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Abstract

This paper presents a novel application of operations research techniques to the analysis

of HIV Env gene sequences, aiming to identify key features that are possible vaccine targets.

These targets are identified as being critical to the transmission of HIV by being present

in early transmitted (founder) sequences and absent in later chronic sequences. Identifying

the key features of Env involves two steps: first, calculating the covariance of amino acid

combinations and positions to form a network of related and compensatory mutations;

and second, developing an integer program to identify the smallest connected subgraph

of the constructed covariance network that exhibits a set covering property. The integer

program developed for this analysis, labelled the unrooted set covering connected subgraph

problem (USCCSP), integrates a set covering problem and connectivity evaluation, the

latter formulated as a network flow problem. The resulting integer program is very large

and complex, requiring the use of Benders’ decomposition to develop an efficient solution

approach. The results will demonstrate the necessity of applying acceleration techniques to

the Benders’ decomposition solution approach and the effectiveness of these techniques and

heuristic approaches for solving the USCCSP.
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Introduction

Human immunodeficiency virus (HIV) currently infects approximately 40 million people world-

wide and has resulted in over 20 million deaths. Although antiretroviral therapy has reduced

mortality and morbidity from this disease in developed countries the large number of new infec-

tions each year demonstrates a need for more effective prevention programs. The most effective

prevention will be provided by a vaccine, but to date no successful HIV vaccine has been de-

veloped. One of the difficulties of developing a vaccine is the high rate of mutation of HIV that

results in shifting targets for the immune response. A feature of particular importance is the

viral envelope gene Env that codes for the gp160 protein, which is cleaved into the gp120 and

gp41 glycoproteins. gp120 buds from the virion surface and is responsible for binding to the

CD4 receptor of immune cells, while gp41 is responsible for fusion with the target cell membrane

and mediates the resulting infection of the cell.

The most exposed regions of gp120 are susceptible to antibody binding and clearance and

hence can be highly variable. An effective vaccine must stimulate the expansion of antibodies to

regions of gp120 that are necessary for viable virus and are also amenable to antibody contact.

The evolving nature over the course of infection of Env and its glycoproteins gp120 and gp41 is

evidence that antibodies against HIV envelope are generated and force the Env gene to mutate

to avoid viral clearence. However, antibody development is too slow to inhibit infection of an

individual or to eliminate infection once established. A vaccine needs to prime an antibody

response to very early stages of HIV. The targets for such a vaccine are currently unclear, but

may be elucidated by studying how Env changes from the early (founder) stage of infection

to the chronic stage [11]. Features in the Env gene that are present in founder viruses but

absent in chronic viruses may indicate aspects that are under eventual immune pressure, and

are candidates for vaccine targets.

Initial investigations to identify amino acid features of Env between the two virus groups,

founder and chronic, followed the approach of Murray et al. [17], which examined amino acid

pairs in the hepatitis C virus (HCV) envelope that distinguished responders to antiviral therapy.

The current investigation analyses 266 HIV Env protein sequences, 133 founder and 133 chronic,

obtained from a previous study comparing glycosylation sites between founder and chronic

individuals [15]. Since a total of 266 Env sequences in the current investigation, and in other

studies [1, 13, 15], is small in comparison to the 858 amino acids (AA) in HIV Env there can
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be many positions in the sequences that will express different AA for founders compared to

chronics. Hence the underlying state space employed is not the individual AA, but rather

covarying pairs of AA that achieve some minimal level of covariance. AA at a pair of positions

are said to covary if the AA combinations observed at these positions are sufficiently different

from random combinations. For example, considering the AA Phenylalanine (F), Lysine (K),

Arginine (R) and Tyrosine (Y) if in 16 sequences at positions 223 and 432 there are 8 FK (F at

223 and K at 432) pairs and 8 YR pairs, then positions 223 and 432 covary since these observed

pairs are sufficiently different to the random combinations of 4 FK, 4 FR, 4 YK and 4 YR pairs.

The approach developed by Murray et al. [17] identifies the fewest AA pairs that express

particular amino acid combinations present in one group but not the other. The integer pro-

gramming formulation and the resulting analysis identifies a set of separating pairs that are

usually not connected. While these pairs identify important positions in Env the lack of con-

nectivity reduces how useful the positions and the identified AA are in the development of a

vaccine against HIV. The current analysis attempts to identify a set of covarying pairs that

form a connected subgraph. This connected subgraph is desirable for several reasons. First, a

number of compensatory mutations will be needed for Env to sufficiently change its structure to

evade the immune response, identified by covarying positions. Second, an antibody stimulated

by a vaccine will bind to between 5 and 8 AA of its antigen. Finally, a network of target AA

may better describe underlying mechanisms by which HIV evades immune system clearance.

In this paper an integer programming model is developed that selects a set of covarying pairs

with the following properties. First, the most important features of the sequence are identified.

This is defined as the fewest number of pairs that express AA combinations that exist in some

founder sequences but in no chronic sequences. Second, the selected covarying pairs and amino

acid positions form a connected subnetwork of the original covariance network where feasible.

The integer programming problem developed to achieve this is termed the unrooted set covering

connected subgraph problem (USCCSP).

1 Literature Review

The connected subgraph problem describes a broad class of problems to which the USCCSP

belongs. This problem class has applications to a variety of different research fields. Such areas

of research include wildlife conservation [8, 9], network design [3], analysis of protein-protein
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interactions [5, 10] and forest harvesting [6]. This paper represents the first application of this

problem class to the analysis of mutational relationships in gene sequences. The fundamental

aspect observed in applications of this problem class is the distribution of key features, either

essential habitat regions or important covarying AA pairs, across a large network. The wildlife

conservation applications attempt to identify contiguous regions that improve the mobility of

threatened species between reserves [8, 9] or connect known habitats of a number of different

species [18–20]. Identifying a connected subnetwork that describes these important features is

extremely important to minimise the cost of conservation or, in our case, identify closely related

features to aid vaccine development.

As stated previously, the USCCSP is a specific variant of the connected subgraph problem.

This variant is distinguished by having no root or terminal nodes specified, implying that the

connected subgraph may be found in any region of the underlying network. To the best of

the authors knowledge, such a problem formulation has not been explicitly considered in the

literature.

A typical example of the connected subgraph problem with multiple fixed terminal nodes is

presented by Conrad et al. [7]. The specification of terminal nodes alters the problem formula-

tion by providing a fixed set of vertices that must be included in the resulting subgraph. The

solution approach employed by Conrad et al. [7] involves two key stages, i) identifying the nodes

and edges to include in the subgraph and ii) checking the graph for connectivity. The latter of

these stages is formulated as a network flow problem with a single source and multiple terminal

locations. This work is extended by Gomes et al. [12], enhancing the solution approach with the

introduction of a two-phase algorithm. The first phase of the algorithm presented in [12] solves

a minimum Steiner tree problem to identify a feasible, but sub-optimal, connected subgraph

solution. Given a feasible solution, the second phase then solves a mixed integer program to

improve the solution quality.

The conservation reserve network problem considered by Önal and Briers [18,19] and Önal

and Wang [20] is similar to the problem presented in this paper. In particular, the selection

of habitat regions is formulated as a set covering problem, without the specification of root

or terminal nodes. However, the data used by Önal and Briers [18, 19] forces the inclusion of

specific habitat sites. This requirement implicitly defines a set of terminal nodes for the resulting

connected subgraph. A limitation of the work presented by Önal and Briers [18, 19] and Önal

and Wang [20] is the use of a network based upon two dimensional data that is partitioned
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into a regular square grid. Consequently, there is an upper bound of 8 on the degree of each

node, which is significantly smaller than the node degree observed in the underlying graphs

considered in this paper. A final limitation of these approaches [18–20] is the requirement that

the resulting subgraph forms a spanning tree of the selected sites, preventing the possibility of

cycles appearing in the optimal solution.

