Ambros Gleixner Stephen J. Maher Benjamin Müller João Pedro Pedroso

## Exact Methods for Recursive Circle Packing

This report has been published in Annals of Operations Research. Please cite as
Gleixner et al., Price-and-verify: a new algorithm for recursive circle packing using Dantzig-Wolfe decomposition. Annals of Operations Research, 2018, DOI:10.1007/s10479-018-3115-5

Zuse Institute Berlin
Takustrasse 7
D-14195 Berlin-Dahlem
Telefon: 030-84185-0
Telefax: 030-84185-125
e-mail: bibliothek@zib.de
URL: http://www.zib.de
ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

# Exact Methods for Recursive Circle Packing 

Ambros Gleixner*<br>Stephen J. Maher*<br>João Pedro Pedroso ${ }^{\dagger}$

Benjamin Müller*

January 2, 2019


#### Abstract

Packing rings into a minimum number of rectangles is an optimization problem which appears naturally in the logistics operations of the tube industry. It encompasses two major difficulties, namely the positioning of rings in rectangles and the recursive packing of rings into other rings. This problem is known as the Recursive Circle Packing Problem (RCPP). We present the first dedicated method for solving RCPP that provides strong dual bounds based on an exact Dantzig-Wolfe reformulation of a nonconvex mixed-integer nonlinear programming formulation. The key idea of this reformulation is to break symmetry on each recursion level by enumerating one-level packings, i.e., packings of circles into other circles, and by dynamically generating packings of circles into rectangles. We use column generation techniques to design a "price-and-verify" algorithm that solves this reformulation to global optimality. Extensive computational experiments on a large test set show that our method not only computes tight dual bounds, but often produces primal solutions better than those computed by heuristics from the literature.


## 1 Introduction

Packing problems appear naturally in a wide range of real-world applications. They contain two major difficulties. First, complex geometric objects need to be selected, grouped, and packed into other objects, e.g., warehouses, containers, or parcels. Second, these objects need to be packed in a dense, non-overlapping way and, depending on the application, respect some physical constraints. Modeling packing problems mathematically often leads to nonconvex mixed-integer nonlinear programs (MINLPs). Solving them to global optimality is a challenging task for state-of-the-art MINLP solvers. In this paper, we will study exact algorithms for solving a particularly complex version involving the recursive packing of 2 -dimensional rings. This variant has realworld applications in the tube industry.

The Recursive Circle Packing Problem (RCPP) has been introduced recently by Pedroso et al. [25]. The objective of RCPP is to select a minimum number of rectangles of the same size such that a given set of rings can be packed into these rectangles in a non-overlapping way. A ring is characterized by an internal and an external radius. Rings can be put recursively into larger ones or directly into a rectangle. A set of rings packed into a rectangle is called a feasible packing if and only if all rings lie within the boundary of the rectangle and do not intersect each other. Figure 1 gives two examples of a feasible packing.

[^0]

Figure 1: Two feasible packings of rings into rectangles.

Pedroso et al. [25] present a nonconvex MINLP formulation for RCPP. The key idea of the developed MINLP is to use binary variables in order to indicate whether a ring is packed inside another larger ring or directly into a rectangle. Due to a large number of binary variables and nonconvex quadratic constraints, the model is not of practical relevance and can only be used to solve very small instances. However, the authors present a well-performing local search heuristic to find good feasible solutions.

The purpose of this article is to present the first exact column generation algorithm for RCPP based on a Dantzig-Wolfe decomposition, for which, so far, only heuristics exist. The new method is able to solve small- and medium-size instances to global optimality and computes good feasible solutions and tight dual bounds for larger ones. We first develop a reformulation, which is similar to the classical reformulation for the Cutting Stock Problem [14], however, featuring nonlinear and nonconvex sub-problems. This formulation breaks the symmetry between equivalent rectangles. As a second step, we combine this reformulation with an enumeration scheme for patterns that are characterized by rings packed inside other rings. Such patterns only allow for a one-level recursion and break the symmetry between rings with the same internal and external radius in each rectangle. Finally, we present how to solve the resulting reformulation with a column generation algorithm.

Finally, we present how to solve the resulting reformulation with a specialized column generation algorithm that we call price-and-verify. The algorithm does not only generate new patterns but also verifies patterns that are found during the enumeration scheme dynamically, i.e., only when required for solving the continuous relaxation of the reformulation.

## 2 Background

The problem of finding dense packings of geometric objects has a rich history that goes back to Kepler's Conjecture in 1611, which has been proven recently by Hales et al. [16]. Packing identical or diverse objects into different geometries like circles, rectangles, and polygons remains a relevant topic and has been the focus of much research during the last decades. The survey by Hifi and M'Hallah [17] reviews the most relevant results for packing 2- and 3-dimensional spheres into regions in the Euclidean space. Applications, heuristics, and exact strategies of packing arbitrarily sized circles into a container are presented by Castillo et al. [4]. Costa et al. [7] use a spatial branch-and-bound algorithm to find good feasible solutions for the case of packing identical circles. They propose different symmetry-breaking constraints to tighten the convex relaxation and improve the success rate of local nonlinear programming algorithms.

Closely related to packing problems are plate-cutting problems, in which convex objects, e.g., circles, rectangles, or polygons, are cut from different convex geometries [9]. Modeling these problems leads typically to nonlinear programs, for which exact mathematical programming solutions are described by Kallrath [20]. Minimizing the volume of a box for an overlap-free placement of
ellipsoids was studied by Kallrath [21]. His closed, non-convex nonlinear programming formulation uses the entries of the rotation matrix as variables and can be used to get feasible solutions for instances with up to 100 ellipsoids.

The general type of the problem finds application in the tube industry, where shipping costs represent a large fraction of the total costs of product delivery. Tubes will be cut to the same length of the container in which they may be shipped. In order to reduce idle space inside containers, smaller tubes might be placed inside larger ones. Packing tubes as densely as possible reduces the total number of containers needed to deliver all tubes and thus has a large impact on the total cost.

RCPP is a generalization of the well-known, $\mathcal{N} \mathcal{P}$-hard [23, ?] Circle Packing Problem (CPP) and therefore is also $\mathcal{N} \mathcal{P}$-hard. Reducing an instance of CPP to RCPP can be done by setting all internal radii to zero, i.e., by forbidding to pack rings into larger rings. Typically, problems like RCPP contain multiple sources of symmetry. Any permutation of rectangles, i.e., relabeling rectangles, constitutes an equivalent solution to RCPP. Even worse, there is also considerable symmetry inside a rectangle. First, rotating or reflecting a rectangle gives an equivalent rectangle since both contain the same set of rings. Second, two rings with same internal and external radius can be exchanged arbitrarily inside a rectangle, again resulting in an equivalent rectangle packing.

One possible way to break the symmetry of RCPP is to add symmetry-breaking constraints, which have been frequently used for scheduling problems, e.g., lot-sizing problems [19]. An alternative approach is the use of decomposition techniques. These techniques aggregate identical sub-problems in order to reduce symmetry and typically strengthen the relaxation of the initial formulation. A well-known decomposition technique is the Dantzig-Wolfe decomposition [13]. It is an algorithm to decompose Linear Programs (LPs) into a master and, in general, several sub-problems. Column generation is used with this decomposition to improve the solvability of large-scale linear programs. Embedded in a branch-and-bound algorithm, it can be used to solve mixed-integer linear programs (MILPs), e.g., bin packing [33], two dimensional bin packing [26], cutting stock [14, 15], multi-stage cutting stock [?], and many other problems. Fortz et al. [11] applied a Dantzig-Wolfe decomposition to a stochastic network design problem with a convex nonlinear objective function. While most implementations of Dantzig-Wolfe are problem-specific, a number of frameworks have been implemented for automatically applying a Dantzig-Wolfe decomposition to a compact MILP formulation, see [3, 12, 27].

In this paper we apply a Dantzig-Wolfe decomposition to an MINLP formulation of RCPP and present the first exact solution method that is able to solve practically relevant instances. The rest of the paper is organized as follows. In Section 3, we introduce basic notation and discuss the limitations of a compact MINLP formulation for RCPP. Section 4 presents a first Dantzig-Wolfe decomposition of the MINLP formulation. After introducing the concept of circular and rectangular patterns, we extend the formulation from Section 4 in Section 5 to our final formulation for RCPP. Afterwards, we present a column generation algorithm to solve this formulation, which uses an enumeration scheme introduced in Section 6.1. Section 6.2 shows how to prove valid dual and primal bounds, even when difficult sub-problems cannot be solved to optimality. Finally, in Section 7, we analyze the performance of our method on a large test set containing 800 synthetic instances and nine real-world instances from the tube industry. Section 8 gives concluding remarks.

## 3 Problem Statement

Consider a set $\mathcal{T}:=\{1, \ldots, T\}$ for $T$ different types of rings and an infinite number of rectangles. In what follows, we consider each rectangle to be of size $W \in \mathbb{R}_{+}$times $H \in \mathbb{R}_{+}$and to be placed
in the Euclidean plane such that the corners are $(0,0),(0, W),(H, 0)$, and $(W, H)$.
For each ring type $t \in \mathcal{T}$ we are given an internal radius $r_{t} \in \mathbb{R}_{+}$and an external radius $R_{t} \in \mathbb{R}_{+}$such that

$$
r_{t} \leq R_{t} \leq \min \{W, H\}
$$

Also, each ring type $t \in \mathcal{T}$ has a demand $D_{t} \in \mathbb{Z}_{+}$. We assume without loss of generality that $\mathcal{T}$ is sorted such that $R_{1} \leq \ldots \leq R_{T}$. To simplify the notation, we denote by $n:=\sum_{t \in \mathcal{T}} D_{t}$ the total number of individual rings and denote by $\mathcal{R}:=\{1, \ldots, n\}$ the corresponding index set. The function $\tau: \mathcal{R} \rightarrow \mathcal{T}$ maps each individual ring to its corresponding type. By a slight abuse of notation, we identify with $r_{i}$ and $R_{i}$ the internal and external radius of ring $i \in \mathcal{R}$, i.e., $R_{i}=R_{\tau(i)}$ and $r_{i}=r_{\tau(i)}$.

The task in RCPP is to pack all rings in $\mathcal{R}$ into the smallest number of rectangles. Rings must lie within the boundary of a rectangle and must not intersect each other. More precisely, a feasible solution to RCPP can be encoded as a 3 -tuple $(c, x, y) \in\{1, \ldots, k\}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ where ( $x_{i}, y_{i}$ ) denotes the center of ring $i \in \mathcal{R}$ inside rectangle $c_{i} \in\{1, \ldots, k\}$, and an upper bound on the number of rectangles needed is given by $k \leq n$. The number of used rectangles is equal to the cardinality of $\left\{c_{1}, \ldots, c_{n}\right\}$, i.e., the number of distinct integer values. Rings must not intersect the boundary of the rectangle, i.e.,

$$
\begin{gather*}
R_{i} \leq x_{i} \leq W-R_{i} \text { for all } i \in \mathcal{R}  \tag{1}\\
R_{i} \leq y_{i} \leq H-R_{i} \text { for all } i \in \mathcal{R} . \tag{2}
\end{gather*}
$$

For a given 3 -tuple $(c, x, y)$ we denote by

$$
A(i):=\left\{(\tilde{x}, \tilde{y}) \in \mathbb{R}^{2} \left\lvert\, r_{i}<\left\|\binom{\tilde{x}-x_{i}}{\tilde{y}-y_{i}}\right\|_{2}<R_{i}\right.\right\}
$$

the area occupied by ring $i$ in rectangle $c_{i}$. The non-overlapping condition between different rings is equivalent to

$$
\begin{equation*}
A(i) \cap A(j)=\emptyset \tag{3}
\end{equation*}
$$

for all $i \neq j$ with $c_{i}=c_{j}$.
RCPP can be equivalently formulated as an MINLP, see Pedroso et al. [25]. The formulation consists of four different types of variables:

- $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}$, the center of ring $i \in \mathcal{R}$,
- $z_{c} \in\{0,1\}$, a decision variable whether rectangle $c \in\{1, \ldots, k\}$ is used,
- $w_{i, c} \in\{0,1\}$, a decision variable whether ring $i$ is directly placed in rectangle $c$, and
- $u_{i, j} \in\{0,1\}$, a decision variable whether ring $i$ is directly placed in ring $j$.

We say that a ring $i \in \mathcal{R}$ is directly placed in another ring $j$ or rectangle $c$ if it is not contained in another, larger ring inside $j$ or $c$, respectively. Condition (3) can be modeled by the constraints

$$
\begin{align*}
& \left\|\binom{x_{i}}{y_{i}}-\binom{x_{j}}{y_{j}}\right\|_{2}^{2} \geq\left(R_{i}+R_{j}\right)^{2}\left(w_{i, c}+w_{j, c}-1\right) \quad \text { for all } i, j \in \mathcal{R}: i \neq j, c \in\{1, \ldots, k\},  \tag{4}\\
& \left\|\binom{x_{i}}{y_{i}}-\binom{x_{j}}{y_{j}}\right\|_{2}^{2} \geq\left(R_{i}+R_{j}\right)^{2}\left(u_{i, h}+u_{j, h}-1\right) \quad \text { for all } i, j, h \in \mathcal{R}: i \neq j \wedge i \neq h \wedge j \neq h,
\end{align*}
$$

$$
\begin{equation*}
\left\|\binom{x_{i}}{y_{i}}-\binom{x_{j}}{y_{j}}\right\|_{2} \leq r_{j}-R_{i}+M_{i, j}\left(1-u_{i, j}\right) \quad \text { for all } i, j \in \mathcal{R}: R_{i} \leq r_{j} \tag{5}
\end{equation*}
$$

which are nonconvex nonlinear inequality constraints. Inequality (4) guarantees that no two rings $i, j \in \mathcal{R}$ overlap when they are directly placed inside the same rectangle $c$, i.e., if $w_{i, c}=$ $w_{j, c}=1$. Similarly, inequality (5) ensures that no two rings intersect inside another ring. Constraint (6) ensures that if $u_{i, j}=1$, then ring $i$ is directly placed inside $j$ and does not intersect its boundary. Otherwise, the constraint is disabled. An appropriate value for $M_{i, j}$ to guarantee that the conditions of (6) are satisfied is

$$
M_{i, j}:=\sqrt{\left(W-R_{i}-R_{j}\right)^{2}+\left(H-R_{i}-R_{j}\right)^{2}}
$$

which is the maximum distance between two rings $i, j \in \mathcal{R}$ in a $W$ times $H$ rectangle that do not overlap.

The full MINLP model for RCPP reads as follows:

$$
\begin{array}{lll}
\min & \sum_{c=1}^{k} z_{c} & \\
\text { s.t. } & w_{i, c} \leq z_{c} & \text { for all } i \in \mathcal{R}, c \in\{1, \ldots, k\} \\
& \sum_{c=1}^{k} w_{i, c}+\sum_{j \in \mathcal{R}} u_{i, j}=1 & \text { for all } i \in \mathcal{R}  \tag{7c}\\
& (1),(2),(4),(5),(6) & \\
& \left(x_{i}, y_{i}\right) \in \mathbb{R}^{2} & \text { for all } i \in \mathcal{R} \\
z_{c} \in\{0,1\} & \text { for all } c \in\{1, \ldots, k\} \\
& w_{i, c} \in\{0,1\} & \text { for all } i \in \mathcal{R}, c \in\{1, \ldots, k\} \\
& u_{i, j} \in\{0,1\} & \text { for all } i, j \in \mathcal{R}: i \neq j
\end{array}
$$

Finally, the objective function (7a) minimizes the total number of rectangles used. Constraint (7b) guarantees that we can pack a ring inside a rectangle if and only if the rectangle is used. Each ring needs to be packed into another ring or a rectangle, which is ensured by ( 7 c ).

Remark 1. Formulation (7) can be adapted for maximizing the load of a single rectangle. Roughly speaking, we need to fix $z_{c}=0$ for each $c>1$ and replace each variable $w_{i, c}$ by $w_{i}$, which then turns into an indicator whether ring $i \in \mathcal{R}$ has been packed or not. The objective function (7a) changes to

$$
\max \sum_{i \in \mathcal{R}} \alpha_{i} w_{i}
$$

where $\alpha_{i} \in \mathbb{R}_{+}$is a non-negative weight for each ring $i \in \mathcal{R}$.
Unfortunately, general MINLP solvers require a considerable amount of time to solve Formulation (7) because it contains a large number of variables, many nonconvex constraints, and much symmetry. Even the smallest instance of our test set, containing 54 individual rings, could not be solved within several hours by SCIP 3.2.1 [29] nor by BARON 16.8.24 [22, 28]. A common method used to improve the solvability of geometric packing problems is to add symmetry breaking constraints. However, strengthening (7) by adding the constraints

$$
\begin{array}{rlrl}
z_{c} & \geq z_{c+1} & & \text { for all } c \in\{1, \ldots, k-1\} \\
u_{i, j} \geq u_{h, j} & & \text { for all } j \in \mathcal{R}, i<h: \tau(i)=\tau(h), \text { and } \\
w_{i, c} \geq w_{j, c} & & \text { for all } c \in\{1, \ldots, k\}, i<j: \tau(i)=\tau(j) \tag{10}
\end{array}
$$

which break symmetry by ordering rectangles and rings of the same type, had no impact on the solvability of RCPP.

The reason for the poor performance is that (7) contains $O\left(k n^{2}+n^{3}\right)$ many difficult nonconvex constraints of the form (4) and (5). Even worse, the binary variables in those constraints appear with a big-M, which is known to result in weak linear programming relaxations. Another difficulty is the symmetry in the model that is not eliminated by (8), (9), or (10). Each reflection or rotation of a feasible packing of a rectangle and rings inside a ring yields another, equivalent, solution.

In the following, we present two formulations based on a Dantzig-Wolfe decomposition to break the remaining symmetry in (7). The first formulation breaks the symmetry between rectangles. The second is an extension of the first one and additionally breaks symmetry between rings of the same type inside the rectangles and other rings.

To overcome the difficulty of the exponential number of variables in the Dantzig-Wolfe decompositions, we use column generation to solve the continuous relaxations of both formulations. The pricing problem of the first formulation is the maximization version of (7). The pricing problem of the second formulation is a maximization version of the CPP.

## 4 Cutting Stock Reformulation

Dantzig-Wolfe decomposition [13] is a classic solution approach for structured LPs. It can be used to decompose an MILP into a master problem and one or several sub-problems. Advantages of the decomposition are that it yields stronger relaxations if the sub-problems are nonconvex and can aggregate equivalent sub-problems to reduce symmetries $[24,8]$.

In this section, we apply a Dantzig-Wolfe decomposition to (7) and obtain a reformulation that is similar to the one of the one-dimensional Cutting Stock Problem [30]. The key idea is to reformulate RCPP in order to not assign rings explicitly to rectangles, but rather choose a set of feasible rectangle packings to cover the demand for each ring type. The resulting reformulation is a pure integer program (IP) containing exponentially many variables. We solve this reformulation via column generation.

We call a vector $F \in \mathbb{Z}_{+}^{T}$ packable if it is possible to pack $F_{t}$ many rings for all types $t \in \mathcal{T}$ together (and thus a total number of $\sum_{t \in \mathcal{T}} F_{t}$ many rings) into a $W \times H$ rectangle. A packable $F \in \mathbb{Z}_{+}^{T}$ corresponds to a feasible solution of (7) when considering only a single rectangle. Denote by

$$
\mathcal{F}:=\left\{F \in \mathbb{Z}_{+}^{T}: F \text { is packable }\right\}
$$

the set of all feasible packings of rings into a rectangle. Note that without loss of generality, we can bound $F_{t}$ by the demand $D_{t}$ for each $t \in \mathcal{T}$. After applying Dantzig-Wolfe decomposition to (7), we obtain the following formulation, $D W(\mathcal{F})$ :

$$
\begin{array}{ll}
\min & \sum_{F \in \mathcal{F}} z_{F} \\
\text { s.t. } & \sum_{F \in \mathcal{F}} F_{t} \cdot z_{F} \geq D_{t}
\end{array}
$$

This formulation contains an exponential number of integer variables with respect to $T$. Each variable $z_{F}$ counts how often $F$ is chosen. Minimizing the total number of rectangles is equivalent to (11a). Inequality (11b) ensures that each ring of type $t$ is packed at least $D_{t}$ many times. In
the following, we call the LP relaxation of $D W\left(\mathcal{F}^{\prime}\right)$ for $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ the restricted master problem of $D W(\mathcal{F})$.

An advantage of (11) is that we do not explicitly assign rings to positions inside some rectangles, like in (7), nor distinguish between rings of the same type. This breaks symmetry that arises from simply permuting rectangles. However, $\mathcal{F}$ is a priori unknown and its size is exponential in the input size of an RCPP instance.

A column generation algorithm is used to solve the LP relaxation of $D W(\mathcal{F})$ by iteratively updating $D W(\mathcal{F})$ with improving columns corresponding to feasible rectangular packings. A feasible rectangular packing $F \in \mathcal{F}$ is an improving column if the corresponding constraint

$$
\sum_{t \in \mathcal{T}} F_{t} \pi_{t}^{*} \leq 1
$$

is violated by the dual solution $\pi^{*}$ of the restricted master problem $D W\left(\mathcal{F}^{\prime}\right)$. The LP relaxation of $D W(\mathcal{F})$ is solved to optimality when $\sum_{t \in \mathcal{T}} F_{t} \pi_{t}^{*} \leq 1$ holds for all $F \in \mathcal{F} \backslash \mathcal{F}^{\prime}$. Otherwise, an $F \in \mathcal{F} \backslash \mathcal{F}^{\prime}$ with $\sum_{t \in \mathcal{T}} F_{t} \pi_{t}^{*}>1$ is added to $\mathcal{F}^{\prime}$ and the process iterates until $D W(\mathcal{F})$ is solved to optimality.

The most violated dual constraint is found by solving

$$
\begin{equation*}
\min \left\{1-\sum_{t \in \mathcal{T}} \pi_{t}^{*} F_{t}: F \in \mathbb{Z}_{+}^{T}, F \text { is packable }\right\} \tag{12}
\end{equation*}
$$

This problem is a maximization variant of RCPP for which we need to find a subset of rings such that they can be packed into a single rectangle, see Remark 1. The objective gain of each ring of type $t$ is exactly $\pi_{t}^{*}$. The LP relaxation of (11) is solved to optimality if the solution value of (12) is non-negative. Otherwise, we find an improving column that, after it has been added, might decrease the objective value of the restricted master problem $D W\left(\mathcal{F}^{\prime}\right)$.

