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Abstract The Steiner tree problem in graphs is a classical problem that com-
monly arises in practical applications as one of many variants. While often
a strong relationship between different Steiner tree problem variants can be
observed, solution approaches employed so far have been prevalently problem-
specific. In contrast, this paper introduces a general-purpose solver that can
be used to solve both the classical Steiner tree problem and many of its vari-
ants without modification. This versatility is achieved by transforming various
problem variants into a general form and solving them by using a state-of-
the-art MIP-framework. The result is a high-performance solver that can be
employed in massively parallel environments and is capable of solving previ-
ously unsolved instances.

1 Introduction

The Steiner tree problem in graphs (STP) is one of the classical NP-hard
problems [1]. Given an undirected connected graph G = (V,E), costs c : E →
Q≥0 and a set T ⊆ V of terminals, the problem is to find a tree S ⊆ G of
minimum cost that spans T .

Practical applications of the STP can be found for instance in the design
of fiber-optic networks [2]. However, it is more common that practical appli-
cations are formulated as a particular variant of the STP [3,4,5,6].

The announcement of the 11th DIMACS Challenge initiated our work with
an investigation into the STP solver Jack-III, described in [7]. The model
and code of Jack-III provided a base for the development of a general STP
solver—being able to solve many of the problem variants. However, Jack-III
is more than 15 years old. As such, many modern developments regarding STP
solution methods and MIP solving techniques are not available. Our approach
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to address this limitation of Jack-III includes the combination of the model
used in [7] with the start-of-the-art MIP-framework SCIP [8,9]. Employing
SCIP naturally facilitated the incorporation of many algorithm developments
from the past two decades and provided a platform for the development of
new methods.

A major contribution of this paper is the development of a general Steiner
tree problem solver. This achievement stands in contrast to the many problem-
specific solvers observed within the literature. Furthermore, SCIP provides a
massively parallel MIP-framework that is employed with this general solver.
Thereupon, bolstered by algorithmic improvements, the developed solver is
able to solve several previously unsolved benchmark instances. Detailing the
approach delineated above, the remainder of this paper will be structured as
follows:

– Section 2 demonstrates the impact of transitioning from a simple, ad hoc
created branch-and-cut code to the use of a full fledged, state-of-the-art
MIP-framework.

– Section 3 shows how to employ the versatility of MIP models to not only
solve a whole class of related problem variants, but—in combination with
further algorithmic advances—be competitive with or even superior to
problem-specific state-of-the-art solvers.

– Finally, in Section 4 the potential from using hundreds of CPU cores to
solve a single problem is illustrated.

The results achieved in this paper demonstrate the value of revisiting topics
after some time. In our case this occurred in two steps: First, prior to the
DIMACS Challenge, with the developments delineated above, and second,
after the completion of the Challenge, when further algorithmic methods were
devised and implemented to considerably enhance the performance of SCIP-
Jack. Further examples of revisiting research topics can be found in [10,11].

In general, it can be stated that a branch-and-cut based Steiner tree solver
has three major components. First, preprocessing is extremely important.
Apart from some instances either specifically constructed or insightfully hand-
picked to defy presolving techniques, such as the PUC [12] and I640 [13] test
sets, preprocessing is often able to significantly reduce instances. Results pre-
sented in the PhD theses of Polzin [14] and Daneshmand [15] report an average
reduction in the number of edges of 78 %, with many instances being solved
completely by presolving. In computational experiments performed for this
paper, reduction rates of more than 90 % for some Steiner problem variants
(e.g., for the maximum-weight connected subgraph problem) are obtained.

Second, heuristics are needed to find good or even optimal solutions and
help find strong upper and lower bounds quickly. In our experiments, for more
than 90 % of the instances that were not already solved during preprocessing
the final solution was found by a heuristic. Furthermore, heuristics can be
especially important for hard instances, for which the dual bound often stays
substantially below the optimum for a long time.
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Finally, the core of the approach is constituted by the branch-and-cut
procedure used to compute lower bounds and prove optimality. The results
of [14] show that many STP instances can already be solved by reduction-
and heuristic-based approaches [14]. However, the failure of the state-of-the-
art solver described in [14] to solve a number of hard instances that defy
preprocessing highlights the importance of strong branch-and-cut procedures.

2 From simple hand tailored to off-the-shelf state-of-the-art

The model employed in the solver SCIP-Jack uses the flow-balance directed
cut formulation described in [7]. This formulation provides a tight linear pro-
gramming (LP) relaxation. It is built upon the directed equivalent of the STP,
the Steiner arborescence problem (SAP): Given a directed graph D = (V,A),
a root r ∈ V , costs c : A→ Q≥0 and a set T ⊆ V of terminals, a directed tree
(VS , AS) ⊆ D of minimum cost is required such that for all t ∈ T , (VS , AS)
contains exactly one directed path from r to t. Each STP can be transformed
to an SAP by replacing each edge with two anti-parallel arcs of the same cost
and distinguishing an arbitrary terminal as the root. This procedure results in
a one-to-one correspondence between the respective solution sets, see [16] for
a proof.

An integer program for the SAP can be obtained by introducing a variable
ya for each arc a ∈ A with the interpretation ya = 1 if a is in the Steiner
arborescence, and ya = 0 otherwise. These considerations set the stage for the
following formulation:

Formulation 1 Flow Balance Directed Cut Formulation

min cT y (1)

y(δ+(W )) ≥ 1, for all W ⊂ V, r ∈W, (V \W ) ∩ T 6= ∅(2)

y(δ−(v))

=
=
≤

0 if v = r,
1 if v ∈ T \ r,
1 if v ∈ N,

for all v ∈ V (3)

y(δ−(v)) ≤ y(δ+(v)), for all v ∈ N (4)

y(δ−(v)) ≥ ya, for all a ∈ δ+(v), v ∈ N (5)

0 ≤ ya ≤ 1, for all a ∈ A (6)

ya ∈ {0, 1}, for all a ∈ A (7)

whereN = V \T , δ+(X) := {(u, v) ∈ A|u ∈ X, v ∈ V \X}, δ−(X) := δ+(V \X)
for X ⊆ V ; i.e., δ+(X) is the set of all arcs going out of, and δ−(X) the set of
all arcs going into X.

Constraints (4) strengthen the LP-relaxation of Formulation 1, see [13].
However, the remaining additional constraints (3), (5), and (6) do not improve
the value of the LP-relaxation; although they nevertheless lead to an empirical
speed-up in practical solving [14]. Further details of Formulation 1 are given
in [7].
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Since the model potentially contains an exponential number of constraints
a separation routine is employed. Violated constraints, are separated during
the execution of the branch-and-cut algorithm. Jack-III employed this prob-
lem formulation along with a model-specific branch-and-bound search. Strong
branching [17] was used with a depth-first search node selection.

The implementation of SCIP-Jack is based on the academic MIP solver
SCIP [8,9]. Besides being one of the fastest non-commercial MIP solvers [18],
SCIP is a general branch-and-cut framework. The plugin-based design of
SCIP provides a simple method of extension to handle a variety of specific
problem classes.

In the case of SCIP-Jack, the first plugins implemented were a reader
to read problem instances and problem data to store the graph and build the
model within SCIP. Within these plugins it was possible to re-use the read-
ing methods and data structures of Jack-III. However, each of these had to
be extended as part of the implementation in SCIP-Jack. The heart of the
new implementation is a constraint handler that checks solutions for feasibil-
ity and separates any violated model constraints. Again, separation methods
of the more than 15-year old code are re-used in SCIP-Jack, while SCIP
provides a filtering of cuts to improve numerical stability and dynamic aging
of the generated cuts. Additionally, the general-purpose separation methods
that exist within SCIP are used, which include Gomory and mixed-integer
rounding cuts.

Jack-III includes many STP-specific preprocessing techniques, as described
in [7]. However, for SCIP-Jack only the Degree-Test (DT) [19] method has
been reused. All other tests were replaced by more efficient variants, which
have emerged in the decade following the release of Jack-III, cf. [14]. More-
over, after the DIMACS Challenge work on reduction techniques continued
and various new reduction methods were developed for several of the Steiner
problem variants described in this paper. They are a pivotal factor in the
improved performance of SCIP-Jack as compared to its predecessor partici-
pating in the Challenge—the main motivation behind the development of the
new methods was to enhance SCIP-Jack [16]. Due to the large number of
presolving techniques and their complexity it is not possible to provide in-
dividual descriptions within the frame of this paper. The reader is referred
to [16] for detailed information. The preprocessing techniques implemented in
SCIP-Jack are listed in Table 2 according to the abbreviations used in [16];
the full names of the preprocessing techniques can be found in Section B of
the appendix. Supplementary to the presolving techniques, a Steiner problem
specific propagator is implemented that fixes edges during the branch-and-
cut according to the same criteria used in the dual-ascent (DA) reduction
method [13,14].

For the branch-and-bound search a straightforward STP-specific branching-
rule has been implemented. Specifically, instead of branching on variables, i.e.,
in the case of the STP on arcs, vertex branching [20] is employed. This has
been identified empirically by the authors of this publication to be stronger
than the generic branching rules natively implemented in SCIP. During the



SCIP-Jack – A solver for STP and variants with parallelization extensions 5

branch-and-bound procedure, vertex branching selects a Steiner vertex to be
rendered a terminal in one child node and excluded in the second child.

Determining such a Steiner vertex is achieved by means of the following
criterion. Let y ∈ [0, 1]

A
be an LP solution at the current node during branch-

and-cut. Select a vertex vi ∈ V \ T to branch upon, such that∣∣∣∣∣∣
∑

a∈δ−(vi)

ya − 0.5

∣∣∣∣∣∣ (8)

is minimal among all Steiner vertices.

The node selection is organized by SCIP and is performed with respect to
a best estimate criterion—interleaved with best bound and depth-first search
phases [21].

One dual and several primal STP-specific heuristics have been implemented
in SCIP-Jack—the dual-ascent heuristic (DA), the repetitive shortest path
heuristic (RSPH), in the form proposed in [22], an improvement heuristic
(VQ) [23], the reduction-based heuristics prune (P) and ascend-and-prune
(AP) [14], and a new recombination heuristic (RC).

The dual-ascent algorithm was introduced in [24]. It exhibits a time com-
plexity of O(|E|min{|V ||T |, |E|}), see [14], but is usually faster than this
bound might suggest; efficient implementations can be found in [13] and [25].
In SCIP-Jack the implementation of [25] is used. At termination, dual-ascent
provides a dual solution to a reduced version of Formulation 1 that contains
only the constraints (2) and (6). This solution involves directed paths along
arcs of reduced cost 0 from the root to each other terminal. The heuristic
is executed prior to the branch-and-cut procedure and includes all cuts corre-
sponding to the dual solution found by DA. Due to strong duality, the objective
value of the first LP solved during branch-and-cut corresponds to the objective
value of the dual solution found by DA.

On the primal side, SCIP-Jack includes the well-known repetitive shortest
paths heuristic. Starting with a single vertex, the heuristic iteratively connects
the current subtree to a nearest terminal by a shortest path. This procedure
is reiterated until all terminals are spanned. The heuristic is implemented in
Jack-III, but in its original form detailed by [26]. In SCIP-Jack an em-
pirically faster version based on Dijkstra’s algorithm [22] is implemented. In
addition to being used as an initial heuristic, the RSPH is also employed, with
altered costs, during the branch-and-cut. Specifically, given an LP optimal
solution y ∈ QA, the heuristic is called with the costs (1 − ya) · ca for all
a ∈ A. Thus, a stimulus for the heuristic to choose arcs contained in the LP
solution is provided. Moreover, the heuristic is started from several distinct
vertices, making it empirically much stronger (by default 100 start vertices for
the initial call at the root node, 50 at the beginning of the processing of each
other branch-and-bound node and 15 for calls within the cut loop). Terminals
are preferred as start points, but vertices that exhibit a high (fractional) out-
degree in the incumbent LP solution are also selected. The heuristic is called
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before and after the processing of a (branch-and-bound) node, after each cut
loop and after each LP solving during a cut loop.

The improvement heuristic VQ is a combination of the three local search
heuristics vertex insertion, key-path exchange, and key-vertex elimination as
described in [23]. The basic idea of vertex insertion (denoted by V) is to connect
further vertices to an existing Steiner tree in such a way that expensive edges
can be removed. Key-vertices with respect to a tree S are either terminals or
vertices of degree at least three in S. Correspondingly, a key-path is a path
in S with a key-vertex at both endpoints, but without any intermediary key-
vertices. A key-path exchange attempts to replace existing key-paths by others
that are less costly. Similarly, for key-vertex elimination in each step a non-
terminal key-vertex and all adjoining key-paths (except for the key-vertices at
their respective ends) are extracted and an attempt is made to reconnect the
disconnected subtrees at a lower cost. As in [23], the combination of key-path
exchange and key-vertex elimination is denoted by Q. VQ is called for a newly
found solution whenever the latter is among the five best known solutions.

The prune heuristic comes with a less customary approach obtained by
building upon bound-based reductions introduced in [14] that were afterwards
slightly improved in [16]. While for the original bound-based reductions an
upper bound is provided by the weight of a given Steiner tree, in the prune
heuristic the bound is reduced such that in each iteration a certain proportion
of edges and vertices is eliminated. Thereupon, all exact reductions methods
are executed on the reduced graph, motivated by the assumption that the
(possibly inexact) eliminations performed by the bound-based method will
allow for further (exact) reductions. To avoid infeasibility, a Steiner tree is
initially computed by using RSPH and afterwards the elimination of any of its
vertices by the bound-based method is being prohibited. Within SCIP-Jack
the heuristic is called whenever a new best solution has been found.

Another powerful heuristic approach is borne by the combination of the
prune heuristic and dual-ascent: the ascend-and-prune [14] method. Ascend-
and-prune is motivated by the assumption that certain similarities exist be-
tween an optimal Steiner tree and the LP solution that is identified by the
reduced costs provided by dual-ascent. Thereupon, the heuristic attempts to
find an optimal solution on the graph constituted by the undirected edges
corresponding to zero-reduced-cost paths from the root to all additional ter-
minals. On this subgraph a solution is computed by first employing an (exact)
reduction package and then using the prune heuristic. Within SCIP-Jack,
ascend-and-prune is performed after each execution of dual-ascent, in partic-
ular prior to the initiation of the branch-and-cut procedure.

Finally, the recombination of given solutions to find improved primal bounds
is performed by the RC heuristic. In the following, RC is described in the con-
text of an STP, but it can be naturally extended to cover all Steiner tree prob-
lem variants discussed in this paper. First, the set of solutions to be considered
for recombination is defined by L; in the case of SCIP-Jack L comprises the
best found solutions and its cardinality is bounded from above by 50.
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The heart of RC is the n-merging (n ≥ 2) operation subsequently defined
for a given solution S0 to an STP P = (V,E, T, c): S0 is merged with pseudo-
randomly selected n−1 solutions S1, ..., Sn out of L\{S0} to form a new STP
P̃ consisting of all edges and vertices that are part of at least one of the n
solutions. By applying the reduction techniques provided by SCIP-Jack to
P̃ , a reduced problem P̃ ′ is obtained. Thereupon, a solution to P̃ ′ is computed
in several steps. First, it is observed that each edge e in P̃ ′ corresponds to a
set of ancestor edges Ee ⊆ E. Denoting the edges of a solution Si by ESi gives
the definition:

α(e) =

∑n
i=0 |Ee ∩ ESi

|
|Ee|

.

Next, the cost of each edge e in P̃ ′ is multiplied by a pseudo-randomized
number that is anti-proportional to α(e) (i.e., the number increases as α(e)
decreases). This edge cost multiplication approach is a more general variant of
a procedure suggested in [27]. The latter approach recombines two solutions
without employing reduction techniques. Using the new edge cost, RSPH is
employed to obtain a solution S̃′ to P̃ ′. For the starting points of RSPH, ver-
tices vi are used such that

∑
e∈δP̃ ′ (vi)

α(e) is maximized. Next, after retrieving

the original arc costs, VQ is applied on S̃′. Finally, S̃′ is retransformed to the
original solution space.

The RC heuristic is clustered around the n-merging operation: Given a new
solution S, in one run consecutively six 2-, two 3- and one 4–merge operations
are performed. When a solution S′ is generated during an n-merging with a
smaller cost than S, the solution S is replaced by S′, which is attempted to be
added to L. Moreover, in this case the n-merging is performed again in a new
run that is started after the conclusion of the current run. The total number of
runs is limited to ten. RC is called whenever r new solutions have been found
compared to its last execution. Initially, r is set to 4 and modified throughout
the solution process, setting r := 0 if a solution has been improved during the
execution of RC and r := min{r + 1, 4} otherwise.

By the combination of the previously described heuristics the ability to gen-
erate good primal solutions quickly is considerably improved, as compared to
employing SCIP-Jack without Steiner problem specific heuristics. Further-
more, this combination is able to eventually find optimal solutions to most
problems.

2.1 Computational experiments

Several thousand instances of 15 Steiner tree problem variants were collected
as part of the DIMACS Challenge. To show the performance of the developed
general Steiner tree problem solver, computational experiments on ten variants
of the STP will be presented.

All computational experiments described were performed on a cluster of
Intel Xeon X5672 CPUs with 3.20 GHz and 48 GB RAM, running Kubuntu
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14.04. A development version of SCIP 3.2.1 was used and SoPlex [28] version
2.2.1 was employed as the underlying LP solver. Moreover, the overall run
time for each instance was limited by two hours. If an instance was not solved
to optimality within the time limit, the gap is reported, which is defined as
|pb−db|

max{|pb|,|db|} for final primal bound (pb) and dual bound (db). The average

gap is obtained as an arithmetic mean. The averages of the number of nodes
and the solving time are computed by taking the shifted geometric mean [21]
with a shift of 10.0 and 1.0, respectively.

