multiple research groups who have utilised the mother machine 

have developed custom image analysis programs8,105,124,130. In fact, Wang et al. 
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themselves realised the importance of automated analysis as they would 

typically be analysing ~107 cells per time lapse experiment8. However, the 

program they developed using C++, required a fluorescence channel in order to 

detect the bacterium8. As a result, this limits the ability of researchers to utilise 

fluorescence channels for researching other cellular mechanisms. Other groups 

have produced custom analysis programs for Mother Machine and these have 

been discussed in more detail in Chapter one. Briefly, Arnoldini, et al. 

developed an ImageJ plugin (MMJ) and used it for the previously discussed 

research into S. typhimurium virulence124. However, this plugin is only semi-

automatic and the level of pre-processing that is required makes it non feasible 

for use on large datasets124. Kaiser et al. used the mother machine to 

investigate gene regulation at the single cell level in E. coli and similarly 

developed a ImageJ plugin (MoMA) to analyse their images, although MoMA is 

more automated than the previously discussed MMJ plugin105,152. Sachs, et al. 

developed a fully automated python module (Molyso) and showed they could 

utilise it to investigate heterogeneity in the production of L-valine during a 

nutrient switch in an engineered strain of Corynebacterium glutamicum130. 

Importantly, however both of the two fully automated approaches, MoMA105 and 

Molyso130, were developed for the analysis of images acquired in phase 

contrast. Therefore, until this thesis, there was no automated analysis software 

available for Mother Machine images that can be applied to multiple imaging 

modalities, particularly images that are acquired in bright field.  

With that in mind, we developed MMHelper; a fully automated python program 

that is able to detect bacteria in a Mother Machine device in multiple imaging 

modalities (phase contrast and bright field). We have already briefly discussed 

MMHelper and how we used it to investigate antibiotic persister and VBNC in 

over 10 000 cells in chapter three. However, in this chapter we discuss the 

analysis pipeline in more detail and compare the performance of MMHelper 

against the other freely available automated Mother Machine analysis tool 

Molyso. We show how MMHelper outperforms Molyso in both modalities. 

Furthermore, we extract cellular information on shape and fluorescence and 

directly compare the results from MMHelper to those acquired through manual 

analysis, showing MMHelper to return similar values. As a result, we show 
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MMHelper can be reliably used for the high throughput analysis of mother 

machine images tackling a variety of biological problems. 
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MMHelper: An automated 
framework for the analysis of 
microscopy images acquired with 
the mother machine
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Live-cell imaging in microfluidic devices now allows the investigation of cellular heterogeneity 
within microbial populations. In particular, the mother machine technology developed by Wang 
et al. has been widely employed to investigate single-cell physiological parameters including gene 
expression, growth rate, mutagenesis, and response to antibiotics. One of the advantages of the 
mother machine technology is the ability to generate vast amounts of images; however, the time 
consuming analysis of these images constitutes a severe bottleneck. Here we overcome this limitation 
by introducing MMHelper (https://doi.org/10.5281/zenodo.3254394), a publicly available custom 
software implemented in Python which allows the automated analysis of brightfield or phase contrast, 
and any associated fluorescence, images of bacteria confined in the mother machine. We show that 
cell data extracted via MMHelper from tens of thousands of individual cells imaged in brightfield are 
consistent with results obtained via semi-automated image analysis based on ImageJ. Furthermore, we 
benchmark our software capability in processing phase contrast images from other laboratories against 
other publicly available software. We demonstrate that MMHelper has over 90% detection efficiency for 
brightfield and phase contrast images and provides a new open-source platform for the extraction of 
single-bacterium data, including cell length, area, and fluorescence intensity.

Phenotypic heterogeneity is a common feature within isogenic bacterial populations1–3. Cell-to-cell variations 
have been observed in bacterial growth rate3, virulence4, and resistance to stress1. As a result, it has been suggested 
that such heterogeneity may allow some cells to survive within fluctuating environments1,5–8 and hence promote 
evolutionary adaptation9,10. Traditional microbiological assays are based on ensemble measurements and thus 
unable to measure cell-to-cell differences within microbial populations. In contrast, microfluidics allows the pre-
cise manipulation of fluids at the submillimetre level11 and when used in combination with microscopy can be 
utilised for biological assays with single-cell resolution12,13. Microfluidics has already been adapted for investigat-
ing heterogeneity across multiple domains of life. For instance, Hansen et al. developed a protocol which enables 
measurement of signalling dynamics in single yeast cells14, Li et al. investigated heterogeneity in the migration 
ability of a population of lung cancer cells15, Yuan et al. looked at the effects of genome deletions on bacterial 
growth16, Pagliara et al. showed that embryonic stem cells exhibit auxetic properties17, and Otto et al. measured 
the mechanical deformability of single cells to identify cell sub-populations in whole blood samples18. There are a 
multitude of microfluidic designs and devices available for investigating single bacterial cells. One popular exam-
ple is the mother machine19, which provides an ideal platform for tracking single bacterial cells over time while 
continuously supplying growth nutrients or compounds to be tested such as antibiotics.

Wang et al. designed the mother machine (MM) to allow the trapping of a single mother cell at the dead-end 
of each of thousands of microfluidic channels and the tracking of its daughter cells over hundreds of genera-
tions19. This tool has since been employed to investigate a variety of research questions with single-cell resolution. 
Tanouchi et al. and Kaiser et al. used the MM to investigate gene regulation20–22. Robert et al. and Uphoff inves-
tigated the emergence of mutations in single cells and the dynamics of mutagenesis23,24. Moolman, et al. utilised 
it to explore protein stoichiometry and dynamics25 whereas Chait et al. used it to engineer bacterial population 
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behaviour26. Multiple groups have use it to investigate single cell response to antibiotics4,27,28, and Yang et al. stud-
ied bacterial adaptation under physical confinement29.

Some research groups have developed software which can be used for the analysis of images of bacteria con-
fined in the mother machine30, although most still use scripts customised around their experimental and imaging 
set-up23,26,27,31. Initially, Arnoldini, et al. developed mmj, a semi-automatic ImageJ plug-in which facilitates the 
analysis of mother machine images4. However, it is inefficient to use this semi-automated approach on thousands 
of images. Sachs et al. developed Molyso an unsupervised software implemented in Python30. Molyso, provides a 
fast and efficient framework capable of analysing 90 GB of mother machine images in 30 min. Nonetheless, their 
program has limitations which prevent its use by the wider mother-machine community, including not being 
suitable to analyse standard brightfield images, and constraints on initial channel orientation. Another ImageJ 
plug in, MoMA, is also available and the authors claim to achieve unprecedented accuracy in segmenting and 
tracking bacteria22. However, we were unable to install and run MoMA, on any datasets, within a reasonable 
(2 hour minimum) time period. Using the suggested installation method we successfully installed MoMA but 
always encountered a FIJI exception error when trying to run the application due to its dependency on Gurobi, 
even when running on MoMA’s own image set.

In order to overcome the limitations above, we introduce MMHelper, an analysis framework that, to the best 
of our knowledge, is the first fully automated program applicable to multiple imaging modalities of the mother 
machine. MMHelper is implemented as a user-friendly python module which detects bacteria confined within 
the MM and tracks their progeny and fate through time. These detected bacterial regions can then be used to 
access information on length and area as well as any accompanying fluorescence intensity data. We demonstrate 
that by using MMHelper, brightfield imaging can be used for extracting phenotypic information from individual 
bacteria (e.g. length, width, morphology) in the mother machine as well as phase contrast imaging; with the 
added value that brightfield imaging does not rely on the use of specialised optical components. Furthermore, 
we have recently used MMHelper to analyse the response to antibiotics of 11,823 single bacteria thus generating 
novel insight on the physiology of phenotypic variants28. Therefore, we believe that the efficiency and accuracy of 
MMHelper will assist the investigation of a variety of biological questions by significantly improving the through-
put and reliability of mother machine experiments.

Methods
Our image analysis pipeline can be decomposed into two core stages, detection and tracking, which are followed 
by the extraction of the temporal changes of single-cell parameters including length, width, area, and fluorescence 
intensity. After determining the imaging modality (1A), each stage is comprised of channel-centric (Fig. 1B,D) 
and bacteria-centric (Fig. 1C,E) sub-stages. The detection stages (Figs 1B,C and S1) take place independently of 
the time-point of the experiment and are shown in more detail in Fig. 2A–D and Fig. 3A–D, respectively. In com-
parison, the tracking stages (Fig. 1D,E) are performed relative to the previous time point (i.e. the t = 0 h left hand 
panel images are used as a reference for the tracking on the t = 1 h right hand panel images).

Data organisation and loading.  Each image is loaded as a multi-dimensional numpy array using the 
scikit-image module. For experiments including fluorescence images, these arrays are split such that detection is 
only performed on the brightfield (or phase contrast) images. MMHelper can be run specifically on single images 
or on image time-series and it also contains a batch run mode. This mode allows the analysis of a whole folder that 
contains images from tens of different time points and areas of the MM. In this instance, a naming protocol is 
used to associate images with areas on the chip. Specifically, a string is used at the start followed by an underscore 
that identifies which MM area the respective image is from. After this underscore, a time stamp is used in order 
to sort the images in chronological order (e.g. a suitable filename for an image of area 1 of the MM acquired at 
12:33:01 on the 16th October 2017 would be: “Area01_171016_123301.tiff ”).

Detection.  The first stage of the detection process is to determine whether the image is a phase or brightfield 
image (Fig. 1A). We noted that the pixel intensity distributions of brightfield and phase-contrast images, obtained 
with similar N.A. objectives, are significantly different. Therefore, we used the skewness of the pixel intensity 
distribution to detect the imaging modality. As we have a large sample size in terms of pixel count (for a square 
image that is 1000 pixels in length: ≈ =n 1,000 1,000,000pixels

2 ), we used the uncorrected expression for the 
skewness G1

32, with the samples third and second central moments of the pixel data, m3 and m3 respectively.

=G m
m1

3

2
3/2

If this equation returns G1 as a positive value, the image is assumed to be phase contrast, whereas a negative 
value suggests the input image was acquired in brightfield.

After determining the imaging modality, the input image is filtered (Fig. 2A) using a gradient magnitude Sobel 
edge for phase contrast images or Frangi ridge filter for brightfield images33.

The edge or ridge filtering accentuates the channel outlines, and is followed by Li’s iterative minimum 
cross-entropy based automated thresholding34 to binarize the image. This mask image is labelled using 
connected-component labelling, and the labelled regions are filtered based on area to remove non-channel 
regions.

The resulting channel-outlines are morphologically dilated to close small gaps in the outline, and the subse-
quent closed regions are filled using a region-filling algorithm. These inner channel regions are extracted as the 
difference between the outlines and the filled regions (Fig. 2B). The inner-channel perimeters are converted to 
pixel locations and, by determining the pixel locations that are farthest apart, channel vectors are generated. These 
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vectors are filtered for length to select only regions in a predetermined range (default: 100–400 pixels) based on 
the images acquired from our typical experimental set-up, however they can be adjusted using a scale factor (see 
additional parameters section). The resulting vectors correspond to the long channel edges, therefore the perpen-
dicular distance between them is also filtered to ensure that the selected channels correspond to single channels. 
The resulting channel regions form the basis for a subsequent interpolation stage (Fig. 2C). First, the aforemen-
tioned channel regions are analysed to determine the single channel-to-channel spacing, to allow the identifica-
tion of undetected channels. Using this spacing, the positions of eventually undetected channels are interpolated 
from the detected channel positions. The detected average channel shape is stamped into each interpolated posi-
tion. Using the channel contours, the perimeter of each detected channel can be seen in the final output images 
(Fig. 2D). Note that at least three channels must be detected in any given image to allow the algorithm to attempt 
interpolation. If two or less channels are detected the algorithm warns the user that it was unable to accurately 
detect channels in this image, and the frame is not considered for further detection.

Figure 1.  Overview of the analysis pipeline. The analysis pipeline is broken down into five major steps. (A) 
The imaging mode is detected, determining whether images are brightfield or phase contrast. (B) Channels are 
detected, assigned specific labels and ordered consecutively from left to right. (C) Bacteria are detected in each 
channel. (D) Channels are tracked throughout the image time-series. In these representative images, the mother 
machine device at t = 1 h has moved approximately 10 μm to the left with respect to t = 0 h, as indicated by the 
arrow. Our algorithm quantifies this frame shift and relabels each channel accordingly, for example the channel 
indicated by the arrow is recoloured in yellow. (E) After channel tracking, the detected bacteria in each channel 
are tracked accordingly and relabelled where necessary, each bacterium keeping the same unique colour 
through consecutive time points as indicated by the arrow.

https://doi.org/10.1038/s41598-019-46567-0
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The next sub-stage in detection is to detect bacteria within the channels identified from the process above. 
In these images, the bacteria initially appear darker than the background (Fig. 2D). Therefore, the images are 
inverted to allow for the use of standard algorithms to detect bright objects on dark background. To do this, the 
background intensity for each channel is estimated using a rolling ball filter and subtracted from its respective 
image35 (Fig. 3A). Furthermore, by subtracting the background intensity, the watershed segmentation can remain 
the same for bacteria located anywhere along the channel profile (Fig. S2).

