
Takustrasse 7
D-14195 Berlin-Dahlem

Germany
Zuse Institute Berlin

AMBROS GLEIXNER
STEPHEN J. MAHER
BENJAMIN MÜLLER
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Exact Methods for Recursive Circle Packing

Ambros Gleixner∗ Stephen J. Maher∗ Benjamin Müller∗

João Pedro Pedroso†

January 2, 2019

Abstract

Packing rings into a minimum number of rectangles is an optimization problem which
appears naturally in the logistics operations of the tube industry. It encompasses two major
difficulties, namely the positioning of rings in rectangles and the recursive packing of rings
into other rings. This problem is known as the Recursive Circle Packing Problem (RCPP).
We present the first dedicated method for solving RCPP that provides strong dual bounds
based on an exact Dantzig-Wolfe reformulation of a nonconvex mixed-integer nonlinear
programming formulation. The key idea of this reformulation is to break symmetry on each
recursion level by enumerating one-level packings, i.e., packings of circles into other circles,
and by dynamically generating packings of circles into rectangles. We use column generation
techniques to design a “price-and-verify” algorithm that solves this reformulation to global
optimality. Extensive computational experiments on a large test set show that our method
not only computes tight dual bounds, but often produces primal solutions better than those
computed by heuristics from the literature.

1 Introduction

Packing problems appear naturally in a wide range of real-world applications. They contain two
major difficulties. First, complex geometric objects need to be selected, grouped, and packed
into other objects, e.g., warehouses, containers, or parcels. Second, these objects need to be
packed in a dense, non-overlapping way and, depending on the application, respect some physical
constraints. Modeling packing problems mathematically often leads to nonconvex mixed-integer
nonlinear programs (MINLPs). Solving them to global optimality is a challenging task for state-
of-the-art MINLP solvers. In this paper, we will study exact algorithms for solving a particularly
complex version involving the recursive packing of 2-dimensional rings. This variant has real-
world applications in the tube industry.

The Recursive Circle Packing Problem (RCPP) has been introduced recently by Pedroso et
al. [25]. The objective of RCPP is to select a minimum number of rectangles of the same size
such that a given set of rings can be packed into these rectangles in a non-overlapping way. A
ring is characterized by an internal and an external radius. Rings can be put recursively into
larger ones or directly into a rectangle. A set of rings packed into a rectangle is called a feasible
packing if and only if all rings lie within the boundary of the rectangle and do not intersect each
other. Figure 1 gives two examples of a feasible packing.

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, {benjamin.mueller,gleixner,maher}@zib.de
†Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal, jpp@fc.up.pt
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Figure 1: Two feasible packings of rings into rectangles.

Pedroso et al. [25] present a nonconvex MINLP formulation for RCPP. The key idea of the
developed MINLP is to use binary variables in order to indicate whether a ring is packed inside
another larger ring or directly into a rectangle. Due to a large number of binary variables and
nonconvex quadratic constraints, the model is not of practical relevance and can only be used to
solve very small instances. However, the authors present a well-performing local search heuristic
to find good feasible solutions.

The purpose of this article is to present the first exact column generation algorithm for
RCPP based on a Dantzig-Wolfe decomposition, for which, so far, only heuristics exist. The
new method is able to solve small- and medium-size instances to global optimality and computes
good feasible solutions and tight dual bounds for larger ones. We first develop a reformulation,
which is similar to the classical reformulation for the Cutting Stock Problem [14], however,
featuring nonlinear and nonconvex sub-problems. This formulation breaks the symmetry between
equivalent rectangles. As a second step, we combine this reformulation with an enumeration
scheme for patterns that are characterized by rings packed inside other rings. Such patterns only
allow for a one-level recursion and break the symmetry between rings with the same internal and
external radius in each rectangle. Finally, we present how to solve the resulting reformulation
with a column generation algorithm.

Finally, we present how to solve the resulting reformulation with a specialized column genera-
tion algorithm that we call price-and-verify. The algorithm does not only generate new patterns
but also verifies patterns that are found during the enumeration scheme dynamically, i.e., only
when required for solving the continuous relaxation of the reformulation.

2 Background

The problem of finding dense packings of geometric objects has a rich history that goes back
to Kepler’s Conjecture in 1611, which has been proven recently by Hales et al. [16]. Packing
identical or diverse objects into different geometries like circles, rectangles, and polygons remains
a relevant topic and has been the focus of much research during the last decades. The survey
by Hifi and M’Hallah [17] reviews the most relevant results for packing 2- and 3-dimensional
spheres into regions in the Euclidean space. Applications, heuristics, and exact strategies of
packing arbitrarily sized circles into a container are presented by Castillo et al. [4]. Costa et
al. [7] use a spatial branch-and-bound algorithm to find good feasible solutions for the case of
packing identical circles. They propose different symmetry-breaking constraints to tighten the
convex relaxation and improve the success rate of local nonlinear programming algorithms.

Closely related to packing problems are plate-cutting problems, in which convex objects, e.g.,
circles, rectangles, or polygons, are cut from different convex geometries [9]. Modeling these prob-
lems leads typically to nonlinear programs, for which exact mathematical programming solutions
are described by Kallrath [20]. Minimizing the volume of a box for an overlap-free placement of
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ellipsoids was studied by Kallrath [21]. His closed, non-convex nonlinear programming formula-
tion uses the entries of the rotation matrix as variables and can be used to get feasible solutions
for instances with up to 100 ellipsoids.

The general type of the problem finds application in the tube industry, where shipping costs
represent a large fraction of the total costs of product delivery. Tubes will be cut to the same
length of the container in which they may be shipped. In order to reduce idle space inside
containers, smaller tubes might be placed inside larger ones. Packing tubes as densely as possible
reduces the total number of containers needed to deliver all tubes and thus has a large impact
on the total cost.

RCPP is a generalization of the well-known, NP-hard [23, ?] Circle Packing Problem (CPP)
and therefore is also NP-hard. Reducing an instance of CPP to RCPP can be done by setting
all internal radii to zero, i.e., by forbidding to pack rings into larger rings. Typically, problems
like RCPP contain multiple sources of symmetry. Any permutation of rectangles, i.e., relabeling
rectangles, constitutes an equivalent solution to RCPP. Even worse, there is also considerable
symmetry inside a rectangle. First, rotating or reflecting a rectangle gives an equivalent rectangle
since both contain the same set of rings. Second, two rings with same internal and external radius
can be exchanged arbitrarily inside a rectangle, again resulting in an equivalent rectangle packing.

One possible way to break the symmetry of RCPP is to add symmetry-breaking constraints,
which have been frequently used for scheduling problems, e.g., lot-sizing problems [19]. An
alternative approach is the use of decomposition techniques. These techniques aggregate identical
sub-problems in order to reduce symmetry and typically strengthen the relaxation of the initial
formulation. A well-known decomposition technique is the Dantzig-Wolfe decomposition [13].
It is an algorithm to decompose Linear Programs (LPs) into a master and, in general, several
sub-problems. Column generation is used with this decomposition to improve the solvability
of large-scale linear programs. Embedded in a branch-and-bound algorithm, it can be used
to solve mixed-integer linear programs (MILPs), e.g., bin packing [33], two dimensional bin
packing [26], cutting stock [14, 15], multi-stage cutting stock [?], and many other problems.
Fortz et al. [11] applied a Dantzig-Wolfe decomposition to a stochastic network design problem
with a convex nonlinear objective function. While most implementations of Dantzig-Wolfe are
problem-specific, a number of frameworks have been implemented for automatically applying a
Dantzig-Wolfe decomposition to a compact MILP formulation, see [3, 12, 27].

In this paper we apply a Dantzig-Wolfe decomposition to an MINLP formulation of RCPP
and present the first exact solution method that is able to solve practically relevant instances.
The rest of the paper is organized as follows. In Section 3, we introduce basic notation and
discuss the limitations of a compact MINLP formulation for RCPP. Section 4 presents a first
Dantzig-Wolfe decomposition of the MINLP formulation. After introducing the concept of cir-
cular and rectangular patterns, we extend the formulation from Section 4 in Section 5 to our
final formulation for RCPP. Afterwards, we present a column generation algorithm to solve this
formulation, which uses an enumeration scheme introduced in Section 6.1. Section 6.2 shows
how to prove valid dual and primal bounds, even when difficult sub-problems cannot be solved
to optimality. Finally, in Section 7, we analyze the performance of our method on a large test
set containing 800 synthetic instances and nine real-world instances from the tube industry.
Section 8 gives concluding remarks.

3 Problem Statement

Consider a set T := {1, . . . , T} for T different types of rings and an infinite number of rectangles.
In what follows, we consider each rectangle to be of size W ∈ R+ times H ∈ R+ and to be placed
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in the Euclidean plane such that the corners are (0, 0), (0,W ), (H, 0), and (W,H).
For each ring type t ∈ T we are given an internal radius rt ∈ R+ and an external radius

Rt ∈ R+ such that
rt ≤ Rt ≤ min{W,H}.

Also, each ring type t ∈ T has a demand Dt ∈ Z+. We assume without loss of generality that
T is sorted such that R1 ≤ . . . ≤ RT . To simplify the notation, we denote by n :=

∑
t∈T Dt

the total number of individual rings and denote by R := {1, . . . , n} the corresponding index
set. The function τ : R → T maps each individual ring to its corresponding type. By a slight
abuse of notation, we identify with ri and Ri the internal and external radius of ring i ∈ R, i.e.,
Ri = Rτ(i) and ri = rτ(i).

The task in RCPP is to pack all rings in R into the smallest number of rectangles. Rings
must lie within the boundary of a rectangle and must not intersect each other. More precisely,
a feasible solution to RCPP can be encoded as a 3-tuple (c, x, y) ∈ {1, . . . , k}n ×Rn ×Rn where
(xi, yi) denotes the center of ring i ∈ R inside rectangle ci ∈ {1, . . . , k}, and an upper bound on
the number of rectangles needed is given by k ≤ n. The number of used rectangles is equal to the
cardinality of {c1, . . . , cn}, i.e., the number of distinct integer values. Rings must not intersect
the boundary of the rectangle, i.e.,

Ri ≤ xi ≤W −Ri for all i ∈ R, (1)

Ri ≤ yi ≤ H −Ri for all i ∈ R. (2)

For a given 3-tuple (c, x, y) we denote by

A(i) :=

{
(x̃, ỹ) ∈ R2 | ri <

∥∥∥∥(x̃− xiỹ − yi

)∥∥∥∥
2

< Ri

}
the area occupied by ring i in rectangle ci. The non-overlapping condition between different
rings is equivalent to

A(i) ∩A(j) = ∅ (3)

for all i 6= j with ci = cj .
RCPP can be equivalently formulated as an MINLP, see Pedroso et al. [25]. The formulation

consists of four different types of variables:

• (xi, yi) ∈ R2, the center of ring i ∈ R,

• zc ∈ {0, 1}, a decision variable whether rectangle c ∈ {1, . . . , k} is used,

• wi,c ∈ {0, 1}, a decision variable whether ring i is directly placed in rectangle c, and

• ui,j ∈ {0, 1}, a decision variable whether ring i is directly placed in ring j.

We say that a ring i ∈ R is directly placed in another ring j or rectangle c if it is not contained in
another, larger ring inside j or c, respectively. Condition (3) can be modeled by the constraints∥∥∥∥(xiyi

)
−
(
xj
yj

)∥∥∥∥2
2

≥ (Ri +Rj)
2(wi,c + wj,c − 1) for all i, j ∈ R : i 6= j, c ∈ {1, . . . , k}, (4)∥∥∥∥(xiyi

)
−
(
xj
yj

)∥∥∥∥2
2

≥ (Ri +Rj)
2(ui,h + uj,h − 1) for all i, j, h ∈ R : i 6= j ∧ i 6= h ∧ j 6= h,

(5)∥∥∥∥(xiyi
)
−
(
xj
yj

)∥∥∥∥
2

≤ rj −Ri +Mi,j(1− ui,j) for all i, j ∈ R : Ri ≤ rj , (6)
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which are nonconvex nonlinear inequality constraints. Inequality (4) guarantees that no two
rings i, j ∈ R overlap when they are directly placed inside the same rectangle c, i.e., if wi,c =
wj,c = 1. Similarly, inequality (5) ensures that no two rings intersect inside another ring.
Constraint (6) ensures that if ui,j = 1, then ring i is directly placed inside j and does not
intersect its boundary. Otherwise, the constraint is disabled. An appropriate value for Mi,j to
guarantee that the conditions of (6) are satisfied is

Mi,j :=
√

(W −Ri −Rj)2 + (H −Ri −Rj)2,

which is the maximum distance between two rings i, j ∈ R in a W times H rectangle that do
not overlap.

The full MINLP model for RCPP reads as follows:

min

k∑
c=1

zc (7a)

s.t. wi,c ≤ zc for all i ∈ R, c ∈ {1, . . . , k} (7b)

k∑
c=1

wi,c +
∑
j∈R

ui,j = 1 for all i ∈ R (7c)

(1), (2), (4), (5), (6)

(xi, yi) ∈ R2 for all i ∈ R
zc ∈ {0, 1} for all c ∈ {1, . . . , k}
wi,c ∈ {0, 1} for all i ∈ R, c ∈ {1, . . . , k}
ui,j ∈ {0, 1} for all i, j ∈ R : i 6= j

Finally, the objective function (7a) minimizes the total number of rectangles used. Constraint (7b)
guarantees that we can pack a ring inside a rectangle if and only if the rectangle is used. Each
ring needs to be packed into another ring or a rectangle, which is ensured by (7c).

Remark 1. Formulation (7) can be adapted for maximizing the load of a single rectangle.
Roughly speaking, we need to fix zc = 0 for each c > 1 and replace each variable wi,c by wi,
which then turns into an indicator whether ring i ∈ R has been packed or not. The objective
function (7a) changes to

max
∑
i∈R

αiwi,

where αi ∈ R+ is a non-negative weight for each ring i ∈ R.

Unfortunately, general MINLP solvers require a considerable amount of time to solve For-
mulation (7) because it contains a large number of variables, many nonconvex constraints, and
much symmetry. Even the smallest instance of our test set, containing 54 individual rings, could
not be solved within several hours by SCIP 3.2.1 [29] nor by BARON 16.8.24 [22, 28]. A com-
mon method used to improve the solvability of geometric packing problems is to add symmetry
breaking constraints. However, strengthening (7) by adding the constraints

zc ≥ zc+1 for all c ∈ {1, . . . , k − 1}, (8)

ui,j ≥ uh,j for all j ∈ R, i < h : τ(i) = τ(h), and (9)

wi,c ≥ wj,c for all c ∈ {1, . . . , k}, i < j : τ(i) = τ(j), (10)
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which break symmetry by ordering rectangles and rings of the same type, had no impact on the
solvability of RCPP.

The reason for the poor performance is that (7) contains O(kn2+n3) many difficult nonconvex
constraints of the form (4) and (5). Even worse, the binary variables in those constraints appear
with a big-M, which is known to result in weak linear programming relaxations. Another difficulty
is the symmetry in the model that is not eliminated by (8), (9), or (10). Each reflection or rotation
of a feasible packing of a rectangle and rings inside a ring yields another, equivalent, solution.

In the following, we present two formulations based on a Dantzig-Wolfe decomposition to
break the remaining symmetry in (7). The first formulation breaks the symmetry between
rectangles. The second is an extension of the first one and additionally breaks symmetry between
rings of the same type inside the rectangles and other rings.

To overcome the difficulty of the exponential number of variables in the Dantzig-Wolfe decom-
positions, we use column generation to solve the continuous relaxations of both formulations. The
pricing problem of the first formulation is the maximization version of (7). The pricing problem
of the second formulation is a maximization version of the CPP.

4 Cutting Stock Reformulation

Dantzig-Wolfe decomposition [13] is a classic solution approach for structured LPs. It can be
used to decompose an MILP into a master problem and one or several sub-problems. Advantages
of the decomposition are that it yields stronger relaxations if the sub-problems are nonconvex
and can aggregate equivalent sub-problems to reduce symmetries [24, 8].

In this section, we apply a Dantzig-Wolfe decomposition to (7) and obtain a reformulation
that is similar to the one of the one-dimensional Cutting Stock Problem [30]. The key idea is to
reformulate RCPP in order to not assign rings explicitly to rectangles, but rather choose a set of
feasible rectangle packings to cover the demand for each ring type. The resulting reformulation is
a pure integer program (IP) containing exponentially many variables. We solve this reformulation
via column generation.