Prior to the discussion of the different STP variants solved by SCIP-Jack
in the following section, the solver performance will be demonstrated on pure
STP instances. To this end, six STP test sets have been selected for com-
putational experiments. Five of them, X [7] E [29], I640 [13], PUC [12], and
ALUE [7], are test sets from SteinLib. First, the three X instances include
complete graphs with Euclidean distances corresponding to geographical loca-
tions (in Berlin, Brazil, and worldwide). In contrast, the E and I640 test sets
contain randomly generated instances. The (sparse) E test set has proved to
be solvable within short time limits by state-of-the-art solvers [14]. However,
the I640 set—whose instances were selected to defy preprocessing—contains
several problems that have remained unsolved until today. Similarly, many un-
solved instances still remain in the PUC test set, which contains artificially de-
signed problems such as instances composed of combinations of odd wheels and
odd circles. As opposed to the previous three test sets, the ALUE instances are
not artificially designed, but derive from a VLSI application and contain grid
graphs with rectangular holes. The final test set is vienna-i-simple [2], which
contains real-world instances generated from telecommunication networks that
have already been preprocessed by the Degree-Test described in [19].

A summary of the computational performance of SCIP-Jack on the five
STP test sets is presented in Table 1. Each line in the table shows aggregated
results for the test set specified in the first column. The second column, labeled
#, lists the number of instances in the test set, the third column states how
many of them were solved to optimality within the time limit. The average
number of branch-and-bound nodes and the average running time in seconds
of these instances are presented in the next two columns, named optimal.
The last two columns, labeled timeout, show the average number of branch-
and-bound nodes and the average gap for the remaining instances, i.e., all

Table 1: Computational results for STP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

X 3 3 1.0 0.3 – –
E 20 20 1.4 1.0 – –
ALUE 15 12 1.7 12.4 1.0 1.7
I640 100 78 17.7 9.3 85.3 0.8
PUC 50 8 406.8 36.9 121.9 3.5
vienna-i-simple 85 69 2.7 149.2 1.8 0.0
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instances that hit the time limit. In the next section, similar tables will be
presented for different STP variants. If all instances of a particular variant are
solved to optimality within the time limit, the timeout columns are omitted.
Detailed instance-wise computational results of all experiments can be found
in Appendix C.

The instances from the X test set is solved without any branching and
in very short run times; even the largest instance, consisting of more than
200 000 edges, requires only one second. Similarly, SCIP-Jack solves the en-
tire, mostly sparse, E test set to optimality within an average time of 1.0
seconds. The only instance requiring branching is e18, which also exhibits a
run time much longer than any other of that test set, 104.5 seconds. The,
similarly sparse, VLSI-derived ALUE instances are harder to solve for SCIP-
Jack: three problems remain unsolved with gaps of 1.4, 1, 5, and 2.3 percent,
while the solved instances require an average run time of 12.4 seconds. For
only three of the instances branching is performed, and none requires more
than five nodes.

SCIP-Jack exhibits a distinctively disparate behavior on the I640 test
set: While more than half of the instances are solved within a few seconds,
22 problems remain unsolved after two hours. As compared with the previous
instances the number of branch-and-bound nodes is much higher—up to 4481.

The PUC test set proves to be much more difficult for SCIP-Jack. This
is unsurprising since more than half of the instances in this set still remain
unsolved. SCIP-Jack only solves eight of 50 instances and none at the root
node. More than half of the unsolved instance are still processing the root node
when terminated. Finally, 80 percent of the vienna instances set are solved by
SCIP-Jack within the time limit, with none of the remainder exhibiting an
optimality gap of more than 0.01%. As compared to the PUC test set, the
number of branch-and-bound nodes is much smaller and more than half of the
instances can be solved in the root.

The results demonstrate an improvement of SCIP-Jack in two dimen-
sions. First, compared to Jack-III, SCIP-Jack empirically yields signifi-
cantly better results, as exemplified by the E test set. While Jack-III and
SCIP-Jack both manage to solve all instances in relatively short times, there
is a large difference in the run times achieved by each. Jack-III needs more
than one second for all but one instance. The hardest instance, e18, requires
more than 11 minutes. In contrast, SCIP-Jack solves all but three instances
in less than a second, with a maximum runtime (for e18 ) of about two min-
utes. On average, SCIP-Jack is more than two orders of magnitude faster on
the E test set than Jack-III.

The drastically stronger performance of SCIP-Jack in comparison with
Jack-III comes hardly as a surprise. While the main component of Jack-
III, the separation algorithm, is being reused within SCIP-Jack, a variety
of powerful new methods, as described heretofore, is clustered around it. The
new reduction techniques alone, for instance, are more than ten times faster
than those implemented in Jack-III and nevertheless notably stronger.
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The second dimension is seen when comparing the performance of the cur-
rent version of SCIP-Jack with its predecessor participating in the DIMACS
Challenge, cf. [30]. In particular, computational experiments demonstrate that
the current version is significantly stronger. Taking the example of the I640
test set, one sees additional 13 instances being solved to optimality within two
hours. Also, the run time for several instances (such as i640-043) is reduced
by a factor of more than a hundred.

The improvement of the current version of SCIP-Jack as compared with
the previous version that competed in the DIMACS Challenge can be put down
to several major algorithmic improvements. First, the implementation of new
or enhanced problem-specific preprocessing methods, such as the dual-ascent
reductions [31]. Second, the implementation of the new heuristics dual-ascent,
and, on the primal side, prune, ascend-and-prune, and an improved version of
the recombination heuristic. Third, the implementation of a problem-specific
propagator and branching rule.

However, while the current version of SCIP-Jack proves to be competitive
with the best exact results obtained at the DIMACS Challenge, it falls short
of matching the fastest STP solver described in the literature [14,31]. Apart
from very easy instances, such as in X, and the hard PUC test set, for which
SCIP-Jack yields comparable results, the solver described in [14] (which uses
the commercial CPLEX 12.61) is more than an order of magnitude faster for
most instances [31].

3 From single problem to class solver

SCIP-Jack is developed as a general STP solver—being able to solve many
problem variants. An overview of the problem variants solved by SCIP-Jack
is given in Table 2. This table also presents the heuristics (see Section 2) and
presolving techniques (see Table 14) that are applied to each of the problem
variants. Specific transformation approaches have been employed in order to
solve each variant by SCIP-Jack. Each of these transformations will be de-
scribed in detail. Throughout this section the weights of an (undirected) edge
e and an (directed) arc a are denoted by ce and ca respectively and the weight
of a vertex v by pv.

3.1 The Steiner arborescence problem

As SCIP-Jack transforms each Steiner tree problem to a Steiner arbores-
cence problem (SAP), the branch-and-cut framework can be used for general
SAPs with only minor modifications. Slightly modified forms of the RSPH,
AP, and RC heuristics can also be used for SAP instances. However, due to
the missing bi-direction with equal cost, the VQ heuristic cannot be applied.

1 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Table 2: Problem variants solved by SCIP-Jack

Variant Abbreviation Preprocessing Heuristics

Steiner Tree in Graphs STP DT, NV/SL, SD/SDC,
NTD3,4, BND, DA

P, AP, RSPH, VQ, RC

Steiner Arborescence SAP BR, RPT, CT, SDC,
PNT, BND, DA

AP, RSPH, RC

Rectilinear Steiner Minimum Tree RSMTP DT, NV/SL, SD/SDC,
NTD3,4, BND, DA

P, AP, RSPH, VQ, RC

Node-weighted Steiner Tree NWSTP DA AP, RSPH, RC
Prize-collecting Steiner Tree PCSTP UNT/DT, SD/SDC,

NTD3, NV/SL, BND,
DA

P, AP, RSPH, VQ, RC

Rooted Prize-collecting Steiner Tree RPCSTP UNT/DT, SD/SDC,
NTD3, NV/SL, BND,
DA

P, AP, RSPH, VQ, RC

Maximum-weight Connected Subgraph MWCSP UNPV/BT, CNS, NNP,
NPV2,3,4,5, DA

AP, RSPH, RC

Degree-constrained Steiner Tree DCSTP None RSPH, RC
Group Steiner Tree GSTP DT, NV/SL, SD/SDC,

NTD3,4, BND, DA
P, AP, RSPH, VQ, RC

Hop-constrained directed Steiner Tree HCDSTP CBND, HBND RSPH, RC

As to presolving techniques, besides DA, specific SAP reduction methods have
been implemented—as described in [16].

Computational results Computational experiments have been performed on
two test sets of Steiner arborescence problems. These instances are derived
from a genetic application [32]. The results are summarized in Table 3. The test
sets contain small SAP instance, with the largest consisting of 602 nodes, 1716
edges and 86 terminals. Because of their size, SCIP-Jack solves all instances
within fractions of a second without requiring any branching. Furthermore, the
reduction techniques eliminate more than 90 percent of the arcs on average.

Table 3: Computational results for SAP instances

test set # solved ∅ nodes ∅ time [s]

gene 10 10 1.0 0.2
gene2002 9 9 1.0 0.1

3.2 The rectilinear Steiner minimum tree problem

The rectilinear Steiner minimum tree problem (RSMTP) can be described
as follows: Given a number of n ∈ N points in the plane, find a shortest
tree consisting only of vertical and horizontal line segments, containing all n
points. The RSMTP is NP-hard, as proved in [33], and has been the subject
of various publications, see [34,35,36]. In addition to this two-dimensional
variant, a generalization of the problem to the d-dimensional case, with d ≥ 3,
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will be considered. The presented computational experiments include instances
that derive from a cancer research application [3] and exhibit up to eight
dimensions.

Hanan [37] reduced the RSMTP to the Hanan-grid obtained by construct-
ing vertical and horizontal lines through each given point of the RSMTP. It
is proved in [37] that there is at least one optimal solution to an RSMTP
that is a subgraph of the grid. Hence, the RSMTP can be reduced to an STP.
Subsequently, this construction and its multi-dimensional generalization [38]
is exploited in order to adapt the RSMTP to be solved by SCIP-Jack. Given
a d-dimensional, d ∈ N \ {1}, RSMTP represented by a set of n ∈ N points
in Qd, the first step involves building a d-dimensional Hanan-grid. By using
the resulting Hanan-grid an STP P = (V,E, T, c) can be constructed, which
is handled equivalently to a usual STP problem by SCIP-Jack.

It certainly bears mentioning that this simple Hanan-grid based approach
is not expected to be competitive with highly specialized solvers such as
GeoSteiner [34] in the case d = 2. However, a motivation for the implemen-
tation in SCIP-Jack is to address the obvious lack of solvers—specialized or
general—that can provide solutions to RSMTP instances in dimensions d ≥ 3.
Still, it is not practical to apply the grid transformation for large instances in
high dimension, as the number of both vertices and edges increases exponen-
tially with the dimension.

A variant of the RSMTP is the obstacle-avoiding rectilinear Steiner min-
imum tree problem (OARSMTP). This problem requires that the minimum-
length rectilinear tree does not pass through the interior of any specified axis-
aligned rectangles, denoted as obstacles. SCIP-Jack is easily extended to solve
the OARSMTP with a simple modification to the Hanan grid approach ap-
plied to the RSMTP. This modification involves removing all vertices that are
located in the interior of an obstacle together with their incident edges as well
as all edges crossing an obstacle. There was no competition for this variant in
the DIMACS Challenge and for the OARSMTP, unlike the RSMTP, optimal
solutions to all instances submitted to the Challenge have already been pub-
lished. While SCIP-Jack is capable of solving all instances submitted to the
DIMACS Challenge, computational experiments for this problem variant have
been omitted.

Computational results The experiments on the RSMTP involve solving five
of the test sets submitted to the DIMACS Challenge. These test sets contain
instances ranging from less than 10 to 10 000 points and from two to eight
dimensions. Specifically, the test sets used in the presented experiments include
the two-dimensional estein instances with up to 60 nodes, the solids test set
with three-dimensional instances whose terminals are the vertices of the five
platonic solids, and the real-world derived cancer instances in up to eight
dimensions. Computational results are summarized in Table 4 with the detailed
results listed in the appendix.

The vast majority of the estein40 and estein50 instances can be solved
to optimality, 14 and 13 out of 15 respectively. For all but one of these in-
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Table 4: Computational results for RSMTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

estein40 15 14 1.0 255.9 144.0 0.2
estein50 15 13 1.4 1868.0 31.8 0.4
estein60 15 6 1.0 5396.6 3.9 0.7
solids 5 4 4.9 0.2 8435.0 0.5
cancer 14 13 1.0 3.0 1.0 100.0

stances, the optimal solution was found at the root node. Also, none of the
unsolved instances exhibits an optimality gap above 0.7 percent at the time
limit. However, as the number of terminals increases, so does the run time
and the number of unsolved instances: Only six of the estein60 instances can
be solved within two hours, requiring more than twice as much time on aver-
age than the estein50 problems. The optimality gap of the unsolved instances
ranges from 0.1 to 1.6 percent. Only one of the estein60 instances requires
branching—using 82 branch-and-bound nodes.

The results in Table 4 show the capabilities of SCIP-Jack to solve in-
stances in three dimensions. Specifically, all but one of the solids instances are
solved to optimality. The unsolved instance, dodecahedron, is terminated after
two hours with an optimality gap of 0.5 percent and 8435 branch-and-bound
nodes. All other instances are solved in less than a second.

Finally, the cancer instances demonstrate the ability of SCIP-Jack to
handle and solve RMST problems with up to eight dimensions. SCIP-Jack
solves 13 of 14 instances to optimality at the root node. The remaining instance
hits the memory limit after presolving—with SCIP-Jack computing a primal,
but no dual bound. To the best of the authors’ knowledge, SCIP-Jack is the
first solver to solve any of the cancer instances to optimality. Remarkably, more
than half of the instances can be solved during preprocessing, including the
cancer13 8D instance with more than a million arcs (in its transformed shape).
Furthermore, only two of the solved instances require more than four seconds
to achieve optimality. As compared to the previous version of SCIP-Jack
competing in the DIMACS Challenge, cf. [30], the run times have considerably
improved, mainly due to the enhanced reduction techniques (most notably
DA), but also due to the new heuristics (most notably ascend-and-prune). For
example, the cancer4 6D instance was not solved within 12 hours with the
previous version, while the new version of SCIP-Jack now proves optimality
in less than 15 minutes.

3.3 The node-weighted Steiner tree problem

The node-weighted Steiner tree problem (NWSTP) is a generalization of the
Steiner tree problem in graphs where the edges and, additionally, the vertices
are assigned non-negative weights. The objective is to connect all terminals
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while minimizing the weight summed over both vertices and edges spanned by
the corresponding tree.

The NWSTP is formally stated by: Given an undirected graph G = (V,E),
node costs p : V → Q≥0, edge costs c : E → Q≥0 and a set T ⊆ V of terminals,
the objective is to find a tree S = (VS , ES) that spans T while minimizing

C(S) :=
∑
e∈ES

ce +
∑
v∈VS

pv.

The NWSTP can be transformed to an SAP by substituting each edge by two
anti-parallel arcs. Then, observing that in a tree there cannot be more than
one arc going into the same vertex, the weight of each vertex is added to the
weight of each of its incoming arcs.

Transformation 1 (NWSTP to SAP)
Given an NWSTP P = (V,E, T, c, p) construct an SAP P ′ = (V ′, A′, T ′, c′, r′)

as follows:

1. Set V ′ := V , T ′ := T , A′ := {(v, w) ∈ V ′ × V ′ : {v, w} ∈ E}.
2. Define c′ : A′ → Q≥0 by c′a = c{v,w} + pw, for a = (v, w) ∈ A′.
3. Choose a root r′ ∈ T ′ arbitrarily.

Lemma 1 (NWSTP to SAP) Let P = (V,E, T, c, p) be an NWSTP and
P ′ = (V ′, A′, T ′, c′) an SAP obtained by applying Transformation 1 on P .
Denote by S and S ′ the set of solutions to P and P ′ respectively. Then S ′ can
be bijectively mapped onto S by applying

VS := {v ∈ V : v ∈ V ′S′} (9)

ES := {{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′} (10)

for S′ = (V ′S′ , A
′
S′) ∈ S ′ and it holds:

c′(A′S′) + pr′ = c(ES) + p(VS). (11)

The resulting SAP can be directly solved by SCIP-Jack. However, due to
efficiency reasons only a subset of the heuristics and reduction techniques are
employed, see Table 2.

Computational results Two NWSTP instances derived from a computational
biology application are part of the DIMACS Challenge. The two instances
differ drastically in their size. The first has more than 200 000 nodes—55 000
of them terminals—and almost 2.5 million edges, while the smaller instance
comprises merely 386 nodes, 1477 edges, and 35 terminals.

The size of the first instance proves to be prohibitive for SCIP-Jack. The
memory requirements of this instance quickly exceeds the limits of SCIP-
Jack when applying the default settings on a modest machine. To evaluate
the ability of SCIP-Jack to solve this particular instance, a runtime of 72
hours was used on a machine with 386 GB memory. To render the presolving
more effective, modified versions of the STP tests NVO, SD and NTD3 were
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employed to solve the NWSTP instance (in addition to the default prepro-
cessing). After the application of the reduction techniques, the resulting graph
contains 187 933 nodes and 986 703 edges. This equates to a 8.6 % and 60.4 %
decrease in the number of nodes and edges respectively. SCIP-Jack fails to
solve this instance to optimality, but it does achieve a nearly-optimal primal
bound of 656 970.94 with an optimality gap of 0.0049%. The much smaller
second instance is solved by SCIP-Jack at the root node within 0.1 seconds.

3.4 The prize-collecting Steiner tree problem

In contrast to the classical Steiner tree problem, the required tree for the
prize-collecting Steiner tree problem (PCSTP) needs only to span a (possibly
empty) subset of the terminals. However, a non-negative penalty is charged
for each terminal not contained in the tree. Hence, the objective is to find
a tree of minimum weight, given by both the sum of its edge costs and the
penalties of all terminals not spanned by the tree. A profound discussion on
the PCSTP is given in [4] that details real-world applications and introduces
a sophisticated specialized solver.

A formal definition of the problem is stated as: Given an undirected graph
G = (V,E), edge-weights c : E → Q≥0 and node-weights p : V → Q≥0, a tree
S = (VS , ES) in G is required such that

P (S) :=
∑
e∈ES

ce +
∑

v∈V \VS

pv (12)

is minimized.