Connectivity in subgraphs has been evaluated using a variety of different modelling ap-

proaches. However, the permissible methods for connectivity evaluation are dependant on

whether the subgraph is formed with the selection of nodes or edges. Forming subgraphs by

selecting nodes is the most common approach employed, which permits the use of trees to

construct connected subgraphs. The property that a tree is a completely connected graph is

exploited by Önal and Briers [18,19] and Önal and Wang [20]. In addition, the Steiner tree prob-

lem is a very useful and closely related problem, which is employed by Dilkina and Gomes [9].

Alternatively, Gomes et al. [12], Conrad et al. [8] and Dilkina and Gomes [9] consider the single

and multi-commodity flow problems as a method to impose connectivity constraints. Finally,

the properties of node-cut sets are employed by Carvajal et al. [6] to impose connectivity con-

straints between two non-adjacent nodes that are selected in the subgraph. The connectivity

evaluation approaches presented by Gomes et al. [12], Conrad et al. [8], Dilkina and Gomes [9]

and Carvajal et al. [6] are also permissible for problems forming subgraphs through the selection

of edges.

The contributions of this paper are twofold, the analysis of HIV Env sequences and the

development of the unrooted set covering connected subgraph problem. The contribution to

this application area is the development of a sophisticated integer programming problem to

analyse HIV Env in regards to vaccine development. Second, this paper extends the connected

subgraph problem class by presenting a general formulation of the unrooted set covering variant.

The solution approaches presented in this paper have not been previously considered, and the

novel implementation of Benders’ decomposition is a contribution of this paper.

The exposition in this paper is presented with the following structure. Section 2 provides

a description of the problem and presents key details related to the application. Section 3

describes the mathematical model for the general form of the USCCSP that is used to solve

the problem presented in Section 2. An extension to the USCCSP that provides an alternative

analysis of the HIV sequences is also given in Section 3. The application of Benders’ decomposi-

tion to solve the connected subgraph problem is described in Section 4, including a description
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of a trust region approach to accelerate the algorithm convergence. The computational results

for the original problem formulation and extensions are presented in Section 5. The conclusions

and possible future work are detailed in Section 6.

2 Problem description

The USCCSP attempts to identify a set covering of items by selecting edges of a graph, with

those edges forming a connected subgraph. As input the problem receives an undirected graph

G = (V,E) and a set of items Q. Subsets of Q are observed on each edge contained in E.

The objective of this problem is to select a subset of edges Ē ⊆ E; such that, each item in Q

appears on at least one edge contained in Ē. This is a set covering problem for the items in Q

on graph G. Additionally, the resulting subgraph Ḡ = (V (Ē), Ē) must be connected, otherwise

a penalty is applied for each additional edge from E\Ē that is required to form a connected

network.

The problem considered in this paper shares characteristics with many classical problems.

First, a minimum spanning tree identifies a subset of edges Ē that connects all vertices V .

While similar to the USCCSP, the constraints requiring that all vertices are connected and

those prohibiting cycles are overly restrictive. Second, the Steiner tree problem aims to find

a subset of vertices V̄ and related edges E(V̄ ) that connect a set of required vertices T . This

is closely related to the USCCSP; however, the resulting graph is a tree and the set T must

be known a priori. Finally, the maximum weight connected subgraph problem is solved on a

graph, with both positive and negative vertex weights, to find V̄ ⊆ V and subsequently E(V̄ )

that form a connected subgraph with a minimum total vertex weight. Both the USCCSP and

the maximum weight connected subgraph problem share the connected subgraph objective;

however the former deviates from the latter by solving a set covering problem. As such, the

selection of edges to satisfy a set covering problem and connectivity requirements separates the

USCCSP from classical connected network problems.

Within the biology context, the solution to the USCCSP identifies the smallest set of covary-

ing AA pairs forming a connected network that express combinations exhibited by the founder

viruses but not the chronic. The graph G used to solve this problem is constructed using the

following steps. First, a covariance network is constructed from both the founder and chronic

sequences using the method presented by Aurora et al. [4]. The approach of [4] is basically a
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variant of a chi-squared test to determine whether the AA combinations observed at a pair of

positions across all sequences differ from what would be observed from random combinations.

Covarying pairs are ones that achieve a specified cut-off value. The set Q consists only of

the founder sequences, so the AA combinations on each covarying pair that are displayed by

any chronic virus must be discarded. The resulting network (G) consists of Env positions (V )

and covarying pairs (E) with AA combinations exhibited only by founder sequences (Q). This

network is described as the founder sequence separating pairs network, hereafter the separating

pairs network.

Methods identifying the smallest set of covarying AA pairs that separate groups of sequences

are presented by [16,17]. These are formulated purely as set covering problems and hence these

networks will not necessarily be connected. The USCCSP extends the minimal separating pairs

problem [16, 17] by introducing constraints that enforce the connectivity between the selected

pairs.

3 The unrooted set covering connected subgraph problem

Two important features of the USCCSP are the graph G and the set of sequences Q. The

structure of G depends on the problem application. In regards to the HIV analysis application

considered in this paper, two different constructions of G are possible. The different graph

constructions lead to alternative problem formulations for the USCCSP. These alternative for-

mulations will be presented in Sections 3.1 and 3.2.

The separating pairs network can be constructed in two different ways: a single edge between

each pair of positions, which represents all AA combinations, or with an edge for each observed

AA combination. An example of a pair of nodes in the two different graphs is displayed in

Figure 1. The first graph G = (V,E) is given by the separating pairs network where the

vertices V are given by the set of AA positions observed on at least one separating pair and

Figure 1: a) A single edge representing all separating covarying amino acid combinations be-

tween positions 1 and 2. b) An edge for each separating covarying amino acid combination

between positions 1 and 2.
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E is the set of separating pairs, which are denoted by (i, j), where i, j ∈ V . Figure 1b is an

example of the second graph construction. Specifically, for each separating pair (i, j) ∈ E, the

set of all observed amino acid combinations (m,n), where AA m is observed at i and n at j, are

contained in the set Aij . Extending this definition, the set Bi contains all AA that are observed

at position i. The modified graph G = (V, Ê) is given by Ê containing all separating pairs and

related amino acid combinations, denoted by (im, jn) where (i, j) ∈ E and (m,n) ∈ Aij .

3.1 Single edge for each separating pair

The single edge between each pair of positions represents all AA combinations exhibited only

by the founder sequences. To formulate the set covering problem, all founder sequences q are

contained in the set Q and the binary parameters aijq identify whether q is observed on the

separating pair (i, j). The variables xij are defined to equal 1 if separating pair (i, j) is selected,

0 otherwise, at a cost of cij .

The connectivity evaluation is formulated as a network flow problem between each pair of

nodes in the solution to the set covering problem. However, the AA positions selected in the

set covering solution are unknown a priori. Consequently, a set of source-sink pairs is formed

using all pairs of nodes in V . To properly model the connectivity requirements, the set S is

defined to contain all source-sink pairs (s, t), s ∈ V, t ∈ T s, where T s = {t ∈ V |t > s}.