We call a vector F ∈ ZT+ packable if it is possible to pack Ft many rings for all types t ∈ T
together (and thus a total number of

∑
t∈T Ft many rings) into a W ×H rectangle. A packable

F ∈ ZT+ corresponds to a feasible solution of (7) when considering only a single rectangle. Denote
by

F := {F ∈ ZT+ : F is packable}

the set of all feasible packings of rings into a rectangle. Note that without loss of generality, we
can bound Ft by the demand Dt for each t ∈ T . After applying Dantzig-Wolfe decomposition
to (7), we obtain the following formulation, DW (F):

min
∑
F∈F

zF (11a)

s.t.
∑
F∈F

Ft · zF ≥ Dt for all t ∈ T (11b)

zF ∈ Z+ for all F ∈ F (11c)

This formulation contains an exponential number of integer variables with respect to T . Each
variable zF counts how often F is chosen. Minimizing the total number of rectangles is equivalent
to (11a). Inequality (11b) ensures that each ring of type t is packed at least Dt many times. In
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the following, we call the LP relaxation of DW (F ′) for F ′ ⊆ F the restricted master problem of
DW (F).

An advantage of (11) is that we do not explicitly assign rings to positions inside some rectan-
gles, like in (7), nor distinguish between rings of the same type. This breaks symmetry that arises
from simply permuting rectangles. However, F is a priori unknown and its size is exponential in
the input size of an RCPP instance.

A column generation algorithm is used to solve the LP relaxation of DW (F) by iteratively
updating DW (F) with improving columns corresponding to feasible rectangular packings. A
feasible rectangular packing F ∈ F is an improving column if the corresponding constraint∑

t∈T
Ftπ

∗
t ≤ 1

is violated by the dual solution π∗ of the restricted master problem DW (F ′). The LP relaxation
of DW (F) is solved to optimality when

∑
t∈T Ftπ

∗
t ≤ 1 holds for all F ∈ F \F ′. Otherwise, an

F ∈ F \F ′ with
∑
t∈T Ftπ

∗
t > 1 is added to F ′ and the process iterates until DW (F) is solved

to optimality.
The most violated dual constraint is found by solving

min

{
1−

∑
t∈T

π∗t Ft : F ∈ ZT+, F is packable

}
. (12)

This problem is a maximization variant of RCPP for which we need to find a subset of rings such
that they can be packed into a single rectangle, see Remark 1. The objective gain of each ring
of type t is exactly π∗t . The LP relaxation of (11) is solved to optimality if the solution value
of (12) is non-negative. Otherwise, we find an improving column that, after it has been added,
might decrease the objective value of the restricted master problem DW (F ′).

As explained in Remark 1, (12) can be modeled as a nonconvex MINLP that contains the
selection and positioning of rings in a rectangle. Unfortunately, solving this problem is very diffi-
cult for a general MINLP solver. In our experiments none of the resulting pricing problems (12)
could be solved to optimality or even generate an improving column for DW (F ′) in two hours.
For this reason, Formulation (11) is not suitable for solving RCPP to global optimality.

5 Pattern-based Dantzig-Wolfe Decomposition using One-
level Packings

The main drawback of (11) is that the resulting pricing problems (12) are intractable. This is due
to two major difficulties, i) the positioning of rings inside a rectangle and ii) the combinatorial
decisions of how to put rings into other rings. Together, they make the sub-problems much
more difficult to solve than the IP master problem. The recursive decisions of packing rings into
each other introduces much symmetry to (12). Rings of the same type, and all rings packed
inside those, can be swapped inside a rectangle and yield an equivalent solution. This symmetry
appears in each recursion level of the sub-problems. See Figure 2 for an example of this kind of
symmetry.

The main idea of the following reformulation is to break this type of symmetry and shift
the recursive decisions from the sub-problem to the master problem. This helps balance the
complexity of both problems, which is crucial when using a column generation algorithm.

In the following, we introduce the concept of circular and rectangular patterns. These patterns
describe possible packings of circles into rings or rectangles. The circles act like placeholders.
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Figure 2: Two equivalent feasible packings obtained by swapping rings packed inside other
rings.

Specifically, the circles just describe what type of rings might be placed in the circles, but not
how these rings are filled with other rings. After choosing one pattern we are able to choose
other patterns that fit into the circles of the selected one. The recursive part of RCPP boils
down to a counting problem of patterns and minimizing the total number of rectangles.

5.1 Circular Patterns

A circle of type t ∈ T is a ring with external radius Rt and inner radius rt = 0. This means
that neither circles nor rings can be put into a circle. Similarly to the definition of elements in
F , we call a tuple (t, P ) ∈ T × ZT+ a circular pattern if it is possible to pack P1 many circles of
type 1, P2 many circles of type 2, . . . , PT many circles of type T into a larger ring of type t. As
an example, (3, (2, 1, 0)) is a circular pattern with an outer ring of type three which contains two
circles with external radius R1 and one circle with radius R2. Since R3 can not be pack within
any ring, the final index will always be 0. However, it is included in the definition of circular
patterns for completeness. Figure 3 shows all possible packings for three different ring types.

Figure 3: All possible circular patterns for three different ring types:
(1, (0, 0, 0)), (2, (0, 0, 0)), (2, (1, 0, 0)), (3, (0, 0, 0)), (3, (1, 0, 0)), (3, (2, 0, 0)), (3, (0, 1, 0))

Using the definition of circular patterns we decompose a packing of rings into a ring R.
Each ring that is directly placed into R, i.e., is not contained in another larger ring, is replaced
by a circle with the same external radius. We apply the decomposition to each replaced ring
recursively. As a result, ring R decomposes into a set of circular patterns. Starting from these
circular patterns, we can reconstruct R by recursively replacing circles in a pattern with other
circular patterns. We denote by

CP := {(t, P ) ∈ T × ZT+ | (t, P ) is a circular pattern}

the set of all possible circular patterns. The previously described decomposition shows that any
recursive packing of rings can be constructed by using circular patterns of CP.

In general, the cardinality of CP is exponential in T and depends on the internal and external
radii of the rings. For example, increasing the inner radius of the largest ring will lead to many
more possibilities to pack circles into this ring. In contrast, decreasing external radii results in
fewer circular patterns.
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Figure 3 shows that there are circular patterns that are dominated by others, e.g., the third
pattern dominates second one. Using dominated circular patterns would leave some unnecessary
free space in some rectangles, which can be avoided in an optimal solution. In Section 6.1 we
discuss this domination relation and present an algorithm to compute all non-dominated circular
patterns.

5.2 Rectangular Patterns

In the following reformulation of RCPP, we use circular patterns to shift the decisions of how to
put rings into other rings to the master problem. Similar to a circular pattern, we call P ∈ ZT+
a rectangular pattern if and only if Pt many circles with radius Rt for each t ∈ T can be packed
together into a rectangle of size W times H. Let

RP := {P ∈ ZT+ | P is a rectangular pattern}

be the set of all rectangular patterns. As in Formulation (11), only the number of packed circles
matters, not their position in the rectangular pattern.

Figure 4: Three different rectangular patterns:
(9, 0, 1), (4, 0, 2), (2, 5, 0)

In contrast to verifying if (t, P ) ∈ T × ZT+ is a circular pattern, checking whether P ∈ ZT+
is a rectangular pattern—a classical CPP—can be much more difficult. Typically, many more
circles fit into a rectangle than into a ring. This results in a large number of circles that need to
be considered in a verification problem, which is in practice difficult to solve.

5.3 Exploiting Recursion

Using the circle and rectangle patterns described above, we develop a pattern-based Dantzig-
Wolfe decomposition for RCPP with nonlinear sub-problems. Instead of placing rings explicitly
into each other, we use patterns to remodel the recursive part. The key idea is that circles,
inside rectangular or circular patterns, are replaced by circular patterns with the same external
radius. These circular patterns contain circles that can be replaced by other circular patterns.
More precisely, after choosing a rectangular pattern P ∈ RP, it is possible to choose Pt circular
patterns of the form (t, P ′) ∈ CP, which can be placed into P . Again, for each P ′ we can choose
P ′t′ many circular patterns of the form (t′, P ′′), which can be placed in P ′. This process can
continue until the smallest packable circle is considered. The recursive structure of the RCPP—
the placement of rings into other rings—is modeled by counting the number of used rectangular
and circular patterns.

Figure 5 illustrates this idea. A circular pattern replaces a circle if there is an arrow from
the pattern to the circle. Each circle of a pattern can be used as often as the pattern is used. It
follows that the number of outgoing edges of a circular pattern is equal to the number of uses of
the pattern. The combinatorial part of RCPP reduces to adding edges from circular patterns to
circles.

Following this idea, we introduce integer variables
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Figure 5: An example with four circular patterns and a rectangular pattern showing how patterns
are used to model the combinatorial part of RCPP. Each line connects a circular pattern to a
circle. The number of outgoing edges is equal to the number of rings that are used.

• zC ∈ Z+ for each circular pattern C ∈ CP and

• zP ∈ Z+ for each rectangular P ∈ RP

in order to count the number of used circular and rectangular patterns (in the pattern-based
formulation). We reformulate RCPP by the following IP formulation PDW (RP), which is
similar to the multi-stage cutting stock formulation that has been presented by Muter et al. [?].

min
∑
P∈RP

zP (13a)

s.t.
∑

C=(t,P )∈CP

zC ≥ Dt for all t ∈ T (13b)

∑
P∈RP

Pt · zP +
∑

C=(t′,P )∈CP

Pt · zC ≥
∑

C=(t,P )∈CP

zC for all t ∈ T (13c)

zC ∈ Z+ for all C ∈ CP (13d)

zP ∈ Z+ for all P ∈ RP (13e)

Objective (13a) minimizes the total number of used rectangles. Constraint (13b) ensures that
the demand for each ring type is satisfied. The recursive decisions how to place rings into each
other are implicitly modeled by (13c). Each selection of a pattern P ∈ RP or (t′, P ) ∈ CP
allows us to choose Pt circular patterns of the type t. Note that at least one rectangular pattern
needs to be selected before circular patterns can be packed. This is true because the largest ring
only fits into a rectangular pattern. To aid in understanding the formulation of PDW (RP), a
small example based on the circular and rectangular patterns in Figures 3 and 4 respectively is
presented in Example 1.

Example 1. Let {C1, . . . , C7} be the set of circular patterns of Figure 3 and {P1, P2, P3} be
the subset of rectangular patterns of Figure 4. The patterns are labeled from left to right.
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Problem (13) then reads as

min zP1
+ zP2

+ zP3
(14a)

s.t. zC1
≥ D1 (14b)

zC2
+ zC3

≥ D2 (14c)

zC4
+ zC5

+ zC6
+ zC7

≥ D3 (14d)

zC3
+ zC5

+ 2zC6
+ 9zP1

+ 4zP2
+ 2zP3

≥ zC1
(14e)

zC7
+ 5zP3

≥ zC2
+ zC3

(14f)

zP1
+ 2zP2

≥ zC4
+ zC5

+ zC6
+ zC7

(14g)

zCi
∈ Z+ for all i ∈ {1, . . . , 7} (14h)

zPi
∈ Z+ for all i ∈ {1, 2, 3} (14i)

Constraints (14b)–(14d) ensure that the demand for each ring type is satisfied. The left-hand
side of constraints (14b)–(14d) only contain columns corresponding to the circular patterns of
ring type 1 to 3 respectively. The constraints (14e)–(14g) model the recursive structure of the
problem. Columns corresponding to circular patterns for ring types 1 to 3 are observed on the
right-hand side of constraints (14e)–(14g) respectively. The left-hand side of constraints (14e)–
(14g) contain columns corresponding to rectangular and circular patterns that pack the ring type
represented on the right-hand side of the respective constraints.

A drawback of (13) is the exponential number of rectangular and circular pattern variables.
To address this difficulty, we develop a column enumeration algorithm to compute all (relevant)
circular patterns used in (13), which is presented in Section 6.1. We observed in our experi-
ments that for many instances this algorithm successfully enumerates all circular patterns in a
reasonable amount of time.

Since the size of the rectangles is much larger than the external radii R, it is intractable
to enumerate all rectangular patterns. To overcome this difficulty, we use a column generation
approach to solve the LP relaxation of (13) that dynamically generates rectangular patterns
variables. We call the LP relaxation of PDW (RP ′) the restricted master problem of (13) for a
subset of rectangular patternsRP ′ ⊆ RP. In order to find an improving column for PDW (RP ′),
we solve a weighted CPP for a single rectangle.

More precisely, let λ ∈ RT+ be the non-negative vector of dual multipliers for Constraints (13c)
after solving the LP relaxation of PDW (RP ′) for the current set of rectangular patterns RP ′ ⊂
RP. To compute a rectangular pattern with negative reduced cost we solve

min
P∈RP \RP′

{
1−

∑
t∈T

λtPt

}
, (15)

which can be modeled as a weighted CPP for a single rectangle. Let P ∗ be an optimal solution
to (15). If 1 −

∑
t∈T λtP

∗
t is negative, then P ∗ is an improving rectangular pattern, whose

corresponding variable needs to be added to the restricted master problem of PDW (RP ′).
Otherwise, the LP relaxation of (13) is solved to optimality.

The pricing problem isNP-hard [23] and difficult to solve in practice. The number of variables
in this problem depends on the number of different ring types T and on the demand vector D.
When solving (15) we need to consider the index set of individual circles

{i11, . . . , i1D1
, i21, . . . , i

2
D2
, . . . , iT1 , . . . , i

T
DT
}
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containing Dt indices that correspond to circles with radius Rt for each t ∈ T . The number of

copies for type t can be reduced to min{Dt,
⌊
π(Rt)

2

WH

⌋
}, which is an upper bound on the number

of rings of type t in a W times H rectangle. For simplicity, denote with C the index set of all
individual circles. Let Ri be the external radius and τ(i) the type of circle i ∈ C. The circle
packing problem formulation of (15) reads then as

min 1−
∑
i∈C

λτ(i)zi (16a)

s.t.

∥∥∥∥(xiyi
)
−
(
xj
yj

)∥∥∥∥2
2

≥ (Ri +Rj)
2(zi + zj − 1) for all i, j ∈ C : i 6= j (16b)

Ri ≤ xi ≤W −Ri for all i ∈ C (16c)

Ri ≤ yi ≤ H −Ri for all i ∈ C (16d)

zi ∈ {0, 1} for all i ∈ C (16e)

where (xi, yi) is the center of circle i ∈ C and zi the decision variable whether circle i has been
packed, i.e., zi = 1.

After solving the continuous relaxation of (13), it might happen that z∗P is fractional for a
rectangular pattern P ∈ RP ′. In this case branching is required to ensure global optimality. A
general branching strategy has been introduced by [32], which has been successfully used in a
branch-and-price algorithm for the one-dimensional cutting stock problem [30]. This branching
rule can be applied when solving (13), however, it increases the complexity of the pricing prob-
lems (15). Since (15) is very difficult to solve—the vast majority of pricing problems cannot be
solved to optimality in the root node—employing branch-and-price is deemed impractical. As
such, Section 6.3 presents a price-and-verify algorithm, which builds upon price-and-branch, as
a practical method for solving the RCPP. With techniques discussed in Section 6.2 this results
in an algorithm that is able to prove global optimality for many RCPP instances.

5.4 Strength of Dantzig-Wolfe reformulations

In the following, we show that the two presented formulations (11) and (13) provide the same
LP bound.

Theorem 1. Let LP(DW ) and LP(PDW ) be the value of the LP relaxation of (11) and (13),
respectively. Then LP(PDW ) = LP(DW ).

Proof. To show the equality of the LP bounds, we consider an “extended” Dantzig-Wolfe refor-
mulation. As a generalization of the variables zF from (11), where F ∈ F encodes a rectangle of
recursively packable rings, and zP from (13), where P ∈ RP encodes a rectangular pattern, we
introduce variables for “mixed” rectangles that may contain both rings and circles. Let z(F,P )

be the number of such “mixed” rectangles, and denote with

MP = {(F, P ) ∈ ZT+ × ZT+ : (F, P ) is packable }

the set of mixed rectangles. Here, (F, P ) is packable if Ft rings of type t and Pt circles of type
t can be packed into one rectangle without overlap, collectively over all t. A ring may contain
smaller rings and circles, but circles cover their full interior, see Figure 6 for an example.
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Figure 6: An example for a mixed rectangle packed with rings and circles.

Then define the LP

min
∑

(F,P )∈MP

z(F,P ) (17a)

s.t.
∑

(F,P )∈MP

Ft · z(F,P ) +
∑

C=(t,P )∈CP

zC ≥ Dt for all t ∈ T (17b)

∑
(F,P )∈MP

Pt · z(F,P ) +
∑
C∈CP

Pt · zC ≥
∑

C=(t,P )∈CP

zC for all t ∈ T (17c)

zC ≥ 0 for all C ∈ CP (17d)

z(F,P ) ≥ 0 for all (F, P ) ∈MP (17e)

and let Z∗ be its optimal objective value. By construction, (17) contains the feasible solutions
of (11) (setting zC = 0 and z(F,P ) = 0 for all P 6= 0) and (13) (setting z(F,P ) = 0 for all F 6= 0).
Hence, Z∗ ≤ LP(DW ) and Z∗ ≤ LP(PDW ). We prove the converse by optimality-preserving
exchange arguments. First, given a solution with rectangles that contain rings, these rings can
gradually be replaced by circles and circular patterns. Second, given a solution with rectangles
that contain circles, we are guaranteed to find a circular pattern that can take its place. Formally,
the proof reads as follows.