Prior to the discussion of the prize-collecting Steiner tree problem, a varia-
tion is introduced, the rooted prize-collecting Steiner tree problem (RPCSTP).
The RPCSTP incorporates the additional condition that one distinguished
node r, denoted the root, must be part of every feasible solution to the prob-
lem. It is assumed that pr = 0. The RPCSTP can be transformed into an SAP
as follows:

Transformation 2 (RPCSTP to SAP)
Given an RPCSTP P = (V,E, p, r) construct an SAP P ′ = (V ′, A′, T ′, c′, r′)

as follows:

1. Set V ′ := V , A′ := {(v, w) : {v, w} ∈ E}, r′ := r and c′ : A′ → Q≥0 with
c′a = c{v,w} for a = (v, w) ∈ A′.

2. Denote the set of all v ∈ V with pv > 0 by T = {t1, ..., ts}. For each node
ti ∈ T , a new node t′i and an arc a = (ti, t

′
i) with c′a = 0 is added to V ′

and E′ respectively.
3. Add arcs (r′, t′i) for each i ∈ {1, ..., s}, setting their respective weight to pti .
4. Define the set of terminals T ′ := {t′1, ..., t′s}.
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Fig. 1: Illustration of a rooted prize-collecting Steiner tree instance with root
r (left), the equivalent SAP problem obtained by Transformation 2 (middle),
and a solution to the SAP instance with value 8.6 (right).

After Transformation 2, for each terminal t′i of the SAP P ′ there are ex-
actly two incoming arcs (ti, ti

′) and (r′, t′). Thereupon, each solution S′ =
(V ′S′ , A

′
S′) ∈ P ′ that contains ti must also contain (ti, ti

′), more succinctly:

∀i ∈ {1, ..., s} : ti ∈ V ′S′ =⇒ (ti, ti
′) ∈ A′S′ (13)

Condition (13) is satisfied by all optimal solutions to P ′ and each feasible
solution can be easily modified to accomplish this, concomitantly improving
its solution value. Transformation 2 is presented in [39], but without using
condition (13). The latter gives rise to a one-to-one correspondence of the
solution sets, stated in the following lemma.

Lemma 2 (RPCSTP to SAP) Let P ′ = (V ′, A′, T ′, c′) be an SAP obtained
from an RPCSTP P = (V,E, c, p) by applying Transformation 2. Denote by S
and S ′ the set of solutions to P and P ′, satisfying condition (13), respectively.
P ′ can be mapped bijectively onto P by

VS := {v ∈ V : v ∈ V ′S′} (14)

ES := {{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′} (15)

for S′ = (V ′S′ , A
′
S′) ∈ S ′. The solution value is preserved.

Transformation 2 can be extended to cover the PCSTP by the inclusion
of an artificial root node r′ and arcs (r′, ti) of cost 0. However, only one of
these arcs can be part of a feasible solution. This requirement is enforced by
the following constraint: ∑

a∈δ+(r′),c′a=0

ya = 1. (16)

Furthermore, to allow a bijection between the original and the transformed
problem, for all ti included in a solution the arc (r′, ti) with the smallest index
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i is required to be part of the solution. This condition can be expressed by
using the following set of constraints:∑

a∈δ−(tj)

ya + y(r′,ti) ≤ 1 i = 1, ..., s; j = 1, ..., i− 1. (17)

An SAP that requires the conditions (13), (16) and (17) is referred to
as root constrained Steiner arborescence problem (rcSAP). The constraints
(16) and (17) can be incorporated into the cut-formulation (Formulation 1)
without further alterations and each solution can be modified in order to meet
condition (13). Although additional s(s−1)2 constraints are introduced to fulfill
(17), the solving time is considerably reduced by adding the constraints, as
they exclude a plethora of symmetric solutions.

Transformation 3 (PCSTP to rcSAP)
Given an PCSTP P = (V,E, c, p) construct an rcSAP P ′ = (V ′, A′, T ′, c′, r′)

as follows:

1. Add a vertex v0 to V and set r := v0.
2. Apply Transformation 2 to obtain P ′ = (V ′, A′, T ′, c′, r′).
3. Add arcs a = (r′, ti) with c′a := 0 for each ti ∈ T .
4. Add constraints (16) and (17).

Lemma 3 (PCSTP to rcSAP) Let P = (V,E, c, p) be an PCSTP and P ′ =
(V ′, A′, T ′, c′, r′) the corresponding rcSAP obtained by applying Transforma-
tion 3. Denote by S and S ′ the sets of solutions to P and P ′ respectively. Each
solution S′ ∈ S ′ can be bijectively mapped to a solution S ∈ S defined by:

VS := {v ∈ V : v ∈ V ′S′} (18)

ES := {{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′}. (19)

The solution value is preserved.

For the PCSTP and RPCSTP a vast number of reduction techniques—
described in [16]—are employed by SCIP-Jack, see Table 2. Furthermore,
all heuristic used for the STP can be deployed, albeit with some alterations.
For the RSPH in the case of a transformed PCSTP, i.e. an rcSAP, instead of
commencing from different vertices, the starting point is always the (artificial)
root. In each run all arcs between the root and non-terminals (denoted by
(r′, t) in Transformation 3) are temporarily removed, except for one. A tree is
then computed on this new graph, by using the same process as the original
constructive heuristic. Instead of starting from a new terminal as done by
customary RSPH, a different arc (r′, t) is chosen to remain in the graph.

Finally, the VQ heuristic requires an adaption for both the RPCSTP and
the PCSTP: All terminals are temporarily removed from the (transformed)
graph and VQ is executed with all ti, as defined in Transformation 2 and
Transformation 3, marked as key vertices.
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Table 5: Computational results for PCSTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

JMP 34 34 1.0 0.0 – –
CRR 80 80 1.0 0.4 – –
PUCNU 18 10 11.4 53.5 50.7 1.9

Computational results Table 5 shows aggregated results for three of the PC-
STP test sets provided for the DIMACS Challenge. All but two JMP instances
are solved during preprocessing in at most 0.1 seconds. The remaining prob-
lems require no more than 0.2 seconds. Similarly, reduction techniques alone
can solve 72 of the 80 CRR instances. However, the hardest (and considerably
larger) instances take comparably longer—up to 3.7 seconds—to be solved to
optimality. The third test set, PUCNU, is derived from the PUC test set for
the STP. SCIP-Jack is already unable to solve many of the original instances
and the PCSTP versions also prove to be hard. However, ten of the instances
are solved to optimality, with only four instances requiring branching. The
remaining eight instances terminate with optimality gaps in the range 1.0 %
to 2.8 %.

Comparing the above results with those obtained by the previous version of
SCIP-Jack, a significant improvement is observed. Specifically, the JMP and
CRR instances can be solved more than 10 times faster on average, with the
longest single run time of the previous version being almost 1000 seconds. This
is compared to 3.7 seconds for the current version of SCIP-Jack. Moreover,
three additional PUCNU instances can be solved within the time limit. A
notable result is that SCIP-Jack now exhibits a better performance for 10 of
the 12 JMP, CRR and PUCNU instances that were part of the exact DIMACS
competition than any other participating solver at the time of the competition.

The improved performance of SCIP-Jack can be traced to the vastly
stronger new reduction techniques. However, it is also due to the new heuristics
P and AP, and the general improvements of SCIP-Jack, such as the new
propagator and the dual-ascent algorithm, which allows the start the branch-
and-cut with a strong lower bound.

Table 6: Computational results for RPCSTP instances

optimal
test set # solved ∅ nodes ∅ time [s]

cologne1 14 14 1.0 0.2
cologne2 15 15 1.0 0.6

The average results for the RPCSTP instances are displayed in Table 6.
Remarkably, the maximum run time observed is 0.7 seconds. While in the
DIMACS Challenge SCIP-Jack already took first place in the exact solving
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category of the RPCTSP, the current version requires significantly less time to
solve the Challenge instances—being on average more than a factor of 25 faster
for the cologne1 test set and more than a factor of 75 for the cologne2 set. This
improvement is the result of the vastly improved preprocessing techniques,
which alone manage to solve all cologne1 and cologne2 instances to optimality.

3.5 The maximum-weight connected subgraph problem

At first glance, the maximum-weight connected subgraph problem (MWCSP)
bears little resemblance to the Steiner problems introduced so far: Given an
undirected graph (V,E) with (possibly negative) node weights p, the objective
is to find a tree that maximizes the sum of its node weights. However, it is
possible to transform this problem into a prize-collecting Steiner tree problem.
One transformation is given in [5]. In this paper, an alternative transformation
is presented that leads to a significant reduction in the number of terminals
for the resulting PCSTP.

In the following it is assumed that at least one vertex is assigned a negative
cost and at least one vertex is assigned a positive cost. Without this assumption
the problem becomes trivial to solve.

Transformation 4 (MWCSP to rcSAP)
Let P = (V,E, p) be an MWCSP, construct an rcSAP P ′′ = (V ′′, A′′, T ′′, c′′, r′′):

1. Set V ′ := V , A′ := {(v, w) : {v, w} ∈ E}.
2. c′ : A′ → Q≥0 such that for a = (v, w) ∈ A′:

c′a =

{
−pw, if pw < 0

0, otherwise
3. p′ : V ′ → Q≥0 such that for v ∈ V ′:

p′(v) =

{
pv, if pv > 0
0, otherwise

4. Perform Transformation 3 to (V ′, A′, c′, p′), but in step 2 instead of con-
structing a new arc set, A′ is being used. The resulting rcSAP gives us
P ′′ = (V ′′, A′′, T ′′, c′′, r′′).

Lemma 4 (MWCSP to rcSAP) Let P = (V,E, p) be an MWCSP and
P ′′ = (V ′′, A′′, T ′′, c′′, r′′) an rcSAP obtained from P by Transformation 4.
Then each solution S′′ to P ′′ can be bijectively mapped to a solution S to P .
The latter is obtained by:

VS := {v ∈ V : v ∈ V ′′S′′} (20)

ES := {{v, w} ∈ E : (v, w) ∈ A′′S′′ or (w, v) ∈ A′′S′′} (21)

Furthermore, for the objective value C(S) of S and the objective value
C ′′(S′′) of S′′ the following equality holds:

C(S) =
∑

v∈V :pv>0

pv − C ′′(S′′). (22)
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Table 7: Number of terminals after transformation for test set ACTMOD

instance Transformation 4 transformation from [5]

drosophila001 71 5226
drosophila005 194 5226
drosophila0075 250 5226
HCMV 55 3863
lymphoma 67 2034
metabol expr mice 1 150 3523
metabol expr mice 2 85 3514
metabol expr mice 3 114 2853

Since most of the vertex weights are non-positive for all real-world DI-
MACS instances, Transformation 4 results in problems with significantly less
terminals compared to the transformation described in [5]. The differences
in the number of terminals resulting from the two transformations are pre-
sented in Table 7. Even if the number of positive weight vertices is high in the
original problem, after presolving it is typically much smaller, since adjacent
non-negative vertices can be contracted [16].

For the MWCSP the computational settings of SCIP-Jack are similar to
those of the (R)PCSTP. However, the VQ heuristic is not enabled since it
cannot easily be adapted to handle anti-parallel arcs of different weight.

Computational results Computational experiments have been performed on
the two MWCSP test sets that were part of the DIMACS Challenge. The first is
the real-world derived ACTMOD test set (which contains eight instances), and
second is the artificially created JMPALMK set (which contains 72 instances).
The results, illustrated in Table 8, demonstrate the ability of SCIP-Jack to
effectively handle real-world MWCSP instances of up to 93 000 edges in very
short time: All eight instances can be solved within 1.4 seconds, in an average
of less than half a second. The speedup of SCIP-Jack as compared to its
DIMACS Challenge predecessor is impressive, ranging from a factor of ten to
more than 4000. Furthermore, each instance is solved at least four times faster
than by any solver during the DIMACS competition. A salient example is
the drosophila001 instance which requires only 0.8 seconds with SCIP-Jack,
but at least 21.6 seconds with any of the participating solvers at the time of
the DIMACS competition. The drastically reduced run time of SCIP-Jack is
mainly due to new reduction techniques, but also the dual-ascent algorithm is
a notable factor.

The effectiveness of Transformation 4 is demonstrated by the performance
of SCIP-Jack on the ACTMODPC test set, which consists of the ACTMOD
problems transformed to PCSTP by the transformation described in [5]. Com-
pared to the original ACTMOD test set the run time of SCIP-Jack increases
for each instance of the ACTMODPC set; one cause of this increase is the
DA method becoming less efficient due to a far higher amount of terminals
in the transformed SAP. As such, Transformation 4 is a valuable addition to
SCIP-Jack.
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The results on the JMPALMK test set once again bespeak the strength
of reduction techniques implemented in SCIP-Jack. All instances are solved
during presolving, in an average of less than 0.1 seconds.

Table 8: Computational results for MWCSP instances

test set # solved ∅ nodes ∅ time [s]

ACTMOD 8 8 1.0 0.4
JMPALMK 72 72 1.0 0.0

3.6 The degree-constrained Steiner tree problem

The degree-constrained Steiner tree problem (DCSTP) is an STP with addi-
tional degree constraints on the vertices, described by a function b : V → N.
The objective is to find a minimum cost Steiner tree S = (VS , ES) such that
δS(v) ≤ b(v) is satisfied for all v ∈ VS . A comprehensive discussion of the
DCSTP, including its applications in biology, can be found in [6].

The implementation in SCIP-Jack to solve the DCSTP involves the ex-
tension of Formulation 1 by an additional (linear) degree constraint for each
vertex. Since the degree restriction does not comply with any reduction tech-
niques of SCIP-Jack, problem-specific preprocessing has not been performed
on these instances. Only the constructive heuristic is used, albeit in a modi-
fied form. The implemented constructive heuristic performs the following two
checks while choosing a new (shortest) path to be added to the current tree.
First, whether attaching this path would violate any degree constraints. Sec-
ond, whether after having added this path at least one additional edge could
be added (or all terminals are spanned). If no such path can be found, a vertex
of the tree is pseudo randomly chosen that allows to add at least one adjacent
edge. Next, such an edge leading to a vertex of high degree and being of small
cost is chosen.

Computational results Computational experiments are performed on the 20
instances in the TreeFam test set of the DIMACS Challenge with a time limit
of two hours. All instances come with degree bounds of at most 3 and their
underlying graphs are complete.

The results from computational experiments on these instances are illus-
trated in Table 9. SCIP-Jack finds the optimal solution to five instances and
proves the infeasibility of another two. The remaining 13 instances cannot be
solved by SCIP-Jack within the time limit. The gap is reduced to less than
or equal to one percent for seven of these instances. However, the gaps of the
remaining six instances range from 4.5 to as much as 55.0 percent.

As compared to what can be observed for other Steiner problem variants
in this paper, the average number of branch-and-bound nodes is high, with
90.6 nodes for the solved and 758.6 for the unsolved instances.
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Similar to the preceding variants, the current version of SCIP-Jack demon-
strates improved performance over the previous version at the DIMACS com-
petition. In particular, the insatisfiability of two instances can now be proven
and both the run time for the solved instances and the gap for the remainder
are significantly reduced: by a factor of more than 10 and by a factor of up
to 100, respectively. This results in a reduction of the average gap (one of
the criteria in the DIMACS Challenge) from 37.4 at the time of the competi-
tion to 9.3 with the latest SCIP-Jack version. Note that the winner of this
category reached an average gap of 19.1 in the competition. The improved
solving behavior of SCIP-Jack on the DCSTP can be attributed to general
enhancements such as the new propagator, see Section 2.

Table 9: Computational results for DCSTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

TreeFam 20 7 90.6 10.3 760.6 14.3

3.7 The group Steiner tree problem

The group Steiner tree problem (GSTP) is another generalization of the Steiner
tree problem that originates from VLSI design [20]. For the GSTP the concept
of terminals as a set of vertices to be interconnected is extended to a set of
vertex groups: Given an undirected graph G = (V,E), edge costs c : E → Q≥0
and a series of vertex subsets T1, ..., Ts ⊆ V , s ∈ N, a minimum cost tree
spanning at least one vertex of each subset is required. By interpreting each
terminal t as a subset {t}, every STP can be considered as a GSTP, the latter
likewise being NP-hard. On the other hand, it is possible to transform each
GSTP instance (V,E, T1, .., Ts, c) to an STP by using the following scheme:

Transformation 5 (GSTP to STP)
Given an GSTP P = (V,E, T1, ...Ts, c) construct an STP P ′ = (V ′, E′, T ′, c′)

as follows:

1. Set V ′ := V , E′ := E, T ′ = ∅, c′ := c, K :=
∑
e∈E ce + 1.

2. For i = 1, ..., s add a new node t′i to V ′ and T ′ and for all vj ∈ Ti add an
edge e = {t′i, vj}, with c′e := K.

Let (V,E, T1, ...Ts, c) be a GSTP and P ′ = (V ′, A′, T ′, c′) an STP obtained
by applying Transformation 5 on P . A solution S′ to P ′ can then be reduced
to a solution S to P by deleting all vertices and edges of S not in (V,E). The
GSTP P can in this way be solved on the STP P ′ as shown in [20] and [40].

This approach has already been deployed by [41] to solve group Steiner
tree problems and demonstrated to be competitive with specialized solvers at
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the time of publishing. In the case of SCIP-Jack, to solve a GSTP, Transfor-
mation 5 is applied and the resulting problem is treated as a customary STP
that is solved without any alteration. An alternative approach would be to
employ GSTP-specific heuristics or reduction techniques [42].

Computational results Computational experiments were performed on two
test sets of unpublished group Steiner tree instances derived from a real-world
wire routing problem. The results from these experiments are presented in
Table 10. SCIP-Jack solves all but two of the first test set, with run times
ranging from 3.3 to 563 seconds. Four of the instances solved to optimality
only require a single node, with the remaining instances solved in 219 and 61
nodes, respectively. The two unsolved instances gstp34f2 and gstp39f2 exhibit
optimality gaps of 2.7 % and 5.1 % respectively. The same performance is not
observed for the second test set. None of the instances, are solved within the
time limit and the optimality gaps range from 0.9 % to 7.8 %.