As explained in Remark 1, (12) can be modeled as a nonconvex MINLP that contains the selection and positioning of rings in a rectangle. Unfortunately, solving this problem is very difficult for a general MINLP solver. In our experiments none of the resulting pricing problems (12) could be solved to optimality or even generate an improving column for $D W\left(\mathcal{F}^{\prime}\right)$ in two hours. For this reason, Formulation (11) is not suitable for solving RCPP to global optimality.

## 5 Pattern-based Dantzig-Wolfe Decomposition using Onelevel Packings

The main drawback of (11) is that the resulting pricing problems (12) are intractable. This is due to two major difficulties, i) the positioning of rings inside a rectangle and ii) the combinatorial decisions of how to put rings into other rings. Together, they make the sub-problems much more difficult to solve than the IP master problem. The recursive decisions of packing rings into each other introduces much symmetry to (12). Rings of the same type, and all rings packed inside those, can be swapped inside a rectangle and yield an equivalent solution. This symmetry appears in each recursion level of the sub-problems. See Figure 2 for an example of this kind of symmetry.

The main idea of the following reformulation is to break this type of symmetry and shift the recursive decisions from the sub-problem to the master problem. This helps balance the complexity of both problems, which is crucial when using a column generation algorithm.

In the following, we introduce the concept of circular and rectangular patterns. These patterns describe possible packings of circles into rings or rectangles. The circles act like placeholders.


Figure 2: Two equivalent feasible packings obtained by swapping rings packed inside other rings.

Specifically, the circles just describe what type of rings might be placed in the circles, but not how these rings are filled with other rings. After choosing one pattern we are able to choose other patterns that fit into the circles of the selected one. The recursive part of RCPP boils down to a counting problem of patterns and minimizing the total number of rectangles.

### 5.1 Circular Patterns

A circle of type $t \in \mathcal{T}$ is a ring with external radius $R_{t}$ and inner radius $r_{t}=0$. This means that neither circles nor rings can be put into a circle. Similarly to the definition of elements in $\mathcal{F}$, we call a tuple $(t, P) \in \mathcal{T} \times \mathbb{Z}_{+}^{T}$ a circular pattern if it is possible to pack $P_{1}$ many circles of type $1, P_{2}$ many circles of type $2, \ldots, P_{T}$ many circles of type $T$ into a larger ring of type $t$. As an example, $(3,(2,1,0))$ is a circular pattern with an outer ring of type three which contains two circles with external radius $R_{1}$ and one circle with radius $R_{2}$. Since $R_{3}$ can not be pack within any ring, the final index will always be 0 . However, it is included in the definition of circular patterns for completeness. Figure 3 shows all possible packings for three different ring types.

$$
\circ 000000
$$

Figure 3: All possible circular patterns for three different ring types:

$$
(1,(0,0,0)),(2,(0,0,0)),(2,(1,0,0)),(3,(0,0,0)),(3,(1,0,0)),(3,(2,0,0)),(3,(0,1,0))
$$

Using the definition of circular patterns we decompose a packing of rings into a ring $R$. Each ring that is directly placed into $R$, i.e., is not contained in another larger ring, is replaced by a circle with the same external radius. We apply the decomposition to each replaced ring recursively. As a result, ring $R$ decomposes into a set of circular patterns. Starting from these circular patterns, we can reconstruct $R$ by recursively replacing circles in a pattern with other circular patterns. We denote by

$$
\mathcal{C P}:=\left\{(t, P) \in \mathcal{T} \times \mathbb{Z}_{+}^{T} \mid(t, P) \text { is a circular pattern }\right\}
$$

the set of all possible circular patterns. The previously described decomposition shows that any recursive packing of rings can be constructed by using circular patterns of $\mathcal{C P}$.

In general, the cardinality of $\mathcal{C P}$ is exponential in $T$ and depends on the internal and external radii of the rings. For example, increasing the inner radius of the largest ring will lead to many more possibilities to pack circles into this ring. In contrast, decreasing external radii results in fewer circular patterns.

Figure 3 shows that there are circular patterns that are dominated by others, e.g., the third pattern dominates second one. Using dominated circular patterns would leave some unnecessary free space in some rectangles, which can be avoided in an optimal solution. In Section 6.1 we discuss this domination relation and present an algorithm to compute all non-dominated circular patterns.

### 5.2 Rectangular Patterns

In the following reformulation of RCPP, we use circular patterns to shift the decisions of how to put rings into other rings to the master problem. Similar to a circular pattern, we call $P \in \mathbb{Z}_{+}^{\mathcal{T}}$ a rectangular pattern if and only if $P_{t}$ many circles with radius $R_{t}$ for each $t \in \mathcal{T}$ can be packed together into a rectangle of size $W$ times $H$. Let

$$
\mathcal{R P}:=\left\{P \in \mathbb{Z}_{+}^{T} \mid P \text { is a rectangular pattern }\right\}
$$

be the set of all rectangular patterns. As in Formulation (11), only the number of packed circles matters, not their position in the rectangular pattern.


Figure 4: Three different rectangular patterns:

$$
(9,0,1),(4,0,2),(2,5,0)
$$

In contrast to verifying if $(t, P) \in \mathcal{T} \times \mathbb{Z}_{+}^{T}$ is a circular pattern, checking whether $P \in \mathbb{Z}_{+}^{T}$ is a rectangular pattern-a classical CPP-can be much more difficult. Typically, many more circles fit into a rectangle than into a ring. This results in a large number of circles that need to be considered in a verification problem, which is in practice difficult to solve.

### 5.3 Exploiting Recursion

Using the circle and rectangle patterns described above, we develop a pattern-based DantzigWolfe decomposition for RCPP with nonlinear sub-problems. Instead of placing rings explicitly into each other, we use patterns to remodel the recursive part. The key idea is that circles, inside rectangular or circular patterns, are replaced by circular patterns with the same external radius. These circular patterns contain circles that can be replaced by other circular patterns. More precisely, after choosing a rectangular pattern $P \in \mathcal{R} \mathcal{P}$, it is possible to choose $P_{t}$ circular patterns of the form $\left(t, P^{\prime}\right) \in \mathcal{C} \mathcal{P}$, which can be placed into $P$. Again, for each $P^{\prime}$ we can choose $P_{t^{\prime}}^{\prime}$ many circular patterns of the form $\left(t^{\prime}, P^{\prime \prime}\right)$, which can be placed in $P^{\prime}$. This process can continue until the smallest packable circle is considered. The recursive structure of the RCPPthe placement of rings into other rings - is modeled by counting the number of used rectangular and circular patterns.

Figure 5 illustrates this idea. A circular pattern replaces a circle if there is an arrow from the pattern to the circle. Each circle of a pattern can be used as often as the pattern is used. It follows that the number of outgoing edges of a circular pattern is equal to the number of uses of the pattern. The combinatorial part of RCPP reduces to adding edges from circular patterns to circles.

Following this idea, we introduce integer variables


Figure 5: An example with four circular patterns and a rectangular pattern showing how patterns are used to model the combinatorial part of RCPP. Each line connects a circular pattern to a circle. The number of outgoing edges is equal to the number of rings that are used.

- $z_{C} \in \mathbb{Z}_{+}$for each circular pattern $C \in \mathcal{C P}$ and
- $z_{P} \in \mathbb{Z}_{+}$for each rectangular $P \in \mathcal{R} \mathcal{P}$
in order to count the number of used circular and rectangular patterns (in the pattern-based formulation). We reformulate RCPP by the following IP formulation $P D W(\mathcal{R} \mathcal{P})$, which is similar to the multi-stage cutting stock formulation that has been presented by Muter et al. [?].

$$
\begin{array}{rlr}
\min \sum_{P \in \mathcal{R P}} z_{P} & \\
\sum_{P \in \mathcal{R P}} P_{t} \cdot z_{P}+\sum_{C=(t, P) \in \mathcal{C P}} z_{C} \geq D_{t} & \text { for all } t \in \mathcal{T} \\
\sum_{C=\left(t^{\prime}, P\right) \in \mathcal{C P}} P_{t} \cdot z_{C} \geq \sum_{C=(t, P) \in \mathcal{C P}} z_{C} & \text { for all } t \in \mathcal{T} \\
& z_{C} \in \mathbb{Z}_{+} & \text {for all } C \in \mathcal{C P} \\
z_{P} \in \mathbb{Z}_{+} & \text {for all } P \in \mathcal{R P} \tag{13e}
\end{array}
$$

Objective (13a) minimizes the total number of used rectangles. Constraint (13b) ensures that the demand for each ring type is satisfied. The recursive decisions how to place rings into each other are implicitly modeled by (13c). Each selection of a pattern $P \in \mathcal{R} \mathcal{P}$ or $\left(t^{\prime}, P\right) \in \mathcal{C P}$ allows us to choose $P_{t}$ circular patterns of the type $t$. Note that at least one rectangular pattern needs to be selected before circular patterns can be packed. This is true because the largest ring only fits into a rectangular pattern. To aid in understanding the formulation of $P D W(\mathcal{R} \mathcal{P})$, a small example based on the circular and rectangular patterns in Figures 3 and 4 respectively is presented in Example 1.

Example 1. Let $\left\{C_{1}, \ldots, C_{7}\right\}$ be the set of circular patterns of Figure 3 and $\left\{P_{1}, P_{2}, P_{3}\right\}$ be the subset of rectangular patterns of Figure 4. The patterns are labeled from left to right.

Problem (13) then reads as
s.t.

$$
\begin{align*}
\min z_{P_{1}}+z_{P_{2}}+z_{P_{3}} &  \tag{14a}\\
z_{C_{1}} & \geq D_{1}  \tag{14b}\\
z_{C_{2}}+z_{C_{3}} & \geq D_{2}  \tag{14c}\\
z_{C_{4}}+z_{C_{5}}+z_{C_{6}}+z_{C_{7}} & \geq D_{3}  \tag{14d}\\
z_{C_{3}}+z_{C_{5}}+2 z_{C_{6}}+9 z_{P_{1}}+4 z_{P_{2}}+2 z_{P_{3}} & \geq z_{C_{1}}  \tag{14e}\\
z_{C_{7}}+5 z_{P_{3}} & \geq z_{C_{2}}+z_{C_{3}}  \tag{14f}\\
z_{P_{1}}+2 z_{P_{2}} & \geq z_{C_{4}}+z_{C_{5}}+z_{C_{6}}+z_{C_{7}}  \tag{14~g}\\
z_{C_{i}} & \in \mathbb{Z}_{+} \quad \text { for all } i \in\{1, \ldots, 7\}  \tag{14h}\\
z_{P_{i}} & \in \mathbb{Z}_{+} \quad \text { for all } i \in\{1,2,3\} \tag{14i}
\end{align*}
$$

Constraints (14b)-(14d) ensure that the demand for each ring type is satisfied. The left-hand side of constraints (14b)-(14d) only contain columns corresponding to the circular patterns of ring type 1 to 3 respectively. The constraints (14e)-(14g) model the recursive structure of the problem. Columns corresponding to circular patterns for ring types 1 to 3 are observed on the right-hand side of constraints $(14 \mathrm{e})-(14 \mathrm{~g})$ respectively. The left-hand side of constraints (14e)$(14 \mathrm{~g})$ contain columns corresponding to rectangular and circular patterns that pack the ring type represented on the right-hand side of the respective constraints.

A drawback of (13) is the exponential number of rectangular and circular pattern variables. To address this difficulty, we develop a column enumeration algorithm to compute all (relevant) circular patterns used in (13), which is presented in Section 6.1. We observed in our experiments that for many instances this algorithm successfully enumerates all circular patterns in a reasonable amount of time.

Since the size of the rectangles is much larger than the external radii $R$, it is intractable to enumerate all rectangular patterns. To overcome this difficulty, we use a column generation approach to solve the LP relaxation of (13) that dynamically generates rectangular patterns variables. We call the LP relaxation of $P D W\left(\mathcal{R} \mathcal{P}^{\prime}\right)$ the restricted master problem of (13) for a subset of rectangular patterns $\mathcal{R} \mathcal{P}^{\prime} \subseteq \mathcal{R} \mathcal{P}$. In order to find an improving column for $P D W\left(\mathcal{R} \mathcal{P}^{\prime}\right)$, we solve a weighted CPP for a single rectangle.

More precisely, let $\lambda \in \mathbb{R}_{+}^{T}$ be the non-negative vector of dual multipliers for Constraints (13c) after solving the LP relaxation of $\operatorname{PDW}\left(\mathcal{R} \mathcal{P}^{\prime}\right)$ for the current set of rectangular patterns $\mathcal{R} \mathcal{P}^{\prime} \subset$ $\mathcal{R} \mathcal{P}$. To compute a rectangular pattern with negative reduced cost we solve

$$
\begin{equation*}
\min _{P \in \mathcal{R} \mathcal{P} \backslash \mathcal{R} \mathcal{P}^{\prime}}\left\{1-\sum_{t \in \mathcal{T}} \lambda_{t} P_{t}\right\}, \tag{15}
\end{equation*}
$$

which can be modeled as a weighted CPP for a single rectangle. Let $P^{*}$ be an optimal solution to (15). If $1-\sum_{t \in \mathcal{T}} \lambda_{t} P_{t}^{*}$ is negative, then $P^{*}$ is an improving rectangular pattern, whose corresponding variable needs to be added to the restricted master problem of $P D W\left(\mathcal{R} \mathcal{P}^{\prime}\right)$. Otherwise, the LP relaxation of (13) is solved to optimality.

The pricing problem is $\mathcal{N} \mathcal{P}$-hard [23] and difficult to solve in practice. The number of variables in this problem depends on the number of different ring types $T$ and on the demand vector $D$. When solving (15) we need to consider the index set of individual circles

$$
\left\{i_{1}^{1}, \ldots, i_{D_{1}}^{1}, i_{1}^{2}, \ldots, i_{D_{2}}^{2}, \ldots, i_{1}^{T}, \ldots, i_{D_{T}}^{T}\right\}
$$

containing $D_{t}$ indices that correspond to circles with radius $R_{t}$ for each $t \in \mathcal{T}$. The number of copies for type $t$ can be reduced to $\min \left\{D_{t},\left\lfloor\frac{\pi\left(R_{t}\right)^{2}}{W H}\right\rfloor\right\}$, which is an upper bound on the number of rings of type $t$ in a $W$ times $H$ rectangle. For simplicity, denote with $\mathcal{C}$ the index set of all individual circles. Let $R_{i}$ be the external radius and $\tau(i)$ the type of circle $i \in \mathcal{C}$. The circle packing problem formulation of (15) reads then as

$$
\begin{array}{ccl}
\min 1-\sum_{i \in \mathcal{C}} \lambda_{\tau(i)} z_{i} & \\
\text { s.t. } & \left\|\binom{x_{i}}{y_{i}}-\binom{x_{j}}{y_{j}}\right\|_{2}^{2} \geq\left(R_{i}+R_{j}\right)^{2}\left(z_{i}+z_{j}-1\right) & \text { for all } i, j \in \mathcal{C}: i \neq j \\
R_{i} \leq x_{i} \leq W-R_{i} & \text { for all } i \in \mathcal{C} \\
R_{i} \leq y_{i} \leq H-R_{i} & \text { for all } i \in \mathcal{C} \\
z_{i} \in\{0,1\} & \text { for all } i \in \mathcal{C} \tag{16e}
\end{array}
$$

where $\left(x_{i}, y_{i}\right)$ is the center of circle $i \in \mathcal{C}$ and $z_{i}$ the decision variable whether circle $i$ has been packed, i.e., $z_{i}=1$.

After solving the continuous relaxation of (13), it might happen that $z_{P}^{*}$ is fractional for a rectangular pattern $P \in \mathcal{R} \mathcal{P}^{\prime}$. In this case branching is required to ensure global optimality. A general branching strategy has been introduced by [32], which has been successfully used in a branch-and-price algorithm for the one-dimensional cutting stock problem [30]. This branching rule can be applied when solving (13), however, it increases the complexity of the pricing problems (15). Since (15) is very difficult to solve - the vast majority of pricing problems cannot be solved to optimality in the root node - employing branch-and-price is deemed impractical. As such, Section 6.3 presents a price-and-verify algorithm, which builds upon price-and-branch, as a practical method for solving the RCPP. With techniques discussed in Section 6.2 this results in an algorithm that is able to prove global optimality for many RCPP instances.

### 5.4 Strength of Dantzig-Wolfe reformulations

In the following, we show that the two presented formulations (11) and (13) provide the same LP bound.

Theorem 1. Let $\operatorname{LP}(D W)$ and $\operatorname{LP}(P D W)$ be the value of the LP relaxation of (11) and (13), respectively. Then $\mathrm{LP}(P D W)=\operatorname{LP}(D W)$.

Proof. To show the equality of the LP bounds, we consider an "extended" Dantzig-Wolfe reformulation. As a generalization of the variables $z_{F}$ from (11), where $F \in \mathcal{F}$ encodes a rectangle of recursively packable rings, and $z_{P}$ from (13), where $P \in \mathcal{R} \mathcal{P}$ encodes a rectangular pattern, we introduce variables for "mixed" rectangles that may contain both rings and circles. Let $z_{(F, P)}$ be the number of such "mixed" rectangles, and denote with

$$
\mathcal{M P}=\left\{(F, P) \in \mathbb{Z}_{+}^{T} \times \mathbb{Z}_{+}^{T}:(F, P) \text { is packable }\right\}
$$

the set of mixed rectangles. Here, $(F, P)$ is packable if $F_{t}$ rings of type $t$ and $P_{t}$ circles of type $t$ can be packed into one rectangle without overlap, collectively over all $t$. A ring may contain smaller rings and circles, but circles cover their full interior, see Figure 6 for an example.


Figure 6: An example for a mixed rectangle packed with rings and circles.

Then define the LP

$$
\begin{array}{rlrl}
\min \sum_{(F, P) \in \mathcal{M P} \mathcal{P}} z_{(F, P)} & \\
\text { s.t. } \sum_{(F, P) \in \mathcal{M P}} F_{t} \cdot z_{(F, P)}+\sum_{C=(t, P) \in \mathcal{C P}} z_{C} & \geq D_{t} & & \text { for all } t \in \mathcal{T} \\
\sum_{(F, P) \in \mathcal{M P}} P_{t} \cdot z_{(F, P)}+\sum_{C \in \mathcal{C P}} P_{t} \cdot z_{C} & \geq \sum_{C=(t, P) \in \mathcal{C P}} z_{C} & & \text { for all } t \in \mathcal{T} \\
z_{C} & \geq 0 & & \text { for all } C \in \mathcal{C P} \\
z_{(F, P)} & \geq 0 & & \text { for all }(F, P) \in \mathcal{M P} \tag{17e}
\end{array}
$$

and let $Z^{*}$ be its optimal objective value. By construction, (17) contains the feasible solutions of (11) (setting $z_{C}=0$ and $z_{(F, P)}=0$ for all $P \neq 0$ ) and (13) (setting $z_{(F, P)}=0$ for all $F \neq 0$ ). Hence, $Z^{*} \leq \operatorname{LP}(D W)$ and $Z^{*} \leq \operatorname{LP}(P D W)$. We prove the converse by optimality-preserving exchange arguments. First, given a solution with rectangles that contain rings, these rings can gradually be replaced by circles and circular patterns. Second, given a solution with rectangles that contain circles, we are guaranteed to find a circular pattern that can take its place. Formally, the proof reads as follows.

1. Suppose $\operatorname{LP}(P D W)>Z^{*}$ and let $z^{*}$ be an optimal solution to (17) such that the total number of rings used in the rectangles of the support,

$$
\mu(z)=\sum_{(F, P) \in \mathcal{M P}} \sum_{t=1}^{T} F_{t} \cdot z_{(F, P)}
$$

is minimal. By assumption, $\mu\left(z^{*}\right)>0$, and we can choose $(\tilde{F}, \tilde{P})$ and $\tilde{t}$ such that $z_{(\tilde{F}, \tilde{P})}^{*}>0$ and $\tilde{F}_{\tilde{t}} \geq 1$. Choose ring type $\tilde{t}$ to have smallest external radius $R_{\tilde{t}}$. Then this ring can only contain circles, and with these circles it forms a circular pattern $\tilde{C}=\left(\tilde{t}, P^{\prime}\right) \in \mathcal{C P}$. Replacing the ring of type $\tilde{t}$ by a circle with same external radius gives the packable tuple $(\hat{F}, \hat{P}):=\left(\tilde{F}-e_{\tilde{t}}, \tilde{P}+e_{\tilde{t}}\right)$. Then define a new solution $\hat{z}$ via

$$
\hat{z}_{(F, P)}:= \begin{cases}0 & \text { if }(F, P)=(\tilde{F}, \tilde{P}) \\ z_{(\hat{F}, \hat{P})}^{*}+z_{(\tilde{F}, \tilde{P})}^{*} & \text { if }(F, P)=(\hat{F}, \hat{P}) \\ z_{(F, P)}^{*} & \text { otherwise }\end{cases}
$$

for all $(F, P) \in \mathcal{M P}$, and

$$
\hat{z}_{C}:= \begin{cases}z_{\tilde{C}}^{*}+z_{(\tilde{F}, \tilde{P})}^{*} & \text { if } C=\tilde{C} \\ z_{C}^{*} & \text { otherwise }\end{cases}
$$

for all $C \in \mathcal{C P}$. By construction, $\hat{z}$ is feasible for (17) and has identical objective function value. However, $\mu(\hat{z})=\mu\left(z^{*}\right)-z_{(\tilde{F}, \tilde{P})}^{*}<\mu\left(z^{*}\right)$, contradicting the minimality assumption.
2. Suppose $\operatorname{LP}(D W)>Z^{*}$ and let $z^{*}$ be an optimal solution to (11) such that $\nu(z)=$ $\sum_{C \in \mathcal{C P}} z_{C}$ is minimal. By assumption, $\nu\left(z^{*}\right)>0$; otherwise, $z^{*}$ could be transformed into an optimal solution of $\operatorname{LP}(D W)$ by removing all circles from each rectangle. Hence, we can choose a circular pattern $\tilde{C}=\left(\tilde{t}, P^{\prime}\right)$ with $z_{\tilde{C}}^{*}>0$ and largest external radius $R_{\tilde{t}}$.