1. Suppose LP(PDW ) > Z∗ and let z∗ be an optimal solution to (17) such that the total
number of rings used in the rectangles of the support,

µ(z) =
∑

(F,P )∈MP

T∑
t=1

Ft · z(F,P )

is minimal. By assumption, µ(z∗) > 0, and we can choose (F̃ , P̃ ) and t̃ such that z∗
(F̃ ,P̃ )

> 0 and

F̃t̃ ≥ 1. Choose ring type t̃ to have smallest external radius Rt̃. Then this ring can only contain
circles, and with these circles it forms a circular pattern C̃ = (t̃, P ′) ∈ CP. Replacing the ring of
type t̃ by a circle with same external radius gives the packable tuple (F̂ , P̂ ) := (F̃ − et̃, P̃ + et̃).
Then define a new solution ẑ via

ẑ(F,P ) :=


0 if (F, P ) = (F̃ , P̃ ),

z∗
(F̂ ,P̂ )

+ z∗
(F̃ ,P̃ )

if (F, P ) = (F̂ , P̂ ),

z∗(F,P ) otherwise,

for all (F, P ) ∈MP, and

ẑC :=

{
z∗
C̃

+ z∗
(F̃ ,P̃ )

if C = C̃,

z∗C otherwise,
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for all C ∈ CP. By construction, ẑ is feasible for (17) and has identical objective function value.
However, µ(ẑ) = µ(z∗)− z∗

(F̃ ,P̃ )
< µ(z∗), contradicting the minimality assumption.

2. Suppose LP(DW ) > Z∗ and let z∗ be an optimal solution to (11) such that ν(z) =∑
C∈CP zC is minimal. By assumption, ν(z∗) > 0; otherwise, z∗ could be transformed into an

optimal solution of LP(DW ) by removing all circles from each rectangle. Hence, we can choose
a circular pattern C̃ = (t̃, P ′) with z∗

C̃
> 0 and largest external radius Rt̃.

Now consider Constraint (17c) for t = t̃. Because
∑
C∈CP Pt̃ · zC must be zero, there exists

an (F̃ , P̃ ) such that z∗
(F̃ ,P̃ )

> 0 and P̃t̃ ≥ 1. Replacing one ring of type t̃ by the circular pattern

C̃ = (t̃, P ′) gives the packable tuple (F̂ , P̂ ) := (F̃ + et̃, P̃ − et̃ + P ′). Finally, we define a new
solution ẑ via

ẑ(F,P ) :=


0 if (F, P ) = (F̃ , P̃ ),

z∗
(F̂ ,P̂ )

+ z∗
(F̃ ,P̃ )

if (F, P ) = (F̂ , P̂ ),

z∗(F,P ) otherwise,

for all (F, P ) ∈MP, and

ẑC :=

{
0 if C = C̃,

z∗C otherwise,

for all C ∈ CP. By construction, ẑ is feasible for (17) and has identical objective function value.
However, ν(ẑ) = ν(z∗)− z∗

C̃
< ν(z∗), contradicting the minimality assumption.

While (13) does not improve the strength of the LP relaxation, compared to (11), the advan-
tage of (13) is that it breaks the symmetry of the combinatorial part of the RCPP, i.e., packing
rings into rings, on each recursion level. Applying the pattern-based Dantzig-Wolfe reformula-
tion makes deciding how to pack rings a counting problem in the master problem. Compared
to (12), the resulting sub-problems do not contain the recursive structure of RCPP any more.
This balances the complexity between the master problem and sub-problems, which is crucial
for the performance of a column generation algorithm.

6 Column Generation Method for Solving the RCPP

This section presents a column generation based method for solving formulation (13). The key
ingredients of our method are the enumeration of valid circular patterns, the generation of rect-
angular patterns, and a dynamic verification for circular pattern candidates during the column
generation algorithm. Each of these fundamental components of the column generation based
method are necessary for addressing the complexity of solving the pricing problem (15) and the
difficulty in verifying whether a circular pattern candidate is packable. Since it may not be pos-
sible to compute all possible circular and rectangular patterns, the dynamic verification provides
the capability to only check patterns that may be part of an optimal solution. Additionally,
a key feature of our algorithm is that it is always capable of computing valid primal and dual
bounds even though not all rectangular and circular patterns have been found.

6.1 Enumeration of Circular Patterns

Formulation (13) contains one variable for each circular pattern in CP. This set is, in general, of
exponential size. We present a column enumeration algorithm to compute all relevant circular
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patterns for (13). The main step of the algorithm is to verify whether a given tuple (t, P ) ∈ T ×ZT+
is in the set CP or not. A tuple can be checked by solving the following nonlinear nonconvex
verification problem: ∥∥∥∥(xiyi

)
−
(
xj
yj

)∥∥∥∥
2

≥ Ri +Rj for all i, j ∈ C : i < j (18a)∥∥∥∥(xiyi
)∥∥∥∥

2

≤ rt −Ri for all i ∈ C (18b)

xi, yi ∈ R for all i ∈ C (18c)

Here C := {1, . . . ,
∑
i Pi} is the index set of individual circles, and Ri the corresponding external

radius of a circle i ∈ C. Model (18) checks whether all circles can be placed in a non-overlapping
way into a ring of type t ∈ T . Constraint (18a) ensures that no two circles overlap, and (18b)
guarantees that all circles are placed inside a ring of type t.

The non-overlapping conditions (18a) are nonconvex and make (18) computationally difficult
to solve. Due to the positioning of circles, (18) contains a lot of symmetry. The rotation of every
solution by 180◦ leads to another equivalent solution. Typically, this kind of symmetry is difficult
to address within a global NLP solver. Branching on some continuous variables is likely to have
no impact on the dual bound. One way to overcome this problem is to break some symmetry
of the problem by ordering circles of the same type in the x-coordinate non-decreasingly. We
achieve this by adding

xi ≤ xj for all i < j : Ri = Rj (19)

to (18). Additionally, we add an auxiliary objective function mini∈C xi to (18). From our
computational experiments we have seen that adding (19) to (18) makes it easier for the NLP
solver to prove infeasibility.

As already seen in Section 5.1, there is a dominance relation between circular patterns,
meaning that in any optimal solution of RCPP, dominated patterns can be replaced by non-
dominated ones. Definition 1 formalizes this notion of a dominance relation between circular
patterns.

Definition 1. A circular pattern (t, P ) ∈ CP dominates (t, P ′) ∈ CP if and only if P ′ <lex P ,
where <lex denotes the standard lexicographical order of vectors.

Let
CP∗ := {(t, P ) ∈ CP | @(t, P ′) ∈ CP : (t, P ′) dominates (t, P )}

be the set of non-dominated circular patterns. The set CP∗ might be much smaller than CP, but
is, in general, still of exponential size. Using CP∗ in (13), instead of the larger set CP, results in
fewer variables.

Finally, we present the procedure EnumeratePatterns in order to compute CP∗. Algorithm 1
considers all possible (t, P ) ∈ T × ZT+ and checks whether (t, P ) is a circular pattern by solv-
ing (18). The algorithm exploits the dominance relation between circular patterns to reduce the
number of NLP solves and filter dominated patterns. In the following, we discuss the different
steps of Algorithm 1 in more detail. For simplicity, we define the set [x] := {0, . . . , x} for an
integer number x ∈ Z+, and call a candidate pattern (t, P ) ∈ T × ZT+ infeasible if (t, P ) /∈ CP
and feasible otherwise.

The algorithm maintains three sets CPfeas, CPinfeas, CPunknown, initialized to the empty
set. In Line 3, we iterate through all possible pattern candidates (t, P ) for a fixed t ∈ T .
In Line 5, we check whether P dominates a circular pattern already verified as infeasible and
whether P is dominated by a circular pattern already verified as feasible. In both cases, P can
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Algorithm 1: EnumeratePatterns

in : internal and external radii r and R, demands D
out: CPfeas ⊆ CP, unverified candidates CPunknown

1 CPfeas := ∅, CPinfeas := ∅, CPunknown := ∅
2 for t ∈ T do
3 for P ∈ [D1]× . . .× [DT ] do
4 if ∃(P ′, t) ∈ CPinfeas : P ′ <lex P or ∃(P ′, t) ∈ CPfeas : P ′ >lex P then
5 continue

6 status := solve verification NLP (18)
7 if status = ”feasible” then
8 CPfeas := CPfeas ∪ (P, t)

9 if status = ”infeasible” then
10 CPinfeas := CPinfeas ∪ (P, t)

11 if status = ”time limit” or ”memory limit” then
12 CPunknown := CPunknown ∪ (P, t)

13 filter all dominated patterns from CPfeas and CPunknown
14 return (CPfeas, CPunknown)

be skipped. Otherwise, in Line 6, we solve a nonconvex verification NLP (18), which is the
bottleneck of Algorithm 1. Roughly speaking, this NLP is easy to solve for the case where P ,
selected in Line 3, is component-wise too small or too large. In the first case, finding a feasible
solution is easy due to a small number of circles. In the other case, we can conclude that the
circles of the candidate P cannot be packed due to limited volume of the surrounding ring. The
computationally expensive verification NLPs lie between these two extreme cases. Because of
the two reversed dominance checks, it is in general unclear in which order the P in Line 3 should
be enumerated. On the one hand, it can be beneficial to start with candidates that contain many
circles. In case of a feasible candidate, many other candidates can be discarded because of the
dominance relation between circular patterns. On the other hand, an infeasible candidate that
dominates another infeasible candidate can incur a redundant, difficult NLP (18) solve.

Algorithm 1 returns two sets of circular patterns. The first set contains all feasible circular
patterns that could be successfully verified and is denoted by CPfeas. The second set, CPunknown,
contains all candidates that could not be verified because of working limits, e.g., a time or memory
limit on the solve of (18). At the end, each non-dominated circular pattern is either in the set
CPfeas or CPunknown, which means that

CP∗ ⊆ CPfeas ∪ CPunknown

holds.
Ideally, we have verified all candidates, i.e., CPunknown = ∅. However, since there are expo-

nentially many candidates to check and each candidate requires to solve (18), it might not be
possible to compute CP∗ in a reasonable amount of time.

Nevertheless, even if the set CPunknown is non-empty, we are able to compute valid dual and
primal bounds for RCPP. A valid primal bound is given when solving (13) after restricting the
set of circular patterns to CPfeas. This is becasuse this restriction ensures that we only use
packable patterns. Using CPfeas ∪CPunknown in (13) yields a valid relaxation of RCPP because
we use at least all patterns in CP∗ and maybe some circular patterns that are not packable.
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6.2 Computation of Valid Dual Bounds

The Pricing Problem (15) is a classical CPP—an NP-hard nonlinear optimization problem,
which is in practice very hard to solve. State-of-the-art MINLP solvers might fail to prove global
optimality for this type of problems. Nevertheless, the following theorem shows how to use a
dual bound for (15) to compute a valid dual bound for RCPP.

Theorem 2 (Farley [10], Vance et al. [31]). Let νRMP be the optimum of the restricted master
problem of PDW (RP ′), νPricing be the optimal value for the Pricing Problem (15), and OPT
be the optimal solution value of RCPP. Then the inequality⌈

νRMP

1− zPricing

⌉
≤ OPT

holds for all valid dual bounds zPricing ≤ νPricing.

In our computational experiments we have seen that this bound can indeed be used to obtain
good quality bounds in cases where the circle packing pricing problem (16) could not be solved
to optimality. Note that the dual bounds of Theorem 2 depend on the quality of the dual bounds
of pricing problems. Any improvement on the dual bound for the CPP automatically translates
to better dual bounds for the RCPP.

6.3 Price-and-Verify Algorithm

The price-and-verify algorithm is a column generation based algorithm that incorporates ideas
from Sections 5, 6.1, and 6.2. This is summarized in Algorithm 2 and consists of three main
steps:

1. An initial enumeration of circular patterns.

2. Generation of rectangular patterns with negative reduced cost.

3. Verification of circular pattern candidates during the pricing loop.

First, in Line 1, we use Algorithm 1 to compute the set of non-dominated circular patterns CP∗.
Its computational cost depends on the number of different ring types T , the external radii R, and
the internal radii r. Algorithm 1 returns two sets CPfeas and CPunknown with the properties

CPfeas ⊆ CP and

CP∗ ⊆ CPfeas ∪ CPunknown.

A feature of Algorithm 2 is the ability to compute valid dual and primal bounds simultane-
ously. This is achieved by computing the primal and dual bounds while dynamically verifying
circular pattern candidates in CPunknown during the solving process. The simultaneous com-
putation of bounds is an improvement over the methods previously discussed. In the previous
section, the proposed methods separately compute valid primal and dual bound for RCPP by
using CPfeas and CPfeas ∪ CPunknown respectively.

Algorithm 2 uses CPfeas∪CPunknown as the initial set of circular patterns in Formulation (13).
This ensures that at least all packable circular patterns are considered, which is necessary for
proving a valid dual bound for RCPP. In general, many pattern candidates in CPunknown are
not packable and need to be discarded to prove global optimality. Algorithm 2 dynamically
verifies C ∈ CPunknown and fixes the corresponding variable zC to zero if C is not packable.
By discarding non-packable pattern candidates, the verification step does not only improve the
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quality of the dual bound but also ensures that any integer feasible solution z̄ is feasible for the
RCPP, i.e., zC = 0 for all C ∈ CPunknown.

The key idea of the dynamic verification is to only consider candidate patterns in CPunknown
that have a nonzero LP solution value. To be more precise, let z∗ be the optimal LP solution
of the restricted master problem after no more rectangular patterns with negative reduced cost
could be found in the pricing loop, see Line 3. Algorithm 2 solves the LP relaxation of the
master problem (13) to optimality if z∗C = 0 holds for all C ∈ CPunknown. Otherwise, there
exists at least one C ∈ CPunknown with z∗C > 0. In order to verify C, we solve (18) in Line 6
with larger working limits than we have used in the initial enumeration step. There are three
possible outcomes. The candidate pattern C

• is packable: We remove C from CPunknown, add it to CPfeas, and continue with the next
pattern candidate C ∈ CPunknown that has a nonzero solution value in z∗.

• is not packable: We remove C from CPunknown and fix zC to zero, which cuts off the LP
solution z∗. Resolving the LP leads to a different dual solution that might allow us to find
new rectangular patterns with negative reduced cost. In this case, Algorithm 2 goes back
to Line 3 and continues with pricing.

• could not be verified: Due to working limits, it may not be possible to verify C. In this
case, we label that C has been tested, i.e., Ψ(C) = 1, and continue with the next candidate
C ′ ∈ CPunknown that has not been labeled yet, i.e., Ψ(C ′) = 0, and z∗C′ > 0. If C ′ can be
verified to be not packable, we might get a different LP solution with z∗C = 0. This would
allow us to solve the LP relaxation of the master problem to optimality even though we
could not verify C.

In Line 16 we check whether there is still a candidate C ′ ∈ CPunknown with z∗C′ > 0 left.
The candidates where z∗C′ > 0 have already been tested, so Ψ(C ′) = 1, but were unable to
be verified within the working limits. We fix all variables zC′ to zero for all C ′ ∈ CPunknown.
Since unverified patterns have been fixed to zero, it is no longer possible to compute a valid
dual bound for RCPP. The remaining solution process can be seen as solving a restricted
version of RCPP whose solution z̄ is feasible for the original problem. However, it might
be the case that z̄ is still optimal, even though unverified candidates from CPunknown are
fixed to zero. It is possible to verify the circular patterns a posteriori to determine whether
an optimal solution has been found.

The advantage of dynamically verifying circular pattern candidates during the pricing loop
is that small working limits can be used in Algorithm 1 in order to identify packable patterns
quickly and then focus, with larger working limits, on the patterns that are used in the LP
solution of the restricted master problem.

After applying Algorithm 2 we have solved the LP relaxation of (13) in the root node of the
branch-and-bound tree. If there exist any integer variables with a fractional solution value, then
branching must be performed. Due to the complexity of the pricing problems, we observed in our
experiments that solving (15) to global optimality is only possible for simple problems that can
be solved in the root node—without requiring branching. The proposed branching strategy does
not greatly reduce the complexity of the pricing problems at each node of the tree. As a result,
performing pricing in each node is very time consuming. Thus, to improve the computational
performance, pricing is only performed in the root node. Afterwards the RCPP is solved for the
set of rectangular patterns that have been found so far. The optimal solution of this restricted
problem is feasible for the original RCPP. Our results show that applying this strategy allows
us to find good quality solutions for difficult problems.
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Algorithm 2: Price-and-verify

in : internal and external radii r and R, demands D
out: LP solution z∗ of the master problem or ∅

1 (CPfeas, CPunknown) := EnumeratePatterns(r,R,D)
2 ΨC := 0 for all C ∈ CPunknown
3 while ∃R ∈ RP : redR < 0 do
4 RP := RP ∪ {R} // pricing loop

5 z∗ := solve LP(RMP )
6 while ∃C ∈ CPunknown : z∗C > 0 ∧ΨC = 0 do
7 status := solve verification NLP (18) // verification step

8 ΨC := 1
9 if status = ”feasible” then

10 CPunknown := CPunknown\{C}
11 CPfeas := CPfeas ∪ {C}
12 if status = ”infeasible” then
13 CPunknown := CPunknown\{C}
14 fix zC := 0 // fixing cuts of z∗

15 go to 3 // enter pricing loop again

16 if ∃C ∈ CPunknown : z∗C > 0 then
17 fix zC := 0 for all C ∈ CPunknown
18 return ∅ // LP solution is not valid

19 return z∗

7 Computational Experiments

In this section, we investigate the performance and the quality of the dual and primal bounds
obtained by our method and analyze how they relate to specific properties of an instance. The
algorithm presented in Section 5.3 is implemented in the MINLP solver SCIP [29]. We refer
to [2, 34] for an overview of the general solving algorithm and MINLP features of SCIP.