Table 10: Computational results for GSTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

GSTP1 8 6 14.9 25.0 355.9 3.9
GSTP2 10 0 – – 48.6 3.2

3.8 The hop-constrained directed Steiner tree problem

The hop-constrained directed Steiner tree problem (HCDSTP) searches for an
SAP with the additional constraint that the number of selected arcs must not
exceed a predetermined bound, called hop limit. The cut formulation (For-
mulation 1) used by SCIP-Jack is simply extended to cover this variation by
adding one extra linear inequality bounding the sum of all binary arc vari-
ables. It should be noted that in the literature the term ”hop-constrained
Steiner tree” often refers to a problem for which the number of arcs in the
path from the root to any terminal within a feasible solution is limited by a
predefined bound [43], which differs from the definition used in this paper.

The hop limit brings significant ramifications for the preprocessing and
heuristics approaches in its wake. Customarily, many presolving techniques
for Steiner tree problems remove or include edges from the graph if a less
costly path can be found, regardless whether this procedure leads to a solution
with more edges. For the HCDSTP such techniques can therefore produce
infeasibility. However, a number of HCDSTP-specific bound-based reduction
techniques can be applied, as described in [16].

Similar to the presolving techniques, the heuristics implemented in SCIP-
Jack for the other variants do not take into account the hop limit. As such,
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any identified solution may not be feasible. Therefore, a simple variation of
the constructive heuristic is used for the HCDSTP: Each arc a, having orig-
inal costs ca, is assigned the new cost c′a := 1 + λ ca

cmax
, with λ ∈ Q+ and

cmax := maxa∈A ca. Initially λ is set to 3 but its value is decreased or increased
after each iteration of the constructive heuristic, depending on whether the last
computed solution exceeds or is below the hop limit, respectively. This modifi-
cation to λ is performed relative to the deviation of the number of edges from
the hop limit.

Computational results Three different test sets, consisting of the gr12, gr14
and gr16 instances, are used for the computational experiments. All three test
sets were used in the evaluation of the DIMACS Challenge. SCIP-Jack is
able to solve all gr12 instances at the root node in less than 100 seconds.
The performance worsens for the gr14 test set, with 12 of 21 instances being
solved to optimality within the time limit. The unsolved instances terminate
with optimality gaps ranging from 2.4 % to 17.9 %, after 8.8 nodes on average.
Similarly, the optimally solved instances require—with 433.9 seconds—much
more time than the previous problems (in gr12).

Table 11: Computational results for HCDSTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

gr12 19 19 1.0 4.0 – –
gr14 21 12 6.2 396.6 8.8 10.2
gr16 20 0 – – 1.1 81.3

Finally, more than half of the gr16 instances were terminated due to in-
sufficient memory. Therefore, to solve these instances a different machine was
used, consisting of Intel Xeon E5-2697 CPUs with 2.70 GHz and 128 GB RAM.
Although this machine can boast more RAM than the machines of the clus-
ter used for the other computational experiments reported in this paper (see
Section 2.1), it is notably slower.

The results for the gr16 test set are significantly worse than for the other
two sets. Specifically, all instances terminate within the time limit with an
optimality gap of at least 27.4 %. For these larger instances, SCIP-Jack ter-
minates within the cut loop at the root LP for all but one instance. Besides the
size of the problems, a possible cause of this performance is the lack of stronger
HCDSTP-specific reduction techniques and heuristics in SCIP-Jack.

3.9 Using CPLEX as underlying LP solver

As an extension of SCIP, SCIP-Jack provides a branch-and-cut search, but
requires an external LP solver for solving the linear programming relaxations.
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For all results previously presented the LP solver SoPlex—the default LP
solver employed by SCIP—has been used for this purpose. However, SCIP
provides interfaces to many different commercial and academic LP solvers.
This section discusses the impact of exchanging the academic LP solver So-
Plex for the commercial solver CPLEX 12.6.

Table 12: Results of using CPLEX as LP solver for SCIP-Jack.

SCIP-Jack SCIP-Jack/CPLEX relative change [%]

test set type solved ∅ time [s] solved ∅ time [s] solved ∅ time

vienna-i-simple STP 68 298.6 75 218.9 +10.3 -26.7
estein60 RSMTP 6 6307.2 12 2672.5 +100 -57.6
PUCNU PCSTP 10 127.0 10 56.3 – -55.7
TreeFam DCSTP 7 730.1 7 773.0 – +5.9
GSTP2 GSTP 0 7200.1 6 2394.4 – -66.7
gr14 HCDSTP 12 1134.9 14 523.7 +16.7 -53.9

all 103 866.5 124 501.0 +20.4 -42.2

The comparison between using the LP solvers of CPLEX and SoPlex in
SCIP-Jack is performed by selecting one test set for each previously discussed
Steiner tree problem variant. An exception is made for those problem variants
that can be trivially solved after presolving—such as the SAP and MWCSP.
This test set selection is made to provide instances for which the reduction
techniques still leave large problems, to highlight the impact of the LP solver
in the branch-and-cut algorithm.

Table 12 illustrates the comparative performance of SCIP-Jack/CPLEX.
The test set and the problem variant are listed in columns one and two.
Columns three and four show the number of solved instances and the shifted
geometric mean of the running time on the test set for SCIP-Jack using So-
Plex as LP solver. The next two columns show the corresponding information
for SCIP-Jack/CPLEX. Finally, the last two columns provide the relative
change in the number of solved instances and the average time. The last row
of the table considers all instances of the six test sets jointly.

Table 12 reveals that the number of solved instance is significantly increased
when CPLEX is used. This phenomenon becomes notably pronounced for the
estein60 instances, for which more than 90 percent of time is spent in the LP
solver. Specifically, the number of solved instances doubles. Even more salient
is the behavior on the GSTP2 test set, with six instances solved to optimality
by SCIP-Jack/CPLEX, but not a single one by SCIP-Jack/SoPlex.

The comparison between CPLEX and SoPlex shows that the solving
time for most of the instances is significantly smaller when the former is used
as LP solver of SCIP-Jack. The only exception to this pattern is the TreeFam
class on which SCIP-Jack/SoPlex is around six percent faster than SCIP-
Jack/CPLEX.

In summary, the results show a considerable potential to speed up SCIP-
Jack by using a faster LP solver.
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4 From single core to distributed parallel

SCIP has two parallel extensions, ParaSCIP [44] and FiberSCIP [45], which
are built by using the Ubiquity Generator Framework (UG) [45]. In order to
parallelize a problem-specific solver (such as SCIP-Jack), users of SCIP can
simply modify their developed plugins by adding a small glue code and linking
to one of the UG libraries for SCIP (UG can be used with different state-
of-the-art MIP solvers). This glue code consists of an additional class with a
function that issues calls to include all SCIP plugins required for the sequential
version of the code. Importantly, no modification to the sequential version of
the problem-specific solver is required.

In this way, users obtain their own problem-specific parallel optimization
solver that can perform a parallel tree search on a distributed memory comput-
ing environment. The main features of UG are: several ramp-up mechanisms
(the ramp-up is the process from the beginning of the computation until all
available solvers become busy), a dynamic load balancing mechanism for par-
allel tree search and a check-pointing and restarting mechanism. More details
about the parallelization provided by UG can be found in [44,45].

This section presents computational results for the PUC test set from
SteinLib. However, it must be noted that the parallel version of SCIP-Jack
can handle all of the variants presented throughout this paper. The main pur-
pose of the parallel runs is to provide optimal solutions to as many instances as
possible. As mentioned above, the parallelization of a problem-specific solver
only requires a small glue code. As such, the parallel version of SCIP-Jack is
identical to the sequential version. By pursuing this simple approach, large
supercomputing resources can be employed to apply SCIP-Jack to solve
computationally difficult Steiner tree problems. For the computations, vari-
ous clusters and supercomputers were used as they were available. The largest
computation performed for these experiments involved up to 864 cores, which
was only required for eight instances (bip52p, bip62u, bipa2p, bipa2u,

cc11-2p, cc12-2p, cc3-12p, hc9p). However, all other computations were
conducted with 192 or less solvers. Since these experiments were performed
with the goal to solve previously unsolved instances and cluster and supercom-
puter time was limited, CPLEX 12.6 was used as the underlying LP solver to
reduce the expected run times, see Section 3.9. As a reference to the scalability
of ParaSCIP, the largest computation previously performed was an 80 000
cores run on Titan at ORNL [46]. It is expected that SCIP-Jack can also
run on such a large scale computing environment, although at this stage only
relatively small scale computational experiments have been conducted.

Table 13 shows the results on the instances of the PUC test set as of 17th
April 2015. This table lists the number of nodes, edges, and terminals, as well
as the best primal bound known at the beginning of the DIMACS Challenge
(August 2014), and the primal solution value obtained in experiments with
the parallel version of SCIP-Jack. Prior to the experiments performed using
SCIP-Jack, 32 instances of the PUC test set remained unsolved. Three of
these instances have been solved by SCIP-Jack to proven optimality, which
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Table 13: Primal bound improvements on the PUC instances

instance |V | |E| |T | best SCIP-Jack instance |V | |E| |T | best SCIP-Jack

bip42p 1200 3982 200 24657 24657* cc3-5u 125 750 13 36 36*
bip42u 1200 3982 200 236 236* cc5-3p 243 1215 27 7299 7299*
bip52p 2200 7997 200 24535 24526 cc5-3u 243 1215 27 71 71*
bip52u 2200 7997 200 234 234 cc6-2p 64 192 12 3271 3271*
bip62p 1200 10002 200 22870 22843 cc6-2u 64 192 12 32 32*
bip62u 1200 10002 200 220 219 cc6-3p 729 4368 76 20456 20270*
bipa2p 3300 18073 300 35379 35326 cc6-3u 729 4368 76 197 197*
bipa2u 3300 18073 300 341 338 cc7-3p 2187 15308 222 57088 57117
bipe2p 550 5013 50 5616 5616* cc7-3u 2187 15308 222 552 552
bipe2u 550 5013 50 54 54* cc9-2p 512 2304 64 17296 17199
cc10-2p 1024 5120 135 35379 35227 cc9-2u 512 2304 64 167 167*
cc10-2u 1024 5120 135 342 343 hc10p 1024 5120 512 60494 59797
cc11-2p 2048 11263 244 63826 63636 hc10u 1024 5120 512 581 575
cc11-2u 2048 11263 244 614 618 hc11p 2048 11264 1024 119779 119689
cc12-2p 4096 24574 473 121106 122099 hc11u 2048 11264 1024 1154 1151
cc12-2u 4096 24574 473 1179 1184 hc12p 4096 24576 2048 236949 236080
cc3-10p 1000 13500 50 12860 12837 hc12u 4096 24576 2048 2275 2262
cc3-10u 1000 13500 50 125 126 hc6p 64 192 32 4003 4003*
cc3-11p 1331 19965 61 15609 15648 hc6u 64 192 32 39 39*
cc3-11u 1331 19965 61 153 153 hc7p 128 448 64 7905 7905*
cc3-12p 1728 28512 74 18838 18997 hc7u 128 448 64 77 77*
cc3-12u 1728 28512 74 186 187 hc8p 256 1024 128 15322 15322*
cc3-4p 64 288 8 2338 2338* hc8u 256 1024 128 148 148*
cc3-4u 64 288 8 23 23* hc9p 512 2304 256 30258 30242
cc3-5p 125 750 13 3661 3661* hc9u 512 2304 256 292 292

have been underlined and marked with an asterisk in Table 13. For a further
16 instances, SCIP-Jack improved the best known solution. All instances for
which the best known primal bound has been improved are marked in bold.
Finally, all previously solved instances of the PUC test set have also been
solved by SCIP-Jack to proven optimality, which have been marked by an
asterisk (without underline).

The instances presented in Table 13 differ widely in their solving behavior.
Using the cc6-3u instance as an example, one obtains greater insight into the
typical solving procedure when applying ParaSCIP. The cc6-3u instance was
solved to optimality for the first time by SCIP-Jack and ParaSCIP. In order
to solve this instance again in a single run without restarting, SCIP-Jack
was run on the HLRN-III supercomputer consisting of a Cray XC30. This
experiment was performed by using nodes equipped with two 12-core Intel
Xeon Haswell CPUs sharing 64 GB of RAM and with a CPU clock of 2.5 GHz.
By deploying 3072 MPI processes, the optimal solution with an objective value
of 197 was proven in 961 seconds after having processed 123 210 branch-and-
bound nodes. While the lower bound was already within a distance of one to
the optimal objective value after 20 seconds, the primal bound dropped to 198
only after 100 seconds.

The above results demonstrate an overall strong performance of the parallel
version of SCIP-Jack in solving computationally difficult STP instances.
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5 Conclusions

This paper shows the multilayered impact of embedding a 15-year old Steiner
tree branch-and-cut procedure into a state-of-the-art MIP framework and clus-
tering new solving methods around it. First, the amount of problem-specific
code is drastically reduced. At the same time the number of general solution
methods available, e.g., cutting planes, has increased and will be kept up-to-
date just by the continuous improvements in the framework. Furthermore, the
opportunity to solve instances in a massively parallel distributed memory en-
vironment has been added at minimal cost. Attempts were made to solve open
instances from the difficult PUC test set by using these massively parallel ex-
tensions. As a result, SCIP-Jack was not only able to solve three previously
unsolved instances, but improve the best known solution for another 16.

The use of a general MIP solver allows a significant amount of flexibility in
the model to be solved. SCIP-Jack is able to support solving ten variants of
the Steiner tree problem with nearly the same code, and the support of further
restrictions in the model is straightforward. On top of this versatility, the
powerful solving framework for the underlying IP formulation combined with
problem-specific methods such as reduction techniques allows SCIP-Jack to
be highly competitive with problem-specific state-of-the-art solvers.

Yet, there certainly is potential for future work to improve the perfor-
mance and scope of the solver. First, already implemented routines such as
the branching rule could be improved. Second, additional reduction techniques
and heuristics for specific Steiner tree problem variants could be implemented.
Finally, SCIP-Jack could be extended to cover further Steiner problem vari-
ants described in the literature. By using the plugin structure of SCIP, the
inclusion of some of these enhancements is expected in the future.

Ultimately, this paper has described the creation of a highly competitive
exact solving framework of outstanding versatility that can veritably be des-
ignated as a Steiner class solver. Furthermore, to the best of our knowledge
this is the first time that a powerful exact Steiner tree solver has been made
available in source code to the scientific community. The SCIP Optimization
Suite [9] already contains a previous version of our solver and the current ver-
sion of SCIP-Jack is planned to be part of the next release of SCIP. We
hope that the availability of such a device will foster the use of Steiner trees
in modeling real-world phenomena.
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4. Ljubić, I.: Exact and Memetic Algorithms for Two Network Design Problems. PhD
thesis, Technische Universität Wien (2004)

5. Dittrich, M.T., Klau, G.W., Rosenwald, A., Dandekar, T., Müller, T.: Identifying func-
tional modules in protein-protein interaction networks: An integrated exact approach.
Bioinformatics 24(13) (2008) 223–231

6. Liers, F., Martin, A., Pape, S.: Steiner trees with degree constraints: Structural results
and an exact solution approach. Technical report, Department Mathematik (2014)

7. Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Networks
32 (1998) 207–232

8. Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Programming
Computation 1(1) (2009) 1–41

9. Gamrath, G., Fischer, T., Gally, T., Gleixner, A.M., Hendel, G., Koch, T., Maher, S.J.,
Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schenker, S.,
Schwarz, R., Serrano, F., Shinano, Y., Vigerske, S., Weninger, D., Winkler, M., Witt,
J.T., Witzig, J.: The SCIP Optimization Suite 3.2. Technical Report 15-60, ZIB,
Takustr.7, 14195 Berlin (2016)
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A Proofs

This section provides proofs to the lemmata stated in the course of this paper. For the
respective transformation corresponding to each of these lemmata a one-to-one correspon-
dence between the solution sets of the original and the transformed problem is proven as
well as the linear relation between the respective solutions values. This implies that all these
problems can be solved on their transformed solution spaces.

A.1 Proof of Lemma 1 (NWSTP to SAP)

Proof To see the one-to-one correspondence let S = (VS , ES) ∈ S and proceed as follows:
Surjective. Initially set V ′

S′ := VS and A′
S′ := ∅. Traverse (VS , ES), e.g. using breadth-first

search, starting from r′ and add for each w ∈ VS visited from v ∈ VS the arc (v, w) to A′
S′ .

S′ := (V ′
S′ , A

′
S′ ) is a solution to P ′ and by applying (9) and (10), S is obtained.

Injective. S′ is the only solution to P ′ that is mapped by (9) and (10) to S: Each S̃′ ∈ S′,
S̃′ 6= S′ contains at least one arc (v, w) such that (v, w) /∈ A′

S′ and (w, v) /∈ A′
S′ , since only

substituting arcs in A′
S′ by there anti-parallel counterparts would not allow directed paths

from the root to all vertices. Therefore, S̃′ is not mapped onto S.

To acknowledge (11) one readily observes that for each node of S′ except for the root
there is exactly one incoming arc, so:∑

(v,w)∈A′
S′

c′(v,w) =
∑

(v,w)∈A′
S′

(
c{v,w} + pw

)
=

∑
{v,w}∈ES

c{v,w} +
∑

w∈VS

pw − pr′ ,

which implies (11).