These channel images are then processed as follows: first each channel image is scale-space filtered36 using a 
Laplace of Gaussian convolution at multiple scales, and maximum-projected along the scale axis (Fig. 3B). Using 
these filtered channel images, a threshold value is determined using Li’s algorithm to avoid over-segmentation of 
empty channels. Each filtered channel image is then binarized using this threshold value and outlines generated 
by taking the difference between the dilation (grow) and the erosion (shrink) of the initial binary image. An initial 
crude region-splitting stage is included as occasionally multiple bacteria are detected as a single region, which 
reduces the accuracy of the region size filtering step. For this, the algorithm uses the marker-controlled Watershed 

Figure 2.  Pipeline for channel detection. (A) The original image is filtered (Sobel for phase images and Frangi 
for brightfield) followed by thresholding to identify potential ridges. These ridges are then filtered by size to 
leave the masks of the channels. (B) A new mask is created with the centre of each channel filled and through 
a simple subtraction of the previous mask with the new one, the centre of each channel is extrapolated. These 
masks can appear irregular in shape due to the presence of the bacteria they host. Consequently, new profiles 
are determined by creating vectors around the perimeter to form an average channel shape. (C) The spacing 
between these channels is determined and, after interpolation to determine the location of missing channels, the 
average channel shape is stamped in place. Noteworthy, our algorithm performs well also with images where the 
main channel is not horizontal resulting in slightly staggered labels. (D) A yellow contour is drawn around each 
label to delineate the detected channels.
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transform37. Markers are generated from all regions greater than a predefined distance from the mask back-
ground, and used to delineate bacteria. These regions are finally filtered for width and size (Fig. 3C). Following 
the initial bacteria segmentation, a second dedicated bacteria-splitting stage was included to improve the segmen-
tation quality of adjacent bacteria (Fig. 3C). The initially detected bacteria are skeletonised and “splits” identified 
using a combination of distance transformation and pixel intensity, with the threshold values determined using 
the median and median absolute deviation of all the initially detected bacteria from the original image.

Tracking.  The detected channels and bacteria are tracked in two stages. First global frame shift is determined 
for whole images using cross-correlation based template matching38. This allows channels from consecutive time-
points to be matched using simple distance-based greedy assignment, which matches each point to its near-
est neighbour as long as it is also the nearest neighbour to that point. To do so, channel centroid positions are 
extracted and channels in consecutive frames are linked if each is the nearest neighbour to the other (Fig. 1D). 
Once channels have been tracked in adjacent time frames, bacteria can be tracked in each channel. This proceeds 
according to a simple multiple-hypothesis tracking where probabilities of all possible assignments are calculated. 
These assignments take into account the centroid position and area of each bacterium, as well as adjustable prob-
abilities that each bacterium remains an individual entity (no-change, Fig. 4A), or fades away from the channel 

Figure 3.  Pipeline for bacteria detection. (A) By using the masks for the detected channels, the corresponding 
original image for each channel is identified and the image inverted using background subtraction. (B) This 
is followed by scale space filtering and thresholding. As a result, markers are identified that can be used 
for a watershed transformation. (C) Each single element within each channel identified by the watershed 
transformation is given a unique label, represented by a different colour. The result of the watershed is filtered to 
remove non-bacterial particles. Bacterial splits are identified, using a combination of width and pixel intensity, 
and a mask of the detected bacteria produced using a combination of distance transformation and pixel 
intensity along the skeleton.
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(cell death, Fig. 4B), or gives rise to progeny (cell division, Fig. 4C). These events can occur in a number of differ-
ent combinations to produce the number of bacteria detected in the current frame relative to the preceding frame 
(t = 1 h compared to t = 0 in Fig. 4A–C). Therefore, a list of all these possible combinations is generated and for 
each of these possibilities the total number of bacterial divisions that would be required is determined. A prob-
ability based on the change in area between the bacteria and its offspring is determined and normalised by the 
number of divisions. A second probability based on the change in centroid, is calculated taking into account that 
for each division the change in centroid location is expected to move by half the length of an average bacterium. 
Finally, the algorithm calculates the likelihood of a cell dividing, lysing, or remaining a single cell between consec-
utive time points. All three of these probabilities are then multiplied together to determine the overall likelihood 
that the given event occurred for an individual bacterium. The determined probability for each bacterium within 
the channel is multiplied to produce an overall probability for the respective combination of events. The resulting, 
most probable, combination is then used to correctly relabel each bacterium in each image (e.g. second channel 
from the left in Fig. 4D), with newly generated bacteria assigned a new unique label (e.g. first and second channels 
from the left in Fig. 4E).

Extraction of single-cell parameters.  Once bacteria detection and tracking has been completed, extrac-
tion of all quantities of interest can be achieved through the detected and tracked region-based properties. Each 
bacterium’s length, width, and area are determined using the various standardised algorithms presented via the 
regionprops function. The binary masks can then be used to extract the raw fluorescence intensity values from the 
corresponding fluorescence images reporting for example the activity of transcriptional reporters or the intra-
cellular accumulation of spectrally distinct substrates. The background fluorescence is obtained from the empty 
areas (parts of the channels not containing detected bacteria) of each channel and subtracted from each respective 
bacterium’s fluorescence intensity. These quantities are then saved in a csv file. We have recently used MMHelper 
to measure the temporal changes in promoter activity in 11,823 individual Escherichia coli28. Figure 5A–C report 
the temporal changes in area, length and GFP fluorescence for three representative bacteria, and their progeny, 
growing in lysogeny broth. The fluorescence reported in Fig. 5C is the mean pixel intensity and the gradual 

Figure 4.  Overview of bacteria tracking. Individual bacteria detected in an experiment using (A) minimal 
medium, (B) antibiotic treatment, or (C) growth medium at t = 0 and at t = 1 h (channels at the left and right 
hand side of each panel, respectively). (D–F) Corresponding tracked bacteria are relabelled, where necessary 
(e.g. second channel from the left in D), at t = 1 h so that their label (i.e. contour colour) matches that at t = 0. 
When a division occurs each of the offspring is assigned a new unique label (e.g. first and second channel from 
the left in F).

https://doi.org/10.1038/s41598-019-46567-0


7Scientific Reports |         (2019) 9:10123  | https://doi.org/10.1038/s41598-019-46567-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

decline in the fluorescence values reported is not due to photobleaching, but is a genuine proxy for the expres-
sion of the multi efflux pump tolC (the promoter upstream of GFP in the plasmid carried by the strain), due to 
the reduction of cellular stress upon continuous exposure to fresh media, similar to the profile we previously 
observed28.

Additional parameters and module usage.  MMHelper can be used to analyse image time series 
acquired with different microscopy setups (e.g. different objective magnification and numerical aperture, different 
cameras) by adjusting a single “Scale factor” parameter. Furthermore, the user can specify how many fluorescence 
image channels are acquired for each brightfield (or phase contrast) image. More information on parameters and 
how to adjust them will be available on the repository wiki page (https://github.com/jmetz/mmhelper/wiki).

Due to the 2D nature of MMHelper’s detection, it performs the analysis on any image orientation and there is 
no need for tilt correction. Furthermore, the modular nature of MMHelper makes it suitable for future adaptation 
to slightly different experimental set ups such as microchemostat devices39.

Statistical comparison.  In order to compare the performances of MMHelper and Molyso, we manually 
drew ground truth detection masks in the images using the freely available GIMP drawing program and used 
them to quantify three parameters: the Jaccard index, precision and recall values of the automated detection 
(Fig. S3). We ran both software programs on our own brighfield images, and three independent sets of phase 
contrast images from (i) the the Locke’s laboratory40, (ii) the work by Sachs, et al. (Molyso)30 and (iii) the work by 
Kaiser, et al. (MoMA)22. In order to use Molyso on brightfield images, we inverted these images before analysis 
since the authors did not develop this software for brightfield imaging. We then directly compared the respective 
values for each parameter, statistical significance was tested by unpaired t test with Welch’s correction, where 
p ≤ 0.05 is *p ≤ 0.01 is **p ≤ 0.001 is *** and p ≤ 0.0001 is ****respectively.

Results and Discussion
We developed MMHelper to work on both brightfield and phase contrast images with high detection efficiency 
and accuracy, this also allowing accurate extraction of data from any associated fluorescence images. In order 
to quantify the performances of our software, we randomly selected 5 of our brightfield datasets28 and analysed 
image time-series for 4 consecutive time-points, resulting in the analysis of 14 frames containing between 18 and 
120 bacteria each. We characterised the detection efficiency as the percentage of bacteria which were detected 
and, from a total of 562 bacteria across all of the brightfield images, the efficiency was determined as 98 ± 1%. 
However, in some cases one bacterium was labelled as multiple bacteria or multiple bacteria detected as an indi-
vidual bacterium. In these circumstances the detection cannot be said to be accurate, therefore we termed detec-
tion accuracy as the percentage of bacteria correctly identified by a single label and calculated it to be 80 ± 3% 
across the 14 previously mentioned brightfield images. Furthermore, we used MMHelper to analyse an image 
dataset acquired with a phase contrast microscope in the Locke’s laboratory40, obtaining a bacterial detection 

Figure 5.  Dynamics in single-bacterium parameters. Temporal changes in (A) area, (B) length, and (C) GFP 
fluorescence for three representative bacteria, and their progeny, growing in lysogeny broth. Data bifurcations 
indicate bacterial divisions, e.g. bacterium 3 divided at t = 3 h and its daughters divided at t = 5 h.
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efficiency of 95 ± 1% and an accuracy of 65 ± 1%. This demonstrates i) the capability of MMHelper to detect bac-
teria in mother machine images in both brightfield and phase contrast modalities and ii) the capability to work 
equally well across independent experimental setups.

For each software and each dataset we then measured three different parameters: detection precision as the 
overlap area between the detected and ground truth masks divided by the detection mask; detection recall as the 
overlap area divided by the ground truth mask41,42 (Fig. S3); and finally the Jaccard index, defined as the overlap 
area divided by the total combined area42. The use of precision and recall allows a comparison of the trade-off 
between ensuring no areas are missed (recall) and how precise the algorithm is, with the Jaccard index repre-
senting a combination of these values42. We compared these parameters for MMHelper and Molyso applied to the 
detection of 310 channels from our brightfield and Locke’s phase contrast images (Fig. S4 and Table 1). The corre-
sponding Kernel Density Estimation for channel detection precision v recall is reported in Fig. 6A for brightfield 
and Fig. 6B for phase contrast datasets, respectively. Noteworthy, the multi-modal distribution of density for 
channel detection in brightfield is probably due to small variations in the quality (e.g. focus) of images acquired, 
resulting in the precision values varying slightly for individual images. For instance, of the total 14 birghtfield 
frames, the majority clustered around 0.8, one frame had a precision level of 0.9 and two frames had precision 
levels close to 1 (Fig. S6).

As expected, according to the Jaccard index, MMHelper shows significantly better channel detection than 
Molyso on the brightfield datasets (p ≤ 0.0001, Fig. S4E), although Molyso performed better on the phase contrast 
dataset (p ≤ 0.0001, Fig. S4B). MMHelper shows a channel detection recall close to 100% for both phase contrast 
and brightfield images as a result of the detected channels being slightly larger than the ground truth masks, and 
was significantly better than Molyso (p ≤ 0.0001, Figs S4C and S4D). The detected channels being larger than the 
ground truth masks was also reflected in the precision values which were slightly lower, with Molyso being signif-
icantly better than MMHelper for phase contrast (p ≤ 0.0001, Fig. S4B), although MMHelper was still significantly 
better for brightfield (p ≤ 0.0001, Fig. S4A). This over-estimation, however, does not affect the level of accuracy 
of bacterial detection, see below, which is the ultimate aim of this pipeline. Figure 6C reports the Kernel Density 
Estimation obtained on the precision and recall values for 434 bacteria from brightfield images whereas Fig. 6D 
shows the Kernel Density Estimation measured for 494 bacteria from phase contrast images.

Secondly, we compared the Jaccard index of the Molyso and MMHelper performances in detecting channels 
from phase contrast images from the works by Sachs, et al. (Molyso)30 and by Kaiser, et al. (MoMA)22. Surprisingly, 
in terms of Jaccard index channel detection MMHelper performed better than Molyso on the Molyso image 
sets (p < 0.0001, Fig. S5F), whereas Molyso performed slightly better than MMHelper on the MoMA’s dataset 
(p = 0.0104, Fig. S5E). Similar to the results on our datasets, this appeared to be a result of MMHelper detecting 
slightly larger channels than the ground truth masks. MMHelper performed better in terms of detection recall 
for both MoMA (p ≤ 0.0001, Fig. S5C) and Molyso image sets (p ≤ 0.0001, Fig. S5D). Finally, Molyso performed 
better than MMHelper in terms of detection precision on the Molyso (p ≤ 0.0001, Fig. S5B) and MoMA image sets 
(p = 0.0073, Fig. S5A).

