
Environmental Research Letters

LETTER • OPEN ACCESS

Attribution of human-induced dynamical and
thermodynamical contributions in extreme weather
events
To cite this article: R Vautard et al 2016 Environ. Res. Lett. 11 114009

 

View the article online for updates and enhancements.

Related content
Attribution of the July–August 2013 heat
event in Central and Eastern China to
anthropogenic greenhouse gas emissions
Shuangmei Ma, Tianjun Zhou, Dáithí A
Stone et al.

-

Attribution of extreme precipitation in the
lower reaches of the Yangtze River during
May 2016
Chunxiang Li, Qinhua Tian, Rong Yu et al.

-

Real-time extreme weather event
attribution with forecast seasonal SSTs
K Haustein, F E L Otto, P Uhe et al.

-

Recent citations
Tracking Iberian heatwaves from a new
perspective
Antonio Sánchez-Benítez et al

-

Michael F. Wehner et al-

Human influence on European winter wind
storms such as those of January 2018
Robert Vautard et al

-

This content was downloaded from IP address 151.170.240.200 on 06/12/2019 at 13:40

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/266992021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/1748-9326/11/11/114009
http://iopscience.iop.org/article/10.1088/1748-9326/aa69d2
http://iopscience.iop.org/article/10.1088/1748-9326/aa69d2
http://iopscience.iop.org/article/10.1088/1748-9326/aa69d2
http://iopscience.iop.org/article/10.1088/1748-9326/aa9691
http://iopscience.iop.org/article/10.1088/1748-9326/aa9691
http://iopscience.iop.org/article/10.1088/1748-9326/aa9691
http://iopscience.iop.org/article/10.1088/1748-9326/11/6/064006
http://iopscience.iop.org/article/10.1088/1748-9326/11/6/064006
http://dx.doi.org/10.1016/j.wace.2019.100238
http://dx.doi.org/10.1016/j.wace.2019.100238
http://dx.doi.org/10.1007/978-3-030-02402-4_12
http://dx.doi.org/10.1007/978-3-030-02402-4_12
http://dx.doi.org/10.5194/esd-10-271-2019
http://dx.doi.org/10.5194/esd-10-271-2019


Environ. Res. Lett. 11 (2016) 114009 doi:10.1088/1748-9326/11/11/114009

LETTER

Attribution of human-induced dynamical and thermodynamical
contributions in extreme weather events

RVautard1,6, PYiou1, FOtto2, P Stott3, NChristidis3, G J vanOldenborgh4 andNSchaller2,5

1 LSCE/IPSL, Laboratoire CEA/CNRS/UVSQ&Université Paris-Saclay, Orme desMerisiers, F-91191Gif sur Yvette CEDEX, France
2 Environmental Change Institute, University ofOxford, South Parks Road,OxfordOX1 3QY,UK
3 UKMetOfficeHadley Centre, FitzRoyRoad, Exeter EX1 3PB,UK
4 KoninklijkNederlandsMeteorologisch Instituut, 3730AEDeBilt, TheNetherlands
5 Department of Physics, Atmospheric Oceanic andPlanetary Physics, University ofOxford,OxfordOX1 3PU,UK
6 Author towhomany correspondence should be addressed.

Keywords: event attribution, extreme events, climate change, extreme precipitation

Abstract
Wepresent a newmethod that allows a separation of the attribution of human influence in extreme
events into changes in atmospheric flows and changes in other processes. Assuming twodata sets of
model simulations or observations representing a natural, or ‘counter-factual’ climate, and the actual,
or ‘factual’ climate, we showhowflow analogs used across data sets can provide quantitative estimates
of each contribution to the changes in probabilities of extreme events.We apply thismethod to the
extreme January precipitation amounts in SouthernUK such aswere observed in thewinter of 2013/
2014.Using large ensembles of an atmosphericmodel forced by factual and counterfactual sea surface
temperatures, we demonstrate that about a third of the increase in January precipitation amounts can
be attributed to changes inweather circulation patterns and two thirds of the increase to
thermodynamic changes. Thismethod can be generalized tomany classes of events and regions and
provides, in the above case study, similar results to those obtained in Schaller et al (2016Nat. Clim.
Change 6 627–34)whoused a simple circulation index, describing only a local feature of the
circulation, as in othermethods using circulation indices (vanUlden and vanOldenborgh 2006Atmos.
Chem. Phys. 6 863–81).

1. Introduction

Every extreme weather event is unique and the result
of the interplay between specific atmospheric
dynamics (large-scale flows) and other physical pro-
cesses. For instance, large-scale persisting anticyclonic
and stagnant air conditions are necessary for the
development of summer heat waves. This provides
high radiation heating of the ground and allows for the
accumulation of heat over a period of several days to
weeks. However the heat build-up during such condi-
tions strongly depends on the state of soil moisture
(Seneviratne et al 2010, Quesada et al 2012). In the
mid-latitudes cold spells in winter are usually gener-
ated by blocking anticyclones (Rex 1950) leading to
strong radiative cooling of the Earth surface in the
absence of clouds and strong meridional circulations.
Snow cover, and its interplay with radiation,

modulates temperatures (Shongwe et al 2007, Orsolini
et al 2013). For heavy precipitation events both the
large-scale flow conditions (in particular sustained
zonal flow in Europe) and the thermodynamic capa-
city of the atmosphere to hold water are necessary
causes of the event.