The network flow problem requires an additional set of variables for each source-sink pair

contained in S. Flow variables are given by ystij that equal 1 if a selected pair (i, j) is used in

the path between source-sink pair (s, t), and 0 otherwise. To enforce connectivity of the set

covering solution, a penalty is applied for each non-selected pair required for a unit of flow to

pass from s to t. This penalty is applied with the introduction of variables zstij . Through problem

constraints, if ystij = 1 and xij = 0, the value of zstij is 1, otherwise zstij = 0. A multiplicative

parameter M is applied to the zstij variables in the objective function to alter the potency of

the connectivity evaluation in the USCCSP. There is no guarantee that the original graph G is

connected. Hence, it may not be possible for flow to pass between each pair of nodes in the set

covering solution. The variables ǫstj and ǫ̂stj are introduced to penalise any violation of the flow

balance between a pair of nodes, with a cost N in the objective function.

While a network flow problem is formulated for each source-sink pair, it is only necessary to

identify a path between nodes s and t if these nodes exist on at least one selected pair. The key

features of the connectivity evaluation problem are explained with reference to a small graph
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Figure 2: Given a feasible set covering solution, the connectivity evaluation problem measures

the shortest distance between each selected pair of nodes. The shortest distance between the

circled pair of nodes for this solution is two.

presented in Figure 2. In this example two edges are selected (highlighted in bold), resulting

in a subgraph containing four nodes (filled circles). Given this solution to the USCCSP, a

unit of flow must pass between each of the four selected nodes. In the model constraints, if

max{xsi + xjt − 1|i, j ∈ V } = 1 then flow must pass between source-sink pair (s, t). If an (s, t)

pair does not satisfy this constraint, because at least one of s or t is not contained in the selected

pairs, then the problem minimisation will lead to a zero flow between these nodes. As a result,

the cost of passing a unit of flow between the two circled nodes in Figure 2 is two and the total

cost of passing a unit of flow between all selected nodes is eight, since t > s, ∀(s, t) ∈ S.

The mathematical model of the USCCSP is given by,

minimise
∑

(i,j)∈E

cijxij +M
∑

(s,t)∈S

∑

(i,j)∈E

zstij +N
∑

(s,t)∈S

∑

j∈V \{s,t}

(

ǫstj + ǫ̂stj
)

, (1)

subject to
∑

(i,j)∈E

aijqxij ≥ 1 ∀q ∈ Q, (2)

ystij − xij ≤ zstij ∀s ∈ V, ∀t ∈ T s, ∀(i, j) ∈ E, (3)
∑

i∈V |
(i,j)∈E

ystij −
∑

k∈V |
(j,k)∈E

ystjk = ǫstj − ǫ̂stj ∀s ∈ V, ∀t ∈ T s, ∀j ∈ V \{s, t}, (4)

∑

k∈V |
(s,k)∈E

ystsk ≥ xsi + xjt − 1 ∀s ∈ V, ∀t ∈ T s, ∀(s, i) ∈ E, ∀(j, t) ∈ E, (5)

∑

k∈V |
(k,t)∈E

ystkt ≥ xsi + xjt − 1 ∀s ∈ V, ∀t ∈ T s, ∀(s, i) ∈ E, ∀(j, t) ∈ E, (6)

xij ∈ {0, 1} ∀(i, j) ∈ E, (7)

ystij ∈ {0, 1} ∀s ∈ V, ∀t ∈ T s, ∀(i, j) ∈ E, (8)
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zstij ∈ {0, 1} ∀s ∈ V, ∀t ∈ T s, ∀(i, j) ∈ E, (9)

ǫstj , ǫ̂
st
j ≥ 0 ∀s ∈ V, ∀t ∈ T s, ∀j ∈ V \{s, t}. (10)

The solution of the USCCSP minimises the number of separating pairs required such that

each founder sequence in Q is observed on at least one selected edge. Furthermore, this problem

minimises the number of additional separating pairs that are required for flow to pass between

each selected source-sink pair.

The set covering problem of the USCCSP is described by the first term in objective function

(1) and constraints (2). Constraints (2) describe the requirement that each founder sequence

q ∈ Q must be observed on at least one selected pair (xij = 1). The connectivity evaluation

problem is given by constraints (3)-(6) and the variables ystij , z
st
ij , ǫ

st
ij and ǫ̂stij . Constraints (3)

impose a penalty each unselected pair (xij = 0) that is required for a unit of flow to pass

between s and t. The flow balance at each node in the connected path between each (s, t) is

given by constraints (4). If the flow balance can not be satisfied, then a penalty of N is applied.

Constraints (5) and (6) are used to indicate whether a path with nonzero flow must be found

between the source-sink pair (s, t), in which case the flow between s and t must be at least one.

The Separating Pairs Problem investigated in [16] is much simpler than the USCCSP

by omitting the constraints enforcing connectivity. It consisted of the objective function
∑

(i,j)∈E cijxij and constraints (2) and (7). The resulting problem is in the form of the classical

set covering problem.

3.2 Multiple edges for each separating pair

It is common to observe numerous AA combinations on each separating pair. This results

in a covariance network that exhibits multiple edges per pair of nodes. Identifying particular

AA combinations per pair of positions may present more meaningful results than the positions

themselves.

Multiple edges between each pair of nodes requires an alternative formulation of the USCCSP,

which will be labelled the USCCSP-AA. To model the selection of multiple edges between each

pair of nodes, the variables wimjn are defined to equal one if AA combination (m,n) is selected

on edge (i, j) and zero otherwise. In regards to the biology application, the selection of edges

is restricted to at most one for each pair of nodes.

By focusing on the specific AA combinations at each pair of positions, it is possible that a
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mismatch of amino acids at intermediate nodes can occur in the connectivity evaluation. For

example, if separating pairs (i, j) and (j, k) are selected with the observed AA combinations

(F, R) and (K, Y) respectively, the resulting connected subgraph has an AA mismatch at

j. To thoroughly analyse the connected positions of HIV sequences, two formulations of the

USCCSP-AA will be presented—one permitting AA mismatches and the other excluding them.

The formulation of the USCCSP-AA permitting AA mismatches employs an identical con-

nectivity evaluation problem as that presented for the USCCSP. Using the notation presented

in the previous section the formulation of the USCCSP-AA is given by,

minimise
∑

(i,j)∈E

cijxij +M
∑

(s,t)∈S

∑

(i,j)∈E

zstij +N
∑

(s,t)∈S

∑

j∈V \{s,t}

(

ǫstj + ǫ̂stj
)

, (11)

subject to constraints (3)-(10), (12)
∑

(im,jn)∈Ê

aimjnqwimjn ≥ 1 ∀q ∈ Q, (13)

∑

(m,n)∈Aij

wimjn = xij ∀(i, j) ∈ E, (14)

wimjn ∈ {0, 1} ∀(im, jn) ∈ Ê. (15)

The most important difference between the USCCSP and USCCSP-AA is the addition of con-

straints (14). This set of constraints is required to ensure that at most one AA combination is

selected per pair of positions.