Now consider Constraint (17c) for $t=\tilde{t}$. Because $\sum_{C \in \mathcal{C P}} P_{\tilde{t}} \cdot z_{C}$ must be zero, there exists an $(\tilde{F}, \tilde{P})$ such that $z_{(\tilde{F}, \tilde{P})}^{*}>0$ and $\tilde{P}_{\tilde{t}} \geq 1$. Replacing one ring of type $\tilde{t}$ by the circular pattern $\tilde{C}=\left(\tilde{t}, P^{\prime}\right)$ gives the packable tuple $(\hat{F}, \hat{P}):=\left(\tilde{F}+e_{\tilde{t}}, \tilde{P}-e_{\tilde{t}}+P^{\prime}\right)$. Finally, we define a new solution $\hat{z}$ via

$$
\hat{z}_{(F, P)}:= \begin{cases}0 & \text { if }(F, P)=(\tilde{F}, \tilde{P}) \\ z_{(\hat{r}, \hat{P})}^{*}+z_{(\tilde{F}, \tilde{P})}^{*} & \text { if }(F, P)=(\hat{F}, \hat{P}) \\ z_{(F, P)}^{*} & \text { otherwise }\end{cases}
$$

for all $(F, P) \in \mathcal{M P}$, and

$$
\hat{z}_{C}:= \begin{cases}0 & \text { if } C=\tilde{C} \\ z_{C}^{*} & \text { otherwise }\end{cases}
$$

for all $C \in \mathcal{C P}$. By construction, $\hat{z}$ is feasible for (17) and has identical objective function value. However, $\nu(\hat{z})=\nu\left(z^{*}\right)-z_{\tilde{C}}^{*}<\nu\left(z^{*}\right)$, contradicting the minimality assumption.

While (13) does not improve the strength of the LP relaxation, compared to (11), the advantage of (13) is that it breaks the symmetry of the combinatorial part of the RCPP, i.e., packing rings into rings, on each recursion level. Applying the pattern-based Dantzig-Wolfe reformulation makes deciding how to pack rings a counting problem in the master problem. Compared to (12), the resulting sub-problems do not contain the recursive structure of RCPP any more. This balances the complexity between the master problem and sub-problems, which is crucial for the performance of a column generation algorithm.

## 6 Column Generation Method for Solving the RCPP

This section presents a column generation based method for solving formulation (13). The key ingredients of our method are the enumeration of valid circular patterns, the generation of rectangular patterns, and a dynamic verification for circular pattern candidates during the column generation algorithm. Each of these fundamental components of the column generation based method are necessary for addressing the complexity of solving the pricing problem (15) and the difficulty in verifying whether a circular pattern candidate is packable. Since it may not be possible to compute all possible circular and rectangular patterns, the dynamic verification provides the capability to only check patterns that may be part of an optimal solution. Additionally, a key feature of our algorithm is that it is always capable of computing valid primal and dual bounds even though not all rectangular and circular patterns have been found.

### 6.1 Enumeration of Circular Patterns

Formulation (13) contains one variable for each circular pattern in $\mathcal{C P}$. This set is, in general, of exponential size. We present a column enumeration algorithm to compute all relevant circular
patterns for (13). The main step of the algorithm is to verify whether a given tuple $(t, P) \in \mathcal{T} \times \mathbb{Z}_{+}^{T}$ is in the set $\mathcal{C P}$ or not. A tuple can be checked by solving the following nonlinear nonconvex verification problem:

$$
\begin{gather*}
\left\|\binom{x_{i}}{y_{i}}-\binom{x_{j}}{y_{j}}\right\|_{2} \geq R_{i}+R_{j} \text { for all } i, j \in C: i<j  \tag{18a}\\
\left\|\binom{x_{i}}{y_{i}}\right\|_{2} \leq r_{t}-R_{i} \text { for all } i \in C  \tag{18b}\\
x_{i}, y_{i} \in \mathbb{R} \text { for all } i \in C \tag{18c}
\end{gather*}
$$

Here $C:=\left\{1, \ldots, \sum_{i} P_{i}\right\}$ is the index set of individual circles, and $R_{i}$ the corresponding external radius of a circle $i \in C$. Model (18) checks whether all circles can be placed in a non-overlapping way into a ring of type $t \in \mathcal{T}$. Constraint (18a) ensures that no two circles overlap, and (18b) guarantees that all circles are placed inside a ring of type $t$.

The non-overlapping conditions (18a) are nonconvex and make (18) computationally difficult to solve. Due to the positioning of circles, (18) contains a lot of symmetry. The rotation of every solution by $180^{\circ}$ leads to another equivalent solution. Typically, this kind of symmetry is difficult to address within a global NLP solver. Branching on some continuous variables is likely to have no impact on the dual bound. One way to overcome this problem is to break some symmetry of the problem by ordering circles of the same type in the $x$-coordinate non-decreasingly. We achieve this by adding

$$
\begin{equation*}
x_{i} \leq x_{j} \text { for all } i<j: R_{i}=R_{j} \tag{19}
\end{equation*}
$$

to (18). Additionally, we add an auxiliary objective function $\min _{i \in C} x_{i}$ to (18). From our computational experiments we have seen that adding (19) to (18) makes it easier for the NLP solver to prove infeasibility.

As already seen in Section 5.1, there is a dominance relation between circular patterns, meaning that in any optimal solution of RCPP, dominated patterns can be replaced by nondominated ones. Definition 1 formalizes this notion of a dominance relation between circular patterns.
Definition 1. A circular pattern $(t, P) \in \mathcal{C P}$ dominates $\left(t, P^{\prime}\right) \in \mathcal{C P}$ if and only if $P^{\prime}<_{\text {lex }} P$, where $<_{l e x}$ denotes the standard lexicographical order of vectors.

Let

$$
\mathcal{C} \mathcal{P}^{*}:=\left\{(t, P) \in \mathcal{C P} \mid \nexists\left(t, P^{\prime}\right) \in \mathcal{C P}:\left(t, P^{\prime}\right) \text { dominates }(t, P)\right\}
$$

be the set of non-dominated circular patterns. The set $\mathcal{C} \mathcal{P}^{*}$ might be much smaller than $\mathcal{C P}$, but is, in general, still of exponential size. Using $\mathcal{C} \mathcal{P}^{*}$ in (13), instead of the larger set $\mathcal{C P}$, results in fewer variables.

Finally, we present the procedure EnumeratePatterns in order to compute $\mathcal{C} \mathcal{P}^{*}$. Algorithm 1 considers all possible $(t, P) \in \mathcal{T} \times \mathbb{Z}_{+}^{T}$ and checks whether $(t, P)$ is a circular pattern by solving (18). The algorithm exploits the dominance relation between circular patterns to reduce the number of NLP solves and filter dominated patterns. In the following, we discuss the different steps of Algorithm 1 in more detail. For simplicity, we define the set $[x]:=\{0, \ldots, x\}$ for an integer number $x \in \mathbb{Z}_{+}$, and call a candidate pattern $(t, P) \in \mathcal{T} \times \mathbb{Z}_{+}^{T}$ infeasible if $(t, P) \notin \mathcal{C P}$ and feasible otherwise.

The algorithm maintains three sets $\mathcal{C} \mathcal{P}_{\text {feas }}, \mathcal{C} \mathcal{P}_{\text {infeas }}, \mathcal{C} \mathcal{P}_{\text {unknown }}$, initialized to the empty set. In Line 3, we iterate through all possible pattern candidates $(t, P)$ for a fixed $t \in \mathcal{T}$. In Line 5, we check whether $P$ dominates a circular pattern already verified as infeasible and whether $P$ is dominated by a circular pattern already verified as feasible. In both cases, $P$ can

```
Algorithm 1: EnumeratePatterns
    in : internal and external radii \(r\) and \(R\), demands \(D\)
    out: \(\mathcal{C} \mathcal{P}_{\text {feas }} \subseteq \mathcal{C P}\), unverified candidates \(\mathcal{C P} \mathcal{P}_{\text {unknown }}\)
    \(\mathcal{C} \mathcal{P}_{\text {feas }}:=\emptyset, \mathcal{C} \mathcal{P}_{\text {infeas }}:=\emptyset, \mathcal{C} \mathcal{P}_{\text {unknown }}:=\emptyset\)
    for \(t \in \mathcal{T}\) do
        for \(P \in\left[D_{1}\right] \times \ldots \times\left[D_{T}\right]\) do
            if \(\exists\left(P^{\prime}, t\right) \in \mathcal{C} \mathcal{P}_{\text {infeas }}: P^{\prime}<_{\text {lex }} P\) or \(\exists\left(P^{\prime}, t\right) \in \mathcal{C} \mathcal{P}_{\text {feas }}: P^{\prime}>_{\text {lex }} P\) then
                continue
            status \(:=\) solve verification NLP (18)
            if status \(=\) "feasible" then
                \(\mathcal{C} \mathcal{P}_{\text {feas }}:=\mathcal{C} \mathcal{P}_{\text {feas }} \cup(P, t)\)
            if status \(=\) "infeasible" then
                \(\mathcal{C} \mathcal{P}_{\text {infeas }}:=\mathcal{C} \mathcal{P}_{\text {infeas }} \cup(P, t)\)
            if status \(=\) "time limit" or "memory limit" then
                \(\mathcal{C} \mathcal{P}_{\text {unknown }}:=\mathcal{C} \mathcal{P}_{\text {unknown }} \cup(P, t)\)
    filter all dominated patterns from \(\mathcal{C} \mathcal{P}_{\text {feas }}\) and \(\mathcal{C} \mathcal{P}_{\text {unknown }}\)
    return \(\left(\mathcal{C P}{ }_{\text {feas }}, \mathcal{C} \mathcal{P}_{\text {unknown }}\right)\)
```

be skipped. Otherwise, in Line 6, we solve a nonconvex verification NLP (18), which is the bottleneck of Algorithm 1. Roughly speaking, this NLP is easy to solve for the case where $P$, selected in Line 3, is component-wise too small or too large. In the first case, finding a feasible solution is easy due to a small number of circles. In the other case, we can conclude that the circles of the candidate $P$ cannot be packed due to limited volume of the surrounding ring. The computationally expensive verification NLPs lie between these two extreme cases. Because of the two reversed dominance checks, it is in general unclear in which order the $P$ in Line 3 should be enumerated. On the one hand, it can be beneficial to start with candidates that contain many circles. In case of a feasible candidate, many other candidates can be discarded because of the dominance relation between circular patterns. On the other hand, an infeasible candidate that dominates another infeasible candidate can incur a redundant, difficult NLP (18) solve.

Algorithm 1 returns two sets of circular patterns. The first set contains all feasible circular patterns that could be successfully verified and is denoted by $\mathcal{C P}$ feas. The second set, $\mathcal{C} \mathcal{P}_{\text {unknown }}$, contains all candidates that could not be verified because of working limits, e.g., a time or memory limit on the solve of (18). At the end, each non-dominated circular pattern is either in the set $\mathcal{C} \mathcal{P}_{\text {feas }}$ or $\mathcal{C} \mathcal{P}_{\text {unknown }}$, which means that

$$
\mathcal{C} \mathcal{P}^{*} \subseteq \mathcal{C} \mathcal{P}_{\text {feas }} \cup \mathcal{C} \mathcal{P}_{\text {unknown }}
$$

holds.
Ideally, we have verified all candidates, i.e., $\mathcal{C} \mathcal{P}_{\text {unknown }}=\emptyset$. However, since there are exponentially many candidates to check and each candidate requires to solve (18), it might not be possible to compute $\mathcal{C} \mathcal{P}^{*}$ in a reasonable amount of time.

Nevertheless, even if the set $\mathcal{C P}{ }_{\text {unknown }}$ is non-empty, we are able to compute valid dual and primal bounds for RCPP. A valid primal bound is given when solving (13) after restricting the set of circular patterns to $\mathcal{C P}$ feas. This is becasuse this restriction ensures that we only use packable patterns. Using $\mathcal{C} \mathcal{P}_{\text {feas }} \cup \mathcal{C} \mathcal{P}_{\text {unknown }}$ in (13) yields a valid relaxation of RCPP because we use at least all patterns in $\mathcal{C} \mathcal{P}^{*}$ and maybe some circular patterns that are not packable.

### 6.2 Computation of Valid Dual Bounds

The Pricing Problem (15) is a classical CPP-an $\mathcal{N} \mathcal{P}$-hard nonlinear optimization problem, which is in practice very hard to solve. State-of-the-art MINLP solvers might fail to prove global optimality for this type of problems. Nevertheless, the following theorem shows how to use a dual bound for (15) to compute a valid dual bound for RCPP.

Theorem 2 (Farley [10], Vance et al. [31]). Let $\nu_{R M P}$ be the optimum of the restricted master problem of $P D W\left(\mathcal{R} \mathcal{P}^{\prime}\right), \nu_{\text {Pricing }}$ be the optimal value for the Pricing Problem (15), and $O P T$ be the optimal solution value of RCPP. Then the inequality

$$
\left\lceil\frac{\nu_{R M P}}{1-z_{\text {Pricing }}}\right\rceil \leq O P T
$$

holds for all valid dual bounds $z_{\text {Pricing }} \leq \nu_{\text {Pricing }}$.
In our computational experiments we have seen that this bound can indeed be used to obtain good quality bounds in cases where the circle packing pricing problem (16) could not be solved to optimality. Note that the dual bounds of Theorem 2 depend on the quality of the dual bounds of pricing problems. Any improvement on the dual bound for the CPP automatically translates to better dual bounds for the RCPP.

### 6.3 Price-and-Verify Algorithm

The price-and-verify algorithm is a column generation based algorithm that incorporates ideas from Sections 5, 6.1, and 6.2. This is summarized in Algorithm 2 and consists of three main steps:

1. An initial enumeration of circular patterns.
2. Generation of rectangular patterns with negative reduced cost.
3. Verification of circular pattern candidates during the pricing loop.

First, in Line 1, we use Algorithm 1 to compute the set of non-dominated circular patterns $\mathcal{C} \mathcal{P}^{*}$. Its computational cost depends on the number of different ring types $T$, the external radii $R$, and the internal radii $r$. Algorithm 1 returns two sets $\mathcal{C} \mathcal{P}_{\text {feas }}$ and $\mathcal{C} \mathcal{P}_{\text {unknown }}$ with the properties

$$
\begin{aligned}
\mathcal{C} \mathcal{P}_{\text {feas }} & \subseteq \mathcal{C P} \text { and } \\
\mathcal{C P}^{*} & \subseteq \mathcal{C} \mathcal{P}_{\text {feas }} \cup \mathcal{C} \mathcal{P}_{\text {unknown }} .
\end{aligned}
$$

A feature of Algorithm 2 is the ability to compute valid dual and primal bounds simultaneously. This is achieved by computing the primal and dual bounds while dynamically verifying circular pattern candidates in $\mathcal{C} \mathcal{P}_{\text {unknown }}$ during the solving process. The simultaneous computation of bounds is an improvement over the methods previously discussed. In the previous section, the proposed methods separately compute valid primal and dual bound for RCPP by using $\mathcal{C} \mathcal{P}_{\text {feas }}$ and $\mathcal{C} \mathcal{P}_{\text {feas }} \cup \mathcal{C} \mathcal{P}_{\text {unknown }}$ respectively.

Algorithm 2 uses $\mathcal{C} \mathcal{P}_{\text {feas }} \cup \mathcal{C} \mathcal{P}_{\text {unknown }}$ as the initial set of circular patterns in Formulation (13). This ensures that at least all packable circular patterns are considered, which is necessary for proving a valid dual bound for RCPP. In general, many pattern candidates in $\mathcal{C P}$ unknown are not packable and need to be discarded to prove global optimality. Algorithm 2 dynamically verifies $C \in \mathcal{C} \mathcal{P}_{\text {unknown }}$ and fixes the corresponding variable $z_{C}$ to zero if $C$ is not packable. By discarding non-packable pattern candidates, the verification step does not only improve the
quality of the dual bound but also ensures that any integer feasible solution $\bar{z}$ is feasible for the RCPP, i.e., $z_{C}=0$ for all $C \in \mathcal{C} \mathcal{P}_{\text {unknown }}$.

The key idea of the dynamic verification is to only consider candidate patterns in $\mathcal{C} \mathcal{P}_{\text {unknown }}$ that have a nonzero LP solution value. To be more precise, let $z^{*}$ be the optimal LP solution of the restricted master problem after no more rectangular patterns with negative reduced cost could be found in the pricing loop, see Line 3. Algorithm 2 solves the LP relaxation of the master problem (13) to optimality if $z_{C}^{*}=0$ holds for all $C \in \mathcal{C} \mathcal{P}_{\text {unknown }}$. Otherwise, there exists at least one $C \in \mathcal{C} \mathcal{P}_{\text {unknown }}$ with $z_{C}^{*}>0$. In order to verify $C$, we solve (18) in Line 6 with larger working limits than we have used in the initial enumeration step. There are three possible outcomes. The candidate pattern $C$

- is packable: We remove $C$ from $\mathcal{C} \mathcal{P}_{\text {unknown }}$, add it to $\mathcal{C} \mathcal{P}_{\text {feas }}$, and continue with the next pattern candidate $C \in \mathcal{C} \mathcal{P}_{\text {unknown }}$ that has a nonzero solution value in $z^{*}$.
- is not packable: We remove $C$ from $\mathcal{C} \mathcal{P}_{\text {unknown }}$ and fix $z_{C}$ to zero, which cuts off the LP solution $z^{*}$. Resolving the LP leads to a different dual solution that might allow us to find new rectangular patterns with negative reduced cost. In this case, Algorithm 2 goes back to Line 3 and continues with pricing.
- could not be verified: Due to working limits, it may not be possible to verify $C$. In this case, we label that $C$ has been tested, i.e., $\Psi(C)=1$, and continue with the next candidate $C^{\prime} \in \mathcal{C} \mathcal{P}_{\text {unknown }}$ that has not been labeled yet, i.e., $\Psi\left(C^{\prime}\right)=0$, and $z_{C^{\prime}}^{*}>0$. If $C^{\prime}$ can be verified to be not packable, we might get a different LP solution with $z_{C}^{*}=0$. This would allow us to solve the LP relaxation of the master problem to optimality even though we could not verify $C$.
In Line 16 we check whether there is still a candidate $C^{\prime} \in \mathcal{C} \mathcal{P}_{\text {unknown }}$ with $z_{C^{\prime}}^{*}>0$ left. The candidates where $z_{C^{\prime}}^{*}>0$ have already been tested, so $\Psi\left(C^{\prime}\right)=1$, but were unable to be verified within the working limits. We fix all variables $z_{C^{\prime}}$ to zero for all $C^{\prime} \in \mathcal{C} \mathcal{P}_{\text {unknown }}$. Since unverified patterns have been fixed to zero, it is no longer possible to compute a valid dual bound for RCPP. The remaining solution process can be seen as solving a restricted version of RCPP whose solution $\bar{z}$ is feasible for the original problem. However, it might be the case that $\bar{z}$ is still optimal, even though unverified candidates from $\mathcal{C P} \mathcal{P}_{\text {unknown }}$ are fixed to zero. It is possible to verify the circular patterns a posteriori to determine whether an optimal solution has been found.

The advantage of dynamically verifying circular pattern candidates during the pricing loop is that small working limits can be used in Algorithm 1 in order to identify packable patterns quickly and then focus, with larger working limits, on the patterns that are used in the LP solution of the restricted master problem.

After applying Algorithm 2 we have solved the LP relaxation of (13) in the root node of the branch-and-bound tree. If there exist any integer variables with a fractional solution value, then branching must be performed. Due to the complexity of the pricing problems, we observed in our experiments that solving (15) to global optimality is only possible for simple problems that can be solved in the root node - without requiring branching. The proposed branching strategy does not greatly reduce the complexity of the pricing problems at each node of the tree. As a result, performing pricing in each node is very time consuming. Thus, to improve the computational performance, pricing is only performed in the root node. Afterwards the RCPP is solved for the set of rectangular patterns that have been found so far. The optimal solution of this restricted problem is feasible for the original RCPP. Our results show that applying this strategy allows us to find good quality solutions for difficult problems.

```
Algorithm 2: Price-and-verify
    in : internal and external radii \(r\) and \(R\), demands \(D\)
    out: LP solution \(z^{*}\) of the master problem or \(\emptyset\)
    \(\left(\mathcal{C P}{ }_{\text {feas }}, \mathcal{C} \mathcal{P}_{\text {unknown }}\right):=\) EnumeratePatterns \((r, R, D)\)
    \(\Psi_{C}:=0\) for all \(C \in \mathcal{C} \mathcal{P}_{\text {unknown }}\)
    while \(\exists R \in \mathcal{R} \mathcal{P}: \operatorname{red}_{R}<0\) do
        \(\mathcal{R P}:=\mathcal{R} \mathcal{P} \cup\{R\} \quad\) // pricing loop
    \(z^{*}:=\) solve \(\operatorname{LP}(R M P)\)
    while \(\exists C \in \mathcal{C} \mathcal{P}_{\text {unknown }}: z_{C}^{*}>0 \wedge \Psi_{C}=0\) do
        status \(:=\) solve verification NLP (18) // verification step
        \(\Psi_{C}:=1\)
        if status \(="\) feasible" then
            \(\mathcal{C} \mathcal{P}_{\text {unknown }}:=\mathcal{C} \mathcal{P}_{\text {unknown }} \backslash\{C\}\)
            \(\mathcal{C} \mathcal{P}_{\text {feas }}:=\mathcal{C} \mathcal{P}_{\text {feas }} \cup\{C\}\)
        if status \(=\) "infeasible" then
            \(\mathcal{C} \mathcal{P}_{\text {unknown }}:=\mathcal{C} \mathcal{P}_{\text {unknown }} \backslash\{C\}\)
            fix \(z_{C}:=0 \quad / /\) fixing cuts of \(z^{*}\)
            go to \(3 \quad / /\) enter pricing loop again
    if \(\exists C \in \mathcal{C} \mathcal{P}_{\text {unknown }}: z_{C}^{*}>0\) then
        fix \(z_{C}:=0\) for all \(C \in \mathcal{C} \mathcal{P}_{\text {unknown }}\)
        return \(\emptyset \quad / /\) LP solution is not valid
    return \(z^{*}\)
```


## 7 Computational Experiments

In this section, we investigate the performance and the quality of the dual and primal bounds obtained by our method and analyze how they relate to specific properties of an instance. The algorithm presented in Section 5.3 is implemented in the MINLP solver SCIP [29]. We refer to $[2,34]$ for an overview of the general solving algorithm and MINLP features of SCIP.

### 7.1 Implementation

We extended SCIP with the addition of two plug-ins: one pricing plug-in for solving the LP relaxation of Formulation (13) and one constraint handler plug-in to apply the dynamic verification of circular patterns during Algorithm 2. Algorithm 1 is executed immediately before the solving process for the RCPP commences. To accelerate the verification of circular pattern candidates, we use a simple greedy heuristic to check whether a given candidate $(t, P)$ is a circular pattern, i.e., if $(t, P) \in \mathcal{C P}$. The heuristic iteratively packs circles to the left-most, and then lowest possible position in a ring of type $t \in \mathcal{T}$. If the heuristic fails to verify a candidate, we solve (18) until a feasible solution has been found, or it has been proven to be infeasible. The same heuristic is used for finding a rectangular pattern with negative reduced cost during Algorithm 2. If the heuristic fails to find such a pattern, we directly solve (15) to global optimality. The implementation is publically available in source code as part of the SCIP Optimization Suite and can be downloaded at https://scip.zib.de/.