Human-induced climate change will likely act on
all these processes by modifying, on the one hand,
large-scale flows, and on the other handmany physical
processes such as the thermodynamic increase of
water vapor, which will be respectively be referred to
as ‘dynamical’ and ‘thermodynamical’ changes in the
following. In the past decade, a number of methods to
detect and attribute a human influence in the change
of odds of extreme events have been developed (see
Stott et al 2016 for a review). However methods gen-
erally focused on assessing the overall human imprint
on the probabilities of extremes but not attempted to
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assess the individual contributions through the driv-
ing processes separately. In particular, detection of
changes in large-scale circulation inducing changes in
the frequency of occurrence of extreme events is a
challenge due to the weak signal of climate change in
flows compared to natural variability in flows. This
issue has only been addressed in a handful of very
recent studies. For instance, van Haren et al (2013)
looked at the circulation patterns associated with
extreme winter precipitation in the Rhine basin and
found that these have become more frequent. Horton
et al (2015) showed that an increasing frequency of
summer anticyclonic conditions have probably
increased the number of heat waves, but could hardly
find a signal in the winter season but over Central/
Western Asia. In a recent model study, Schaller et al
(2016) showed that a human-induced increase of per-
sisting low sea-level pressure (SLP) North West of
Scotland has probably increased the probability of
heavy precipitation in the Southern UK such as wit-
nessed in the winter 2013/2014. The influence of
changes in large-scale circulation on several climate
variables was evidenced by van Ulden and van Old-
enborgh (2006) and Vautard and Yiou (2009), but
extreme events were not considered in these studies.

By contrast, the influence of anthropogenic cli-
mate change on the thermodynamic component of
extremes has been shown to have altered the frequency
and magnitude of extreme weather events in a few
more instances. By conditioning on the large-scale
flow Yiou et al (2007) and Cattiaux et al (2009) showed
how warm the fall and winter of 2006/2007 was com-
pared to previous decades in similar flows, and how an
increase in sea surface temperatures (SST)with a simi-
lar atmospheric flow increases such autumn warmth.
Similarly, Cattiaux et al (2010) showed that the cold
winter of 2009–2010 was actually warmer than expec-
ted during the second half of the 20th century, given
the negative record of North-Atlantic Oscillation
index. Again conditioning on the flow, Yiou and Cat-
tiaux (2014) and Christidis and Stott (2015) showed
that in a climate without human influence, flows
encountered along the stormy winter of 2013–2014
would have led to slightly weaker extreme precipita-
tion amounts. They also showed a weak signal in the
increase of occurrence of the sustained southerly flows
that were part of the cause of the large amounts. To
our knowledge the study of Schaller et al (2016) is the
only one comprehensively assessing the overall change
in the odds of extreme precipitation while also asses-
sing the relative contribution of a change in the large-
scale flow and the change in thermodynamics. How-
ever the method used an index for circulations that
was tailored to the case (the monthly mean sea level
pressure at a carefully selected point), and described
one specific feature of the flow, which was shown to be
sensitive to the exact SST patterns (Haustein
et al 2016). This calls for a more general method that
would be applicable to other areas and types extreme

events also, and would account for more flow
characteristics.

Building on this specific case study we here
develop a generic methodology to detect and attribute
dynamical and thermodynamical contributions to
changes in the probabilities of extreme events, due to
changes in external forcings. This method generalizes
the analysis of Schaller et al (2016). The approach uses
the ‘flow analog’ methodology, which was initially
developed for a number of meteorological problems
and limited observational records (e.g. weather pre-
dictability Lorenz 1969; downscaling Zorita and Von
Storch 1999). Applied to detection problems, flow
analogs were first used by Yiou et al (2007) for thermo-
dynamical changes and Vautard and Yiou (2009) for
dynamical changes, without developed formalism.

2.Generalmethodology

Current event attribution schemes consider a one-
dimensional climate variable or index x characterizing
the extreme event. This can be precipitation or
temperature or a more complex index, including
impact indicators such as river run-off or wet-bulb
temperature. It is characterized over a certain tem-
poral and spatial scale. In the example of the extreme
rain amount of January 2014 developed by Schaller
et al (2016), x is the monthly rainfall amount averaged
over Southern UK Let us consider the ‘extreme event’
or the ‘class of extreme events’ as defined by ‘x
exceeding a certain threshold x ’.0 Over the same time
scale, the large-scale atmospheric flow F can be
characterized by mean SLP or the 500 hPa geopoten-
tial height (Z500) field over a region which is
characterizing the large scale weather pattern over the
area of the extreme event. In previous studies over
Europe (Yiou et al 2007, Cattiaux et al 2010), for
instance, the Euro-Atlantic (30–65N, 80W–30E)
regionwas selected. In this study, we focus on a smaller
atmospheric region, used in the framework of the
EURO-CORDEXproject (Jacob et al 2014).