The problem formulation excluding AA mismatches, labelled the USCCSP-AA’, requires a

modification to the flow balance constraints in the connectivity evaluation problem. Specifically,

in constraints (12) all occurrences of E are replaced with Ê and the variables ystij and zstij

are replaced by ystimjn
and zstimjn

. Finally, to formulate the USCCSP-AA’ constraints (12) are

replaced by,

ystimjn − wimjn ≤ zstimjn ∀s ∈ V, ∀t ∈ T s, ∀(im, jn) ∈ Ê, (16)
∑

i∈V |
(i,j)∈E

∑

l∈Bi|
(l,m)∈Aij

ystiljm −
∑

k∈V |
(j,k)∈E

∑

n∈Bk|
(m,n)∈Ajk

ystjmkn = ǫstjm − ǫ̂stjm

∀s ∈ V, ∀t ∈ T s, ∀j ∈ V \{s, t}, ∀m ∈ Bj , (17)
∑

k∈V |
(s,k)∈E

∑

(g,h)∈Ask

ystsgkh ≥ wsmin + wjutv − 1 ∀s ∈ V, ∀t ∈ T s, ∀(sm, in) ∈ Ê, ∀(ju, tv) ∈ Ê, (18)
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∑

k∈V |
(k,t)∈E

∑

(g,h)∈Akt

ystkgth ≥ wsmin + wjutv − 1 ∀s ∈ V, ∀t ∈ T s, ∀(sm, in) ∈ Ê, ∀(ju, tv) ∈ Ê, (19)

xij ∈ {0, 1} ∀(i, j) ∈ E, (20)

ystimjn ∈ {0, 1} ∀s ∈ V, ∀t ∈ T s, ∀(im, jn) ∈ Ê, (21)

zstimjn ∈ {0, 1} ∀s ∈ V, ∀t ∈ T s, ∀(im, jn) ∈ Ê, (22)

ǫstjm , ǫ̂
st
jm ≥ 0 ∀s ∈ V, ∀t ∈ T s, ∀j ∈ V \{s, t}, ∀m ∈ Bj . (23)

The connectivity evaluation constraints (16)-(19) are modified to model the additional edges

per pair of positions in the covariance network. In addition, the flow balance constraints (17)

are defined for each AA/position combination to ensure the same AA is observed on all edges

incoming and outgoing from each node. Finally, the connectivity infeasibility variables, ǫstjm , ǫ̂
st
jm

,

are defined with respect to the additional edges. Consequently, the objective function (11) must

be replaced by

∑

(i,j)∈E

cijxij +M
∑

(s,t)∈S

∑

(im,jn)∈Ê

zstimjn +N
∑

(s,t)∈S

∑

j∈V \{s,t}

∑

m∈Bj

(

ǫstjm + ǫ̂stjm
)

. (24)

4 Benders’ decomposition

A feature of the problems presented Section 3 is the integration of the set covering and con-

nectivity evaluation problems. While these individual problems can be solved using classical

techniques, the integration of the two negatively impacts the problem tractability. Fortunately,

the formulations of the USCCSP and USCCSP-AA are particularly suited for the application

of Benders’ decomposition. For conciseness and ease of exposition the application of Benders’

decomposition will be described with reference to the USCCSP.

Benders’ decomposition forms a master problem, labelled the BMP, and a series of subprob-

lems to reduce the overall problem complexity. The decomposition of the USCCSP involves

formulating a BMP as a set covering problem consisting of variables xij and constraints (2).

The subproblems are formulated to evaluate the connectivity of the set cover solution to the

BMP, which is provided as a fixed input to the subproblems. In iteration n, the set of solution

values for the variables in the BMP is given by x̄n = {x̄nij , (i, j) ∈ E}. The solution given by x̄n

describes a set of separating pairs (i, j) that is a set cover of the founder sequences contained

in Q. This set of edges forms a subgraph of the original separating pairs network.
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An individual subproblem is formed for each source node s ∈ V . This is motivated by

the prevalence of computationally efficient algorithms that find the shortest path from a single

source to all other nodes. Thus, the primal Benders’ subproblem for source node s, given

selected pairs x̄n, (PBSP-s) is formulated as,

µs(x̄
n) = minimise M

∑

t∈T s

∑

(i,j)∈E

zstij +N
∑

t∈T s

∑

j∈V \{s,t}

(

ǫstj + ǫ̂stj
)

, (25)

subject to ystij − zstij ≤ x̄nij ∀t ∈ T s, ∀(i, j) ∈ E, (26)
∑

i∈V |
(i,j)∈E

ystij −
∑

k∈V |
(j,k)∈E

ystjk = ǫstj − ǫ̂stj ∀t ∈ T s, ∀j ∈ V \{s, t}, (27)

∑

k∈V |
(s,k)∈E

ystsk ≥ x̄nsi + x̄njt − 1 ∀t ∈ T s, ∀(s, i) ∈ E, ∀(j, t) ∈ E, (28)

∑

k∈V |
(k,t)∈E

ystkt ≥ x̄nsi + x̄njt − 1 ∀t ∈ T s, ∀(s, i) ∈ E, ∀(j, t) ∈ E, (29)

ystij ≥ 0, zstij ≥ 0 ∀t ∈ T s, ∀(i, j) ∈ E, (30)

ǫstj , ǫ̂
st
j ≥ 0 ∀t ∈ T s, ∀j ∈ V \{s, t}. (31)

The connectivity evaluation problem given by the PBSP-s determines the fewest number of

edges where xij = 0 that are required to form a path for a unit of flow to pass between s and

all t ∈ T s. While the PBSP-s does not display the classical form of a network flow problem,

it is possible to demonstrate the similarities between these two problems by performing a few

simple modifications.

The modifications of the PBSP-s rely on defining a fixed amount of flow through the network

and using this to set the cost for passing along each edge. Since the paths for each source-sink

pair are independent, the PBSP-s is separable by t and an individual network flow problem can

be formulated for each (s, t), t ∈ T s. Section 3 indicates that it is only necessary to identify a

path between the source-sink pair (s, t) if there exists i, j ∈ V, x̄nsi + x̄njt − 1 > 0. This property

can be used to determine the amount of flow to pass from s to t. Additionally, this is enforced by

constraints (28) and (29) and the total amount of flow is given by ψst = maxi,j∈V {x̄
n
si+ x̄

n
jt−1}.

Finally, constraints (26) set the cost of pushing ψst amount of flow along edge (i, j).

From the previous observations, a classical network flow problem can be formed. Most

importantly, it is possible to eliminate constraints (26) since the cost of pushing ψst amount

of flow along edge (i, j) is fixed by the variables x̄n. Using this fixed amount of flow, the
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variable mapping zstij = ystij ×max{ψst − x̄nij , 0} can be applied to form the modified problem.

Implementing these modifications results in the formulation of a classical network flow problem

that can be efficiently solved using a variety of dedicated solution algorithms. Examples of

appropriate network flow algorithms are described in Ahuja et al. [2].

4.1 Generating Benders’ cuts

Solving the PBSP-s using a dedicated network flow algorithm significantly improves the effi-

ciency of the Benders’ decomposition solution process. Employing such an algorithm to solve

the PBSP-s provides an optimal primal solution; however, no dual solution is readily available.

Further, this optimal primal solution is for the modified problem, which needs to be mapped

to the original formulation of the PBSP-s in order to generate cuts.

To aid the discussion in this section, the dual variable notation will be provided. The dual

variables for the connection enforcement constraints (26) are described by λs = {λstij , ∀t ∈

T s, ∀(i, j) ∈ E}. The dual variables αs = {αst
j , ∀t ∈ T s, ∀j ∈ V } are defined for the flow

balance constraints (27). Finally, the dual variables for the source and sink node enforcement

constraints (28) and (29) are given by δs = {δstij , ∀t ∈ T s, ∀(s, i) ∈ E, ∀(j, t) ∈ E} and γs =

{γstij , ∀t ∈ T s, ∀(s, i) ∈ E, ∀(j, t) ∈ E} respectively.