### 7.2 Experimental Setup

We conducted three main experiments. In the first experiment we characterize instances for which Algorithm 1 finds all elements of the set of non-dominated circular patterns $\mathcal{C} \mathcal{P}^{*} \subseteq \mathcal{C} \mathcal{P}_{\text {feas }}$. The second experiment answers the question whether our proposed method is able to solve instances to global optimality and characterizes these instances by their structural properties. Because our method can also be used as a primal heuristic, in the last experiment we compare it with the GRASP heuristic of Pedroso et al. [25].

In the enumeration experiment we apply Algorithm 1 on each instance and check whether $\mathcal{C P}{ }^{*}$ could be computed in two hours. For very difficult problems it might happen that we spend the whole time limit in solving a single NLP.

For our second experiment, we use our method to compute valid dual and primal bounds for RCPP with a total time limit of two hours. In contrast to the first experiment, we enforce a time limit of $10 s$ for each NLP (18) in Algorithm 1. After a time budget of 1200 s , we stop solving (18) and only use the greedy heuristic to verify circular pattern candidates. A pattern is added to $\mathcal{C} \mathcal{P}_{\text {feas }}$ if it can be verified. Otherwise, we add a candidate to $\mathcal{C} \mathcal{P}_{\text {unknown }}$ and process with the next candidate pattern. During the pricing loop we then use a larger time limit of 120 s to verify a pattern in $\mathcal{C} \mathcal{P}_{\text {unknown }}$ that has a nonzero value in the LP relaxation solution. Again, we stop solving NLPs after $2400 s$ were spent on verifying pattern candidates.

During Algorithm 2, we use a time limit of $300 s$ to solve (15). If we fail to solve a pricing problem to optimality and no improving column could be found, we stop solving any further pricing problems, obtain a valid dual bound by applying Theorem 2, and continue to solve the restricted master problem for the current set of rectangular patterns. In our experiments, this only occurs at the root node.

Finally, in our third experiment we compare the obtained primal bounds of our method with those obtained from the GRASP heuristic. Both algorithms run with a time limit of three hours on each instance. For this experiment the specifications from the second experiment are used for out method. We use the Python implementation of GRASP from [25]. Note that SCIP is written in the programming language C , in which an implementation of GRASP would be much faster. However, in our primal bound experiment we only compare the quality of obtained solutions and it can be observed that GRASP finds its best solutions in the first few minutes.

Test Sets. We consider two different test sets for our experiments. The first one contains 9 real-world instances from the tube industry, which were used in [25], and is in the following called real test set. Because this test set is too limited for a detailed computational study, we created a second test set containing 800 instances, the Rand test set. The purpose of this set is to show how the number of different ring types $T$, the maximum ratio of external radii $\max _{t} r_{t} / \min _{t} R_{t}$, and the ratio between rectangle size and the maximum volume of a ring $\max \{W, H\} / \max _{t} \pi\left(R_{t}\right)^{2}$ influence the performance of our method.

The name of each instance reads $\mathrm{i}\langle T\rangle\rangle_{-}\langle\alpha\rangle_{-}\langle\beta\rangle_{-}\langle\gamma\rangle$. rpa where

- $T \in\{3,4,5,10\}$ is the number of ring types,
- $\frac{\max _{t} r_{t}}{\min _{t} R_{t}}=: \alpha \in\{2.0,2.3, \ldots, 4.7\}$ is the maximum external radii ratio,
- $\frac{\max \{W, H\}}{\max _{t} R_{t}}=: \beta \in\{2.0,2.3, \ldots, 4.7\}$ is the rectangle size to external radius ratio, and
- $\frac{W H}{\max _{t} \pi\left(R_{t}\right)^{2}}[0.8 \gamma, 1.2 \gamma]$ for $\gamma \in\{5,10\}$ is the demand interval for each type $t$.

The demand of a type $t \in \mathcal{T}$ is randomly chosen from the corresponding demand interval. The size of this interval is anti-proportional to the external radius, i.e., types with large external
radius appear less often. For all instances in Rand we fixed the width $W$ and height $H$ of the rectangles to 10 . We created one instance for each 4 -tuple, giving 800 instances in total. All instances of the RAND and REAL test set are publically available at https://github.com/ mueldgog/RecursiveCirclePacking.

Hardware and Software. The experiments were performed on a cluster of 64bit $\operatorname{Intel}(\mathrm{R})$ Xeon(R) CPU E5-2660 v3 2.6 GHz with 12 MB cache and 48 GB main memory. In order to safeguard against a potential mutual slowdown of parallel processes, we ran only one job per node at a time. We used SCIP version 5.0 with CPLEX 12.7.1.0 as LP solver [18], CppAD 20140000.1 [5], and Ipopt 3.12 .5 with MUMPS 4.10 .0 [1] as NLP solver $[35,6]$.

### 7.3 Computational Results

In the following, we discuss the results for the three described experiments in detail. Instancewise results of all experiments can be found in Table in the electronic supplement.

Enumeration Experiments. Figure 7 shows the computing time required to compute all nondominated circular patterns $\mathcal{C} \mathcal{P}^{*}$ for the instances of the Rand test set. Each line corresponds to the subset of instances with identical number of ring types $T$. Each point on a line is computed as the shifted geometric mean (with a shift of 1.0) over all instances that have the same value $\max _{t} r_{t} / \min _{t} R_{t}$. We expect that the number of circular patterns increases when increasing the ratio between the ring with largest inner and the ring with smallest outer radius.

The first observation is that the time to compute all circular patterns increases when $T$ increases. For example, for $T=10$ we need about 4-10 times longer to enumerate all patterns than for $T=5$. Also, all lines in Figure 7 approximately increase exponentially in $\max _{t} r_{t} / \min _{t} R_{t}$. A larger ratio implies that each verification NLPs (18) has a larger number of circles that fit into a ring of inner radius $\max _{t} r_{t}$. These difficult NLPs and the larger number of possible circular patterns provide an explanation for the exponential increase of each line in Figure 7.


Figure 7: Plot showing the average time to enumerate all circular patterns for different number of ring types $T \in\{3,4,5,10\}$ within a two hours time limit.

Table 1 shows in more detail for how many instances we could compute $\mathcal{C} \mathcal{P}^{*}$ successfully and how much time it took on average. The rows partition the instances according to the number of ring types and the columns group these instances by their $\max _{t} r_{t} / \min _{t} R_{t}$ values. First, we see that for 392 of the 800 instances of the RAND test set we could successfully enumerate all circular patterns, in 19.8 seconds on average. We see that for less and less instances the enumeration step is successful as $\max _{t} r_{t} / \min _{t} R_{t}$ increases. For none of the RAND instances with $\max _{t} r_{t} / \min _{t} R_{t}$ strictly larger than 3.5 could $\mathcal{C} \mathcal{P}^{*}$ be successfully enumerated. Many verification NLPs for these instances are too difficult to solve and often consume the whole time limit of two hours, even for the case of three different ring types. However, for the 480 instances with $\max _{t} r_{t} / \min _{t} R_{t} \leq 3.5$ Algorithm 1 managed to compute on $81.6 \%$ (392) of these instances all non-dominated circular patterns.

Table 1: Aggregated results for enumerating all non-dominated circular patterns. Each of the six columns reports the results for 80 instances of the RAND test set. The 320 instances with $\max _{t} r_{t} / \min _{t} R_{t}>3.5$ are not shown because none of them could be successfully enumerated within the time limit.
n - number of instances for which $\mathcal{C} \mathcal{P}^{*}$ could be computed
time - time in seconds

| $\nu=\frac{m^{2}}{} \max _{t} r_{t}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\min _{t} R_{t}$ | $\nu=2.0$ |  | $\nu=2.3$ |  | $\nu=2.6$ |  | $\nu=2.9$ |  | $\nu=3.2$ |  | $\nu=3.5$ |  |
|  | n | time |
| $T=3$ | 20 | 0.5 | 20 | 1.0 | 20 | 8.1 | 20 | 35.2 | 17 | 227.5 | 12 | 4050.7 |
| $T=4$ | 20 | 0.7 | 20 | 1.3 | 20 | 8.2 | 20 | 24.2 | 15 | 374.5 | 9 | 4020.3 |
| $T=5$ | 20 | 0.9 | 20 | 2.6 | 19 | 4.3 | 19 | 117.9 | 16 | 571.4 | 4 | 4507.7 |
| $T=10$ | 20 | 3.0 | 20 | 8.0 | 16 | 28.9 | 17 | 117.3 | 8 | 1022.6 | 0 | - |
| all | 80 | 1.1 | 80 | 2.5 | 75 | 9.3 | 76 | 56.8 | 56 | 419.4 | 25 | 4109.4 |

Exact Price-and-Verify. In our second experiment, we analyze the primal and dual bounds that have been computed by our column generation method. Figure 8 shows the achieved optimality gaps, i.e., (primal - dual)/dual, for all instances of the Rand test set. We solve $35.9 \%$ of the instances to global optimality and get gaps between $0-25 \%$ for $5.6 \%$ of the instances. For about $46.3 \%$ of the instances we achieve gaps between $25-100 \%$, and only for a single instance the gap is larger than $100 \%$.

Table 2 and Table 3 contain aggregated results for the optimality gaps for the RAND test set. Table 2 shows that out of the 287 optimally solved instances, 80 instances have three, 72 have four, 70 have five, and 65 have ten different ring types. Most of the instances with a gap larger than $50 \%$ are from the subset of instances with ten ring types. Only 33 of the 98 instances with a gap larger than $50 \%$ have less than ten different ring types. Figure 9 visualizes the results of Table 2 in a bar diagram. As expected, for an increasing number of ring types worse optimality gaps are obtained.

Each row in Table 3 corresponds to the set of instances that have at least a certain value for $\max _{t} r_{t} / \min _{t} R_{t}$. For example, the bottom-left corner value signifies that 60 out of the 160 instances with $\max _{t} r_{t} / \min _{t} R_{t} \geq 4.4$ could be solved to optimality. As for Table 2, we see that the gaps increase with a larger $\max _{t} r_{t} / \min _{t} R_{t}$ ratio. This can be explained by our previous observation, namely, the difficulty of enumerating all circular patterns for these instances. When $\mathcal{C} \mathcal{P}_{\text {unknown }} \neq \emptyset$, then it could contain packable and unpackable patterns. A valid dual bound is given by the solution to the LP relaxation without any unverified patterns fixed to zero. If


Figure 8: Optimality gaps for all Rand instances.
Table 2: Number of instances of the RAND test set according to final gap and number of ring types.

|  | total | $0 \%$ | $0-25 \%$ | $25-50 \%$ | $50-100 \%$ | $>100 \%$ |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: |
| $T=3$ | 200 | 80 | 14 | 99 | 7 | 0 |
| $T=4$ | 200 | 72 | 11 | 108 | 9 | 0 |
| $T=5$ | 200 | 70 | 9 | 104 | 17 | 0 |
| $T=10$ | 200 | 65 | 11 | 59 | 64 | 1 |
| all | 800 | 287 | 45 | 370 | 97 | 1 |

this solution contains patterns from $\mathcal{C} \mathcal{P}_{\text {unknown }}$ that are unpackable, then the computed bound will be lower than the optimal LP bound if all circular patterns were verified. Alternatively, after the LP relaxation has been solved to optimality, all unverified patterns are fixed to zero. If $\mathcal{C} \mathcal{P}_{\text {unknown }}$ contains packable patterns that are necessary to express an optimal integer solution, then the best primal bound will be greater than the optimal solution value to the RCPP. To summarize, our results show that the number of ring types $T$ and the quotient $\max _{t} r_{t} / \min _{t} R_{t}$ are in many cases reliable indicators for both the quality of primal and dual bounds and the computational cost of our method. Instances that require branching are often too difficult to solve to global optimality.

Table 3: Number of instances of the RAND test set according to final gap and $\max _{t} r_{t} / \min _{t} R_{t}$.

|  | total | $0 \%$ | $0-25 \%$ | $25-50 \%$ | $50-100 \%$ | $>100 \%$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\max _{t} r_{t} / \min _{t} R_{t} \geq 2.0$ | 800 | 287 | 45 | 370 | 97 | 1 |
| $\geq 2.6$ | 640 | 223 | 42 | 295 | 79 | 1 |
| $\geq 3.2$ | 480 | 170 | 36 | 204 | 69 | 1 |
| $\geq 3.8$ | 320 | 122 | 25 | 126 | 46 | 1 |
| $\geq 4.4$ | 160 | 60 | 11 | 66 | 23 | 0 |

Finally, we briefly report on the size of the branch-and-bound trees for the primal and dual bound experiments. We consider a node to be explored once it has been selected by SCIP's node


Figure 9: Optimality gaps for RAND instances split by number of different ring types.
selection algorithm. Our method explored more than one node for 367 of the 800 Rand instances and only 15 of these instances could be solved to global optimality. The maximum number of explored nodes is 207 .

Primal Bound Experiments. In our final experiments, we consider our method as a pure primal heuristic for RCPP and compare it to the GRASP heuristic by Pedroso et al. [25], which is specifically designed to find dense packings quickly. Table 4 contains detailed results for the Real, and Table 5 aggregated results for the Rand test set. For analytical purposes, Table 4 also shows the results for the dual bounds.

Table 4: Detailed results for the comparison with GRASP on the REAL test set.

| Instance |  |  |  | price \& verify |  | GRASP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | T | $\frac{\max _{t} r_{t}}{\min _{t} R_{t}}$ | volume | dual | primal | primal |
| s03i1 | 3 | 2.2 | 1 | 1 | 1 | 1 |
| s03i2 | 3 | 2.2 | 5 | 9 | 10 | 10 |
| s03i3 | 3 | 2.2 | 47 | 82 | 98 | 95 |
| s05i1 | 5 | 5.1 | 1 | 1 | 1 | 1 |
| s05i2 | 5 | 5.1 | 4 | 8 | 10 | 10 |
| s05i3 | 5 | 5.1 | 36 | 70 | 94 | 98 |
| s16i1 | 16 | 6.3 | 1 | 1 | 1 | 1 |
| s16i2 | 16 | 6.3 | 5 | 8 | 10 | 10 |
| s16i3 | 16 | 6.3 | 45 | 73 | 96 | 96 |

For the REAL test set, we are able to solve the three instances s**i1, that require only one rectangle in the optimal solution. On all but two instances our method achieves the same primal bound as GRASP. On s03i3 we need three more rectangles and on s05i3 four rectangles less. Due to the small value $\max _{t} r_{t} / \min _{t} R_{t}=2.2$ of the instances with three different ring types, the enumeration step takes only a fraction of a second. The difficulty of these instances lies only in the placement of rings into rectangles and not in the recursive structure of RCPP. Hence, it is not surprising that our method computes a worse solution than GRASP on s03i3 because we only use a simple left-most greedy heuristic before solving (15).

Proving optimality for the instances of the REAL test set is difficult for our method. Only
the three instances $s * *$ i1 with one rectangle in the optimal packing, could be solved to gap zero. Because the rectangles are very large relative to the radii of the rings, the pricing problems contain many variables and constraints. As a result, the pricing problems are too difficult to solve to optimality. As shown above, the ratio $\max _{t} r_{t} / \min _{t} R_{t}$ of the instances with $T>3$ is too large to enumerate and verify all circular patterns in reasonable time.

It is worth to notice that the dual bounds that can be proved by our method are much better than simple volume-based bounds. Except for the three instances that require only one rectangle, our dual bounds are at least 1.6 times larger than the volume-based bounds.

Even though our method is not particularly designed for the characteristics of the instances in the REAL test set, it still performs well as a primal heuristic. On the instances with five ring types it could enumerate many non-trivial circular patterns and uses them to find a better primal solution than GRASP.

For the RAND test set, Table 5 shows the number of instances on which our method performed better or worse than GRASP with respect to the achieved primal bound. The second column reports the primal bound average relative to the value of GRASP on all instances of RAND. For this we compute the shifted geometric mean of all ratios between the obtained primal bounds of our method and GRASP. The third column shows the total number of instances on which our method found a better primal solution. The fourth column shows the improvement relative to GRASP. The remaining three columns show statistics for the instances on which our method performed worse.

We observe that our method outperforms GRASP on many instances. On average, the solutions are $2.7 \%$ better than the ones from GRASP. In total, we find a better primal bound on 356 of the instances, and a worse bound on only 33 instances. Our method could find for all instances a primal feasible solution before hitting the time or memory limit. The average deterioration on the 33 instances is $5.1-7.2 \%$ and the average improvement on the 356 instances is $5.6-6.9 \%$. Our method finds more often a better solution than GRASP for instances that have a larger number of ring types. For ten ring types we find 123 better solutions, which is about twice as large as for three ring types.

There are two reasons why our method performs better than GRASP on many instances. The first is that GRASP considers and positions each ring individually. A large demand vector $D$ results in a large number of rings, which makes it difficult for GRASP to find good primal solutions. In contrast, the number of rings and circles that need to be considered in our pricing problems and in the enumeration is typically bounded by a number derived from some volume arguments instead of the entries of the demand vector $D$. Thus, scaling up $D$ typically does not have a large impact when applying our column generation algorithm as a primal heuristic. The second reason for the better performance is that for a given set of circular and rectangular patterns, the master problem takes the best decisions of how to pack rings recursively into each other. For instances where this combinatorial part of the problem is difficult, we expect that our method performs better than GRASP. Indeed, on instances with a large number of ring types our method frequently finds better solutions than GRASP.

In summary, the experiments on synthetic and real-world instances shows that our method solves small and medium-sized instances to global optimality. This was the case on 287 of the randomly generated instances and for three of nine real-world instances. Due to the costly verification of circular patterns and difficult sub-problems, our method is not able to solve larger instances to global optimality, but still achieves good primal and dual bounds. Compared to the state-of-the-art heuristic for RCPP, our method finds on 356 of the instances better, and only on $33 \%$ of the instances worse primal solutions.

Table 5: Aggregated results for primal bound comparisons against GRASP on the RAND test set.

> all - all instances
better - instances with a better primal bound than GRASP
worse - instances with a worse primal bound than GRASP
\# - number of instances
\% - average primal bound relative to average primal bound of GRASP

|  | all |  | better |  |  | worse |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | $\%$ | $\#$ |  | $\%$ |  | $\#$ |  |
| $T=3$ | 98.3 |  | 61 | 94.3 |  | 7 |  |
| $T=4$ | 97.3 |  | 78 | 93.1 |  | 9 |  |
| $T=5$ | 97.4 | 94 | 94.4 |  | 9 | 106.3 |  |
| $T=10$ | 96.1 | 123 | 93.6 | 8 | 107.5 |  |  |
| all | 97.3 | 356 | 93.8 | 33 | 105.1 |  |  |

## 8 Conclusion

In this article, we have presented the first exact algorithm for solving practically relevant instances for the extremely challenging recursive circle packing problem. Our method is based on a DantzigWolfe decomposition of a nonconvex MINLP model. The key idea of solving this decomposition via column generation is to break symmetry of the problem by using circular and rectangular patterns. These patterns are used to model all possible combinations of packing rings into other rings. As a result, we were able to reduce the complexity of the sub-problems significantly and shift the recursive part of RCPP to a linear master problem.

In some sense, this reformulation can be interpreted as a reduction technique from RCPP to CPP. All occurring sub-problems in the enumeration of circular patterns and the pricing problems are classical CPPs and they constitute the major computational bottleneck. Every primal or dual improvement for this problem class would directly translate to better primal and dual bounds for RCPP. Still, in order to prove optimality it is usually necessary to solve the $\mathcal{N} \mathcal{P}$-hard CPP to optimality, which can fail for harder instances. However, even for this case, the application of Theorem 2 and the pessimistic and optimistic enumeration of circular patterns guarantees valid primal and dual bounds for RCPP. The combination of column generation with column enumeration could be of more general interest when using decomposition techniques for MINLPs that lead to hard nonconvex sub-problems.

An interesting extension of the presented method is its application to problem with different container shapes and sizes. Since the master problem of the decomposed model does not depend on the shape of the containers or packed objects, it is possible to apply this model to any container shape. This would only require a modification to the column generation subproblems to produce packable patterns that can be added to the master problem. Thus, the presented methods cover a wide range of packing problems.

Finally, our current proof-of-concept implementation could certainly be improved further. To mention only one point, we currently use a rather simple greedy heuristic in order to find quickly a feasible solution for the verification NLP (18) and the Pricing Problem (15). By using more sophisticated heuristics for the well-studied CPP, we might be able to compute better optimality gaps for instances where the positioning of circles into rectangles or rings is difficult. Surprisingly, even with a simple greedy heuristic our method works well as a primal heuristic and finds for many instances better solutions than GRASP [25].

## Acknowledgments

This work has been supported by the Research Campus MODAL Mathematical Optimization and Data Analysis Laboratories funded by the Federal Ministry of Education and Research (BMBF Grant 05 M 14 ZAM ). All responsibility for the content of this publication is assumed by the authors.