The relation between x and the flow is not unequi-
vocal, but similar flows lead to a similar probability
distributions of x, which can strongly deviate from the
climatological distribution.Wewill call hereafter these
probabilities the ‘flow-conditioned probabilities’,
bearing in mind that these depend on the definition of
the flow. For instance, van Ulden and vanOldenborgh
(2006) showed how the PDFs of monthly mean temp-
erature and precipitation in the Netherlands depend
on the circulation characteristics. Christidis and Stott
(2015) showed that the type of flows encountered dur-
ing Winter 2013/2014 increased the probability of
large amounts of precipitation in Southern UK
(defined by DJF precipitation over Southern UK
exceeding a threshold corresponding to a 1-in-10 yr
event estimated with DJF rainfall data since 1948/49)
by a factor of 8 relative to climatology. Similarly,
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anticyclonic summer flows generally lead to a shifted
temperature distribution, leading to an increased
probability of exceeding a high temperature threshold
relative to climatology in summer and low tempera-
tures in winter. Here, as in previous articles (e.g. Cat-
tiaux et al 2010), we calculate the flow-conditioned
probabilities by counting empirically the frequency,
among similar flows, of those leading to an excee-
dance. The similarity—or analogy—offlows is defined
in twoways here: flow clusters orflow analogs.

The general methodology aims at decomposing
the changes in probabilities of exceeding a threshold
for x between two different ‘worlds’ representing the
factual world with greenhouse gas and aerosol con-
centrations as observed today and a counterfactual
world with the anthropogenic forcings removed. To
estimate how changes in the flows alone have influ-
enced exceedance probabilities, the key concept is to
combine the counterfactual distribution of flows with
the factual flow-conditioned probabilities, and to
compare it with the combination of factual distribu-
tion of flows with factual flow-conditioned prob-
abilities. This requires that one can calculate the
factual flow-conditioned probability for each counter-
factual flow. A main assumption here is therefore that
we can find good analogs of each counter-factual flow
in the factual set of flows. This is a reasonable assump-
tion precisely because of the comparably small anthro-
pogenic signal on the large-scale flow. To detect
possible changes on the atmospheric circulation in the
first place large ensembles of simulations and
advanced statistics are necessary. If the two worlds
were drastically different in obvious ways, then the
exercise of detection and attributionwould be trivial.

We now show how these concepts unfold using
two similarity definitions, the first one (flow clusters)
being conceptually simpler but less general than the
second (analogs) for operational use.

2.1. Flow clusters
A simple way to define flow similarity is through
gathering flows into a small numberK of fixed clusters
F1, F2,K, FK, or ‘weather regimes’ (MoandGhil1987,
Michelangeli et al1995) according to a metric. The
flow-conditioned probabilities of x are then calculated
as fixed within a given cluster assuming that all flows
within the cluster lead to identical distributions of x.
The climatological probability >( )P x xo of x
exceeding threshold xo can be calculated as the average
of the probability conditional on each specific cluster
weighted by the cluster frequency:

å> = >
=

( ) ( ∣ ) ( ) ( )P x x P x x F P F , 1o
k

K

o k k
1

where >( ∣ )P x x Fo k are the individual flow-condi-
tioned probabilities for the extreme event defined by
exceeding threshold x ,o i.e. >( ∣ )P x x Fo k is the
probability of exceeding xo in cluster F ,k with ( )P Fk

being the probability of theflow falling in cluster Fk.

Following the above principles, we assume that the
factual and counterfactual worlds have the same clus-
ters, however with potentially different probabilities of
occurrence. Thus, all probabilities in equation (1) can
be different in the two different ensembles represent-
ing the factual world:

å> = >
=

( ) ( ∣ ) ( ) ( )P x x P x x F P F 2o
k

K

o k kf
1

f f

and the counterfactual world that might have been
with anthropogenic drivers removed:

å> = >
=

( ) ( ∣ ) ( ) ( )P x x P x x F P F . 3o
k

K

o k kc
1

c c

Since we assume that cluster types are the same in both
worlds and that the probability of an extreme is
constant within each cluster (but different in factual
and counterfactual worlds), dynamical changes are
exclusively due to changes in probabilities of occur-
rence of each flow type between the two cases, ( )P Fkf

and ( )P F .kc The dynamical contribution of climate
change on the threshold exceedance probability can be
measured by replacing the factual with the counter-
factual cluster occurrence probabilities in (2) and
subtracting it from (2):

åD > = >

-
=

( ) ( ∣ )

( ( ) ( ))
( )P x x P x x F

P F P F. .

4o
k

K

o k

k k

dyn
1

f

f c

Similarly, effects of changes in other than dynamical
processes, which will be called here ‘thermodynamical
changes contribution’, can be estimated as:

åD > = >

- >
=

( ) ( ( ∣ )

( ∣ )) ( )
( )P x x P x x F

P x x F P F. .

5o
k

K

o k

o k k

therm
1

f

c f

Note that both contributions do not necessarily add
up to the overall probability change > -( )P x xof

>( )P x xoc due to remaining cross-terms:

å

> - > = D >

+ D > + >

- > -
=

( ) ( ) ( )

( ) ( ( ∣ )

( ∣ )) ( ( ) ( ))

( )

P x x P x x P x x

P x x P x x F

P x x F P F P F. .