An important observation of the PBSP-s is that the flow balance constraints (27) ensure the

subproblem is feasible for all solutions x̄. Hence, only optimality cuts are generated. A Benders’

optimality cut describes a feasible region extreme point from the dual of the PBSP-s. Since a

dedicated solution algorithm is used to identify the optimal primal solution to the PBSP-s, an

optimality cut is constructed by examining the reduced costs of the primal variables. There are

six variable types in the PBSP-s, ystij , y
st
sk, y

st
kt, z

st
ij , ǫ

st
j and ǫ̂stj , with their respective reduced cost

functions given by,

c̄stij = αst
i − αst

j − λstij ∀(i, j) ∈ E, (32)

c̄stsk = αst
s − αst

k −
∑

(s,i)∈E

∑

(j,t)∈E

δstij − λstsk ∀(s, k) ∈ E, (33)

c̄stkt = αst
k − αst

t −
∑

(s,i)∈E

∑

(j,t)∈E

γstij − λstkt ∀(k, t) ∈ E, (34)

d̄stij =M + λstij ∀(i, j) ∈ E, (35)

ēstj = N + αst
j , ∀j ∈ V \{s, t}, (36)

f̄stj = N − αst
j , ∀j ∈ V \{s, t}. (37)
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For the case that graph G is connected, the solution to the PBSP-s describes a collection

of edges (i, j) that form a connected path p for a flow of ψst to pass from source node s to sink

node t. Hence, the variables ystij , where (i, j) ∈ p, are basic, implying that their reduced costs

are zero. Additionally, the variables zstij are set to one for each (i, j) ∈ p, if x̄ij = 0 and ystij = 1

and zero otherwise, as given by the mapping described previously. Thus, the construction of a

dual solution for the PBSP-s to generate Benders’ cuts is performed using the following process.

The algorithm to construct an optimal dual solution initially sets the values for all dual

variables to zero. Since the variables zstij are basic if x̄ij = 0 and ystij = 1, traversing through

(i, j) ∈ p, the values of λstij are set by the reduced cost function (35). Then considering the

source node and the connection (s, k) ∈ p, equation (33) states that it is valid to set αst
k = −λstsk.

It follows that for every connection (i, j) ∈ p, j 6= t the related dual variables can be equated

using (32), hence αst
j − αst

i = −λstij . Finally, for the sink node and the connection (k, t) ∈ p,

equation (34) states that the expression
∑

(s,i)∈E

∑

(j,t)∈E γ
st
ij − αst

k = −λstkt is valid. A solution

that satisfies this set of equations is given by setting αst
k , for k 6= t, equal to the sum of λstij for

all connections (i, j) ∈ p from the source node to k. For k = t,
∑

(s,k)∈E

∑

(l,t)∈E γ
st
kl is set to

the sum of λstij for all connections (i, j) ∈ p. It is permissible to select any l′ ∈ V such that

γstkl′ ∈ γs is positive, provided x̄l′t = 1.

While an optimal objective value is given by setting the dual variables as described, this

does not produce a valid Benders’ cut. The added cut eliminates solutions by transgresses into

the feasible region of the original problem. Such cuts will be termed transgressing Benders’

cuts. Including the transgressing cut in the master problem penalises the disconnected source-

sink pairs. This causes every possible solution including these source-sink pairs, except if the

linking edges in the subproblem optimal path are selected, to be penalised. Hence, the values

of λstij for all (i, j) where x̄ij = 0 must be set to −M to produce a valid cut.

The above cut generation process does not hold for the case where graph G is not con-

nected and s and t lie in two different connected components. In this situation no path

exists between source s and sink t; as such, the only ystij that may be set to one are those

on an edge incident to the source or sink. Specifically, constraints (28) state that there ex-

ists exactly one j such that ystsj = 1, (s, j) ∈ E and similarly constraints (29) ensure ex-

actly one k exists such that ystkt = 1, (k, t) ∈ E. As a result, αst
j = −N and αst

k = N , as

given by equations (36) and (37) respectively. It follows from equations (33) and (34) that
∑

(s,i)∈E

∑

(j,t)∈E δ
st
ij =

∑

(s,i)∈E

∑

(j,t)∈E γ
st
ij = N . The resulting solution, with all other dual
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variables set to zero, is an optimal dual solution.

The addition of optimality cuts to the BMP also requires the introduction of the variables

ϕs for each subproblem s ∈ V . These variables are bounded from below by the added cuts and

provide the current lower bound on the objective value of the PBSP-s. The optimality cuts

added to the BMP are of the form,

ϕs ≥
∑

t∈T s

∑

(s,i)∈E

∑

(j,t)∈E

(

δstij + γstij
)(

xsi + xjt − 1
)

+
∑

t∈T s

∑

(i,j)∈E

λstijxij . (38)

Cuts are continually added to the BMP until the gap between the upper and lower bounds,

given by the solutions to the BMP and PBSP-s, ∀s ∈ S, respectively, reduces to a desired

optimality gap.

While a transgressing Benders’ cut is generated by the initial steps of the above algorithm, it

is still possible to use this cut to generate upper bound solutions. A given disconnected solution

is not eliminated, but penalised by this cut. Computational experience shows that searching

in a neighbourhood of a previously found solution for alternative subgraphs can identify sub-

optimal solutions, based on the added cuts, that are indeed connected. Applying transgressing

cuts requires a method that forces the master problem to search for solutions in a neighbourhood

of those found in previous iterations. One such method is to employ a trust region, which is

described in Section 4.3. The approach using transgressing cuts and a trust region is a heuristic

method that quickly identifies upper bound solutions. The produced solutions are of good

quality for the HIV Env analysis application.

4.2 Benders’ decomposition master problem

The BMP is formulated as a set covering problem with additional cuts to express the evaluation

of the subgraph connectivity. The set Ωs is introduced as an index set for the cuts added from

the PBSP-s for source node s. Each cut generated from the solution to the PBSP-s is indexed

by ω. The BMP is given by,

minimise Φ =
∑

(i,j)∈E

cijxij +
∑

s∈V

ϕs, (39)

subject to
∑

(i,j)∈E

aijqxij ≥ 1 ∀q ∈ Q, (40)

ϕs ≥
∑

t∈T s

∑

(s,i)∈E

∑

(j,t)∈E

(

δωstij + γωstij

)(

xsi + xjt − 1
)
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+
∑

t∈T s

∑

(i,j)∈E

λωstij xij ∀s ∈ V, ∀ω ∈ Ωs, (41)

xij ∈ {0, 1} ∀(i, j) ∈ E ϕs ∈ R ∀s ∈ S. (42)

The objective value of the BMP in a given iteration provides a lower bound on the optimal

solution to the USCCSP. In particular, the values of xij describe the best selection of separating

pairs with the smallest “distance” between each of the identified nodes given the current evalu-

ation information from the PBSP-s, ∀s ∈ S. Since the Benders’ decomposition subproblems are

always feasible, the solution to the BMP in each iteration is a feasible solution to the original

problem.

4.3 Trust region method

The application of a trust region restricts the feasible region of the master problem to identify a

solution close to that found in the previous iteration. Trust region approaches are employed for

Benders’ decomposition to focus the added cuts and improve the convergence of the algorithm.

Examples of this approach include the addition of a regularisation term in the objective as

presented by Ruszczyński [21] and the addition of a set of constraints as demonstrated by Lin-

deroth and Wright [14] and Santoso et al. [22]. While both approaches have been demonstrated

to improve the convergence of the solution process, the latter maintains the mixed integer pro-

gramming structure of the master problem and hence it is more appropriate for the USCCSP

and USCCSP-AA.

The constraints added to form the trust region restrict the distance between solutions in

consecutive iterations. Using the notation presented at the start of this section, the solution

values for the Benders’ decomposition master problem in iteration n is given by x̄n. Given the

set of solution values x̄n it is possible to define Xn = {(i, j)|x̄nij = 1} to contain the connections

(i, j) related to the active variables. Thus, the implementation of a trust region for the USCCSP

involves the addition of the following constraint to the BMP,

∑

(i,j)/∈Xn−1

xij +
∑

(i,j)∈Xn−1

(1− xij) ≤ ∆. (43)

There are two different implementations of a trust region that can be employed using con-

straint (43). The first implementation models ∆ as a constant and the second as a variable.