The next set of comparisons was done in terms of bacterial detection which is the ultimate goal of both Molyso 
and MMHelper. Therefore, ground truth masks were produced for bacteria allowing for the evaluation of bacterial 
detection precision, recall and Jaccard index for both Molyso and MMHelper. Bacteria detection is more difficult 
than channel detection, due to the inherent heterogeneity in bacterial shape and size within a clonal popula-
tion. As a result, the levels of the three parameters are lower relative to channel detection (Table 1). However, 
according to the Jaccard index, MMHelper demonstrates superior performances compared to Molyso for both 
imaging modalities on our brightfield and Locke’s lab phase contrast datasets (p ≤ 0.0001, Figs S7E and S7F). 
In fact, MMhelper also performed significantly better in terms of recall (p ≤ 0.0001, Fig. S7C and Fig. S7D) and 
precision (p ≤ 0.0001, Fig. S7A for and p = 0.0044, Fig. S7B) on our brightfield and Locke’s lab phase contrast 
datasets (Table 1). We then compared the two pipelines in detecting bacteria from the MoMA and Molyso image 
sets. Interestingly, according to the Jaccard index, MMHelper again performed better than Molyso on the MoMA 
dataset (p = 0.0041, Fig. S8E) and their own dataset (p ≤ 0.0001, Fig. S8F). All the median values for the three 
parameters are listed in Table 1.

The fact that MMHelper outperformed Molyso in terms of Jaccard index for bacterial detection for all data-
sets further emphasises the flexibility of MMHelper for use on different experimental set ups as well as different 
bacterial species. The superior performances of MMhelper are probably due to the fundamental difference in the 
approaches to detection: the MMhelper algorithm is applied to the 2D images, whereas Molyso reduces 2D images 
to 1D by using line profiles and projections for channel and bacteria detection, respectively.

Finally, in order to determine the efficiency of our tracking algorithms we quantified the number of cor-
rectly tracked channels or bacteria in consecutive frames. In order to decouple tracking accuracy from detection 

Pipeline

Bright field Phase

Precision (%) Recall (%)
Jaccard index 
(%) Precision (%) Recall (%)

Jaccard 
index (%)

Channels
MMHelper 77.8 ± 1.9 97.6 ± 1.4 77.2 ± 3.1 53.8 ± 0.2 99.4 ± 0.6 53.7 ± 0.3

Molyso 64.3 ± 25.7* 58.9 ± 22.2* 42.1 ± 21.7* 79.9 ± 9.0 77.1 ± 9.4 64.6 ± 12.8

Bacteria
MMHelper 78.8 ± 14.6 76.3 ± 14.0 57.1 ± 14.1 47.3 ± 15.0 96.5 ± 3.5 43.9 ± 14.3

Molyso 43.8 ± 21.7* 12.7 ± 7.9* 11.4 ± 6.5* 39.0 ± 17.1 19.5 ± 8.2 15.2 ± 7.1

Table 1.  Medians and median absolute deviations of Jaccard index, precision and recall for ground truth 
detection for MMHelper and Molyso. *Molyso was not specifically developed for brightfield imaging.
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accuracy, we excluded from the image datasets illustrated above any channels or bacteria that were incorrectly 
detected. MMHelper returned 100% and 94 ± 2% efficiency in channel and bacteria detection on the brightfield 
image datasets and 100% and 67 ± 4% efficiency in channel and bacteria detection on the phase contrast image 
datasets.

An obvious benefit of automated image analysis is the removal of human error. In order to demonstrate the 
superior performances of MMHelper, we analysed a brightfield image and the corresponding fluorescence image 
both via MMHelper and via a semi-automated approach based on ImageJ and requiring user input. Briefly, three 
different users measured each bacterium length from the brightfield image by drawing a straight line through 
the bacterium and using the corresponding intensity plot to determine where the line crossed the edges of the 
bacterium thus deducting the bacterial length (Fig. S9A). They then drew a box around each bacterium to meas-
ure its area (Fig. S9B). Using this same box, the fluorescence pixel intensity was extracted from the correspond-
ing fluorescence image (Fig. S9C). For each bacterium we calculated the mean and standard deviation of these 
semi-automated measurements (red shaded areas in Fig. S8) and compared these values to the ones obtained 
via MMHelper (blue circles in Fig. S9). Whereas MMHelper is able to accurately detect the bacterial contour, the 
semi-automated approach consistently overestimates the area of individual bacteria and underestimates the GFP 
fluorescence from single bacteria. Therefore, in order to allow a direct comparison between the values obtained 

Figure 6.  Comparison of MMHelper and Molyso performances. Kernel density estimation for precision and 
recall of channel detection from (A) brightfield and (B) phase contrast images via MMHelper (red) and Molyso30 
(blue). The distribution of precision and recall values obtained via MMHelper on phase contrast images tightly 
clusters around a recall value of 1 and a precision value of 0.55. Therefore, we have zoomed this area in the 
dashed circle to facilitate its visualisation. (C,D) Corresponding kernel density estimation for precision and 
recall of bacteria detection. Insets: representative images of channel (A) and bacteria (C) detection.
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via the two approaches, Fig. S4 reports each single-bacterium value normalised to the corresponding mean of 
all the single-bacterium values. This allows us to demonstrate that MMHelper robustly and accurately extracts 
single-cell data with 69% of MMHelper measurements falling within 1 S.D. of the mean, 97% within 2 S.D., and 
100% within 3 S.D. of the mean of the values obtained via the semi-automated approach (Fig. S9C).

Input images can vary in quality and magnification and the bacterial geometry can vary depending on species, 
phase of growth, and due to the phenotypic heterogeneity inherent in clonal populations. In order to account 
some of these variations, some of the input parameters for MMHelper can be varied accordingly. For exam-
ple, tuning the scale factor accounts for changes in image magnification. Furthermore, we are also developing a 
graphic interface for the manual correction of MMHelper output, where needed, which aims to make this process 
both easier and more efficient.

MMHelper, to the best of our knowledge, is the only automated analysis pipeline that has been designed for 
the analysis of both brightfield and phase contrast images acquired with the mother machine. Some research-
ers use fluorescent tags in order to perform their image analysis24,29, but this requires exposure to strong light 
sources that are known to be extrinsic damage-producing agents43. Conversely, MMHelper allows the extraction 
of single-bacterium length and area measurements from brightfield or phase contrast images, allowing meas-
urements of single-cell parameters such as growth rate and elongation time that are crucial when investigating 
phenomena such as ageing19,44,45, bacterial susceptibility28,46 and cell size regulation20.

When needed, fluorescence can be used as a reporter for intracellular pH, gene expression, or substrate accu-
mulation. Therefore, MMHelper, will facilitate the study of mutagenesis, gene regulation, and cellular homeostasis 
at the single cell level. Furthermore, when current microbiological assays are performed at the population level, 
viable but non-culturable bacteria are overlooked. VBNC cells are a subpopulation of cells which enter a dormant 
state allowing them to survive otherwise lethal concentrations of antibiotics but they do not resuscitate immedi-
ately upon exposure to fresh media47. As a result, they can be responsible for the recalcitrance of chronic infec-
tions and act as a stepping stone in the development of antibiotic resistance47. In contrast, our high-throughput 
system can be used to ensure that non-growing phenotypes can be detected for example during the testing of 
new antimicrobials or exposure to stress. In this respect, we have recently used MMHelper to demonstrate that 
persister and viable but non culturable E. coli cells differentially regulate genes associated with tryptophan metab-
olism before exposure to ampicillin28 opening new opportunities to map the detailed biochemical makeup of 
these clonal subpopulations.

Conclusion
MMHelper provides an automated framework for the analysis of any type of microscopy images acquired with the 
mother machine. This automated approach provides large amounts of data with a high level of accuracy in both 
a time efficient and reproducible manner. For instance, on average it would take a user approximately an hour 
to analyse a series of 8 consecutive images using ImageJ, whereas MMHelper can acquire the same information 
in approximately one minute, requiring only a limited amount of manual editing of the output data thanks to 
the high level of accuracy provided. After thoroughly testing MMHelper to analyse our own mother machine 
experiments performed on different experimental set-ups and different bacterial strains we are now making this 
open-source software available for all the research groups already using the mother machine around the world. 
Finally, we believe that, thanks to the ease of installation and use, MMHelper will be an incentive for researchers 
from a variety of scientific backgrounds to employ this powerful technology for investigating biological questions 
with single cell resolution.
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Fig. S1. Overview of the detection pipeline. The image is filtered (1) using 

Sobel (phase contrast) or Frangi (bright field). This is followed by thresholding 

(2) using Li's minimum cross entropy threshold, before finally being filtered 

based on size (3). The size filtered image is dilated and the gaps (channel 

centres filled (4). The size filtered image is then subtracted to leave only the 

centre of the channels (5). The channel centres are then extrapolated and only 

"good" channels are kept (6). An "average" shape of a channel is determined 

and used for each of the detected channels (7). The spacing is then determined 

and any missing channels "stamped" in to place (8). This final mask can then be 

used to extract the well profiles for bacteria detection. The final detected wells 

can be seen as yellow contours (9). For display purposes, images 10-18 have 

been rotated 90°. If the original image was acquired in bright field then it must 

be inverted (10). Then, in order to account for any variation in background 

intensity (11), the background is subtracted using a rolling ball filter (12) and 

then scale-space filtered (13). Using Li's minimum cross entropy based 

algorithm on all the channels within an image, a threshold is determined. This 

threshold is applied to each well individually in order to identify markers (14) for 

watershed segmentation (15). The result of the watershed segmentation is then 
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size filtered (16), before a final "splittling" algorithm is applied to their skeleton 

based on a combination of distance transformation and pixel intensity (17). The 

contours of the final labels are then plotted on the original image for 

visualisation purposes (18). 
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Figure S2. Comparison of channel profiles before and after background 

subtraction. The MMHelper pipeline uses a rolling ball filter to normalise the 

background profile (blue lines) to account for the changing background along 

the original channel profile (red lines). We measured the profile from the 

channel entrance (0m) to the end of the channel (23.5m) for a channel 

containing no bacteria (A), a channel with a single bacterium around the centre 

of the channel (B) and for a channel with multiple bacteria at one end (C) and 

plotted the relative intensity at each position within the channel. In all cases, the 

rolling ball filter removed the variation associated with the original image. It is 

important to note that the images were inverted prior to background subtraction, 

which is why we see an increase in intensity for the normalised (blue line) 

bacteria compared to the original (red line). 
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Figure S3. Schematic illustrating our definition of detection precision and 

recall. Ground truth masks were drawn manually using the software GIMP and 

detected masks were produced from the automatic analysis pipelines. The 

precision value is termed as the percentage overlap area between the ground 

truth and detected mask divided by the total area of the detected mask. The 

recall value is the percentage overlap divided by the total area of the ground 

truth mask. Finally, the Jaccard index is determined as the overlap area divided 

by the total combined area.  
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 Figure S4. Comparison of channel detection in our brightfield and phase 

contrast datasets via MMHelper and Molyso in terms of Jaccard index, 

precision and recall. Using the ground truth masks manually drawn using 

GIMP, we determined the levels of precision and recall for the detected 

channels from MMHelper and Molyso, respectively. The results show that the 

median precision levels of MMHelper are approximately 0.8 for (A) brightfield 

and 0.55 % for (B) phase contrast images because the detected channels are 

consistently larger than the ground truth masks. This is reflected by the high 

levels of recall in both (C) brightfield and (D) phase contrast images. Molyso, in 

comparison, only out performs MMHelper on phase contrast precision. Finally, 

the Jaccard index shows that MMHelper was significantly better on (E) 

brightfield, but Molyso was significantly better for our (F) phase contrast 
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dataset. Statistical significance was determined using a Welch’s correlation as 

described in the methods section. 
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Figure S5. Comparison of channel detection in both MoMA and Molyso 

example phase contrast datasets via MMHelper and Molyso in terms of 

Jaccard Index, precision and recall. The (A) precision and (C) recall values 

were calculated for the MoMA example dataset. Similar to the (B) precision and 

(D) recall for Molyso’s dataset, MMHelper showed significantly better recall due 

to slightly larger detected channels compared to the ground truth masks, 

whereas Molyso was significantly better in terms of precision. The Jaccard 

index, determined by dividing the overlap of an area by the total combined area, 

was calculated for the channels detected in the (E) MoMA and (F) Molyso 

datasets, respectively. Interestingly, Molyso was slightly better for the MoMA 

dataset, but MMHelper performed significantly better on Molyso’s own dataset. 

Statistical significance was determined using a Welch’s correlation as described 

in the methods section. 
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Figure S6. Scatter plot of precision and recall values for channel 

detection. Scatter plot of representative precision and recall values for channel 

detection across all 14 bright field frames. The plot clearly shows 3 different 

clusters of data; the majority of frames across all experiments had a precision 

level around 0.8, one frame had a precision level around 0.9 and two frames 

had a precision level around 1.0. This grouping results in the multimodal 

distribution in the kernel density plots.  
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Figure S7. Comparison of bacterial detection in our brightfield and phase 

contrast datasets via MMHelper and Molyso in terms of Jaccard index, 

precision and recall. Using the ground truth masks manually drawn using 

GIMP, we determined the levels of precision and recall for the detected 

channels from MMHelper and Molyso, respectively. The results show that 

MMHelper had significantly higher precision levelsfor (A) brightfield and (B) 

phase contrast images. Similarly, MMHelper had significantly higher levels of 

recall in both (C) brightfield and (D) phase contrast images. As a result, the 

Jaccard index shows that MMHelper was again significantly better on (E) bright 

field and (F) phase contrast dataset. Statistical significance was determined 

using a Welch’s correlation as described in the methods section. 
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Figure S8. Comparison of bacterial detection in both MoMA and Molyso 

example phase contrast datasets via MMHelper and Molyso in terms of 

Jaccard Index, precision and recall. There was no significant difference 

between the (A) precision values on the MoMA dataset. However, MMHelper 

performed slightly better on (C) recall and therefore also with respect (E) 

Jaccard index. Interestingly, although Molyso was significantly better on its own 

(B) precision values, MMHelper outperformed it on (D) recall and (F) Jaccard 

index. Statistical significance was determined using a Welch’s correlation as 

described in the methods section. 
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Figure S9. Comparison of single bacterium parameters obtained via 

MMHelper and a semi-automated approach requiring user input. (A) 

Bacterial length, (B) area, and (C) GFP fluorescence measured via MMHelper 

(blue dots) and a semi-automated method based on ImageJ and performed by 

three different users, the red bands indicate the mean ± 1 S.D. (darkest red 

band), mean ± 2 S.D., and mean ± 3 S.D. (lightest red band), respectively. To 

account for the consistently more precise automated measurements, both the 

manual and automatic measurements were normalised by dividing the 

measurement for each bacterium by the mean of all the single-bacterium 

measurements.  
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4.3 Conclusion 
 

In this chapter I report the development of a new automated framework for the 

analysis of images acquired using the microfluidic Mother Machine; MMHelper. 