6

o o o

o
k

K

o k

o k k k

f c dyn

therm
1

f

c c f

However these terms should be of second order and
small if changes between factual and counter-factual
are small as assumed. If not, this would mean either a
drastic change inflows or in thermodynamics or both.

Figure 1 illustrates the above concepts from a
synthetic example with four flow clusters. In Clusters
#1 and#3 the probability of occurrence are equal in
the two different ensembles, while Cluster #2 dom-
inates in the counterfactual climate and Cluster #4
dominates in the factual climate. In Clusters #1 and
#4, thermodynamical changes induce a higher prob-
ability of exceedance than in Clusters #2 and #3
where there is no thermodynamical change. In this
example Cluster #3 does not undergo any change
between the two climates, Cluster#1 changes are due
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to thermodynamics only, Cluster#2 changes are due
to dynamics only, and in Cluster#4, the probability of
extreme events becomes higher both due to dynamics
and thermodynamics. The overall probability of
exceedance is higher in the factual climate, due to all
contributions.

2.2. Flow analogs
In the above case, flow-conditioned probabilities are
uniform within each flow cluster. While a few clusters
can group ‘analog’ flows with grossly similar features,
they aggregate weather patterns that can have quite
different details, potentially hindering an accurate
characterization of flow-conditioned event probabil-
ities. To make flow-conditioned probabilities more
specific to each flow F, >( ∣ )P x x Fo is now estimated
by selecting a set of neighboring analogs Fk of F and
empirically counting the frequency of x values corresp-
onding to these analogs, exceeding the threshold in this
set, and dividing by the number of analogsK:

> =( ∣ ) ( )P x x F K K , 7o a

where K is the number of closest flow analogs of F,
using for instance the Euclidian distance among SLP
fields over a specified domain, and Ka the number of
analogs for which the corresponding value of x
exceeds the threshold xo. This analog approach in a
sense generalizes the weather regime approach, con-
sidering one regime per distinct flow, instead of a small
finite number of clusters comprising different flows.
The remaining assumption is that the flow F is not so
exceptional that there are no good analogs.

We now apply this to the attribution simulations
as above. Assuming that one has at hand ensembles of
Nf factual and Nc counterfactual simulated flows and
climate indices x, and the ensembles are large enough,
the overall probability of exceedance can be estimated
as the average of individual flow-conditioned

probabilities in each of the two ensembles (factual and
counterfactual):

å> = >
=

( ) ( ∣ ) ( )P x x
N

P x x F
1

8o
n

N

o nf
f 1

f f,

f

and

å> = >
=

( ) ( ∣ ) ( )P x x
N

P x x F
1

, 9o
n

N

o nc
c 1

c c,

c

where F nf, and F nc, are the individual flows in the
factual and counterfactual climate data sets.

To isolate the contribution of flow changes in pas-
sing from counterfactual to factual worlds, an ‘inter-
mediate’ world can be conceptually designed where
flows are the counterfactual flows and x is in the fac-
tual world.

Dynamical changes are estimated by subtracting
from equation (8) the result obtained by using coun-
terfactual flows, instead of factual flows, and searching
their analogs in the factualflow ensemble:

å

å

> = >

- >

=

=

( ) ( ∣ )

( ∣ )
( )

P x x
N

P x x F

N
P x x F

1

1
.

10

o
n

N

o n

n

N

o n

dyn
f 1

f f,

c 1
f c,

f

c

Symmetrically, effects of thermodynamical changes
are estimated by subtracting from equation (8) the
result of using factual flows, and searching their
counterfactual analogs to estimate the flow-condi-
tioned probabilities:

å

å

> = >

- >

=

=

( ) ( ∣ )

( ∣ )
( )

P x x
N

P x x F

N
P x x F

1

1
.

11

o
n

N

o n

n

N

o n

therm
f 1

f f,

f 1
c f,

f

f

Note that we took here the factual world as the
reference but equations similar to equations (10) and

Figure 1. Synthetic example of discreteflow analysis of dynamical and thermodynamical of changes. Individual flows are represented
by dots. Each point represents aflow in the ‘phase space’, clustered in one of the four regimes (the quadrants). All elements from
factual climate are displayed in red color and counterfactual climate in blue color. The conditional PDFs are shown aswell as the
threshold xo. See text for interpretation.
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(11) could have been derived taking the counterfactual
climate as a reference (equation (9)). Tests showed that
this would have given similar, albeit not equal results
in the example below. However we prefer to have the
factual climate as a reference as observation exist and
uncertainty is therefore better controlled.