Modelling ∆ as a constant places a hard limit on the number of changes permitted in each
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iteration. This approach is implemented by Santoso et al. [22] where it is stated that by using

a fixed value of ∆ the convergence of the algorithm is not guaranteed. Hence, it is necessary to

increase the value of ∆ throughout the solution process such that a non-redundant trust region

is maintained. This approach is employed in applying a trust region to solve the USCCSP and

USCCSP-AA.

A final consideration of the solution approach is the use of transgressing Benders’ cuts. The

use of transgressing cuts results in a heuristic solution approach. The addition of transgressing

cuts in conjunction with a trust region approach is useful in identifying upper bound solutions.

To avoid the elimination of the optimal solution by the addition of transgressing cuts, all cuts are

removed each time an upper bound solution is identified. Additionally, constraints are included

in the master problem to exclude all previously found upper bound solutions. Unfortunately

this approach does not guarantee the optimal solution will be found. However, the solution

elimination constraints and an increasing trust region aids the exploration of other parts of the

feasible region to identify alternative and improved upper bound solutions.

5 Computational results

The computational experiments aim to demonstrate the ability of the USCCSP and USCCSP-

AA to identify connected subgraph solutions. An analysis of the solution approach will be

presented, discussing the performance improvements from applying Benders’ decomposition

and a trust region approach. Finally, a review of the connected subgraph solutions and their

implications for the analysis of HIV Env sequences will be discussed.

The USCCSP and USCCSP-AA is presented in Section 3 with cost and penalty parameters

in the objective function. The purpose of the cost parameter cij is to force the minimisation of

the selected pairs. This is achieved by setting cij to 1. The penalty parameters, M and N , are

included to enforce connectivity between the selected edges. As such, it is necessary to set the

parameters M and N to a value sufficiently greater than the expected number of edges selected

in the optimal solution. For the presented experiments the parameters are set to 100 and 10000

respectively. Computational experience indicates that varying the values for these parameters

has little effect on the optimal solution provided M and N remain sufficiently greater than cij .

The USCCSP and USCCSP-AA are solved using Cplex 12.4 interfaced through Matlab

2014a using 12 cores with 15GB RAM.
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5.1 Solving the USCCSP on the HIV separating pairs networks

The USCCSP is solved to identify a minimum number of covarying pairs forming a completely

connected subgraph that separate the founder and chronic HIV Env sequences. Since each

pair of positions in the network used to solve the USCCSP is connected by a single edge, the

resulting connected subgraph provides a broad analysis of the separating pairs. Two different

virus subtypes (clades) are investigated in this paper; as such, two distinct separating pairs

networks are constructed.

The data collected for the clade B subtype includes 156 sequences, 78 for both founder

and chronic groups. As explained in Section 3, the separating problem of the USCCSP involves

selecting covarying pairs that cover the complete set of founder sequences. As such, 78 sequences

are contained in the set Q and the resulting separating pairs network consists of 259 nodes and

2495 edges. There are significantly more edges than nodes in the covariance network, resulting

in a high degree at each node, which is shown in Figure 3a. Figure 3a demonstrates that a large

number of nodes have a small degree, but the majority of nodes have a degree greater than 10.

The mean degree for the nodes in the clade B separating pairs network is 19.27 and the median

is 15.

For the HIV clade C subtype, the data consists of 55 founder and chronic sequences and

hence |Q| = 55. The clade C separating pairs network consists of 257 nodes and 3021 edges.

Figure 3b presents similar node degree results for this separating pairs network, with the same

median degree of 15, but a higher mean degree of 23.51.
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Figure 3: The number of nodes observed to have a given number of edges incident in the

separating pairs network.
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5.1.1 Clade B separating pairs network - runtime results

The formulation of the USCCSP using the clade B separating pairs network consists of 167

million variables and 104 million constraints. The vast majority of the variables and constraints

are related to the connectivity evaluation. The large number of variables and constraints is a

motivation for employing decomposition techniques to improve the problem tractability.

Table 1 presents the runtime results from solving the separating pairs set covering problem

and the USCCSP using a standard Benders’ decomposition implementation with full cuts and

employing a trust region using transgressing cuts for clade B. The solution to the set covering

problem provides a lower bound on the USCCSP, which is reported as consisting of 6 separating

pairs. The total runtime for this problem is 0.67 seconds. The requirement of identifying a con-

nected subgraph including only the selected separating pairs significantly increases the solution

runtime compared to the separating pairs problem of [16]. The standard implementation of

Benders’ decomposition is unable to solve the USCCSP within 3600 seconds (1 hour). During

the solution process, this implementation establishes a lower bound of 7 separating pairs in

1832.32 seconds, but this set of pairs is not connected. Comparatively, the trust region method

establishes an upper bound of 7 separating pairs forming a connected subgraph in 54.36 sec-

onds. Unfortunately, since the trust region approach is a heuristic it is not possible to prove

the optimality of this solution. This demonstrates the ability of the trust region approach to

identify upper bounds quickly and the difficulty in achieving a good lower bound.

USCCSP

Clade B Separating Pairs Network Set Covering Problem Standard Benders’ Trust Region

Best Lower Bound 6 7 -

Best Upper Bound 6 - 7

Time to Best Lower Bound (seconds) 0.67 1832.32 -

Time to Best Upper Bound (seconds) 0.67 >3600 54.36

Table 1: The best upper and lower bounds and the time to identify each for the clade B

separating pairs network using the standard Benders’ decomposition implementation and a

trust region method.
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5.1.2 Clade C separating pairs network - runtime results

While fewer clade C sequences were collected to construct the separating pairs network com-

pared to clade B, the number of variables and constraints are greater with 198 million and 126

million respectively. This increase in problem size is the direct result of a larger number of

edges in the separating pairs network and suggests that the many positions in the clade C virus

subtype experience related mutations.

The runtime results for solving the set covering problem and the USCCSP for the clade

C separating pairs network are presented in Table 2. While the runtime results presented in

Table 2 are much shorter than those presented in Table 1, the comparative results are similar.

In particular, there is a significant difference in the runtime to solve the set covering problem

and the USCCSP. Further, the improvement in the solution runtime from employing the trust

region method is also observed. The set covering problem, which involves solving the BMP

without any added cuts, is solved to optimality in approximately 0.06 seconds and identifies

3 separating pairs. By contrast, the standard implementation of Benders’ decomposition to

solve the USCCSP finds the optimal separating pairs connected subgraph solution of 4 pairs in

14.54 seconds. This increased runtime is to be expected, since the complexity of the USCCSP

is negatively affected by the inclusion of the connectivity constraints.

While the standard implementation of Benders’ decomposition solves the USCCSP in very

short runtimes, the results for the clade C separating pairs network still demonstrate the

strength of the trust region method. By implementing the trust region for this problem, the

first upper bound solution found contains 4 separating pair, which is found after approximately

5.53 seconds. This represents a significant reduction in the solution runtime for the USCCSP.

USCCSP

Clade C Separating Pairs Network Set Covering Problem Standard Benders’ Trust Region

Best Lower Bound 3 4 4

Best Upper Bound 3 4 -

Time to Best Lower Bound (seconds) ∼ 0.06 7.87 -

Time to Best Upper Bound (seconds) ∼ 0.06 14.54 5.53

Table 2: The best upper and lower bounds and the time to identify each for the clade C

separating pairs network using the standard Benders’ decomposition implementation and a

trust region method.
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However, the magnitude of this result should not be extrapolated to problems using different

networks.