MMHelper is the first Mother Machine specific software that is capable of being 

used in multiple imaging modalities and, in particular, acquired in bright field. 

Furthermore, as bright field microscopy does not require special optical 

components, MMHelper will make the high throughput Mother Machine 

technology more accessible to the research community.  

Molyso is another example of a freely available platform for Mother Machine 

analysis, however it is designed to only detect bacteria in phase contrast130. 

Using manually drawn “ground truth” masks, we were able to directly compare 

its performance to MMHelper. Although Molyso was better in some of the 

channel detections, the ultimate goal of both pipelines is bacteria detection. As 

expected, MMHelper was significantly better than Molyso at detecting bacteria 

in bright field images. However, perhaps more surprisingly, MMHelper 

significantly outperformed Molyso, in terms of the Jaccard index, on all bright 

field and phase contrasts datasets. 

Outperforming other pipelines is important, but if the data collected from 

automated analysis is not reliable, then this becomes irrelevant. Therefore, we 

directly compared the measurements acquired by MMHelper to those 

determined using manual analysis on the same datasets. It is important to note 

that to allow the direct comparison, the two sets of measurements had to be 

normalised. This is a result of the automated detection producing more precise 

cellular contours compared to the manual analysis. However, this is actually 

advantageous as it allows for more accurate measurements. When comparing 

the extracted fluorescence intensities, 97 % of the measurements fell within 2 

standard deviations of those determined using manual analysis and 100 % fell 

within 3 standard deviations; again highlighting the accuracy and reliability of 

MMHelper. 

In order to properly quantify the efficiency and accuracy of MMHelper we 

investigated how successful the algorithm was at detecting all the bacteria 

within a frame. By defining efficiency as the number of bacteria successfully 

detected, we showed that MMHelper had an efficiency of 98 % and 95 % for the 
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bright field and phase contrast datasets, respectively. However, we realised that 

occasionally the algorithm would detect two bacteria as one. Therefore, we 

defined the percentage of single bacteria that were correctly identified as the 

algorithm accuracy and showed this to be 80 % and 65 % for the two respective 

datasets. Due to differences between individual experiments and even between 

time points in a single experiment, there can be substantial differences in light 

intensity and focus which will affect the image quality. Therefore, these 

accuracy and efficiency levels highlight the adaptability of the MMHelper 

algorithm.  

We have already used MMHelper to investigate the heterogeneity in response 

to ampicillin for an E. coli population, as discussed in chapter three. Importantly, 

MMHelper was able to drastically increase the throughput of our experimental 

set up, something which is essential when investigating very small 

subpopulations such as persister and VBNC cells. Importantly, however, in this 

chapter we have shown that MMHelper is not limited to our experimental set up. 

In fact, we have shown it to outperform pipelines specifically developed by other 

research groups on their own datasets. All of this, as well as the ease of 

installation of MMHelper, makes it a readily available open source platform that 

can now be utilised by the wider scientific community to investigate other forms 

of phenotypic heterogeneity.  
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Chapter 5: Heterologous protein 
expression favours the formation of 
inclusion bodies in persister and 
sleeper Escherichia coli 

5.1 Introduction 
 

In chapter three I introduced a new microfluidic Mother Machine protocol that 

allowed for the characterisation of antibiotic response in an isogenic bacterial 

population. We showed that the tolerant phenotypes of antibiotic persister and 

VBNC (for brevity these are referred to as sleeper cells within this chapter) 

cells, exhibit similar characteristics prior to exposure to antibiotics but are 

significantly different when the extracellular environment becomes favourable 

once more. I then introduced an automated image analysis platform, MMHelper, 

in chapter four that allows the accurate and efficient analysis of Mother Machine 

images acquired in multiple imaging modalities. By combining the two we have 

produced a high throughput pipeline that can be used for investigating 

phenotypic heterogeneity in bacterial populations. In fact, during the analysis of 

some of the images for chapter three, we spotted an interesting visible 

phenotype, particularly within some of the antibiotic persister and VBNC cells; 

dark foci (small dark dots visible within the bacteria).  

Upon reviewing the literature94,153,154, we believe the dark foci we were 

observing were a result of protein aggregation. Protein aggregates are the 

accumulation of defunct proteins and their hydrophobic nature makes them 

difficult for the cell to break down11. This results in reduced cellular resources 

and increased stress as the intracellular amino acid pool is depleted. A 

combination of mathematical modelling and experimental studies has shown 

that intracellular structures, such as nucleoids, cause them to be more 

prominent at the cellular poles9,10. Furthermore, they have been linked with 

cellular ageing as they have been shown to accumulate at the old cell poles in 

mother cells9 which, in turn, have been shown to have lower growth than their 

respective daughter cells7,9,12. Similarly, persisters and sleeper cells have been 

suggested to be in growth arrested or dormant states30. On top of this, 
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Bergmiller et al. showed that old cell mother poles retain higher levels of the 

multidrug efflux pump AcrB-TolC during division7, which has been shown to 

result in increased antibiotic survival127. 

Antibiotic survival has also been associated with increased levels of cellular 

stress, one example of this is nutrient starvation, for instance amino acids65, as 

discussed in detail in chapter one. Briefly, Fung et al. observed increases in 

antibiotic survival during E. coli growth in media lacking in different 

combinations of glucose and some amino acids65. Similarly, by starving biofilms 

of individual amino acids, Bernier et al. were able to significantly increase the 

level of drug persistence64. Furthermore, in chapter two, we identified several 

KEGG pathways associated with amino acid metabolism that were highly 

regulated during transitions where we also observed increases in persister 

fractions. Finally, in chapter three we showed that a fluorescently tagged 

transcriptional reporter for the pre-cursor of the tna operon, which is involved in 

the catabolism of the essential amino acid tryptophan, was significantly lower in 

both persisters and sleeper cells compared to their susceptible kin.  

Therefore, I selected 6 transcriptional reporter strains, like the ones used in 

chapter three, in order to determine the relationship between the expression of 

exogenous proteins and the formation of protein aggregates, and how this, in 

turn, may affect the formation of antibiotic persister and sleeper cells. The 

selected genes were: the precursor of the tna operon, tnaC 155; the outer 

membrane porin, ompC156; the protease, lon157, the glucose specific permease, 

ptsG14; the pyruvate kinase, pykF24 and an enzyme involved in the glyoxylate 

shunt, aceB23. Importantly, the genes selected had either previously been linked 

to antibiotic survival (tnaC, lon, ompC) and/or are involved in cellular 

metabolism (tnaC, ptsG, aceB, pykF), which in turn has been linked to antibiotic 

survival and aggregate formation. Furthermore, in a stationary phase culture 

(the time point used for these assays), the genes mentioned above showed a 

wide range of expression (between 77 and 62837 transcriptional reads for tnaC 

and aceB, respectively) based on our transcriptional analysis in chapter two. As 

a result, each strain will have different levels of intracellular “stress” due the 

amount of exogenous proteins they are expressing. In the following chapter, we 

show that the percentage of cells within the population with visible protein 

aggregates increases with the level of exogenous proteins being expressed 
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within our transcriptional reporter strains. Furthermore, we show that these 

aggregates are more likely to be found in cells which exhibit the persister or 

sleeper phenotype. Finally, we correlate the expression of exogenous protein, 

and hence cellular stress, to the percentage of cells within the population that 

are able to survive antibiotic exposure.  
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Abstract 

 

Misfolded and defunct proteins move around a bacterial cell by diffusion and 

can accumulate into hydrophobic protein aggregates which can generate 

intracellular stress, for instance by depleting the cellular amino acid pool. 

However, as a result of their polar location within the cell, during growth these 

aggregates are concentrated into a small percentage of the overall population. 

On the other hand, a small percentage of a bacterial population can survive 

otherwise lethal doses of antibiotics, often as a result of reduced growth rate or 

exposure to stress. Here we report a strong link between antibiotic persister and 

sleeper (i.e. viable but non culturable) E. coli and the presence of protein 

aggregates. Specifically, the cellular stress that occurs, as a result of bacteria 

expressing plasmid-based transcriptional GFP reporters, increases the 

percentage of cells within the population that contain visible protein aggregates; 

with our reporter strain for tnaC, which expresses the lowest amount of 

exogenous protein, containing visible aggregates in 1.4±0.2 % of cells 

compared to 4.4±1.5 % in aceB, the strain expressing the most exogenous 

protein. Furthermore, we show that aggregate containing cells constitute on 

average 2.3±0.2 % of the susceptible subpopulation, 47.5±3.2 % of the 

persister subpopulation and 70.3±3.4 % of the sleeper subpopulation; 

mailto:s.pagliara@exeter.ac.uk
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supporting recent evidence that these protein aggregates play a role in the 

formation of persister and sleeper cells and further supports the hypothesis that 

these two phenotypes exist as part of one dormancy continuum.  

 

Introduction  

 

Cellular stress can manifest as a result of a variety of external or internal 

stressors; for instance increased environmental temperature or nutrient 

starvation158. It has been documented that high levels of cellular stress favour 

the formation of protein aggregates, a phenomenon whereby defunct or 

misfolded proteins within a cell are clustered together to form largely insoluble 

hydrophobic aggregates9,10,153,159,160. Similarly, protein aggregates have been 

observed in response to oxidative stress as well as cellular ageing159. For 

instance during post mitotic ageing in Saccharomyces cerevisiae, Peters, et al. 

identified 480 proteins that become insoluble and aggregate161. In fact, such 

aggregates have been linked to cellular degeneration in many cellular related 

diseases, such as Alzheimers and Huntingtons, due to the toxicity they evoke in 

the cell9,153,159.  

 

In prokaryotes, aggregates have been reported to provide functional benefits, 

despite their cellular toxicitiy153. For instance, a surface protein, protein A, 

induces aggregation and increases biofilm formation in Staphylococcus 

aureus162 and tasA, a sporulation protein in Bacillus subtilis, has been 

speculated to form oligomeric aggregates whose antibacterial properties 

provide B. subtilis with a competitive advantage for the endospore during 

colonisation163. In Escherichia coli, protein aggregates have been shown to 

cause a reduction in the cellular growth rate and, within an exponentially 

growing bacterial population, these aggregates have been identified as a 

potential sign of ageing as a result of their localisation and distribution being 

primarily at the cellular poles9,164,165. A potential reason for the polar localisation 

is the majority of exponentially growing bacteria having two nucleoids, non-

membrane bound regions within a prokaryotic cell that contain the majority of its 

genetic information, approximately 500-600 nm from the cell poles, essentially 

dividing the bacterium into three distinct compartments; the centre and the two 

poles10,164. After visualising the localisation of protein aggregates, Coquel et al. 
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were able to mathematically model the distribution of aggregates and show it to 

be a result of the nucleoids position preventing defunct proteins from being able 

to diffuse freely around the cellular space, particularly as these proteins 

aggregate and increase in size10. Lindner et al. elegantly showed how this 

intracellular distribution of defunct or misfolded proteins results in the 

aggregates being retained primarily at the cellular poles and in particular within 

the older cells of a population9. This is a result of biased partitioning during  

bacteria division7 whereby the nucleoid structure essentially immobilises the 

aggregates, resulting in polar aggregates being inherited by only one of the 

daughter cells10. In fact, daughter cell poles can be distinguished by their 

respective ages, with a new pole being generated during each round of 

division7; therefore any inherited aggregate will always be located at the old cell 

pole9.  Interestingly, this mechanism, allows for the population to concentrate 

the aggregates into a small proportion of cells and with the toxic aggregates 

now removed from the majority of the healthy and fast growing population, the 

population as a whole can maintain a higher average growth rate11–13.  