## References

[1] MUMPS, Multifrontal Massively Parallel sparse direct Solver. http://mumps.enseeiht.fr
[2] Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin (2007). URN:nbn:de:kobv:83-opus-16117
[3] Bergner, M., Caprara, A., Ceselli, A., Furini, F., Lübbecke, M.E., Malaguti, E., Traversi, E.: Automatic Dantzig-Wolfe reformulation of mixed integer programs. Mathematical Programming 149(1-2), 391-424 (2015)
[4] Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: Numerical results and industrial applications. European Journal of Operational Research 191(3), 786-802 (2008). URL http://EconPapers.repec.org/RePEc: eee:ejores: v:191:y:2008:i:3:p:786-802
[5] COIN-OR: CppAD, a package for differentiation of CPP algorithms. http://www.coin-or. org/CppAD
[6] COIN-OR: Ipopt, Interior point optimizer. http://www.coin-or.org/Ipopt
[7] Costa, A., Hansen, P., Liberti, L.: On the impact of symmetry-breaking constraints on spatial branch-and-bound for circle packing in a square. Discrete Applied Mathematics 161(1-2), 96 - 106 (2013). DOI http://dx.doi.org/10.1016/j.dam.2012.07.020. URL http: //www.sciencedirect.com/science/article/pii/S0166218X12002855
[8] Desaulniers, G., Desrosiers, J., Solomon, M.M.: Column generation, vol. 5. Springer Science \& Business Media (2006)
[9] DROR, M.: Polygon plate-cutting with a given order. IIE Transactions 31(3), 271274 (1999). DOI 10.1023/A:1007606007369. URL http://dx.doi.org/10.1023/A: 1007606007369
[10] Farley, A.A.: A note on bounding a class of linear programming problems, including cutting stock problems. Oper. Res. 38(5), 922-923 (1990). DOI 10.1287/opre.38.5.922. URL http: //dx.doi.org/10.1287/opre.38.5.922
[11] Fortz, B., Labbé, M., Poss, M.: A branch-and-cut-and-price framework for convex minlp applied to a stochastic network design problem. In: Workshop on Mixed Integer Nonlinear Programming, p. 131 (2010)
[12] Gamrath, G.: Generic branch-cut-and-price. Master's thesis (2010)
[13] George B. Dantzig, P.W.: Decomposition principle for linear programs. Operations Research 8(1), 101-111 (1960). URL http://www.jstor.org/stable/167547
[14] Gilmore, P., Gomory, R.: A linear programming approach to the cutting stock problem. Operations Research 9 (1961)
[15] Gilmore, P., Gomory, R.E.: Multistage cutting stock problems of two and more dimensions. Operations research 13(1), 94-120 (1965)
[16] Hales, T.C., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., Kaliszyk, C., Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow, T., Obua, S., Pleso, J., Rute, J., Solovyev, A., Ta, A.H.T., Tran, T.N., Trieu, D.T., Urban, J., Vu, K.K., Zumkeller, R.: A formal proof of the Kepler conjecture. arXiv 1501.02155 (2015)
[17] Hifi, M., M'Hallah, R.: A literature review on circle and sphere packing problems: Models and methodologies. Adv. Operations Research 2009, 150,624:1-150,624:22 (2009). URL http://dblp.uni-trier.de/db/journals/advor/advor2009.html\#HifiM09
[18] ILOG, Inc: ILOG CPLEX: High-performance software for mathematical programming and optimization. See http://www.ilog.com/products/cplex/
[19] Jans, R.: Solving lot-sizing problems on parallel identical machines using symmetry-breaking constraints. INFORMS Journal on Computing 21(1), 123-136 (2009)
[20] Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. Journal of Global Optimization 43(2), 299-328 (2009). DOI 10.1007/s10898-007-9274-6. URL http: //dx.doi.org/10.1007/s10898-007-9274-6
[21] Kallrath, J.: Packing ellipsoids into volume-minimizing rectangular boxes. Journal of Global Optimization pp. 1-35 (2015). DOI 10.1007/s10898-015-0348-6. URL http://dx.doi.org/ 10.1007/s10898-015-0348-6
[22] Kilinç, M., Sahinidis, N.V.: Solving MINLPs with BARON. Talk at MINLP 2014, Carnegie Mellon University, Pittsburgh, PA, USA (2014). http://minlp.cheme.cmu.edu/2014/ papers/kilinc.pdf
[23] Lenstra, J.K., Kan, A.H.G.R.: Complexity of packing, covering and partitioning problems. Econometric Institute (1979)
[24] Lübbecke, M.E., Desrosiers, J.: Selected topics in column generation. Operations Research 53(6), 1007-1023 (2005)
[25] Pedroso, J.P., Cunha, S., Tavares, J.N.: Recursive circle packing problems. International Transactions in Operational Research 23(1-2), 355-368 (2016). DOI 10.1111/itor. 12107. URL http://dx.doi.org/10.1111/itor. 12107
[26] Pisinger, D., Sigurd, M.: The two-dimensional bin packing problem with variable bin sizes and costs. Discret. Optim. 2(2), 154-167 (2005). DOI 10.1016/j.disopt.2005.01.002. URL http://dx.doi.org/10.1016/j.disopt.2005.01.002
[27] Ralphs, T.K., Galati, M.V.: Decomposition in integer linear programming. Integer Programming: Theory and Practice 3 (2005)
[28] Sahinidis, N.V.: Baron: A general purpose global optimization software package. Journal of Global Optimization 8(2), 201-205 (1996). DOI 10.1007/BF00138693. URL http://dx. doi.org/10.1007/BF00138693
[29] SCIP - Solving Constraint Integer Programs. http://scip.zib.de
[30] Vance, P.H.: Branch-and-price algorithms for the one-dimensional cutting stock problem. Computational Optimization and Applications 9(3), 211-228 (1998). DOI 10.1023/A: 1018346107246. URL http://dx.doi.org/10.1023/A:1018346107246
[31] Vance, P.H., Barnhart, C., Johnson, E.L., Nemhauser, G.L.: Solving binary cutting stock problems by column generation and branch-and-bound. Computational Optimization and Applications 3(2), 111-130 (1994). DOI 10.1007/BF01300970. URL http://dx.doi.org/ 10.1007/BF01300970
[32] Vanderbeck, F., Wolsey, L.A.: An exact algorithm for ip column generation. Oper. Res. Lett. 19(4), 151-159 (1996). DOI 10.1016/0167-6377(96)00033-8. URL http://dx.doi. org/10.1016/0167-6377(96)00033-8
[33] Vanderbeck, F., Wolsey, L.A.: Reformulation and Decomposition of Integer Programs, pp. 431-502. Springer Berlin Heidelberg, Berlin, Heidelberg (2010). DOI 10.1007/ 978-3-540-68279-0_13. URL http://dx.doi.org/10.1007/978-3-540-68279-0_13
[34] Vigerske, S.: Decomposition in multistage stochastic programming and a constraint integer programming approach to mixed-integer nonlinear programming. Ph.D. thesis, HumboldtUniversität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II (2013). URN: nbn: de:kobv:11-100208240
[35] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 2557 (2006). DOI:10.1007/s10107-004-0559-y

## Appendix

Table 6: Detailed results for randomly generated instances.
vol - volume-based dual bound
dual - proven primal bound primal - proven dual bound
GRASP - proven primal bound by GRASP heuristic
nfeas - total number of circular patterns found
ncands - total number of circular patterns candidates
nrp - total number of generated rectangular patterns
nodes - total number of branch-and-bound nodes
enum time - time to compute all circular patterns in enumeration experiment

| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 03_2.0_2.0_05 | 8 | 17 | 17 | 17 | 4 | 0 | 6 | 1 | 0.4 |
| i03_2.0_2.0_10 | 22 | 34 | 38 | 38 | 5 | 0 | 7 | 3 | 1.4 |
| i03_2.0_2.3_05 | 7 | 16 | 16 | 16 | 4 | 0 | 6 | 1 | 0.5 |
| i03_2.0_2.3_10 | 23 | 33 | 45 | 49 | 4 | 0 | 9 | 3 | 0.9 |
| i03_2.0_2.6_05 | 8 | 23 | 23 | 23 | 3 | 0 | 7 | 1 | 0.6 |
| i03_2.0_2.6_10 | 14 | 41 | 41 | 41 | 4 | 0 | 9 | 1 | 0.3 |
| i03_2.0_2.9_05 | 8 | 16 | 16 | 16 | 4 | 0 | 9 | 1 | 0.4 |
| i03_2.0_2.9_10 | 14 | 18 | 27 | 27 | 4 | 0 | 8 | 3 | 0.7 |
| i03_2.0_3.2_05 | 9 | 23 | 23 | 23 | 4 | 0 | 7 | 1 | 0.6 |
| i03_2.0_3.2_10 | 20 | 26 | 38 | 38 | 4 | 0 | 11 | 3 | 1.0 |
| i03_2.0_3.5_05 | 8 | 21 | 21 | 21 | 3 | 0 | 10 | 1 | 0.7 |
| i03_2.0_3.5_10 | 16 | 23 | 32 | 33 | 4 | 0 | 10 | 3 | 0.5 |
| i03_2.0_3.8_05 | 6 | 10 | 14 | 15 | 4 | 0 | 15 | 3 | 0.4 |
| i03_2.0_3.8_10 | 16 | 23 | 31 | 33 | 4 | 0 | 16 | 3 | 0.3 |
| i03_2.0_4.1_05 | 9 | 13 | 18 | 18 | 4 | 0 | 21 | 3 | 0.3 |
| i03_2.0_4.1_10 | 12 | 18 | 24 | 24 | 4 | 0 | 25 | 3 | 0.4 |
| i03_2.0_4.4_05 | 8 | 10 | 14 | 15 | 4 | 0 | 18 | 3 | 0.3 |
| i03_2.0_4.4_10 | 14 | 20 | 25 | 27 | 4 | 0 | 18 | 3 | 0.3 |
| i03_2.0_4.7_05 | 7 | 13 | 19 | 19 | 3 | 0 | 16 | 3 | 0.6 |
| i03_2.0_4.7_10 | 14 | 21 | 29 | 30 | 4 | 0 | 24 | 3 | 0.4 |
| i03_2.3_2.0_05 | 7 | 15 | 15 | 15 | 3 | 0 | 5 | 1 | 2.2 |
| i03_2.3_2.0_10 | 16 | 36 | 36 | 36 | 4 | 0 | 6 | 1 | 0.5 |
| i03_2.3_2.3_05 | 8 | 12 | 18 | 18 | 4 | 0 | 7 | 3 | 0.9 |
| i03_2.3_2.3_10 | 14 | 32 | 32 | 32 | 4 | 0 | 5 | 1 | 1.2 |
| i03_2.3_2.6_05 | 9 | 11 | 17 | 18 | 4 | 0 | 7 | 3 | 0.8 |
| i03_2.3_2.6_10 | 16 | 30 | 35 | 38 | 4 | 0 | 10 | 4 | 1.0 |
| i03_2.3_2.9_05 | 7 | 17 | 17 | 17 | 4 | 0 | 7 | 1 | 0.6 |
| i03_2.3_2.9_10 | 17 | 66 | 66 | 66 | 3 | 0 | 5 | 1 | 2.1 |
| i03_2.3_3.2_05 | 7 | 11 | 16 | 16 | 4 | 0 | 7 | 3 | 0.7 |
| i03_2.3_3.2_10 | 14 | 38 | 38 | 38 | 4 | 0 | 5 | 1 | 0.9 |
| i03_2.3_3.5_05 | 8 | 23 | 23 | 23 | 3 | 0 | 6 | 1 | 0.9 |
| i03_2.3_3.5_10 | 14 | 21 | 28 | 29 | 4 | 0 | 14 | 3 | 0.9 |
| i03_2.3_3.8_05 | 7 | 11 | 15 | 15 | 4 | 0 | 16 | 3 | 0.7 |
| i03_2.3_3.8_10 | 23 | 25 | 34 | 35 | 5 | 0 | 18 | 20 | 2.6 |
|  |  |  |  |  |  |  |  |  |  |


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i03_2.3_4.1_05 | 7 | 10 | 13 | 13 | 4 | 0 | 12 | 3 | 1.1 |
| i03_2.3_4.1_10 | 16 | 24 | 31 | 30 | 3 | 0 | 22 | 3 | 0.9 |
| i03_2.3_4.4_05 | 8 | 11 | 15 | 15 | 4 | 0 | 21 | 3 | 0.5 |
| i03_2.3_4.4_10 | 13 | 19 | 24 | 25 | 5 | 0 | 8 | 3 | 1.6 |
| i03_2.3_4.7_05 | 9 | 13 | 19 | 20 | 3 | 0 | 10 | 3 | 0.8 |
| i03_2.3_4.7_10 | 16 | 23 | 30 | 30 | 4 | 0 | 23 | 3 | 0.8 |
| i03_2.6_2.0_05 | 9 | 14 | 20 | 19 | 4 | 0 | 5 | 3 | 1.5 |
| i03_2.6_2.0_10 | 12 | 34 | 34 | 34 | 4 | 0 | 5 | 1 | 1.3 |
| i03_2.6_2.3_05 | 7 | 11 | 16 | 14 | 4 | 0 | 5 | 3 | 1.6 |
| i03_2.6_2.3_10 | 17 | 29 | 39 | 40 | 4 | 0 | 7 | 3 | 1.4 |
| i03_2.6_2.6_05 | 8 | 25 | 25 | 25 | 3 | 0 | 3 | 1 | 2.2 |
| i03_2.6_2.6_10 | 24 | 26 | 36 | 37 | 8 | 1 | 11 | 3 | 11.6 |
| i03_2.6_2.9_05 | 8 | 30 | 30 | 30 | 3 | 0 | 3 | 1 | 3.2 |
| i03_2.6_2.9_10 | 13 | 67 | 67 | 67 | 3 | 0 | 3 | 1 | 2.5 |
| i03_2.6_3.2_05 | 6 | 19 | 19 | 19 | 4 | 0 | 5 | 1 | 1.6 |
| i03_2.6_3.2_10 | 12 | 37 | 37 | 37 | 6 | 0 | 5 | 1 | 1599.4 |
| i03_2.6_3.5_05 | 8 | 12 | 16 | 17 | 4 | 0 | 19 | 3 | 2.0 |
| i03_2.6_3.5_10 | 24 | 26 | 34 | 35 | 8 | 1 | 15 | 3 | 5686.4 |
| i03_2.6_3.8_05 | 6 | 8 | 11 | 11 | 4 | 0 | 11 | 3 | 1.7 |
| i03_2.6_3.8_10 | 12 | 38 | 38 | 38 | 3 | 0 | 6 | 1 | 2.0 |
| i03_2.6_4.1_05 | 7 | 9 | 13 | 12 | 5 | 0 | 8 | 3 | 4.6 |
| i03_2.6_4.1_10 | 14 | 19 | 26 | 26 | 3 | 0 | 21 | 3 | 2.5 |
| i03_2.6_4.4_05 | 7 | 12 | 15 | 15 | 3 | 0 | 17 | 3 | 1.9 |
| i03_2.6_4.4_10 | 22 | 23 | 31 | 32 | 8 | 1 | 15 | 3 | 1499.0 |
| i03_2.6_4.7_05 | 6 | 10 | 14 | 14 | 4 | 0 | 16 | 3 | 1.6 |
| i03_2.6_4.7_10 | 13 | 18 | 24 | 24 | 5 | 0 | 18 | 3 | 4.7 |
| i03_2.9_2.0_05 | 7 | 12 | 17 | 17 | 4 | 0 | 6 | 3 | 10.9 |
| i03_2.9_2.0_10 | 13 | 29 | 29 | 29 | 3 | 0 | 3 | 1 | 18.2 |
| i03_2.9_2.3_05 | 6 | 15 | 15 | 15 | 3 | 0 | 3 | 1 | 17.6 |
| i03_2.9_2.3_10 | 14 | 40 | 40 | 40 | 3 | 0 | 3 | 1 | 15.1 |
| i03_2.9_2.6_05 | 7 | 18 | 18 | 18 | 4 | 0 | 5 | 1 | 13.5 |
| i03_2.9_2.6_10 | 13 | 41 | 41 | 41 | 3 | 0 | 3 | 1 | 21.5 |
| i03_2.9_2.9_05 | 7 | 11 | 12 | 12 | 7 | 1 | 12 | 3 | 843.5 |
| i03_2.9_2.9_10 | 13 | 66 | 66 | 66 | 3 | 0 | 3 | 1 | 811.0 |
| i03_2.9_3.2_05 | 7 | 14 | 14 | 15 | 4 | 0 | 16 | 1 | 12.7 |
| i03_2.9_3.2_10 | 14 | 38 | 38 | 38 | 5 | 1 | 5 | 1 | 15.3 |
| i03_2.9_3.5_05 | 7 | 10 | 13 | 13 | 7 | 1 | 7 | 3 | 63.6 |
| i03_2.9_3.5_10 | 20 | 20 | 29 | 30 | 10 | 3 | 17 | 1 | 3990.8 |
| i03_2.9_3.8_05 | 7 | 10 | 13 | 13 | 4 | 0 | 22 | 3 | 9.7 |
| i03_2.9_3.8_10 | 12 | 14 | 19 | 19 | 9 | 2 | 9 | 1 | 320.8 |
| i03_2.9_4.1_05 | 7 | 10 | 13 | 13 | 4 | 0 | 17 | 3 | 10.1 |
| i03_2.9_4.1_10 | 15 | 20 | 26 | 27 | 7 | 1 | 16 | 3 | 27.0 |
| i03_2.9_4.4_05 | 8 | 9 | 12 | 12 | 4 | 0 | 17 | 3 | 12.3 |
| i03_2.9_4.4_10 | 12 | 21 | 27 | 28 | 4 | 0 | 13 | 3 | 11.1 |
| i03_2.9_4.7_05 | 7 | 11 | 14 | 15 | 4 | 0 | 21 | 3 | 8.9 |
| i03_2.9_4.7_10 | 13 | 22 | 29 | 29 | 4 | 0 | 16 | 3 | 8.8 |
| i03_3.2_2.0_05 | 7 | 14 | 14 | 14 | 4 | 0 | 5 | 1 | 160.3 |
| i03_3.2_2.0_10 | 14 | 18 | 27 | 27 | 6 | 1 | 10 | 1 | 189.1 |


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i03_3.2_2.3_05 | 7 | 9 | 12 | 13 | 4 | 0 | 7 | 3 | 181.9 |
| i03_3.2_2.3_10 | 16 | 20 | 28 | 30 | 4 | 0 | 7 | 3 | 178.9 |
| i03_3.2_2.6_05 | 6 | 15 | 15 | 15 | 4 | 0 | 5 | 1 | 320.7 |
| i03_3.2_2.6_10 | 15 | 29 | 29 | 29 | 4 | 0 | 5 | 1 | 318.9 |
| i03_3.2_2.9_05 | 7 | 10 | 14 | 14 | 5 | 1 | 12 | 1 | 265.2 |
| i03_3.2_2.9_10 | 15 | 23 | 31 | 31 | 4 | 0 | 13 | 3 | 250.8 |
| i03_3.2_3.2_05 | 7 | 16 | 16 | 16 | 5 | 1 | 8 | 1 | 197.8 |
| i03_3.2_3.2_10 | 16 | 32 | 32 | 32 | 8 | 2 | 7 | 1 | 329.4 |
| i03_3.2_3.5_05 | 8 | 13 | 13 | 13 | 4 | 0 | 12 | 1 | 309.0 |
| i03_3.2_3.5_10 | 14 | 17 | 25 | 26 | 7 | 2 | 19 | 1 | time limit |
| i03_3.2_3.8_05 | 11 | 11 | 16 | 15 | 15 | 5 | 10 | 1 | time limit |
| i03_3.2_3.8_10 | 22 | 22 | 32 | 32 | 15 | 5 | 19 | 1 | time limit |
| i03_3.2_4.1_05 | 7 | 9 | 12 | 12 | 4 | 0 | 20 | 3 | 228.2 |
| i03_3.2_4.1_10 | 15 | 21 | 28 | 27 | 4 | 0 | 14 | 3 | 231.3 |
| i03_3.2_4.4_05 | 8 | 12 | 15 | 16 | 4 | 0 | 17 | 3 | 276.5 |
| i03_3.2_4.4_10 | 15 | 19 | 26 | 26 | 4 | 0 | 13 | 3 | 276.6 |
| i03_3.2_4.7_05 | 7 | 9 | 12 | 12 | 4 | 0 | 10 | 3 | 141.1 |
| i03_3.2_4.7_10 | 16 | 21 | 30 | 32 | 5 | 1 | 26 | 1 | 152.1 |
| i03_3.5_2.0_05 | 7 | 9 | 13 | 14 | 9 | 3 | 11 | 1 | 6052.1 |
| i03_3.5_2.0_10 | 16 | 16 | 23 | 24 | 15 | 5 | 8 | 1 | time limit |
| i03_3.5_2.3_05 | 8 | 15 | 15 | 15 | 4 | 0 | 7 | 1 | 3728.3 |
| i03_3.5_2.3_10 | 14 | 20 | 29 | 30 | 5 | 1 | 10 | 1 | 3756.9 |
| i03_3.5_2.6_05 | 7 | 17 | 17 | 17 | 5 | 1 | 7 | 1 | 3745.3 |
| i03_3.5_2.6_10 | 13 | 39 | 39 | 39 | 4 | 0 | 5 | 1 | 3736.8 |
| i03_3.5_2.9_05 | 9 | 16 | 16 | 17 | 8 | 2 | 13 | 3 | time limit |
| i03_3.5_2.9_10 | 12 | 31 | 31 | 31 | 4 | 0 | 6 | 1 | time limit |
| i03_3.5_3.2_05 | 7 | 18 | 18 | 18 | 4 | 0 | 5 | 1 | time limit |
| i03_3.5_3.2_10 | 15 | 30 | 30 | 30 | 7 | 2 | 14 | 10 | time limit |
| i03_3.5_3.5_05 | 8 | 9 | 14 | 15 | 5 | 1 | 12 | 2 | 4886.7 |
| i03_3.5_3.5_10 | 14 | 19 | 27 | 27 | 5 | 1 | 23 | 1 | 5042.7 |
| i03_3.5_3.8_05 | 6 | 13 | 13 | 13 | 4 | 0 | 5 | 1 | time limit |
| i03_3.5_3.8_10 | 15 | 21 | 27 | 29 | 4 | 0 | 18 | 3 | time limit |
| i03_3.5_4.1_05 | 6 | 9 | 12 | 12 | 4 | 0 | 22 | 3 | 3553.2 |
| i03_3.5_4.1_10 | 14 | 19 | 24 | 25 | 4 | 0 | 21 | 3 | 3582.9 |
| i03_3.5_4.4_05 | 8 | 9 | 14 | 15 | 12 | 4 | 29 | 1 | time limit |
| i03_3.5_4.4_10 | 13 | 18 | 22 | 23 | 4 | 0 | 26 | 3 | 5203.6 |
| i03_3.5_4.7_05 | 6 | 9 | 12 | 13 | 5 | 1 | 23 | 1 | 3311.8 |
| i03_3.5_4.7_10 | 14 | 19 | 24 | 24 | 4 | 0 | 10 | 3 | 3042.6 |
| i03_3.8_2.0_05 | 9 | 10 | 15 | 16 | 12 | 5 | 11 | 1 | time limit |
| i03_3.8_2.0_10 | 14 | 34 | 34 | 34 | 6 | 2 | 5 | 1 | time limit |
| i03_3.8_2.3_05 | 7 | 20 | 20 | 20 | 4 | 1 | 3 | 1 | time limit |
| i03_3.8_2.3_10 | 15 | 33 | 34 | 34 | 6 | 2 | 11 | 1 | time limit |
| i03_3.8_2.6_05 | 6 | 15 | 15 | 15 | 5 | 1 | 6 | 1 | time limit |
| i03_3.8_2.6_10 | 12 | 26 | 26 | 26 | 5 | 1 | 6 | 1 | time limit |
| i03_3.8_2.9_05 | 9 | 29 | 29 | 29 | 4 | 1 | 6 | 1 | time limit |
| i03_3.8_2.9_10 | 13 | 36 | 36 | 36 | 6 | 2 | 6 | 1 | time limit |
| i03_3.8_3.2_05 | 8 | 19 | 19 | 19 | 5 | 1 | 8 | 1 | time limit |
| i03_3.8_3.2_10 | 14 | 25 | 25 | 25 | 18 | 8 | 5 | 1 | time limit |