3. The example of extreme precipitation
amount of January 2014 in SouthernUK

We apply the methods described above to a very large
ensembles of atmosphere-only general circulation
simulations to disentangle dynamic and thermody-
namic contributions of the increase in extreme
January precipitation investigated in Schaller et al
(2016). The experimental set-up uses about 17 000
model simulations of possible European winters in
2013/2014 for the factual climate, conditioned on the
observed SST, and more than 100 000 simulations
from 11 ensembles for the counterfactual climate,
using observed SST patterns with the anthropogenic
signal removed. Simulations use the factual and
counterfactual climates were carried out using the
HadAM3P atmospheric model, driven by prescribed
SST and sea ice, and with a regional zoom over Europe
and the eastern North Atlantic Ocean, at a spatial
resolution of about 50 km. Initial conditions are
perturbed slightly for each ensemble member on
December 1. The patterns of warming removed from
the SSTs in the counterfactual ensembles were calcu-
lated from 11 different CMIP5 model simulations
were calculated by difference between the historical
all-forcing simulations and the natural-forcing simu-
lations. These ensembles were selected in order to
account for uncertainty of the ocean warming attribu-
table to the atmospheric composition.

Schaller et al (2016) estimated the contribution of
flow changes by resampling factual monthly amounts
of precipitation in bins of a very simple flow index, the
mean SLP value North-West of Scotland [20W; 60N]
(the point with strongest correlation with South UK
precipitation), to match the distribution of counter-
factual values of the index. This method is a simplified
form of the method of van Haren et al (2013), and
gives an easy way to compute estimation of the dyna-
mical contribution to the overall change in the like-
lihood of high precipitation to occur but is strongly
dependent on the exact MSLP response to SST pat-
terns as shown by Haustein et al (2016). The method
however only accounts for one local feature of the
flow. Here we apply the formalism introduced above
which takes into account the full SLP field over the
regional area simulated by the HadAM3P model and
hence is less dependent on the exact index chosen.
Flows are characterized by monthly mean SLP fields
taken over the regional domain (NE Atlantic and
Europe), and the climate index is the monthly

precipitation amount over Southern UK as in Schaller
et al (2016).

In figure 2(a), the two exceedance probability dis-
tributions >( )P x x ,of >( )P x x ,oc calculated from
analogues and equations (8) and (9) are displayed for
only one of the 11 ensembles (calculated from the
GFDL-CM3model), in the form of a return value ver-
sus return period diagram. In each case, a constant
number of analogs (50)was used to estimate flow-con-
ditioned probabilities in equations (8) and (9). Results
are quite insensitive to the exact number of analog
flows as shown below.

For this specific ensemble, the probability of a one-
in-100-year event in the factual world is about 20%
less without human influence. About half of this
decrease is due to dynamical changes only, as obtained
by replacing factual flows by counterfactual flows but
using the same conditional probabilities given the
flows (equation (10)). Thus in a climate with counter-
factual dynamical structures and factual thermo-
dynamics the probability of extreme precipitation
amount is about 10% less than in the factual climate.

The estimation of the exceedance probabilities
>( )P x xof and >( )P x xoc were calculated from

equations (8) and (9) using analogs but can also be
directly calculated by counting the number of excee-
dances in the two ensembles. Results are also shown in
figure 2(a) (dotted red and blue curves). Direct estima-
tions slightly differ (by about 5%–10%) from analog
estimations, a fact that can be explained by the imper-
fect nature offlow analogs.

The average results from the 11 ensembles are
shown in figure 2(b). For one-in-100-year events, we
find that human influence induces an average increase
of about 40% of the probability of extreme January
precipitation amount in Southern UK, or equivalently
that the risk is reduced by about 30% without human
influence relative to the actual world. A climate with
factual thermodynamics and counterfactual flows
would have about 10% less extremes than the factual
climate, explaining about a third of the human influ-
ence. Thermodynamical changes explain the other
two thirds of the changes (figure 2(b)), as obtained by
searching analogs of factual flows in the counterfactual
simulations set.

We found different results when using the flow
cluster method as described in equations (2)–(5). In
this case the flow clustering method is based on daily
SLP over the North-Atlantic as described in Schaller
et al (2016), providing four weather types as in pre-
vious studies (Michelangeli et al 1995). For details of
the method and cluster results the reader is referred to
(Schaller et al 2016). Each daily flow of each simulation
was given a cluster number, andmonthly flow clusters
were defined as the most populated daily cluster in the
month. The average contribution of dynamical chan-
ges is much weaker (see figures 2(b) and (d)). This is
not surprising as the flow-conditioned probabilities
are constant within each cluster, having thousands of
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different flows, while only the 50 best analogs are
selected with the analog method. This makes the flow-
conditioned probabilities (thermodynamics) much
less flow specific. In addition, the wettest regimes (AR
and ZO, see figure 2(d)), have opposite frequency
changes from factual to counterfactual worlds
(figure 2(d), legend). Note in particular that thewettest
regime, ZO is slightly more frequent in the counter-
factual than in the factual climate. This may seem con-
tradictory with the Schaller et al (2016) finding of
more frequent very low pressure values at [60W; 20N]
(see their figure 4(c)). The discrepancy relies on the
definitions of the flow, more specific in the pressure
index case.