7.1 Implementation

We extended SCIP with the addition of two plug-ins: one pricing plug-in for solving the LP
relaxation of Formulation (13) and one constraint handler plug-in to apply the dynamic verifi-
cation of circular patterns during Algorithm 2. Algorithm 1 is executed immediately before the
solving process for the RCPP commences. To accelerate the verification of circular pattern can-
didates, we use a simple greedy heuristic to check whether a given candidate (t, P ) is a circular
pattern, i.e., if (t, P ) ∈ CP. The heuristic iteratively packs circles to the left-most, and then
lowest possible position in a ring of type t ∈ T . If the heuristic fails to verify a candidate, we
solve (18) until a feasible solution has been found, or it has been proven to be infeasible. The
same heuristic is used for finding a rectangular pattern with negative reduced cost during Algo-
rithm 2. If the heuristic fails to find such a pattern, we directly solve (15) to global optimality.
The implementation is publically available in source code as part of the SCIP Optimization Suite
and can be downloaded at https://scip.zib.de/.
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7.2 Experimental Setup

We conducted three main experiments. In the first experiment we characterize instances for which
Algorithm 1 finds all elements of the set of non-dominated circular patterns CP∗ ⊆ CPfeas. The
second experiment answers the question whether our proposed method is able to solve instances
to global optimality and characterizes these instances by their structural properties. Because
our method can also be used as a primal heuristic, in the last experiment we compare it with
the GRASP heuristic of Pedroso et al. [25].

In the enumeration experiment we apply Algorithm 1 on each instance and check whether
CP∗ could be computed in two hours. For very difficult problems it might happen that we spend
the whole time limit in solving a single NLP.

For our second experiment, we use our method to compute valid dual and primal bounds
for RCPP with a total time limit of two hours. In contrast to the first experiment, we enforce
a time limit of 10s for each NLP (18) in Algorithm 1. After a time budget of 1200s, we stop
solving (18) and only use the greedy heuristic to verify circular pattern candidates. A pattern is
added to CPfeas if it can be verified. Otherwise, we add a candidate to CPunknown and process
with the next candidate pattern. During the pricing loop we then use a larger time limit of 120s
to verify a pattern in CPunknown that has a nonzero value in the LP relaxation solution. Again,
we stop solving NLPs after 2400s were spent on verifying pattern candidates.

During Algorithm 2, we use a time limit of 300s to solve (15). If we fail to solve a pricing
problem to optimality and no improving column could be found, we stop solving any further
pricing problems, obtain a valid dual bound by applying Theorem 2, and continue to solve the
restricted master problem for the current set of rectangular patterns. In our experiments, this
only occurs at the root node.

Finally, in our third experiment we compare the obtained primal bounds of our method with
those obtained from the GRASP heuristic. Both algorithms run with a time limit of three hours
on each instance. For this experiment the specifications from the second experiment are used for
out method. We use the Python implementation of GRASP from [25]. Note that SCIP is written
in the programming language C, in which an implementation of GRASP would be much faster.
However, in our primal bound experiment we only compare the quality of obtained solutions and
it can be observed that GRASP finds its best solutions in the first few minutes.

Test Sets. We consider two different test sets for our experiments. The first one contains 9
real-world instances from the tube industry, which were used in [25], and is in the following called
real test set. Because this test set is too limited for a detailed computational study, we created
a second test set containing 800 instances, the rand test set. The purpose of this set is to show
how the number of different ring types T , the maximum ratio of external radii maxt rt/mintRt,
and the ratio between rectangle size and the maximum volume of a ring max{W,H}/maxt π(Rt)

2

influence the performance of our method.
The name of each instance reads i<T> <α> <β> <γ>.rpa where

• T ∈ {3, 4, 5, 10} is the number of ring types,

• maxt rt
mint Rt

=: α ∈ {2.0, 2.3, . . . , 4.7} is the maximum external radii ratio,

• max{W,H}
maxt Rt

=: β ∈ {2.0, 2.3, . . . , 4.7} is the rectangle size to external radius ratio, and

• WH
maxt π(Rt)2

[0.8γ, 1.2γ] for γ ∈ {5, 10} is the demand interval for each type t.

The demand of a type t ∈ T is randomly chosen from the corresponding demand interval. The
size of this interval is anti-proportional to the external radius, i.e., types with large external
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radius appear less often. For all instances in rand we fixed the width W and height H of
the rectangles to 10. We created one instance for each 4-tuple, giving 800 instances in total.
All instances of the rand and real test set are publically available at https://github.com/

mueldgog/RecursiveCirclePacking.

Hardware and Software. The experiments were performed on a cluster of 64bit Intel(R)
Xeon(R) CPU E5-2660 v3 2.6 GHz with 12 MB cache and 48 GB main memory. In order to safe-
guard against a potential mutual slowdown of parallel processes, we ran only one job per node at
a time. We used SCIP version 5.0 with CPLEX 12.7.1.0 as LP solver [18], CppAD 20140000.1 [5],
and Ipopt 3.12.5 with MUMPS 4.10.0 [1] as NLP solver [35, 6].

7.3 Computational Results

In the following, we discuss the results for the three described experiments in detail. Instance-
wise results of all experiments can be found in Table in the electronic supplement.

Enumeration Experiments. Figure 7 shows the computing time required to compute all non-
dominated circular patterns CP∗ for the instances of the rand test set. Each line corresponds to
the subset of instances with identical number of ring types T . Each point on a line is computed
as the shifted geometric mean (with a shift of 1.0) over all instances that have the same value
maxt rt/mintRt. We expect that the number of circular patterns increases when increasing the
ratio between the ring with largest inner and the ring with smallest outer radius.

The first observation is that the time to compute all circular patterns increases when T in-
creases. For example, for T = 10 we need about 4−10 times longer to enumerate all patterns than
for T = 5. Also, all lines in Figure 7 approximately increase exponentially in maxt rt/mintRt. A
larger ratio implies that each verification NLPs (18) has a larger number of circles that fit into
a ring of inner radius maxt rt. These difficult NLPs and the larger number of possible circular
patterns provide an explanation for the exponential increase of each line in Figure 7.
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Figure 7: Plot showing the average time to enumerate all circular patterns for different number
of ring types T ∈ {3, 4, 5, 10} within a two hours time limit.
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Table 1 shows in more detail for how many instances we could compute CP∗ successfully and
how much time it took on average. The rows partition the instances according to the number of
ring types and the columns group these instances by their maxt rt/mintRt values. First, we see
that for 392 of the 800 instances of the rand test set we could successfully enumerate all circular
patterns, in 19.8 seconds on average. We see that for less and less instances the enumeration step
is successful as maxt rt/mintRt increases. For none of the rand instances with maxt rt/mintRt
strictly larger than 3.5 could CP∗ be successfully enumerated. Many verification NLPs for these
instances are too difficult to solve and often consume the whole time limit of two hours, even for
the case of three different ring types. However, for the 480 instances with maxt rt/mintRt ≤ 3.5
Algorithm 1 managed to compute on 81.6% (392) of these instances all non-dominated circular
patterns.

Table 1: Aggregated results for enumerating all non-dominated circular patterns. Each of the
six columns reports the results for 80 instances of the rand test set. The 320 instances with
maxt rt/mintRt > 3.5 are not shown because none of them could be successfully enumerated
within the time limit.

n — number of instances for which CP∗ could be computed
time — time in seconds

ν = maxt rt
mint Rt

ν = 2.0 ν = 2.3 ν = 2.6 ν = 2.9 ν = 3.2 ν = 3.5

n time n time n time n time n time n time

T = 3 20 0.5 20 1.0 20 8.1 20 35.2 17 227.5 12 4050.7
T = 4 20 0.7 20 1.3 20 8.2 20 24.2 15 374.5 9 4020.3
T = 5 20 0.9 20 2.6 19 4.3 19 117.9 16 571.4 4 4507.7
T = 10 20 3.0 20 8.0 16 28.9 17 117.3 8 1022.6 0 –

all 80 1.1 80 2.5 75 9.3 76 56.8 56 419.4 25 4109.4

Exact Price-and-Verify. In our second experiment, we analyze the primal and dual bounds
that have been computed by our column generation method. Figure 8 shows the achieved op-
timality gaps, i.e., (primal − dual)/dual, for all instances of the rand test set. We solve 35.9%
of the instances to global optimality and get gaps between 0-25% for 5.6% of the instances. For
about 46.3% of the instances we achieve gaps between 25-100%, and only for a single instance
the gap is larger than 100%.

Table 2 and Table 3 contain aggregated results for the optimality gaps for the rand test set.
Table 2 shows that out of the 287 optimally solved instances, 80 instances have three, 72 have
four, 70 have five, and 65 have ten different ring types. Most of the instances with a gap larger
than 50% are from the subset of instances with ten ring types. Only 33 of the 98 instances with
a gap larger than 50% have less than ten different ring types. Figure 9 visualizes the results of
Table 2 in a bar diagram. As expected, for an increasing number of ring types worse optimality
gaps are obtained.

Each row in Table 3 corresponds to the set of instances that have at least a certain value
for maxt rt/mintRt. For example, the bottom-left corner value signifies that 60 out of the
160 instances with maxt rt/mintRt ≥ 4.4 could be solved to optimality. As for Table 2, we see
that the gaps increase with a larger maxt rt/mintRt ratio. This can be explained by our previous
observation, namely, the difficulty of enumerating all circular patterns for these instances. When
CPunknown 6= ∅, then it could contain packable and unpackable patterns. A valid dual bound
is given by the solution to the LP relaxation without any unverified patterns fixed to zero. If
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Figure 8: Optimality gaps for all rand instances.

Table 2: Number of instances of the rand test set according to final gap and number of ring
types.

total 0% 0− 25% 25− 50% 50− 100% > 100%

T = 3 200 80 14 99 7 0
T = 4 200 72 11 108 9 0
T = 5 200 70 9 104 17 0
T = 10 200 65 11 59 64 1

all 800 287 45 370 97 1

this solution contains patterns from CPunknown that are unpackable, then the computed bound
will be lower than the optimal LP bound if all circular patterns were verified. Alternatively,
after the LP relaxation has been solved to optimality, all unverified patterns are fixed to zero. If
CPunknown contains packable patterns that are necessary to express an optimal integer solution,
then the best primal bound will be greater than the optimal solution value to the RCPP. To
summarize, our results show that the number of ring types T and the quotient maxt rt/mintRt
are in many cases reliable indicators for both the quality of primal and dual bounds and the
computational cost of our method. Instances that require branching are often too difficult to
solve to global optimality.

Table 3: Number of instances of the rand test set according to final gap and maxt rt/mintRt.

total 0% 0− 25% 25− 50% 50− 100% > 100%

maxt rt/mintRt ≥ 2.0 800 287 45 370 97 1
≥ 2.6 640 223 42 295 79 1
≥ 3.2 480 170 36 204 69 1
≥ 3.8 320 122 25 126 46 1
≥ 4.4 160 60 11 66 23 0

Finally, we briefly report on the size of the branch-and-bound trees for the primal and dual
bound experiments. We consider a node to be explored once it has been selected by SCIP’s node

23



# instances

|T |0%

25%

50%

3 4 5 10

0% gap 0− 25% gap 25− 50% gap 50− 100% gap > 100% gap

Figure 9: Optimality gaps for rand instances split by number of different ring types.

selection algorithm. Our method explored more than one node for 367 of the 800 rand instances
and only 15 of these instances could be solved to global optimality. The maximum number of
explored nodes is 207.

Primal Bound Experiments. In our final experiments, we consider our method as a pure
primal heuristic for RCPP and compare it to the GRASP heuristic by Pedroso et al. [25], which
is specifically designed to find dense packings quickly. Table 4 contains detailed results for the
real, and Table 5 aggregated results for the rand test set. For analytical purposes, Table 4
also shows the results for the dual bounds.

Table 4: Detailed results for the comparison with GRASP on the real test set.

Instance price & verify GRASP

Name T maxt rt
mint Rt

volume dual primal primal

s03i1 3 2.2 1 1 1 1
s03i2 3 2.2 5 9 10 10
s03i3 3 2.2 47 82 98 95
s05i1 5 5.1 1 1 1 1
s05i2 5 5.1 4 8 10 10
s05i3 5 5.1 36 70 94 98
s16i1 16 6.3 1 1 1 1
s16i2 16 6.3 5 8 10 10
s16i3 16 6.3 45 73 96 96

For the real test set, we are able to solve the three instances s**i1, that require only one
rectangle in the optimal solution. On all but two instances our method achieves the same primal
bound as GRASP. On s03i3 we need three more rectangles and on s05i3 four rectangles less.
Due to the small value maxt rt/mintRt = 2.2 of the instances with three different ring types,
the enumeration step takes only a fraction of a second. The difficulty of these instances lies only
in the placement of rings into rectangles and not in the recursive structure of RCPP. Hence, it
is not surprising that our method computes a worse solution than GRASP on s03i3 because we
only use a simple left-most greedy heuristic before solving (15).

Proving optimality for the instances of the real test set is difficult for our method. Only

24



the three instances s**i1 with one rectangle in the optimal packing, could be solved to gap
zero. Because the rectangles are very large relative to the radii of the rings, the pricing problems
contain many variables and constraints. As a result, the pricing problems are too difficult to
solve to optimality. As shown above, the ratio maxt rt/mintRt of the instances with T > 3 is
too large to enumerate and verify all circular patterns in reasonable time.

It is worth to notice that the dual bounds that can be proved by our method are much better
than simple volume-based bounds. Except for the three instances that require only one rectangle,
our dual bounds are at least 1.6 times larger than the volume-based bounds.

Even though our method is not particularly designed for the characteristics of the instances
in the real test set, it still performs well as a primal heuristic. On the instances with five ring
types it could enumerate many non-trivial circular patterns and uses them to find a better primal
solution than GRASP.

For the rand test set, Table 5 shows the number of instances on which our method performed
better or worse than GRASP with respect to the achieved primal bound. The second column
reports the primal bound average relative to the value of GRASP on all instances of rand. For
this we compute the shifted geometric mean of all ratios between the obtained primal bounds of
our method and GRASP. The third column shows the total number of instances on which our
method found a better primal solution. The fourth column shows the improvement relative to
GRASP. The remaining three columns show statistics for the instances on which our method
performed worse.

We observe that our method outperforms GRASP on many instances. On average, the
solutions are 2.7% better than the ones from GRASP. In total, we find a better primal bound
on 356 of the instances, and a worse bound on only 33 instances. Our method could find for
all instances a primal feasible solution before hitting the time or memory limit. The average
deterioration on the 33 instances is 5.1−7.2% and the average improvement on the 356 instances
is 5.6 − 6.9%. Our method finds more often a better solution than GRASP for instances that
have a larger number of ring types. For ten ring types we find 123 better solutions, which is
about twice as large as for three ring types.

There are two reasons why our method performs better than GRASP on many instances.
The first is that GRASP considers and positions each ring individually. A large demand vector
D results in a large number of rings, which makes it difficult for GRASP to find good primal
solutions. In contrast, the number of rings and circles that need to be considered in our pricing
problems and in the enumeration is typically bounded by a number derived from some volume
arguments instead of the entries of the demand vector D. Thus, scaling up D typically does
not have a large impact when applying our column generation algorithm as a primal heuristic.
The second reason for the better performance is that for a given set of circular and rectangular
patterns, the master problem takes the best decisions of how to pack rings recursively into each
other. For instances where this combinatorial part of the problem is difficult, we expect that our
method performs better than GRASP. Indeed, on instances with a large number of ring types
our method frequently finds better solutions than GRASP.