 

As discussed above, aggregates of defunct or misfolded proteins are not 

homogeneously distributed within a clonal microbial population. Furthermore, 

the biased partitioning towards old-pole daughter cells compared to new-pole 

daughter cells is not restricted to protein aggregates. Bergmiller et al. 

investigated phenotypic heterogeneity in E. coli as a result of polar cell 

envelope localisation7. For instance, they discuss how formation of 

supramolecular islands restricts the diffusion of outer membrane proteins and 

they show how this results in the main efflux pump (AcrAB-TolC) being biasedly 

partitioned towards the old-pole in E. coli7. They then show how this results in 

old-pole daughter having increased efflux activity relative to new-pole daughter 

cells7; a trait which has been linked to antibiotic persistence127,166.  In fact, 

phenotypic heterogeneity is present across all domains of life, for example 

substantial cell-to-cell differences have been reported in the expression of 

virulence related genes in a fungal pathogen Candida glabrata2, in chromatin 

condensation states in human tumour cell lines52 and in metabolic activity in 

bacteria 14,15. Such heterogeneity often arises in response to fluctuations in the 

extracellular environment with subpopulations experiencing more “stress” than 

their isogenic kin60,61,160,167.  
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Interestingly, heterogeneity within an isogenic population, particularly with 

respect to growth rate, nutrient stress and cellular toxicity, has been linked to 

the ability of small subpopulations to survive exposure to otherwise lethal doses 

of antibiotics in a phenomenon known as antibiotic persistence22,23,30,81,168. In 

fact, a consequence of the aggregation of defunct and misfolded proteins is for 

the amino acid pool within that particular cell to be depleted11, triggering the 

stringent response and subsequent production of (p)ppGpp, which has 

previously been associated with persister and sleeper cells60,62,64,169. Although 

the above suggests a potential link between protein aggregates and antibiotic 

survival, only as recently as 2018 did Pu et al. first reported how ATP-

dependent “aggresome”, a collection of endogenous protein aggregates, 

formation can regulate cellular dormancy and in turn the development of 

persister and sleeper (i.e. viable but non culturable) E. coli94. However, they 

report the aggregates they investigated were caused by ATP depletion and 

claim they are different from toxic protein aggregates formed from misfolded 

proteins94. Furthermore, they claim that aggregates formed as a result of the 

expression of exogenous proteins, such as the ones discussed in this report, do 

not show the same relationship with persister or sleeper cells94. Mortier et al. 

induced the expression of a fluorescent protein, mCerulean3, resulting in the 

formation of fluorescent protein aggregates, they could then follow the 

disaggregation, as a result of chaperone systems such as DnaKJE, by 

observing how the fluorescently tagged proteins diffused throughout the cell160. 

Furthermore, some of these now soluble fluorescent proteins were passed to 

the daughter cells during cellular division, resulting in a decrease in the level of 

fluorescence after each division160.  Interestingly, by using a genetic mutant, 

dnaK, which prevented disaggregation, Mortier et al. were able to abolish the 

observed decrease in fluorescence upon cell division so that the fluorescent 

protein aggregates were retained by the old pole daughters upon cell division.   

 

Based on the above, there is evidence to show that protein aggregation can be 

a sign of cellular stress and may play a role in the formation of antibiotic 

persister and sleeper cells. Therefore, we hypothesised that by perturbing the 

level of intracellular stress (via the control of the production of exogenous 

proteins), we can manipulate the occurrence of protein aggregates within an E. 
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coli population. Furthermore, we hypothesised that the level of intracellular 

stress has an impact on the efficacy of treatment with antibiotics, ampicillin in 

this study. Therefore in order to manipulate the level of intracellular stress we 

used a collection of E. coli BW25113 transcriptional reporter strains170. For each 

gene, we could then use the transcript reads we previously reported171 to 

predict the additional cellular stress being exerted on the cell as a result of 

exogenous protein expression. Therefore by using strains with varying levels of 

fluorescence and transcriptional activity (as a proxy for cellular stress), we took 

our previously reported protocol that allows the detection and temporal tracking 

of single bacterium in a microfluidic device166 to investigate the relationship 

between intracellular stress, protein aggregation and antibiotic efficacy. We 

found that the percentage of cells within the population containing one or more 

visible aggregates increased with the expression of exogenous proteins, i.e. 

intracellular stress, and that these cells were more likely to survive exposure to 

ampicillin. Taken together our data suggest that intracellular stress favours both 

protein aggregation and the formation of antibiotic persister cells that have been 

linked to the recalcitrance of chronic infections and development of antibiotic 

resistance33,38,46. 

 

Materials and Methods 

 

Strains and culturing 

 

tnaC, pykF, ptsG, lon, aceB and ompC reporter strains from the E. coli MG1655 

transcriptional reporter library170 were purchased from Dharmacon (GE 

Healthcare). The plasmids were then extracted and transformed into chemically 

competent E. coli BW25113 strain, as this was the strain used for our previously 

reported transcriptomic analysis171, which was also purchased from Dharmacon 

(GE Healthcare). Overnight cultures were prepared by picking a single colony of 

E. coli BW25113 from a streak plate and growing it in 200 ml fresh LB medium 

(10 g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl, Melford) on a shaking 

incubator at 200 rpm at 37 °C for 17 hours. For pH assays, a parental strain 

harbouring pBAD TOPO-mCherry-pHluorin vector (Invitrogen) were kindly 

provided by the Summers group, Cambridge. Cultures were grown as above but 
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with additional chloramphenicol (25 µg/mL) supplementation for plasmid 

maintenance and arabinose (5 µg/mL) to induce the pBAD promoter. 

 

Microfluidic device fabrication 

 

The original mould of the mother machine microfluidic device was kindly 

provided by S. Jun8, whereas a detailed methodology for replicating and 

handling this device has been reported elsewhere166. Briefly, each microfluidic 

device was made by pouring a 9:1 (base:curing agent) polydimethylsiloxane 

(PDMS, Dow Corning) mixture onto the mould and curing it at 70 °C for 2 hours. 

The PDMS was then peeled from the mould, access holes for the fluidic tubing 

was punched and the PDMS chip was then irreversibly bonded to a glass 

coverslip as previously reported172. To prevent cell adhesion to the device 

surfaces, 2 l of a 50 mg/ml BSA solution was injected into the device and the 

device was incubated for one hour at 37 °C. 

 

Microfluidic assay 

 

An overnight culture was grown as described above. 10 ml of this overnight 

culture was centrifuged in a falcon tube (10 minutes at 3000 x g and 20 °C). The 

supernatant was filtered twice (Medical Millex-GS Filter, 0.22 m, Millipore 

Corp.) to extract spent LB. This spent LB was then used to re-suspend the 

bacteria to an O.D. of 50 at 595 nm. This highly concentrated bacterial 

suspension was then injected into the BSA functionalised microfluidic device 

and incubated at 37 °C for approximately 20 minutes or until the bacteria had 

sufficiently (approximately 2 bacteria per channel) entered the side channels. 

Fluorinated ethylene propylene (FEP) tubing (1/32”_0.0008”) were connected to 

the pre-punched inlet and outlet holes of the device and connected to a flow-

rate measuring device (Flow Unit S, Fluigent, Paris, France) and a waste 

collection cylinder, respectively. At the end of the incubation period, the device 

was mounted onto an inverted microscope (IX73 Olympus, Tokyo, Japan), the 

flow rate pump was controlled using MAESFLO software (Fluigent) and spent 

LB used to wash excess bacteria from the main channel using spent LB at 300 

L/h for 8 minutes. During this time window, the initial bright field and 

fluorescence images were acquired for between 50 and 67 imaging areas (each 
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area containing 23 lateral channels each hosting between one and three 

bacteria) of the microfluidic device, in order to image approximately 2000 

bacteria. All images were acquired using a 60×, 1.2 N.A. objective 

(UPLSAPO60XW, Olympus) and a sCMOS camera (Zyla 4.2, Andor, Belfast, 

UK). For the acquisition of fluorescence images the bacteria were exposed to 

the blue excitation band of a broad-spectrum LED (CoolLED pE300white, 

Andover, UK). The light intensity and exposure time were adjusted in order to 

maximise the signal to noise ratio; FITC filter with LED light intensity set at 20 % 

and exposure of 0.03s for tnaC, pykF and aceB, 20 % and 0.05s for ptsG and 

ompC, and 60 % and 0.05s exposure for lon.  

 

After acquiring the initial images, spent LB was changed to fresh LB containing 

ampicillin at 25×MIC (125 g ml-1) and flowed through at 300 L/h for 8 minutes 

before being reduced to 100 l/h for 3 hours, with images being taken hourly. 

After 3 hours, the medium was changed again to fresh LB medium and images 

continued to be taken on an hourly basis for a further 3 hours. As a result, 

during the first day of the assay, images were acquired prior to antibiotic 

exposure, for 3 hours during exposure to antibiotics and then for 3 hours after 

exposure. This allowed us to determine the phenotype of each cell in response 

to antibiotics and then extract its initial level of fluorescence.  The chip was left 

overnight, with fresh LB continuing flowing at 50 L/h and more images 

acquired the next morning after 21 hours of total regrowth. Finally, propidium 

iodide (PI, Thermo Fisher Scientific) was used to perform live/dead staining and 

one last set of images acquired in bright field and fluorescence using the TRITC 

filter (100% green LED intensity and 0.01s exposure). The entire assay was 

carried out at room temperature.  

 

Intracellular pH determination 

 

In order to measure the pH of each individual cell, we used arabinose to 

constitutively express a fused fluorescent protein in a parental strain harbouring 

pBAD TOPO-mCherry-pHluorin vector. As the expression of mCherry can be 

used to normalise by copy number, the ratio between the pH sensitive GFP 

(pHIuorin) and mCherry can then be used to determine intracellular pH. We 

applied the previously described microfluidic assay to identify persister and 
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VBNC cells prior to antibiotic exposure on this pH reporter strain. Once we 

determined each cells phenotype in response to antibiotic, we then extracted 

the GFP/mCherry fluorescence ratio. These ratios could then be converted to a 

pH value based on a known standard curve (Supp. Fig. S1).  

 

Briefly, we exposed the pH reporter strain to 50 µM Carbonyl cyanide m-

chlorophenyl hydrazone (CCCP) at 300 µL/h for 8 minutes and then at 100 µL/h 

for 20 minutes. The exposure to CCCP results in disruption of the cellular 

membrane and allows the intracellular pH to equalise to the pH of the medium. 

We then flowed PBS with differing pH levels (pH 6.5, 7.0, 7.5 and 8.0, 

respectively) through the device one at a time at 300 µL/h for 8 minutes and 

then 100 µL/h for 20 minutes. We acquired images of mCherry (TRITC filter, 5 

% green LED intensity and 0.03s exposure) and GFP (FITC filter, 20 % LED 

intensity and 0.03s exposure) at each pH and extracted the fluorescence 

intensity (see image and data analysis section below). The ratio of GFP to 

mCherry could then be determined for each cell and the mean ratio used to 

generate a standard curve (Supp. Fig. S1) when plotted against the known pH.  

 

Image and data analysis 

 

Image analysis was performed using our custom Python module (MMHelper) to 

extract cellular fluorescence intensities173. All data reported in GraphPad Prism 

7 represent mean and standard error of the mean of at least biological 

triplicates. Statistical significance was tested by unpaired t-test with Welch’s 

correction or two tailed Pearson’s correlation, respectively.  

 

Aggregates were clearly visible in mother machine images acquired in bright 

field. However, in order to ensure there was no human bias we randomly 

selected five bacteria that we had scored by eye as containing at least one or 

more visible aggregates and five cells we scored by eye as not containing a 

visible aggregate for each strain, respectively (Supp. Fig. S2). We then 

investigated the bright field pixel intensity for the cell profiles to quantitatively 

validate these cells were correctly identified as containing visible aggregates 

(Supp. Fig. S2). Briefly, using ImageJ we then drew a 5-pixel wide line along the 

length of the bacterium and extracted the brightness profile. As the aggregates 
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are primarily located at the poles, we then took the 10 most central pixels for 

each bacterium and used the average greyscale value to estimate a baseline 

value. This baseline was then subtracted and, as aggregates are visible as dark 

foci with lower pixel intensities, the brightness determined as the sum of at least 

three consecutive negative values.  This allowed for the exclusion of the centre 

of the bacterium as well as any spurious signal (less than 3 consecutive 

negative or positive values) 174,175. The results showed that for all cells with 

aggregates a trough in cumulative pixel intensity of between -545.6 and -1778.9 

was visible across all strains (red dashed line figure S2), whereas the 

cumulative intensity for cells without aggregates remained relatively constant 

throughout (black dashed line figure S2).  

 

Statistical analysis 

 

For comparisons of fluorescence intensities between antibiotic susceptible, 

persister and sleeper cells, respectively, statistical significance was tested using 

GraphPad Prism 8 by unpaired t test with Welch’s correction. Pearson's 

correlation, where r signifies the linear dependence of the variables (between -1 

and 1), was used to investigate the relationship between different variables; log 

values were used for transcript reads. In both analyses p ≤ 0.05 is *, p ≤ 0.01 is 

**, p ≤ 0.001 is *** and p ≤ 0.0001 is ****, respectively.  

 

Results 

 

Cellular stress favours protein aggregation 

 

Based on literature reports, protein aggregates have been shown to include 

aggregations of defunct or misfolded proteins153,154.  In this study, in the 

absence of external stressors, such as heat shock, we observed no aggregates 

in the wild type parental strain for a stationary phase E. coli culture after 17 h of 

growth in LB media (the conditions used throughout this report).  Although these 

results are consistent with previous reports for wild type E. coli, it is conceivable 

that these protein aggregates are still present in the parental strain but do not 

reach sizes which allow them to be visible175.  
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We used the expression of exogenous protein, as a result of fluorescence 

based transcriptional reporters (see methods), in order to introduce a well-

controlled cellular stress. Therefore, based on the evidence that protein 

aggregation can occur as a result of heterologous protein expression154, we 

hypothesised that the proportion of cells with visible aggregates within a 

population would increase with the expression of the gene being reported. With 

that in mind, we used microfluidics-microscopy (see Methods) to investigate the 

proportion of cells containing aggregates among populations of six different E. 

coli transcriptional reporter strains; tnaC, pykF, ptsG, lon, aceB and ompC170. 