The relative dynamical and thermodynamical
contributions, calculated in%as

> > - >( ) ( ( ) ( ))P x x P x x P x x100. o o odyn f c

and

> > - >( ) ( ( ) ( ))P x x P x x P x x100. o o otherm f c

using equations (10) and (11) are shown as a function
of the precipitation amount threshold in figure 3(a).
We find that the dynamical contribution decreases for

more extreme precipitations, but the significance of
this trend is hard to estimate. Notice that the two
contributions almost add up to 100%, which results
from similar considerations as those for equation (6).
This confirms the validity of our assumption of not-
too-different worlds, at least for this example.

In order to test the robustness of the results to the
parameters of the method we reproduced figure 3(a)
but changing (i) the number of analogs and (ii) the dis-
tance tomeasure analogy of flows. The number of ana-
logs was decreased to 10 (figure 3(b)) and increased to
500 (figure 3(c)) instead of 50. Instead of the ‘flat’
Euclidian distance, a distance with spatial weights pro-
portional to the square of the correlation between
monthly precipitation amounts and SLP was used in
order to optimize the relation between atmospheric
circulation and precipitation (figure 3(d)). The average
results are quite insensitive to these methodological
changes, showing the robustness of the approach. In
each case, the change in large-scale dynamical flow
explain a fraction between 20% and 50%of the change
in the probability of extreme precipitation amount,
decreasing as a function of precipitation intensity. The

Figure 2.Top left (a): return values as a function of return periods for the probabilities of exceedance >( )P x xof (red solid),
>( )P x xoc (blue solid), and the probabilities obtained by replacing factual by counterfactual flowswhile keeping the factualflow-

conditioned probabilities (orange solid) and vice versa (factualflowswith counterfactual flow-conditioned probabilities, green solid)
for one of the counterfactual ensemble of simulations.More than 17 000winters were simulated for the factual climate andmore than
15 000 simulations for the counterfactual climate. 5%–95% ranges on probabilities (red and blue shading) are calculated by the
probability  -( )p p n2 1 , where n is the number of degrees of freedom, taken here as the number of independent simulations, p
is the exceeance probability, and bounds are then transformed into return period. Bottom left (b): same as top left but averages of
probabilities across the 11 ensembles is taken for the counterfactual climate. Right panel (c): same as (b) but using the flow cluster
method; right bottompanel (d):flow-conditioned probabilities obtained for eachweather regime (cluster). For this panel, factual:
solid lines; counterfactual: dashed lines;flow regime names, and their occurrence frequencies in each set of simulations are indicated
in the legend.
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trend toward a larger contribution of thermodynamics
formore extreme cases is found in all experiments.

4.Discussion

We have presented two methods for disentangling the
dynamical and thermodynamical contributions of
changes in the likelihood of occurrence of extreme
weather events due to external drivers within the
framework of probabilistic extreme event attribution.
The first method uses a classification of weather types
and estimates separately changes in cluster frequency
and conditional probability of extreme events within
each cluster and combines them to estimate the
dynamical and thermodynamical contributions to
attributed changes between ensembles of factual and
counterfactual climate simulations. The other method
estimates flow-conditioned extreme event probabil-
ities using analogs of individual flows simulated in
factual or in counterfactual ensembles. When applied
to extreme precipitations in SouthernUK, we find that
about a third of the change in risk is attributable to
atmospheric flow changes, using the analog method.

Despite a very different and more general method, we
found results similar to those of Schaller et al (2016).
The method developed here accounts for the multi-
dimensional nature of the flow. The results obtained
using a few clusters are found to be different, with a
lower dynamical contribution, which can be explained
by the loose characterization of flows using only a few
clusters.

Thismethod calls for a number of further develop-
ments and applications, as well as an evaluation for
different types of extreme events. Here we used only
model data presented in large ensembles. Using obser-
vations, instead, is more difficult due to the much
more limited number of samples. However previous
studies using flow analogs (see e.g. Cattiaux et al 2010)
showed that such application should be possible. Fac-
tual and counterfactual data sets can be represented by
analyzing different time slices in the observation data
sets. Sufficiently accurate reanalyses or observational
data sets are now available since the middle of the last
century, allowing the split into two 30 year long peri-
ods. The difference between factual and counter-
factual climates in this case cannot be directly

Figure 3. (a)Cumulated dynamical and thermodynamical contributions, in%of the difference between factual and counterfactual
overall probabilities. (b) Same as (a) for experiments where the parameters of themethod are changed: left panel: 10 best analogs
instead of 50; (c) same as in (a)with 500 best analogs instead of 50; (d) same as in (a) but with a change in the distance used to identify
the 50 best analogs. The distance is weighted by the square of the pointwise correlation between themonthly precipitation and the
SLP.
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interpreted as human influence, as many other pro-
cesses (such as long-term natural variability) enter into
play during this periods. While monthly or seasonal
analogs such as calculated here are not possible due to
insufficient number of samples, shorter events could
be studied. Other types of extremes can also be investi-
gated. Such applications are currently being developed
such as for the attribution of the extremely warm win-
ter of 2015.

The method developed here is quite generic and
not designed to study only the attribution of human
influence on climate change. The separation of factual
and counterfactual ensembles can also be done on the
basis of other external drivers (e.g. SST anomalies, El
Niño years, different aerosol forcings). In principle it
can also be used to analyse other indices than classical
climate variables, or even impact indices.