A.2 Proof of Lemma 2 (RPCSTP to SAP)

Proof To acknowledge that (14) and (15) constitute a mapping S′ → S it can be observed
that first the root node is conserved and second the set of all arcs corresponding to edges in
the original graph (V,E) forms a tree. To prove that a bijection is given, let S = (VS , ES) ∈ S
and T = {t1, ..., ts} as defined in Transformation 2.
Surjective. Initially, set V ′

S′ := VS and A′
S′ := ∅. Analogously to the proof of Lemma 1, add

for each edge in ES an arc to A′
S′ in such a way that finally there is for each v′ ∈ V ′

S′ a
directed path from r′ to v′. Next, for each i ∈ {1, ...s} set ai := (ti, t

′
i) if ti ∈ VS , otherwise

ai := (r′, t′i) and add ai to A′
S′ . Thereupon, S′ := (V ′

S′ , A
′
S′ ) is a solution to P ′ and by

applying (14) and (15), we obtain S.
Injective. Define the set of all arcs of P ′ corresponding to the edges of P as A := {(v, w) ∈
A′ : {v, w} ∈ E} and accordingly AS′ := A′

S′ ∩ A. Since (13) has been assumed, it holds
that: (ti, t

′
i) ∈ A′

S′ ⇔ ti ∈ V ′S and (r′, t′i) ∈ A′
S′ ⇔ ti /∈ V ′S . This implies that A′

S′ is already

determined by AS′ . Now let S̃′ = (Ṽ ′S , Ã
′
S) ∈ S′, S̃′ 6= S′. Consequently, there is at least

one arc (v, w) ∈ Ã′S such that (w, v) /∈ AS′ and (w, v) /∈ AS′ and therefore is S̃′ not mapped
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to S.
Finally, using the above notation one observes that:∑

a∈A′
S′

c′a =
∑

a∈AS′

c′a +
∑

a∈A′
S′\AS′

c′a =
∑

e∈ES

ce +
∑

v∈V \VS

pv ,

so the costs of S′ and S are equal.

A.3 Proof of Lemma 3 (PCSTP to rcSAP)

Proof Likewise to the proof of Lemma 2 one observes that (18) and (19) constitute a map-
ping S′ → S. Let S = (VS , ES) ∈ S and T = {t1, ..., ts} defined as in Transformation 3.
Surjective. Initially, define V ′

S′ := VS , A′
S′ := {(r, ti0 )}, with i0 := min {i | ti ∈ V ′

S′}. Then
extend A′

S′ analogously to the proof of Lemma 2. The so constructed S′ := (V ′
S′ , A

′
S′ ) is a

solution to P ′ and applying (18) and (19) S is obtained.
Injective. Parallelly to the proof of Lemma 2 it can be shown that for a solution S̃′ 6= S′

to P ′ there must be at least one arc (v, w) ∈ AS̃′ such that (v, w) /∈ AS′ and (w, v) /∈ AS′

with A defined as in the proof of Lemma 2. Therefore it follows that S̃′ is not mapped to S.
The equality of the solution values of S and S′ can be seen likewise.

A.4 Proof of Lemma 4 (MWCS to rcSAP)

Proof The one-to-one correspondence between the sets of solutions to P and P ′′ can be
seen analogously to the proof of Lemma 3.
To prove (22) let S = (VS , ES) be a solution to P and S′′ = (V ′′

S′′ , A
′′
S′′ ) the correspond-

ing solution to P ′′, obtained by applying (20) and (21). Further, define A := {(v, w) ∈
A′′ : {v, w} ∈ E} and AS′′ = A ∩ A′′

S′′ . First, one observes that for each v ∈ S such that
pv ≤ 0 there is exactly one incoming arc a ∈ AS′′ , so:∑

v∈VS :pv≤0

pv = −
∑

a∈AS′′

c′′a . (23)

Second:∑
v∈VS :pv>0

pv =
∑

v∈V :pv>0

pv −
∑

v∈V \VS :pv>0

pv =
∑

v∈V :pv>0

pv −
∑

a∈A′′S′′\AS′′

c′′a . (24)

Finally, by adding (23) and (24) the equation:∑
v∈VS

pv =
∑

v∈V :pv>0

pv −
∑

a∈A′′S′′

c′′a (25)

is obtained, which coincides with (22).

B Abbreviations of reduction methods

This section provides the names for all reduction methods used by SCIP-Jack, which are
listed in Table 2 in abbreviated form. All methods are described in detail in [16]. Note that
several methods can be used for several variants, see Table 2, but in this case almost always
require (considerable) adaptations. These adaptations can likewise be found in [16].

Table 14 lists in the first column the respective abbreviation of each reduction method
used by SCIP-Jack. The second column provides the full name of the method, while the
third and last column states all Steiner problem variants that use this particular reduction
method (in adapted form).
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Table 14: Abbrevitations of reduction methods

Abbreviation Name Variant

BND Bound STP, SAP, PCSTP, RPCSTP, RSMTP, GSTP
BR Basic Reduction SAP
BT Basic Test MWCSP
CBND Cost Bound HCSTP
CNS Connected Neighborhood Subset MWCSP
CT Close Terminals SAP
DA Dual-Ascent SPG, SAP, NWSTP, PCSTP, RPCSTP, MWCSP,

RSMTP, GSTP
DT Degree Test SPG, SAP, PCSTP, RPCSTP, RSMTP, GSTP
HBND Hop Bound HCSTP
NNP Non-negative Path MWCSP
NPVk Non-Positive Vertex of degree k MWCSP
NTDk Non-Terminal of Degree k SPG, PCSTP, RPCSTP, RSMTP, GSTP
NV Nearest Vertex SPG, PCSTP, RPCSTP, RSMTP, GSTP
PNT Prohibitive Non-Terminal SAP
RPT Root Proximity Terminal SAP
SD Steiner bottleneck Distance SPG, PCSTP, RPCSTP, RSMTP, GSTP
SDC Steiner bottleneck Distance Circuit SPG, PCSTP, RPCSTP, MWCSP, RSMTP, GSTP
SL Short Links SPG, PCSTP, RPCSTP, RSMTP, GSTP
UNT Unreachable Non-Terminal PCSTP, RPCSTP
UNPV Unreachable Non-Positive Vertex MWCSP

C Detailed computational results

This section presents detailed instance-wise results from the experiments performed in this
paper for all test sets discussed in Sections 2 and 3. The tables list the original and the
presolved problem size, i.e., number of nodes |V |, arcs |A|, and terminals |T | as well as
the preprocessing time (column t [s] in the Presolved columns). Moreover, the tables show
the Dual and Primal bound upon termination and the corresponding Gap in percent. If an
instance was solved to optimality, the optimal value is printed instead of primal and dual
bound, and the gap is omitted. Similarly, “–” is printed if no primal bound was present
at the time of termination. Additionally, the number of branch-and-bound nodes (N), and
the total solving time in seconds (last column) is listed. The total solving time includes the
preprocessing time. A timeout is marked by “>” before the termination time. In case of
the DCSTP for which SCIP-Jack does not perform preprocessing, the statistics about the
presolved model are omitted.

Table 15. Detailed computational results for the STP, test set X.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

berlin52 52 2652 16 0 0 0 0.0 1044 1 0.0
brasil58 58 3306 25 0 0 0 0.0 13655 1 0.0
world666 666 442890 174 0 0 0 1.1 122467 1 1.1

Table 16. Detailed computational results for the STP, test set E.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

e01 2500 6250 5 0 0 0 0.1 111 1 0.1
e02 2500 6250 10 0 0 0 0.1 214 1 0.1
e03 2500 6250 417 0 0 0 0.1 4013 1 0.1
e04 2500 6250 625 0 0 0 0.2 5101 1 0.2
e05 2500 6250 1250 0 0 0 0.2 8128 1 0.2
e06 2500 10000 5 0 0 0 0.2 73 1 0.2

cont. next page
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

e07 2500 10000 10 0 0 0 0.4 145 1 0.4
e08 2500 10000 417 0 0 0 0.1 2640 1 0.1
e09 2500 10000 625 0 0 0 0.1 3604 1 0.1
e10 2500 10000 1250 0 0 0 0.1 5600 1 0.1
e11 2500 25000 5 0 0 0 0.5 34 1 0.5
e12 2500 25000 10 0 0 0 0.5 67 1 0.5
e13 2500 25000 417 439 1506 164 0.3 1280 1 0.8
e14 2500 25000 625 0 0 0 0.1 1732 1 0.1
e15 2500 25000 1250 0 0 0 0.4 2784 1 0.4
e16 2500 125000 5 0 0 0 0.6 15 1 0.6
e17 2500 125000 10 0 0 0 0.4 25 1 0.5
e18 2500 125000 417 2063 11702 245 0.8 564 13 104.5
e19 2500 125000 625 1203 5878 175 3.7 758 1 6.4
e20 2500 125000 1250 0 0 0 13.8 1342 1 13.8

Table 17. Detailed computational results for the STP, test set ALUE.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

alue2087 1244 3942 34 0 0 0 0.1 1049 1 0.1
alue2105 1220 3716 34 53 154 16 0.1 1032 1 0.1
alue3146 3626 11738 64 682 2364 58 0.7 2240 3 7.9
alue5067 3524 11120 68 605 1966 61 0.5 2586 1 4.6
alue5345 5179 16330 68 2728 9146 68 1.4 3507 5 946.5
alue5623 4472 13876 68 2037 6816 68 1.7 3413 5 729.5
alue5901 11543 36858 68 2749 9320 68 2.3 3912 1 665.0
alue6179 3372 10426 67 259 778 52 0.4 2452 1 0.9
alue6457 3932 12274 68 748 2388 62 0.8 3057 1 7.2
alue6735 4119 13392 68 799 2564 66 0.7 2696 1 5.5
alue6951 2818 8838 67 733 2362 67 0.7 2386 1 10.6
alue7065 34046 109682 544 28309 97592 512 6.4 23340.4247 23898 2.3 1 >7200.0
alue7066 6405 20908 16 3631 12480 11 10.0 2230.71143 2265 1.5 1 >7200.1
alue7080 34479 110988 2344 27631 95538 2002 14.6 61569.9419 62475 1.4 1 >7200.0
alue7229 940 2948 34 0 0 0 0.0 824 1 0.0

Table 18. Detailed computational results for the STP, test set I640.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

i640-001 640 1920 9 0 0 0 0.0 4033 1 0.0
i640-002 640 1920 9 0 0 0 0.1 3588 1 0.1
i640-003 640 1920 9 0 0 0 0.1 3438 1 0.1
i640-004 640 1920 9 0 0 0 0.0 4000 1 0.1
i640-005 640 1920 9 0 0 0 0.1 4006 1 0.1
i640-011 640 8270 9 0 0 0 0.1 2392 1 0.1
i640-012 640 8270 9 0 0 0 0.0 2465 1 0.1
i640-013 640 8270 9 0 0 0 0.1 2399 1 0.1
i640-014 640 8270 9 0 0 0 0.1 2171 1 0.1
i640-015 640 8270 9 0 0 0 0.1 2347 1 0.1
i640-021 640 408960 9 0 0 0 4.5 1749 1 4.5
i640-022 640 408960 9 0 0 0 4.4 1756 1 4.4
i640-023 640 408960 9 0 0 0 4.6 1754 1 4.7
i640-024 640 408960 9 0 0 0 4.5 1751 1 4.5
i640-025 640 408960 9 0 0 0 4.7 1745 1 4.7
i640-031 640 2560 9 0 0 0 0.1 3278 1 0.1
i640-032 640 2560 9 0 0 0 0.1 3187 1 0.1
i640-033 640 2560 9 0 0 0 0.0 3260 1 0.0
i640-034 640 2560 9 0 0 0 0.1 2953 1 0.1
i640-035 640 2560 9 0 0 0 0.1 3292 1 0.1
i640-041 640 81792 9 32 232 9 1.5 1897 1 1.5

cont. next page
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

i640-042 640 81792 9 44 338 9 1.4 1934 1 1.5
i640-043 640 81792 9 36 260 9 1.2 1931 3 1.4
i640-044 640 81792 9 21 102 9 1.2 1938 1 1.2
i640-045 640 81792 9 0 0 0 1.2 1866 1 1.2
i640-101 640 1920 25 62 194 22 0.0 8764 1 0.1
i640-102 640 1920 25 0 0 0 0.0 9109 1 0.0
i640-103 640 1920 25 0 0 0 0.0 8819 1 0.0
i640-104 640 1920 25 0 0 0 0.0 9040 1 0.0
i640-105 640 1920 25 173 658 25 0.1 9623 3 1.7
i640-111 640 8270 25 640 8270 25 0.2 6167 233 80.9
i640-112 640 8270 25 640 8270 25 0.1 6304 89 66.0
i640-113 640 8270 25 640 8270 25 0.1 6249 285 219.9
i640-114 640 8270 25 640 8270 25 0.1 6308 199 156.8
i640-115 640 8270 25 640 8270 25 0.1 6217 285 141.3
i640-121 640 408960 25 0 0 0 4.5 4906 1 4.5
i640-122 640 408960 25 0 0 0 4.6 4911 1 4.6
i640-123 640 408960 25 0 0 0 4.7 4913 1 4.7
i640-124 640 408960 25 0 0 0 4.6 4906 1 4.6
i640-125 640 408960 25 0 0 0 4.6 4920 1 4.6
i640-131 640 2560 25 95 322 25 0.1 8097 1 0.5
i640-132 640 2560 25 106 414 24 0.1 8154 3 0.8
i640-133 640 2560 25 100 384 23 0.1 8021 1 0.2
i640-134 640 2560 25 0 0 0 0.0 7754 1 0.0
i640-135 640 2560 25 0 0 0 0.1 7696 1 0.1
i640-141 640 81792 25 640 39442 25 2.5 5199 186 2886.1
i640-142 640 81792 25 636 40352 25 2.6 5193 77 1602.1
i640-143 640 81792 25 640 49152 25 2.5 5194 69 1226.3
i640-144 640 81792 25 396 9360 25 1.9 5205 105 342.2
i640-145 640 81792 25 640 80900 25 3.4 5218 225 3158.5
i640-201 640 1920 50 104 352 39 0.1 16079 1 0.2
i640-202 640 1920 50 0 0 0 0.1 16324 1 0.1
i640-203 640 1920 50 165 602 46 0.1 16124 1 1.5
i640-204 640 1920 50 0 0 0 0.0 16239 1 0.0
i640-205 640 1920 50 55 162 31 0.0 16616 1 0.1
i640-211 640 8270 50 640 8270 50 0.2 11848.9241 12034 1.5 2328 >7200.0
i640-212 640 8270 50 640 8270 50 0.2 11795 1332 1618.0
i640-213 640 8270 50 640 8268 50 0.3 11879 4481 5362.3
i640-214 640 8270 50 640 8270 50 0.3 11860.8781 11898 0.3 3316 >7200.0
i640-215 640 8270 50 640 8262 50 0.3 11962.5217 12102 1.2 3085 >7200.0
i640-221 640 408960 50 640 175732 50 15.6 9821 31 1035.8
i640-222 640 408960 50 568 64944 50 7.2 9798 21 237.9
i640-223 640 408960 50 320 26888 50 7.3 9811 17 59.9
i640-224 640 408960 50 109 5672 50 5.9 9805 7 10.5
i640-225 640 408960 50 272 21786 50 5.7 9807 13 71.1
i640-231 640 2560 50 448 2044 50 0.1 15014 55 27.9
i640-232 640 2560 50 483 2226 49 0.1 14630 11 7.4
i640-233 640 2560 50 489 2208 47 0.1 14797 9 20.5
i640-234 640 2560 50 196 808 47 0.2 15203 1 1.1
i640-235 640 2560 50 482 2238 50 0.1 14803 181 205.6
i640-241 640 81792 50 640 79734 50 4.5 10165.1069 10259 0.9 26 >7200.1
i640-242 640 81792 50 636 38180 50 4.1 10195 323 6254.2
i640-243 640 81792 50 640 81410 50 3.2 10174.2073 10245 0.7 19 >7200.0
i640-244 640 81792 50 640 81354 50 3.2 10171.5011 10256 0.8 28 >7200.1
i640-245 640 81792 50 640 81414 50 3.1 10168.0015 10235 0.7 24 >7200.1
i640-301 640 1920 160 318 1168 122 0.0 45005 1 0.9
i640-302 640 1920 160 291 1112 110 0.0 45736 1 3.5
i640-303 640 1920 160 270 956 116 0.1 44922 1 0.4
i640-304 640 1920 160 261 930 119 0.1 46233 1 0.9

cont. next page
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

i640-305 640 1920 160 301 1106 115 0.1 45902 1 2.6
i640-311 640 8270 160 640 8058 160 0.3 35356.8112 35889 1.5 1057 >7200.0
i640-312 640 8270 160 639 8034 160 0.3 35403.0294 35931 1.5 1067 >7200.0
i640-313 640 8270 160 640 8064 160 0.4 35226.7419 35592 1.0 1136 >7200.0
i640-314 640 8270 160 640 8054 160 0.5 35144.1966 35700 1.6 1314 >7200.0
i640-315 640 8270 160 640 8038 160 0.3 35299.5984 35972 1.9 1305 >7200.0
i640-321 640 408960 160 640 383854 160 22.9 31005.418 31101 0.3 1 >7200.6
i640-322 640 408960 160 640 383870 160 23.1 31001.5172 31077 0.2 1 >7213.3
i640-323 640 408960 160 640 383854 160 22.2 31007.5649 31096 0.3 1 >7200.6
i640-324 640 408960 160 640 383872 160 23.2 31015.009 31097 0.3 1 >7204.6
i640-325 640 408960 160 640 383870 160 24.1 31000.6727 31104 0.3 1 >7202.4
i640-331 640 2560 160 488 2204 145 0.1 42796 161 67.5
i640-332 640 2560 160 504 2250 152 0.2 42548 163 113.4
i640-333 640 2560 160 502 2230 147 0.1 42345 1023 522.0
i640-334 640 2560 160 512 2280 155 0.1 42768 2715 1135.1
i640-335 640 2560 160 516 2292 153 0.1 43035 826 411.1
i640-341 640 81792 160 640 77068 160 5.1 31865.446 32121 0.8 9 >7200.1
i640-342 640 81792 160 640 76886 160 4.9 31839.4952 32028 0.6 11 >7200.0
i640-343 640 81792 160 640 76970 160 4.8 31846.6237 32049 0.6 8 >7200.1
i640-344 640 81792 160 640 77206 160 4.8 31829.1739 32009 0.6 11 >7200.1
i640-345 640 81792 160 640 77076 160 5.1 31839.7831 32051 0.7 9 >7200.1