We selected these strains because the associate genes cover a range of three 

orders of magnitude in transcript levels (from 78±18 for tnaC to 62,837 ± 10,090 

for aceB, Fig.1) in a stationary phase E. coli culture after 17 h of growth in LB 

media171 that is the inoculum injected in our microfluidic device. Furthermore, 

some of these genes have been previously associated with antibiotic efficacy. 

Specifically, tnaC is the precursor of the tna operon that catabolises tryptophan 

into pyruvate, ammonia and indole, and has been linked to antibiotic 

persistence35,83,88,166. pykF is a pyruvate kinase and has been linked to bacterial 

adaptation into different growth phenotypes, growing and non-growing, upon 

nutrient starvation23. ptsG is a glucose transporter which has been linked to 

heterogeneity in cellular metabolism14. lon is a protease whose involvement in 

persistence has been the centre of some debate157. aceB is involved in the 

glyoxylate shunt during growth on acetate23, which has previously been linked 

with changes in phenotypic heterogeneity14,171. ompC is one of the major outer 

membrane porins that allow β-lactams, such as ampicillin, to diffuse into the 

cell176. Figure 1 clearly shows a significant positive correlation (r = 0.99, p < 

0.0001 ****) between the measured number of transcriptional reads for each 

gene and the percentage of cells containing one or more aggregates that are 

visible using bright field microscopy in the corresponding reporter strain with a 

maximum of 4.40±1.50 % bacteria containing aggregates for aceB that 

exhibited the highest number of transcript reads (62,837±10,090).  
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Figure 1. The percentage of cells containing aggregates within a 

population correlates with the expression of exogenous proteins. 

Aggregates were clearly visible as dark foci using bright field microscopy (top 

right inset) and by a clear decrease in pixel intensity when analysing their 

cellular profile (see Supplementary Figure S1). We quantified the number of 

cells containing one or more protein aggregates across our 6 reporter strains 

and the parental wild type E. coli strain, comparing this to the number of 

transcriptional reads from an overnight (17h growth in LB media) stationary 

phase culture for each respective gene (Smith, Frontiers in Microbiology, 2018). 

We found the percentage of cells containing one or more aggregates was 

1.4±0.2 % in tnaC (n = 8273), 3.5±0.7 % in pykF (n = 8480), 3.2±1.0 % in ptsG 

(n = 8141), 3.5±0.3 % in lon (n = 6854), 4.3±0.2 % in ompC (n = 3159) and 

4.4±1.5 % in aceB (n = 5867), respectively. Interestingly, when we performed a 

linear regression (black dashed line) this showed a significant (r = 0.99, p < 

0.0001 ****) positive correlation determined using Pearsons correlation in 

GraphPad Prism. Whereby as the number of transcriptional reads increased, 

and therefore the additional expression of exogenous proteins, as did the 

percentage of cells containing one or more aggregates within the population. It 

is important to note, that the parental strain expressed no exogenous proteins 

and also displayed no aggregates (top left inset) so is located at the origin. 

Although some error bars are hidden by data points, all data points and error 

bars are representative of the mean and SEM of 3 biological replicate.  
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Bacteria containing aggregates have a lower GFP fluorescence than aggregate-

free bacteria 

For each reporter strain we then use our microfluidics-microscopy assay to 

measure and compare the GFP fluorescence of bacteria with no visible 

aggregates after 17 h of growth in LB media (Fig. 2; red boxes) and the 

corresponding bacteria displaying one or more aggregates (Fig. 2, blue boxes). 

The results showed that bacteria with aggregates displayed significantly lower 

fluorescence (p < 0.0001 ****) on average compared to the control cells in all of 

our reporter strains (Fig. 2). For instance, by dividing the mean fluorescence of 

cells without aggregates by the mean fluorescence of cells without visible 

aggregates, we determined that cells without aggregates were on average 

1.29±0.03 times more fluorescent for ptsG, 1.58±0.08 for lon, 2.82±0.08 for 

ompC, 4.89±0.08 for pykF, 6.40±0.09 for aceB and 9.80±0.13 for tnaC, 

respectively. 
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Figure 2. Cells with aggregates have significantly lower fluorescence than 

cells without aggregates. We split the bacterial populations into two 

phenotypes depending on if the cells contained visible aggregates (top bacteria 

in the inset in panel A) or not (bottom bacteria in the inset in panel A) using the 

same datasets as figure 2. We then compared the initial fluorescence intensities 

(a stationary phase culture after 17h of growth in LB) for the two subpopulations 

and found that bacteria containing aggregates (blue boxes) had significantly 

lower (p < 0.0001 ****) fluorescence than those that had no visible aggregates 

(red boxes) in all 6 of our reporter strains. Images were acquired after exposing 

bacteria to the blue excitation band of a broad-spectrum LED. The light intensity 

and exposure time were adjusted in order to maximise the signal to noise ratio; 

FITC filter with LED light intensity set at 20 % and exposure of 0.03s for tnaC, 

pykF and aceB, 20 % and 0.05s for ptsG and ompC, and 60 % and 0.05s 
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exposure for lon. Boxes represent the median and quartile range of each sub-

population, with whiskers showing the 10th and 90th percentile range. Statistical 

significance was determined in GraphPad Prism using unpaired t test with 

Welch’s correction. 

 

Persister and sleeper cells are more likely to contain protein aggregates 

 

Besides distinguishing between bacteria with or without protein aggregates at 

the beginning of the experiment (i.e. after 17 h of growth in LB media), our 

microfluidics-microscopy assay also allows us to dose the bacteria with an 

antibiotic, ampicillin in this study, and determine whether each bacteria is 

susceptible to the drug or can survive it by regrowing after drug removal, i.e. 

persister bacteria, or by remaining viable but non culturable after drug removal, 

i.e. sleeper cells. These combined capabilities allowed us to determine that the 

proportion of bacteria containing one or more aggregates prior to exposure to 

the antibiotic was significantly higher in the bacteria which were found to be 

persister or sleeper cells by the end of the microfluidics-microscopy experiment 

(Fig. 3). In fact, on average the susceptible sub-populations for all 6 

investigated reporter strains contained (2.3±0.2)% bacteria with visible 

aggregates before antibiotic exposure (Fig. 3; Susceptible). In comparison, on 

average the persister and sleeper sub-populations for all 6 investigated reporter 

strains contained (47.5±3.2)% and (70.3±3.4)% bacteria with visible aggregates 

before antibiotic exposure, respectively (Fig. 3; Persister and Sleeper). 

Specifically, in only the ompC (Fig. 3; blue diamonds) strain (11.3±1.3 %) did 

less than 30 % of the persister sub population have clearly visible aggregates, 

with the tnaC strain (Fig. 3; red circles) having the highest occurrence of 

bacteria with aggregates (75.2±6.3)% and the average across all strains being. 

Visible aggregates were even more prevalent in the sleeper subpopulations, 

with the lowest occurrence being in the ompC strain ((44.4±11.1)%, Fig. 3, blue 

diamonds)), the maximum in the aceB strain ((81.3 ± 4.1)%, Fig. 3, black hollow 

circles). In all of the strains except tnaC, the percentage of cells with visible 

aggregates was greater for the sleeper subpopulation compared to the persister 

subpopulation.  
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Figure 3. Sleeper and persister cells are more likely to contain aggregates. 

Using the same datasets from figure 2 and 3, we split the bacterial populations 

into three different phenotypes depending on their response to antibiotics (see 

Figure 1). We then determined the percentage of cells within each of these 

subpopulations that contained visible aggregates. The results clearly show that 

less than 5 % of susceptible cells contained aggregates in each of our 6 strains. 

In comparison, the tolerant subpopulations (persister and sleeper) had 

considerably higher percentage of cells with visible aggregates. In fact, when 

we calculated the mean and SEM values for each phenotype across all the 

strains (pink cross), on average 2.3±0.2% of susceptible cells contained one or 

more aggregates, compared to 47.5±3.2 % and 70.3±3.4 % for the persister 

and sleeper sub populations, respectively. Interestingly, there was no significant 

correlation between the percentage of cells containg aggregates within each 

phenotype and the number of transcriptional reads (data not shown).  Although 

some error bars are hidden by data points, data points for each strain represent 

the mean and SEM of 3 biological replicate. 

 

Cellular stress correlates with percentage of persister but not sleeper bacteria 

 

As expected susceptible cells made up the majority of the population in all of 
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(97.8±0.1)% having the lowest proportion of susceptible bacteria, respectively. 

Accordingly, also the percentage of the persister and sleeper subpopulations, 

varied depending on the strain, with two of the strains, tnaC and ptsG, having a 

higher percentage of sleeper bacteria, whereas the remaining four strains had a 

higher percentage of persister cells (Fig. 3). Therefore, we investigated if the 

relative distribution of the tolerant phenotypes was also a reflection of cellular 

stress. However, when we plotted the initial transcripts against each of the 

respective surviving phenotype percentages (Fig. 4A and 4B) we found a 

statistically significant correlation between log transcript reads and persister 

percentage (r = 0.75, p = 0.05, Fig. 4A) but no correlation with sleeper 

percentage (r = 0.57, p = 0.18, Fig. 4B), suggesting that the amount of cellular 

stress plays a role in the formation of persister bacteria.   
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Figure 4. The distribution of tolerant phenotypes is correlated to the level 

of transcriptional stress. We split the tolerant cells into two sub phenotypes 

depending on their ability to resuscitate upon removal of antibiotic (see figure 

1). We took the initial transcript reads for 6 reporter strains of stationary phase 

E. coli (Smith, Frontiers in Microbiology, 2018), as in figure 2, and then plotted it 

against the percentage of persister cells (A) and sleeper cells (B) within the 

entire population. We then performed a linear regression (represented by the 

dashed black line) and the results show that using Pearsons correlation the 

number of transcriptional reads significantly correlates (r = 0.76, p = 0.0483 *) 

with the distribution of persister cells (A). In comparison, sleeper cells (C) 

appeared to show a negative correlation, although this was not significant. All 

data points and error bars are representative of the mean and SEM of 3 

biological replicate.  
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Protein aggregates are more basic than the rest of the cell 

 

We then investigated bacterial pH both at the whole cell level and at the level of 

the protein aggregates. In order to do so, we used pHIuorin, a plasmid based 

fluorescent report of cellular pH 177. We extracted fluorescence intensities for 

both mCherry and GFP for the visible protein aggregates and the rest of the 

cell, respectively (see methods). We then determined the ratio of GFP to 

mCherry and used this to determine the pH intensity based on a standard curve 

(Supp. fig. 2). Interestingly, we found that protein aggregates were significantly 

more basic than the rest of the cell in all of the antibiotic phenotypes (Fig. 5). 

Briefly, the pH for susceptible cells was 6.93 ± 0.02 for the whole cell but 7.23 ± 

0.04 for the protein aggregates (p < 0.0001 ****, n = 30), for persister cells the 

whole cell pH was 6.96 ± 0.04 and 7.17 ± 0.08 for protein aggregates (p = 0.012 

*,  n = 30), and for sleeper cells the whole cell pH was 7.02 ± 0.04 compared to 

7.23 ± 0.05 for protein aggregates (p = 0.023 *, n = 30).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Dark foci have significantly higher pH than the rest of the cell. 

We used a fluorescence based pH reporter and performed the microfluidic 

antibiotic susceptibility assay described in the methods section. We then 

categorised the bacteria based on their susceptibility to the antibiotic ampicillin 

(figure 1). We determined the ratio of mCherry fluorescence, used to normalise 

the fused protein copy number, against the fluorescence of the pH sensitive 

pHIuorin GFP. Once the ratios had been calculated we were then able to 
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extrapolate the pH value based on the pre-determined standard curve 

(supplementary figure 2). We used this method to determine the pH of the dark 

foci (blue boxes), that can be assumed to be protein aggregations, and found 

them to be significantly lower than the remainder of the cell (red boxes) in 20 

cells for all 3 antibiotic response phenotypes; p < 0.0001 **** for susceptible, p 

= 0.0271 for persisters * and p = 0.0062 ** for sleepers. Boxes represent the 

median and quartile range of each sub-population, with whiskers showing the 

10th and 90th percentile range. Statistical significance was determined in 

GraphPad Prism using unpaired t test with Welch’s correction. 

 

  

Discussion 

 

Protein aggregates have been observed with fluorescence based microscopy 

using fluorescently tagged chaperones9,10. However, there is the possibility that 

the formation of aggregates in these circumstances is a result of the damage 

that comes from exposure to the strong light sources used to excite the 

fluorescence proteins or simply by limiting cellular resources as a result of the 

expression of these exogeneous fluorescent proteins178. This fluorescent 

tagging has been required, as to the best of our knowledge, only two papers 

have reported observing aggregates in E. coli cells in the absence of 

fluorescence probes to facilitate aggregate visualisation 10,94. However, only one 

of these was using bright field microscopy 94 and the other only observed using 

them using phase contrast after growing single cells in LB medium for 32 hours 

in a mother machine device (>150 generations)10. Carrio et al. used a strain of 

E. coli with a deletion mutation for the protease La and introduced a plasmid 

that expressed the model chimeric protein VP1LAC; resulting in reduced 

proteolytic activity and favouring the generation of large protein aggregates in 

almost all bacteria154.  Although we did not observe aggregates in the E. coli 

BW25113 parental strain, it is still conceivable that these aggregates are 

present but are simply not large enough to be observed without the use of 

fluorescent probes 175. However, we did observe aggregates in E. coli BW25113 

strains with plasmid-mediated expression of heterologous GFP (see Methods). 