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i03_3.8_3.5_05 | 8 | 11 | 16 | 16 | 6 | 2 | 15 | 1 | time limit |
| i03_3.8_3.5_10 | 15 | 17 | 26 | 27 | 5 | 1 | 10 | 1 | time limit |
| i03_3.8_3.8_05 | 11 | 11 | 14 | 14 | 26 | 14 | 17 | 9 | time limit |
| i03_3.8_3.8_10 | 15 | 46 | 46 | 46 | 5 | 2 | 5 | 1 | time limit |
| i03_3.8_4.1_05 | 8 | 9 | 13 | 14 | 5 | 1 | 21 | 1 | time limit |
| i03_3.8_4.1_10 | 16 | 20 | 29 | 31 | 9 | 3 | 18 | 10 | time limit |
| i03_3.8_4.4_05 | 6 | 9 | 13 | 13 | 12 | 5 | 14 | 1 | time limit |
| i03_3.8_4.4_10 | 12 | 16 | 21 | 23 | 6 | 2 | 17 | 1 | time limit |
| i03_3.8_4.7_05 | 7 | 9 | 11 | 11 | 5 | 1 | 23 | 1 | time limit |
| i03_3.8_4.7_10 | 13 | 20 | 28 | 31 | 4 | 1 | 7 | 3 | time limit |
| i03_4.1_2.0_05 | 7 | 8 | 11 | 11 | 20 | 9 | 9 | 1 | time limit |
| i03_4.1_2.0_10 | 15 | 27 | 27 | 27 | 6 | 2 | 5 | 1 | time limit |
| i03_4.1_2.3_05 | 6 | 14 | 14 | 14 | 6 | 2 | 7 | 1 | time limit |
| i03_4.1_2.3_10 | 14 | 18 | 25 | 25 | 5 | 1 | 7 | 1 | time limit |
| i03_4.1_2.6_05 | 6 | 24 | 24 | 24 | 5 | 2 | 3 | 1 | time limit |
| i03_4.1_2.6_10 | 14 | 25 | 27 | 28 | 10 | 4 | 9 | 1 | time limit |
| i03_4.1_2.9_05 | 9 | 16 | 17 | 16 | 6 | 2 | 13 | 1 | time limit |
| i03_4.1_2.9_10 | 15 | 33 | 33 | 33 | 19 | 9 | 10 | 1 | time limit |
| i03_4.1_3.2_05 | 7 | 18 | 18 | 18 | 6 | 2 | 8 | 1 | time limit |
| i03_4.1_3.2_10 | 12 | 29 | 29 | 29 | 12 | 5 | 7 | 1 | time limit |
| i03_4.1_3.5_05 | 9 | 10 | 14 | 15 | 5 | 1 | 12 | 1 | time limit |
| i03_4.1_3.5_10 | 13 | 18 | 24 | 26 | 5 | 1 | 12 | 1 | time limit |
| i03_4.1_3.8_05 | 8 | 15 | 15 | 15 | 20 | 9 | 7 | 1 | time limit |
| i03_4.1_3.8_10 | 15 | 22 | 30 | 30 | 8 | 3 | 15 | 1 | time limit |
| i03_4.1_4.1_05 | 10 | 10 | 14 | 14 | 29 | 17 | 19 | 1 | time limit |
| i03_4.1_4.1_10 | 14 | 18 | 25 | 26 | 5 | 1 | 13 | 1 | time limit |
| i03_4.1_4.4_05 | 7 | 9 | 12 | 13 | 6 | 2 | 19 | 1 | time limit |
| i03_4.1_4.4_10 | 17 | 40 | 40 | 40 | 5 | 2 | 10 | 1 | time limit |
| i03_4.1_4.7_05 | 8 | 11 | 15 | 15 | 6 | 2 | 22 | 1 | time limit |
| i03_4.1_4.7_10 | 14 | 17 | 22 | 22 | 5 | 1 | 15 | 12 | time limit |
| i03_4.4_2.0_05 | 8 | 13 | 14 | 15 | 6 | 2 | 6 | 1 | time limit |
| i03_4.4_2.0_10 | 11 | 14 | 22 | 23 | 12 | 5 | 10 | 1 | time limit |
| i03_4.4_2.3_05 | 8 | 18 | 18 | 18 | 5 | 1 | 7 | 1 | time limit |
| i03_4.4_2.3_10 | 13 | 27 | 27 | 27 | 6 | 2 | 5 | 1 | time limit |
| i03_4.4_2.6_05 | 8 | 9 | 13 | 13 | 18 | 8 | 10 | 1 | time limit |
| i03_4.4_2.6_10 | 14 | 51 | 51 | 51 | 5 | 2 | 3 | 1 | time limit |
| i03_4.4_2.9_05 | 6 | 25 | 25 | 25 | 5 | 2 | 3 | 1 | time limit |
| i03_4.4_2.9_10 | 13 | 63 | 63 | 63 | 5 | 2 | 3 | 1 | time limit |
| i03_4.4_3.2_05 | 7 | 14 | 14 | 14 | 6 | 2 | 8 | 1 | time limit |
| i03_4.4_3.2_10 | 14 | 30 | 30 | 30 | 6 | 2 | 7 | 1 | time limit |
| i03_4.4_3.5_05 | 8 | 17 | 17 | 17 | 5 | 2 | 15 | 2 | time limit |
| i03_4.4_3.5_10 | 13 | 18 | 25 | 25 | 11 | 4 | 17 | 1 | time limit |
| i03_4.4_3.8_05 | 8 | 16 | 16 | 16 | 5 | 2 | 6 | 1 | time limit |
| i03_4.4_3.8_10 | 13 | 19 | 23 | 27 | 5 | 1 | 9 | 3 | time limit |
| i03_4.4_4.1_05 | 7 | 9 | 13 | 13 | 6 | 2 | 14 | 1 | time limit |
| i03_4.4_4.1_10 | 16 | 21 | 27 | 29 | 10 | 4 | 16 | 2 | time limit |
| i03_4.4_4.4_05 | 7 | 8 | 11 | 11 | 5 | 1 | 16 | 3 | time limit |
| i03_4.4_4.4_10 | 12 | 31 | 31 | 31 | 5 | 2 | 10 | 1 | time limit |


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i03_4.4_4.7_05 | 9 | 12 | 17 | 18 | 5 | 2 | 15 | 1 | time limit |
| i03_4.4_4.7_10 | 16 | 16 | 23 | 24 | 26 | 14 | 20 | 1 | time limit |
| i03_4.7_2.0_05 | 6 | 11 | 14 | 15 | 10 | 4 | 11 | 1 | time limit |
| i03_4.7_2.0_10 | 14 | 16 | 25 | 26 | 18 | 8 | 7 | 1 | time limit |
| i03_4.7_2.3_05 | 8 | 17 | 17 | 17 | 6 | 2 | 7 | 1 | time limit |
| i03_4.7_2.3_10 | 16 | 29 | 29 | 29 | 6 | 2 | 10 | 1 | time limit |
| i03_4.7_2.6_05 | 6 | 11 | 11 | 11 | 6 | 2 | 7 | 1 | time limit |
| i03_4.7_2.6_10 | 12 | 34 | 34 | 34 | 6 | 2 | 5 | 1 | time limit |
| i03_4.7_2.9_05 | 11 | 11 | 15 | 15 | 37 | 20 | 18 | 1 | time limit |
| i03_4.7_2.9_10 | 12 | 31 | 31 | 31 | 12 | 5 | 5 | 1 | time limit |
| i03_4.7_3.2_05 | 6 | 15 | 15 | 15 | 14 | 6 | 7 | 1 | time limit |
| i03_4.7_3.2_10 | 16 | 60 | 60 | 60 | 5 | 2 | 5 | 1 | time limit |
| i03_4.7_3.5_05 | 8 | 24 | 24 | 24 | 5 | 2 | 6 | 1 | time limit |
| i03_4.7_3.5_10 | 15 | 21 | 28 | 28 | 8 | 3 | 23 | 1 | time limit |
| i03_4.7_3.8_05 | 8 | 12 | 12 | 13 | 6 | 2 | 9 | 1 | time limit |
| i03_4.7_3.8_10 | 13 | 16 | 27 | 28 | 6 | 2 | 13 | 1 | time limit |
| i03_4.7_4.1_05 | 8 | 16 | 16 | 16 | 5 | 2 | 10 | 1 | time limit |
| i03_4.7_4.1_10 | 13 | 17 | 24 | 24 | 10 | 4 | 17 | 1 | time limit |
| i03_4.7_4.4_05 | 8 | 8 | 11 | 11 | 6 | 2 | 14 | 1 | time limit |
| i03_4.7-4.4_10 | 12 | 14 | 21 | 21 | 6 | 2 | 11 | 1 | time limit |
| i03_4.7_4.7_05 | 8 | 9 | 13 | 14 | 6 | 2 | 22 | 1 | time limit |
| i03_4.7-4.7_10 | 16 | 20 | 25 | 26 | 5 | 1 | 15 | 2 | time limit |
| i04_2.0_2.0_05 | 9 | 24 | 24 | 24 | 6 | 0 | 7 | 1 | 0.5 |
| i04_2.0_2.0_10 | 25 | 50 | 50 | 50 | 7 | 0 | 9 | 1 | 1.0 |
| i04_2.0_2.3_05 | 8 | 24 | 24 | 24 | 6 | 0 | 7 | 1 | 0.8 |
| i04_2.0_2.3_10 | 14 | 36 | 36 | 37 | 7 | 0 | 8 | 1 | 0.7 |
| i04_2.0_2.6_05 | 9 | 25 | 25 | 27 | 6 | 0 | 8 | 1 | 0.7 |
| i04_2.0_2.6_10 | 14 | 33 | 33 | 32 | 7 | 0 | 11 | 1 | 0.6 |
| i04_2.0_2.9_05 | 10 | 33 | 33 | 33 | 6 | 0 | 7 | 1 | 0.7 |
| i04_2.0_2.9_10 | 18 | 21 | 33 | 33 | 7 | 0 | 17 | 3 | 0.7 |
| i04_2.0_3.2_05 | 8 | 39 | 39 | 39 | 6 | 0 | 9 | 1 | 0.8 |
| i04_2.0_3.2_10 | 17 | 44 | 44 | 44 | 6 | 0 | 14 | 1 | 0.5 |
| i04_2.0_3.5_05 | 9 | 17 | 17 | 17 | 7 | 0 | 16 | 1 | 0.6 |
| i04_2.0_3.5_10 | 17 | 23 | 33 | 34 | 7 | 0 | 23 | 3 | 0.6 |
| i04_2.0_3.8_05 | 12 | 17 | 23 | 24 | 6 | 0 | 20 | 3 | 1.7 |
| i04_2.0_3.8_10 | 15 | 24 | 35 | 36 | 6 | 0 | 21 | 3 | 0.5 |
| i04_2.0_4.1_05 | 8 | 11 | 15 | 16 | 7 | 0 | 21 | 3 | 0.6 |
| i04_2.0_4.1_10 | 16 | 22 | 30 | 31 | 7 | 0 | 20 | 3 | 0.5 |
| i04_2.0_4.4_05 | 13 | 15 | 20 | 21 | 7 | 0 | 29 | 3 | 1.0 |
| i04_2.0_4.4_10 | 14 | 21 | 30 | 30 | 6 | 0 | 30 | 3 | 0.5 |
| i04_2.0_4.7_05 | 9 | 12 | 16 | 17 | 7 | 0 | 50 | 3 | 0.8 |
| i04_2.0_4.7_10 | 36 | 39 | 55 | 58 | 6 | 0 | 18 | 3 | 1.9 |
| i04_2.3_2.0_05 | 9 | 19 | 19 | 19 | 6 | 0 | 6 | 1 | 0.9 |
| i04_2.3_2.0_10 | 26 | 30 | 47 | 50 | 9 | 0 | 9 | 3 | 2.8 |
| i04_2.3_2.3_05 | 8 | 12 | 18 | 18 | 7 | 0 | 10 | 4 | 1.0 |
| i04_2.3_2.3_10 | 19 | 30 | 47 | 45 | 7 | 0 | 9 | 3 | 1.1 |
| i04_2.3_2.6_05 | 9 | 12 | 20 | 20 | 7 | 0 | 12 | 3 | 0.8 |
| i04_2.3_2.6_10 | 14 | 22 | 33 | 34 | 7 | 0 | 20 | 3 | 1.1 |


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i04_2.3_2.9_05 | 10 | 36 | 36 | 36 | 6 | 0 | 6 | 1 | 1.0 |
| i04_2.3_2.9_10 | 16 | 44 | 44 | 44 | 6 | 0 | 525 | 1 | 0.7 |
| i04_2.3_3.2_05 | 8 | 38 | 38 | 32 | 5 | 0 | 6 | 1 | 1.3 |
| i04_2.3_3.2_10 | 16 | 41 | 41 | 41 | 6 | 0 | 7 | 1 | 1.2 |
| i04_2.3_3.5_05 | 9 | 24 | 24 | 24 | 6 | 0 | 14 | 1 | 1.1 |
| i04_2.3_3.5_10 | 22 | 39 | 39 | 40 | 8 | 0 | 19 | 1 | 3.7 |
| i04_2.3_3.8_05 | 8 | 15 | 20 | 23 | 6 | 0 | 22 | 6 | 0.8 |
| i04_2.3_3.8_10 | 13 | 19 | 26 | 26 | 7 | 0 | 21 | 3 | 1.2 |
| i04_2.3_4.1_05 | 8 | 11 | 15 | 15 | 7 | 0 | 28 | 3 | 2.0 |
| i04_2.3_4.1_10 | 17 | 25 | 34 | 35 | 7 | 0 | 24 | 3 | 1.1 |
| i04_2.3_4.4_05 | 12 | 14 | 19 | 19 | 10 | 0 | 14 | 3 | 3.8 |
| i04_2.3_4.4_10 | 16 | 26 | 37 | 36 | 6 | 0 | 23 | 3 | 1.1 |
| i04_2.3-4.7_05 | 8 | 14 | 19 | 19 | 6 | 0 | 29 | 3 | 0.9 |
| i04_2.3-4.7_10 | 18 | 29 | 39 | 39 | 6 | 0 | 28 | 3 | 0.9 |
| i04_2.6_2.0_05 | 11 | 23 | 23 | 23 | 11 | 1 | 11 | 1 | 814.8 |
| i04_2.6_2.0_10 | 13 | 21 | 29 | 30 | 7 | 0 | 9 | 3 | 3.2 |
| i04_2.6_2.3_05 | 8 | 18 | 18 | 18 | 8 | 0 | 11 | 1 | 5.1 |
| i04_2.6_2.3_10 | 17 | 56 | 56 | 56 | 4 | 0 | 4 | 1 | 2.9 |
| i04_2.6_2.6_05 | 8 | 11 | 16 | 16 | 9 | 0 | 8 | 3 | 5.7 |
| i04_2.6_2.6_10 | 14 | 49 | 49 | 49 | 6 | 0 | 8 | 1 | 2.8 |
| i04_2.6_2.9_05 | 8 | 13 | 17 | 17 | 9 | 0 | 11 | 3 | 5.4 |
| i04_2.6_2.9_10 | 21 | 25 | 34 | 34 | 12 | 1 | 20 | 3 | 11.5 |
| i04_2.6_3.2_05 | 8 | 30 | 30 | 30 | 6 | 0 | 6 | 1 | 2.7 |
| i04_2.6_3.2_10 | 15 | 25 | 34 | 35 | 7 | 0 | 18 | 3 | 2.1 |
| i04_2.6_3.5_05 | 10 | 10 | 15 | 23 | 11 | 1 | 20 | 3 | 2087.5 |
| i04_2.6_3.5_10 | 14 | 35 | 35 | 35 | 6 | 0 | 8 | 1 | 3.2 |
| i04_2.6_3.8_05 | 8 | 14 | 19 | 20 | 6 | 0 | 29 | 3 | 1.7 |
| i04_2.6_3.8_10 | 27 | 46 | 46 | 46 | 12 | 2 | 19 | 2 | 15.2 |
| i04_2.6_4.1_05 | 8 | 12 | 15 | 16 | 7 | 0 | 27 | 3 | 2.9 |
| i04_2.6_4.1_10 | 14 | 21 | 29 | 32 | 9 | 0 | 15 | 3 | 7.8 |
| i04_2.6_4.4_05 | 11 | 13 | 17 | 17 | 10 | 0 | 24 | 3 | 9.9 |
| i04_2.6_4.4_10 | 14 | 21 | 29 | 29 | 7 | 0 | 21 | 3 | 2.0 |
| i04_2.6_4.7_05 | 10 | 15 | 21 | 21 | 6 | 0 | 19 | 3 | 2.0 |
| i04_2.6_4.7_10 | 16 | 21 | 32 | 31 | 8 | 0 | 25 | 3 | 6.9 |
| i04_2.9_2.0_05 | 9 | 20 | 20 | 20 | 7 | 0 | 8 | 1 | 11.4 |
| i04_2.9_2.0_10 | 16 | 30 | 30 | 31 | 9 | 1 | 11 | 1 | 28.6 |
| i04_2.9_2.3_05 | 7 | 13 | 16 | 17 | 7 | 0 | 13 | 4 | 12.7 |
| i04_2.9_2.3_10 | 16 | 26 | 37 | 38 | 8 | 1 | 26 | 3 | 14.3 |
| i04_2.9_2.6_05 | 9 | 14 | 19 | 20 | 7 | 0 | 18 | 3 | 13.7 |
| i04_2.9_2.6_10 | 15 | 30 | 36 | 36 | 7 | 0 | 11 | 3 | 20.8 |
| i04_2.9_2.9_05 | 7 | 11 | 16 | 16 | 9 | 1 | 21 | 3 | 833.5 |
| i04_2.9_2.9_10 | 18 | 28 | 38 | 39 | 10 | 1 | 13 | 8 | 828.9 |
| i04_2.9_3.2_05 | 9 | 12 | 18 | 18 | 7 | 0 | 17 | 3 | 13.4 |
| i04_2.9_3.2_10 | 17 | 26 | 36 | 37 | 7 | 0 | 23 | 3 | 13.2 |
| i04_2.9_3.5_05 | 10 | 24 | 24 | 24 | 8 | 1 | 14 | 1 | 17.6 |
| i04_2.9_3.5_10 | 18 | 25 | 33 | 35 | 7 | 0 | 21 | 3 | 14.5 |
| i04_2.9_3.8_05 | 8 | 13 | 17 | 18 | 7 | 0 | 32 | 3 | 10.2 |
| i04_2.9_3.8_10 | 16 | 25 | 33 | 34 | 9 | 1 | 17 | 3 | 22.3 |


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i04_2.9_4.1_05 | 7 | 16 | 16 | 16 | 6 | 0 | 13 | 1 | 11.2 |
| i04_2.9_4.1_10 | 14 | 28 | 28 | 29 | 12 | 2 | 21 | 1 | 132.0 |
| i04_2.9_4.4_05 | 8 | 13 | 17 | 17 | 7 | 0 | 34 | 3 | 12.9 |
| i04_2.9_4.4_10 | 18 | 24 | 31 | 31 | 7 | 0 | 36 | 3 | 12.4 |
| i04_2.9_4.7_05 | 9 | 12 | 16 | 16 | 7 | 0 | 40 | 3 | 11.0 |
| i04_2.9_4.7_10 | 17 | 26 | 34 | 35 | 7 | 0 | 29 | 9 | 10.6 |
| i04_3.2_2.0_05 | 10 | 13 | 19 | 20 | 11 | 2 | 12 | 1 | 687.1 |
| i04_3.2_2.0_10 | 19 | 30 | 36 | 38 | 14 | 4 | 8 | 1 | 3399.2 |
| i04_3.2_2.3_05 | 11 | 14 | 19 | 20 | 21 | 6 | 11 | 1 | time limit |
| i04_3.2_2.3_10 | 14 | 38 | 38 | 38 | 9 | 1 | 13 | 1 | 200.7 |
| i04_3.2_2.6_05 | 10 | 24 | 24 | 24 | 6 | 0 | 6 | 1 | 356.4 |
| i04_3.2_2.6_10 | 17 | 35 | 52 | 53 | 8 | 2 | 8 | 1 | 336.0 |
| i04_3.2_2.9_05 | 9 | 32 | 32 | 32 | 6 | 0 | 9 | 1 | 280.8 |
| i04_3.2_2.9_10 | 18 | 33 | 33 | 33 | 18 | 5 | 16 | 1 | 1902.6 |
| i04_3.2_3.2_05 | 12 | 14 | 20 | 21 | 28 | 12 | 31 | 1 | time limit |
| i04_3.2_3.2_10 | 19 | 37 | 38 | 41 | 8 | 1 | 13 | 3 | 202.2 |
| i04_3.2_3.5_05 | 8 | 12 | 17 | 18 | 11 | 2 | 20 | 1 | 442.5 |
| 104_3.2_3.5_10 | 17 | 24 | 35 | 36 | 8 | 1 | 7 | 3 | 316.4 |
| i04_3.2_3.8_05 | 8 | 12 | 18 | 19 | 6 | 0 | 12 | 3 | time limit |
| i04_3.2_3.8_10 | 13 | 18 | 23 | 24 | 16 | 4 | 13 | 3 | time limit |
| i04_3.2_4.1_05 | 7 | 11 | 14 | 14 | 7 | 0 | 27 | 3 | 229.9 |
| i04_3.2_4.1_10 | 15 | 25 | 34 | 37 | 15 | 4 | 13 | 3 | time limit |
| i04_3.2_4.4_05 | 7 | 21 | 21 | 20 | 5 | 0 | 10 | 1 | 333.5 |
| i04_3.2_4.4_10 | 16 | 26 | 39 | 39 | 8 | 2 | 46 | 1 | 285.0 |
| i04_3.2_4.7_05 | 8 | 13 | 17 | 18 | 8 | 1 | 23 | 1 | 147.9 |
| i04_3.2_4.7_10 | 16 | 24 | 31 | 32 | 7 | 0 | 23 | 3 | 144.2 |
| i04_3.5_2.0_05 | 10 | 14 | 19 | 19 | 6 | 0 | 6 | 3 | 5189.0 |
| i04_3.5_2.0_10 | 16 | 23 | 35 | 36 | 26 | 10 | 13 | 1 | time limit |
| i04_3.5_2.3_05 | 11 | 11 | 17 | 17 | 26 | 8 | 17 | 1 | time limit |
| i04_3.5_2.3_10 | 14 | 34 | 34 | 34 | 6 | 0 | 6 | 1 | 3724.2 |
| i04_3.5_2.6_05 | 8 | 18 | 18 | 19 | 7 | 0 | 9 | 1 | 3596.2 |
| i04_3.5_2.6_10 | 27 | 27 | 39 | 41 | 27 | 10 | 15 | 1 | time limit |
| i04_3.5_2.9_05 | 10 | 13 | 19 | 19 | 9 | 2 | 23 | 1 | time limit |
| i04_3.5_2.9_10 | 18 | 24 | 31 | 31 | 17 | 4 | 13 | 1 | time limit |
| i04_3.5_3.2_05 | 9 | 14 | 18 | 18 | 8 | 1 | 24 | 3 | time limit |
| i04_3.5_3.2_10 | 16 | 34 | 34 | 34 | 8 | 1 | 6 | 1 | time limit |
| i04_3.5_3.5_05 | 7 | 17 | 17 | 17 | 13 | 4 | 14 | 1 | time limit |
| i04_3.5_3.5_10 | 27 | 27 | 38 | 47 | 87 | 48 | 18 | 1 | time limit |
| i04_3.5_3.8_05 | 8 | 11 | 15 | 16 | 14 | 4 | 21 | 1 | time limit |
| i04_3.5_3.8_10 | 14 | 22 | 29 | 29 | 10 | 2 | 26 | 1 | time limit |
| i04_3.5_4.1_05 | 8 | 13 | 18 | 19 | 7 | 1 | 30 | 1 | 3703.7 |
| i04_3.5_4.1_10 | 16 | 24 | 33 | 33 | 7 | 1 | 33 | 1 | 3775.6 |
| i04_3.5_4.4_05 | 8 | 11 | 14 | 15 | 7 | 0 | 40 | 3 | 5490.4 |
| i04_3.5_4.4_10 | 17 | 24 | 30 | 31 | 7 | 0 | 32 | 3 | 5245.5 |
| i04_3.5_4.7_05 | 8 | 13 | 22 | 21 | 7 | 1 | 13 | 1 | 3241.2 |
| i04_3.5_4.7_10 | 15 | 21 | 26 | 26 | 7 | 0 | 10 | 3 | 3024.1 |
| i04_3.8_2.0_05 | 7 | 17 | 17 | 17 | 12 | 4 | 13 | 1 | time limit |
| i04_3.8_2.0_10 | 16 | 36 | 36 | 36 | 7 | 1 | 6 | 1 | time limit |