In summary, the experiments on synthetic and real-world instances shows that our method
solves small and medium-sized instances to global optimality. This was the case on 287 of the
randomly generated instances and for three of nine real-world instances. Due to the costly
verification of circular patterns and difficult sub-problems, our method is not able to solve larger
instances to global optimality, but still achieves good primal and dual bounds. Compared to the
state-of-the-art heuristic for RCPP, our method finds on 356 of the instances better, and only
on 33% of the instances worse primal solutions.
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Table 5: Aggregated results for primal bound comparisons against GRASP on the rand test set.

all — all instances
better — instances with a better primal bound than GRASP
worse — instances with a worse primal bound than GRASP
# — number of instances
% — average primal bound relative to average primal bound of GRASP

all better worse

% # % # %

T = 3 98.3 61 94.3 7 106.3
T = 4 97.3 78 93.1 9 105.5
T = 5 97.4 94 94.4 9 107.2
T = 10 96.1 123 93.6 8 105.1

all 97.3 356 93.8 33 106.0

8 Conclusion

In this article, we have presented the first exact algorithm for solving practically relevant instances
for the extremely challenging recursive circle packing problem. Our method is based on a Dantzig-
Wolfe decomposition of a nonconvex MINLP model. The key idea of solving this decomposition
via column generation is to break symmetry of the problem by using circular and rectangular
patterns. These patterns are used to model all possible combinations of packing rings into other
rings. As a result, we were able to reduce the complexity of the sub-problems significantly and
shift the recursive part of RCPP to a linear master problem.

In some sense, this reformulation can be interpreted as a reduction technique from RCPP
to CPP. All occurring sub-problems in the enumeration of circular patterns and the pricing
problems are classical CPPs and they constitute the major computational bottleneck. Every
primal or dual improvement for this problem class would directly translate to better primal and
dual bounds for RCPP. Still, in order to prove optimality it is usually necessary to solve the
NP-hard CPP to optimality, which can fail for harder instances. However, even for this case,
the application of Theorem 2 and the pessimistic and optimistic enumeration of circular patterns
guarantees valid primal and dual bounds for RCPP. The combination of column generation with
column enumeration could be of more general interest when using decomposition techniques for
MINLPs that lead to hard nonconvex sub-problems.

An interesting extension of the presented method is its application to problem with different
container shapes and sizes. Since the master problem of the decomposed model does not depend
on the shape of the containers or packed objects, it is possible to apply this model to any container
shape. This would only require a modification to the column generation subproblems to produce
packable patterns that can be added to the master problem. Thus, the presented methods cover
a wide range of packing problems.

Finally, our current proof-of-concept implementation could certainly be improved further. To
mention only one point, we currently use a rather simple greedy heuristic in order to find quickly
a feasible solution for the verification NLP (18) and the Pricing Problem (15). By using more
sophisticated heuristics for the well-studied CPP, we might be able to compute better optimality
gaps for instances where the positioning of circles into rectangles or rings is difficult. Surprisingly,
even with a simple greedy heuristic our method works well as a primal heuristic and finds for
many instances better solutions than GRASP [25].
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Appendix

Table 6: Detailed results for randomly generated instances.

vol — volume-based dual bound
dual — proven primal bound
primal — proven dual bound
GRASP — proven primal bound by GRASP heuristic
nfeas — total number of circular patterns found
ncands — total number of circular patterns candidates
nrp — total number of generated rectangular patterns
nodes — total number of branch-and-bound nodes
enum time — time to compute all circular patterns in enumeration experiment

instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i03 2.0 2.0 05 8 17 17 17 4 0 6 1 0.4
i03 2.0 2.0 10 22 34 38 38 5 0 7 3 1.4
i03 2.0 2.3 05 7 16 16 16 4 0 6 1 0.5
i03 2.0 2.3 10 23 33 45 49 4 0 9 3 0.9
i03 2.0 2.6 05 8 23 23 23 3 0 7 1 0.6
i03 2.0 2.6 10 14 41 41 41 4 0 9 1 0.3
i03 2.0 2.9 05 8 16 16 16 4 0 9 1 0.4
i03 2.0 2.9 10 14 18 27 27 4 0 8 3 0.7
i03 2.0 3.2 05 9 23 23 23 4 0 7 1 0.6
i03 2.0 3.2 10 20 26 38 38 4 0 11 3 1.0
i03 2.0 3.5 05 8 21 21 21 3 0 10 1 0.7
i03 2.0 3.5 10 16 23 32 33 4 0 10 3 0.5
i03 2.0 3.8 05 6 10 14 15 4 0 15 3 0.4
i03 2.0 3.8 10 16 23 31 33 4 0 16 3 0.3
i03 2.0 4.1 05 9 13 18 18 4 0 21 3 0.3
i03 2.0 4.1 10 12 18 24 24 4 0 25 3 0.4
i03 2.0 4.4 05 8 10 14 15 4 0 18 3 0.3
i03 2.0 4.4 10 14 20 25 27 4 0 18 3 0.3
i03 2.0 4.7 05 7 13 19 19 3 0 16 3 0.6
i03 2.0 4.7 10 14 21 29 30 4 0 24 3 0.4
i03 2.3 2.0 05 7 15 15 15 3 0 5 1 2.2
i03 2.3 2.0 10 16 36 36 36 4 0 6 1 0.5
i03 2.3 2.3 05 8 12 18 18 4 0 7 3 0.9
i03 2.3 2.3 10 14 32 32 32 4 0 5 1 1.2
i03 2.3 2.6 05 9 11 17 18 4 0 7 3 0.8
i03 2.3 2.6 10 16 30 35 38 4 0 10 4 1.0
i03 2.3 2.9 05 7 17 17 17 4 0 7 1 0.6
i03 2.3 2.9 10 17 66 66 66 3 0 5 1 2.1
i03 2.3 3.2 05 7 11 16 16 4 0 7 3 0.7
i03 2.3 3.2 10 14 38 38 38 4 0 5 1 0.9
i03 2.3 3.5 05 8 23 23 23 3 0 6 1 0.9
i03 2.3 3.5 10 14 21 28 29 4 0 14 3 0.9
i03 2.3 3.8 05 7 11 15 15 4 0 16 3 0.7
i03 2.3 3.8 10 23 25 34 35 5 0 18 20 2.6
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i03 2.3 4.1 05 7 10 13 13 4 0 12 3 1.1
i03 2.3 4.1 10 16 24 31 30 3 0 22 3 0.9
i03 2.3 4.4 05 8 11 15 15 4 0 21 3 0.5
i03 2.3 4.4 10 13 19 24 25 5 0 8 3 1.6
i03 2.3 4.7 05 9 13 19 20 3 0 10 3 0.8
i03 2.3 4.7 10 16 23 30 30 4 0 23 3 0.8
i03 2.6 2.0 05 9 14 20 19 4 0 5 3 1.5
i03 2.6 2.0 10 12 34 34 34 4 0 5 1 1.3
i03 2.6 2.3 05 7 11 16 14 4 0 5 3 1.6
i03 2.6 2.3 10 17 29 39 40 4 0 7 3 1.4
i03 2.6 2.6 05 8 25 25 25 3 0 3 1 2.2
i03 2.6 2.6 10 24 26 36 37 8 1 11 3 11.6
i03 2.6 2.9 05 8 30 30 30 3 0 3 1 3.2
i03 2.6 2.9 10 13 67 67 67 3 0 3 1 2.5
i03 2.6 3.2 05 6 19 19 19 4 0 5 1 1.6
i03 2.6 3.2 10 12 37 37 37 6 0 5 1 1599.4
i03 2.6 3.5 05 8 12 16 17 4 0 19 3 2.0
i03 2.6 3.5 10 24 26 34 35 8 1 15 3 5686.4
i03 2.6 3.8 05 6 8 11 11 4 0 11 3 1.7
i03 2.6 3.8 10 12 38 38 38 3 0 6 1 2.0
i03 2.6 4.1 05 7 9 13 12 5 0 8 3 4.6
i03 2.6 4.1 10 14 19 26 26 3 0 21 3 2.5
i03 2.6 4.4 05 7 12 15 15 3 0 17 3 1.9
i03 2.6 4.4 10 22 23 31 32 8 1 15 3 1499.0
i03 2.6 4.7 05 6 10 14 14 4 0 16 3 1.6
i03 2.6 4.7 10 13 18 24 24 5 0 18 3 4.7
i03 2.9 2.0 05 7 12 17 17 4 0 6 3 10.9
i03 2.9 2.0 10 13 29 29 29 3 0 3 1 18.2
i03 2.9 2.3 05 6 15 15 15 3 0 3 1 17.6
i03 2.9 2.3 10 14 40 40 40 3 0 3 1 15.1
i03 2.9 2.6 05 7 18 18 18 4 0 5 1 13.5
i03 2.9 2.6 10 13 41 41 41 3 0 3 1 21.5
i03 2.9 2.9 05 7 11 12 12 7 1 12 3 843.5
i03 2.9 2.9 10 13 66 66 66 3 0 3 1 811.0
i03 2.9 3.2 05 7 14 14 15 4 0 16 1 12.7
i03 2.9 3.2 10 14 38 38 38 5 1 5 1 15.3
i03 2.9 3.5 05 7 10 13 13 7 1 7 3 63.6
i03 2.9 3.5 10 20 20 29 30 10 3 17 1 3990.8
i03 2.9 3.8 05 7 10 13 13 4 0 22 3 9.7
i03 2.9 3.8 10 12 14 19 19 9 2 9 1 320.8
i03 2.9 4.1 05 7 10 13 13 4 0 17 3 10.1
i03 2.9 4.1 10 15 20 26 27 7 1 16 3 27.0
i03 2.9 4.4 05 8 9 12 12 4 0 17 3 12.3
i03 2.9 4.4 10 12 21 27 28 4 0 13 3 11.1
i03 2.9 4.7 05 7 11 14 15 4 0 21 3 8.9
i03 2.9 4.7 10 13 22 29 29 4 0 16 3 8.8
i03 3.2 2.0 05 7 14 14 14 4 0 5 1 160.3
i03 3.2 2.0 10 14 18 27 27 6 1 10 1 189.1
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i03 3.2 2.3 05 7 9 12 13 4 0 7 3 181.9
i03 3.2 2.3 10 16 20 28 30 4 0 7 3 178.9
i03 3.2 2.6 05 6 15 15 15 4 0 5 1 320.7
i03 3.2 2.6 10 15 29 29 29 4 0 5 1 318.9
i03 3.2 2.9 05 7 10 14 14 5 1 12 1 265.2
i03 3.2 2.9 10 15 23 31 31 4 0 13 3 250.8
i03 3.2 3.2 05 7 16 16 16 5 1 8 1 197.8
i03 3.2 3.2 10 16 32 32 32 8 2 7 1 329.4
i03 3.2 3.5 05 8 13 13 13 4 0 12 1 309.0
i03 3.2 3.5 10 14 17 25 26 7 2 19 1 time limit
i03 3.2 3.8 05 11 11 16 15 15 5 10 1 time limit
i03 3.2 3.8 10 22 22 32 32 15 5 19 1 time limit
i03 3.2 4.1 05 7 9 12 12 4 0 20 3 228.2
i03 3.2 4.1 10 15 21 28 27 4 0 14 3 231.3
i03 3.2 4.4 05 8 12 15 16 4 0 17 3 276.5
i03 3.2 4.4 10 15 19 26 26 4 0 13 3 276.6
i03 3.2 4.7 05 7 9 12 12 4 0 10 3 141.1
i03 3.2 4.7 10 16 21 30 32 5 1 26 1 152.1
i03 3.5 2.0 05 7 9 13 14 9 3 11 1 6052.1
i03 3.5 2.0 10 16 16 23 24 15 5 8 1 time limit
i03 3.5 2.3 05 8 15 15 15 4 0 7 1 3728.3
i03 3.5 2.3 10 14 20 29 30 5 1 10 1 3756.9
i03 3.5 2.6 05 7 17 17 17 5 1 7 1 3745.3
i03 3.5 2.6 10 13 39 39 39 4 0 5 1 3736.8
i03 3.5 2.9 05 9 16 16 17 8 2 13 3 time limit
i03 3.5 2.9 10 12 31 31 31 4 0 6 1 time limit
i03 3.5 3.2 05 7 18 18 18 4 0 5 1 time limit
i03 3.5 3.2 10 15 30 30 30 7 2 14 10 time limit
i03 3.5 3.5 05 8 9 14 15 5 1 12 2 4886.7
i03 3.5 3.5 10 14 19 27 27 5 1 23 1 5042.7
i03 3.5 3.8 05 6 13 13 13 4 0 5 1 time limit
i03 3.5 3.8 10 15 21 27 29 4 0 18 3 time limit
i03 3.5 4.1 05 6 9 12 12 4 0 22 3 3553.2
i03 3.5 4.1 10 14 19 24 25 4 0 21 3 3582.9
i03 3.5 4.4 05 8 9 14 15 12 4 29 1 time limit
i03 3.5 4.4 10 13 18 22 23 4 0 26 3 5203.6
i03 3.5 4.7 05 6 9 12 13 5 1 23 1 3311.8
i03 3.5 4.7 10 14 19 24 24 4 0 10 3 3042.6
i03 3.8 2.0 05 9 10 15 16 12 5 11 1 time limit
i03 3.8 2.0 10 14 34 34 34 6 2 5 1 time limit
i03 3.8 2.3 05 7 20 20 20 4 1 3 1 time limit
i03 3.8 2.3 10 15 33 34 34 6 2 11 1 time limit
i03 3.8 2.6 05 6 15 15 15 5 1 6 1 time limit
i03 3.8 2.6 10 12 26 26 26 5 1 6 1 time limit
i03 3.8 2.9 05 9 29 29 29 4 1 6 1 time limit
i03 3.8 2.9 10 13 36 36 36 6 2 6 1 time limit
i03 3.8 3.2 05 8 19 19 19 5 1 8 1 time limit
i03 3.8 3.2 10 14 25 25 25 18 8 5 1 time limit
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i03 3.8 3.5 05 8 11 16 16 6 2 15 1 time limit
i03 3.8 3.5 10 15 17 26 27 5 1 10 1 time limit
i03 3.8 3.8 05 11 11 14 14 26 14 17 9 time limit
i03 3.8 3.8 10 15 46 46 46 5 2 5 1 time limit
i03 3.8 4.1 05 8 9 13 14 5 1 21 1 time limit
i03 3.8 4.1 10 16 20 29 31 9 3 18 10 time limit
i03 3.8 4.4 05 6 9 13 13 12 5 14 1 time limit
i03 3.8 4.4 10 12 16 21 23 6 2 17 1 time limit
i03 3.8 4.7 05 7 9 11 11 5 1 23 1 time limit
i03 3.8 4.7 10 13 20 28 31 4 1 7 3 time limit
i03 4.1 2.0 05 7 8 11 11 20 9 9 1 time limit
i03 4.1 2.0 10 15 27 27 27 6 2 5 1 time limit
i03 4.1 2.3 05 6 14 14 14 6 2 7 1 time limit
i03 4.1 2.3 10 14 18 25 25 5 1 7 1 time limit
i03 4.1 2.6 05 6 24 24 24 5 2 3 1 time limit
i03 4.1 2.6 10 14 25 27 28 10 4 9 1 time limit
i03 4.1 2.9 05 9 16 17 16 6 2 13 1 time limit
i03 4.1 2.9 10 15 33 33 33 19 9 10 1 time limit
i03 4.1 3.2 05 7 18 18 18 6 2 8 1 time limit
i03 4.1 3.2 10 12 29 29 29 12 5 7 1 time limit
i03 4.1 3.5 05 9 10 14 15 5 1 12 1 time limit
i03 4.1 3.5 10 13 18 24 26 5 1 12 1 time limit
i03 4.1 3.8 05 8 15 15 15 20 9 7 1 time limit
i03 4.1 3.8 10 15 22 30 30 8 3 15 1 time limit
i03 4.1 4.1 05 10 10 14 14 29 17 19 1 time limit
i03 4.1 4.1 10 14 18 25 26 5 1 13 1 time limit
i03 4.1 4.4 05 7 9 12 13 6 2 19 1 time limit
i03 4.1 4.4 10 17 40 40 40 5 2 10 1 time limit
i03 4.1 4.7 05 8 11 15 15 6 2 22 1 time limit
i03 4.1 4.7 10 14 17 22 22 5 1 15 12 time limit
i03 4.4 2.0 05 8 13 14 15 6 2 6 1 time limit
i03 4.4 2.0 10 11 14 22 23 12 5 10 1 time limit
i03 4.4 2.3 05 8 18 18 18 5 1 7 1 time limit
i03 4.4 2.3 10 13 27 27 27 6 2 5 1 time limit
i03 4.4 2.6 05 8 9 13 13 18 8 10 1 time limit
i03 4.4 2.6 10 14 51 51 51 5 2 3 1 time limit
i03 4.4 2.9 05 6 25 25 25 5 2 3 1 time limit
i03 4.4 2.9 10 13 63 63 63 5 2 3 1 time limit
i03 4.4 3.2 05 7 14 14 14 6 2 8 1 time limit
i03 4.4 3.2 10 14 30 30 30 6 2 7 1 time limit
i03 4.4 3.5 05 8 17 17 17 5 2 15 2 time limit
i03 4.4 3.5 10 13 18 25 25 11 4 17 1 time limit
i03 4.4 3.8 05 8 16 16 16 5 2 6 1 time limit
i03 4.4 3.8 10 13 19 23 27 5 1 9 3 time limit
i03 4.4 4.1 05 7 9 13 13 6 2 14 1 time limit
i03 4.4 4.1 10 16 21 27 29 10 4 16 2 time limit
i03 4.4 4.4 05 7 8 11 11 5 1 16 3 time limit
i03 4.4 4.4 10 12 31 31 31 5 2 10 1 time limit
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i03 4.4 4.7 05 9 12 17 18 5 2 15 1 time limit
i03 4.4 4.7 10 16 16 23 24 26 14 20 1 time limit
i03 4.7 2.0 05 6 11 14 15 10 4 11 1 time limit
i03 4.7 2.0 10 14 16 25 26 18 8 7 1 time limit
i03 4.7 2.3 05 8 17 17 17 6 2 7 1 time limit
i03 4.7 2.3 10 16 29 29 29 6 2 10 1 time limit
i03 4.7 2.6 05 6 11 11 11 6 2 7 1 time limit
i03 4.7 2.6 10 12 34 34 34 6 2 5 1 time limit
i03 4.7 2.9 05 11 11 15 15 37 20 18 1 time limit
i03 4.7 2.9 10 12 31 31 31 12 5 5 1 time limit
i03 4.7 3.2 05 6 15 15 15 14 6 7 1 time limit
i03 4.7 3.2 10 16 60 60 60 5 2 5 1 time limit
i03 4.7 3.5 05 8 24 24 24 5 2 6 1 time limit
i03 4.7 3.5 10 15 21 28 28 8 3 23 1 time limit
i03 4.7 3.8 05 8 12 12 13 6 2 9 1 time limit
i03 4.7 3.8 10 13 16 27 28 6 2 13 1 time limit
i03 4.7 4.1 05 8 16 16 16 5 2 10 1 time limit
i03 4.7 4.1 10 13 17 24 24 10 4 17 1 time limit
i03 4.7 4.4 05 8 8 11 11 6 2 14 1 time limit
i03 4.7 4.4 10 12 14 21 21 6 2 11 1 time limit
i03 4.7 4.7 05 8 9 13 14 6 2 22 1 time limit
i03 4.7 4.7 10 16 20 25 26 5 1 15 2 time limit
i04 2.0 2.0 05 9 24 24 24 6 0 7 1 0.5
i04 2.0 2.0 10 25 50 50 50 7 0 9 1 1.0
i04 2.0 2.3 05 8 24 24 24 6 0 7 1 0.8
i04 2.0 2.3 10 14 36 36 37 7 0 8 1 0.7
i04 2.0 2.6 05 9 25 25 27 6 0 8 1 0.7
i04 2.0 2.6 10 14 33 33 32 7 0 11 1 0.6
i04 2.0 2.9 05 10 33 33 33 6 0 7 1 0.7
i04 2.0 2.9 10 18 21 33 33 7 0 17 3 0.7
i04 2.0 3.2 05 8 39 39 39 6 0 9 1 0.8
i04 2.0 3.2 10 17 44 44 44 6 0 14 1 0.5
i04 2.0 3.5 05 9 17 17 17 7 0 16 1 0.6
i04 2.0 3.5 10 17 23 33 34 7 0 23 3 0.6
i04 2.0 3.8 05 12 17 23 24 6 0 20 3 1.7
i04 2.0 3.8 10 15 24 35 36 6 0 21 3 0.5
i04 2.0 4.1 05 8 11 15 16 7 0 21 3 0.6
i04 2.0 4.1 10 16 22 30 31 7 0 20 3 0.5
i04 2.0 4.4 05 13 15 20 21 7 0 29 3 1.0
i04 2.0 4.4 10 14 21 30 30 6 0 30 3 0.5
i04 2.0 4.7 05 9 12 16 17 7 0 50 3 0.8
i04 2.0 4.7 10 36 39 55 58 6 0 18 3 1.9
i04 2.3 2.0 05 9 19 19 19 6 0 6 1 0.9
i04 2.3 2.0 10 26 30 47 50 9 0 9 3 2.8
i04 2.3 2.3 05 8 12 18 18 7 0 10 4 1.0
i04 2.3 2.3 10 19 30 47 45 7 0 9 3 1.1
i04 2.3 2.6 05 9 12 20 20 7 0 12 3 0.8
i04 2.3 2.6 10 14 22 33 34 7 0 20 3 1.1
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i04 2.3 2.9 05 10 36 36 36 6 0 6 1 1.0
i04 2.3 2.9 10 16 44 44 44 6 0 525 1 0.7
i04 2.3 3.2 05 8 38 38 32 5 0 6 1 1.3
i04 2.3 3.2 10 16 41 41 41 6 0 7 1 1.2
i04 2.3 3.5 05 9 24 24 24 6 0 14 1 1.1
i04 2.3 3.5 10 22 39 39 40 8 0 19 1 3.7
i04 2.3 3.8 05 8 15 20 23 6 0 22 6 0.8
i04 2.3 3.8 10 13 19 26 26 7 0 21 3 1.2
i04 2.3 4.1 05 8 11 15 15 7 0 28 3 2.0
i04 2.3 4.1 10 17 25 34 35 7 0 24 3 1.1
i04 2.3 4.4 05 12 14 19 19 10 0 14 3 3.8
i04 2.3 4.4 10 16 26 37 36 6 0 23 3 1.1
i04 2.3 4.7 05 8 14 19 19 6 0 29 3 0.9
i04 2.3 4.7 10 18 29 39 39 6 0 28 3 0.9
i04 2.6 2.0 05 11 23 23 23 11 1 11 1 814.8
i04 2.6 2.0 10 13 21 29 30 7 0 9 3 3.2
i04 2.6 2.3 05 8 18 18 18 8 0 11 1 5.1
i04 2.6 2.3 10 17 56 56 56 4 0 4 1 2.9
i04 2.6 2.6 05 8 11 16 16 9 0 8 3 5.7
i04 2.6 2.6 10 14 49 49 49 6 0 8 1 2.8
i04 2.6 2.9 05 8 13 17 17 9 0 11 3 5.4
i04 2.6 2.9 10 21 25 34 34 12 1 20 3 11.5
i04 2.6 3.2 05 8 30 30 30 6 0 6 1 2.7
i04 2.6 3.2 10 15 25 34 35 7 0 18 3 2.1
i04 2.6 3.5 05 10 10 15 23 11 1 20 3 2087.5
i04 2.6 3.5 10 14 35 35 35 6 0 8 1 3.2
i04 2.6 3.8 05 8 14 19 20 6 0 29 3 1.7
i04 2.6 3.8 10 27 46 46 46 12 2 19 2 15.2
i04 2.6 4.1 05 8 12 15 16 7 0 27 3 2.9
i04 2.6 4.1 10 14 21 29 32 9 0 15 3 7.8
i04 2.6 4.4 05 11 13 17 17 10 0 24 3 9.9
i04 2.6 4.4 10 14 21 29 29 7 0 21 3 2.0
i04 2.6 4.7 05 10 15 21 21 6 0 19 3 2.0
i04 2.6 4.7 10 16 21 32 31 8 0 25 3 6.9
i04 2.9 2.0 05 9 20 20 20 7 0 8 1 11.4
i04 2.9 2.0 10 16 30 30 31 9 1 11 1 28.6
i04 2.9 2.3 05 7 13 16 17 7 0 13 4 12.7
i04 2.9 2.3 10 16 26 37 38 8 1 26 3 14.3
i04 2.9 2.6 05 9 14 19 20 7 0 18 3 13.7
i04 2.9 2.6 10 15 30 36 36 7 0 11 3 20.8
i04 2.9 2.9 05 7 11 16 16 9 1 21 3 833.5
i04 2.9 2.9 10 18 28 38 39 10 1 13 8 828.9
i04 2.9 3.2 05 9 12 18 18 7 0 17 3 13.4
i04 2.9 3.2 10 17 26 36 37 7 0 23 3 13.2
i04 2.9 3.5 05 10 24 24 24 8 1 14 1 17.6
i04 2.9 3.5 10 18 25 33 35 7 0 21 3 14.5
i04 2.9 3.8 05 8 13 17 18 7 0 32 3 10.2
i04 2.9 3.8 10 16 25 33 34 9 1 17 3 22.3
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i04 2.9 4.1 05 7 16 16 16 6 0 13 1 11.2
i04 2.9 4.1 10 14 28 28 29 12 2 21 1 132.0
i04 2.9 4.4 05 8 13 17 17 7 0 34 3 12.9
i04 2.9 4.4 10 18 24 31 31 7 0 36 3 12.4
i04 2.9 4.7 05 9 12 16 16 7 0 40 3 11.0
i04 2.9 4.7 10 17 26 34 35 7 0 29 9 10.6
i04 3.2 2.0 05 10 13 19 20 11 2 12 1 687.1
i04 3.2 2.0 10 19 30 36 38 14 4 8 1 3399.2
i04 3.2 2.3 05 11 14 19 20 21 6 11 1 time limit
i04 3.2 2.3 10 14 38 38 38 9 1 13 1 200.7
i04 3.2 2.6 05 10 24 24 24 6 0 6 1 356.4
i04 3.2 2.6 10 17 35 52 53 8 2 8 1 336.0
i04 3.2 2.9 05 9 32 32 32 6 0 9 1 280.8
i04 3.2 2.9 10 18 33 33 33 18 5 16 1 1902.6
i04 3.2 3.2 05 12 14 20 21 28 12 31 1 time limit
i04 3.2 3.2 10 19 37 38 41 8 1 13 3 202.2
i04 3.2 3.5 05 8 12 17 18 11 2 20 1 442.5
i04 3.2 3.5 10 17 24 35 36 8 1 7 3 316.4
i04 3.2 3.8 05 8 12 18 19 6 0 12 3 time limit
i04 3.2 3.8 10 13 18 23 24 16 4 13 3 time limit
i04 3.2 4.1 05 7 11 14 14 7 0 27 3 229.9
i04 3.2 4.1 10 15 25 34 37 15 4 13 3 time limit
i04 3.2 4.4 05 7 21 21 20 5 0 10 1 333.5
i04 3.2 4.4 10 16 26 39 39 8 2 46 1 285.0
i04 3.2 4.7 05 8 13 17 18 8 1 23 1 147.9
i04 3.2 4.7 10 16 24 31 32 7 0 23 3 144.2
i04 3.5 2.0 05 10 14 19 19 6 0 6 3 5189.0
i04 3.5 2.0 10 16 23 35 36 26 10 13 1 time limit
i04 3.5 2.3 05 11 11 17 17 26 8 17 1 time limit
i04 3.5 2.3 10 14 34 34 34 6 0 6 1 3724.2
i04 3.5 2.6 05 8 18 18 19 7 0 9 1 3596.2
i04 3.5 2.6 10 27 27 39 41 27 10 15 1 time limit
i04 3.5 2.9 05 10 13 19 19 9 2 23 1 time limit
i04 3.5 2.9 10 18 24 31 31 17 4 13 1 time limit
i04 3.5 3.2 05 9 14 18 18 8 1 24 3 time limit
i04 3.5 3.2 10 16 34 34 34 8 1 6 1 time limit
i04 3.5 3.5 05 7 17 17 17 13 4 14 1 time limit
i04 3.5 3.5 10 27 27 38 47 87 48 18 1 time limit
i04 3.5 3.8 05 8 11 15 16 14 4 21 1 time limit
i04 3.5 3.8 10 14 22 29 29 10 2 26 1 time limit
i04 3.5 4.1 05 8 13 18 19 7 1 30 1 3703.7
i04 3.5 4.1 10 16 24 33 33 7 1 33 1 3775.6
i04 3.5 4.4 05 8 11 14 15 7 0 40 3 5490.4
i04 3.5 4.4 10 17 24 30 31 7 0 32 3 5245.5
i04 3.5 4.7 05 8 13 22 21 7 1 13 1 3241.2
i04 3.5 4.7 10 15 21 26 26 7 0 10 3 3024.1
i04 3.8 2.0 05 7 17 17 17 12 4 13 1 time limit
i04 3.8 2.0 10 16 36 36 36 7 1 6 1 time limit
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i04 3.8 2.3 05 9 10 14 18 29 12 19 1 time limit
i04 3.8 2.3 10 16 39 39 39 17 7 12 1 time limit
i04 3.8 2.6 05 12 14 20 21 37 18 27 1 time limit
i04 3.8 2.6 10 19 46 46 46 7 1 6 1 time limit
i04 3.8 2.9 05 9 42 42 42 6 2 4 1 time limit
i04 3.8 2.9 10 18 54 54 54 7 1 7 1 time limit
i04 3.8 3.2 05 9 36 36 36 8 2 8 1 time limit
i04 3.8 3.2 10 17 71 71 71 8 2 10 1 time limit
i04 3.8 3.5 05 8 11 14 14 8 1 24 3 time limit
i04 3.8 3.5 10 16 38 38 38 22 10 9 1 time limit
i04 3.8 3.8 05 8 11 15 17 8 1 24 3 time limit
i04 3.8 3.8 10 18 55 55 55 7 3 9 1 time limit
i04 3.8 4.1 05 7 11 14 15 22 9 17 1 time limit
i04 3.8 4.1 10 18 26 36 37 14 5 21 48 time limit
i04 3.8 4.4 05 8 13 17 17 30 14 32 1 time limit
i04 3.8 4.4 10 14 19 27 27 18 6 21 1 time limit
i04 3.8 4.7 05 7 8 10 14 31 13 38 3 time limit
i04 3.8 4.7 10 17 24 32 32 9 2 26 1 time limit
i04 4.1 2.0 05 10 13 20 19 17 6 11 1 time limit
i04 4.1 2.0 10 18 38 40 40 9 3 7 1 time limit
i04 4.1 2.3 05 8 15 15 16 10 3 14 1 time limit
i04 4.1 2.3 10 17 50 50 50 7 1 4 1 time limit
i04 4.1 2.6 05 8 19 19 19 8 2 10 1 time limit
i04 4.1 2.6 10 18 48 48 48 9 3 7 1 time limit
i04 4.1 2.9 05 9 18 18 18 9 2 8 1 time limit
i04 4.1 2.9 10 25 26 35 35 43 21 16 1 time limit
i04 4.1 3.2 05 8 18 18 19 19 7 8 1 time limit
i04 4.1 3.2 10 18 40 40 40 9 2 11 1 time limit
i04 4.1 3.5 05 10 19 19 23 8 2 233 1 time limit
i04 4.1 3.5 10 18 35 36 36 12 5 15 1 time limit
i04 4.1 3.8 05 8 11 16 19 7 1 8 3 time limit
i04 4.1 3.8 10 18 25 32 32 9 2 20 1 time limit
i04 4.1 4.1 05 8 10 13 13 30 13 8 1 time limit
i04 4.1 4.1 10 16 35 35 35 8 2 24 2 time limit
i04 4.1 4.4 05 9 14 17 17 9 3 22 2 time limit
i04 4.1 4.4 10 18 19 27 29 28 12 28 7 time limit
i04 4.1 4.7 05 9 11 16 17 8 2 29 1 time limit
i04 4.1 4.7 10 15 23 34 37 7 1 11 3 time limit
i04 4.4 2.0 05 8 19 19 19 10 4 5 1 time limit
i04 4.4 2.0 10 18 18 27 27 45 23 16 1 time limit
i04 4.4 2.3 05 8 14 14 14 43 21 7 2 time limit
i04 4.4 2.3 10 23 25 36 37 53 29 12 1 time limit
i04 4.4 2.6 05 7 28 28 28 8 2 4 1 time limit
i04 4.4 2.6 10 22 25 35 35 157 96 15 5 time limit
i04 4.4 2.9 05 13 13 18 21 239 156 31 2 time limit
i04 4.4 2.9 10 19 43 43 43 11 4 11 1 time limit
i04 4.4 3.2 05 7 28 28 28 20 9 7 1 time limit
i04 4.4 3.2 10 18 41 41 41 12 4 13 1 time limit
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i04 4.4 3.5 05 11 11 16 21 256 166 19 1 time limit
i04 4.4 3.5 10 14 22 29 29 20 8 14 3 time limit
i04 4.4 3.8 05 7 24 24 24 30 14 10 1 time limit
i04 4.4 3.8 10 14 21 29 32 10 3 15 1 time limit
i04 4.4 4.1 05 8 13 18 18 10 4 14 2 time limit
i04 4.4 4.1 10 19 25 35 36 35 17 35 1 time limit
i04 4.4 4.4 05 7 15 15 15 10 4 22 1 time limit
i04 4.4 4.4 10 15 26 34 35 23 10 32 2 time limit
i04 4.4 4.7 05 10 13 18 18 15 6 25 1 time limit
i04 4.4 4.7 10 19 26 36 36 18 7 20 1 time limit
i04 4.7 2.0 05 11 11 16 16 254 163 8 1 time limit
i04 4.7 2.0 10 17 18 27 27 51 27 17 1 time limit
i04 4.7 2.3 05 8 13 17 18 19 8 23 1 time limit
i04 4.7 2.3 10 16 20 30 31 38 19 16 1 time limit
i04 4.7 2.6 05 7 23 23 23 10 4 7 1 time limit
i04 4.7 2.6 10 16 33 33 33 10 3 10 1 time limit
i04 4.7 2.9 05 8 17 17 17 17 7 17 1 time limit