5.1.3 Separating pairs and connected subgraph solutions

Figure 4 presents the separating pairs and connected subgraph solutions for clades B and C. The

solutions presented in this figure are the best found solutions from the experiments performed

in Sections 5.1.1 and 5.1.2.

The separating pairs problem and the USCCSP identify graphs containing 6 and 8 edges

respectively, which are displayed in Figure 4a. This figure demonstrates the lack of connec-

tivity between the pairs after solving the separating pairs problem of Murray et al. [17]. By

comparison, the solutions to the USCCSP identifies a connected subgraph of the separating

pairs network. Given the different problem definitions, it is unlikely that pairs will be com-

mon between the solutions to the separating pairs and connected subgraph problems, which is

demonstrated in Figure 4a. However, there are three nodes common between the two figures

(293, 336, 621), highlighted in black. It is interesting to observe that these three nodes form a

connected subgraph in the solution to the USCCSP.

Optimal solutions for the separating pairs problem and the USCCSP for clade C are pre-

sented in Figure 4b. The separating pairs solution consists of three pairs, with two pairs

connected through node 360. By contrast, the connected subgraph requires four pairs. Similar

to the clade B solution, three nodes are common between the two graphs but there are no

common separating pairs. Interestingly, it is possible to form an optimal connected subgraph

from the separating pairs solution by including edge (336, 620). This suggests the existence of

multiple optimal solutions to the separating pairs problem and the USCCSP. In a separating

pairs network consisting of 3021 edges, it is likely there exists many subgraphs that solve the

(a) Clade B. (b) Clade C.

Figure 4: The separating pairs and connected subgraph solutions for the clade B separating

pairs network.
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USCCSP to optimality.

5.2 Solving the USCCSP-AA

The USCCSP-AA involves selecting a set of separating pairs with only a single AA combination

per pair. This problem formulation involves a different network construction compared to that

used for the USCCSP. In particular, each of the amino acid combinations observed on a pair of

positions must be represented by an edge. This graph construction contains the same number of

nodes as the original network, but there is a large increase in the number of edges. Specifically,

the number of edges in the multiple amino acid clade B separating pairs network is 12624 and

for clade C there are a total of 15663 edges. This is a significant increase in comparison to

the original networks containing 2495 and 3021 edges in the clade B and clade C networks

respectively. The increase in the number of edges results in a much larger integer program.

It is observed in the computational experiments that the trust region identifies upper bounds

very quickly, but very little improvement in the lower bound is achieved. As such, it is only

possible to employ Benders’ decomposition as an upper bounding heuristic. However, this

heuristic approach still provides meaningful information in the pursuit of identifying a small

set of important, connected features that separate founder and chronic sequences.

5.2.1 Analysis of USCCSP-AA formulations

The USCCSP-AA is presented in Section 3.2 with two alternative formulations – permitting and

excluding AA mismatches at positions in the subgraph solution. These two formulations are

developed with alternative biological interpretations of the connected subgraph. However, the

problem complexity is greatly increased by excluding AA mismatches. This is a consequence of

identifying each AA combination per pair in the Benders’ decomposition subproblem. As such,

the added cuts are not as effective, which negatively affects the algorithms rate of convergence.

Figure 5 presents the best found upper bounds for the two alternative formulations and

the runtime to achieve this. A maximum runtime of 18000 seconds is used for these experi-

ments. The upper bounds solutions are found by using a trust region approach and applying

transgressing cuts. Five different network constructions are used to evaluate the convergence

of the algorithm. These are labelled by a value k that the network is constructed by retaining

edges where at least k founder sequences are observed. Figure 5 presents experiments where

k ∈ {0, 2, 3, 4, 5}–the full separating pairs network is given by k = 0. The results suggest an
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Min seq per edge 0 2 3 4 5
Mismatch time 923.24 773.31 116.92 76.97 1278.1
No mismatch time -- -- 5084.0 532.24 388.52
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(a) Clade B.

Min seq per edge 0 2 3 4 5
Mismatch time 56.95 231.41 685.8 20.02 26.74
No mismatch time -- -- 220.45 64.59 45.26
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(b) Clade C.

Figure 5: The best upper bounds achieved for the USCCSP-AA either permitting or excluding

AA mismatches at each node.

increased complexity when solving the USCCSP-AA by excluding AA mismatches. For both

clades, the USCCSP-AA’ is unable to identify upper bound connected subgraph solutions for

the two largest network constructions. Surprisingly, neither of the problem formulations dom-

inate the runtime to achieve the best upper bound solutions. This is a feature of the trust

region approach using transgressing cuts where the upper bound solutions are dependent on

previously found solutions.

Small differences are observed in the connected subgraph solutions to the two USCCSP-

AA formulations. As presented in Figure 5, the total number of pairs in the upper bound

solution is much greater when AA mismatches are excluded. However, there are many AA

positions and pairs common between the solutions. Specifically, 44.92% and 41.43% of all

positions and edges are observed in both solutions. Some pairs are more commonly observed

than others, for example 750-836 is observed in the upper bound solutions for both formulations

with networks constructed for clade B using a minimum of 3, 4 or 5 sequences. There are no

pairs observed in all clade C solutions, which suggests a higher variability in the mutations.

Given the similarities in the solutions between the two formulations the following results will

focus primarily the USCCSP-AA with mismatches permitted.

5.2.2 Bound improvements of the USCCSP-AA

The application of a trust region aids the identification of upper bound solutions. While this

is useful from a practical, application perspective, there is no guarantee of optimality. A lower

bound solution is given by solving the USCCSP-AA without the trust region and applying full

Benders’ cuts, as described in Section 4.1.
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The improvement in the upper (black) and lower (grey) bound for the USCCSP-AA is

displayed in Figure 6. In this figure, the labels “At least k seq” indicates the minimum number

of sequences in the network construction. The maximum solution runtime for the USCCSP-AA

is set to 18000 seconds. Since no further bound improvements are observed after 1000 seconds

for all experiments the time axes in Figure 6 are truncated to improve the presentation.

Figure 6 demonstrates that for all experiments the upper bound is improved very quickly.

This illustrates the ability of the trust region approach to identify upper bound solutions in

very short runtimes. It is expected that the number of pairs in the upper bound solutions will

increase with the minimum number of observed sequences per edge. However, the networks

constructed with a minimum of 2 or 3 sequences both achieve better upper bounds than that

for the full network. This is also true for the clade C network with the best upper bound

achieved with a minimum of 2 sequences per edge. This can be explained as a feature of the

trust region approach, where identified upper bound solutions depend on the previously found

solutions.

In comparison to the upper bound, very few improvements in the lower bound are achieved.

In Figure 6, the lower bound increases by at most 2 pairs across all experiments. Surprisingly,

the last improvement in the lower bound is achieved after 233.37 and 107.48 seconds for clade

B and C respectively. This suggests that the full Benders’ cut described in Section 4.1 is

ineffective for this problem formulation. As such, the use of alternative Benders’ decomposition

acceleration techniques, such as applying Pareto optimal cuts, may be useful for improving the

algorithm convergence.

Comparing the upper and lower bound solutions, it is clear that a large optimality gap exists
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Figure 6: Changes in the upper (black) and lower (grey) bounds for the USCCSP-AA employing

a trust region method and network reduction.
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for the identified connected subgraphs. This gap appears to be much larger for the clade B

networks, compared to that presented for clade C. As such, it is possible that smaller connected

subgraph solutions exist for the given covariance networks. While the smaller solutions may

exist, the identified upper bound solutions are useful for identifying important features of HIV

Env.