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i04_3.8_2.3_05 | 9 | 10 | 14 | 18 | 29 | 12 | 19 | 1 | time limit |
| i04_3.8_2.3_10 | 16 | 39 | 39 | 39 | 17 | 7 | 12 | 1 | time limit |
| i04_3.8_2.6_05 | 12 | 14 | 20 | 21 | 37 | 18 | 27 | 1 | time limit |
| i04_3.8_2.6_10 | 19 | 46 | 46 | 46 | 7 | 1 | 6 | 1 | time limit |
| i04_3.8_2.9_05 | 9 | 42 | 42 | 42 | 6 | 2 | 4 | 1 | time limit |
| i04_3.8_2.9_10 | 18 | 54 | 54 | 54 | 7 | 1 | 7 | 1 | time limit |
| i04_3.8_3.2_05 | 9 | 36 | 36 | 36 | 8 | 2 | 8 | 1 | time limit |
| i04_3.8_3.2_10 | 17 | 71 | 71 | 71 | 8 | 2 | 10 | 1 | time limit |
| i04_3.8_3.5_05 | 8 | 11 | 14 | 14 | 8 | 1 | 24 | 3 | time limit |
| i04_3.8_3.5_10 | 16 | 38 | 38 | 38 | 22 | 10 | 9 | 1 | time limit |
| i04_3.8_3.8_05 | 8 | 11 | 15 | 17 | 8 | 1 | 24 | 3 | time limit |
| i04_3.8_3.8_10 | 18 | 55 | 55 | 55 | 7 | 3 | 9 | 1 | time limit |
| i04_3.8_4.1_05 | 7 | 11 | 14 | 15 | 22 | 9 | 17 | 1 | time limit |
| i04_3.8_4.1_10 | 18 | 26 | 36 | 37 | 14 | 5 | 21 | 48 | time limit |
| i04_3.8_4.4_05 | 8 | 13 | 17 | 17 | 30 | 14 | 32 | 1 | time limit |
| i04_3.8_4.4_10 | 14 | 19 | 27 | 27 | 18 | 6 | 21 | 1 | time limit |
| i04_3.8_4.7_05 | 7 | 8 | 10 | 14 | 31 | 13 | 38 | 3 | time limit |
| i04_3.8_4.7_10 | 17 | 24 | 32 | 32 | 9 | 2 | 26 | 1 | time limit |
| i04_4.1_2.0_05 | 10 | 13 | 20 | 19 | 17 | 6 | 11 | 1 | time limit |
| i04_4.1_2.0_10 | 18 | 38 | 40 | 40 | 9 | 3 | 7 | 1 | time limit |
| i04_4.1_2.3_05 | 8 | 15 | 15 | 16 | 10 | 3 | 14 | 1 | time limit |
| i04_4.1_2.3_10 | 17 | 50 | 50 | 50 | 7 | 1 | 4 | 1 | time limit |
| i04_4.1_2.6_05 | 8 | 19 | 19 | 19 | 8 | 2 | 10 | 1 | time limit |
| i04_4.1_2.6_10 | 18 | 48 | 48 | 48 | 9 | 3 | 7 | 1 | time limit |
| i04_4.1_2.9_05 | 9 | 18 | 18 | 18 | 9 | 2 | 8 | 1 | time limit |
| i04_4.1_2.9_10 | 25 | 26 | 35 | 35 | 43 | 21 | 16 | 1 | time limit |
| i04_4.1_3.2_05 | 8 | 18 | 18 | 19 | 19 | 7 | 8 | 1 | time limit |
| i04_4.1_3.2_10 | 18 | 40 | 40 | 40 | 9 | 2 | 11 | 1 | time limit |
| i04_4.1_3.5_05 | 10 | 19 | 19 | 23 | 8 | 2 | 233 | 1 | time limit |
| i04_4.1_3.5_10 | 18 | 35 | 36 | 36 | 12 | 5 | 15 | 1 | time limit |
| i04_4.1_3.8_05 | 8 | 11 | 16 | 19 | 7 | 1 | 8 | 3 | time limit |
| i04_4.1_3.8_10 | 18 | 25 | 32 | 32 | 9 | 2 | 20 | 1 | time limit |
| i04_4.1_4.1_05 | 8 | 10 | 13 | 13 | 30 | 13 | 8 | 1 | time limit |
| i04_4.1_4.1_10 | 16 | 35 | 35 | 35 | 8 | 2 | 24 | 2 | time limit |
| i04_4.1_4.4_05 | 9 | 14 | 17 | 17 | 9 | 3 | 22 | 2 | time limit |
| i04_4.1_4.4_10 | 18 | 19 | 27 | 29 | 28 | 12 | 28 | 7 | time limit |
| i04_4.1_4.7_05 | 9 | 11 | 16 | 17 | 8 | 2 | 29 | 1 | time limit |
| i04_4.1-4.7_10 | 15 | 23 | 34 | 37 | 7 | 1 | 11 | 3 | time limit |
| i04_4.4_2.0_05 | 8 | 19 | 19 | 19 | 10 | 4 | 5 | 1 | time limit |
| i04_4.4_2.0_10 | 18 | 18 | 27 | 27 | 45 | 23 | 16 | 1 | time limit |
| i04_4.4_2.3_05 | 8 | 14 | 14 | 14 | 43 | 21 | 7 | 2 | time limit |
| i04_4.4_2.3_10 | 23 | 25 | 36 | 37 | 53 | 29 | 12 | 1 | time limit |
| i04_4.4_2.6_05 | 7 | 28 | 28 | 28 | 8 | 2 | 4 | 1 | time limit |
| i04_4.4_2.6_10 | 22 | 25 | 35 | 35 | 157 | 96 | 15 | 5 | time limit |
| i04_4.4_2.9_05 | 13 | 13 | 18 | 21 | 239 | 156 | 31 | 2 | time limit |
| i04_4.4_2.9_10 | 19 | 43 | 43 | 43 | 11 | 4 | 11 | 1 | time limit |
| i04_4.4_3.2_05 | 7 | 28 | 28 | 28 | 20 | 9 | 7 | 1 | time limit |
| i04_4.4_3.2_10 | 18 | 41 | 41 | 41 | 12 | 4 | 13 | 1 | time limit |


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i04_4.4_3.5_05 | 11 | 11 | 16 | 21 | 256 | 166 | 19 | 1 | time limit |
| i04_4.4_3.5_10 | 14 | 22 | 29 | 29 | 20 | 8 | 14 | 3 | time limit |
| i04_4.4_3.8_05 | 7 | 24 | 24 | 24 | 30 | 14 | 10 | 1 | time limit |
| i04_4.4_3.8_10 | 14 | 21 | 29 | 32 | 10 | 3 | 15 | 1 | time limit |
| i04_4.4_4.1_05 | 8 | 13 | 18 | 18 | 10 | 4 | 14 | 2 | time limit |
| i04_4.4_4.1_10 | 19 | 25 | 35 | 36 | 35 | 17 | 35 | 1 | time limit |
| i04_4.4_4.4_05 | 7 | 15 | 15 | 15 | 10 | 4 | 22 | 1 | time limit |
| i04_4.4_4.4_10 | 15 | 26 | 34 | 35 | 23 | 10 | 32 | 2 | time limit |
| i04_4.4_4.7_05 | 10 | 13 | 18 | 18 | 15 | 6 | 25 | 1 | time limit |
| i04_4.4_4.7_10 | 19 | 26 | 36 | 36 | 18 | 7 | 20 | 1 | time limit |
| i04_4.7_2.0_05 | 11 | 11 | 16 | 16 | 254 | 163 | 8 | 1 | time limit |
| i04_4.7_2.0_10 | 17 | 18 | 27 | 27 | 51 | 27 | 17 | 1 | time limit |
| i04_4.7_2.3_05 | 8 | 13 | 17 | 18 | 19 | 8 | 23 | 1 | time limit |
| i04_4.7_2.3_10 | 16 | 20 | 30 | 31 | 38 | 19 | 16 | 1 | time limit |
| i04_4.7_2.6_05 | 7 | 23 | 23 | 23 | 10 | 4 | 7 | 1 | time limit |
| i04_4.7_2.6_10 | 16 | 33 | 33 | 33 | 10 | 3 | 10 | 1 | time limit |
| i04_4.7_2.9_05 | 8 | 17 | 17 | 17 | 17 | 7 | 17 | 1 | time limit |
| i04_4.7_2.9_10 | 15 | 32 | 47 | 54 | 9 | 3 | 11 | 1 | time limit |
| i04_4.7_3.2_05 | 9 | 16 | 16 | 17 | 10 | 3 | 11 | 1 | time limit |
| i04_4.7_3.2_10 | 18 | 34 | 34 | 34 | 13 | 5 | 14 | 1 | time limit |
| i04_4.7_3.5_05 | 8 | 15 | 22 | 22 | 9 | 3 | 16 | 1 | time limit |
| i04_4.7_3.5_10 | 13 | 42 | 42 | 42 | 10 | 4 | 8 | 1 | time limit |
| i04_4.7_3.8_05 | 9 | 12 | 17 | 17 | 20 | 8 | 18 | 1 | time limit |
| i04_4.7_3.8_10 | 16 | 18 | 26 | 26 | 41 | 21 | 20 | 1 | time limit |
| i04_4.7_4.1_05 | 11 | 11 | 16 | 15 | 54 | 27 | 22 | 1 | time limit |
| i04_4.7-4.1_10 | 14 | 34 | 34 | 34 | 46 | 24 | 11 | 1 | time limit |
| i04_4.7-4.4_05 | 9 | 11 | 14 | 15 | 9 | 2 | 18 | 1 | time limit |
| i04_4.7-4.4_10 | 17 | 19 | 25 | 25 | 52 | 27 | 23 | 1 | time limit |
| i04_4.7-4.7_05 | 10 | 16 | 21 | 21 | 21 | 9 | 45 | 2 | time limit |
| i04_4.7-4.7_10 | 15 | 23 | 30 | 33 | 9 | 3 | 12 | 1 | time limit |
| i05_2.0_2.0_05 | 10 | 24 | 24 | 24 | 10 | 0 | 8 | 1 | 0.6 |
| i05_2.0_2.0_10 | 20 | 59 | 59 | 59 | 10 | 0 | 10 | 1 | 1.4 |
| i05_2.0_2.3_05 | 10 | 15 | 26 | 26 | 10 | 0 | 8 | 3 | 0.8 |
| i05_2.0_2.3_10 | 19 | 47 | 47 | 47 | 10 | 0 | 10 | 1 | 0.7 |
| i05_2.0_2.6_05 | 11 | 31 | 31 | 32 | 9 | 0 | 12 | 1 | 0.8 |
| i05_2.0_2.6_10 | 17 | 46 | 46 | 46 | 10 | 0 | 15 | 1 | 0.7 |
| i05_2.0_2.9_05 | 9 | 33 | 33 | 33 | 9 | 0 | 10 | 1 | 0.7 |
| i05_2.0_2.9_10 | 27 | 50 | 50 | 50 | 10 | 0 | 14 | 1 | 1.9 |
| i05_2.0_3.2_05 | 10 | 26 | 26 | 26 | 9 | 0 | 15 | 1 | 0.6 |
| i05_2.0_3.2_10 | 20 | 40 | 40 | 40 | 11 | 0 | 13 | 1 | 0.8 |
| i05_2.0_3.5_05 | 9 | 13 | 19 | 19 | 10 | 0 | 31 | 3 | 0.9 |
| i05_2.0_3.5_10 | 20 | 25 | 37 | 40 | 10 | 0 | 29 | 3 | 0.9 |
| i05_2.0_3.8_05 | 14 | 15 | 22 | 23 | 11 | 0 | 18 | 3 | 1.1 |
| i05_2.0_3.8_10 | 19 | 44 | 44 | 44 | 10 | 0 | 10 | 1 | 0.8 |
| i05_2.0_4.1_05 | 9 | 15 | 20 | 21 | 8 | 0 | 30 | 5 | 0.9 |
| i05_2.0_4.1_10 | 24 | 32 | 48 | 48 | 10 | 0 | 22 | 3 | 1.1 |
| i05_2.0_4.4_05 | 9 | 12 | 18 | 19 | 10 | 0 | 27 | 3 | 0.7 |
| i05_2.0_4.4_10 | 21 | 29 | 40 | 43 | 10 | 0 | 23 | 3 | 0.6 |


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i05_2.0_4.7_05 | 10 | 15 | 23 | 22 | 9 | 0 | 25 | 3 | 0.9 |
| i05_2.0_4.7_10 | 17 | 25 | 34 | 36 | 10 | 0 | 22 | 3 | 0.8 |
| i05_2.3_2.0_05 | 11 | 24 | 24 | 26 | 10 | 0 | 7 | 1 | 1.1 |
| i05_2.3_2.0_10 | 27 | 38 | 53 | 58 | 12 | 0 | 14 | 3 | 2.5 |
| i05_2.3_2.3_05 | 10 | 24 | 33 | 33 | 8 | 0 | 7 | 3 | 1.4 |
| i05_2.3_2.3_10 | 18 | 61 | 61 | 61 | 10 | 0 | 11 | 1 | 1.4 |
| i05_2.3_2.6_05 | 9 | 40 | 40 | 40 | 10 | 0 | 11 | 1 | 1.1 |
| i05_2.3_2.6_10 | 27 | 34 | 52 | 55 | 13 | 0 | 16 | 3 | 3.2 |
| i05_2.3_2.9_05 | 8 | 30 | 30 | 30 | 10 | 0 | 7 | 1 | 2.2 |
| i05_2.3_2.9_10 | 24 | 61 | 61 | 61 | 12 | 0 | 21 | 1 | 9.7 |
| i05_2.3_3.2_05 | 9 | 32 | 32 | 32 | 9 | 0 | 15 | 1 | 1.3 |
| i05_2.3_3.2_10 | 29 | 34 | 47 | 50 | 14 | 0 | 29 | 3 | 5.2 |
| i05_2.3_3.5_05 | 12 | 17 | 24 | 25 | 13 | 0 | 23 | 4 | 6.0 |
| i05_2.3_3.5_10 | 17 | 23 | 32 | 34 | 12 | 0 | 18 | 3 | 2.0 |
| i05_2.3_3.8_05 | 12 | 14 | 20 | 21 | 15 | 1 | 38 | 3 | 10.9 |
| i05_2.3_3.8_10 | 33 | 36 | 52 | 55 | 17 | 0 | 28 | 3 | 10.7 |
| i05_2.3_4.1_05 | 9 | 12 | 16 | 16 | 12 | 0 | 39 | 3 | 2.1 |
| i05_2.3_4.1_10 | 16 | 27 | 37 | 39 | 10 | 0 | 19 | 3 | 1.5 |
| i05_2.3_4.4_05 | 9 | 15 | 23 | 24 | 9 | 0 | 33 | 3 | 1.5 |
| i05_2.3_4.4_10 | 17 | 34 | 51 | 51 | 8 | 0 | 12 | 3 | 1.4 |
| i05_2.3_4.7_05 | 9 | 14 | 18 | 19 | 10 | 0 | 41 | 3 | 1.4 |
| i05_2.3_4.7_10 | 17 | 26 | 34 | 36 | 10 | 0 | 25 | 3 | 1.1 |
| i05_2.6_2.0_05 | 9 | 12 | 19 | 20 | 11 | 0 | 11 | 3 | 2.5 |
| i05_2.6_2.0_10 | 18 | 28 | 41 | 41 | 10 | 0 | 7 | 3 | 2.1 |
| i05_2.6_2.3_05 | 12 | 24 | 24 | 24 | 15 | 1 | 13 | 1 | 10.5 |
| i05_2.6_2.3_10 | 22 | 45 | 54 | 56 | 10 | 0 | 13 | 3 | 4.5 |
| i05_2.6_2.6_05 | 9 | 36 | 36 | 26 | 10 | 0 | 10 | 1 | 3.1 |
| i05_2.6_2.6_10 | 19 | 49 | 49 | 49 | 10 | 0 | 12 | 1 | 3.0 |
| i05_2.6_2.9_05 | 13 | 17 | 23 | 23 | 17 | 3 | 28 | 3 | time limit |
| i05_2.6_2.9_10 | 18 | 58 | 58 | 58 | 10 | 0 | 9 | 1 | 3.4 |
| i05_2.6_3.2_05 | 9 | 22 | 22 | 22 | 10 | 0 | 15 | 1 | 2.6 |
| i05_2.6_3.2_10 | 16 | 76 | 76 | 76 | 14 | 0 | 13 | 1 | 15.6 |
| i05_2.6_3.5_05 | 9 | 12 | 17 | 18 | 12 | 0 | 25 | 13 | 4.4 |
| i05_2.6_3.5_10 | 21 | 29 | 40 | 41 | 11 | 0 | 26 | 6 | 3.5 |
| i05_2.6_3.8_05 | 9 | 16 | 21 | 22 | 10 | 0 | 31 | 3 | 3.7 |
| i05_2.6_3.8_10 | 16 | 21 | 29 | 29 | 12 | 0 | 19 | 3 | 6.3 |
| i05_2.6_4.1_05 | 9 | 15 | 20 | 21 | 10 | 0 | 43 | 3 | 2.6 |
| i05_2.6_4.1_10 | 17 | 33 | 45 | 46 | 8 | 0 | 27 | 3 | 5.0 |
| i05_2.6_4.4_05 | 8 | 11 | 15 | 16 | 13 | 0 | 26 | 3 | 7.1 |
| i05_2.6_4.4_10 | 21 | 30 | 43 | 45 | 10 | 0 | 24 | 3 | 4.0 |
| i05_2.6_4.7_05 | 10 | 13 | 17 | 18 | 13 | 0 | 48 | 3 | 5.7 |
| i05_2.6_4.7_10 | 21 | 31 | 41 | 41 | 10 | 0 | 33 | 3 | 2.7 |
| i05_2.9_2.0_05 | 10 | 15 | 22 | 23 | 15 | 2 | 14 | 1 | 74.2 |
| i05_2.9_2.0_10 | 26 | 29 | 48 | 49 | 24 | 6 | 11 | 1 | 3994.6 |
| i05_2.9_2.3_05 | 8 | 27 | 27 | 27 | 8 | 0 | 5 | 1 | 19.2 |
| i05_2.9_2.3_10 | 20 | 45 | 67 | 67 | 10 | 1 | 7 | 3 | 20.6 |
| i05_2.9_2.6_05 | 10 | 27 | 27 | 27 | 10 | 0 | 14 | 1 | 16.7 |
| i05_2.9_2.6_10 | 19 | 44 | 44 | 44 | 10 | 0 | 12 | 1 | 19.5 |