i04 4.7 2.9 10 15 32 47 54 9 3 11 1 time limit
i04 4.7 3.2 05 9 16 16 17 10 3 11 1 time limit
i04 4.7 3.2 10 18 34 34 34 13 5 14 1 time limit
i04 4.7 3.5 05 8 15 22 22 9 3 16 1 time limit
i04 4.7 3.5 10 13 42 42 42 10 4 8 1 time limit
i04 4.7 3.8 05 9 12 17 17 20 8 18 1 time limit
i04 4.7 3.8 10 16 18 26 26 41 21 20 1 time limit
i04 4.7 4.1 05 11 11 16 15 54 27 22 1 time limit
i04 4.7 4.1 10 14 34 34 34 46 24 11 1 time limit
i04 4.7 4.4 05 9 11 14 15 9 2 18 1 time limit
i04 4.7 4.4 10 17 19 25 25 52 27 23 1 time limit
i04 4.7 4.7 05 10 16 21 21 21 9 45 2 time limit
i04 4.7 4.7 10 15 23 30 33 9 3 12 1 time limit
i05 2.0 2.0 05 10 24 24 24 10 0 8 1 0.6
i05 2.0 2.0 10 20 59 59 59 10 0 10 1 1.4
i05 2.0 2.3 05 10 15 26 26 10 0 8 3 0.8
i05 2.0 2.3 10 19 47 47 47 10 0 10 1 0.7
i05 2.0 2.6 05 11 31 31 32 9 0 12 1 0.8
i05 2.0 2.6 10 17 46 46 46 10 0 15 1 0.7
i05 2.0 2.9 05 9 33 33 33 9 0 10 1 0.7
i05 2.0 2.9 10 27 50 50 50 10 0 14 1 1.9
i05 2.0 3.2 05 10 26 26 26 9 0 15 1 0.6
i05 2.0 3.2 10 20 40 40 40 11 0 13 1 0.8
i05 2.0 3.5 05 9 13 19 19 10 0 31 3 0.9
i05 2.0 3.5 10 20 25 37 40 10 0 29 3 0.9
i05 2.0 3.8 05 14 15 22 23 11 0 18 3 1.1
i05 2.0 3.8 10 19 44 44 44 10 0 10 1 0.8
i05 2.0 4.1 05 9 15 20 21 8 0 30 5 0.9
i05 2.0 4.1 10 24 32 48 48 10 0 22 3 1.1
i05 2.0 4.4 05 9 12 18 19 10 0 27 3 0.7
i05 2.0 4.4 10 21 29 40 43 10 0 23 3 0.6
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i05 2.0 4.7 05 10 15 23 22 9 0 25 3 0.9
i05 2.0 4.7 10 17 25 34 36 10 0 22 3 0.8
i05 2.3 2.0 05 11 24 24 26 10 0 7 1 1.1
i05 2.3 2.0 10 27 38 53 58 12 0 14 3 2.5
i05 2.3 2.3 05 10 24 33 33 8 0 7 3 1.4
i05 2.3 2.3 10 18 61 61 61 10 0 11 1 1.4
i05 2.3 2.6 05 9 40 40 40 10 0 11 1 1.1
i05 2.3 2.6 10 27 34 52 55 13 0 16 3 3.2
i05 2.3 2.9 05 8 30 30 30 10 0 7 1 2.2
i05 2.3 2.9 10 24 61 61 61 12 0 21 1 9.7
i05 2.3 3.2 05 9 32 32 32 9 0 15 1 1.3
i05 2.3 3.2 10 29 34 47 50 14 0 29 3 5.2
i05 2.3 3.5 05 12 17 24 25 13 0 23 4 6.0
i05 2.3 3.5 10 17 23 32 34 12 0 18 3 2.0
i05 2.3 3.8 05 12 14 20 21 15 1 38 3 10.9
i05 2.3 3.8 10 33 36 52 55 17 0 28 3 10.7
i05 2.3 4.1 05 9 12 16 16 12 0 39 3 2.1
i05 2.3 4.1 10 16 27 37 39 10 0 19 3 1.5
i05 2.3 4.4 05 9 15 23 24 9 0 33 3 1.5
i05 2.3 4.4 10 17 34 51 51 8 0 12 3 1.4
i05 2.3 4.7 05 9 14 18 19 10 0 41 3 1.4
i05 2.3 4.7 10 17 26 34 36 10 0 25 3 1.1
i05 2.6 2.0 05 9 12 19 20 11 0 11 3 2.5
i05 2.6 2.0 10 18 28 41 41 10 0 7 3 2.1
i05 2.6 2.3 05 12 24 24 24 15 1 13 1 10.5
i05 2.6 2.3 10 22 45 54 56 10 0 13 3 4.5
i05 2.6 2.6 05 9 36 36 26 10 0 10 1 3.1
i05 2.6 2.6 10 19 49 49 49 10 0 12 1 3.0
i05 2.6 2.9 05 13 17 23 23 17 3 28 3 time limit
i05 2.6 2.9 10 18 58 58 58 10 0 9 1 3.4
i05 2.6 3.2 05 9 22 22 22 10 0 15 1 2.6
i05 2.6 3.2 10 16 76 76 76 14 0 13 1 15.6
i05 2.6 3.5 05 9 12 17 18 12 0 25 13 4.4
i05 2.6 3.5 10 21 29 40 41 11 0 26 6 3.5
i05 2.6 3.8 05 9 16 21 22 10 0 31 3 3.7
i05 2.6 3.8 10 16 21 29 29 12 0 19 3 6.3
i05 2.6 4.1 05 9 15 20 21 10 0 43 3 2.6
i05 2.6 4.1 10 17 33 45 46 8 0 27 3 5.0
i05 2.6 4.4 05 8 11 15 16 13 0 26 3 7.1
i05 2.6 4.4 10 21 30 43 45 10 0 24 3 4.0
i05 2.6 4.7 05 10 13 17 18 13 0 48 3 5.7
i05 2.6 4.7 10 21 31 41 41 10 0 33 3 2.7
i05 2.9 2.0 05 10 15 22 23 15 2 14 1 74.2
i05 2.9 2.0 10 26 29 48 49 24 6 11 1 3994.6
i05 2.9 2.3 05 8 27 27 27 8 0 5 1 19.2
i05 2.9 2.3 10 20 45 67 67 10 1 7 3 20.6
i05 2.9 2.6 05 10 27 27 27 10 0 14 1 16.7
i05 2.9 2.6 10 19 44 44 44 10 0 12 1 19.5
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i05 2.9 2.9 05 13 16 24 24 22 3 31 1 4983.5
i05 2.9 2.9 10 22 46 46 46 12 1 27 1 817.1
i05 2.9 3.2 05 8 18 18 19 13 1 18 1 23.5
i05 2.9 3.2 10 22 47 47 47 22 4 12 1 369.7
i05 2.9 3.5 05 12 14 20 19 17 3 36 1 3887.4
i05 2.9 3.5 10 27 31 43 45 19 3 28 1 2519.3
i05 2.9 3.8 05 8 15 20 21 9 0 26 3 14.5
i05 2.9 3.8 10 23 30 44 45 18 3 31 3 264.7
i05 2.9 4.1 05 9 15 21 22 10 0 26 3 15.4
i05 2.9 4.1 10 29 36 47 51 22 4 49 3 1080.0
i05 2.9 4.4 05 13 14 20 20 52 20 27 2 time limit
i05 2.9 4.4 10 20 32 44 44 10 0 28 3 15.2
i05 2.9 4.7 05 9 14 18 18 11 0 38 3 10.4
i05 2.9 4.7 10 15 25 32 32 10 0 29 3 10.6
i05 3.2 2.0 05 10 14 22 22 21 4 13 1 1379.4
i05 3.2 2.0 10 20 29 43 45 21 5 17 3 1102.0
i05 3.2 2.3 05 9 13 19 20 33 11 15 1 3045.5
i05 3.2 2.3 10 18 47 65 65 13 4 10 1 261.1
i05 3.2 2.6 05 9 19 24 26 18 4 12 4 time limit
i05 3.2 2.6 10 29 51 51 52 19 4 14 1 4556.8
i05 3.2 2.9 05 10 43 43 43 8 0 10 1 318.9
i05 3.2 2.9 10 16 39 39 39 19 4 10 1 378.9
i05 3.2 3.2 05 9 29 29 29 11 1 8 1 246.1
i05 3.2 3.2 10 18 38 38 38 10 0 10 1 211.9
i05 3.2 3.5 05 8 13 18 19 12 1 26 3 358.4
i05 3.2 3.5 10 18 30 44 51 10 0 19 3 325.0
i05 3.2 3.8 05 12 13 20 22 48 18 27 1 time limit
i05 3.2 3.8 10 14 23 31 34 10 0 32 3 time limit
i05 3.2 4.1 05 9 17 22 21 19 6 12 97 5083.6
i05 3.2 4.1 10 17 20 27 27 26 6 37 1 time limit
i05 3.2 4.4 05 10 17 25 25 7 0 14 3 540.1
i05 3.2 4.4 10 17 23 39 39 9 0 23 9 371.1
i05 3.2 4.7 05 10 11 17 19 10 0 32 3 158.5
i05 3.2 4.7 10 18 26 35 36 14 3 44 2 195.1
i05 3.5 2.0 05 13 14 22 24 117 67 12 1 time limit
i05 3.5 2.0 10 27 60 60 60 27 6 12 1 time limit
i05 3.5 2.3 05 9 17 19 20 55 26 13 2 time limit
i05 3.5 2.3 10 20 28 41 42 30 10 16 1 time limit
i05 3.5 2.6 05 13 17 22 22 27 7 27 1 time limit
i05 3.5 2.6 10 20 47 47 47 12 2 13 1 4237.1
i05 3.5 2.9 05 10 11 22 23 11 2 39 1 time limit
i05 3.5 2.9 10 16 30 40 41 15 3 22 1 time limit
i05 3.5 3.2 05 9 14 20 22 11 1 26 1 time limit
i05 3.5 3.2 10 19 96 96 96 35 13 6 1 time limit
i05 3.5 3.5 05 10 15 20 21 16 3 28 16 time limit
i05 3.5 3.5 10 15 60 60 60 13 4 11 3 5548.7
i05 3.5 3.8 05 11 18 20 21 22 6 28 11 time limit
i05 3.5 3.8 10 15 52 52 52 10 2 13 1 time limit
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i05 3.5 4.1 05 9 27 27 24 8 0 11 1 3572.4
i05 3.5 4.1 10 19 23 31 35 77 37 24 2 time limit
i05 3.5 4.4 05 9 16 22 23 29 9 28 3 time limit
i05 3.5 4.4 10 16 23 31 32 22 6 23 1 time limit
i05 3.5 4.7 05 9 12 18 19 26 7 19 14 time limit
i05 3.5 4.7 10 16 46 46 50 12 3 26 1 4915.6
i05 3.8 2.0 05 8 27 27 27 14 5 8 1 time limit
i05 3.8 2.0 10 18 55 55 55 11 2 5 1 time limit
i05 3.8 2.3 05 14 22 24 25 43 17 19 1 time limit
i05 3.8 2.3 10 16 38 38 38 16 4 11 1 time limit
i05 3.8 2.6 05 17 17 24 24 521 353 22 7 time limit
i05 3.8 2.6 10 16 52 52 52 12 2 11 1 time limit
i05 3.8 2.9 05 8 42 42 42 21 8 5 1 time limit
i05 3.8 2.9 10 20 33 42 44 21 7 24 3 time limit
i05 3.8 3.2 05 13 14 18 19 135 76 42 9 time limit
i05 3.8 3.2 10 18 41 41 41 14 3 20 1 time limit
i05 3.8 3.5 05 9 36 36 36 12 4 10 1 time limit
i05 3.8 3.5 10 16 40 40 45 11 2 13 1 time limit
i05 3.8 3.8 05 8 25 25 31 10 2 12 1 time limit
i05 3.8 3.8 10 18 27 36 37 16 4 33 3 time limit
i05 3.8 4.1 05 9 14 19 19 79 46 37 10 time limit
i05 3.8 4.1 10 18 26 34 35 28 9 22 3 time limit
i05 3.8 4.4 05 8 11 16 16 63 33 26 1 time limit
i05 3.8 4.4 10 16 23 39 38 18 6 25 1 time limit
i05 3.8 4.7 05 8 16 22 23 15 6 26 3 time limit
i05 3.8 4.7 10 18 24 39 42 33 13 23 5 time limit
i05 4.1 2.0 05 9 23 23 23 21 7 13 1 time limit
i05 4.1 2.0 10 19 39 41 43 14 4 12 1 time limit
i05 4.1 2.3 05 10 24 24 24 14 4 14 1 time limit
i05 4.1 2.3 10 22 52 52 54 16 6 13 1 time limit
i05 4.1 2.6 05 10 15 19 20 42 19 14 1 time limit
i05 4.1 2.6 10 26 45 45 45 65 32 10 1 time limit
i05 4.1 2.9 05 13 15 21 21 64 32 31 4 time limit
i05 4.1 2.9 10 17 51 51 51 24 8 13 1 time limit
i05 4.1 3.2 05 10 18 25 27 23 8 27 1 time limit
i05 4.1 3.2 10 16 61 61 61 14 5 11 1 time limit
i05 4.1 3.5 05 10 12 16 17 47 21 29 1 time limit
i05 4.1 3.5 10 19 27 35 36 33 12 32 2 time limit
i05 4.1 3.8 05 9 13 19 21 11 1 10 3 time limit
i05 4.1 3.8 10 17 38 38 40 11 2 10 1 time limit
i05 4.1 4.1 05 10 14 20 20 41 17 36 1 time limit
i05 4.1 4.1 10 25 31 43 43 56 28 42 1 time limit
i05 4.1 4.4 05 10 12 15 15 13 2 37 1 time limit
i05 4.1 4.4 10 16 26 37 39 13 4 26 3 time limit
i05 4.1 4.7 05 9 11 17 17 10 1 24 3 time limit
i05 4.1 4.7 10 19 34 45 45 41 19 28 1 time limit
i05 4.4 2.0 05 9 23 23 23 14 4 13 1 time limit
i05 4.4 2.0 10 16 37 37 37 44 20 14 1 time limit
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i05 4.4 2.3 05 9 19 19 19 13 2 10 1 time limit
i05 4.4 2.3 10 16 30 43 43 93 53 12 1 time limit
i05 4.4 2.6 05 9 23 23 23 38 15 11 1 time limit
i05 4.4 2.6 10 16 70 70 70 11 2 6 1 time limit
i05 4.4 2.9 05 10 27 27 27 23 9 14 1 time limit
i05 4.4 2.9 10 26 30 41 40 106 60 24 1 time limit
i05 4.4 3.2 05 8 25 25 25 28 12 10 1 time limit
i05 4.4 3.2 10 17 64 64 64 15 5 7 1 time limit
i05 4.4 3.5 05 9 21 21 21 14 4 13 1 time limit
i05 4.4 3.5 10 18 43 44 43 14 4 12 3 time limit
i05 4.4 3.8 05 9 21 21 23 129 75 14 1 time limit
i05 4.4 3.8 10 18 28 41 43 30 12 36 1 time limit
i05 4.4 4.1 05 8 13 18 18 20 7 23 1 time limit
i05 4.4 4.1 10 21 33 48 49 15 6 29 1 time limit
i05 4.4 4.4 05 9 14 19 20 16 4 33 1 time limit
i05 4.4 4.4 10 16 25 36 37 23 9 52 2 time limit
i05 4.4 4.7 05 11 16 20 21 13 3 32 6 time limit
i05 4.4 4.7 10 18 21 37 39 16 6 25 1 time limit
i05 4.7 2.0 05 8 10 15 15 29 11 12 1 time limit
i05 4.7 2.0 10 18 27 39 39 16 4 17 1 time limit
i05 4.7 2.3 05 9 33 33 33 14 6 5 1 time limit
i05 4.7 2.3 10 20 33 35 38 190 116 14 3 time limit
i05 4.7 2.6 05 9 12 16 17 152 94 30 1 time limit
i05 4.7 2.6 10 25 28 38 41 446 291 28 1 time limit
i05 4.7 2.9 05 9 18 18 18 25 9 15 1 time limit
i05 4.7 2.9 10 21 67 67 67 59 31 13 1 time limit
i05 4.7 3.2 05 8 33 33 33 87 50 7 1 time limit
i05 4.7 3.2 10 17 26 39 40 20 7 40 2 time limit
i05 4.7 3.5 05 10 15 23 23 139 87 22 2 time limit
i05 4.7 3.5 10 19 28 41 44 18 6 47 25 time limit
i05 4.7 3.8 05 8 13 17 18 31 13 45 3 time limit
i05 4.7 3.8 10 16 28 39 43 21 8 33 2 time limit
i05 4.7 4.1 05 10 13 19 20 20 8 36 2 time limit
i05 4.7 4.1 10 18 26 34 35 35 14 38 1 time limit
i05 4.7 4.4 05 8 12 16 16 19 6 57 32 time limit
i05 4.7 4.4 10 20 27 38 38 14 4 48 1 time limit
i05 4.7 4.7 05 9 15 20 20 17 6 40 4 time limit
i05 4.7 4.7 10 29 31 46 44 140 88 46 32 time limit
i10 2.0 2.0 05 15 38 38 38 37 0 10 1 1.3
i10 2.0 2.0 10 37 73 73 73 40 0 15 1 2.9
i10 2.0 2.3 05 16 65 65 65 36 0 10 1 1.5
i10 2.0 2.3 10 37 94 94 95 40 0 20 1 2.7
i10 2.0 2.6 05 22 28 48 50 39 0 28 3 5.8
i10 2.0 2.6 10 26 87 87 87 38 0 15 1 2.4
i10 2.0 2.9 05 15 57 57 57 36 0 20 1 2.3
i10 2.0 2.9 10 45 127 127 127 38 0 22 1 5.2
i10 2.0 3.2 05 15 82 82 82 30 0 12 1 1.7
i10 2.0 3.2 10 34 101 101 101 35 0 26 1 4.3
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i10 2.0 3.5 05 15 20 29 29 43 0 28 3 2.7
i10 2.0 3.5 10 47 58 89 91 38 0 39 3 7.2
i10 2.0 3.8 05 20 23 35 36 41 0 39 3 4.5
i10 2.0 3.8 10 36 39 57 58 40 0 45 7 2.6
i10 2.0 4.1 05 17 22 31 31 40 0 58 3 4.7
i10 2.0 4.1 10 29 48 71 74 38 0 27 17 1.3
i10 2.0 4.4 05 18 21 30 31 40 0 39 3 2.5
i10 2.0 4.4 10 28 34 59 58 38 0 37 3 1.5
i10 2.0 4.7 05 18 21 32 34 39 0 50 3 2.2
i10 2.0 4.7 10 43 55 81 89 33 0 53 3 9.7
i10 2.3 2.0 05 18 48 48 48 42 0 13 1 15.4
i10 2.3 2.0 10 25 63 63 63 37 0 10 1 2.8
i10 2.3 2.3 05 14 57 57 57 37 0 14 1 3.8
i10 2.3 2.3 10 47 62 101 101 46 0 19 3 18.6
i10 2.3 2.6 05 14 53 53 53 40 0 18 1 5.2
i10 2.3 2.6 10 28 100 100 100 37 0 18 1 4.2
i10 2.3 2.9 05 18 44 44 44 45 0 24 1 12.2
i10 2.3 2.9 10 26 132 132 132 33 0 13 1 5.4
i10 2.3 3.2 05 19 54 54 54 45 0 26 1 12.3
i10 2.3 3.2 10 35 41 62 66 48 0 51 3 21.2
i10 2.3 3.5 05 17 19 28 30 41 0 39 3 4.3
i10 2.3 3.5 10 35 59 85 85 44 0 36 4 13.2
i10 2.3 3.8 05 13 28 41 42 33 0 41 3 3.9
i10 2.3 3.8 10 47 52 76 92 66 0 50 3 44.9
i10 2.3 4.1 05 17 21 29 31 43 0 35 11 6.6
i10 2.3 4.1 10 27 50 72 76 37 0 35 3 3.1
i10 2.3 4.4 05 15 23 34 35 39 0 56 3 10.3
i10 2.3 4.4 10 26 37 58 60 40 0 48 3 4.6
i10 2.3 4.7 05 14 23 38 37 36 0 39 17 3.0
i10 2.3 4.7 10 35 39 58 64 48 0 50 7 20.5
i10 2.6 2.0 05 18 36 36 38 69 3 27 1 time limit
i10 2.6 2.0 10 28 58 73 73 43 0 16 3 12.8
i10 2.6 2.3 05 15 45 45 45 29 0 14 1 7.1
i10 2.6 2.3 10 29 93 93 117 32 0 10 1 14.7
i10 2.6 2.6 05 18 25 38 40 102 11 26 3 time limit
i10 2.6 2.6 10 28 120 120 120 36 0 14 1 9.2
i10 2.6 2.9 05 17 24 34 36 49 1 38 3 703.8
i10 2.6 2.9 10 27 99 99 99 43 0 24 1 65.9
i10 2.6 3.2 05 14 26 39 42 36 0 36 3 8.3
i10 2.6 3.2 10 37 76 76 80 37 1 48 1 12.2
i10 2.6 3.5 05 20 37 55 57 35 1 27 7 23.1
i10 2.6 3.5 10 28 92 92 92 44 1 29 1 4337.2
i10 2.6 3.8 05 15 24 32 39 45 0 33 3 19.3
i10 2.6 3.8 10 29 43 58 59 40 0 46 7 9.7
i10 2.6 4.1 05 26 26 40 45 409 266 85 38 time limit
i10 2.6 4.1 10 30 57 82 84 35 0 43 3 13.8
i10 2.6 4.4 05 20 39 39 39 148 14 38 1 time limit
i10 2.6 4.4 10 26 45 62 64 42 0 47 3 18.1
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i10 2.6 4.7 05 14 25 37 38 36 0 33 6 7.8
i10 2.6 4.7 10 33 39 57 61 55 1 61 3 68.5
i10 2.9 2.0 05 20 20 33 36 591 437 28 4 time limit
i10 2.9 2.0 10 27 71 71 71 41 1 16 1 34.6
i10 2.9 2.3 05 14 55 55 55 40 1 16 1 20.5
i10 2.9 2.3 10 26 68 68 83 43 1 26 1 34.0
i10 2.9 2.6 05 18 54 54 54 83 17 29 1 time limit
i10 2.9 2.6 10 27 48 73 79 99 15 26 3 435.3
i10 2.9 2.9 05 19 24 34 36 81 14 31 10 5081.9
i10 2.9 2.9 10 36 89 89 89 58 5 29 1 1103.7
i10 2.9 3.2 05 13 32 32 34 44 2 39 1 31.3
i10 2.9 3.2 10 25 41 64 71 49 3 33 3 88.7
i10 2.9 3.5 05 15 21 32 33 38 0 56 3 16.3
i10 2.9 3.5 10 30 37 54 61 48 2 63 3 50.3
i10 2.9 3.8 05 22 26 35 37 197 94 50 125 time limit
i10 2.9 3.8 10 35 49 68 72 90 16 48 3 526.4
i10 2.9 4.1 05 15 23 32 32 44 2 44 3 36.0
i10 2.9 4.1 10 29 39 58 71 59 5 49 3 229.0
i10 2.9 4.4 05 13 21 29 30 78 12 48 3 3472.1
i10 2.9 4.4 10 27 45 68 74 39 2 63 3 42.2
i10 2.9 4.7 05 15 24 34 36 38 0 55 25 24.8
i10 2.9 4.7 10 25 42 60 64 40 0 47 12 58.3
i10 3.2 2.0 05 13 36 36 36 54 10 13 1 667.3
i10 3.2 2.0 10 30 64 65 69 80 20 18 1 time limit
i10 3.2 2.3 05 12 24 35 37 250 157 34 3 time limit
i10 3.2 2.3 10 26 126 126 126 39 1 10 1 194.4
i10 3.2 2.6 05 15 26 41 41 530 400 19 3 time limit
i10 3.2 2.6 10 32 52 61 70 89 23 37 1 time limit
i10 3.2 2.9 05 14 20 29 32 79 19 45 4 708.9
i10 3.2 2.9 10 31 66 66 66 62 11 31 1 1282.6
i10 3.2 3.2 05 14 24 36 38 74 15 27 3 2195.9
i10 3.2 3.2 10 28 40 62 67 65 13 65 3 time limit
i10 3.2 3.5 05 14 23 33 34 80 20 63 2 2882.0
i10 3.2 3.5 10 28 42 58 64 99 26 28 3 time limit
i10 3.2 3.8 05 15 20 27 29 62 8 54 40 time limit
i10 3.2 3.8 10 33 39 59 61 232 152 39 4 time limit
i10 3.2 4.1 05 13 20 31 30 99 28 38 3 4442.3
i10 3.2 4.1 10 28 35 55 55 45 3 39 9 358.9
i10 3.2 4.4 05 15 19 28 29 107 35 56 45 time limit
i10 3.2 4.4 10 33 33 59 63 180 93 77 13 time limit
i10 3.2 4.7 05 13 19 28 30 72 14 45 3 time limit
i10 3.2 4.7 10 34 35 66 67 619 457 77 98 time limit
i10 3.5 2.0 05 22 23 38 41 1475 1075 36 5 time limit
i10 3.5 2.0 10 29 96 96 96 76 16 10 4 time limit
i10 3.5 2.3 05 23 46 46 46 727 502 28 15 time limit
i10 3.5 2.3 10 28 123 123 123 34 0 10 1 time limit
i10 3.5 2.6 05 13 36 36 39 55 11 23 1 time limit
i10 3.5 2.6 10 26 56 56 56 567 407 22 1 time limit
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i10 3.5 2.9 05 13 55 55 55 45 4 17 1 time limit
i10 3.5 2.9 10 26 89 89 89 264 164 20 1 time limit
i10 3.5 3.2 05 15 51 51 51 39 5 16 1 time limit
i10 3.5 3.2 10 28 40 63 66 63 12 46 13 time limit
i10 3.5 3.5 05 15 42 42 42 386 253 26 8 time limit
i10 3.5 3.5 10 32 52 56 58 661 479 33 1 time limit
i10 3.5 3.8 05 13 32 32 32 81 21 31 2 time limit
i10 3.5 3.8 10 29 47 70 73 37 2 32 5 time limit
i10 3.5 4.1 05 19 25 32 33 106 31 51 12 time limit
i10 3.5 4.1 10 30 39 60 60 79 22 55 42 time limit
i10 3.5 4.4 05 15 25 36 36 48 7 72 92 time limit
i10 3.5 4.4 10 28 43 66 68 315 203 50 207 time limit
i10 3.5 4.7 05 17 19 31 32 452 284 73 50 time limit
i10 3.5 4.7 10 26 40 58 62 108 33 45 3 time limit
i10 3.8 2.0 05 22 22 34 36 3079 2293 33 2 time limit
i10 3.8 2.0 10 39 87 87 89 364 216 10 2 time limit
i10 3.8 2.3 05 15 20 43 41 181 113 17 1 time limit
i10 3.8 2.3 10 25 78 78 78 71 20 15 1 time limit
i10 3.8 2.6 05 13 31 32 33 251 166 34 3 time limit
i10 3.8 2.6 10 39 53 79 85 214 137 31 6 time limit
i10 3.8 2.9 05 16 19 29 31 601 436 35 2 time limit
i10 3.8 2.9 10 39 96 96 96 1216 900 26 1 time limit
i10 3.8 3.2 05 14 21 31 33 48 8 31 3 time limit
i10 3.8 3.2 10 39 46 78 82 811 630 66 3 time limit
i10 3.8 3.5 05 13 34 34 34 617 415 25 2 time limit
i10 3.8 3.5 10 34 53 79 98 176 94 20 3 time limit
i10 3.8 3.8 05 18 21 32 39 947 689 47 23 time limit
i10 3.8 3.8 10 34 38 59 65 879 646 54 6 time limit
i10 3.8 4.1 05 13 18 27 29 677 497 48 32 time limit
i10 3.8 4.1 10 29 44 68 67 100 46 41 25 time limit
i10 3.8 4.4 05 13 21 36 34 408 270 42 2 time limit
i10 3.8 4.4 10 29 34 51 53 1174 909 50 3 time limit
i10 3.8 4.7 05 13 21 36 36 193 110 52 2 time limit
i10 3.8 4.7 10 28 41 63 68 193 118 54 6 time limit
i10 4.1 2.0 05 14 41 41 41 160 97 26 2 time limit
i10 4.1 2.0 10 25 39 62 67 1333 1020 25 52 time limit
i10 4.1 2.3 05 14 56 56 45 146 88 12 1 time limit
i10 4.1 2.3 10 27 91 91 91 73 21 21 1 time limit
i10 4.1 2.6 05 13 31 54 54 121 64 18 1 time limit
i10 4.1 2.6 10 25 60 60 60 336 225 16 1 time limit
i10 4.1 2.9 05 15 33 33 33 57 12 30 1 time limit
i10 4.1 2.9 10 31 91 91 91 128 62 27 1 time limit
i10 4.1 3.2 05 13 15 24 26 382 270 67 2 time limit
i10 4.1 3.2 10 26 67 72 77 1350 992 56 11 time limit
i10 4.1 3.5 05 15 36 37 39 153 83 41 3 time limit
i10 4.1 3.5 10 28 45 61 62 76 22 58 1 time limit
i10 4.1 3.8 05 20 21 37 39 305 195 70 9 time limit
i10 4.1 3.8 10 36 44 69 71 255 160 67 4 time limit
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instance vol dual primal GRASP nfeas ncands nrp nodes enum time