While one can expect the method to be applicable
in theory to both extratropical and tropical extreme
phenomena, it is however less clear how results can be
interpreted for tropical phenomena such as extreme
precipitations or even heat waves. In the tropics, flows
are very much influenced themselves by thermo-
dynamical conditions so the interpretation of the
dynamical/thermodynamical split should account
for this.

It is important to stress that the method applies to
the attribution of ‘classes of events’, where the
observed event is used to define the class of events,
often identified as exceedance of a threshold (e.g.,
Rahmstorf and Coumou 2011 for the Russian heat-
wave 2010), and not attribution studies of specific
events (e.g., Dole et al 2011 for the Russian heatwave
2010). Similar to the majority of attribution studies
(e.g. Herring et al 2015), the definition of the event or
class of events in our study does not include other
parameters than the meteorological variable causing
the impacts with the SST anomaly being the only con-
ditioning factor here. If other framings of event attri-
bution studies are considered such as the event being
defined as the conjunction of an impacting variable
together with the flow itself, or other variables (e.g.,
Hannart et al 2015) themethodology would need to be
extended to such cases.

The method of disentangling the dynamical and
thermodynamical contributions introduced here aims
at producing rather fundamental elements for explain-
ing themechanismsof climate change.However, detail-
ing the processes involved in human influence on
climate is always attractive for the public. Provided
available observations, or pre-calculated model simula-
tions can be used in near-real time, calculations per-
formed here can easily be automated and applied to
provide explanations of weather events and their links
to climate change in a time frame of a few days after the
events, making it possible to provide scientific evidence
while the event is discussed in themedia.

Acknowledgments

This study was conducted in the framework of the
EUCLEIA (EUropean Climate and weather Events:
Interpretation and Attribution) project under the
European Union’s Seventh Framework Programme
[FP7/2007-2013] under grant agreement n° 607085’.
It was also supported by the French Ministry of
ecology within the framework of the ‘EXTREMO-
SCOPE’ project. P Yiouwas also supported by the ERC
GrantNo. 338965-A2C2.

References

Cattiaux J, Vautard R, CassouC, Yiou P,Masson‐Delmotte V and
Codron F 2010Winter 2010 in Europe: a cold extreme in a
warming climateGeophys. Res. Lett. 37 L20704

Cattiaux J, Vautard R andYiou P 2009Origins of the extremely
warmEuropean fall of 2006Geophys. Res. Lett. 36 L06713

Christidis N and Stott P A 2015 Extreme rainfall in theUnited
Kingdomduringwinter 2013/14: the role of atmospheric
circulation and climate changeBull. Am.Meteorol. Soc. 96
S46–50

Dole R,HoerlingM, Perlwitz J, Eischeid J, Pegion P, ZhangT and
MurrayD 2011Was there a basis for anticipating the 2010
Russian heat wave?Geophys. Res. Lett. 38 L06702

Hannart A, Pearl J, Otto F E L,Naveau P andGhilM2015Causal
counterfactual theory for the attribution ofweather and
climate-related eventsBull. Am.Meteorol. Soc. (doi: 10.1175/
BAMS-D-14-00034.1)

HausteinK,Otto F E L, Uhe P, SchallerN, AllenMR,Hermanson L,
Christidis N,McLean P andCullenH2016Real-time
extremeweather event attributionwith forecast seasonal SSTs
Environ. Res. Lett. 11 064006

Herring SC,HoerlingMP,Kossin J P, Peterson TC and Scott PA
2015 Explaining extreme events of 2014 from a climate
perspectiveBull. Am.Meteorol. Soc. 96 S1–172

HortonDE, JohnsonNC, SinghD, SwainDL, RajaratnamB and
DiffenbaughNS 2015Contribution of changes in
atmospheric circulation patterns to extreme temperature
trendsNature 522 465–9

JacobD et al 2014 EURO-CORDEX: newhigh-resolution climate
change projections for European impact researchReg.
Environ. Change 14 563–78

Lorenz EN1969Atmospheric predictability as revealed by naturally
occurring analogues J. Atmos. Sci. 26 636–46

Michelangeli P A,Vautard R and Legras B 1995Weather regimes:
recurrence and quasi stationarity J. Atmos. Sci. 52 1237–56

MoKC andGhilM1987 Statistics and dynamics of persistent
anomalies J. Atmos. Sci. 44 877–902

Orsolini Y J, SenanR, BalsamoG,Doblas-Reyes F J, Vitart F,
Weisheimer A, CarrascoA andBenestad RE 2013 Impact of
snow initialization on sub-seasonal forecastsClim. Dyn. 41
1969–82

Quesada B, Vautard R, Yiou P,HirschiM and Seneviratne S I 2012
Asymmetric European summer heat predictability fromwet
and dry southernwinters and springsNat. Clim. Change 2
736–41

Rahmstorf S andCoumouD2011 Increase of extreme events in a
warmingworldProc. Natl Acad. Sci. 108 17905–9

RexDF 1950 Blocking action in themiddle troposphere and its
effect upon regional climateTellus 2 275–301