We found that there was a variety in the occurrence of these aggregates 

depending on the expression of the gene being reported and hence of the GFP 
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being produced. This variation shows a significant positive correlation with the 

number of transcriptional reads of the gene in question and hence the level of 

added stress the cell is under (Fig. 1). Importantly, the aggregates we observed 

in our reporter strains were only dark foci in bright field and not fluorescent foci, 

further supporting the idea that these were aggregates of defunct proteins 

rather than of actively fluorescent GFP.  

 

Aggregates are known to form as a result of intracellular stress or toxicity and 

are formed by the clustering of multiple defunct proteins into hydrophobic 

bundles of protein11. The hydrophobic nature makes them difficult to be then 

broken down by proteases and their respective chaperones11. As a result, they 

often grow gradually in size and result in a steady depletion of the amino acid 

pool10,11. We propose this is the result of what is essentially a negative feedback 

loop (Supp. Fig. S3); whereby an increase in cellular stress (i.e. the expression 

of the exogenous protein GFP in our study) results in depletion of the amino 

acid pool, that in turn increases the amount of defunct proteins which aggregate 

and further decrease the amino acid pool (Supp. Fig. S3). On top of this, biased 

partitioning during division results in aggregates being concentrated in the old-

pole daughter cells, resulting in a gradual reduction in the growth rate of the 

older cells within the population9,10. Therefore, we also propose that the above 

illustrated negative feedback loop results in the level of dormancy increasing 

within cells with increased cellular stress, resulting in them moving towards the 

persister and sleeper states (Supp. Fig. S3). Furthermore, as a result of biased 

partitioning, we propose that this process is more prominent in the old-pole 

daughter cells within a population.  This would explain why we record a higher 

proportion of cells with protein aggregates in the persister subpopulation 

compared to the susceptible subpopulation and more still in the sleeper 

subpopulation (Fig. 3). This tentative explanation is supported by the fact that 

cells containing aggregates show significantly lower fluorescence (Fig. 2) and 

by the work by Bergmiller, et al. showing that biased partitioning of AcrAB-TolC, 

a multi drug efflux pump, results in old-pole daughter cells showing higher levels 

of efflux activity7. Furthermore, Govers et al. showed that cells inheriting an 

aggregate formed as a result of proteotoxic stress had a fitness advantage, 

relative to their isogenic kin, when exposed to a subsequent stress158. Finally, a 

series of studies showed that pre-stressed bacterial populations have a higher 
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proportion of bacteria surviving antibiotic treatment 35,61,63,64,179. For instance, 

Leung and Lévesque showed that alongside oxidative stress, heat shock and 

nutrient limiting conditions, persister levels to ofloxacin could be increased in S. 

mutans in response to acidic pH55. Similarly, Pu et al. showed that increasing 

cytoplasmic acidity correlated with formation of protein aggregates, although 

was not the singular reason94. Furthermore, Pu et al. only looked at the pH of 

the whole cell and how this correlated with the number of cells containing 

aggregates within the population94. Importantly, when we used the plasmid 

encoded fluorescent pH reporter pHIuorin177, the pH of our bacteria was 

consistent with those reported by Pu, et al.94 (data not shown). However, when 

we investigate the pH of the dark foci separately from the remainder of the cell, 

we found that dark foci were significantly more basic than the rest of the cell 

(Fig. 5). Furthermore, as the pH strain we used consists of a mCherry-pHluorin 

translational fusion protein controlled by the arabinose inducible pBAD 

promoter180, the bacteria in this strain were constitutively expressing exogenous 

proteins throughout the assays; this was reflected in the percentage of cells 

containing visible aggregates (59.3 ± 0.3 %). We therefore predicted that, based 

on our hypothesis (Supp. Fig. S3), that we should observe a relatively high 

percentage of cells surviving antibiotic exposure in the pH strain. As expected, 

the proportion of persister and sleeper cells (4.3 ± 0.7 % combined) was higher 

in this strain than in any of the transcriptional reporter strains (ompC strain had 

the highest at 2.23 ± 0.13 % combined), further supporting our hypothesis 

(Supp. Fig. S3).  

 

Conclusion 

 

We showed that in a stationary phase culture of E. coli, protein aggregates are 

not visible in the parental strain in the absence of external stressors. In contrast, 

we reported that when using fluorescence based transcriptional reporters, the 

expression of exogenous proteins (which reflects the expression of the gene 

being reported) positively correlates with the percentage of cells within the 

population containing one or more visible aggregates. Furthermore, we show 

that a higher percentage of cells within the persister and sleeper subpopulations 

contained one or more visible aggregates compared to their susceptible kin and 

that the pH of the aggregates is more alkaline when compared to that of the 
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entire cell. Taken together these findings shed new light on the nature and 

function of protein aggregates, a phenomenon that is being recognised to be 

ubiquitous in biology and that could have profound consequences on drug 

treatment. 
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5.3 Supplementary figures 
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Figure S1. Standard curve for pH analysis. We used an E. coli strain which 

contained a plasmid encoded fused translational protein mCherry-pHIuorin to 

investigate intracellular pH. As the fused protein allows mCherry fluorescence to 

be normalised by protein copy number whilst the pHIuorin (GFP) is pH 

sensitive, the mCherry/GFP ratio allows cellular pH to be determined. However, 

in order to do this, a standard curve is required to convert the ratio to pH. We 

used Carbonyl cyanide m-chlorophenyl hydrazine (CCCP) to disrupt the cellular 

membrane of E. coli cells within the microfluidic mother machine. We then 

exposed the bacteria to PBS with varying pH concentrations. We acquired 

images of mCherry (TRITC filter, 5 % green LED intensity and 0.03s exposure) 

and GFP (FITC filter, 20 % LED intensity and 0.03s exposure) and used 

MMHelper (Smith, Scientific Reports, 2019) to analyse 30 bacteria for each pH. 

The ratio of mCherry to GFP was then plotted against the known pH and a 

linear regression used to produce the above standard curve (dashed black 

line).Data points are mean and SEM of 30 cells for each pH value, error bars 

are included but are too small to be visible for all data points.  
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Figure S2. Quantitative validation of our approach for visually scoring 

cells containing protein aggregates. Using ImageJ we drew a 5 pixel wide 

line along the length of a bacterium and extracted the bright field intensity. We 

determined the background as the average intensity of the 10 centre most 

pixels and subtracted this from the remaining pixels. Moving along the length of 

the bacterium, if 3 or more consecutive values were negative (due to 

aggregates being dark foci – see cells with aggregates in insets) then the newly 

calculated background-subtracted intensities were added together else they 

were set to 0. We then randomly selected 5 cells that we scored as containing a 

protein aggregate by visual inspection (red dashed lines) and 5 cells that  we 

scored as not containing a protein aggregate by visual inspection (black dashed 

line) from each biological replicate experiment and plotted their bright field 

profiles against normalised length of the cell for each of the 6 reporter strains; 



[144] 
 

tnaC (A), pykF (B), ptsG (C), lon (D), ompC (E) and aceB (F). The resulting 

profiles clearly show that for all cells with aggregates a cumulative decrease in 

pixel intensity of at least 500 A.U is visible (red dashed lines) compared to the 

cells without aggregates (blacked dashed lines) which remain relatively 

constant throughout. Insets show a representative image of a cell with 

aggregates (red dashed line) and cell without aggregates (black dashed line) for 

each respective strain.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



[145] 
 

 
 

Figure S3. Increase in reporter strain expression levels result in an 

increase in protein aggregation, cellular stress and level of cellular 

dormancy. We propose a snowball effect for the formation of intracellular 

protein aggregates; whereby an increase in cellular stress results in the 

production of more non-viable proteins, these defunct proteins then aggregate 

and reduce the cellular amino acid pool, further increasing the level of cellular 

stress. We hypothesise that if the expression of a plasmid based fluorescent 

reporter is increased then this will result in a reduced amino acid pool, triggering 

the above cycle and increasing the snowball effect. Crucially, an increased level 

of cellular stress will result in an increased level of cellular dormancy and, as a 

result, the cells response to antibiotic exposure. This is consistent with the 

propososed dormancy continuum; whereby persister cells, cells that survive 

antibiotic exposure and are able to begin regrowth upon exposure to fresh 

nutrients, are more dormant than their susceptible kin, but are less dormant 

than sleeper cells, cells that require long and specific treatment to resuscitate 

after antibiotic exposure. However, we propose that there is a “sweet spot” on 

the continuum that allows sleeper cells to form; where the cells are more 

dormant than persister cells but have not sustained enough cellular damage to 

become non-viable.  
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5.4 Conclusion 
 

In this chapter I used the previously discussed high throughput protocol 

(chapters three and four, respectively) to investigate the relationship between 

the expression of plasmid based transcriptional reporters and the formation of 

visible protein aggregates. Furthermore, I investigated how the resulting 

additional stress that is applied to the cell affects the distribution of antibiotic 

tolerant phenotypes; persister and sleeper cells.  

In this paper, I determined the percentage of cells with visible protein 

aggregates in multiple E. coli strains that contained plasmid based 

transcriptional reporters. The genes chosen had either been previously linked to 

the persister or sleeper state, or were shown to be highly regulated using the 

transcriptomic based approach I discussed in chapter two. Importantly, these 

genes also exhibited a wide range of expression levels based on our results in 

chapter two, which allowed for the testing of our hypothesis. Therefore, I was 

able to use the expression of exogenous protein for each respective gene as a 

proxy for additional cellular stress. Using this approach, I showed that as the 

level of additional cellular stress increased, as did the proportion of cells within 

the population that exhibit visible protein aggregates.  

As discussed in this paper and in chapter one, protein aggregation causes a 

reduction in the cellular amino acid pool. As a result, the additional stress may 

also manifest as nutrient exhaustion, particularly with respect to amino acids. 

Therefore, given that metabolic stress has been linked to dormancy and the 

formation of persister and VBNC cells, we hypothesised that the added 

intracellular stress of the reporter strains may also affect the percentage of 

antibiotic persister and sleeper cells within the population. Using the same 

experimental data, I was able to categorise individual bacterium based on their 

antibiotic response. Interestingly, I found that as the levels of additional stress 

increased, a significant correlation could be observed with the total number of 

cells that survived antibiotic exposure. However, when investigated individually, 

I found that the correlation was also positive compared to the persister 

percentage, but showed no correlation with respect to the sleeper percentage. 

One potential explanation could be the existence of a “sweet spot” for the 

formation of sleeper cells, whereby too little stress they exhibit persister or 
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susceptible phenotypes but too much stress and they experience cell death and 

become unviable prior to antibiotic exposure. 

Protein aggregates have been linked to cellular diseases153 and aggregates that 

form as a result of cellular stress provided a fitness advantage to future 

lineages158. Therefore, based on our results and the fact aggregates have also 

been linked to cellular ageing9,10, we propose that cellular ageing within 

bacterial populations may be a memory mechanism by which the older cells 

within a population have a survival advantage during future exposure to 

exogenous stress, such as antibiotics; providing an exciting avenue for future 

research.  
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Chapter 6: Conclusions and Outlook 

6.1 Population level transcriptome and the need for single cell 
analysis 
 

In chapter two, we characterised the extracellular environment, in terms of pH 

and sugar availability, for a growing planktonic population of E. coli. Alongside 

this, we utilised antibiotic persister cell formation as a proxy to identify temporal 

phases where there was substantial changes in population heterogeneity. 

Furthermore, throughout this growth cycle we also investigated the population 

level transcriptome and identified highly regulated genes and pathways that 

coincided with these temporal phases. Therefore, this comprehensive dataset 

provides, for the first time, a series of well-defined time points, medium 

composition and potential pathways for further single cell analysis. In fact, we 

carried forward some of the genes identified within chapter two for single cell 

analysis during chapters three and five, respectively. On top of this, we 

investigated the transcriptomic dataset reported in chapter two for highly 

regulated genes and pathways during specific temporal windows. However, the 

dataset is freely available and there remains scope for further analysis. For 

instance, as E. coli is a commonly used model organism, the transcriptomic 

data could be used to support a wide range of experiments.  

Interestingly, we found the temporal phases where there were substantial 

changes in persister formation and, hence, population heterogeneity, were 

different depending on the type of antimicrobial used. Additionally, the temporal 

windows changed if these antimicrobials were supplied alongside fresh 

nutrients. However, the transcriptomic data which we acquired was reflective of 

the population mean and not necessarily of the persister populations 

themselves; highlighting the importance of further investigating population 

heterogeneity at the single cell level.  

Although persister cells had previously been investigated using microfluidics, to 

the best of my knowledge, prior to this thesis, no one had utilised microfluidics 

to investigate the VBNC phenotype. Therefore, the main aim of this thesis was 

to develop a high throughput microfluidic pipeline that would allow us to 

simultaneously investigate both persister and VBNC cells that are produced in 
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response to antibiotics within isogenic bacterial populations. This is particularly 

important, due to the hypothesis that they are part of one physiological 

continuum.  

To this end, I introduced our newly developed protocol in chapter three that 

utilised the pre-existing mother machine microfluidic device. This protocol is the 

first of its kind that allows the investigation of both VBNC and persister cells 

before, during and after exposure to antibiotics. 