i10 4.1 4.1 05 15 19 29 32 163 91 49 12 time limit
i10 4.1 4.1 10 27 54 90 92 322 212 23 52 time limit
i10 4.1 4.4 05 18 18 30 32 673 439 47 30 time limit
i10 4.1 4.4 10 27 34 55 57 205 112 61 10 time limit
i10 4.1 4.7 05 15 23 32 32 123 55 72 2 time limit
i10 4.1 4.7 10 28 55 80 85 64 19 41 8 time limit
i10 4.4 2.0 05 13 20 31 33 1128 856 23 3 time limit
i10 4.4 2.0 10 31 48 82 87 1222 958 32 2 time limit
i10 4.4 2.3 05 18 31 33 34 544 358 44 1 time limit
i10 4.4 2.3 10 27 68 68 68 247 158 26 1 time limit
i10 4.4 2.6 05 13 22 39 40 172 104 27 1 time limit
i10 4.4 2.6 10 29 66 70 70 459 321 17 1 time limit
i10 4.4 2.9 05 15 45 45 51 103 60 27 1 time limit
i10 4.4 2.9 10 26 77 77 77 433 295 16 1 time limit
i10 4.4 3.2 05 14 35 35 35 75 23 22 1 time limit
i10 4.4 3.2 10 39 69 69 69 322 188 27 1 time limit
i10 4.4 3.5 05 17 20 31 33 14181 11455 49 3 time limit
i10 4.4 3.5 10 28 76 76 76 602 404 107 2 time limit
i10 4.4 3.8 05 13 21 32 33 438 311 61 3 time limit
i10 4.4 3.8 10 26 41 72 77 420 287 62 2 time limit
i10 4.4 4.1 05 14 19 29 31 249 169 83 120 time limit
i10 4.4 4.1 10 28 41 62 61 56 17 27 1 time limit
i10 4.4 4.4 05 19 21 33 41 1879 1452 99 71 time limit
i10 4.4 4.4 10 28 51 73 75 75 32 45 9 time limit
i10 4.4 4.7 05 14 18 29 30 309 216 70 9 time limit
i10 4.4 4.7 10 30 44 60 63 70 23 58 16 time limit
i10 4.7 2.0 05 16 40 41 41 110 58 22 1 time limit
i10 4.7 2.0 10 27 103 103 103 334 222 10 1 time limit
i10 4.7 2.3 05 15 47 47 48 288 189 20 1 time limit
i10 4.7 2.3 10 36 76 76 76 428 282 18 1 time limit
i10 4.7 2.6 05 15 26 39 39 214 136 31 3 time limit
i10 4.7 2.6 10 27 63 63 64 676 476 18 1 time limit
i10 4.7 2.9 05 20 21 37 39 559 383 74 3 time limit
i10 4.7 2.9 10 26 65 65 72 66 18 34 1 time limit
i10 4.7 3.2 05 18 31 34 39 2181 1555 44 2 time limit
i10 4.7 3.2 10 29 65 75 78 192 128 57 2 time limit
i10 4.7 3.5 05 13 19 31 31 1734 1326 51 20 time limit
i10 4.7 3.5 10 27 28 50 54 603 412 52 10 time limit
i10 4.7 3.8 05 13 19 28 32 82 38 46 8 time limit
i10 4.7 3.8 10 29 37 56 62 224 135 36 3 time limit
i10 4.7 4.1 05 20 20 32 34 3538 2686 55 3 time limit
i10 4.7 4.1 10 27 42 64 68 807 617 48 3 time limit
i10 4.7 4.4 05 15 26 38 40 61 17 57 2 time limit
i10 4.7 4.4 10 24 37 57 59 267 186 83 77 time limit
i10 4.7 4.7 05 14 22 32 34 412 259 57 123 time limit
i10 4.7 4.7 10 28 42 69 78 782 578 87 3 time limit
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