Table 19. Detailed computational results for the STP, test set PUC.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

bip42p 1200 7964 200 990 7236 200 0.1 24478.2215 24721 1.0 3361 >7200.1
bip42u 1200 7964 200 990 7220 200 1.2 233.081642 237 1.7 4076 >7200.0
bip52p 2200 15994 200 1819 14666 200 0.5 24235.7691 24880 2.6 1018 >7200.1
bip52u 2200 15994 200 1819 14652 200 1.4 229.754538 235 2.2 1435 >7200.0
bip62p 1200 20004 200 1199 20000 200 0.5 22505.0323 23002 2.2 493 >7200.0
bip62u 1200 20004 200 1199 20000 200 1.2 214.54281 221 2.9 545 >7200.0
bipa2p 3300 36146 300 3140 35594 300 1.0 34739.6741 35909 3.3 108 >7200.1
bipa2u 3300 36146 300 3140 35590 300 3.5 329.71166 343 3.9 144 >7200.0
bipe2p 550 10026 50 550 10026 50 0.2 5616 1577 520.1
bipe2u 550 10026 50 550 10026 50 0.5 54 81 111.8
cc10-2p 1024 10240 135 1024 10240 135 0.7 34472.1056 36569 5.7 1 >7206.5
cc10-2u 1024 10240 135 1024 10240 135 1.5 334.162023 346 3.4 1 >7200.0
cc11-2p 2048 22526 244 2048 22526 244 1.5 62105.0239 65297 4.9 1 >7200.0
cc11-2u 2048 22526 244 2048 22526 244 3.0 602.531609 623 3.3 1 >7201.0
cc12-2p 4096 49148 473 4096 49148 473 5.7 118446.22 123835 4.4 1 >7200.7
cc12-2u 4096 49148 473 4096 49148 473 6.2 1148.80514 1201 4.3 1 >7200.0
cc3-10p 1000 27000 50 1000 27000 50 1.2 12696.14 12860 1.3 193 >7200.0
cc3-10u 1000 27000 50 1000 27000 50 2.8 117.836203 128 7.9 1 >7200.0
cc3-11p 1331 39930 61 1331 39930 61 1.8 15448.5499 15676 1.5 47 >7200.0
cc3-11u 1331 39930 61 1331 39930 61 7.9 143.442501 155 7.5 1 >7200.0
cc3-12p 1728 57024 74 1728 57024 74 2.4 18635.6768 19422 4.0 1 >7200.1
cc3-12u 1728 57024 74 1728 57024 74 5.9 172.550821 190 9.2 1 >7200.0
cc3-4p 64 576 8 64 576 8 0.0 2338 6301 167.6
cc3-4u 64 576 8 64 576 8 0.1 23 123 19.7
cc3-5p 125 1500 13 125 1500 13 0.0 3568.76584 3661 2.5 18548 >7200.0
cc3-5u 125 1500 13 125 1500 13 0.3 34.6204106 36 3.8 18377 >7200.0
cc5-3p 243 2430 27 243 2430 27 0.0 7173.69143 7303 1.8 1772 >7200.0
cc5-3u 243 2430 27 243 2430 27 0.4 69.6769218 71 1.9 960 >7200.0
cc6-2p 64 384 12 64 384 12 0.0 3271 207 11.7
cc6-2u 64 384 12 64 384 12 0.0 32 33 4.0
cc6-3p 729 8736 76 729 8736 76 0.2 20133.1622 20428 1.4 117 >7200.0
cc6-3u 729 8736 76 729 8736 76 1.0 195.4 201 2.8 1 >7200.0
cc7-3p 2187 30616 222 2187 30616 222 2.0 55338.9773 58029 4.6 1 >7200.7
cc7-3u 2187 30616 222 2187 30616 222 2.9 535.826599 562 4.7 1 >7200.1
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

cc9-2p 512 4608 64 512 4608 64 0.2 16868.5668 17441 3.3 1 >7200.3
cc9-2u 512 4608 64 512 4608 64 1.1 163.524047 172 4.9 1 >7200.0
hc10p 1024 10240 512 1024 10240 512 0.6 59252.5345 61409 3.5 166 >7200.0
hc10u 1024 10240 512 1024 10240 512 3.6 567.777778 595 4.6 4 >7200.1
hc11p 2048 22528 1024 2048 22528 1024 1.2 117404.127 122258 4.0 20 >7200.0
hc11u 2048 22528 1024 2048 22528 1024 14.1 1124.45703 1175 4.3 1 >7200.0
hc12p 4096 49152 2048 4096 49152 2048 3.3 232883.175 244784 4.9 1 >7200.0
hc12u 4096 49152 2048 4096 49152 2048 702.8 2199.62873 2334 5.8 1 >7200.0
hc6p 64 384 32 64 384 32 0.0 4003 1629 20.0
hc6u 64 384 32 64 384 32 0.0 39 481 14.7
hc7p 128 896 64 128 896 64 0.0 7856.13043 7905 0.6 67035 >7200.0
hc7u 128 896 64 128 896 64 0.1 75.1343284 77 2.4 34718 >7200.0
hc8p 256 2048 128 256 2048 128 0.1 15182.5249 15327 0.9 8785 >7200.0
hc8u 256 2048 128 256 2048 128 0.3 145.252523 148 1.9 2788 >7200.0
hc9p 512 4608 256 512 4608 256 0.2 29925.8807 30281 1.2 942 >7200.0
hc9u 512 4608 256 512 4608 256 0.8 286.875 295 2.8 46 >7200.0

Table 20. Detailed computational results for the STP, test set vienna-i-simple.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

I001 30190 95496 1184 7539 23190 978 6.3 253921201 1 220.9
I002 49920 155742 1665 12947 39624 1324 9.9 399809303 3 2817.3
I003 44482 146838 3222 13687 41394 2346 18.3 788774400 788774494 0.0 1 >7200.0
I004 5556 17104 570 471 1300 198 0.6 279512692 1 1.5
I005 10284 31960 1017 1031 2950 378 1.3 390876350 1 4.1
I006 31754 105750 2202 11750 35452 1856 9.8 504526035 5 4903.3
I007 15122 48742 737 4310 13290 586 3.1 177909660 1 53.1
I008 15714 51134 871 4804 14630 713 3.3 201788202 3 224.0
I009 33188 104014 1262 10603 32962 1066 7.7 275558727 3 642.5
I010 29905 94914 943 7421 23194 821 5.7 207889674 1 155.2
I011 25195 82596 1428 7454 22826 1218 7.7 317589880 11 799.6
I012 12355 39924 503 2057 6400 383 1.7 118893243 1 8.8
I013 18242 57952 891 4818 14740 679 3.4 193190339 1 93.2
I014 12715 41264 475 1870 5934 336 1.7 105173465 1 7.2
I015 48833 159974 2493 16371 50858 2142 25.4 592240832 7 7167.2
I016 72038 230110 4391 23236 70546 3388 48.0 1110879760 1110921290 0.0 1 >7205.0
I017 15095 48182 478 3500 10972 391 2.8 109739695 1 22.6
I018 31121 102226 1898 10360 31530 1571 11.9 463887832 3 2289.2
I019 25946 83290 866 8703 28128 747 4.9 217647693 3 563.3
I020 21808 69842 594 4230 13532 513 2.9 146515460 1 83.8
I021 16013 50538 392 3097 10192 298 2.3 106470644 1 21.5
I022 16224 51382 437 3857 12068 355 2.7 106799980 1 22.7
I023 22805 70614 582 4315 13278 437 2.9 131044872 1 31.0
I024 68464 217464 3001 26094 81048 2566 38.0 758479100 758484240 0.0 1 >7202.3
I025 23412 75904 945 7573 23930 848 4.2 232790758 3 1001.4
I026 47429 158614 3334 14589 44204 2640 24.2 928032223 7 5191.4
I027 85085 277776 3954 33300 103702 3537 66.1 976783461 976821921 0.0 1 >7220.3
I028 72701 230860 1790 37098 116948 1674 34.4 384026141 384055351 0.0 1 >7200.1
I029 69988 223608 2162 29051 91656 2026 26.3 492190908 492197789 0.0 1 >7242.0
I030 33188 107360 1263 9217 29282 1077 6.7 321646787 3 563.8
I031 54351 176422 2182 16397 51858 1853 24.0 578284709 5 2486.9
I032 56023 182798 3017 16513 50380 2435 33.8 773096540 773096720 0.0 4 >7201.3
I033 18555 59460 636 4073 12460 559 3.0 134461857 1 91.3
I034 22311 71032 735 6006 19008 639 3.9 165115148 1 105.0
I035 30585 100908 1704 10392 31946 1420 8.3 414440370 27 625.7
I036 37208 120712 1411 13410 42622 1278 11.3 375260654 375261017 0.0 6 >7216.8
I037 13694 44252 427 4003 12906 390 2.4 105720727 1 73.5
I038 18747 61278 967 5883 18274 786 3.3 255767543 7 845.3
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

I039 8755 28898 347 2566 7958 314 1.8 85566290 1 28.1
I040 40389 131640 1762 14850 46752 1480 11.0 431490471 431504580 0.0 1 >7200.0
I041 47197 150614 1193 17972 57698 1047 10.6 301914840 5 1990.4
I042 51896 171100 2171 19763 62066 1972 21.8 532128593 532131496 0.0 1 >7229.5
I043 10398 33574 367 3200 10126 327 1.6 95722094 1 38.3
I044 68905 227778 3358 25796 80104 2999 47.9 804499605 804538034 0.0 1 >7215.8
I045 14685 46932 421 4965 15742 390 2.4 105944062 1 52.9
I046 70843 234418 3598 25770 80572 3152 46.4 925441426 925473901 0.0 1 >7200.0
I047 28524 92502 2354 8528 25526 1695 6.6 695163406 3 1886.4
I048 13189 42438 358 3418 10906 330 2.1 91509264 1 44.0
I049 30857 99182 990 11239 36292 834 7.2 294811505 1 1240.8
I050 43073 142552 2868 14736 44958 2226 18.0 792589745 792605078 0.0 1 >7203.3
I051 27028 90812 1524 9912 30402 1344 7.8 357230839 37 2872.0
I052 2363 7522 40 0 0 0 0.0 13309487 1 0.0
I053 3224 10570 126 433 1320 89 0.3 30854904 1 1.1
I054 3803 12426 38 204 632 29 0.1 15841596 1 0.1
I055 13332 43160 570 3225 10066 463 2.3 144164924 1 27.4
I056 1991 6352 51 0 0 0 0.0 14171206 1 0.0
I057 33231 110298 1569 11142 34578 1366 8.9 412746415 1 893.2
I058 23527 79256 1256 5915 18378 1008 4.8 305024188 1 133.8
I059 9287 29950 363 1576 4854 287 1.2 107617854 1 6.1
I060 42008 135144 1242 14838 47920 1199 10.8 337290460 1 2013.8
I061 39160 127318 1458 18198 57156 1329 10.5 363042657 363042722 0.0 9 >7201.1
I062 66048 220982 3343 17331 55012 2760 38.5 792941137 9 5654.5
I063 26840 87322 1645 7294 22254 1239 6.0 459801704 13 1035.7
I064 63158 214690 3458 27661 84210 3188 43.4 863037799 863120966 0.0 1 >7200.0
I065 3898 12712 144 812 2522 117 0.7 32965718 1 2.2
I066 15038 49192 551 2732 8708 425 2.3 174219813 1 16.3
I067 20547 66460 627 7945 25222 569 4.3 175540750 1 380.9
I068 33118 110254 1553 9019 27914 1281 8.1 420730046 3 744.2
I069 9574 32416 543 2731 8312 455 1.4 135161583 1 44.7
I070 15079 49216 550 4956 15844 510 2.0 136700139 1 243.0
I071 33203 108854 1494 9631 29822 1291 11.0 382539099 1 348.0
I072 26948 88388 993 7870 25248 848 6.1 289019226 3 246.1
I073 21653 70342 1847 6106 18106 1274 4.5 663004987 1 354.5
I074 13316 44066 653 3118 9648 519 1.6 165573383 1 17.0
I075 57551 190762 2973 17983 55874 2487 27.4 815404026 11 4786.3
I076 14023 45790 598 3472 10934 489 1.9 166249692 1 26.8
I077 20856 68474 1787 7821 23236 1467 5.4 472503150 1 1644.0
I078 13294 43896 835 4874 14766 696 2.4 185525490 7 209.7
I079 19867 62542 565 5853 18694 520 3.5 150506933 1 818.5
I080 18695 59416 548 5530 17452 515 4.3 164299652 1 273.0
I081 25081 81478 888 8199 25950 746 4.3 247527679 1 276.8
I082 15592 49576 515 3951 12476 437 2.3 147407632 1 20.4
I083 89596 297166 4991 26313 80678 4045 89.7 1405586980 1405595600 0.0 1 >7200.0
I084 44934 147454 2319 12753 39698 1883 16.6 627187559 5 4346.2
I085 9113 28982 301 1727 5422 242 1.3 80628079 1 8.3

Table 21. Detailed computational results for the SAP, test set gene.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

gene41x 335 910 43 27 68 9 0.1 126 1 0.1
gene42 335 912 43 31 80 11 0.1 126 1 0.1
gene61a 395 1024 82 28 78 11 0.1 205 1 0.1
gene61b 570 1616 82 31 86 10 0.1 199 1 0.1
gene61c 549 1580 82 102 304 39 0.2 196 1 0.2
gene61f 412 1104 82 37 110 17 0.2 198 1 0.2
gene425 425 1108 86 29 82 12 0.2 214 1 0.2
gene442 442 1188 86 38 114 18 0.2 207 1 0.2
gene575 575 1648 86 22 58 8 0.2 207 1 0.2
gene602 602 1716 86 41 116 15 0.2 209 1 0.2
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

Table 22. Detailed computational results for the SAP, test set gene2002.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

microtri1 347 952 47 28 76 9 0.0 128 1 0.1
microtri3 400 1112 47 30 74 9 0.0 146 1 0.0
microtri5 416 1124 47 44 126 17 0.1 150 1 0.1
microtri6 419 1164 47 30 74 9 0.0 146 1 0.1
microtri7 437 1172 47 24 62 8 0.1 159 1 0.1
microtri8 484 1412 47 80 218 24 0.1 151 1 0.1
microtri9 297 792 47 30 78 10 0.0 131 1 0.0
microtri10 319 836 47 35 98 15 0.0 136 1 0.0
microtri11 382 1024 47 25 70 10 0.1 152 1 0.1

Table 23. Detailed computational results for the RSMTP, test set estein40.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

estein40-0 1600 6240 40 1362 5462 40 1.2 4.484154 1 80.0
estein40-10 1600 6240 40 1369 5452 40 1.6 4.673421 1 422.2
estein40-11 1600 6240 40 867 3424 40 1.2 4.384339 1 5.5
estein40-12 1600 6240 40 1371 5334 40 1.3 5.188453 1 227.2
estein40-13 1600 6240 40 1576 6188 40 0.9 4.916698 1 191.7
estein40-14 1600 6240 40 1512 6002 40 1.1 5.082803 1 419.7
estein40-1 1600 6240 40 1291 5174 40 2.1 4.681131 1 261.0
estein40-2 1600 6240 40 1466 5834 40 1.4 4.997415 1 689.5
estein40-3 1600 6240 40 1337 5330 40 1.7 4.528989 1 317.4
estein40-4 1600 6240 40 1543 6096 40 1.0 5.18228937 5.194038 0.2 144 >7200.1
estein40-5 1600 6240 40 1403 5574 40 1.3 4.97534 1 296.0
estein40-6 1600 6240 40 1394 5538 40 1.4 4.563901 1 169.5
estein40-7 1600 6240 40 1397 5548 40 0.7 4.874601 1 314.8
estein40-8 1600 6240 40 1548 6108 40 1.2 5.176179 1 1923.4
estein40-9 1600 6240 40 1547 6116 40 0.9 5.713686 1 743.9

Table 24. Detailed computational results for the RSMTP, test set estein50.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

estein50-0 2500 9800 50 2475 9744 50 1.1 5.494867 1 1570.1
estein50-10 2500 9800 50 2471 9718 50 1.4 5.253293 1 4541.1
estein50-11 2500 9800 50 2397 9460 50 1.1 5.32773868 5.34093 0.2 149 >7200.0
estein50-12 2500 9800 50 2401 9464 50 1.4 5.389099 1 2006.4
estein50-13 2500 9800 50 2436 9612 50 2.2 5.355143 1 3005.2
estein50-14 2500 9800 50 2427 9586 50 1.4 5.218085 1 1190.2
estein50-1 2500 9800 50 2442 9672 50 1.3 5.548422 1 3080.2
estein50-2 2500 9800 50 2313 9218 50 2.1 5.469105 1 2605.8
estein50-3 2500 9800 50 2222 8850 50 1.6 5.153576 1 445.2
estein50-4 2500 9800 50 2129 8458 50 2.2 5.518601 1 631.7
estein50-5 2500 9800 50 2426 9598 50 1.4 5.58043 1 3470.8
estein50-6 2500 9800 50 2443 9650 50 2.4 4.96438487 5.000242 0.7 1 >7200.1
estein50-7 2500 9800 50 2325 9194 50 2.0 5.375465 1 699.2
estein50-8 2500 9800 50 2441 9670 50 1.4 5.345677 7 4239.8
estein50-9 2500 9800 50 2472 9738 50 1.2 5.403795 1 2830.3

Table 25. Detailed computational results for the RSMTP, test set estein60.



