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1. INTRODUCTION 

Biomass burning is the second largest global 

source of anthropogenic aerosols, and South 

America is one of the major source regions. In the 

dry season, the atmosphere of the Amazon basin 

features a remarkable haze, with layers containing 

high loadings of smoke. Aerosols with different 

degrees of ageing, are encountered in the 

boundary layer and the free troposphere. The 

South American Biomass Burning Analysis 

(SAMBBA) was an intensive observation 

campaign in September-October 2012 that 

involved measurements of the Amazonian 

atmosphere using the Facility for Airborne 

Measurements (FAAM) BAe-146 research 

aircraft. 

2. LIDAR OBSERVATIONS 

Twenty research flights were carried out from 

Porto Velho, Brazil, totaling 65 flying hours. A 

large range of conditions were sampled, from very 

low aerosol concentrations in pristine areas to 

large quantities of smoke within fresh plumes. 

The aircraft carried a nadir-pointing elastic 

backscatter lidar, operating at 355 nm. In situ 

probes sampled particle size distributions and gas-

phase chemistry. Six flights have been selected 

that span a 2400 km wide area extending East-

West across Brazil along a latitude of 

approximately 10°S. The lidar data presented here 

have a vertical resolution of 45 m and an 

integration time of 1 min (corresponding to a 9 

km footprint).  From these flights, 334 lidar 

profiles have been reviewed individually, and 

analysed. 

Processing has undergone a double iteration, to 

firstly to determine the lidar ratio (extinction-to-

backscatter ratio), and subsequently to estimate 

the aerosol extinction coefficient. The lidar ratio 

determination is based on iterating the retrieval 

method detailed in the next paragraph, until a 

good match to the overlying Rayleigh scattering 

layer is obtained (see e.g. Ref. [1]). A single value 

of the lidar ratio (constant with height) is thus 

obtained for each profile. It is then further 

averaged over all profiles in order to achieve a 

single lidar ratio for the campaign. The lidar ratio 

deduced from the lidar profiles using this 

methodology was found to be 73 ± 6 sr
-1

, and is 

compatible with Ref. [2–5].  

The determination of the aerosol extinction 

coefficient has followed Ref. [6]. This is a variant 

of the Fernald–Klett method [7–8], where the 

reference is taken within an aerosol layer. This 

permits using the stable (inward) solution in the 

unfavourable geometry represented by a nadir-

looking lidar. Very large uncertainties (50-100%) 

exist near the surface, but they are quickly 

damped when moving upwards  (< 20% above 2 

km). 

3. LIDAR RATIO ESTIMATED FROM IN 

SITU MEASUREMENTS  

The lidar ratio obtained from the lidar profiles has 

been compared to estimates derived from the Mie 

scattering theory, using the particle size-

distribution from the optical particle counters. Fig. 

1(a) shows the campaign-mean size-distribution, 

and Fig. 1(b) shows the resulting lidar ratio as a 

function of the real and imaginary parts of the 

reftractive index. 
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Fig. 2 Extinction coefficient evaluated by lidar for 27 September 2012 (top) and predictions with the UM. 
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