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | enum time


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | enum time (


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i05_4.4_2.3_05 | 9 | 19 | 19 | 19 | 13 | 2 | 10 | 1 | time limit |
| i05_4.4_2.3_10 | 16 | 30 | 43 | 43 | 93 | 53 | 12 | 1 | time limit |
| i05_4.4_2.6_05 | 9 | 23 | 23 | 23 | 38 | 15 | 11 | 1 | time limit |
| i05_4.4_2.6_10 | 16 | 70 | 70 | 70 | 11 | 2 | 6 | 1 | time limit |
| i05_4.4_2.9_05 | 10 | 27 | 27 | 27 | 23 | 9 | 14 | 1 | time limit |
| i05_4.4_2.9_10 | 26 | 30 | 41 | 40 | 106 | 60 | 24 | 1 | time limit |
| i05_4.4_3.2_05 | 8 | 25 | 25 | 25 | 28 | 12 | 10 | 1 | time limit |
| i05_4.4_3.2_10 | 17 | 64 | 64 | 64 | 15 | 5 | 7 | 1 | time limit |
| i05_4.4_3.5_05 | 9 | 21 | 21 | 21 | 14 | 4 | 13 | 1 | time limit |
| i05_4.4_3.5_10 | 18 | 43 | 44 | 43 | 14 | 4 | 12 | 3 | time limit |
| i05_4.4_3.8_05 | 9 | 21 | 21 | 23 | 129 | 75 | 14 | 1 | time limit |
| i05_4.4_3.8_10 | 18 | 28 | 41 | 43 | 30 | 12 | 36 | 1 | time limit |
| i05_4.4_4.1_05 | 8 | 13 | 18 | 18 | 20 | 7 | 23 | 1 | time limit |
| i05_4.4_4.1_10 | 21 | 33 | 48 | 49 | 15 | 6 | 29 | 1 | time limit |
| i05_4.4_4.4_05 | 9 | 14 | 19 | 20 | 16 | 4 | 33 | 1 | time limit |
| i05_4.4_4.4_10 | 16 | 25 | 36 | 37 | 23 | 9 | 52 | 2 | time limit |
| i05_4.4_4.7_05 | 11 | 16 | 20 | 21 | 13 | 3 | 32 | 6 | time limit |
| i05_4.4_4.7_10 | 18 | 21 | 37 | 39 | 16 | 6 | 25 | 1 | time limit |
| i05_4.7_2.0_05 | 8 | 10 | 15 | 15 | 29 | 11 | 12 | 1 | time limit |
| i05_4.7_2.0_10 | 18 | 27 | 39 | 39 | 16 | 4 | 17 | 1 | time limit |
| i05_4.7_2.3_05 | 9 | 33 | 33 | 33 | 14 | 6 | 5 | 1 | time limit |
| i05_4.7_2.3_10 | 20 | 33 | 35 | 38 | 190 | 116 | 14 | 3 | time limit |
| i05_4.7_2.6_05 | 9 | 12 | 16 | 17 | 152 | 94 | 30 | 1 | time limit |
| i05_4.7_2.6_10 | 25 | 28 | 38 | 41 | 446 | 291 | 28 | 1 | time limit |
| i05_4.7_2.9_05 | 9 | 18 | 18 | 18 | 25 | 9 | 15 | 1 | time limit |
| i05_4.7_2.9_10 | 21 | 67 | 67 | 67 | 59 | 31 | 13 | 1 | time limit |
| i05_4.7_3.2_05 | 8 | 33 | 33 | 33 | 87 | 50 | 7 | 1 | time limit |
| i05_4.7_3.2_10 | 17 | 26 | 39 | 40 | 20 | 7 | 40 | 2 | time limit |
| i05_4.7_3.5_05 | 10 | 15 | 23 | 23 | 139 | 87 | 22 | 2 | time limit |
| i05_4.7_3.5_10 | 19 | 28 | 41 | 44 | 18 | 6 | 47 | 25 | time limit |
| i05_4.7_3.8_05 | 8 | 13 | 17 | 18 | 31 | 13 | 45 | 3 | time limit |
| i05_4.7_3.8_10 | 16 | 28 | 39 | 43 | 21 | 8 | 33 | 2 | time limit |
| i05_4.7-4.1_05 | 10 | 13 | 19 | 20 | 20 | 8 | 36 | 2 | time limit |
| i05_4.7-4.1_10 | 18 | 26 | 34 | 35 | 35 | 14 | 38 | 1 | time limit |
| i05_4.7-4.4_05 | 8 | 12 | 16 | 16 | 19 | 6 | 57 | 32 | time limit |
| i05_4.7-4.4_10 | 20 | 27 | 38 | 38 | 14 | 4 | 48 | 1 | time limit |
| i05_4.7-4.7_05 | 9 | 15 | 20 | 20 | 17 | 6 | 40 | 4 | time limit |
| i05_4.7-4.7_10 | 29 | 31 | 46 | 44 | 140 | 88 | 46 | 32 | time limit |
| i10_2.0_2.0_05 | 15 | 38 | 38 | 38 | 37 | 0 | 10 | 1 | 1.3 |
| i10_2.0_2.0_10 | 37 | 73 | 73 | 73 | 40 | 0 | 15 | 1 | 2.9 |
| i10_2.0_2.3_05 | 16 | 65 | 65 | 65 | 36 | 0 | 10 | 1 | 1.5 |
| i10_2.0_2.3_10 | 37 | 94 | 94 | 95 | 40 | 0 | 20 | 1 | 2.7 |
| i10_2.0_2.6_05 | 22 | 28 | 48 | 50 | 39 | 0 | 28 | 3 | 5.8 |
| i10_2.0_2.6_10 | 26 | 87 | 87 | 87 | 38 | 0 | 15 | 1 | 2.4 |
| i10_2.0_2.9_05 | 15 | 57 | 57 | 57 | 36 | 0 | 20 | 1 | 2.3 |
| i10_2.0_2.9_10 | 45 | 127 | 127 | 127 | 38 | 0 | 22 | 1 | 5.2 |
| i10_2.0_3.2_05 | 15 | 82 | 82 | 82 | 30 | 0 | 12 | 1 | 1.7 |
| i10_2.0_3.2_10 | 34 | 101 | 101 | 101 | 35 | 0 | 26 | 1 | 4.3 |


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i10_2.0_3.5_05 | 15 | 20 | 29 | 29 | 43 | 0 | 28 | 3 | 2.7 |
| i10_2.0_3.5_10 | 47 | 58 | 89 | 91 | 38 | 0 | 39 | 3 | 7.2 |
| i10_2.0_3.8_05 | 20 | 23 | 35 | 36 | 41 | 0 | 39 | 3 | 4.5 |
| i10_2.0_3.8_10 | 36 | 39 | 57 | 58 | 40 | 0 | 45 | 7 | 2.6 |
| i10_2.0_4.1_05 | 17 | 22 | 31 | 31 | 40 | 0 | 58 | 3 | 4.7 |
| i10_2.0_4.1_10 | 29 | 48 | 71 | 74 | 38 | 0 | 27 | 17 | 1.3 |
| i10_2.0_4.4_05 | 18 | 21 | 30 | 31 | 40 | 0 | 39 | 3 | 2.5 |
| i10_2.0_4.4_10 | 28 | 34 | 59 | 58 | 38 | 0 | 37 | 3 | 1.5 |
| i10_2.0_4.7_05 | 18 | 21 | 32 | 34 | 39 | 0 | 50 | 3 | 2.2 |
| i10_2.0_4.7_10 | 43 | 55 | 81 | 89 | 33 | 0 | 53 | 3 | 9.7 |
| i10_2.3_2.0_05 | 18 | 48 | 48 | 48 | 42 | 0 | 13 | 1 | 15.4 |
| i10_2.3_2.0_10 | 25 | 63 | 63 | 63 | 37 | 0 | 10 | 1 | 2.8 |
| i10_2.3_2.3_05 | 14 | 57 | 57 | 57 | 37 | 0 | 14 | 1 | 3.8 |
| i10_2.3_2.3_10 | 47 | 62 | 101 | 101 | 46 | 0 | 19 | 3 | 18.6 |
| i10_2.3_2.6_05 | 14 | 53 | 53 | 53 | 40 | 0 | 18 | 1 | 5.2 |
| i10_2.3_2.6_10 | 28 | 100 | 100 | 100 | 37 | 0 | 18 | 1 | 4.2 |
| i10_2.3_2.9_05 | 18 | 44 | 44 | 44 | 45 | 0 | 24 | 1 | 12.2 |
| i10_2.3_2.9_10 | 26 | 132 | 132 | 132 | 33 | 0 | 13 | 1 | 5.4 |
| i10_2.3_3.2_05 | 19 | 54 | 54 | 54 | 45 | 0 | 26 | 1 | 12.3 |
| i10_2.3_3.2_10 | 35 | 41 | 62 | 66 | 48 | 0 | 51 | 3 | 21.2 |
| i10_2.3_3.5_05 | 17 | 19 | 28 | 30 | 41 | 0 | 39 | 3 | 4.3 |
| i10_2.3_3.5_10 | 35 | 59 | 85 | 85 | 44 | 0 | 36 | 4 | 13.2 |
| i10_2.3_3.8_05 | 13 | 28 | 41 | 42 | 33 | 0 | 41 | 3 | 3.9 |
| i10_2.3_3.8_10 | 47 | 52 | 76 | 92 | 66 | 0 | 50 | 3 | 44.9 |
| i10_2.3_4.1_05 | 17 | 21 | 29 | 31 | 43 | 0 | 35 | 11 | 6.6 |
| i10_2.3_4.1_10 | 27 | 50 | 72 | 76 | 37 | 0 | 35 | 3 | 3.1 |
| i10_2.3_4.4_05 | 15 | 23 | 34 | 35 | 39 | 0 | 56 | 3 | 10.3 |
| i10_2.3_4.4_10 | 26 | 37 | 58 | 60 | 40 | 0 | 48 | 3 | 4.6 |
| i10_2.3_4.7_05 | 14 | 23 | 38 | 37 | 36 | 0 | 39 | 17 | 3.0 |
| i10_2.3_4.7_10 | 35 | 39 | 58 | 64 | 48 | 0 | 50 | 7 | 20.5 |
| i10_2.6_2.0_05 | 18 | 36 | 36 | 38 | 69 | 3 | 27 | 1 | time limit |
| i10_2.6_2.0_10 | 28 | 58 | 73 | 73 | 43 | 0 | 16 | 3 | 12.8 |
| i10_2.6_2.3_05 | 15 | 45 | 45 | 45 | 29 | 0 | 14 | 1 | 7.1 |
| i10_2.6_2.3_10 | 29 | 93 | 93 | 117 | 32 | 0 | 10 | 1 | 14.7 |
| i10_2.6_2.6_05 | 18 | 25 | 38 | 40 | 102 | 11 | 26 | 3 | time limit |
| i10_2.6_2.6_10 | 28 | 120 | 120 | 120 | 36 | 0 | 14 | 1 | 9.2 |
| i10_2.6_2.9_05 | 17 | 24 | 34 | 36 | 49 | 1 | 38 | 3 | 703.8 |
| i10_2.6_2.9_10 | 27 | 99 | 99 | 99 | 43 | 0 | 24 | 1 | 65.9 |
| i10_2.6_3.2_05 | 14 | 26 | 39 | 42 | 36 | 0 | 36 | 3 | 8.3 |
| i10_2.6_3.2_10 | 37 | 76 | 76 | 80 | 37 | 1 | 48 | 1 | 12.2 |
| i10_2.6_3.5_05 | 20 | 37 | 55 | 57 | 35 | 1 | 27 | 7 | 23.1 |
| i10_2.6_3.5_10 | 28 | 92 | 92 | 92 | 44 | 1 | 29 | 1 | 4337.2 |
| i10_2.6_3.8_05 | 15 | 24 | 32 | 39 | 45 | 0 | 33 | 3 | 19.3 |
| i10_2.6_3.8_10 | 29 | 43 | 58 | 59 | 40 | 0 | 46 | 7 | 9.7 |
| i10_2.6_4.1_05 | 26 | 26 | 40 | 45 | 409 | 266 | 85 | 38 | time limit |
| i10_2.6_4.1_10 | 30 | 57 | 82 | 84 | 35 | 0 | 43 | 3 | 13.8 |
| i10_2.6_4.4_05 | 20 | 39 | 39 | 39 | 148 | 14 | 38 | 1 | time limit |
| i10_2.6_4.4_10 | 26 | 45 | 62 | 64 | 42 | 0 | 47 | 3 | 18.1 |


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | enum time


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i10_3.5_2.9_05 | 13 | 55 | 55 | 55 | 45 | 4 | 17 | 1 | time limit |
| i10_3.5_2.9_10 | 26 | 89 | 89 | 89 | 264 | 164 | 20 | 1 | time limit |
| i10_3.5_3.2_05 | 15 | 51 | 51 | 51 | 39 | 5 | 16 | 1 | time limit |
| i10_3.5_3.2_10 | 28 | 40 | 63 | 66 | 63 | 12 | 46 | 13 | time limit |
| i10_3.5_3.5_05 | 15 | 42 | 42 | 42 | 386 | 253 | 26 | 8 | time limit |
| i10_3.5_3.5_10 | 32 | 52 | 56 | 58 | 661 | 479 | 33 | 1 | time limit |
| i10_3.5_3.8_05 | 13 | 32 | 32 | 32 | 81 | 21 | 31 | 2 | time limit |
| i10_3.5_3.8_10 | 29 | 47 | 70 | 73 | 37 | 2 | 32 | 5 | time limit |
| i10_3.5_4.1_05 | 19 | 25 | 32 | 33 | 106 | 31 | 51 | 12 | time limit |
| i10_3.5_4.1_10 | 30 | 39 | 60 | 60 | 79 | 22 | 55 | 42 | time limit |
| i10_3.5_4.4_05 | 15 | 25 | 36 | 36 | 48 | 7 | 72 | 92 | time limit |
| i10_3.5_4.4_10 | 28 | 43 | 66 | 68 | 315 | 203 | 50 | 207 | time limit |
| i10_3.5_4.7_05 | 17 | 19 | 31 | 32 | 452 | 284 | 73 | 50 | time limit |
| i10_3.5_4.7_10 | 26 | 40 | 58 | 62 | 108 | 33 | 45 | 3 | time limit |
| i10_3.8_2.0_05 | 22 | 22 | 34 | 36 | 3079 | 2293 | 33 | 2 | time limit |
| i10_3.8_2.0_10 | 39 | 87 | 87 | 89 | 364 | 216 | 10 | 2 | time limit |
| i10_3.8_2.3_05 | 15 | 20 | 43 | 41 | 181 | 113 | 17 | 1 | time limit |
| i10_3.8_2.3_10 | 25 | 78 | 78 | 78 | 71 | 20 | 15 | 1 | time limit |
| i10_3.8_2.6_05 | 13 | 31 | 32 | 33 | 251 | 166 | 34 | 3 | time limit |
| i10_3.8_2.6_10 | 39 | 53 | 79 | 85 | 214 | 137 | 31 | 6 | time limit |
| i10_3.8_2.9_05 | 16 | 19 | 29 | 31 | 601 | 436 | 35 | 2 | time limit |
| i10_3.8_2.9_10 | 39 | 96 | 96 | 96 | 1216 | 900 | 26 | 1 | time limit |
| i10_3.8_3.2_05 | 14 | 21 | 31 | 33 | 48 | 8 | 31 | 3 | time limit |
| i10_3.8_3.2_10 | 39 | 46 | 78 | 82 | 811 | 630 | 66 | 3 | time limit |
| i10_3.8_3.5_05 | 13 | 34 | 34 | 34 | 617 | 415 | 25 | 2 | time limit |
| i10_3.8_3.5_10 | 34 | 53 | 79 | 98 | 176 | 94 | 20 | 3 | time limit |
| i10_3.8_3.8_05 | 18 | 21 | 32 | 39 | 947 | 689 | 47 | 23 | time limit |
| i10_3.8_3.8_10 | 34 | 38 | 59 | 65 | 879 | 646 | 54 | 6 | time limit |
| i10_3.8_4.1_05 | 13 | 18 | 27 | 29 | 677 | 497 | 48 | 32 | time limit |
| i10_3.8_4.1_10 | 29 | 44 | 68 | 67 | 100 | 46 | 41 | 25 | time limit |
| i10_3.8_4.4_05 | 13 | 21 | 36 | 34 | 408 | 270 | 42 | 2 | time limit |
| i10_3.8_4.4_10 | 29 | 34 | 51 | 53 | 1174 | 909 | 50 | 3 | time limit |
| i10_3.8_4.7_05 | 13 | 21 | 36 | 36 | 193 | 110 | 52 | 2 | time limit |
| i10_3.8_4.7_10 | 28 | 41 | 63 | 68 | 193 | 118 | 54 | 6 | time limit |
| i10_4.1_2.0_05 | 14 | 41 | 41 | 41 | 160 | 97 | 26 | 2 | time limit |
| i10_4.1_2.0_10 | 25 | 39 | 62 | 67 | 1333 | 1020 | 25 | 52 | time limit |
| i10_4.1_2.3_05 | 14 | 56 | 56 | 45 | 146 | 88 | 12 | 1 | time limit |
| i10_4.1_2.3_10 | 27 | 91 | 91 | 91 | 73 | 21 | 21 | 1 | time limit |
| i10_4.1_2.6_05 | 13 | 31 | 54 | 54 | 121 | 64 | 18 | 1 | time limit |
| i10_4.1_2.6_10 | 25 | 60 | 60 | 60 | 336 | 225 | 16 | 1 | time limit |
| i10_4.1_2.9_05 | 15 | 33 | 33 | 33 | 57 | 12 | 30 | 1 | time limit |
| i10_4.1_2.9_10 | 31 | 91 | 91 | 91 | 128 | 62 | 27 | 1 | time limit |
| i10_4.1_3.2_05 | 13 | 15 | 24 | 26 | 382 | 270 | 67 | 2 | time limit |
| i10_4.1_3.2_10 | 26 | 67 | 72 | 77 | 1350 | 992 | 56 | 11 | time limit |
| i10_4.1_3.5_05 | 15 | 36 | 37 | 39 | 153 | 83 | 41 | 3 | time limit |
| i10_4.1_3.5_10 | 28 | 45 | 61 | 62 | 76 | 22 | 58 | 1 | time limit |
| i10_4.1_3.8_05 | 20 | 21 | 37 | 39 | 305 | 195 | 70 | 9 | time limit |
| i10_4.1_3.8_10 | 36 | 44 | 69 | 71 | 255 | 160 | 67 | 4 | time limit |


| instance | vol | dual | primal | GRASP | nfeas | ncands | nrp | nodes | enum time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i10_4.1_4.1_05 | 15 | 19 | 29 | 32 | 163 | 91 | 49 | 12 | time limit |
| i10_4.1_4.1_10 | 27 | 54 | 90 | 92 | 322 | 212 | 23 | 52 | time limit |
| i10_4.1_4.4_05 | 18 | 18 | 30 | 32 | 673 | 439 | 47 | 30 | time limit |
| i10_4.1_4.4_10 | 27 | 34 | 55 | 57 | 205 | 112 | 61 | 10 | time limit |
| i10_4.1_4.7_05 | 15 | 23 | 32 | 32 | 123 | 55 | 72 | 2 | time limit |
| i10_4.1_4.7_10 | 28 | 55 | 80 | 85 | 64 | 19 | 41 | 8 | time limit |
| i10_4.4_2.0_05 | 13 | 20 | 31 | 33 | 1128 | 856 | 23 | 3 | time limit |
| i10_4.4_2.0_10 | 31 | 48 | 82 | 87 | 1222 | 958 | 32 | 2 | time limit |
| i10_4.4_2.3_05 | 18 | 31 | 33 | 34 | 544 | 358 | 44 | 1 | time limit |
| i10_4.4_2.3_10 | 27 | 68 | 68 | 68 | 247 | 158 | 26 | 1 | time limit |
| i10_4.4_2.6_05 | 13 | 22 | 39 | 40 | 172 | 104 | 27 | 1 | time limit |
| i10_4.4_2.6_10 | 29 | 66 | 70 | 70 | 459 | 321 | 17 | 1 | time limit |
| i10_4.4_2.9_05 | 15 | 45 | 45 | 51 | 103 | 60 | 27 | 1 | time limit |
| i10_4.4_2.9_10 | 26 | 77 | 77 | 77 | 433 | 295 | 16 | 1 | time limit |
| i10_4.4_3.2_05 | 14 | 35 | 35 | 35 | 75 | 23 | 22 | 1 | time limit |
| i10_4.4_3.2_10 | 39 | 69 | 69 | 69 | 322 | 188 | 27 | 1 | time limit |
| i10_4.4_3.5_05 | 17 | 20 | 31 | 33 | 14181 | 11455 | 49 | 3 | time limit |
| i10_4.4_3.5_10 | 28 | 76 | 76 | 76 | 602 | 404 | 107 | 2 | time limit |
| i10_4.4_3.8_05 | 13 | 21 | 32 | 33 | 438 | 311 | 61 | 3 | time limit |
| i10_4.4_3.8_10 | 26 | 41 | 72 | 77 | 420 | 287 | 62 | 2 | time limit |
| i10_4.4_4.1_05 | 14 | 19 | 29 | 31 | 249 | 169 | 83 | 120 | time limit |
| i10_4.4_4.1_10 | 28 | 41 | 62 | 61 | 56 | 17 | 27 | 1 | time limit |
| i10_4.4_4.4_05 | 19 | 21 | 33 | 41 | 1879 | 1452 | 99 | 71 | time limit |
| i10_4.4_4.4_10 | 28 | 51 | 73 | 75 | 75 | 32 | 45 | 9 | time limit |
| i10_4.4_4.7_05 | 14 | 18 | 29 | 30 | 309 | 216 | 70 | 9 | time limit |
| i10_4.4_4.7_10 | 30 | 44 | 60 | 63 | 70 | 23 | 58 | 16 | time limit |
| i10_4.7_2.0_05 | 16 | 40 | 41 | 41 | 110 | 58 | 22 | 1 | time limit |
| i10_4.7_2.0_10 | 27 | 103 | 103 | 103 | 334 | 222 | 10 | 1 | time limit |
| i10_4.7_2.3_05 | 15 | 47 | 47 | 48 | 288 | 189 | 20 | 1 | time limit |
| i10_4.7_2.3_10 | 36 | 76 | 76 | 76 | 428 | 282 | 18 | 1 | time limit |
| i10_4.7_2.6_05 | 15 | 26 | 39 | 39 | 214 | 136 | 31 | 3 | time limit |
| i10_4.7_2.6_10 | 27 | 63 | 63 | 64 | 676 | 476 | 18 | 1 | time limit |
| i10_4.7_2.9_05 | 20 | 21 | 37 | 39 | 559 | 383 | 74 | 3 | time limit |
| i10_4.7_2.9_10 | 26 | 65 | 65 | 72 | 66 | 18 | 34 | 1 | time limit |
| i10_4.7_3.2_05 | 18 | 31 | 34 | 39 | 2181 | 1555 | 44 | 2 | time limit |
| i10_4.7_3.2_10 | 29 | 65 | 75 | 78 | 192 | 128 | 57 | 2 | time limit |
| i10_4.7_3.5_05 | 13 | 19 | 31 | 31 | 1734 | 1326 | 51 | 20 | time limit |
| i10_4.7_3.5_10 | 27 | 28 | 50 | 54 | 603 | 412 | 52 | 10 | time limit |
| i10_4.7_3.8_05 | 13 | 19 | 28 | 32 | 82 | 38 | 46 | 8 | time limit |
| i10_4.7_3.8_10 | 29 | 37 | 56 | 62 | 224 | 135 | 36 | 3 | time limit |
| i10_4.7-4.1_05 | 20 | 20 | 32 | 34 | 3538 | 2686 | 55 | 3 | time limit |
| i10_4.7-4.1_10 | 27 | 42 | 64 | 68 | 807 | 617 | 48 | 3 | time limit |
| i10_4.7-4.4_05 | 15 | 26 | 38 | 40 | 61 | 17 | 57 | 2 | time limit |
| i10_4.7-4.4_10 | 24 | 37 | 57 | 59 | 267 | 186 | 83 | 77 | time limit |
| i10_4.7-4.7_05 | 14 | 22 | 32 | 34 | 412 | 259 | 57 | 123 | time limit |
| i10_4.7-4.7_10 | 28 | 42 | 69 | 78 | 782 | 578 | 87 | 3 | time limit |


[^0]:    *Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, \{benjamin.mueller, gleixner, maher\}@zib.de
    ${ }^{\dagger}$ Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal, jpp@fc.up.pt