6.2 The dormancy continuum and cellular ageing 
 

In chapter three we showed that, in the three strains used in the study, VBNC 

and persister cells showed no significant difference prior to drug exposure, 

supporting the hypothesis that they are part of one physiological continuum. In 

fact, the two phenotypes also showed similar fluorescence levels throughout 

antibiotic exposure, with the only obvious variation being in the reporter strain 

for the glucose specific permease, ptsG. In this strain, the average fluorescence 

of the VBNC population decreased faster and to a lower final level than tnaC; 

suggesting VBNC cells are more dormant than their persister kin. Similarly, after 

regrowth in the reporter strain for the multi drug efflux pump, tolC, the average 

fluorescence of the VBNC population was significantly higher than that of the 

persister population. This suggests that the VBNC population are potentially 

more damaged than persister cells and perhaps this is the reason they exhibit a 

higher level of dormancy.  

As a result, I investigated the relationship between persister cells, VBNC cells 

and cellular stress in chapter five. Using the expression of exogenous protein as 

a proxy, I showed that the combined fraction of VBNC and persister cells within 

a population increased with in an increase in cellular stress. Interestingly, when 

persister and VBNC cells were considered separately, a positive correlation was 

also observed between cellular stress and the persister fraction but there was 

no correlation with the VBNC fraction. This lack of correlation for the VBNC 

population suggests that perhaps a “sweet spot” exists, where the level of 

cellular stress is high enough that the cell enters the VBNC state but is not 

sufficient to cause cell death. Furthermore, in chapter five, I also identified that 

an increase in cellular stress correlated with an increase in the number of visible 
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protein aggregations within the population. Using this information, I investigated 

how these aggregates were distributed in persister and VBNC cells. I found that 

protein aggregates were rarely visible (on average 2.30 ± 0.16 %) in susceptible 

cells across all 6 of the reporter strains used in the study but were significantly 

higher in both the persister and VBNC populations, respectively; suggesting 

cells that survived antibiotic exposure were more stressed prior to antibiotic 

exposure than their susceptible kin. Adding to this, in all of the strains except 

tnaC, the percentage of cells with visible protein aggregates was higher in the 

VBNC population than the persister population. However, in tnaC, although the 

mean was greater in the persister population, it fell within the SEM range for the 

VBNC population. The fact that visible protein aggregates were more prominent 

in the VBNC population compared to the persister population, suggests that 

VBNC cells are more stressed than their persister kin prior to antibiotic 

exposure. Therefore we have provided further evidence that suggests VBNC 

cells are more stressed than their persister counterparts prior to antibiotic 

exposure and hypothesised the existence of a “sweet spot” with respect to 

cellular stress in which VBNC cells are able to form.  

On top of this, as discussed in chapter one and chapter five, protein aggregates 

have been suggested to be a sign of cellular ageing and reduced cellular growth 

rate, therefore it would be interesting to determine if VBNC and persister cells 

are the older cells within a population. In fact, the combination of the microfluidic 

protocol and MMHelper that I introduced in chapter three and four, respectively, 

would prove an excellent platform for investigating this. The age of individual 

cells could be determined by growing an isogenic bacterial population in the 

mother machine device for an extended period of time prior to antibiotic 

exposure. Then, by using the protocol discussed in chapter three, it would be 

possible to identify persister and VBNC cells and hence the relationship 

between cellular age and antibiotic survival.  

6.3 Identification of potential biomarkers 
 

Using the high throughput approach discussed in chapters three and four, we 

were able to identify that both persister and VBNC cells exhibited significantly 

lower fluorescence in a plasmid based reporter strain of the tna operon 
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precursor, tnaC.  As a result, in chapter three, we proposed that this is a 

potential biomarker that would allow the isolation and further analysis of 

persister and VBNC cells, prior to antibiotic exposure.  

The strain identified as potential biomarkers, tnaC, could now be used to isolate 

and investigate persister and VBNC cells using fluorescence activated cell 

sorting and transcriptional analysis. As mentioned above, all three of these 

strains were significantly different for both persister and VBNC cells with respect 

to their susceptible kin; however they were not significantly different from each 

other. Therefore, further screening is required in order to identify biomarkers 

that show significant difference between persisters and VBNC cells; this would 

then allow for this approach to be used to investigate the differences between 

persister and VBNC cells and help decipher the structure of the proposed 

physiological continuum.  

Development of a mathematical model to identify candidate genes for analysis 

in the mother machine has the potential to increase the throughput of this 

screening process. A potential solution to this would be through the analysis of 

fluorescence data for a bacterial population collected using a flow cytometer. 

The first step would be to take the reporter strains that we have analysed in the 

Mother Machine that showed significant difference between subpopulations (i.e. 

tnaC) and acquire flow cytometer data for their fluorescence. Then, by 

identifying small “peaks” in the fluorescence histograms we could attempt to 

correlate these to the subpopulation size and relative fluorescence for our 

respective antibiotic response phenotypes. Once a working model has been 

developed, it could be used to rapidly screen flow cytometer data on hundreds 

of genes to try and identify any which may contain similar significantly different 

subpopulations. 

As mentioned above, identification of these biomarkers is essential in allowing 

the further analysis and comparison of the three phenotypes (susceptible, 

persisters and VBNC) before exposure to antibiotics. One potential method for 

this would be by isolating the subpopulations based on the fluorescence 

biomarker using Fluorescence Activated Cell Sorting (FACS) and performing 

transcriptomic analysis. A similar approach was used by Shah, et al. in 2006 

when they sorted cells based on a transcriptional ribosomal reporter, after they 
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showed that dim cells consisted of a higher proportion of persister cells34. 

However, even though the persister fraction was higher, the dim cell population 

was still less than 40% persisters. Therefore, an important step of any isolation 

protocol would be to separately perform a survival assay on the isolated 

population to confirm a high proportion of the cells (i.e. > 80 %) were persister 

or VBNC cells, respectively. This would help to ensure any transcriptomic data 

is a more accurate reflection of the persister or VBNC phenotype.  

6.4 Adaptability of the protocol  
 
 

Throughout this thesis I have emphasised the capability of the microfluidic 

protocol we introduced in chapter three and chapter four for investigating 

antibiotic persister and VBNC cells. Due to the nature of the protocol and the 

fact that MMHelper (reported in chapter four) can be used for both bright field 

and phase contrast images, a wide variety of information can be gathered from 

an individual experiment. For instance, in chapter five I used information from 

the accompanying bright field images to identify cells that contained protein 

aggregates. Furthermore, another key attribute of MMhelper not requiring 

fluorescence for detection is that it allows the fluorescent channels to be utilised 

for reporting of biological factors; such as the transcriptional reporters used in 

chapter three and five, respectively. In fact, the number of fluorescent channels 

can be specified in MMhelper to allow the investigation of multiple fluorescent 

reporters simultaneously. 

6.4.1 Potential for investigating cellular pH 
 

In chapter five I used transcriptional activity as a proxy for cellular stress and 

showed it can be directly linked to an increase in the size of persister and VBNC 

subpopulations. Furthermore, in chapter two I identified temporal windows in the 

growth cycle of an E. coli population where the fraction of persister cells 

increased in response to antibiotics. Alongside this I showed that there were 

changes with respect to the nutritional environment and pH during the same 

temporal window; which was supported by changes in the population level 

expression of genes involved in metabolism. As a result, I investigated some of 

these genes using the single cell microfluidic pipeline developed in chapter 
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three and four, respectively. However, my analysis was limited to genes 

involved in metabolism, but the role of cellular pH in antibiotic survival has yet to 

be investigated. 

In chapter five I reported that cells that contained protein aggregates were 

significantly more likely to be persister of VBNC cells. We then used a bacterial 

strain containing an intracellular pH reporter, pHluorin, to show how protein 

aggregates had significantly more basic pH compared to the rest of the cells; 

further indicating the role of pH in the formation of persister in VBNC cells. 

Therefore, we are currently using this reporter strain along with the protocol I 

introduced in chapter three to investigate the cellular pH of cells before, during 

and after treatment, to determine if cellular pH is different for susceptible, 

persister and VBNC cells, respectively. Additionally, MMHelper can be used to 

analyse the multiple fluorescent channels which are required for pHluorin to 

provide an accurate pH measurement.   

6.5 Future development of the protocol and microfluidic setup 
 

In this thesis we introduced a high throughput protocol for investigating persister 

and VBNC cells simultaneously before, during and after exposure to antibiotics. 

In order to image the bacteria at sufficient time intervals, in this case every hour, 

the manual approach to taking the images meant we were limited to 

investigating approximately 2000-3000 bacteria per experiment. Therefore, we 

would need a persister fraction of approximately 0.005 in order to gain sufficient 

persisters to make a significant comparison. As a result, the single cell results 

we discussed with respect to fluorescent biomarkers and visible protein 

aggregates are only a reflection of the population at stationary phase (after 17h 

of growth), when the fraction of persister cells in the population is at its highest 

(see chapter 2). It is important in the future to be perform a similar assay on 

bacteria during different stages of the growth cycle, however this would require 

a further increase in throughput. 

 

One way in which the throughput could be further increased would be to 

increase the regularity of channels with in the microfluidic device, resulting in 

more channels, and hence more bacteria, per image. However this would still 

probably not produce a sufficient increase. Therefore, perhaps the best option 



[154] 
 

would be to automate the image acquiring set up. In fact, due to the modular 

nature of MMHelper several of its functions would be perfectly suited to help 

achieve this goal. For instance, by acquiring images in the z-direction, the 

detection algorithm for the channels could be used to quickly filter out any that 

would fail and help to narrow down the correct z-setting to provide the best 

focus. Furthermore, the detection of the main channel and side channels could 

be used to extract information on any drift in the y-direction to ensure the 

channels always stayed central in the field of view. Interestingly, automation of 

imaging would not only lend itself to increasing the amount of bacteria being 

imaged, but would also allow an increase in how regularly images could be 

acquired, particularly between 6 and 24 hours. Furthermore, MMHelper could 

potentially be integrated in to the automation so the results become almost 

instant.  

 

As mentioned above, one way to improve the throughput would be to increase 

the number of channels within the device. However, perhaps a better option 

would be to have two devices “interlinked”; a second upside down Mother 

Machine on the same chip with the channels in between the first Mother 

Machine – although this would not directly improve the throughput of an 

individual experiment, it would allow for a more direct comparison between 

control and experimental assays by ensuring the environmental conditions of 

the chip (i.e. temperature) are the same. 

6.6 Future development of MMHelper 
 

MMhelper is not simply limited to our microfluidic protocol, for instance I showed 

in chapter four that it can be used to analyse images acquired in multiple 

imaging modalities as well as in a variety of mother machine devices and 

experimental set ups. In fact, within chapter four I use MMHelper to analyse 4 

bright field datasets and 3 phase contrast data sets. Furthermore, of these 7 

different data sets, 3 of them had slightly different mother machine designs with 

respect to the shape of their channels and one contained a different bacterial 

strain; this again providing different detection challenges for MMHelper. Despite 

this, MMHelper outperformed the only other fully automated python software, 

Molyso, with respect to bacteria detection in all of the available datasets, 
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including the example dataset provide by the authors of Molyso themselves. 

Adding to this, to date MMHelper remains the only freely available fully 

automated image analysis tool for Mother Machine images acquired in bright 

field.  

As discussed above, MMHelper has been developed as an automated image 

analysis tool for Mother Machine images and has been shown to be the most 

efficient and accurate freely available tool for the academic community. 

However, an important feature of MMhelper that is easy to overlook, is the 

modular nature of the pipeline, which could easily be adapted for the analysis of 

images acquired in other microfluidic devices, for example microfluidic 

chemostat devices. 

It is also important to remember that software development is a continuous 

process. Therefore, further changes and improvements to the algorithm maybe 

required for further releases. Furthermore, although MMHelper was shown to 

outperform other available analysis tools, it is still not 100 % accurate due to the 

variation between individual cells, with respect to cell shape, and differences in 

experimental setups both within a lab and between labs. In fact, it is unlikely 

that MMHelper, or any other automated platform, will very be 100 % accurate. 

One way to counteract this would be to develop the software to allow interactive 

editing of the detection results.  

6.7 Concluding remarks 
 

To summarise, in this thesis I have presented a newly developed high 

throughput microfluidic protocol for investigating phenotypic heterogeneity, in 

particular with respect to antibiotic response, in isogenic microbial populations; 

including the only freely available Mother Machine image analysis pipeline that 

is capable of analysing images acquired in multiple imaging modalities. Using 

transcriptomic analysis I then determined highly regulated genes and pathways 

in temporal windows in which the persister fraction was enriched and used the 

previously mentioned microfluidic protocol to investigate the role of these genes 

during the formation of persister and VBNC cells. The results of these 

experiments suggest that the fluorescence levels of some of the strains can be 

used as biomarkers for isolation of VBNC and persister cells prior to antibiotic 
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exposure; paving the way for further analysis of these important phenotypes. 

Finally, I then used the protocol to look at the relationship between persisters 

and VBNC cells, finding that protein aggregates were more prominent in the 

persister and VBNC cells compared to their susceptible kin. Furthermore, we 

have proposed a negative feedback loop that results in the formation of protein 

aggregates and how this may, in turn, affect the formation of persister and 

sleeper cells.  
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