5.2.3 Solving the USCCSP-AA with different cut-off values

The efficacy of Benders’ decomposition to identify optimal solutions is impacted by the structure

of the USCCSP-AA. This is particularly evident in the results presented in Sections 5.2.1

and 5.2.2, where the optimal solution is not found even with different network constructions.

Another network construction method that reduces the size of the graph is to vary the covariance

cut-off value. The experiments conducted in the previous sections solve the USCCSP-AA on a

network constructed using a cut-off value of 0.5. This value is employed by Aurora et al. [4] in

constructing covariance networks to analyse hepatitis C virus. A higher cut-off value reduces

the number of edges in the resulting network, which is demonstrated in Table 3.

The upper and lower bounds achieve for clade B and C using the different cut-off values

is presented in Figure 7. The upper bounds are given by the bars and the lower bound are

presented by the lines at the top of each bar. It is observed that as the cut-off value increases,

so does the size of the connected subgraph upper bound solution. This is the result of the

elimination of more edges in the covariance network reducing the connectivity of the covariance

network. Hence, it is less likely to identify edges satisfying the set covering solution in the same

region of the graph. Similar to results in Sections 5.2.1 and 5.2.2, there appears to be little

correlation between the time required to identify the best upper bound solution and the size

of the covariance network. For example, it is observed in Figure 7b the shortest time to find

the best upper bound is when a cut-off of 1.3 is used, while the longest is with a cut-off of

1.1. Finally, there appears to be a consistent absolute gap between the upper and lower bound

Cut-off Value 0.5 0.7 0.9 1.1 1.3

Clade B 12,624 5,576 2,544 1,355 779

Clade C 15,663 7,027 3,572 2,142 1,430

Table 3: The number of edges in the covariance graphs for clade B and C constructed using

different cut-off values.
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Figure 7: The best upper (bars) and lower (lines) bounds for the USCCSP-AA using different

cut-off values.

solutions across all experiments in Figure 7. This further emphasises the need for improved cut

generation to aid the convergence of the solution approach.

The difficulty in the convergence of the algorithm can be explained by the large number of

set covering solutions. Using a cut-off value of 1.3, on average each sequence is observed on

13.87 and 34.35 edges of the clade B and C covariance networks respectively. The prevalence of

sequences throughout the network suggests that there are an enormous number of set covering

solutions. As such, many Benders’ cuts are required to cut off disconnected solutions and

improve the lower bound. For comparison, using a cut-off value of 0.5 to construct the covariance

networks, for clade B and C each sequence is observed on an average of 222.11 and 374.8 edges.

Hence, the ability of the presented solution algorithm to identify good upper bound solution is

valuable for large scale instances of the unrooted set covering connected subgraph problem.

5.2.4 Analysis of the separating pairs networks

Figure 6 presents five experiments performed for each clade using different settings for the

network reduction. Each of these experiments provide an upper bound solution as a connected

subgraph of separating pairs.

Three of the clade B connected subgraph solutions for the experiments presented in Figure 6a

are given in Figure 8. The best found upper bound solution is given by the network constructed

with a minimum of 2 sequences exhibited per edge, given in Figure 8b. The nodes of particular

interest are 236, 347, 750 and 836, which are observed in all upper bounding networks generated

for the clade B separating pairs network. In Figure 8 these nodes are highlighted in black.

Interestingly, the commonly observed pairs of 347, 750 and 836 are connected in all subgraphs

presented in Figure 8, while node 236 is disconnected. This suggests a particular importance
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Figure 8: The best found separating pairs subgraphs for clade B using different network reduc-

tion parameters.

of positions 347, 750 and 836 and the related separating pairs. Expanding the analysis of the

commonly selected nodes, the nodes that appear in at least four of the generated networks

are highlighted with dark grey. Three grey highlighted nodes of interest are 239, 535 and 640.

First, a similar relationship between the black and grey nodes is observed in Figures 8a and 8c.

This is given by a direct connection is between 347 and 640 in both. Second, there is a much

stronger relationship observed in Figure 8b where all black and grey nodes are exhibited. If

node 232 is also considered, then the black and grey nodes form a smaller connected subgraph

solution. All of the identified features of the separating pairs connected subgraphs potentially

point to other important features of the clade B HIV sequence.

The separating pairs subgraph solutions identified for the clade C separating pairs network

are presented in Figure 9. The degree of many of the nodes in the subgraphs is high, indicating

the importance of particular AA positions. Surprisingly, there is no node selected in all of

the subgraph solutions for the clade C separating pairs network. This has two alternative

explanations, i) a more diverse range of mutations occur in the clade C Env sequence compared

to clade B, or ii) there is no single position of high importance to the structure of the clade

C virus. There are, however, five nodes – 161, 393, 624, 832 and 833 – that are selected in

three of the four experiments. In Figure 9 these nodes are highlighted with dark grey, with at

least three observed in each of the subgraphs in Figure 9. The connectivity between the grey

nodes and the degree of these nodes identifies some interesting structures. First, positions 161

and 624 are directly connected in Figures 9b and 9c, with both having a degree of five in the

latter. Further, the grey nodes appear to define a core structure of the subgraphs, particularly

in Figure 9a. This structure is interesting given the many branches stemming from it. Further
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Figure 9: The best found separating pairs subgraphs for clade C using different network reduc-

tion parameters.

review of these positions may identify important structures related to the transmission of the

clade C virus.

6 Conclusions

This paper presents a novel application of operations research to the analysis of HIV Env se-

quences. The analysis attempts to construct a connected subgraph of covarying amino acid

positions to identify key features related to the transmission of the virus. Two different math-

ematical models are presented, the second providing a more detailed view of the HIV Env

sequences and related separating pairs networks. A critical feature of this analysis is the con-

nectivity requirement between the selected covarying pairs. This requirement is modelled using

a network flow problem, which is at the expense of producing very large problem formulations.

The complexity of the resulting problem formulation is addressed by employing Benders’ de-

composition, along with enhancement techniques, to efficiently solve the USCCSP and reduce

runtimes for the USCCSP-AA.

The results demonstrate the general performance of the Benders’ decomposition solution

approach to solve the USCCSP and USCCSP-AA. The models presented in this paper may be

applied to any application requiring the construction of a set covering connected subgraph, in

particular those without any specified terminal or root nodes. As such, these results aim to

demonstrate the general performance of the developed solution approach.

This paper discusses the implication of identifying connected subgraphs in comparison to

the set covering problem of Murray et al. [17] and the different results achieved using various

enhancement techniques. It is demonstrated that the solution to the USCCSP and USCCSP-AA

may identify important features for further research in the operation research and microbiology
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context.

There are two key areas for further research regarding the work presented in this paper. In

the operations research context, identifying other application areas that require the construc-

tion of a set covering connected subgraph would aid the further development of the presented

approaches. In addition, the results present the use of Benders’ decomposition as a heuristic

approach to identify good upper bounds to the USCCSP-AA. This presents an area of further

research to identify approaches that improve the solution process for the USCCSP-AA: Either

through enhancements of the Benders’ decomposition approach or the development of alterna-

tive techniques. Finally, the separating pairs connected subgraph results attempt to identify

key features of the HIV Env sequence as possible vaccine targets. Further analysis of these

connected subgraphs may yield more important features to aid the development of a vaccine

preventing the transmission of HIV.
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[20] H. Önal and Y. Wang. A graph theory approach for designing conservation reserve networks

with minimal fragmentation. Networks, 51(2):142–152, 2008.
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