40 Gerald Gamrath et al.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

estein60-0 3600 14160 60 3438 13596 60 2.0 5.376143 1 4188.3
estein60-10 3600 14160 60 3566 14082 60 1.7 5.614167 1 6480.2
estein60-11 3600 14160 60 3573 14100 60 2.5 5.88235049 5.979133 1.6 1 >7200.0
estein60-12 3600 14160 60 3573 14102 60 1.8 6.03294593 6.121356 1.4 1 >7200.3
estein60-13 3600 14160 60 3575 14110 60 2.0 5.603556 1 6003.0
estein60-14 3600 14160 60 3559 14052 60 1.6 5.662257 1 5588.5
estein60-1 3600 14160 60 3508 13906 60 3.2 5.5143905 5.536782 0.4 1 >7201.6
estein60-2 3600 14160 60 3534 13964 60 2.0 5.64039151 5.656678 0.3 1 >7201.4
estein60-3 3600 14160 60 3573 14102 60 3.1 5.48713677 5.542169 1.0 1 >7200.1
estein60-4 3600 14160 60 3539 13996 60 1.4 5.462872 5.470499 0.1 82 >7200.0
estein60-5 3600 14160 60 3573 14092 60 2.1 6.02892818 6.042196 0.2 1 >7200.1
estein60-6 3600 14160 60 3555 14058 60 1.9 5.83360294 5.897848 1.1 1 >7200.2
estein60-7 3600 14160 60 3565 14094 60 1.8 5.813816 1 6749.6
estein60-8 3600 14160 60 3568 14096 60 2.0 5.57171307 5.587713 0.3 1 >7201.9
estein60-9 3600 14160 60 3570 14104 60 1.5 5.762446 1 4019.2

Table 26. Detailed computational results for the RSMTP, test set solids.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

cube 8 24 8 0 0 0 0.0 7 1 0.0
dodecahedron 343 1764 20 317 1642 20 0.2 7.65777665 7.69398 0.5 8435 >7200.0
icosahedron 125 600 12 90 436 12 0.0 20.944264 27 1.0
octahedron 27 108 6 0 0 0 0.0 6 1 0.0
tetrahedron 18 66 4 0 0 0 0.0 2.682521 1 0.0

Table 27. Detailed computational results for the RSMTP, test set cancer.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

cancer10 6D 10000 94000 82 0 0 0 0.5 92 1 0.5
cancer11 8D 4762800 64777860 75 1389461 16249270 51 642.6 – 185 100 1 >12349.8
cancer12 8D 918750 12031250 58 2282 13394 33 67.8 113 1 82.9
cancer13 8D 86400 1039680 70 0 0 0 3.8 88 1 3.8
cancer14 8D 27648 308736 54 0 0 0 1.3 63 1 1.3
cancer1 4D 600 3820 20 0 0 0 0.0 28 1 0.0
cancer2 4D 256 1536 20 0 0 0 0.0 21 1 0.0
cancer3 6D 20580 197078 110 331 1568 33 1.0 146 1 1.4
cancer4 6D 34560 340416 93 6585 47340 26 2.1 136 1 786.1
cancer5 6D 8000 74400 48 312 1614 16 1.5 69 1 2.7
cancer6 6D 5120 46592 50 0 0 0 0.2 55 1 0.2
cancer7 6D 21000 203300 109 522 2788 29 1.0 140 1 2.1
cancer8 6D 8640 80064 77 0 0 0 0.3 89 1 0.3
cancer9 6D 6000 54800 46 0 0 0 0.3 59 1 0.3

Final/

Table 28. Detailed computational results for the PCSTP, test set JMP.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

K100-10 115 722 15 3 6 2 0.0 133567 1 0.0
K100-1 112 762 12 3 6 2 0.0 124108 1 0.0
K100-2 114 756 14 3 6 2 0.0 200262 1 0.0
K100-3 111 874 11 3 6 2 0.0 115953 1 0.0
K100-4 111 788 11 3 6 2 0.0 87498 1 0.0
K100-5 117 812 17 3 6 2 0.0 119078 1 0.0
K100-6 112 680 12 3 6 2 0.0 132886 1 0.0
K100-7 114 708 14 3 6 2 0.0 172457 1 0.0
K100-8 116 776 16 3 6 2 0.0 210869 1 0.0
K100-9 112 732 12 3 6 2 0.0 122917 1 0.0
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

K100-0 115 786 15 3 6 2 0.0 135511 1 0.0
K200-0 234 1580 34 3 6 2 0.0 329211 1 0.0
K400-10 450 3308 50 3 6 2 0.0 394191 1 0.0
K400-1 465 3324 65 3 6 2 0.0 490771 1 0.0
K400-2 462 3420 62 17 68 8 0.0 477073 1 0.1
K400-3 456 3314 56 3 6 2 0.0 415328 1 0.0
K400-4 456 3182 56 3 6 2 0.0 389451 1 0.0
K400-5 477 3368 77 3 6 2 0.0 519526 1 0.0
K400-6 456 3482 56 3 6 2 0.0 374849 1 0.0
K400-7 468 3286 68 3 6 2 0.0 474466 1 0.0
K400-8 461 3392 61 3 6 2 0.0 418614 1 0.0
K400-9 454 3318 54 3 6 2 0.0 383105 1 0.0
K400-0 463 3402 63 3 6 2 0.0 350093 1 0.0
P100-1 133 760 33 3 6 2 0.0 926238 1 0.0
P100-2 127 750 27 3 6 2 0.0 401641 1 0.0
P100-3 125 776 25 3 6 2 0.0 659644 1 0.0
P100-4 133 760 33 3 6 2 0.0 827419 1 0.0
P100-0 134 832 34 3 6 2 0.0 803300 1 0.0
P200-0 249 1462 49 3 6 2 0.0 1317874 1 0.0
P400-1 521 3144 121 3 6 2 0.1 2808440 1 0.1
P400-2 508 3034 108 3 6 2 0.1 2518577 1 0.1
P400-3 514 3028 114 52 212 21 0.1 2951725 1 0.2
P400-4 495 2852 95 3 6 2 0.1 2852956 1 0.1
P400-0 495 2964 95 3 6 2 0.1 2459904 1 0.1

Table 29. Detailed computational results for the PCSTP, test set CRR.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

C01-A 506 1280 6 3 6 2 0.0 18 1 0.0
C01-B 506 1280 6 3 6 2 0.0 85 1 0.0
C02-A 511 1310 11 3 6 2 0.0 50 1 0.0
C02-B 511 1310 11 3 6 2 0.0 141 1 0.0
C03-A 584 1748 84 3 6 2 0.0 414 1 0.0
C03-B 584 1748 84 3 6 2 0.0 737 1 0.0
C04-A 626 2000 126 3 6 2 0.0 618 1 0.0
C04-B 626 2000 126 3 6 2 0.0 1063 1 0.0
C05-A 751 2750 251 3 6 2 0.0 1080 1 0.0
C05-B 751 2750 251 3 6 2 0.0 1528 1 0.0
C06-A 506 2030 6 3 6 2 0.1 18 1 0.1
C06-B 506 2030 6 3 6 2 0.1 55 1 0.1
C07-A 511 2060 11 3 6 2 0.1 50 1 0.1
C07-B 511 2060 11 3 6 2 0.1 102 1 0.1
C08-A 584 2498 84 3 6 2 0.1 361 1 0.1
C08-B 584 2498 84 3 6 2 0.1 500 1 0.1
C09-A 626 2750 126 3 6 2 0.1 533 1 0.1
C09-B 626 2750 126 3 6 2 0.2 694 1 0.2
C10-A 751 3500 251 3 6 2 0.1 859 1 0.1
C10-B 751 3500 251 3 6 2 0.1 1069 1 0.1
C11-A 506 5030 6 3 6 2 0.1 18 1 0.1
C11-B 506 5030 6 3 6 2 0.1 32 1 0.1
C12-A 511 5060 11 3 6 2 0.1 38 1 0.1
C12-B 511 5060 11 3 6 2 0.1 46 1 0.1
C13-A 584 5498 84 3 6 2 0.2 236 1 0.2
C13-B 584 5498 84 3 6 2 0.2 258 1 0.2
C14-A 626 5750 126 3 6 2 0.2 293 1 0.2
C14-B 626 5750 126 3 6 2 0.2 318 1 0.2
C15-A 751 6500 251 3 6 2 0.1 501 1 0.1
C15-B 751 6500 251 3 6 2 0.1 551 1 0.1
C16-A 506 25030 6 3 6 2 0.7 11 1 0.7
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

C16-B 506 25030 6 3 6 2 0.7 11 1 0.7
C17-A 511 25060 11 3 6 2 0.7 18 1 0.7
C17-B 511 25060 11 3 6 2 0.6 18 1 0.6
C18-A 584 25498 84 269 1418 46 1.0 111 1 1.1
C18-B 584 25498 84 378 2246 48 1.0 113 1 1.2
C19-A 626 25750 126 3 6 2 0.7 146 1 0.7
C19-B 626 25750 126 3 6 2 0.6 146 1 0.6
C20-A 751 26500 251 3 6 2 0.5 266 1 0.5
C20-B 751 26500 251 3 6 2 0.5 267 1 0.5
D01-A 1006 2530 6 3 6 2 0.1 18 1 0.1
D01-B 1006 2530 6 3 6 2 0.0 106 1 0.0
D02-A 1011 2560 11 3 6 2 0.1 50 1 0.1
D02-B 1011 2560 11 3 6 2 0.1 218 1 0.1
D03-A 1168 3502 168 3 6 2 0.0 807 1 0.0
D03-B 1168 3502 168 3 6 2 0.1 1509 1 0.1
D04-A 1251 4000 251 3 6 2 0.0 1203 1 0.0
D04-B 1251 4000 251 3 6 2 0.1 1881 1 0.1
D05-A 1501 5500 501 3 6 2 0.1 2157 1 0.1
D05-B 1501 5500 501 3 6 2 0.2 3135 1 0.2
D06-A 1006 4030 6 3 6 2 0.1 18 1 0.1
D06-B 1006 4030 6 3 6 2 0.1 67 1 0.1
D07-A 1011 4060 11 3 6 2 0.1 50 1 0.1
D07-B 1011 4060 11 3 6 2 0.1 103 1 0.1
D08-A 1168 5002 168 3 6 2 0.2 755 1 0.2
D08-B 1168 5002 168 3 6 2 0.3 1036 1 0.3
D09-A 1251 5500 251 3 6 2 0.2 1070 1 0.2
D09-B 1251 5500 251 3 6 2 0.3 1420 1 0.3
D10-A 1501 7000 501 3 6 2 0.2 1671 1 0.2
D10-B 1501 7000 501 3 6 2 0.3 2079 1 0.3
D11-A 1006 10030 6 3 6 2 0.3 18 1 0.3
D11-B 1006 10030 6 3 6 2 0.3 29 1 0.3
D12-A 1011 10060 11 3 6 2 0.3 42 1 0.3
D12-B 1011 10060 11 3 6 2 0.3 42 1 0.3
D13-A 1168 11002 168 84 352 31 0.8 445 1 0.8
D13-B 1168 11002 168 3 6 2 0.4 486 1 0.4
D14-A 1251 11500 251 3 6 2 0.5 602 1 0.5
D14-B 1251 11500 251 3 6 2 0.4 665 1 0.4
D15-A 1501 13000 501 3 6 2 0.4 1042 1 0.4
D15-B 1501 13000 501 3 6 2 1.1 1108 1 1.1
D16-A 1006 50030 6 3 6 2 1.1 13 1 1.1
D16-B 1006 50030 6 3 6 2 1.1 13 1 1.1
D17-A 1011 50060 11 3 6 2 1.2 23 1 1.2
D17-B 1011 50060 11 3 6 2 1.1 23 1 1.1
D18-A 1168 51002 168 547 3026 92 2.0 218 1 2.4
D18-B 1168 51002 168 837 5550 95 2.3 223 1 3.7
D19-A 1251 51500 251 502 2582 95 2.0 306 1 2.5
D19-B 1251 51500 251 765 4494 98 2.4 310 1 3.0
D20-A 1501 53000 501 3 6 2 1.6 536 1 1.6
D20-B 1501 53000 501 3 6 2 1.9 537 1 1.9

Table 30. Detailed computational results for the PCSTP, test set PUCNU.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

bip42nu 1401 9164 201 1191 8420 201 1.7 223.804925 226 1.0 4063 >7200.1
bip52nu 2401 17194 201 2020 15852 201 2.0 219.793866 223 1.4 2262 >7200.0
bip62nu 1401 21204 201 1400 21200 201 2.0 210.047825 216 2.8 29 >7200.0
bipa2nu 3601 37946 301 3441 37390 301 6.7 320.113009 329 2.7 1 >7200.0
bipe2nu 601 10326 51 601 10326 51 0.5 53 9 50.0
cc10-2nu 1160 11050 136 1066 9872 89 0.3 165.703651 169 2.0 25 >7200.4
cc11-2nu 2293 23990 245 2123 21678 160 1.2 300.604788 307 2.1 1 >7206.9
cc12-2nu 4570 51986 474 4220 46846 299 2.4 558.870723 568 1.6 1 >7200.9
cc3-10nu 1051 27300 51 1051 16500 51 0.7 61 110 754.9

cont. next page



SCIP-Jack – A solver for STP and variants with parallelization extensions 43

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

cc3-11nu 1393 40296 62 1393 23826 62 0.8 79 57 2815.9
cc3-12nu 1803 57468 75 1803 33048 75 1.1 95 39 4226.7
cc3-4nu 73 624 9 3 6 2 0.0 10 1 0.0
cc3-5nu 139 1578 14 138 996 14 0.0 17 1 1.2
cc5-3nu 271 2592 28 267 2282 26 0.1 36 1 14.1
cc6-2nu 77 456 13 3 6 2 0.0 15 1 0.0
cc6-3nu 806 9192 77 736 7268 42 0.3 95 1 34.5
cc7-3nu 2410 31948 223 2250 26534 143 1.1 268.372944 273 1.7 1 >7200.4
cc9-2nu 577 4992 65 567 4874 60 0.2 83 7 426.4

Table 31. Detailed computational results for the RPCSTP, test set cologne1.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

i101M1 758 12704 11 0 0 0 0.1 109271.503 1 0.1
i101M2 758 12704 11 0 0 0 0.2 315925.31 1 0.2
i101M3 758 12704 11 0 0 0 0.2 355625.409 1 0.2
i102M1 760 12730 12 0 0 0 0.1 104065.801 1 0.1
i102M2 760 12730 12 0 0 0 0.2 352538.819 1 0.2
i102M3 760 12730 12 0 0 0 0.2 454365.927 1 0.2
i103M1 764 12738 14 0 0 0 0.1 139749.407 1 0.1
i103M2 764 12738 14 0 0 0 0.2 407834.228 1 0.2
i103M3 764 12738 14 0 0 0 0.2 456125.488 1 0.2
i104M2 744 12598 4 0 0 0 0.1 89920.8353 1 0.1
i104M3 744 12598 4 0 0 0 0.2 97148.789 1 0.2
i105M1 744 12604 4 0 0 0 0.1 26717.2025 1 0.1
i105M2 744 12604 4 0 0 0 0.1 100269.619 1 0.1
i105M3 744 12604 4 0 0 0 0.2 110351.163 1 0.2

Table 32. Detailed computational results for the RPCSTP, test set cologne2.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

i201M2 1812 33522 10 0 0 0 0.5 355467.684 1 0.5
i201M3 1812 33522 10 0 0 0 0.6 628833.614 1 0.6
i201M4 1812 33522 10 0 0 0 0.7 773398.303 1 0.7
i202M2 1814 33520 11 0 0 0 0.5 288946.832 1 0.5
i202M3 1814 33520 11 0 0 0 0.6 419184.159 1 0.6
i202M4 1814 33520 11 0 0 0 0.6 430034.264 1 0.6
i203M2 1824 33584 16 0 0 0 0.5 459894.776 1 0.5
i203M3 1824 33584 16 0 0 0 0.6 643062.02 1 0.6
i203M4 1824 33584 16 0 0 0 0.6 677733.067 1 0.6
i204M2 1805 33454 5 0 0 0 0.5 161700.545 1 0.5
i204M3 1805 33454 5 0 0 0 0.6 245287.203 1 0.6
i204M4 1805 33454 5 0 0 0 0.6 245287.203 1 0.6
i205M2 1823 33640 14 0 0 0 0.5 571031.415 1 0.5
i205M3 1823 33640 14 0 0 0 0.6 672403.143 1 0.6
i205M4 1823 33640 14 0 0 0 0.6 713973.623 1 0.6

Table 33. Detailed computational results for the MWCSP, test set ACTMOD.

Original Presolved
Instance |V | |A| |T | |V | |A| t [s] Optimum N t [s]

drosophila001 5298 187214 72 3 6 0.8 24.3855064 1 0.8
drosophila005 5421 187952 195 37 134 1.4 178.663952 1 1.4
drosophila0075 5477 188288 251 3 6 1.1 260.523557 1 1.1
HCMV 3919 58916 56 3 6 0.2 7.55431486 1 0.2
lymphoma 2102 15914 68 3 6 0.1 70.1663087 1 0.1
metabol expr mice 1 3674 9590 151 3 6 0.1 544.94837 1 0.1

cont. next page



44 Gerald Gamrath et al.

Original Presolved
Instance |V | |A| |T | |V | |A| t [s] Optimum N t [s]

metabol expr mice 2 3600 9174 86 3 6 0.0 241.077524 1 0.0
metabol expr mice 3 2968 7354 115 3 6 0.1 508.260877 1 0.1

Table 34. Detailed computational results for the MWCSP, test set JMPALMK.