SchallerN et al 2016Human influence on climate in the 2014
Southern Englandwinter floods and their impactsNat. Clim.
Change 6 627–34

Seneviratne S I, Corti T,Davin E L,HirschiM, Jaeger E B,
Lehner I andTeulingA J 2010 Investigating soilmoisture–
climate interactions in a changing climate: a review Earth-Sci.
Rev. 99 125–61

8

Environ. Res. Lett. 11 (2016) 114009

http://dx.doi.org/10.1029/2010GL044613
http://dx.doi.org/10.1029/2009GL037339
http://dx.doi.org/10.1175/BAMS-D-15-00094.1
http://dx.doi.org/10.1175/BAMS-D-15-00094.1
http://dx.doi.org/10.1175/BAMS-D-15-00094.1
http://dx.doi.org/10.1175/BAMS-D-15-00094.1
http://dx.doi.org/10.1029/2010GL046582
http://dx.doi.org/ 10.1175/BAMS-D-14-00034.1
http://dx.doi.org/ 10.1175/BAMS-D-14-00034.1
http://dx.doi.org/10.1088/1748-9326/11/6/064006
http://dx.doi.org/10.1038/nature14550
http://dx.doi.org/10.1038/nature14550
http://dx.doi.org/10.1038/nature14550
http://dx.doi.org/10.1007/s10113-013-0499-2
http://dx.doi.org/10.1007/s10113-013-0499-2
http://dx.doi.org/10.1007/s10113-013-0499-2
http://dx.doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1987)044<0877:SADOPA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1987)044<0877:SADOPA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1987)044<0877:SADOPA>2.0.CO;2
http://dx.doi.org/10.1007/s00382-013-1782-0
http://dx.doi.org/10.1007/s00382-013-1782-0
http://dx.doi.org/10.1007/s00382-013-1782-0
http://dx.doi.org/10.1007/s00382-013-1782-0
http://dx.doi.org/10.1038/nclimate1536
http://dx.doi.org/10.1038/nclimate1536
http://dx.doi.org/10.1038/nclimate1536
http://dx.doi.org/10.1038/nclimate1536
http://dx.doi.org/10.1073/pnas.1101766108
http://dx.doi.org/10.1073/pnas.1101766108
http://dx.doi.org/10.1073/pnas.1101766108
http://dx.doi.org/10.1111/j.2153-3490.1950.tb00339.x
http://dx.doi.org/10.1111/j.2153-3490.1950.tb00339.x
http://dx.doi.org/10.1111/j.2153-3490.1950.tb00339.x
http://dx.doi.org/10.1038/nclimate2927
http://dx.doi.org/10.1038/nclimate2927
http://dx.doi.org/10.1038/nclimate2927
http://dx.doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1016/j.earscirev.2010.02.004


ShongweME, FerroCA, CoelhoCA and Jan vanOldenborghG
2007 Predictability of cold spring seasons in EuropeMon.
Weather Rev. 135 4185–201

Stott P et al 2016Attribution of extreme eventsWIRESClim. Change
7 23–41

vanHaren R, vanOldenborghG J, LenderinkG andHazelegerW
2013 Evaluation ofmodeled changes in extreme precipitation
in Europe and the Rhine basinEnviron. Res. Lett. 8 014053

vanUldenAP and vanOldenborghG J 2006 Large-scale
atmospheric circulation biases and changes in global climate
model simulations and their importance for climate change
inCentral EuropeAtmos. Chem. Phys. 6 863–81

Vautard R andYiou P 2009Control of recent European surface
climate change by atmospheric flowGeophys. Res. Lett. 36

Yiou P andCattiaux J 2014Contribution of atmospheric circulation
towet Southern Europeanwinter of 2013Bull. Am.Meteorol.
Soc. 95 S66–9

Yiou P, VautardR,Naveau P andCassouC2007 Inconsistency
between atmospheric dynamics and temperatures during the
exceptional 2006/2007 fall/winter and recent warming in
EuropeGeophys. Res. Lett. 34

Zorita E andVon StorchH1999The analogmethod as a simple
statistical downscaling technique: comparisonwithmore
complicatedmethods J. Clim. 12 2474–89

9

Environ. Res. Lett. 11 (2016) 114009

http://dx.doi.org/10.1175/2007MWR2094.1
http://dx.doi.org/10.1175/2007MWR2094.1
http://dx.doi.org/10.1175/2007MWR2094.1
http://dx.doi.org/10.1002/wcc.380
http://dx.doi.org/10.1002/wcc.380
http://dx.doi.org/10.1002/wcc.380
http://dx.doi.org/10.1088/1748-9326/8/1/014053
http://dx.doi.org/10.5194/acp-6-863-2006
http://dx.doi.org/10.5194/acp-6-863-2006
http://dx.doi.org/10.5194/acp-6-863-2006
http://dx.doi.org/10.1029/2009GL040480
http://dx.doi.org/10.1029/2007GL031981
http://dx.doi.org/10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2

	1. Introduction
	2. General methodology
	2.1. Flow clusters
	2.2. Flow analogs

	3. The example of extreme precipitation amount of January 2014 in Southern UK
	4. Discussion
	Acknowledgments
	References