Original Presolved
Instance |V | |A| |T | |V | |A| t [s] Optimum N t [s]

10-0-a-0-6-d-0-25-e-0-25 1193 11024 193 3 6 0.1 931.538552 1 0.1
10-0-a-0-6-d-0-25-e-0-5 1388 12194 388 3 6 0.1 1872.2754 1 0.1
10-0-a-0-6-d-0-25-e-0-75 1564 13250 564 3 6 0.5 2789.57911 1 0.5
10-0-a-0-6-d-0-5-e-0-25 1114 10550 114 3 6 0.1 522.525615 1 0.1
10-0-a-0-6-d-0-5-e-0-5 1250 11366 250 3 6 0.0 1197.85102 1 0.0
10-0-a-0-6-d-0-5-e-0-75 1374 12110 374 3 6 0.0 1762.70747 1 0.0
10-0-a-0-6-d-0-75-e-0-25 1062 10238 62 3 6 0.1 332.791924 1 0.1
10-0-a-0-6-d-0-75-e-0-5 1141 10712 141 3 6 0.1 754.300601 1 0.1
10-0-a-0-6-d-0-75-e-0-75 1196 11042 196 3 6 0.1 998.215414 1 0.1
10-0-a-1-d-0-25-e-0-25 1193 27710 193 3 6 0.0 939.39337 1 0.0
10-0-a-1-d-0-25-e-0-5 1388 28880 388 3 6 0.0 1883.21361 1 0.0
10-0-a-1-d-0-25-e-0-75 1564 29936 564 3 6 0.1 2789.57911 1 0.1
10-0-a-1-d-0-5-e-0-25 1114 27236 114 3 6 0.0 533.4294 1 0.0
10-0-a-1-d-0-5-e-0-5 1250 28052 250 3 6 0.0 1205.42131 1 0.0
10-0-a-1-d-0-5-e-0-75 1374 28796 374 3 6 0.1 1770.27776 1 0.1
10-0-a-1-d-0-75-e-0-25 1062 26924 62 3 6 0.0 336.829944 1 0.0
10-0-a-1-d-0-75-e-0-5 1141 27398 141 3 6 0.0 760.284581 1 0.0
10-0-a-1-d-0-75-e-0-75 1196 27728 196 3 6 0.0 1004.19939 1 0.0
150–a-0-6-d-0-25-e-0-25 1785 17028 285 3 6 0.1 1333.47643 1 0.1
150–a-0-6-d-0-25-e-0-5 2078 18786 578 3 6 0.1 2799.67722 1 0.1
150–a-0-6-d-0-25-e-0-75 2353 20436 853 3 6 0.2 4230.25112 1 0.2
150–a-0-6-d-0-5-e-0-25 1680 16398 180 3 6 0.1 847.452011 1 0.1
150–a-0-6-d-0-5-e-0-5 1881 17604 381 3 6 0.1 1858.0926 1 0.1
150–a-0-6-d-0-5-e-0-75 2060 18678 560 3 6 0.1 2697.45876 1 0.1
150–a-0-6-d-0-75-e-0-25 1594 15882 94 3 6 0.1 502.17599 1 0.1
150–a-0-6-d-0-75-e-0-5 1705 16548 205 3 6 0.1 1089.77117 1 0.1
150–a-0-6-d-0-75-e-0-75 1779 16992 279 3 6 0.1 1423.61063 1 0.1
150–a-1-d-0-25-e-0-25 1785 42758 285 3 6 0.1 1377.0144 1 0.1
150–a-1-d-0-25-e-0-5 2078 44516 578 3 6 0.1 2820.05174 1 0.1
150–a-1-d-0-25-e-0-75 2353 46166 853 3 6 0.2 4230.25112 1 0.2
150–a-1-d-0-5-e-0-25 1680 42128 180 3 6 0.1 860.618961 1 0.1
150–a-1-d-0-5-e-0-5 1881 43334 381 3 6 0.2 1865.66289 1 0.2
150–a-1-d-0-5-e-0-75 2060 44408 560 3 6 0.1 2707.70001 1 0.1
150–a-1-d-0-75-e-0-25 1594 41612 94 3 6 0.1 502.17599 1 0.1
150–a-1-d-0-75-e-0-5 1705 42278 205 3 6 0.1 1089.77117 1 0.1
150–a-1-d-0-75-e-0-75 1779 42722 279 3 6 0.1 1423.61063 1 0.1
50–a-0-62-d-0-25-e-0-25 590 5728 90 3 6 0.0 460.577357 1 0.0
50–a-0-62-d-0-25-e-0-5 696 6364 196 3 6 0.0 992.967111 1 0.0
50–a-0-62-d-0-25-e-0-75 788 6916 288 3 6 0.0 1447.54452 1 0.0
50–a-0-62-d-0-5-e-0-25 556 5524 56 3 6 0.0 280.832378 1 0.0
50–a-0-62-d-0-5-e-0-5 629 5962 129 3 6 0.0 655.623217 1 0.0
50–a-0-62-d-0-5-e-0-75 696 6364 196 3 6 0.0 965.554694 1 0.0
50–a-0-62-d-0-75-e-0-25 531 5374 31 3 6 0.0 171.628785 1 0.0
50–a-0-62-d-0-75-e-0-5 566 5584 66 3 6 0.0 362.188212 1 0.0
50–a-0-62-d-0-75-e-0-75 593 5746 93 3 6 0.0 490.623986 1 0.0
50–a-1-d-0-25-e-0-25 590 13572 90 3 6 0.0 471.393285 1 0.0
50–a-1-d-0-25-e-0-5 696 14208 196 3 6 0.0 995.313181 1 0.0
50–a-1-d-0-25-e-0-75 788 14760 288 3 6 0.0 1447.54452 1 0.0
50–a-1-d-0-5-e-0-25 556 13368 56 3 6 0.0 286.920868 1 0.0
50–a-1-d-0-5-e-0-5 629 13806 129 3 6 0.0 661.711707 1 0.0
50–a-1-d-0-5-e-0-75 696 14208 196 3 6 0.0 965.554694 1 0.0
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Original Presolved
Instance |V | |A| |T | |V | |A| t [s] Optimum N t [s]

50–a-1-d-0-75-e-0-25 531 13218 31 3 6 0.0 171.628785 1 0.0
50–a-1-d-0-75-e-0-5 566 13428 66 3 6 0.0 362.188212 1 0.0
50–a-1-d-0-75-e-0-75 593 13590 93 3 6 0.0 490.623986 1 0.0
750-a-0-647-d-0-25-e-0-25 891 9278 141 3 6 0.0 702.644057 1 0.0
750-a-0-647-d-0-25-e-0-5 1041 10178 291 3 6 0.0 1419.77986 1 0.0
750-a-0-647-d-0-25-e-0-75 1176 10988 426 3 6 0.0 2116.58233 1 0.0
750-a-0-647-d-0-5-e-0-25 830 8912 80 3 6 0.0 403.177763 1 0.0
750-a-0-647-d-0-5-e-0-5 939 9566 189 3 6 0.0 946.129495 1 0.0
750-a-0-647-d-0-5-e-0-75 1036 10148 286 3 6 0.0 1382.77203 1 0.0
750-a-0-647-d-0-75-e-0-25 799 8726 49 3 6 0.0 266.983922 1 0.0
750-a-0-647-d-0-75-e-0-5 856 9068 106 3 6 0.0 580.407832 1 0.0
750-a-0-647-d-0-75-e-0-75 895 9302 145 3 6 0.0 764.156726 1 0.0
750-a-1-d-0-25-e-0-25 891 20484 141 3 6 0.0 708.143835 1 0.0
750-a-1-d-0-25-e-0-5 1041 21384 291 3 6 0.0 1426.44904 1 0.0
750-a-1-d-0-25-e-0-75 1176 22194 426 3 6 0.0 2116.58233 1 0.0
750-a-1-d-0-5-e-0-25 830 20118 80 3 6 0.0 403.177763 1 0.0
750-a-1-d-0-5-e-0-5 939 20772 189 3 6 0.0 946.129495 1 0.0
750-a-1-d-0-5-e-0-75 1036 21354 286 3 6 0.0 1382.77203 1 0.0
750-a-1-d-0-75-e-0-25 799 19932 49 3 6 0.0 266.983922 1 0.0
750-a-1-d-0-75-e-0-5 856 20274 106 3 6 0.0 580.407832 1 0.0
750-a-1-d-0-75-e-0-75 895 20508 145 3 6 0.0 764.156726 1 0.0

Table 35. Detailed computational results for the STP, test set TreeFam.

Instance |V | |A| |T | Dual Primal Gap% N t [s]

TF101057-t1 52 2652 35 infeasible 1 0.1
TF101057-t3 52 2652 35 2756 1027 21.7
TF101125-t1 304 92112 155 infeasible 1 5.6
TF101125-t3 304 92112 155 55083.0778 55338 0.5 585 >7200.4
TF101202-t1 188 35156 72 79661.8973 80037 0.5 3680 >7200.3
TF101202-t3 188 35156 72 77859.6474 78102 0.3 13595 >7200.0
TF102003-t1 832 691392 407 194783.06 396842 50.9 2 >7220.7
TF102003-t3 832 691392 407 181270.819 190431 4.8 3 >7258.2
TF105035-t1 237 55932 104 34857.087 47145 26.1 1210 >7200.8
TF105035-t3 237 55932 104 32858.3179 32967 0.3 6335 >7200.4
TF105272-t1 476 226100 223 135288.813 300315 55.0 59 >7202.3
TF105272-t3 476 226100 223 126694.275 132597 4.5 19 >7204.3
TF105419-t1 55 2970 24 18668 8720 110.2
TF105419-t3 55 2970 24 18223 6 0.9
TF105897-t1 314 98282 133 106872.613 179907 40.6 244 >7202.1
TF105897-t3 314 98282 133 97485.0445 98452 1.0 339 >7200.0
TF106403-t1 119 14042 46 54124 532 196.5
TF106403-t3 119 14042 46 53760 1 2.5
TF106478-t1 130 16770 54 54979.9159 55413 0.8 59877 >7200.1
TF106478-t3 130 16770 54 54765.125 54849 0.2 88211 >7200.1

Table 36. Detailed computational results for the GSTP, test set GSTP1.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

gstp30f2 474 1828 30 192 726 24 0.8 569 1 1.1
gstp31f2 349 1284 31 312 1170 30 0.5 635 1 3.8
gstp33f2 452 1746 33 0 0 0 0.5 513 1 0.5
gstp34f2 1253 5000 34 1234 4952 34 1.3 628.611868 646 2.7 67 >7200.0
gstp36f2 442 1672 36 410 1552 36 1.0 610 1 6.5
gstp37f2 1054 4216 37 1044 4190 37 1.1 485 219 4520.8
gstp38f2 618 2504 38 590 2416 38 1.3 656 61 601.6
gstp39f2 707 3310 39 700 3294 39 1.1 429.130633 452 5.1 1729 >7200.0

Table 37. Detailed computational results for the GSTP, test set GSTP2.
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

gstp50f2 1142 4622 50 1120 4572 50 1.8 654.179976 674 2.9 244 >7200.0
gstp55f2 1751 6804 55 1691 6680 55 2.0 849.40167 892 4.8 45 >7200.0
gstp60f2 838 3528 60 835 3522 60 1.7 1153.20028 1164 0.9 602 >7200.0
gstp64f2 1860 7380 64 1790 7218 60 1.7 903.513293 932 3.1 18 >7200.0
gstp66f2 2623 10100 66 2483 9812 62 2.3 893.440207 920 2.9 8 >7200.2
gstp73f2 1911 7308 73 1797 7044 65 2.2 1195.80281 1209 1.1 25 >7200.0
gstp76f2 1818 6990 76 1686 6696 68 1.5 1016.0365 1026 1.0 14 >7200.0
gstp78f2 2355 9384 78 2275 9204 74 2.6 1053.98605 1095 3.7 59 >7200.0
gstp83f2 3177 12530 83 3052 12272 80 2.3 835.124263 906 7.8 18 >7200.1
gstp84f2 2358 9134 84 2184 8754 74 1.7 1055.89293 1095 3.6 58 >7200.1

Table 38. Detailed computational results for the STP, test set gr12.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

wo11-cr100-se10 809 7432 10 335 3390 10 0.1 136516 1 0.9
wo11-cr100-se11 809 7430 10 502 5168 10 0.1 145251 1 1.4
wo11-cr100-se1 809 7444 10 616 6622 10 0.0 182082 1 2.5
wo11-cr100-se2 809 7394 10 480 5070 10 0.1 163872 1 0.4
wo11-cr200-se10 809 15262 10 471 9550 10 0.2 59523 1 2.5
wo11-cr200-se11 809 15260 10 661 14210 10 0.1 66786 1 4.9
wo11-cr200-se1 809 15274 10 663 14582 10 0.1 76353 1 8.8
wo11-cr200-se2 809 15224 10 645 13726 10 0.1 75434 1 1.9
wo12-cr100-se10 809 9360 10 510 6256 10 0.0 167223 1 2.2
wo12-cr100-se11 809 9852 10 569 7056 10 0.1 199679 1 1.4
wo12-cr100-se1 809 9446 10 554 6812 10 0.0 164198 1 2.0
wo12-cr100-se7 809 9702 10 301 3702 10 0.1 136232 1 0.6
wo12-cr200-se9 809 28346 10 293 8588 10 0.1 46408 1 1.1
wo10-cr100-se0 809 14396 10 809 14396 10 0.1 171486 1 74.1
wo10-cr100-se10 809 14428 10 603 10548 10 0.1 117081 1 4.7
wo10-cr100-se11 809 14386 10 643 10942 10 0.1 125785 1 7.7
wo10-cr200-se7 809 44696 10 454 19898 10 0.1 46306 1 3.3
wo10-cr200-se8 809 44654 10 805 44392 10 0.3 61177 1 34.5
wo10-cr200-se9 809 44670 10 723 37912 10 0.4 51737 1 28.4

Table 39. Detailed computational results for the STP, test set gr14.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

wo10-cr100-se0 3209 215940 10 3209 215940 10 2.6 160723.537 178284 9.8 1 >7200.2
wo10-cr100-se11 3209 215932 10 2831 187356 10 3.0 120466 1 2300.5
wo10-cr200-se3 3209 643552 10 3187 635486 10 21.9 51380.983 61148 16.0 1 >7203.6
wo10-cr200-se4 3209 643414 10 3167 628838 10 16.6 50725.3688 57593 11.9 1 >7202.7
wo11-cr100-se6 3209 115502 10 2773 115502 10 1.5 206671.764 218292 5.3 7 >7200.1
wo11-cr200-se2 3209 232858 10 2684 220074 10 2.8 71134 1 526.0
wo11-cr200-se3 3209 233104 10 2041 158058 10 2.3 57930 1 189.7
wo11-cr200-se4 3209 233038 10 2763 231592 10 3.1 63313 1 384.6
wo12-cr100-se0 3209 153366 10 904 38542 10 0.8 116288 1 22.0
wo12-cr100-se5 3209 156578 10 1374 63594 10 1.2 131631 1 293.4
wo12-cr100-se6 3209 157214 10 2030 99256 10 1.4 146049 234 6697.8
wo12-cr100-se7 3209 158984 10 1349 63790 10 0.8 122306 1 267.2
wo12-cr100-se8 3209 157912 10 1423 68700 10 0.8 116077 1 627.6
wo12-cr100-se9 3209 156658 10 633 23838 10 0.7 99170 1 6.3
wo12-cr200-se0 3209 445774 10 1515 181670 10 2.8 53883 1 442.4
wo12-cr200-se10 3209 446040 10 2317 311642 10 7.1 62137.1904 72475 14.3 1 >7201.2
wo12-cr200-se11 3209 457496 10 2383 330774 10 4.8 66663.9 81213 17.9 9 >7200.5
wo12-cr200-se4 3209 460250 10 2395 329386 10 6.7 71599.6445 78710 9.0 1 >7200.7
wo12-cr200-se5 3209 456998 10 2172 280816 10 6.8 57694 40 7062.8
wo12-cr200-se6 3209 460500 10 2377 327552 10 9.4 60423.1974 63892 5.4 7 >7201.1
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

wo12-cr200-se7 3209 464090 10 1823 224594 10 4.6 60445.221 61938 2.4 317 >7200.4

Table 40. Detailed computational results for the HCDSTP, test set gr16. All instances
have 10 terminals (before and after preprocessing).

Original Presolved
Instance |V | |A| |V | |A| t [s] Dual Primal Gap% N t [s]

wo10-cr100-se0 12509 2843882 11604 2843678 6.8 67934.3155 178781 163.2 1 >7208.4
wo10-cr100-se10 12509 2844058 11319 2772610 129.4 68639.4849 122284 78.2 1 >7331.9
wo10-cr100-se6 12509 2843894 11604 2843690 6.9 69686.5234 199237 185.9 3 >7207.2
wo10-cr200-se0 12509 8741560 11604 8738884 29.7 36160 68834 90.4 1 >7231.1
wo10-cr200-se3 12509 8741850 11604 8739162 29.8 32976 59383 80.1 1 >7235.9
wo10-cr200-se4 12509 8741234 11604 8738558 29.7 34218.3333 66166 93.4 1 >7240.3
wo10-cr200-se5 12509 8740874 11604 8738198 29.7 35158 68277 94.2 1 >7244.3
wo10-cr200-se7 12509 8741906 9692 7159770 2939.8 32432.3125 46438 43.2 1 >10143.0
wo11-cr100-se0 12509 1634066 10654 1634018 3.9 92733.2864 204001 120.0 1 >7204.4
wo11-cr100-se10 12509 1633968 8811 1319422 383.4 85769.1902 124389 45.0 1 >7583.5
wo11-cr200-se2 12509 3416158 10654 3415928 8.9 45476.5249 76168 67.5 1 >7211.3
wo11-cr200-se3 12509 3416916 10449 3341260 117.3 45394.1664 57820 27.4 1 >7319.8
wo12-cr100-se2 12509 2172502 10486 2145056 5.3 96880.9782 194788 101.1 1 >7207.4
wo12-cr100-se3 12509 2173508 10426 2122636 7.9 90073.8988 151797 68.5 1 >7209.1
wo12-cr200-se2 12509 6560440 10543 6530350 22.8 43813.1724 81064 85.0 1 >7230.0
wo12-cr200-se3 12509 6557828 10494 6465210 22.8 40141.5455 62201 55.0 1 >7224.9
wo12-cr200-se4 12509 6420904 10422 6281784 19.9 43269.8722 83053 91.9 1 >7224.6
wo12-cr200-se7 12509 6766046 9903 6190724 1016.1 41470.7083 64796 56.2 1 >8231.3
wo12-cr200-se8 12509 6207724 10434 6178476 111.6 38677.7129 54757 41.6 1 >7313.8
wo12-cr200-se9 12509 6571406 9928 6168132 924.0 36254.0664 50364 38.9 1 >8124.9
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